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Abstract

We introduce MTT, a dependent type theory which supports multiple modalities. MTT is pa-

rameterized by a mode theory which speci�es a collection of modes, modalities, and transforma-

tions between them. We show that di�erent choices of mode theory allow us to use the same type

theory to compute and reason in many modal situations, including guarded recursion, axiomatic

cohesion, and parametric quanti�cation. We reproduce examples from prior work in guarded re-

cursion and axiomatic cohesion — demonstrating that MTT constitutes a simple and usable syntax

whose instantiations intuitively correspond to previous handcra�ed modal type theories. In some

cases, instantiating MTT to a particular situation unearths a previously unknown type theory that

improves upon prior systems. Finally, we investigate the metatheory of MTT. We prove the con-

sistency of MTT and establish canonicity through an extension of recent type-theoretic gluing

techniques. �ese results hold irrespective of the choice of mode theory, and thus apply to a wide

variety of modal situations.



1 The Syntax and Semantics of MTT

Nothing is more arbitrary than a

modal logic: “I am done with this

logic, may I have another one ?”

seems to be the mo�o of modal

logicians.

Jean-Yves Girard

�e Blind Spot

�e objective of this work is to de�ne and study a multimode and multimodal dependent type theory.

By ‘multimode’ we mean that each type and term of this type theory can be thought of as being in

a particular mode. �e modes of this type theory may share some common structure—for example, we

may be able to form dependent sums in all modes—but some may have their own unique features. In

semantic terms, di�erent modes correspond to di�erent categories.
Once we have established multiple modes, our type theory will allow us to relate them. In other

words, the type theory will feature emergent modal behaviour. �e various relations between di�erent

modes will be known as modalities. As we have already taken care to admit multiple modes in our

theory, nothing will stop us from admi�ing multiple modalities between any two such modes. In that

sense, this type theory will be not just multimode, but also multimodal. For the purposes of this work,

we will limit ourselves to simple relations between modes, namely relations of a functional nature. In

semantic terms, our modalities will be functors with speci�c properties.

In the past few years there has been considerable interest in and demand for such a type theory.

A special workshop on Geometry in Modal Homotopy Type �eory took place in Pi�sburgh during

March 2019, and the HoTTEST seminar by Licata [Lic19] nicely surveys a number of candidate ap-

plications that would be enabled by the existence of such a type theory. �ere is already quite a bit

of literature on extend type theory with modalities. For example, modalities have been used to ex-

press guarded recursive de�nitions [Bir+12; Biz+16; BGM17], to internalize parametricity arguments

and quanti�cation [NVD17; ND18], to capture proof irrelevance [Pfe01; AS12; ND18], and to de�ne

global operations on types and terms (cf. slice-wise) [Lic+18]. �ere has also been a concerted e�ort to

construct a dependent type theory corresponding to Lawvere’s axiomatic cohesion [Law07], which has

many interesting applications [Sch13; SS12; Shu18; Gro+17; Kav19].

Despite this recent �urry of developments, a unifying account of modal dependent type theory has

yet to emerge. Faced with a new modal situation, the type theorist must handweave a brand new system,

and then prove the usual ba�ery of metatheorems. �is introduces formidable di�culties on two levels.

First, an increasing number of these applications are multimodal: they involve multiple interacting

modalities, which signi�cantly complicates the design of the appropriate judgmental structure. Second,

the technical development of each such system is entirely separate from the others, so it is impossible to

share the burden of proof—even between very closely related systems. To take a recent example, there

is no easy way to transfer the work done in the 80-page-long normalization proof for MLTTµ [GSB19]

to a normalization proof for the modal dependent type theory of Birkedal et al. [Bir+20], even though

5
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these systems are only marginally di�erent. Put simply, if one wished to prove that type-checking is

decidable for the la�er, then one would have to start afresh.

We intend to avoid such duplication in the future. Rather than designing a new dependent type

theory for some preordained set of modalities, we will introduce a system that is parametrized by a

mode theory, i.e. an algebraic speci�cation of a modal situation. �is system, which we call MTT, solves

both problems at once. First, by instantiating it with di�erent mode theories we will show that MTT can

capture a wide class of situations. Some of these, e.g. the one for guarded recursion, lead to a previously

unknown system that improves upon earlier work. Second, the predictable behavior of our rules allows

us to prove metatheoretic results about large classes of instantiations of MTT at once. For example,

our canonicity theorem applies irrespective of the chosen mode theory. As a result, we only need to

prove such results once. Returning to the previous example, careful choices of mode theory yield two

systems that closely resemble the calculi of Birkedal et al. [Bir+20] and MLTTµ [GSB19] respectively,

so that our proof of canonicity applies to both.

�e work that is closest in spirit to ours is the dependently-typed extension of the Licata-Shulman-

Riley (LSR) framework [LSR17]. As of April 2020, this work remains unpublished. Our approach is not

as complex as that of op. cit. as we have consciously chosen to make our type theory cartesian (i.e. ad-

mi�ing weakening and contraction). �is puts us at odds with the goals of the LSR framework, which

is meant to encompass linear dependent type theories, with a view to many interesting applications in

synthetic homotopy theory. Our decision to remain cartesian puts these examples out of reach. How-

ever, we remain practically-minded: we will see in §2 that most of our motivating examples—which

largely arise from applications in programming languages—have an intuitive and elegant formulation

in our se�ing.
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1.1 Syntax of MTT

We now introduce the syntax of our multimode type theory, MTT, which is a type theory in the style of

Martin-Löf. In the interest of conveying the intuitions without becoming overly formal, our description

will be in terms of an informal, variable-based syntax, as is common for type theories in the style

of Martin-Löf. In Section 1.2 we present the theory formally using algebraic syntax, which greatly

simpli�es the proof of a number of metatheoretic and semantic results.

1.1.1 Informal Syntax

�e salient di�erence between MTT and ordinary Martin-Löf type theory is that the judgments of MTT
(contexts, types, and terms) are parameterised by a mode. In semantic terms, each mode represents a

distinct category. In order to capture the allowed modes we de�ne our judgments parametrically in

a small 2-category M. �is category is referred to as the mode theory [Ree09; LS16; LSR17], and it

axiomatizes the modalities in scope as well as their interactions. We refer to the objects ofM as modes,

and to the morphisms between them as modalities. In §2 we show how we may obtain previously studied

modal idioms through a careful choice of mode theory.

Returning to judgments, we will for example write

Γ `M : A@m

for a termM of typeA, in context Γ, at modem ∈M. Many of the usual rules (e.g. those for Σ-types)

will be parametric in m. Others, such as the rule for Π-types, will interact in a more intricate manner

with the mode. Finally, the modal rules of the type theory will exactly describe the various ways of

moving between the di�erent modes.

�e ways of moving between di�erent modes are o�en called modalities. In our se�ing, modalities

are speci�ed by the morphisms of the 2-category M, for which we will write µ : HomM(m,n) or

µ : m → n. Each such morphism introduces a contravariant functorial action on contexts. �at is: we

are allowed to push a context backwards along a modality, which results in an ‘image’ of it in another

mode. We notate this functorial action by a lock, which is introduced by the rule

Γ ctx @n µ : HomM(m,n)

Γ,µµ ctx @m

�e functoriality of this action will be enforced by equalities such as Γ,µν ,µµ = Γ,µν◦µ ctx @m
whenever µ and ν are composable.

�e �rst serious departure from the usual Martin-Löf style occurs in the context extension rule,

which encapsulates the idea that each assumption in the context comes under a modality. We signify that

by writing x : (µ | A) in place of the usual x : A. �us, before extending a context Γ ctx @nwe need to

make sure that the type A by which it is to be extended exists under some modality µ : HomM(m,n).

�at is: A must be a type in mode m. Yet, A must also be a type in context Γ, which is in the wrong

mode. To resolve this issue we use the image of Γ under the lock, which lives in the correct mode.

�ese considerations lead to the context extension rule

Γ ctx @n µ : HomM(m,n) Γ,µµ ` A type @m

Γ, x : (µ | A) ctx @n

�is change in the structure of contexts necessitates a change in the variable rule. �e variable

rule is what allows us to use the assumptions found in a context. Recalling that our assumptions are

now all modal, it is evident that the variable rule is the central device that generates modal behaviour

in our system. Its usual form stipulates that, given a context Γ0, x : A,Γ1 ctx, we may ‘project’ the

assumption x : A to obtain the term Γ0, x : A,Γ1 ` x : A. �is rule is certainly not valid in our system:
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given Γ0, x : (µ | A),Γ1 ctx @n, the assumption x : (µ | A) is available under the modality µ, i.e. in

the wrong mode, or—equivalently—in a di�erent category.

In order to account for this modal structure, therefore, we give a more re�ned de�nition of the

variable rule. For the sake of simplicity, suppose that Γ1 is empty. If µ : HomM(m,n), we may

construct the context Γ0, x : (µ | A),µµ ctx @m. �is context is at mode m, and it is thus not

unreasonable to ask that our variable rule should at the very least allow the inference

Γ0, x : (µ | A),µµ ctx @m

Γ0, x : (µ | A),µµ ` x : A@m
(1.1)

�ose familiar with type theories with a comonadic modality might notice that this has the �avour of

a counit for the comonad generated by a ‘le� adjoint’−,µµ and a ‘right adjoint’ (µ | −) (but not quite,

as those two act on distinct sorts, viz. contexts and types respectively).

However, this is not the full extent of the expressive power we have at our disposal. Recall that

the 2-categoryM is also equipped with 2-cells, i.e. transformations α : µ ⇒ ν between modalities.

If each modality µ : HomM(m,n) introduces a (contravariant) functorial action −,µµ from contexts

at n to contexts at m, then surely each 2-cell α : µ ⇒ ν should (contravariantly) generate a natural

transformation from the action −,µν to the action −,µµ.
1

�us, as long as a natural transformation

α : µ ⇒ ν allows us to adjust a lock to be −,µν we should still be able to extract a variable that is

available under µ. To wit, our variable rule should allow the inference

µ, ν : HomM(m,n) α : µ⇒ ν

Γ0, x : (µ | A),µν ` xα : Aα @m
(1.2)

Notice that α has now appeared as a superscript of both the variable xα and the type Aα. In the �rst

case, α becomes part of the syntax: each variable should come annotated with a rule that indicates

which natural transformation allowed us to extricate it from the context. �e second case is slightly

more complicated. Recall that Γ0, x : (µ | A),µµ ctx @m presupposes that Γ0,µµ ` A type @m, and

hence that—modulo weakening under the lock—A is indeed in the right context in (1.1). However, in

(1.2) we must use the 2-cell α to somehow “act on A” in order to bring it to the correct context Γ0,µν ,

which we can then silently weaken to Γ0, x : (µ | A),µν . As types depend on terms, we must de�ne

the action of α on a term as well. �e good news is that—much like substitution—this metatheoretic

action is admissible.

We have thus identi�ed three principles that should be encapsulated by the variable rule:

1. �e ability to use a variable depends on what appears to the right of it in the context, i.e. it

depends on the presence of a suitable lock.

2. �e 2-cells express in which way we may strengthen locks in order to make them exactly match

the pa�ern x : (µ | A),µµ, in which case we can use the variable.

3. Some additional context weakening needs to be built into the rule.

�ese guiding principles bring us to the �nal version. We �rst de�ne a function that gathers the modal-

ities from all the locks that appear in a telescope. �is function is de�ned by the following clauses:

locks(·) , 1

locks(Γ, x : (µ | A)) , locks(Γ)

locks(Γ,µµ) , locks(Γ) ◦ µ

1

�e reason for this double (‘coop’) contravariance will become evident when we discuss the categorical semantics of

this type theory in Section 1.4. For now, we just point out that it is in line with thinking of the lock as a le� adjoint to the

actual modality.



CHAPTER 1. THE SYNTAX AND SEMANTICS OF MTT 9

�e variable rule then is

Γ0, x : (µ | A),Γ1 ctx @m α : µ⇒ locks(Γ1)

Γ0, x : (µ | A),Γ1 ` xα : Aα @m
(1.3)

In short: we gather the modalities under which Γ1 locks the context that precedes it, and we look for

a 2-cell that witnesses the fact that µ is strong enough to slide past these locks.

In many examples it will be the case that µ = locks(Γ1), and we wish to pick α = 1 in order to

access the variable. In these cases we will elide the subscript entirely and simply write x. In particular,

this means that when accessing a variable modi�ed by 1 and behind no locks we can simply write x.

Remark 1.1.1 (�e operation (−)α). Even though our formal study will be of the algebraic syntax of

Section 1.2, we provide a brief description of how to de�ne, for α : µ⇒ ν, the admissible operation

Γ0,µµ ` A type @m 7−→ Γ0,µν ` Aα type @m

As types depend on terms, we also need a similar operation which maps a term Γ0,µµ ` M : A@m
to a term Γ0,µν ` Mα : Aα @m. Intuitively, the operation (−)α must whisker appropriately the

2-cell β occurring as part of each variable occurence xβ in M . However, the 2-cell by which it must

be whiskered depends on the structure of the context Γ0, and becomes more complicated as we recur

down the typing derivation for M .

�e clearest way to account for this is to de�ne a �nite map σ(Γ0, α) from variables of Γ0 to 2-cells

by induction on Γ0. �is map keeps a record of which variable we must whisker by which 2-cell. It is

given by the clauses

σ(·, α) = ∅
σ(Γ, x : (µ | A), α) = σ(Γ, α) ∪ {x 7→ α}

σ(Γ,µµ, α) = σ(Γ, 1µ ?α)

As we recur past locks in Γ0 the 2-cell by which we whisker is adjusted, in order to ensure that it has

the right boundary. We then de�ne
2

this admissible operation as follows:

Aα , Aσ(Γ0,α) Mα ,Mσ(Γ0,α)

It remains to de�ne the actionAσ andMσ
of such a �nite map σ on a termA and a typeM respectively.

For now, we de�ne this just on variables:

(xβ)σ , xσ(x)◦β

We will later extend this to all the type formers we introduce. We will take care so that this extension

always satis�es that Γ0,µµ ` xβ : Aβ implies Γ0,µν ` xσ(Γ0,α)(x)◦β : Aσ(Γ0,α)(x)◦β
.

�is operation su�ces to yield the full one of (1.3): we can perform a series of silent context con-

version steps where we decompose the lock in Γ0,µlocks(Γ1) into the locks from which the composition

locks(Γ1) originated, followed by a number of silent weakenings under the appropriate locks. �

Our type theory will also have Π-types. �ese will follow the structure of our context assumptions,

which have been altered to include a modality. �e formation rule re�ects this fact:

µ : HomM(n,m) Γ,µµ ` A type @n Γ, x : (µ | A) ` B type @m

Γ ` (x : (µ | A))→ B type @m

2

Note that if ρ ◦ µ = µ and ρ ◦ ν = ν, and Γ,µρ,µµ ` A type @m then Aα could be interpreted as either Aσ(Γ,α)
or

Aσ((Γ,µρ),α)
. �ese are not equivalent in general, and so it is necessary to specify Γ0.
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�is rule encodes the idea that the variable x : (µ | A) in terms of which B is given is abstracted

along with the modality µ. �us our dependent function spaces are modal. Of course, the usual MLTT

function space is recovered by taking µ = 1.

�e introduction rule is predictable: to introduce a function, we λ-abstract:

µ : HomM(n,m) Γ, x : (µ | A) ` B type @m Γ, x : (µ | A) `M : B@m

Γ ` λx. M : (µ | A)→ B@m

More crucially, we may only apply functions to arguments that are available in the right mode. �e

elimination rule is:

µ : HomM(n,m)
Γ, x : (µ | A) ` B type @m Γ `M : (x : (µ | A))→ B@m Γ,µµ ` N : A@n

Γ `M(N) : B[N/x] @m

Remark 1.1.2 (�e operation (−)α on Π-types). We de�ne

((x : (µ | A))→ B)σ = (x : (µ | Aσ′))→ Bσ∪{x 7→1}
where σ′(x) = σ(x) ? 1µ �

Finally, we reify the modalities as operators on types. �e introduction rule turns a lock−,µµ into

a unary operator on types, which we write as 〈µ | −〉:

µ : HomM(n,m) Γ,µµ `M : A@n

Γ ` modµ(M) : 〈µ | A〉@m

It is thus evident that 〈µ | −〉 demonstrates behaviour akin to that of a ‘right adjoint’ to −,µµ.

�e elimination rule is somewhat more complicated. �e fundamental intuition is the following: if

we have a termM : 〈ν | A〉, we should be able to substitute it for an assumption of the form v : (ν | A).

�at is, we should be able to open 〈ν | A〉 into a variable available under the modality ν. Hence, our

elimination rule should have a positive �avour, and should moreover admit the inference

ν : HomM(o, n) Γ `M0 : 〈ν | A〉@n
Γ, x : (1 | 〈ν | A〉) ` B type @n Γ, v : (ν | A) `M1 : B[modν(v)/x] @n

Γ ` let modν(v)←M0 in M1 : B[M0/x] @n

Notice how the variable x in the motiveB is replaced by the modal version of v. �is rule encapsulates

a form of modal induction, viz. that every variable x : (1 | 〈ν | A〉) can be assumed to be of the form

modν(v) for some v : (ν | A).

From this point, we only require a small generalisation to reach the �nal version of the rule. �is

generalisation is needed to deal with the case where the variable x in the motive B type is not under

the identity modality 1 : HomM(n, n), but under a further level of indirection, i.e. a general modality

µ : HomM(n,m). In that case, we may absorb the additional modality by using composition in the

2-categoryM:

ν : HomM(o, n) µ : HomM(n,m) Γ,µµ `M0 : 〈ν | A〉@n
Γ, x : (µ | 〈ν | A〉) ` B type @m Γ, v : (µ ◦ ν | A) `M1 : B[modν(v)/x] @m

Γ ` letµ modν(x)←M0 in M1 : B[M0/x] @m

Remark 1.1.3 (�e operation (−)α on modal types). We de�ne

〈µ | A〉σ = 〈µ | Aσ′〉 where σ′(x) = σ(x) ? 1µ �

�e type theory also includes Σ-types (in negative/projection style), as well as Id-types. However,

these are given parametrically in the mode m. In the particular case of the Id-eliminator, J, we simply

ensure the assumptions x : (1 | A), y : (1 | A), p : (1 | IdA(x, y)) are all given under the modality 1.
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1.2 Algebraic Syntax

In order to introduce MTT rigorously we present it as algebraic syntax [Car78; Tay99; KKA19]. �is

is to say that we write out a speci�cation of our type theory in the language of generalized algebraic
theories. �is approach o�ers a number of technical advantages:

1. We absolve ourselves from having to prove tedious syntactic metatheorems, e.g. admissibility of

substitution.

2. We automatically obtain a notion of model of our theory, which is given in entirely algebraic

terms.

3. In addition to a de�nition of model, We also automatically obtain a notion of homomorphism of
models. �is might be rather strict and not �t for every purpose, but it does subsume the semantic
interpretation map (see next points).

4. We automatically obtain an initial model for the algebraic theory, which we consider as our main

formal object of study.

5. �e unique morphism of models from this initial model to any other is the semantic interpretation
map. We then have no need to explicitly describe these semantic maps and prove that they are

well-de�ned on non-unique derivations, as done in e.g. [Hof97].

Amongst other things, the theorems proven in the aforementioned works imply all of the above points.

While this approach is straightforward and unclu�ered, some readers might object to the lack of a

more traditional formulation, e.g. a traditional named syntax with variables and a substitution opera-

tion, like the one we informally presented in Section 1.1. We believe that it is indeed possible to de�ne

such a syntax and systematically show how to elaborate its terms to the algebraic syntax.

However, such a named syntax would not be suitable for implementation: for that purpose we ought

to develop an entirely di�erent algorithmic syntax. We believe that such a syntax can be constructed

as an extension of existing bidirectional presentations of type theory [Coq96; PT00] as has been done

for existing modal calculi [GSB19]. Such a bidirectional presentation would be a midpoint between

the maximally annotated algebraic syntax we present here and the more typical unannotated named

syntax from Section 1.1; it would contain only a select few annotations to ensure the decidability of

typechecking while maintaining readability. �e development of an algorithmic syntax and the proof

of its decidability is a substantial endeavor (requiring a proof of normalization), and is orthogonal to the

foundational metatheory of MTT that we are currently developing. We therefore leave its construction

for future work. Moreover, we refrain from developing a formal account of a traditional named syntax

which would be superseded by such an algorithmic syntax. Instead, we content ourselves with working

formally only with the algebraic syntax at present.

�e de�nition of the algebraic syntax begins by de�ning the di�erent sorts (contexts, types, terms,

etc.) that constitute our type theory. In order to support multiple modes, our sorts will be parameterised

in modes. �us, rather than having e.g. a sort of types, we have a sort of types at mode m ∈ M, and

likewise for contexts at mode m, terms at mode m, etc.

Moreover, we take care to index our types by levels. �e reason for doing so is to introduce a

hierarchy of sizes, which we can then use to introduce universes. For simplicity, we stratify our types

in two levels, drawn from the set L = {0, 1}. �ere are no technical obstacles on the way to a richer

hierarchy, but these two su�ce for our purposes: we aim to divide our types into small types (i.e. those

that can be rei�ed in a universe) and large types (which also include the universe itself). �is allows a

simpli�ed treatment of universes à la Coquand [Coq13]. In order to enforce cumulativity we will also

include an explicit coercion operator, which includes small types into large types.
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�e levelled approach raises an obvious question: on which level should we admit terms, 0 or

1? We could follow the approach of Sterling [Ste19] in allowing terms at all levels. Unfortunately,

this formulation requires the introduction of term-level coercions, which bring with them numerous

equations that relate term formers at di�erent levels with the coercions. �us, for the sake of simplicity

we will only allow the formation of terms at large types. Similarly, we will only allow the extension of

a context by a large type.

MTT has four sorts, which are introduced by the following rules:

m :M
ctxm sort

` : L m :M Γ : ctxm

type`m(Γ) sort

m :M Γ : ctxm A : type1
m(Γ)

tmm(Γ, A) sort

m :M Γ,∆ : ctxm

sbm(Γ,∆) sort

In the interest of clarity, we will use the following shorthands to denote elements of these sorts:

Γ ctx @m , Γ : ctxm

Γ ` A type` @m , A : type`m(Γ)

Γ `M : A@m ,M : tmm(Γ, A)

Γ ` δ : ∆ @m , δ : sbm(Γ,∆)

Even though we will make ample use of this more familiar notation, we will try to adhere to the rigours

of algebraic syntax, in particular by carefully avoiding overloading/ambiguity and enforcing presup-

position.

�e type theory itself is introduced by the following judgments. In the interest of brevity, we elide

the following standard rules:

• the congruence rules pushing substitutions inside terms and types;

• the congruence rules pushing explicit li�s inside of type formers;

• the associativity, unit, and weakening laws for the explicit substitutions;

• the β laws for Π, Σ, B and Id;

• the η laws for Π and Σ;

Note also that given ∆ ` γ : Γ @m and Γ.µµ ` A type` @m we write

∆.(µ | A[γ.µµ]) ` γ+ , (γ ◦ ↑).v0 : Γ.(µ | A) @m

for the ‘weakened’ substitution.

Γ ctx @m

· ctx @m

Γ ctx @m µ : HomM(n,m)

Γ.µµ ctx @n

Γ ctx @m µ : HomM(n,m) Γ.µµ ` A type1 @n

Γ.(µ | A) ctx @m



CHAPTER 1. THE SYNTAX AND SEMANTICS OF MTT 13

Γ ctx @m ν : HomM(o, n) µ : HomM(n,m)

Γ.µµ.µν = Γ.µµ◦ν ctx @ o

Γ ctx @m

Γ.µ1 = Γ ctx @m

Γ ` δ : ∆ @m

Γ ctx @m

Γ ` · : ·@m

Γ ctx @n µ : HomM(n,m) Γ.µµ ` A type1 @n

Γ.(µ | A) ` ↑ : Γ @m

Γ ctx @m

Γ ` id : Γ @m

Γ,∆,Ξ ctx @m Γ ` γ : ∆ @m ∆ ` δ : Ξ @m

Γ ` δ ◦ γ : Ξ @m

Γ,∆ ctx @m µ : HomM(n,m) Γ ` δ : ∆ @m

Γ.µµ ` δ.µµ : ∆.µµ @n

Γ ctx @m µ, ν : HomM(n,m) α : ν ⇒ µ

Γ.µµ ` ¤α
Γ : Γ.µν @n

µ : HomM(n,m)
Γ,∆ ctx @m Γ ` δ : ∆ @m ∆.µµ ` A type1 @n Γ.µµ `M : A[δ.µµ] @n

Γ ` δ.M : ∆.(µ | A) @m

Γ ` γ = δ : ∆ @m

Γ0,Γ1 ctx @n ∆ ctx @n ∆.µµ ` A type1 @m
µ : HomM(m,n) Γ0 ` γ : Γ1 @n Γ1 ` δ : ∆ @n Γ1.µµ `M : A[δ.µµ] @m

Γ0 ` (δ.M) ◦ γ = (δ ◦ γ).M [γ.µµ] : ∆.(µ | A) @n

Γ,∆ ctx @ o µ : HomM(m,n) ν : HomM(n, o) Γ ` δ : ∆ @m

Γ.µν◦µ ` δ.µν◦µ = δ.µν .µµ : ∆.µν◦µ @m

Γ,∆ ctx @m Γ ` δ : ∆ @m

Γ ` δ.µ1 = δ : ∆ @m

Γ ctx @n µ : HomM(m,n)

Γ.µµ ` id.µµ = id : Γ.µµ @m

Γ,∆,Ξ ctx @n µ : HomM(m,n) Γ ` δ : ∆ @n ∆ ` ξ : Ξ @n

Γ.µµ ` (ξ ◦ δ).µµ = ξ.µµ ◦ δ.µµ : Ξ.µµ @m

Γ ctx @n µ : HomM(m,n)

Γ.µµ ` id = ¤
1µ
Γ : Γ.µµ @m

Γ,∆ ctx @n µ, ν : HomM(m,n) Γ ` δ : ∆ @n α : ν ⇒ µ

Γ.µµ ` ¤α
Γ ◦ (δ.µµ) = (δ.µν) ◦¤α

∆ : ∆.µν @m

Γ ctx @m µ0, µ1, µ2 : HomM(n,m) α0 : µ0 ⇒ µ1 α1 : µ1 ⇒ µ2

Γ.µµ2 ` ¤
α1◦α0
Γ = ¤

α0
Γ ◦¤

α1
Γ : Γ.µµ0 @n
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Γ ctx @m ν0, ν1 : HomM(o, n) µ0, µ1 : HomM(n,m) β : ν0 ⇒ ν1 α : µ0 ⇒ µ1

Γ.µµ0◦ν0 ` ¤
α?β
Γ = ¤α

Γ.µν1 ◦¤
β
Γ.µµ0

: Γ.µµ1◦ν1 @ o

Γ ` A type` @m

Γ ctx @m

Γ ` B type` @m

Γ ctx @m

Γ ` U type1 @m

Γ ctx @m Γ `M : U @m

Γ ` El(M) type0 @m

` ≤ `′ Γ ctx @m Γ ` A type` @m

Γ ` ⇑A type`′ @m

Γ ctx @m Γ ` A type` @m Γ `M,N : ⇑A@m

Γ ` IdA(M,N) type` @m

Γ ctx @m µ : HomM(n,m) Γ.µµ ` A type` @n

Γ ` 〈µ | A〉 type` @m

µ : HomM(n,m) Γ ctx @m Γ.µµ ` A type` @n Γ.(µ | ⇑A) ` B type` @m

Γ ` (µ | A)→ B type` @m

Γ ctx @m Γ ` A type` @m Γ.(1 | ⇑A) ` B type` @m

Γ `
∑

(A,B) type` @m

Γ,∆ ctx @m ∆ ` A type` @m Γ ` δ : ∆ @m

Γ ` A[δ] type` @m

Γ ` A = B type` @m

µ : HomM(n,m) Γ,∆ ctx @m Γ ` δ : ∆ @m ∆.µµ ` A type` @n

Γ ` 〈µ | A〉[δ] = 〈µ | A[δ.µµ]〉 type` @m

µ : HomM(n,m)
Γ,∆ ctx @m Γ ` δ : ∆ @m Γ.µµ ` A type` @n Γ.(µ | ⇑A) ` B type` @m

Γ ` ((µ | A)→ B)[δ] = (µ | A[δ.µµ])→ B[δ+] type` @m

Γ ` A type` @m

Γ ` ⇑A = A type` @m

`0 ≤ `1 ≤ `2 Γ ` A type`0 @m

Γ ` ⇑⇑A = ⇑A type`2 @m

` ≤ `′
µ ∈ HomM(n,m) Γ ctx @m Γ.µµ ` A type` @n Γ.(µ | ⇑A) ` B type` @m

Γ ` ⇑((µ | A)→ B) = (µ | ⇑A)→ ⇑B type`′ @m

Γ ctx @m Γ ` A type0 @m

Γ ` El(Code(A)) = A type0 @m

Γ `M : A@m
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µ : HomM(n,m) Γ ctx @m Γ.µµ ` A type1 @n

Γ.(µ | A).µµ ` v0 : A[↑.µµ] @n

Γ ctx @m

Γ ` tt,ff : B@m

Γ ctx @m
Γ.(1 | B) ` A type1 @m Γ `Mt : A[id.tt] @m Γ `Mf : A[id.ff] @m Γ ` N : B@m

Γ ` if(A;Mt;Mf ;N) : A[id.N ] @m

Γ ctx @m Γ ` A type0 @m

Γ ` Code(A) : U @m

Γ ctx @m Γ ` A type1 @m Γ `M : A@m

Γ ` refl(M) : IdA(M,M) @m

Γ ctx @m Γ ` A type1 @m Γ.(1 | A).(1 | A[↑]).(1 | IdA[↑2](v1,v0)) ` B type1 @m

Γ.(1 | A) `M : B[↑.v0.v0.refl(v0)] @m Γ ` N0, N1 : A@m Γ ` P : IdA(N0, N1) @m

Γ ` J(B,M,P ) : B[id.N0.N1.P ] @m

Γ ctx @m µ : HomM(n,m) Γ.µµ ` A type1 @n Γ.µµ `M : A@n

Γ ` modµ(M) : 〈µ | A〉@m

ν : HomM(o, n)
µ : HomM(n,m) Γ ctx @m Γ.µµ.µν ` A type1 @ o Γ.µµ `M0 : 〈ν | A〉@n

Γ.(µ | 〈ν | A〉) ` B type1 @m Γ.(µ ◦ ν | A) `M1 : B[↑.modν(v0)] @m

Γ ` letµ modν( )←M0 in M1 : B[id.M0] @m

µ : HomM(n,m)
Γ ctx @m Γ.µµ ` A type1 @n Γ.(µ | A) ` B type1 @m Γ.(µ | A) `M : B@m

Γ ` λ(M) : (µ | A)→ B@m

µ : HomM(n,m) Γ ctx @m Γ.µµ ` A type1 @n
Γ.(µ | A) ` B type1 @m Γ `M0 : (µ | A)→ B@m Γ.µµ `M1 : A@n

Γ `M0(M1) : B[id.M1] @m

Γ ctx @m
Γ ` A type1 @m Γ.(1 | A) ` B type1 @m Γ `M0 : A@m Γ `M1 : B[id.M0] @m

Γ ` (M0,M1) :
∑

(A,B) @m

Γ ctx @m Γ ` A type1 @m Γ.(1 | A) ` B type1 @m Γ `M :
∑

(A,B) @m

Γ ` pr0(M) : A@m Γ ` pr1(M) : B[id.pr0(M)] @m

Γ,∆ ctx @m ∆ ` A type1 @m Γ ` δ : ∆ @m ∆ `M : A@m

Γ `M [δ] : A[δ] @m

Γ `M = N : A@m

µ : HomM(n,m) Γ ` δ : ∆ @m ∆.µµ ` A type1 @n Γ.µµ `M : A[δ.µµ] @n

Γ.µµ ` v0[(δ.M).µµ] = M : A[δ.µµ] @n

Γ ctx @m Γ `M : U @m

Γ ` Code(El(M)) = M : U @m
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ν : HomM(o, n)
µ : HomM(n,m) Γ ctx @m Γ.µµ.µν ` A type1 @ o Γ.µµ.µν `M0 : A@ o

Γ.(µ | 〈ν | A〉) ` B type1 @m Γ.(µ ◦ ν | A) `M1 : B[↑.modµ(v0)] @m

Γ ` letµ modν( )← modν(M0) in M1 = M1[id.M0] : B[id.modν(M0)] @m

µ : HomM(n,m)
∆,Γ ctx @m Γ ` δ : ∆ @m ∆.µµ ` A type1 @n ∆.µµ `M : A@n

Γ ` modµ(M)[δ] = modµ(M [δ.µµ]) : 〈µ | A[δ.µµ]〉@m

ν : HomM(o, n) µ : HomM(n,m)
Γ,∆ ctx @m Γ ` δ : ∆ @m ∆.µµ.µν ` A type1 @ o ∆.µµ `M0 : 〈ν | A〉@n

∆.(µ | 〈ν | A〉) ` B type1 @m ∆.(µ ◦ ν | A) `M1 : B[↑.modµ(v0)] @m

Γ ` (letµ modν( )←M0 in M1)[δ] = letµ modν( )←M0[δ.µµ] in M1[δ+] : B[δ.M0[δ.µµ]] @m

Notation 1.2.1. For the sake of readability, when opening a modal term under the modality 1 we will

suppress the 1 in the let1 part of the term, and write let modµ( )←M in N instead.

Notation 1.2.2. When working informally we will freely use “pa�ern matching” notation when λ-

abstracting over either dependent pairs or modal types. For example, we will write λ(x0, x1). x0 to

mean the term λu. pr0(u), and λ〈µ | x〉. N to mean the term λu. let modµ(x)← u in N .

Remark 1.2.3. Notice that the locks −.µµ act as functors, and the keys ¤−− act as natural transfor-

mations. Consequently, our type theory is forced to contain a calculus of (strict) 2-categories, which

comes with equations that govern the behaviour of 1-cells and 2-cells. Indeed, the equations for keys

given above su�ce to derive the two ways of internally stating the interchange laws, viz.

Γ ctx @m ν0, ν1, ν2 : HomM(o, n) µ0, µ1, µ2 : HomM(n,m)
α0 : µ0 ⇒ µ1 α1 : µ1 ⇒ µ2 β0 : ν0 ⇒ ν1 β1 : ν1 ⇒ ν2

Γ.µµ2◦ν2 ` ¤
α0 ? β0

Γ ◦¤α1 ? β1

Γ = ¤
α1◦α0
Γ .µν0 ◦¤

β1◦β0

Γ.µµ2
: Γ.µµ0◦ν0 @ o

Γ ctx @m ν0, ν1, ν2 : HomM(o, n) µ0, µ1, µ2 : HomM(n,m)
α0 : µ0 ⇒ µ1 α1 : µ1 ⇒ µ2 β0 : ν0 ⇒ ν1 β1 : ν1 ⇒ ν2

Γ.µµ2◦ν2 ` ¤
α0 ? β0

Γ ◦¤α1 ? β1

Γ = ¤
β1◦β0

Γ.µµ0
◦¤α1◦α0

Γ .µν2 : Γ.µµ0◦ν0 @ o

In fact, the second version of the interchange law follows from the �rst one and the equation that

expresses the naturality of ¤−−. Conversely, except the two laws for the identity 2-cell and naturality,

the given equations follow from one of the two interchange laws. �

Remark 1.2.4 (Universes à la Coquand). It may come as a surprise that, even though the universe of

MTT is ‘à la Tarski,’ we do not require rules for introducing codes in U. For example, one would expect

a U-constructor (µ | A) →̂ B : U that would mimic the Π-formation rule, introduced for example by

a rule of the following form:

Γ ctx @m µ ∈ HomM(n,m) Γ.µµ ` A : U @n Γ.(µ | A) ` B : U @m

Γ ` (µ | A) →̂ B : U @m

In fact, these codes are de�nable: it su�ces to use the ‘inverse’ to El(−):

(µ | A) →̂ B , Code((µ | El(A))→ El(B))
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�is rule automatically satis�es the desired property, i.e. that a Π-code decodes to the actual Π-type. We

thus avoid the tedious exercise of postulating enough constructors to construct all the desired universe

codes. In an informal sense, Code(−) and El(−) witness an isomorphism between terms of type U and

types of size 0.

In our examples we will o�en suppress both El(−) and Code(−), and in some straightfoward cases

we even elide the coercion ⇑−. �is not only makes our terms more perspicuous, but can also be

formally justi�ed by an elaboration procedure which inserts the missing isomorphisms and coercions

when needed. �
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1.3 Basic Examples of MTT

We present a few terms that are de�nable irrespective of the underlying mode theory. We �rst write

these out in informal syntax, and discuss them. Finally, we collect the proper algebraic terms that we

formally consider.

1.3.1 Functoriality of the Modal Types

First, we show that the type former 〈µ | A〉 is functorial in the modality µ up to equivalence. To begin,

the following terms demonstarte that 〈1 | A〉 is equivalent to A.

triv : (x : A)→ 〈1 | A〉
triv , λx. mod1(x)

triv-1 : (x : 〈1 | A〉)→ A

triv-1 , λx. let mod1(y)← x in y

: (x : A)→ IdA(x, triv-1(triv(x)))

, λx. refl(x)

: (x : 〈1 | A〉)→ Id〈1|A〉(x, triv(triv-1(x)))

, λx. let mod1(y)← x in refl(mod1(y))

�e unnamed paths above then provide internal equalities between triv(triv-1(M)) and M : 〈µ | A〉
and triv-1(triv(N)) and N : A.

Next, we can show how to compose modalities: we construct an equivalence 〈ν | 〈µ | A〉〉 ∼= 〈ν◦µ |
A〉. �is equivalence is particularly important, as it enables the interaction between modalities.

compµ,ν : (x : 〈ν | 〈µ | A〉〉)→ 〈ν ◦ µ | A〉
compµ,ν , λx. let modν(y)← x in (letν modµ(z)← y in modν◦µ(z))

comp-1

µ,ν : (x : 〈ν ◦ µ | A〉)→ 〈ν | 〈µ | A〉〉
comp-1

µ,ν , λx. let modν◦µ(y)← x in modν(modµ(y))

: (x : 〈ν | 〈µ | A〉〉)→ Id〈ν|〈µ|A〉〉(x, comp-1

µ,ν(compµ,ν(x)))

, λx. let modν(y)← x in letν modµ(z)← y in refl(modν(modµ(z)))

: (x : 〈ν ◦ µ | A〉)→ Id〈ν◦µ|A〉(x, compµ,ν(comp-1

µ,ν(x)))

, λx. let modν◦µ(y)← x in refl(modν◦µ(y))

�is example crucially depends on the additional ν annotation in letν . We thus see that the modal

elimination rule surreptitiously introduces functoriality with respect to modalities.

1.3.2 Modal Types Preserve Dependent Sums

We can also show that modal types preserve dependent sums up to equivalence. �e essential content

of this theorem derives from the fact that 〈µ | −〉 behaves in a right-adjoint-like manner.

To begin, we consider the simpler case of products, i.e. the case where B does not depend on A.
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With some sugar for pa�ern matching on pairs, we construct the terms

p0 : (x : 〈µ |
∑

(A,B)〉)→
∑

(〈µ | A〉, 〈µ | B〉)
p0 , λx. let modµ(y)← x in (modµ(pr0(y)),modµ(pr1(y)))

p1 : (x :
∑

(〈µ | A〉, 〈µ | B〉))→ 〈µ |
∑

(A,B)〉
p1 , λ(x0, x1). let modµ(y0)← x0 in (let modµ(y1)← x1 in modµ((y0, y1)))

: (x : 〈µ |
∑

(A,B)〉)→ Id〈µ|
∑

(A,B)〉(x, p1(p0(x)))

, λx. let modµ(y)← x in refl(modµ(y))

: (x :
∑

(〈µ | A〉, 〈µ | B〉))→ Id∑(〈µ | A〉, 〈µ | B〉)(x, p0(p1(x)))

, λ(x0, x1). let modµ(y0)← x0 in (let modµ(y1)← x1 in refl((modµ(y0),modµ(y1))))

�at the penultimate term typechecks depends on the η-rule for Σ-types, which is part of our system.

Adapting this statement to dependent sums (i.e. the case where B depends on A) is not straight-

forward. In fact, even the theorem itself is hard to state. Writing B[a] for a type with a free variable

a : A, one end of the equivalence is 〈µ | (a : A) × B[a]〉), but it is not immediately evident what the

other one should be: the obvious choice of 〈µ | A〉)×B[a] might not even be well-typed, as B[a] is no

longer under the modality µ. We must hence apply a correction, and replace B with

B′[x] , let modµ(y)← x in 〈µ | B[y]〉

�is type opens the modal variable x : 〈µ | A〉 and substitutes it in the correct modal context. We can

then de�ne

p0 : (x : 〈µ | (a : A)×B[a]〉)→ (a : 〈µ | A〉)×B′[a]

p0 , λx. let modµ(y)← x in (modµ(pr0(y)),modµ(pr1(y)))

p1 : (x : (a : 〈µ | A〉)×B′[a])→ 〈µ | (a : A)×B[a]〉
p1 , λ(x0, x1). (let modµ(y0)← x0 in (λx′1. let modµ(y1)← x1 in modµ((y0, y1))))(x1)

: (x : 〈µ | (a : A)×B[a]〉)→ Id〈µ|(a:A)×B[a]〉(x, p1(p0(x)))

, λx. let modµ(y)← x in refl(modµ(y))

: (x : 〈µ | (a : A)×B[a]〉)→ Id〈µ|(a:A)×B[a]〉(x, p0(p1(x)))

, λ(x0, x1). (let modµ(y0)← x0 in (λx′1. let modµ(y1)← x1 in refl((modµ(y0),modµ(y1)))))(x1)

1.3.3 Dependent K

Another interesting and useful term that we obtain is a version of dependent K, which is a dependent

version of the K (for Kripke) axiom of modal logic [Bir+20]. �e dependent K axiom states that modal

types weakly distribute over dependent products. As before, a slight contortion of the codomain B[x]
to

B′[x] , let modµ(y)← x in 〈µ | B(y)〉
is necessary. We can then de�ne the term

k : (x : 〈µ | (a : A)→ B[a]〉)→ (a : 〈µ | A〉)→ B′[a]

k , λx0. λx1. let modµ(y0)← x0 in let modµ(y1)← x1 in modµ(y0(y1))

�is term will be convenient for some of our central examples. Consequently, in keeping with the

literature we will use the shorthand

M ~µ N , k(M,N)

We will also occasionally suppress the subscript when it can be reasonably inferred from context.



CHAPTER 1. THE SYNTAX AND SEMANTICS OF MTT 20

1.3.4 2-Cells Between Modalities Induce Natural Transformations

�us far our tautologies have only dealt with re�ecting equalities in the mode theory theory into equiv-

alences in the type theory. We can also re�ect the enrichment, 2-cells, into the type theory. �ese give

rise not to equivalences, but functions (natural transformations).

For instance, let us suppose that we have α : µ⇒ ν.

t : (x : 〈µ | A〉)→ 〈ν | Aα〉
t , λx. let modµ(y)← x in modν(yα)

te , λ(let modµ( )← v0 in modν(v0[¤α
·.(1|〈µ|A〉).(µ|A)]))

In this case, because the sugared term hides some interesting aspects of the proof, we have also included

the explicit term for reference. �is term appears frequently in examples, and so we have again �xed

some dedicated notation. We will write coe[α : µ ⇒ ν](M) for t(M), and coe[µ ≤ ν](M) for the

special case thatM is only a poset-enriched category.

1.3.5 The Explicit Terms

i0 : 〈1 | A〉 → A[↑]
i0 , λ(let mod1( )← v0 in v0)

i1 : A→ 〈1 | A[↑]〉
i1 , λ(mod1(v0))

c0 : 〈µ ◦ ν | A〉 → 〈µ | 〈ν | A[↑]〉〉
c0 , λ(let modµ◦ν( )← v0 in modµ(modν(v1)))

c1 : 〈µ | 〈ν | A〉〉 → 〈µ ◦ ν | A[↑]〉
c1 , λ(let modµ( )← v0 in letµ modν( )← v0 in modµ◦ν(v0))

B′ , let modµ( )← v0 in 〈µ | B[↑2.µµ.v0]〉

p0 : 〈µ |
∑

(A,B)〉 →
∑

(〈µ | A〉, B′)
p0 , λ(let modµ( )← v0 in (modµ(pr0(v0)),modµ(pr1(v0)))])

p1 :
∑

(〈µ | A〉, B′)→ 〈µ |
∑

(A,B)〉
p1 , λ((let modµ( )← pr0(v1) in λ(let modµ( )← v0 in modµ((v2,v0))))(pr1(v0)))

k : 〈µ | A→ B〉 → 〈µ | A〉 → B′

k , λ(λ(let modµ( )← v1 in let modµ( )← v1 in modµ(v1(v0))))
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1.4 Models of MTT

In Section 1.2 we introduced an algebraic syntax for MTT, and stated that this is our main formal object

of study. One advantage of this �rst-order algebraic de�nition is that it enables us to use a powerful kit

of technology [Car78; Tay99; KKA19] which—amongst other things—automatically guarantees that (a)

there exists a category of models, and (b) the syntax constitutes an initial object for this category.

However, the models that inhabit this category are exactly algebras for this generalized algebraic

theory, which are intractable to directly construct. In this section, we undertake the task of decom-

posing this algebraic notion of model into smaller, more practicable parcels. �ese will be given in

the style of natural models [Awo18], which are a category-theoretic reformulation of categories with
families (CwFs) [Dyb96].

We �nd this relatively recent technology helpful, as it concisely encodes the many naturality con-

ditions normally required of a CwF. Moreover, natural models also aid with uncovering the implicit

universal properties of type-theoretic connectives, which are not evident in a CwF formulation.

In Section 1.4.1 we will deconstruct and analyze the standard notion of model given by the gen-

eralized algebraic theory of MTT in terms of natural models. Following that, in Section 1.4.2 we will

show that the stronger notion of dependent right adjoint can be used to de�ne such a model. Finally, in

Section 1.4.3 we will discuss the morphisms between standard models of MTT.

1.4.1 Models of the GAT

Context Structure

First, we observe that a model of our type theory must contain a set of contexts at each mode. Along

with the substitutions found at each mode m ∈ M—which can be composed associatively and come

with a unit—these sets are readily seen to form a category, for which we write C[m].
Furthermore, the functions that interpret the locks on contexts must be functors: the rules for

equality of contexts clearly ask that −.µµ distributes over composition of substitutions, and preserves

the identity substitution. �us, for each modality µ : HomM(n,m) we obtain a functor

JµµK : C[m]→ C[n]

Notice that this is contravariant in the modality, as it is the action of locks on contexts. Similarly, the

equations for each 2-cell α : ν ⇒ µ inM induce a natural transformation

J¤αK : JµµK⇒ JµνK

�is is also contravariant in the 2-cell α, as is the action of keys on locks.

We can package these aspects of our model in the following de�nition.

De�nition 1.4.1. A context structure for a mode theoryM is a (strict) 2-functor

J−K :Mcoop → Cat1

whereMcoop
is the 2-categoryM with the direction of both 1-cells and 2-cells reversed, and Cat1 is

the full subcategory of (large) categories with a terminal object.

�is double contravariance may seem peculiar at �rst sight. However, recall that the 2-category

M speci�es the behaviour of the modal types 〈µ | −〉, which are supposed to have a right-adjoint-

like behaviour, with the corresponding le�-adjoint-like operators being the lock functors −.µµ. Being

le�-adjoint-like, the interpretation Jµ−K of each modality will behave with variance opposite to the

speci�cation ofM. Of course, this is merely an analogy, as these constructors are not truly adjoints

but merely present similar behaviour.
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Types and Context Extension

We now study the structure necessary to encode types, terms and context extension. We temporarily

ignore the universe, the details of which we will discuss in more depth in Section 1.4.1.

We begin with the de�nition of a representable natural transformation:

De�nition 1.4.2 (Representable natural transformation). Let C be a small category, and let P,Q :
PSh(C) be presheaves on C. A natural transformation α : P ⇒ Q is representable just if for every

Γ : C and x : y(Γ)⇒ P (equivalently x ∈ P (Γ)) there exists a y : y(∆)⇒ Q (equivalently y ∈ Q(Γ))

and a morphism γ : ∆→ Γ in C such that there is a pullback square

y(∆) Q

y(Γ) P

y(γ)

y

x

α

�e following notion of model of type theory is used by Awodey [Awo18].

De�nition 1.4.3 (Natural model). Let C be a small category with a terminal object 1, and let and

T̃, T : PSh(C). A natural model of type theory is a representable natural transformation τ : T̃ ⇒ T.

It is shown in op. cit. that this corresponds to the usual notion of CwF, and that one can use it this

formulation to write down very concise de�nitions of the gadgets necessary to interpret various type

formers, and in particular intensional identity types. We note that the representability of the natural

transformation τ : T̃ ⇒ T is a clever way to encode context extension and comprehension in a manner

that automatically ensures naturality with respect to substitution; see [Fio12; Awo18] for more details.

Our objective here is to adapt this formulation to the multi-mode se�ing.

To begin, for each modem ∈Mwe de�ne two presheaves Tm : PSh(C[m]) and T̃m : PSh(C[m])
on the context category C[m]. �e �rst one maps every Γ : C[m] to the set of types type1

m(Γ) over it,

and the second one maps Γ to the pairs (A ∈ type1
m(Γ),M ∈ tmm(Γ, A)), i.e. the set of pointed types.

We thus obtain a natural transformation τm : T̃m ⇒ Tm, which maps each term-pair (A,M) to the

type A at each context. It follows that the �bres of τm are the terms of a given type.

Our context extension rule postulates that for any object Γ : C[m], modality µ ∈ Hom(n,m) and

A ∈ type1
n(JµµKΓ) there exists an object Γ.(µ | A) : C[m]. �is construction comes with a morphism

p : HomC[m](Γ.(µ | A),Γ), and a term

q ∈ tmn(JµµK(Γ.(µ | A)), A[JµµK(p)])

�e object Γ.(µ | A) is universal with respect to p and q, in the sense that for any object ∆ : C[m],
morphism γ ∈ HomC[m](∆,Γ), and term M ∈ tmn(JµµK∆, A[γ.µµ]) there is a unique substitution

γ.M : ∆→ Γ.(µ | A) such that

p ◦ (γ.M) = γ : ∆→ Γ (1.4)

q[(γ.M).µµ] = M : tmn(JµµK(Γ), A[γ.µµ]) (1.5)

As usual, Eq. (1.5) is only well-typed because of Eq. (1.4). �is de�nition is very close to the ordinary

presentation of context extension in CwFs; the main di�erence is that we must account for the fact that

the type by which we extend is found in a di�erent mode than the context that is being extended.

With this in hand, we can encode modal context extension as follows. Writing b−c for the Yoneda

isomorphism, we require that for each µ : HomM(n,m), context Γ : C[m], and A : type1
n(JµµK(Γ)),
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there is a chosen context Γ′ (cf. Γ.(µ | A)), a chosen morphism p : Γ′ → Γ, and a chosen morphism

bqc : y(JµµKΓ′)→ T̃n that makes the following square commute:

y(JµµKΓ′) T̃n

y(JµµKΓ) Tn

y(JµµKp)

bqc

bAc

τn

We have surreptitiously ‘decoded’ the top arrow into a term q ∈ tmn(JµµK(Γ′), A[JµµKp]) by using the

Yoneda isomorphism and the fact the square commutes. �is is notational convention we will silently

use without comment when applicable.

We also require that Γ′, p, and q are universal for this diagram. �at is, given ∆ : C[m], γ :
HomC[m](∆,Γ), and bMc : y(JµµK∆) ⇒ T̃n, there must be a unique morphism γ′ : ∆ → Γ′ (which

stands for γ.M ) such that the following square commutes:

y(JµµK(∆))

y(JµµKΓ′) T̃n

y(JµµKΓ) Tn

y(JµµKγ′)

y(JµµKγ)

bMc

y(JµµKp)

bqc

bAc

τn

�is diagram is not a pullback, but we can use the Yoneda lemma to make it into one. Recall that for

any functor f : C → D we can de�ne the precomposition functor f∗ : PSh(D)→ PSh(C), which on

objects is

f∗(P ) , C f−→ D P−→ Set

�en, for any c : C and Q : PSh(D) we can use the Yoneda lemma to establish a series of natural

isomorphisms

HomPSh(D)(y(f(c)), Q) ∼= Q(f(c)) = f∗Q(c) ∼= HomPSh(C)(y(c), f∗Q)
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We can then transpose the diagram in order to obtain

y(∆)

y(Γ′) JµµK∗T̃n

y(Γ) JµµK∗Tn

γ′

γ

bMc

y(p)

bqc

bAc

JµµK∗τn

(1.6)

where γ′ : ∆→ Γ′ is the unique arrow that makes the diagram commute.

Observe now that we are able to carry out this step whenever the right hand morphism of the

transposed diagram is a natural model. We are thus led to the following de�nition.

De�nition 1.4.4. A modal natural model on a context structure J−K : Mcoop → Cat1 consists of a

family of natural transformations of presheaves(
τm : T̃m ⇒ Tm

)
m∈M

where T̃m, Tm : PSh(C[m]) such that for every µ : HomM(m,n) the natural transformation

JµµK∗τn : JµµK∗T̃n ⇒ JµµK∗Tn

is a natural model.

We will write Γ.(µ | A) for the object Γ′ that makes (1.6) a pullback, as we do in the type theory.

Remark 1.4.5. Observe that JµµK : C[m] → C[n] and JµµK∗ : PSh(C[n]) → PSh(C[m]) are very

di�erent functors. �e former, which is given as part of the de�nition of a model, is a functor between

categories of contexts, and does not need to satisfy any particular properties. �e la�er, which is

canonically de�ned once we specify JµµK, acts on presheaves on those categories of contexts, and it

is well-known that it comes with both a le� and a right adjoint, JµµK! and JµµK∗, given by le� and

right Kan extension respectively. �is functor is used for technical purposes in the model, does not

appear in the type theory, and neither it nor its adjoints need descend from presheaf categories to the

(sub)categories of contexts. �

An Intermezzo: Higher-Order Abstract Syntax

In order to show how to model the various type formers in the style of natural models we need a

mechanism for representing binding structure in PSh(C[m]). We mostly recapitulate material found

in [Awo18], which we then adapt to modal types.

�e main device used for encoding binding structure is that of polynomial endofunctors. Given

a ‘display map’ ` : E → B, we may use the internal language of the presheaf topos to de�ne the

corresponding polynomial functor P`:E→B : PSh(C[m])→ PSh(C[m]) by

P`:E→B(A) ,
∑
b:B

A`
−1(b)
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When specialised to the ‘modalised’ natural model ` , JµµK∗(τn) : JµµK∗T̃n ⇒ JµµK∗Tn, this functor

has a very useful property: morphisms y(Γ)⇒ PJµµK∗τn(Tm) are in bijection with tuples

(A ∈ Tn(JµµK(Γ)), B ∈ Tm(Γ.(µ | A)))

�is enables the representation of a type Γ.µµ ` A type1 @n and a type Γ.(µ | A) ` B type1 @m
that modally depends on it as a single morphism y(Γ)⇒ PJµµK∗τn(Tn). To prove this, we may show a

more general

Lemma 1.4.6. Morphisms Y P`:E→B(X)g are in bijection with diagrams

X Y ×B E E

Y B

g2

`

g1

�e proof may be found in the paper by Awodey [Awo18, Lemma 5]. �e above bijection is then

demonstrated by taking ` to be the modalised natural model, X , Tn, and Y , y(Γ).

∏
Structure

A model is equipped with a

∏
-structure if for µ : HomM(n,m) we have a pullback square

PJµµK∗τn(T̃m) T̃m

PJµµK∗τn(Tm) Tm

lam

∏
τm

Using the insight provided by Lemma 1.4.6, we see that the morphism

∏
models the formation rule,

while lam models the introduction rule. �e β-law for

∏
-types is equivalent to the existence of a

mediating morphism given by the pullback, and the η-law follows from its uniqueness. A detailed

discussion of these points may be found in Awodey [Awo18].

Σ Structure

A model is equipped with a

∑
-structure if for each m :M we have a pullback square

∑
A:Tm

∑
B:T τ

−1
m (A)

m

∑
M :τ−1

m (A) τ
−1
m (B(M)) T̃m

Pτm(Tm) Tm

pair

∑
τm

As with

∏
-types, this precisely corresponds to the usual CwF formulation of

∑
-types [Dyb96; Hof97].

Again, a more detailed discussion may be found in [Awo18], and so we omit the details.
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Modal Structure

Interpreting the modal types 〈µ | A〉 in the natural models style is a li�le more complicated. �e reason

is that 〈µ | A〉 behaves very much like a positive type former, which comes with a ‘let-style’ pa�ern-

matching eliminator, and no η-rule. �ese features render its behaviour closer to that of intensional

identity types, and unlike the simpler pullback squares required of

∏
and

∑
. We will describe this

construction in two steps.

First, for each µ : HomM(n,m) the formation and introduction rules for 〈µ | −〉 are given by a

commuting square

.

JµµK∗T̃n T̃m

JµµK∗Tn Tm

JµµK∗τn

modµ

Modµ

τm

(1.7)

It is easy to see that, by Yoneda, Modµ may be used to map every type Γ.µµ ` A type1 @n to a type

Γ ` 〈µ | A〉 type1 @m, and similarly the arrow modµ can be used to model the introduction rule.

Unfortunately, asking that this square be a pullback is too strong a requirement with respect to the

elimination rule. In fact, we will see in Section 1.4.2 that it corresponds precisely to Modµ being a

dependent right adjoint [Bir+20]. We may instead phrase the elimination rule in terms of the existence

of a li�ing structure for the above diagram. We de�ne these in the internal language (i.e. extensional

type theory) of the presheaf topos PSh(C[m]), which forces them to be natural.3

De�nition 1.4.7 (Le� li�ing structure). Given presheaves ` A, I,B type, a family b : B ` E[b] type
and a section a : A ` i[a] : I , we de�ne the type ` i[−] t E[−] type of le� li�ing structures for i with

respect to E to be

i[−] t E[−] ,
∏
C:I→B

∏
c:
∏
a:A E[C(i[a])]

{
j :
∏
p:I E[C(p)] | ∀a : A. j(i[a]) = c(a)

}
Informally, le� li�ing structures provide diagonal �llers j for the diagram

A

I

∑
b:B E[b]

B

〈C(i[−]), c〉

i[−] π1

C

j

Intuitively, C : I → B is the motive of an elimination: we would like to prove E[C(p)] for all p : I . At

the same time, c :
∏
a:AE[C(i[a])] is a given section that speci�es the desired computational behaviour

of this elimination at the ‘special case’ A. �e le� li�ing structure then provides a section j of E[−]
de�ned on all of I . �is section is above C , and extends c. Note that these �llers are not necessarily

unique. Moreover, they are automatically natural: as all the types involved in this de�nition are closed,

we are at liberty to weaken the context.

3

�is formulation has its origins in unpublished work by Jonathan Sterling, Daniel Gratzer, Carlo Angiuli, and Lars

Birkedal.
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�is style of li�ing structure is an essential ingredient in recent work on models of intensional

identity types. First, they play an important rôle in natural models: Awodey [Awo18, Lemma 19] shows

that they precisely correspond to enriched le� li�ing properties in the sense of categorical homotopy

theory [Rie14, §13]. In fact, the above de�nition given above is a word-for-word restatement in the

internal language. Second, such li�ing structures are also central devices in internal presentations of

models of cubical type theory, in particular the recent work of Orton and Pi�s [OP18].

We can now approach this in a manner similar to that used for intensional identity types in op. cit.
Recall that the elimination rule for 〈ν | A〉 is

ν : HomM(o, n)
µ : HomM(n,m) Γ ctx @m Γ.µµ.µν ` A type1 @ o Γ.µµ `M0 : 〈ν | A〉@n

Γ.(µ | 〈ν | A〉) ` B type1 @m Γ.(µ ◦ ν | A) `M1 : B[↑.modν(v0)] @m

Γ ` letµ modν( )←M0 in M1 : B[id.M0] @m

�e �rst thing we ought to do is remove the ‘implicit cut’ with M0. We construct the substitution

Γ.(µ | 〈ν | A〉).(µ ◦ ν | A[↑.µµ◦ν ]) ` σ , ↑2.v0 : Γ.(µ ◦ ν | A) @m

It then su�ces to construct the elimination rule

ν : HomM(o, n) µ : HomM(n,m) Γ ctx @m Γ.µµ.µν ` A type1 @ o
Γ.(µ | 〈ν | A〉) ` B type1 @m Γ.(µ ◦ ν | A) `M1 : B[↑.modν(v0)] @m

Γ.(µ | 〈ν | A〉) ` letµ modν( )← v0 in M1[σ] : B@m

because we can calculate that

Γ ` (letµ modν( )← v0 in M1[σ])[id.M0] = letµ modν( )←M0 in M1 : B[id.M0] @m

We can rephrase this as the existence of a diagonal �ller in the diagram

y(Γ.(µ ◦ ν | A))

y(Γ.(µ | 〈ν | A〉))

T̃m

Tm

τmy(↑.modν(v0))

bBc

bM1[σ]c

bletµ modν( )← v0 in M1[σ]c

We can use a le� li�ing structure on a carefully chosen slice category to obtain such diagonal �llers.

�e internal language approach still applies, because of the well-known lemma stating that the slice of

a presheaf topos is also a presheaf topos, but over the corresponding category of elements instead.. In

symbols, the lemma states that for anyP : PSh(C) we have an equivalence PSh(C)/P ' PSh(
∫
C P ).
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First, given ν : HomM(o, n) we construct the following pullback:

JµνK∗T̃o

M T̃n

JµνK∗To Tn

m

h

JµνK∗τo

modν

Modν

τn

�e outer commuting square is that given by the formation and introduction for 〈ν | −〉, as in (1.7).

Intuitively, M is a ‘generic ν-modal terms object’ that consists of terms Γ ` M : 〈ν | A〉@n, where

Γ.µν ` A type1 @ o. We know that JµµK∗ has a le� adjoint, so it preserves pullbacks. Applying it to

this diagram yields

Jµµ◦νK∗T̃o

JµµK∗M JµµK∗T̃n

Jµµ◦νK∗To JµµK∗Tn

JµµK∗m

JµµK∗h

Jµµ◦νK∗τo

JµµK∗modν

JµµK∗Modν

JµµK∗τn

(1.8)

We have also used the fact that (−)∗ is functorial to contract the two locks into one. Moreover, we get

that the unique mediating morphism is indeed JµµK∗m.

From this point onwards we will also work in the slice PSh(C[m])/Z , where Z , Jµµ◦νK∗To. In

order to model the elimination rule we will ask for a le� li�ing structure in the slice category, of type

` openµν : JµµK∗m t Z∗(τm) (1.9)

where both of these are considered as morphisms in the slice PSh(C[m])/Z , respectively of type

JµµK∗m : Jµµ◦νK∗τo → JµµK∗h

Z∗(τm) : Z∗(T̃m)→ Z∗(Tm)

Following Awodey [Awo18] we may calculate that this models the rule. We suppose its premises,

and construct the diagram of Fig. 1.1. �e right (both top and bo�om) part of the diagram is just (1.8).

�e bo�om composite is easily seen to correspond to the application of the introduction rule of 〈ν | −〉
to the type Γ.µµ.µν ` A type1 @ o, and hence to the type Γ.µµ ` 〈ν | A〉 type1 @n. �e outer bo�om

square is the natural model pullback square that de�nes the object Γ.(µ | 〈ν | A〉), and we thus get

a mediating morphism to JµµK∗M , and that the bo�om-le� square is also a pullback. �e le� (both
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y(Γ.(µ ◦ ν | A))

y(Γ.(µ | 〈ν | A〉))

Jµµ◦νK∗T̃o

JµµK∗M

y(Γ) Jµµ◦νK∗To

JµµK∗T̃n

JµµK∗Tn

y(p.modν(q))

y(p)

bqc

JµµK∗m JµµK∗modν

JµµK∗τn

b〈ν | A〉c

bAc
JµµK∗Modν

bmodν(q)c

JµµK∗h

y(p)
bqc

Jµµ◦νK∗τo

Figure 1.1: Modelling the elimination rule

top and bo�om) part of the diagram is the natural model pullback square that de�nes the object Γ.(µ |
〈µ ◦ ν | A〉). We hence get a mediating morphism p.modν(q) : Γ.(µ | 〈µ ◦ ν | A〉)→ Γ.(µ | 〈ν | A〉).

Finally, for the same reasons as the bo�om composite, the top composite is easily seen to correspond

to the term modν(q).

We write

∑
Z : PSh(C[m])/Z → PSh(C[m]) for the usual domain projection functor, so that∑

Z a Z∗. Now, using the usual approach to slice categories—where the cartesian product ×Z is the

pullback—we see from the diagram that∑
Z

(bAc ×Z Jµµ◦νK∗T̃o) ∼= y(Γ.(µ ◦ ν | A))∑
Z

(bAc ×Z JµµK∗h) ∼= y(Γ.(µ | 〈ν | A〉))∑
Z

(idbAc ×Z JµµK∗m) ∼= y(p.modν(q))

(1.10)
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Recall that we are trying to �nd a diagonal �ller to the diagram

y(Γ.(µ ◦ ν | A))

y(Γ.(µ |Modν(A)))

T̃m

Tm

PSh(C[m])

τmy(p.modν(q))

bBc

bM1c

(1.11)

We use the adjunction

∑
Z a Z∗ to transpose this diagram, and we compose with the isomorphisms

(1.10) to obtain the following diagram in PSh(C[m])/Z :

bAc ×Z Jµµ◦νK∗T̃o

bAc ×Z JµµK∗h

Z∗(T̃m)

Z∗(Tm)

Z∗(τm)id×Z JµµK∗m

b̂Bc

b̂M1c

openµν

We can then use the li�ing structure to prove a diagonal �ller. Transposing this diagram back along

the adjunction provides a �ller for (1.11). �e naturality of all these steps (composing isomorphisms,

transposition, and li�ing structure) ensure that the provided �ller is natural.

Boolean Structure

A boolean structure is de�ned similarly to the structure for modal types. First, we require two opera-

tions:

1 T̃m

1 Tm

tt

ff

Bool

τm

Modelling the elimination rule requires naturally given diagonal �llers for all squares

1 + 1 T̃m

τ−1
m (Bool) Tm

[tt,ff ] τm
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where τ−1
m (Bool) is the �bre of τm over Bool, and the map [tt,ff ] is obtained as the cotuple of the

maps obtained by factoring tt and ff through the �bre. Requiring a le� li�ing structure

if : [tt,ff ] t τm[−]

in the internal language then provides enough naturality to yield diagonal �llers for all squares

y(Γ) + y(Γ) T̃m

y(Γ.Bool) Tm

[id.tt, id.ff ] τm

Intensional Identity Structure

We model the intensional identity type in exactly the same way as Awodey [Awo18]. First, we ask for

a commuting square

∑
A:Tm τ

−1
m (A) T̃m

∑
A:Tm τ

−1
m (A)× τ−1

m (A) Tm

refl

Id

τm

which models the formation and introduction rules for Id. Observe that∑
A:Tm

τ−1
m (A)× τ−1

m (A) ∼= T̃m ×Tm T̃m

For the path induction principle, we construct the pullback square

∑
A:Tm τ

−1
m (A)

I T̃m

∑
A:Tm τ

−1
m (A)× τ−1

m (A) Tm

i

∑
A:Tm δ

refl

Id

τm

and require a le� li�ing structure

A : Tm ` J : i(A,−) t τm[−]

A detailed proof that this is sound for intensional identity types may be found in [Awo18, §2.4].
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The Universe of Small Types

Until this point we have conveniently avoided discussing the di�erence between small and large types,

i.e. whether our types are in type0
m or type1

m. We were able to do that precisely because terms can only
inhabit large types, so most of our judgments only mention large types. Of course, this is not the case

when it comes to judgments pertaining to the universe.

First, our model comes equipped with a set of small types, viz. a presheaf Sm for each mode m
along with a natural transformation lift : Sm ⇒ Tm. Moreover, we require that the formation rules

for each type factor through Sm. �at is, we require a mediating morphism in each of the following

diagrams.

Pi ∑
A:JµµK∗Sn S

JµµK∗τ−1
n (lift(A))

m Sm

∑
A:JµµK∗Tn T

JµµK∗τ−1
n (A)

m Tm

lift

∏
Sigma ∑

A:Sm S
τ−1
m (lift(A))
m Sm

∑
A:Tm T

τ−1
m (A)

m Tm

lift

∑
〈µ | −〉

JµµK∗Sn Sm

JµµK∗Tn Tm

lift

Modµ

Intensional Identity ∑
A:Sm τ

−1
m (lift(A))× τ−1

m (lift(A)) Sm

∑
A:Tm τ

−1
m (A)× τ−1

m (A) Tm

lift

Id
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Bool
1 Sm

1 Tm

lift

Bool

�e existence of these factorisations implies that type formation is closed under the set of small types.

Finally, the universe of small types is interpreted by distinguished morphism 1 TmUni
for each m ∈

M, which is such that

τ−1
m (Uni) ∼= Sm

The Full Definition

Collecting our work, we have that

De�nition 1.4.8. A model of MTT overM consists of

• a context structure forM (De�nition 1.4.1), and a

• a modal natural model on that context structure (De�nition 1.4.4)

such that the modal natural model supports

• dependent product types

• dependent sum types (at each mode)

• intensional identity types (at each mode)

• modal types

• a boolean type (at each mode), and

• a universe of small types

1.4.2 Models from Dependent Right Adjoints

In Section 1.4.1 we showed how to decompose the algebraic notion of model of MTT into a more

modular and a�ractive presentation using the language of Awodey’s [Awo18] natural models. However,

there is already a general notion of dependent modality in modal type theory, namely that of a dependent
right adjoint (DRA) [Bir+20]. In this section we use the language of natural models to generalise the

de�nition of DRA to a multimode se�ing. Furthermore, we construct a model from multimode DRAs

between models of type theory that support a similar array of types (

∑
,

∏
, Id, B). �is construction

demonstrates that DRAs constitute an even stronger notion of modality.
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Dependent Right Adjoints in Natural Models

A dependent right adjoint is an adaption of the notion of adjunction to the dependent se�ing, as it has

an action on both terms and types. In particular, given a pair of natural models (C, τC) and (D, τD), the

data of a DRA comprises a functor L : D → C between the underlying context categories, as well as a

pullback diagram of the following shape in PSh(D):

L∗T̃C T̃D

L∗TC TD

L∗τC

r

R

τD

Here R is the action on types, and r is its action on terms. It is evident that the pullback square forces

(R, r) to behave as a DRA in the sense of Birkedal et al. [Bir+20], as it intuitively de�nes for each term

Γ ` M : R(A) a unique term L(Γ) ` N : A such that Γ ` M = r(N) : R(A). We must also ask that

the DRA preserve size if we wish for a small modal type; in that case, we also require a R′ such that

L∗SC SD

L∗TC TD

R′

R

lift

Remark 1.4.9. �is de�nition is slightly more general than the one presented in Birkedal et al. [Bir+20],

which forced the DRA to be an endoadjunction (that is, L was an endofunctor and there was only one

natural model). �ere are no technical obstacles to generalizing any of the results in the paper to this

se�ing, though the syntax must be made more general (permi�ing two modes, instead of just one). �

Remark 1.4.10. With a proper de�nition of a morphism of models, it can be shown that an adjunction

between categories of contexts gives rise to a dependent right adjoint when the right adjoint is part of

a morphism of models [Nuy18a]. �e converse is not in general true: a dependent right adjoint need

not have any action on the full category of contexts. If, however, the category of contexts is entirely

generated by · and Γ.A (if the model is democratic), the converse is true [Bir+20]. �

When Modµ is a DRA

�eorem 1.4.11. Suppose that we have an collection (C[m], T̃m Tmτm )m∈M of models of MLTT, in-
dexed by modes m ∈ M. Suppose further that we have functorial choice of size-preserving dependent
right adjoints, (JµµK,Modµ,modµ), from (C[m], T̃m Tmτm ) to (C[n], T̃n Tnτn ) for each modal-
ity µ ∈ HomM(m,n). Finally, assume that there exists a functorial choice of natural transformations
J¤αK : JµνK ⇒ JµµK for each α : µ ⇒ ν. �en we can assemble these data into a model of MTT where
the type theory at each mode m is interpreted by (C[m], T̃m Tmτm ).

Proof. First, de�ne the 2-functorMcoop → Cat by m 7→ C[m], µ 7→ JµµK, and α 7→ J¤αK. We need

to show how to de�ne the structure necessary for interpreting context extension and type formers.
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Modal Context Extension

Suppose we have an arrow y(Γ) JµµK∗TnbAc
. We would like for each n ∈M a pullback square

y(Γ′) JµµK∗T̃n

y(Γ) JµµK∗Tn

y(p′)

bq′c

bAc

JµµK∗τn

Write bModµ(A)c , Modµ ◦ bAc, and form the natural model pullback square for Γ′ ,
Γ.Modµ(A). Pasting this with the DRA pullback square for Modµ forms the following dia-

gram:

y(Γ.Modµ(A))

y(Γ)

JµµK∗T̃n

JµµK∗Tn

T̃m

Tm

y(p)

b̂qc

bAc

JµµK∗τn

modµ

Modµ

τm

(1.12)

As the outer square commutes, we can �ll in the do�ed arrow. By the pullback lemma, because

both the outer square and the rightmost square are pullbacks, so is the le�most. �erefore, le�ing

Γ.(µ | A) , Γ.Modµ(A) completes the proof that (τm)m∈M is a modal natural model.∑
, Boolean, Intensional Identity, and Small Type and Universe Structures

�e structures for

∑
, Bool, Id, and Uni are mode-local, so we may simply reuse the equivalent

data given for each natural model T̃m Tmτm
.

Modal Types

�is is the heart of the proof. First, we need a commuting square

JµµK∗T̃n T̃m

JµµK∗Tn Tm

modµ

Modµ

τm

(1.13)

Such a square is given as part of a DRA by de�nition, and is in fact a pullback!
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To model the elimination rule, recall that de�nition of the object M used in the li�ing condition:

Jµµ◦νK∗T̃o

JµµK∗M JµµK∗T̃n

Jµµ◦νK∗To JµµK∗Tn

JµµK∗m

Jµµ◦νK∗τo

JµµK∗modν

JµµK∗Modν

JµµK∗τn

As JµµK∗ preserves pullbacks the outer square is a pullback too, and so JµµK∗m must be an

isomorphism. �e elimination rule for Modµ(A) requires us to construct a le�-li�ing structure:

` openµν : (JµµK∗m) t (Jµµ◦νK∗To)∗(τm[−])

Using the inverse of JµµK∗m we can construct this by

openµν , λC. λc. c ◦ JµµK∗(m−1)∏
Structure

Equipping each T̃m Tmτm
with a modal

∏
structure is relatively straightforward to do in the

internal language; intuitively, the reason is the isomorphism

(JµµK∗τn)−1(A) ∼= τ−1
m (ModµA)

which is derived from the fact Γ.(µ | A) , Γ.ModµA (where the �rst dot is the de�ned context

extension, and the second dot is given by the natural model). However, we can also prove it in a

more abstract way: we paste together the two pullback squares

PJµµK∗τn(T̃m)

PJµµK∗τn(Tm)

Pτm(T̃m)

Pτm(Tm)

T̃m

Tm

τm

φT̃m

φTm

PJµµK∗τn(τm) Pτm(τm)

lam

∏
�e square on the right is the pullback that interprets

∏
in the natural model τm. �e square on

the le� is a naturality square of the natural transformation

φ : PJµµK∗τn(−)⇒ Pτm(−)

which exists because the pullback square (1.13) de�nes a morphism of polynomials. Moreover,

the naturality squares of φ are cartesian: see the thesis of Newstead [New18, §§1.2.16–1.2.18].
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Corollary 1.4.12. MTT is consistent (there is no term · `M : IdB(tt,ff) @m) for any mode theoryM.

Proof. Suppose that we have a model of MLTT with one universe in some category C. We can construct

a functorMcoop → Cat by sending every mode to C, and every modality and 2-cell to the identity

functor and natural transformation respectively. It is clear that this is stricty 2-functorial, and that

each identity functor is a DRA. Hence, �eorem 1.4.11 tells us that there is a model of MTT with each

mode being interpreted by C. �erefore, if a term M : IdB(tt,ff) was de�nable in MTT, it would also

be possible to construct in every model of MLTT, and so would be de�nable in MLTT itself. But it is

well-known that MLTT is consistent: see Coquand [Coq18] for a particularly short proof.

1.4.3 Morphisms of Models

Returning to the models induced by the generalized algebraic syntax, we observe that not only does

a GAT induce a collection of models, it also determines a notion of morphism between models which

forms a category. �ough traditionally neglected, homomorphisms of models are of fundamental im-

portance for metatheoretic proofs, and will be used for our proof of canonicity.

Recent notions of CwF morphisms [CD14; Bir+20] are relatively weak, in that they preserve the

CwF structure up to isomorphism. In contrast, our metatheoretic proofs require that we revert to a

purely algebraic notion of morphism that preserves all structure on-the-nose, as originally introduced

by Dybjer [Dyb96], and recently adapted to natural models by Newstead [New18, §2.3]. While we

are ready to believe that one may construct a biequivalence or biadjunction relating these to more

semantically natural morphisms [Uem19], we do not pursue this ma�er further.

De�nition 1.4.13. A morphism (C, T̃c Tcτc )→ (D, T̃d Tdτd ) of natural models comprises a func-

tor F : C → D as well as a commuting square

T̃c F ∗T̃d

Tc F ∗Td

τc

ϕ̃

ϕ

F ∗τd

(1.14)

such that F (1) = 1 and the canonical morphism F (Γ.A)→ FΓ.ϕ(A) is an identity.

�e type ϕ(A) in the last line is de�ned as follows. Given bAc : y(Γ)⇒ Tc we let

k , y(Γ)
bAc−−→ Tc

ϕ−→ F ∗T̃d

We then have by Yoneda a natural isomorphism

HomPSh(C)(y(Γ), F ∗Td) ∼= F ∗Td(Γ) = Td(FΓ) ∼= HomPSh(D)(y(FΓ), Td) (1.15)

We de�ne bφ(A)c : y(FΓ)⇒ Td to be k transported under this natural isomorphism. We also de�ne

bMc : y(Γ)⇒ Tc 7−→ bϕ̃(M)c : y(FΓ)⇒ Td

which maps a term Γ `M : A to a term FΓ ` ϕ̃(M) : ϕ(A) in a similar manner.
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Returning to the last condition in the de�nition, we may now form the diagram

y(F (Γ.A))

y(FΓ.ϕ(A)) T̃d

y(FΓ) Td

y(Fp)

bϕ̃(q)c

y(p)

bqc

bϕ(A)c

τd

where the outer square is the diagram composed by pasting together the context extension diagram

for Γ.A and (1.14), followed by transposing along the natural isomorphism (1.15). We then ask that the

unique induced arrow be the identity.

We can li� these natural transformations to the formation data of the connectives (making special

use of the �nal equality for the polynomial functors). For instance, we can de�ne a morphism

Pτc(Tc) PF ∗τd(F
∗Td)(ϕ,ϕ̃) , Pτc(Tc) −→ PF ∗Td(Tc)

PF∗Td (ϕ)
−−−−−−→ PF ∗τd(F

∗Td)

�e �rst component comes from a natural transformation Pτc(−)⇒ PF ∗Td(−), which exists because

(1.14) not only commutes, but is a pullback square. �at is a nontrivial fact proven laboriously by

Newstead [New18, §§2.3.14]. A more conceptual proof is given by Uemura [Uem19, p. 3.14] in the

language of discrete �brations.

We then require that all our connectives,

∏
,

∑
, refl, strictly commute with these morphisms.

Finally, we can extend this to a model of MTT by requiring not just a functor, but a natural transforma-

tion from C → D, where C,D :Mcoop → Cat satisfying the obvious generalizations of the conditions

wri�en above. Specifying this formally:

De�nition 1.4.14. A morphism between two models of MTT, C,D, is given by a 2-natural transfor-

mation: F : C → D. Moreover, we require a choice of commuting squares:

ŨC[m] F ∗mŨD[m]

UC[m] F ∗UD[m]

τC[m]

ϕ̃m

ϕm

F ∗τD[m]



CHAPTER 1. THE SYNTAX AND SEMANTICS OF MTT 39

Moreover, we require that (ϕ, ϕ̃) strictly commutes with all operations.

Fm(Γ.(µ | A)) = Fm(Γ).(µ | ϕ(A))∏
◦ (ϕ,ϕ) = ϕ ◦

∏
lam ◦ (ϕ, ϕ̃) = ϕ̃ ◦ lam∑

◦ (ϕ,ϕ) = ϕ ◦
∑

pair ◦ (ϕ, ϕ̃) = ϕ̃ ◦ pair

Modµ ◦ JµµK∗ϕ = ϕ ◦Modµ modµ ◦ JµµK∗ϕ̃ = ϕ̃ ◦modµ

openνµ ◦ (ϕ̃, JµµK∗ϕ̃) = ϕ̃ ◦ openνµ

Bool = ϕ ◦Bool tt = ϕ̃ ◦ tt ff = ϕ̃ ◦ ff

if ◦ (ϕ̃, ϕ̃, ϕ̃) = ϕ̃ ◦ if

Id ◦ (ϕ, ϕ̃, ϕ̃) = ϕ ◦ Id refl ◦ ϕ̃ = ϕ̃ ◦ refl

J ◦ (ϕ̃, ϕ̃) = ϕ̃ ◦ J

Remark 1.4.15 (�e Initiality of Syntax). Under this de�nition of homomorphism, we immediately

have an initial model [Car78; KKA19]. We will de�ne this model to be our syntax and designate it

(S[m])m∈M. �
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1.5 Canonicity

At this point we have developed a rich theory of the syntax and semantics of MTT. We can instantiate

the syntax with di�erent mode theories in order to obtain various modal calculi. However, we would

like to show that—irrespective of the mode theory of choice—the resulting syntax is well-behaved. In

this section we establish one of the basic properties which measures this, i.e. canonicity.

Proposition 1.5.1 (Canonicity). If `M : B@m, then either `M = tt : B@m or `M = ff : B@m.

Traditionally this kind of result would be established by producing a rewriting system along with a

lengthy PER model construction. Instead, we will opt for a proof given by constructing a glued model

of MTT [KHS19]. Our gluing proof proceeds by de�ning a model of MTT in which contexts and types

are pairs of a syntactic context, and a proof-relevant predicate on its elements.

In order to simplify the proof, we will assume that locks preserve the empty context. �is amounts

to the equation

·.µµ = · ctx @m

for each µ : HomM(m,n). Together with the universal property of the terminal context, this implies

·.µµ ` ¤α
· = id = · : ·.µν @m

Requiring this equation unfortunately limits our class of models to those where the le� adjoint strictly

preserves the terminal product.

Remark 1.5.2. In what follows we will assume the existence of two Grothendieck universes V ′ ⊂ V :
Set. We could make do with just one, but this would introduce some contortions. However, that is

both unnecessary and uninteresting. We will assume that the sets of contexts, substitutions, types, and

terms from the syntactic model are V ′-small. �

1.5.1 Defining the Glued Model

The Glued Context Categories

De�nition 1.5.3 (Glued Contexts). A glued context Γ at mode m consists of a context Γ� ∈ ctxm, a

predicate Γ� ∈ V , and a function

φΓ : Γ� → sbm(·,Γ�)

Remark 1.5.4. We will henceforth use the metavariable Γ to range over glued contexts, and explicitly

specify when we intend it to range over syntactic contexts. �

De�nition 1.5.5 (Glued Substitutions). A glued substitution from ∆ to Γ at mode m is a pair of a

substitution γ� ∈ sbm(∆�,Γ�) and a function γ� : ∆� → Γ� such that

∀x ∈ ∆�. φΓ(γ�(x)) = γ� ◦ φ∆(x)

Glued contexts and glued substitutions form a category, viz. the comma category

C[m] , (1V ↓ sbm(·,−))

which we take as the category of contexts at modem. Next, we de�ne a 2-functor fromM sending each

m to C[m]. We de�ne for each µ : HomM(m,n) a functor JµµK : C[n]→ C[m] as follows. Suppose we
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are given the following arrow in C[n]:

∆�

sbn(·,∆�)

Γ�

sbn(·,Γ�)

γ�

γ� ◦ −

φ∆ φΓ

We will send it to the following arrow in C[m]:

∆�

sbm(·,∆�.µµ)

Γ�

sbm(·,Γ�.µµ)

γ�

γ�.µµ ◦ −

φ∆.µµ φΓ.µµ

where the function φ∆.µµ is de�ned by

φ∆.µµ(x) , φ∆(x).µµ : · → ∆�.µµ

Notice that the equation ·.µµ = · is necessary to ensure that this de�nition is well-typed. �e diagram

commutes, as locks act functorially on substitutions, and this assignment is functorial for the same

reason. It is also functorial in µ, because Γ.µµ.µν = Γ.µµ◦ν , and Γ.µ1 = Γ.

Next, we can de�ne a 2-cell JµµK⇒ JµνK whenever α : ν ⇒ µ. �e component at (Γ�,Γ�, φΓ) is

Γ�

sbm(·,Γ�.µµ)

Γ�

sbm(·,Γ�.µν)
¤α

Γ� ◦ −

φΓ.µµ φΓ.µµ < ν >

�is diagram commutes because of the equation ¤α
· = id, so it de�nes a morphism in the comma

category. Naturality of both this component and of the assignment of this cell to α : ν ⇒ µ follows

from the numerous naturality equations pertaining to keys and their composition.

�is completes the de�nition of a strict 2-functorMcoop → Cat1, as discussed in Section 1.4.1.

The Glued Natural Model Structure

Next we must de�ne the modal natural model structure for each category of contexts.

Remark 1.5.6. For the rest of this section we will freely use type-theoretic notation, viewing a proof-

relevant predicate Γ� → sbm(·,Γ�) as a family �bred over sbm(·,Γ�), i.e. a map sbm(·,Γ�)→ V .

As in the de�nition of the gluing category, we will follow the convention that symbols annotated

with (−)� correspond to proof-relevant constructions—i.e. members of the predicate, or maps between
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predicates—whereas symbols annotated with (−)� correspond to syntactic constructions, e.g. terms,

contexts, substitutions. In particular, γ� will no longer refer to a �bred map between proof-relevant

predicates, as it meant in the preceding discussion. We will also o�en use ‘generalized element’ nota-

tion: lower-case Greek le�ers will correspond to generalized elements of families denoted by upper-case

Greek le�ers.

In other words, when γ� ∈ Γ� and φΓ(γ�) = γ� : · → Γ�, we will abusively write γ� : Γ�(γ�).

�at is, we will view γ� as living in the �bre of φΓ over γ�. �is amounts to considering γ� as a proof
that the predicate Γ� holds at the substitution γ�. Observe that if γ� : Γ.µ�µ (γ�) then γ� must be of

the form θ�.µµ for some θ� : · → Γ� with γ� : Γ�(θ�). �

We begin by de�ning the following presheaves over C[m]:

Tm(Γ) , {
A� ∈ type1

m(Γ�);

A� : (γ� : sbm(·,Γ�))→ (γ� : Γ�(γ�))→ tmm(·, A�[γ�])→ V
}

T̃m(Γ) , {
A� ∈ type1

m(Γ�);

A� : (γ� : sbm(·,Γ�))→ (γ� : Γ�(γ�))→ tmm(·, A�[γ�])→ V
M� ∈ tmm(Γ�, A�);

M� : (γ� : sbm(·,Γ�))→ (γ� : Γ�(γ�))→ A�(γ�, γ�,M�[γ�])

}
τm(Γ) , (A�, A�,M�,M�) 7→ (A�, A�)

�us a type over a context Γ = (Γ�, ϕΓ) in the glued model consists of a type Γ� ` A� type1 @m of

the system, along with a predicate—a family of V-small sets indexed over both closing substitutions γ�

that satisfy the predicate Γ� and terms of type A� closed under that substitution.

In addition to these, a term over Γ in the glued model also comes with a term Γ� `M� : A� @m
of that type, along with a section M�

of the aforementioned family. �is section produces a proof

that the predicate holds at that term a�er we close it by applying any appropriate substitution γ� of

which the predicate Γ� holds. �e reindexing action of these presheaves is de�ned by composition of

substitutions, as well as the action of substitution on types and terms.

We must show that this de�nes a representable natural transformation in the sense of Section 1.4.1.

Suppose that we have a morphism bAc : Hom(y(Γ), JµµK∗Tn) with µ : HomM(n,m). By Yoneda, this

is exactly a type A� ∈ type1
n(Γ�.µµ) along with a family

A� : (γ� : sbm(·,Γ�.µµ))→ Γ.µ�µ (γ�)→ tmm(·, A�[γ�])→ V

We will show that the following object in C[n] satis�es the required universal property:

Γ.(µ | A)� = Γ�.(µ | A�)

Γ.(µ | A)� = λ(γ�.M�). (γ� : Γ�(γ�))×A�(γ�.µµ, γ
�,M�)

where we have surreptitiously used the universal property of context extension to ‘pa�ern match’ on

a closing substitution for Γ�.(µ | A�) and decompose it to a substitution γ� : · → Γ�, and a term

·.µµ ` M� : A�[γ�.µµ] @n whose context simpli�es to the empty context by our assumption. We

also know that γ� is in Γ.µ�µ (γ�.µµ), because ϕΓ.µµ(γ�) , ϕΓ(γ�).µµ = γ�.µµ.

It remains to show that this �ts into a pullback square. We de�ne p : Γ.(µ | A) → Γ as follows:

on the syntactic level it simply postcomposition ↑ ◦ − : sbm(·,Γ�.(µ | A�)) → sbm(·,Γ�). �is is
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‘tracked’ on the level of proof predicates by �brewise projecting the �rst component of (γ� : Γ�(γ�))×
A�(γ�.µµ, γ

�,M�). We may de�ne q : T̃n(JµµK(Γ.(µ | A))) by le�ing M� , v0, and de�ning the

section M�
to essentially project the second component of the same dependent product.

We must then show that the resulting square

y(∆)

y(Γ.(µ | A)) JµµK∗T̃n

y(Γ) JµµK∗Tn

y(γ.M)

y(γ)

bMc

y(p)

bqc

bAc

JµµK∗τn

is a pullback by proving it for representables. �e syntactic part of γ.M is forced to be γ�.M�
by

the universal property of context extension. �is is then tracked on the proof predicate level by the

map whose �bre ∆�(δ�) → Γ.(µ | A)�(γ� ◦ δ�,M�[δ�.µµ]) is de�ned by sending x ∈ ∆�(δ�)
to (γ�(x),M�(δ�.µµ, x)). In fact, this de�nition is forced if we want the diagram to commute, and

consequently the square is a pullback.

The Glued Modal Structure

We will now show that the glued model supports modal types. �is is the main new feature of our type

theory, and correspondingly this is the most novel part of this proof. To begin with, we must de�ne a

pair of maps making the following diagram commute, where µ : Hom(n,m):

JµµK∗T̃n T̃m

JµµK∗Tn Tm

modµ

Modµ

τm

We de�ne these maps (in slightly informal notation) by mapping a type (Γ�.µµ ` A� type1 @n,A�)
and a term (Γ�.µµ `M� : A� @n,M�) to a type and term over Γ� respectively:

Modµ(A)� = 〈µ | A�〉
Modµ(A)� = λγ�, γ�,M�.

(N� ∈ tmn(·, A�[γ�.µµ]))× (modµ(N�) = M�)×A�(γ�.µµ, γ
�, N�)

modµ(M)� = modµ(M�)

modµ(M)� = λγ�, γ�. (M�[γ�.µµ], ?,M�(γ�.µµ, γ
�))

�us, the predicate at the modal type holds only of those closed terms that are of the form modµ(N�)
for some appropriately typed termN�

, for which furthermore the predicateA� holds. �is is achieved

by existentially quantifying over the la�er set, and then using the (extensional) identity type.
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To complete the interpretation we must show how to interpret the modal elimination rule in the

glued model. Unlike the reductionist, categorical approach of Section 1.4.1, we will not use le� li�ing

structures, as the resulting types become intractable. We will instead directly construct the appropriate

term in the model in the language of generalized algebraic theories.

Assume that we have ν : HomM(o, n), µ : HomM(n,m), a motive Γ.(µ | 〈ν | A〉) ` B type1 @m,

a term Γ.µµ ` M0 : 〈ν | A〉@n, and a term Γ.(µ ◦ ν | A) ` M1 : B[↑.modν(v0)] @m. We aim to

construct a term

Γ ` letµ modν( )←M0 in M1 : B[id.M0] @m

Each one of those terms in the glued model comes with an associated term in the type theory which

we denote by superscripting with (−)�. We use these to construct the associated term

Γ� ` (letµ modν( )←M0 in M1)� , letµ modν( )←M�
0 in M�

1 : B�[id.M�
0 ] @m (1.16)

It remains to construct the relevant section

S� : (γ� : sbm(·,Γ�))→ (γ� : Γ�(γ�))→ B[id.M0]�(γ�, γ�, (letµ modν( )←M�
0 in M�

1 )[γ�])

Expanding the de�nition of B[id.M0] and simplifying makes the codomain equal to

B�(γ�.M�
0 [γ�.µµ], (γ�,M�

0 (γ�.µµ, γ
�)), letµ modν( )←M�

0 [γ�.µµ] in M�
1 [(γ� ◦ ↑).v0])

�is is expected: the substitution in the �rst argument is the result of postcomposing id.M�
0 to γ�. For

the second argument we notice that B is in context Γ.(µ | 〈ν | A〉), and the predicate of a context

extension consists of a proof γ� for Γ and a proof for the type by which we have extended, for which

we promptly substitute whatever the predicate for M0 yields. Finally, a�er applying the substitution

γ� the term Eq. (1.16) expands to the third argument above.

At this point, the strategy for �nding the canonical form of letµ modν( )←M�
0 in M�

1 becomes

evident: ignoring closing substitutions for a moment, we must intuitively �rst �nd the canonical form

modν(N�) of M�
0 , substitute N�

into M�
1 , and then �nd the canonical form of that. �e construction

of the section S� will closely follow this strategy.

�us, given γ� and γ� as in the premises of S�, we de�ne (N�, ?, x�) ,M�
0 (γ�.µµ, γ

�), where

N� : tmo(·, A�[γ�.µµ◦ν ]))

? : modν(N�) = M�
0 [γ�.µµ]

x� : A�(γ�.µµ◦ν , γ
�, N�)

�e predicate for M0 has thus given us a canonical form modν(N�) for M�
0 [γ�.µµ]. �is can be

combined with γ� into a substitution γ�.N� : sbm(·,Γ�.(µ ◦ ν | A�)) which is closing for M1.

Moreover, we have that

(γ�, x�) : Γ.(µ ◦ ν | A)�(γ�.N�)

Hence, we can now apply the section for M1 to get

M�
1 (γ�.N�, (γ�, x�)) : B[↑.modν(v0)]�(γ�.N�, (γ�, x�),M�

1 [γ�.N�])

Expanding the action of the substitution on B shows that this type is equal to

B�(γ�.modν(N�), (γ�, (N�, ?, x�)),M�
1 [γ�.N�])

Finally, using the equation modν(N�) = M�
0 [γ�.µµ], folding the de�nition of M�

0 , and applying the

β rule for modal types to modν(N�) = M�
0 [γ�.µµ] shows that this is equal to the codomain of S�.
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The Glued
∏

Structure

�e case of dependent products is fortunate: while not entirely mode-local, the construction essentially

follows that of the standard glued model for Martin-Löf type theory. By Lemma 1.4.6, elements of

PJµµK∗τn(Tm)(Γ) bijectively correspond to pairs of types (A� ∈ Tn(Γ�.µµ), B� ∈ Tm(Γ�.(µ | A�)))

along with associated predicatesA� andB�, and similarly for PJµµK∗τn(T̃m)(Γ). We silently transport

under these to de�ne the following type over Γ�:∏
(A,B)� = (µ | A�)→ B�∏
(A,B)� = λγ�. λγ�. λM�.

(N� : tmn(·, A�[γ�.µµ]))→
(N� : A�(γ�.µµ, γ

�, N�))→
B�(γ�.N�, (γ�, N�),M�(N�))

lam(M)� = λ(M�)

lam(M)� = λγ�, γ�, N�, N�. M�(γ�.N�, (γ�, N�))

We wish to show that these arrows form a pullback square. To this end, suppose that we have some

context ∆ as well as arrows bMc : y(∆) → T̃m and (bAc, bBc) : y(∆) → PJµµK∗τn(Tm). We want to

construct a unique mediating arrow in the diagram

y(∆)

PJµµK∗τn(T̃m) T̃m

PJµµK∗τn(Tm) Tm

(bAc, bBc)

bMc

lam

∏
τm

We use the aforementioned bijection to de�ne this arrow as the one corresponding to a pair (bAc, bM0c)
where M0 is a term in T̃m(∆.(µ | A)) over B. We know that M lies over

∏
(A,B), so we de�ne

M�
0 = M�[↑](v0)

M�
0 = λ(γ�.N�), (γ�, N�). M�(γ�, γ�, N�, N�)

In order to show that this commutes, observe that lam(M0)� = λ(M�[↑](v0)), which is equal to

M�
by the η rule. �is argument also enforces the uniqueness of the choice of M�

0 : given some M�
1

such that λ(M�[↑](v0)) = λ(M�
1 ), we would have that M�

1 = M�[↑](v0) by congruence and β. By

applying essentially the same argument in the metatheory we also obtain uniqueness for the semantic

section M�
0 associated with M0.
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The Glued Sigma Structure

�e glued sigma structure is identical to the one found in, for instance, Kaposi, Huber, and Sa�ler

[KHS19]. We wish to construct the following pullback

∑
A:Tm

∑
B:T τ

−1
m (A)

m

∑
M :τ−1

m (A) τ
−1
m (B(M)) T̃m

Pτm(Tm) Tm

pair

∑
τm

We will de�ne

∑
and pair over it as follows:∑

(A,B)� =
∑

(A�, B�)∑
(A,B)� = λγ�, γ�, (M�, N�). (M� : A�(γ�, γ�))×B�(ν, γ�.M�, (γ�,M�))

pair(M,N)� = (M�, N�)

pair(M,N)� = λγ�, γ�. (M�(γ�, γ�), N�(γ�, γ�))

�e veri�cation that this forms a pullback and commutes is entirely routine and thus elided.

The Glued Intensional Identity Structure

�e intensional identity structure is a standard construction. It is still complex, however, because li�ing

structures are troublesome to write down in the standard se�ing as well as ours. First, however, we

de�ne the formation rules as follows:

Id(A,M0,M1)� = IdA�(M�
0 ,M

�
1 )

Id(A,M0,M1)� = λγ�, γ�, N�.

(M�
0 [γ�] = M�

1 [γ�])×
(M�

0 (γ�, γ�) = M�
1 (γ�, γ�))× (N� = refl(M�

0 ))

refl(M)� = refl(M�)

refl(M)� = λγ�, γ�. (?, ?, ?)

For the le� li�ing structure, bearing in mind the observations made in the construction of openµ we

write the following:

J(C, c,N)� = J(C�, c�,M�)

J(C, c,N)� = λγ�, γ�. c�(γ�.M�
0 [γ�], (γ�,M�

0 (γ�, γ�)))

where N�(γ�, γ�) : (M�
0 [γ�] = M�

1 [γ�])× (M�
0 (γ�, γ�) = M�

1 (γ�, γ�))× (N� = refl(M�
0 ))

The Glued Boolean Structure

For the boolean case, we once again must contend with a li�ing structure but a far simpler one because

B is a closed type. For the formation and introduction rules, we have the following de�nitions:

Bool� = B Bool� = λγ�, γ�,M�. (M�[γ�] = tt) + (M�[γ�] = ff)

tt� = tt tt� = λ . ι0(?)

ff� = ff ff� = λ . ι1(?)
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We must now de�ne the le� li�ing structure we called if : [tt,ff ] t τm. We can just write out the term

without further remark in this case:

if(C, [c0, c1],M)� = if(C�; c�0 ; c�1 ;M�)

if(C, [c0, c1],M)� = λγ�, γ�.

{
c�0 (γ�, γ�) M�(γ�, γ�) = ι0(?)

c�1 (γ�, γ�) M�(γ�, γ�) = ι1(?)

The Glued Universe Structure

�e construction of the glued structure on universes as been a source of consternation in many previous

gluing proofs. We can, however, adapt the methodology of Coquand [Coq18] in order to make this more

or less immediate. First, let us recall that we have a subuniverse V ′ ⊂ V . Next, let us de�ne the presheaf

of small types as follows:

Sm(Γ) , {
A� ∈ type0

m(Γ�);

A� : (µ : Hom(m,−))→ (γ� : sbm(·.µµ,Γ�))→ (γ� : Γ�(µ, γ))→ tmm(·.µµ,⇑A�[γ�])→ V ′

}

We can then de�ne an inclusion of Sm into Tm: lift(A�, A�) = (⇑A�, A�). Notice that we have made

use of the fact that V ′ ⊂ V to make the coercion onA� entirely silent. Next, we observe that each of the

semantic predicates on pi, sigma, 〈µ | −〉, the identity types, and booleans all preserve V ′ smallness.

If the inpu�ed semantic predicates are V ′ small, then so are the outpu�ed predicates. �erefore, each

of these restricts to a small type in Sm, using the li�ing operators in the syntax. What remains is to

construct an element of Tm which pulls-back to something isomorphic to Sm. For this, we pick the

following:

Uni(∗) = (U, λµ, γ�, γ�,M�. tmm(·.µµ,⇑El(M�))→ V ′)

Crucially here, V ′ is small enough to �t in a proof-relevant predicate valued in V . �e pullback of τm
along Uni can be calculated to be isomorphic to the following:

τ−1
m (Uni)(Γ) ∼= {
M� ∈ tmm(Γ�,U);

M� : (µ : Hom(m,−))→ (γ� : sbm(·.µµ,Γ�))→ (γ� : Γ�(γ))→ tmm(·.µµ,⇑El(M�[γ�]))→ V ′

}

However, we may now use that Code(−) and El(−) provide isomorphisms natural in Γ� between

type0
m(Γ�) and tmm(Γ�,U) to conclude that Uni is the desired glued universe.

1.5.2 Deriving Canonicity

With the gluing model constructed, the rest of the proof is surprisingly easy and boils down to one fact:

�eorem 1.5.7. �e natural transformation π : C[m] 7→ S[m] from the glued model to the syntactic
model is a morphism of models.

Proof. �is is immediate by inspection of the constructions in the previous section: each construction

uses the corresponding syntactic operation and so projecting this out constitutes a morphism of models.

Corollary 1.5.8. For any closed term `M : A@m, there is a witness for JAK�(M).
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Proof. Immediate by initiality and �eorem 1.5.7, we must have π(JMK) = M , and so JMK� is the

desired witness.

�eorem 1.5.9 (Closed Term Canonicity). If · ` M : A@m is a closed term, then the following condi-
tions hold:

• If A = B then · `M = tt : B@m or · `M = ff : B@m.

• If A = IdA0(N0, N1) then · ` N0 = N1 : A0 @m and · `M = refl(N0) : IdA0(N0, N1) @m.

• If A = 〈ν | A0〉 then there is a term · ` N : A0 @n such that · `M = modν(N) : 〈ν | A0〉@m.

Proof. Immediate by Corollary 1.5.8 and the de�nition of the semantic predicates at B, IdA0(N0, N1),

and 〈µ | A0〉 respectively.
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1.6 Strictifying a Weaker Lock Structure

When constructing models of MTT, it will o�en prove more convenient to use �eorem 1.4.11, but this

theorem still requires strict models of type theory, and a strict 2-functor choosing categories of contexts

and dependent right adjoints between them. It has long been understood that many semantic situations

are too weak, and require stricti�cation in order to be assembled into a valid model of type theory.

Just as some models require stricti�cation for the interpretation of substitution, some natural appli-

cations of MTT will require stricti�cation of the interpretation of locks. Recall from Section 1.4.1 that

we require a 2-functor interpreting the modes as categories, the locks as functors, and the 2-cells as

natural transformations. In many cases, we will not obtain the equation Jµµ◦νK = JµνK ◦ JµµK, instead

we will only get a canonical natural isomorphism between the two. Just as with substitution, one can

a�empt to �nd some special property of JµµK or JµνK which admits a suitably strict interpretation, but

it will prove more fruitful to instead construct a general procedure for replacing a pseudo-functorial

interpretation with a strictly functorial choice. �e question of stricti�cation for pseudo-functors has

been well-studied in category theory [Pow89; Lac02]. In particular, for any pseudo-functorial map

F : Mcoop → Cat, we can construct a 2-functor F ′ : Mcoop → Cat together with a pseudonatural

equivalence E : F ′ ' F .
4

We will show that we may transfer a “model” of MTT along this pseudonatural transformation and

thereby obtain a strict model of MTT.

1.6.1 Preliminary Definitions

Traditionally, the de�nition of pseudo-functors is given as maps between bicategories. For our pur-

poses, we are only concerned with strict 2-categories likeM and Cat. Accordingly, we specialize the

de�nition slightly:

De�nition 1.6.1. A psuedofunctor between 2-categories F : C → D is a map of objects F0 paired with

a functor for each pair of objects in C: FA,B1 : Hom(A,B)→ Hom(F0(A), F0(B)). We will suppress

the subscripts going forward, however, because they can be inferred from context.

Moreover, we require that for all A,B,C : C an associator isomorphism, an invertible natural 2-cell

αA,B,C : FB,C ◦ FA,B(−) ∼= FA,C(− ◦ −) as well as a unitor λA : FA,A(1A) ∼= 1F (A).

�ese 2-cells are required to satisfy certain coherence conditions:

1. If f : A→ B, 1f ◦ λA = αA,A,B : F (f) ◦ F (1A) ∼= F (f).

2. If f : A→ B, λB ◦ 1f = αA,B,B : F (1B) ◦ F (f) ∼= F (f).

3. If f : A→ B, g : B → C , and h : C → D, then

αA,C,D ◦ αA,B,C = αA,B,D ◦ αB,C,D : F (h) ◦ F (g) ◦ F (f) ∼= F (h ◦ g ◦ f)

De�nition 1.6.2 (Pseudo-natural transformation). A pseudo-natural transformation χ between two

pseudo-functors F,G : C → D is a collection of 1-cells in D, χC : F (C)→ G(D). Moreover, for each

morphism f : C0 → C1, we require an invertible 2-cell χf : χC1 ◦F (f) ∼= G(f)◦χC0 . �is are subject

to the expected functoriality rules: χ1A = 1 and χg ?χf = χg◦f .

Finally, we require that χ interacts correctly with the associator and unitor ofF andG. See Johnson

and Yau [JY20] for details.

A textbook account of these de�nitions was recently given in Johnson and Yau [JY20].

We will use the following theorem as the heart of our stricti�cation construction. It states that a

pseudofunctor in Cat can be replaced with a strict 2-functor up to a pseudonatural equivalence.

4

�is procedure is akin to the well-known result that any cloven �bration can be replaced with a split cloven �bra-

tion [Str18].
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�eorem 1.6.3. Given a strict 2-category C and a pseudofunctor F : C → Cat, there exists a strict
2-functor F ′ : C → Cat equipped with a pseudonatural equivalence F ' F ′.

Proof. �is is a general corollary of the theorem stating that a pseudo-algebra for a 2-monad can be

replaced with a strict algebra [Pow89]. A short description of the specialized result is given on the

nLab [nLa15]. It can also be proven using the equivalence between 2-functors/pseudofunctors and split

�brations/�brations (proven in Johnson and Yau [JY20]) along with Benabou’s stricti�cation theorem

for Grothendieck �brations [Str18].

1.6.2 Precomposition with an Equivalence

Most of the calculations in this construction revolve around precomposition with an equivalence of

categories. Accordingly, it is useful to record a few elementary facts about such functors prior to delving

into the MTT-speci�c details.

�eorem 1.6.4. Given a pair of equivalent small categories f : C0 ' C1, the precomposition functor f∗

is an equivalence which preserves and re�ects all limits and colimits, and is moreover a logical morphism
PSh(C1)→ PSh(C0).5

Proof. It is well-known that f∗ is (co)continuous for any functor f , as limits and colimits are formed

pointwise. Additionally, f∗ is an equivalence: supposing that f has a pseudo-inverse g, then g∗ is

pseudo-inverse to f∗. �is pseudo-inverse also implies that f∗ re�ects all (co)limits: if f∗(X) is the

limit of some diagram f∗ ◦D, then (f ◦ g)∗(X) is the limit of (f ◦ g)∗ ◦D, which in turn implies that

X is the limit of D as required.

It remains to show that f∗ preserves exponentials and the subobject classi�er. To begin with, we

will show that f∗(XY ) ∼= f∗(X)f
∗(Y )

. Applying the Yoneda lemma, we �x Z : PSh(C0):

Hom(Z, f∗(XY )) ∼= Hom(f∗(g∗Z), f∗(XY ))

∼= Hom(g∗Z,XY ) f∗ is an equivalence, and therefore full and faithful

∼= Hom(g∗Z × Y,X)
∼= Hom(f∗(g∗Z × Y ), f∗(X)) f∗ is full and faithful.

∼= Hom(f∗(g∗Z)× f∗(Y ), f∗(X)) f∗ is continuous.

∼= Hom(f∗(g∗Z), f∗(X)f
∗(Y ))

∼= Hom(Z, f∗(X)f
∗(Y ))

We now turn to showing that f∗ preserves the subobject classi�er. First, we claim thatm : Hom(X,Y )
is a monomorphism in PSh(C0) if and only if f∗(m) is a monomorphism. �is follows from the fact

that f∗ preserves and re�ects limits, and in particular pullbacks. Moreover, because f∗ is essentially

surjective, this implies that Sub(X) ∼= Sub(f∗(X)) are naturally isomorphic as posets.

In order to complete the proof that f∗ preserves subobject classi�ers. Recall that the subobject

classi�er Ω is characterized by a natural isomorphism sbX ∼= Hom(X,Ω), where sbX is the poset

of subobjects of X (quotiented up to isomorphism). We apply the Yoneda lemma again, and �x Z :

5

We intend to apply this theorem in a se�ing where C0 and C1 are CwFs; then the presheaf categories are where T and

T̃ live.
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PSh(C0):

Hom(Z, f∗ΩC1) ∼= Hom(f∗(g∗Z ′), f∗ΩC1)
∼= Hom(g∗Z ′,ΩC1)
∼= Sub(g∗Z ′)
∼= Sub(f∗(g∗Z ′))
∼= Hom(f∗g∗Z ′,ΩC0)
∼= Hom(Z,ΩC0)

Lemma 1.6.5. Fixing an equivalence between small categories f : C0 ' C1, for each C : C0, there exists
D : C1 such that f∗(y(D)) ∼= y(C). Moreover, ifD : C1, there existsC : C0 such that f∗(y(D)) ∼= y(C).

Proof. For the �rst claim, let us choose D = f(C). It is su�cient to show that Hom(C ′, C) ∼=
Hom(f(C ′), f(C)), but this is immediate as f is full and faithful.

For the second claim, we �x any adjoint pseudo-inverse to f : f a g. We then select C = g(D).

We must show Hom(C ′, g(D)) ∼= Hom(f(C ′), D), but this is immediate because we have assumed

f a g.

Lemma 1.6.6. Again �xing an equivalence between small categories f : C0 ' C1, if τ : T̃ → T is a
representable natural transformation in PSh(C1), then f∗(τ) is a representable natural transformation
in PSh(C0).

Proof. From Lemma 1.6.5, it is su�cient to show that a representable pullback exists for each mor-

phism f∗(y(D)) → f∗(T). However, because f∗ is full, faithful and preserves pullbacks, and τ is a

representable natural transformation, we conclude that there is a pullback of the shape f∗(y(D)), for

some D. Again, by Lemma 1.6.5, we obtain the desired representable pullback.

Lemma 1.6.7. Precomposition by an equivalence preserves polynomial functors. More explicitly, if f :
C0 ' C1 and τ : A→ B, then f∗(Pτ (X)) ∼= Pf∗τ (f∗X) ∈ Hom(PSh(C0),PSh(C0)).

Proof. Fixing τ : A→ B, Pτ =
∑

B ◦
∏
τ ◦A∗. We therefore wish to show the following:

f∗ ◦
∑
B

◦
∏
τ

◦A∗ ∼=
∑
f∗B

◦
∏
f∗τ

◦(f∗A)∗

First, observe that for any functor which preserves terminal objects F , F ◦
∑

X =
∑

F (X) ◦F . Fur-

thermore, �eorem 1.6.4 ensures that f∗ is a logical functor, which therefore must preserve

∏
. Finally,

�eorem 1.6.4 ensure that f∗ is le� exact. We may then calculate:

f∗ ◦
∑
B

◦
∏
τ

◦A∗ ∼=
∑
f∗B

◦f∗ ◦
∏
τ

◦A∗

∼=
∑
f∗B

◦
∏
f∗τ

◦f∗ ◦A∗

∼=
∑
f∗B

◦
∏
f∗τ

◦(f∗A)∗

Lemma 1.6.8. Given an equivalence e : C0 ' C1, f : HomPSh(C1)/Z(E,B), i : HomPSh(C1)/Z(A, I)
and an internal li�ing structure s : i t f (De�nition 1.4.7) in PSh(C1)/Z , e∗s induces a li�ing structure
for e∗i against e∗f in PSh(C0)/e∗Z .
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Proof. First, we observe that e∗ de�nes an equivalence e∗/Z between PSh(C1)/Z and PSh(C0)/e∗Z
by sending X → Z to e∗X → e∗Z . Moreover, this equivalence is logical because the subobject

classi�er, exponentials, limits and colimits of PSh(C0,1)/Z are determined by the subobject classi�er,

exponentials, limits and colimits of PSh(C0,1), all of which are preserved by e∗ by �eorem 1.6.4.
6

Next, observe that (e∗/Z)(s) : (e∗/Z)(i t f). We will now unfold (e∗/Z)(i t f), using the fact

that e∗/Z is logical, and therefore preserve dependent products, equality (an equalizer), and compre-

hension (a pullback). For readability, let us set e = e∗/Z in the following:

e(i t f) ∼= e(
∏
C:I→B

∏
c:
∏
a:A E[C(i(a))]

{
j :
∏
p:I E[C(p)] | ∀a : A. j(i(a)) = c(a)

}
)

∼=
∏
C:e(I)→e(B)

∏
c:
∏
a:e(A) e(E)[C(e(i)(a))]

{
j :
∏
p:e(I) e(E)[C(p)] | ∀a : e(A). j(e(i)(a)) = c(a)

}
∼= e(i) t e(f)

Accordingly, we may transport e(s) : e(i t f) to an element of the desired e(i) t e(f).

Lemma 1.6.9. If f ∼= f ′ in the arrow category of C, then Pf
∼= Pf ′ as functors C → C.

Proof. Newstead [New18] shows that P− is functorial for Cartesian squares. Because all isomorphisms

in the arrow category are necessarily Cartesian, this functorial action induces the required isomor-

phism.

Lemma 1.6.10. If f ∼= f ′ and g ∼= g′ in the arrow category of C, then f t g ∼= f ′ t g′ in C.

1.6.3 Weak Models of MTT

Prior to the stricti�cation construction, we must de�ne a weak model of MTT.

Traditionally, weak models of type theory have been concerned with weaker notions of substitution.

In our case, we are predominately concerned with weaker lock structure, but retain a strict notion of

substitution:

De�nition 1.6.11 (Weak context categories). A weak choice of context categories is a pseudo-functor

C[−] :Mcoop → Cat1.

We may leave most of the structure from Section 1.4 untouched, as this structure only references

one modality at a time. Accordingly, rather than duplicating the entire de�nition, when the connective

in the weaker model is identical to the strict version, we will simply reference the stricter de�nitions.

De�nition 1.6.12 (Weak modal natural model). Identical to De�nition 1.4.4.

De�nition 1.6.13 (Weak pi structure). Identical to Section 1.4.1.

De�nition 1.6.14 (Weak sigma structure). Identical to Section 1.4.1.

De�nition 1.6.15 (Weak boolean structure). Identical to Section 1.4.1.

De�nition 1.6.16 (Weak identity structure). Identical to Section 1.4.1.

De�nition 1.6.17 (Weak universe structure). Identical to Section 1.4.1.

6

�e exponentials of a slice category are not literally exponentials of the total category. However, they may be de�ned

using a combination of the total space exponentials, as well as the subobject classi�er [MM92, Chapter IV].
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�e exception to this pa�ern is the de�nition of the elimination structure for modal types (see

Eq. (1.9)). �is de�nition uses two modalities together, and so the pseudo-functoriality interferes

slightly with the de�nition.

As before, we begin by forming the following pullback:

JµνK∗T̃o

M T̃n

JµνK∗To Tn

i

h

JµνK∗τo

modν

Modν

τn

Unlike with the de�nition of a strict model, however, when we apply JµµK∗, however, we do not ob-

tain an equality between Jµµ◦νK∗ and (JµµK ◦ JµνK)∗. Instead, we must explicitly insert the chosen

isomorphism between these two objects. However, because pullbacks are stable under isomorphism,

we obtain the following diagram:

Jµµ◦νK∗T̃o

JµµK∗M JµµK∗T̃n

Jµµ◦νK∗To JµµK∗Tn

JµµK∗i ◦ ι0

ι−1
1 ◦ JµµK∗h

Jµµ◦νK∗τo

JµµK∗modν ◦ ι0

JµµK∗Modν ◦ ι1

JµµK∗τn

(1.17)

Where we have �xed the following isomorphism:

ι0 : Jµµ◦νK∗T̃o ∼= JµµK ◦ JµνK∗T̃o
ι1 : Jµµ◦νK∗To ∼= JµµK ◦ JµνK∗To

With these arrows �xed, we may de�ne a weak modal structure:

De�nition 1.6.18 (Weak modal structure). A weak modal structure �rst requires a commuting square

for each modality:

JµµK∗T̃n T̃m

JµµK∗Tn Tm

JµµK∗τn

modµ

Modµ

τm
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Moreover, we further require a le�-li�ing structure in the slice over Z = Jµµ◦νK∗To:

` openµν : JµµK∗i ◦ ι0 t Z∗(τm)

1.6.4 Coherence

Suppose that we are given a weak model F . Using the general 2-categorical result, we may construct

C[−], a strict 2-functorMcoop → Cat such that there is a pseudo-natural equivalence αm : C[m] '
F (m). We now will show that each of the components of the weak model F can be transferred to strict

components of C[−].

Lemma 1.6.19. If F supports a collection of natural models (De�nition 1.6.12), then C[−] supports a
collection of natural models.

Proof. For each m, suppose that σm : Ṽm → Vm is a morphism in PSh(F (m)) such that F (µ)∗σm is

a natural model for all µ ∈ HomM(m,n). We choose τm : T̃m → Tm to be α∗mσm.

We must now show that JµµK∗(α∗mσm) = (αm ◦ JµµK)∗(σm) is natural model. First, we observe

that αm ◦ JµµK ∼= F (µ) ◦ αn. �erefore,

JµµK∗(α∗mσm) ∼= α∗n(F (µ)∗σm)

By assumption, we know that F (µ)∗σm is a natural model, and by Lemma 1.6.6, this tells us that

α∗n(F (µ)∗σm) is a natural model. As natural models are stable under isomorphism, this establishes the

desired goal.

Lemma 1.6.20. If F supports dependent products, then so does C[−].

Proof. Let us �x µ ∈ HomM(n,m). By assumption, we have a pullback square:

PF (µ)∗σn(Ṽm) Ṽm

PF (µ)∗σn(Vm) Vm

σm

Now, because precomposition with an equivalence preserves �nite limits (�eorem 1.6.4) and preserves

polynomial functors (Lemma 1.6.7), we have an induced pullback square in PSh(C[m]) (se�ing e =
α∗m):

Pe(F (µ)∗σn)(e(Ṽm)) e(Ṽm)

Pe(F (µ)∗σn)(e(Vm)) e(Vm)

e(σm)

Employing the pseudo-naturality of α, we observe that e(F (µ)∗σn) ∼= JµµK∗(α∗nσn). Using the def-

initions of τn and τm from Lemma 1.6.19, this induces the required pullback square for dependent

products.

Lemma 1.6.21. If F supports dependent sums, then so does C[−].
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Proof. Identical to Lemma 1.6.20.

Lemma 1.6.22. If F supports booleans, then so does C[−].

Proof. First, we begin by showing that the formation and introduction rules from F (m) transfer to

formation and introduction rules in C[m]. Applying the equivalence to the commuting square from

De�nition 1.6.15, we obtain the following:

α∗m1 T̃m

α∗m1 Tm

tt

ff

Bool

τm

However, because α∗m preserves �nite limits, this is a valid interpretation of booleans in C[m]. Next we

consider the elimination principle. Applying Lemma 1.6.8, we obtain a li�ing structure of the following

type:

α∗m[tt,ff ] t τm[−]

Again, however, because α∗m preserves booleans, this is a valid elimination structure, completing the

proof.

Lemma 1.6.23. If F supports identity types, then so does C[−].

Proof. Identical to Lemma 1.6.22.

Lemma 1.6.24. If F supports a universe à la Coquand, then so does C[−].

Proof. To begin with, we choose the presheaf for the universe of small types in PSh(C[m]) to beα∗mSm
and lift = α∗mlift. For clarity, we will write S ′m for the universe of small types in PSh(C[m]). We

immediately obtain a code for S ′m by applying α∗m to Uni : 1→ Tm, which we denote Uni′. Similarly,

because α∗m preserves pullbacks, we obtain an isomorphism between S ′m and τ−1
m

(
Uni′

)
.

It remains to show that this universe is closed under the appropriate connectives. All of the cases

are similar, so we will show only the case of pi types in detail. We must show the following diagram

can be �lled in such a way that it commutes:

∑
A:JµµK∗S′n S

′JµµK∗τ−1
n (lift(A))

m S ′m

∑
A:JµµK∗Tn T

JµµK∗τ−1
n (A)

m Tm

lift

∏
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To begin with, we paste in the naturality square which we used when constructing

∏
and unfold the

de�nitions of S ′m and Tm:

∑
A:JµµK∗S′n S

′JµµK∗τ−1
n (lift(A))

m α∗m

(∑
A:F (µ)∗Sn S

F (µ)∗σ−1
n (lift(A))

m

)
α∗mSm

∑
A:JµµK∗Tn T

JµµK∗τ−1
n (A)

m α∗m

(∑
A:F (µ)∗Vn V

F (µ)∗σ−1
n (A)

m

)
α∗mVm

∼

α∗mlift

∼

∏
�e right hand square is the image of the naturality square for αm ◦ JµµK ∼= F (µ) ◦ αn together

with the canonical isomorphism induced by Lemma 1.6.7 which was used in the construction of

∏
in

Lemma 1.6.20. �e right hand square is the commuting square witnessing that Sm is closed under pi

types from De�nition 1.6.17. �erefore, the composite of these two squares is the required commuting

square and S ′m is closed under pi types.

Lemma 1.6.25. If F supports modal types, then so does C[−].

Proof. As in Lemmas 1.6.22 and 1.6.23, we interpret the formation rules by applying α∗m. Unlike with

these two operations, we also must correct by the natural isomorphism αm ◦ JµµK ∼= F (µ) ◦ αn:

JµµK∗T̃n α∗m(F (µ)∗Ṽn) T̃m

JµµK∗Tn α∗m(F (µ)∗Vn) Tm

modµ

∼

∼

Modµ

It remains to construct the li�ing structure. To begin with, by applying α∗m to openµ in PSh(F (m)),

we obtain a li�ing structure for the following:

(αn ◦ JµµK)∗i ◦ α∗mι0 t Z∗(τm)

Now, using the fact that α∗mι0 must remain an isomorphism and Lemma 1.6.10, we obtain a li�ing

structure for (αn ◦ JµµK)∗i t Z∗(τm). It therefore su�ces to show that α∗ni is isomorphic in the arrow

category to i as de�ned in PSh(C[m]). �is is a routine veri�cation following the observation that α∗n
preserves pullback together with the naturality properties of α.
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First, recall the diagram de�ning i in PSh(F (n)):

F (ν)∗Ṽo

M Ṽn

F (ν)∗Vo Vn

i

h

F (ν)∗σo

modν

Modν

σn

(1.18)

Next, we apply α∗n, we then obtain the following diagram in PSh(C[n]):

α∗n(F (ν)∗Ṽo)

α∗n(M) α∗n(Ṽn)

α∗n(F (ν)∗Vo) α∗n(Vn)

α∗n(i)

α∗n(h)

α∗n(F (ν)∗σo)

α∗n(modν)

α∗n(Modν)

α∗n(σn)

(1.19)

�is remains a pullback because α∗n preserves pullbacks. We now apply the naturality of αn to obtain

the following (isomorphic) diagram:

JµνK∗T̃o

M Tn

JµνK∗To Tn

i

h

JµνK∗τo

modν

Modν

Tn

(1.20)

�e universality of pullbacks ensure that we do indeed obtain i andM when we apply naturality. �is,

in turn, gives i ∼= α∗n(i) as required.
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�eorem 1.6.26. Given a pseudo-functor F :Mcoop → Cat, such that F (m) is a weak model of MTT,
there exists a 2-functor F ′, such that there is a pseudo-natural transformation F (m) ' F ′(m) and such
that F ′ is a model of MTT with the mode theoryM.

Proof. Immediate from the prior lemmas.
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1.7 Additions and Modifications to MTT

In order to be�er accommodate the study of certain applications, we might wish to extend MTT with

a new base type, or to change some of the rules in order to accord with circumstance. In some cases

this will enable an ‘apples-to-apples‘ comparison with existing modal type theories. For example, to

faciliate the comparison with the extensional guarded dependent type theory of Bizjak et al. [Biz+16],

we ought to replace intensional equality with extensional equality.

Such extensions can be problematic, as they o�en disrupt the metatheory, or li�er the syntax with

irrelevant details. Nevertheless, we devote this section to a brief discussion of a number of possibilities

of which we will make use later. We refrain however from extending �eorems 1.4.11 and 1.5.7 to cover

these extensions and alterations.

1.7.1 Extensional Equality

We may remove the IdA(M,N) type and all the rules associated with it, and replace them with

Γ ctx @m Γ ` A type` @m Γ `M0,M1 : ⇑A@m

Γ ` EqA(M0,M1) type` @m

Γ ctx @m Γ ` A type1 @m Γ `M : A@m

Γ ` refl(M) : EqA(M,M) @m

Γ ctx @m Γ ` A type1 @m Γ `M0,M1 : A@m Γ ` P : EqA(M0,M1) @m

Γ `M0 = M1 : A@m

�e model must change as well: following Awodey [Awo18], we ask that the formation and introduction

rules form a pullback square

∑
A:Tm τ

−1
m (A) T̃m

∑
A:Tm τ

−1
m (A)× τ−1

m (A) Tm

refl

Eq

τm

1.7.2 Natural Numbers

�ese rules are standard:

Γ ctx @m

Γ ` Nat type` @m

Γ ctx @m

Γ ` zero : Nat @m

Γ ctx @m Γ `M : Nat @m

Γ ` succ(M) : Nat @m

Γ ctx @m Γ.(1 | Nat) ` A type1 @m

Γ `Mz : A[id.zero] @m Γ.(1 | Nat).(1 | A) `Ms : A[↑2.succ(v1)] @m Γ ` N : Nat @m

Γ ` rec(A;Mz;Ms;N) : A[id.N ] @m
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�e introduction and formation rules are similar to those for booleans: we require two commuting

diagrams

1 Tm

T̃m

Nat

zero τm

τ−1
m (Nat) Tm

T̃m
succ

τm

Modelling the elimination rule is more complex. We cannot simply use a li�ing structure, because

there is a recursive component to natural numbers. �is is evident in the inductive premise of the

elimination rule, as the inductive caseMs depends on the motiveA. It is therefore impossible to directly

express the interpretation of natural numbers as the solution to a li�ing problem.

�ere are a few ways to resolve this. One is to directly use the internal language to write out the

data required to model the elimination rule:

rec :
∏
A:τ−1

m (Nat)→Tm A(zero)→ (
∏
n:τ−1

m (Nat)A(n)→ A(succ(n)))→
∏
n:τ−1

m (Nat)A(n)

Whilst correct, this is merely an unsatisfying restatement of the problem.

A more informative solution may be found by tackling the problem of interpreting more general in-

ductive types. Recall that many such types can be captured as initial algebras of endofunctors. Suppose

we are given

T : PSh(C[m])→ PSh(C[m])

We ask that T be enriched, which ensures that there is a natural map Y X → T (Y )T (X)
that imple-

ments the functorial action of T internally in PSh(C[m]), and thus enables the use of T in the internal

language.
7

Let us further suppose we are given a T -algebra for some closed type A : 1 → Tm, i.e. a

morphism

α : T (τ−1
m (A))→ τ−1

m (A)

Using α we can restrict T to the slice category PSh(C[m])/τ−1
m (A) by sending

X
x−→ τ−1

m (A) 7−→ T (X)
T (x)−−−→ T (τ−1

m (A))
α−→ τ−1

m (A)

We may then see α itself in the slice category as a morphism α : T (1) → 1, i.e. a T -algebra on the

terminal object of PSh(C[m])/τ−1
m (A), and also the unique such map to the terminal object. We may

then ask that this map be naturally weakly initial among T -algebras �bred over A, i.e. that there exists

a �bred T -homomorphism from α to any T -algebra. Expressed in the internal language of the slice

category PSh(C[m])/τ−1
m (A), this amounts to a structure∏

C:Tm
∏
c:T (τ−1

m (C))→τ−1
m (C) {h : 1→ τ−1

m (C) | h ◦ α = c ◦ T (h)}

�is generalizes De�nition 1.4.7 (take T to be a constant functor), but may also be used to capture

many other inductive types. For example, natural numbers are obtained by picking T (X) , 1 + X
and A , Nat : 1→ Tm.

7

Recall that PSh(C[m]) is trivially ‘self-enriched,’ as it has exponentials.
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1.8 Related Work

Modal type theory has been an active area of research for several decades and, as with any active �eld,

a precise taxonomy of modal type theories would be a paper in and of itself. Accordingly, we have not

a�empted such a task here, and have chosen instead to focus on separating modal type theories into

distinct strands based on the judgmental structures underlying them. Our characterization is slightly

arti�cial in some cases, and these lines of work are not nearly so separate as our description might

suggest. We feel, however, that this is the simplest way to place MTT in relation to the current work

surrounding the interactions of modalities and dependent types.

1.8.1 Dual-Context Modal Calculi

One of the �rst papers on modal type theory was by Pfenning and Davies [PD01],
8

which constructed

a proof theory for S4, i.e. a comonadic modality. �e central idea of this approach was to re�ect the dis-

tinction between the truth and validity of a proposition in the judgmental structure of the system itself,

rather than a�empting to construct it a�er the fact. �e judgments for this calculus then contained not

just a context of true propositions, but rather two contexts: one for true propositions, and one for valid

propositions. By structuring the system around this distinction from the beginning, incorporating a 2
comonad is straightforward; 2A just internalizes an artifact already present in the system:

∆; · ` A true

∆; Γ ` 2A true

A ∈ ∆ ∪ Γ

∆; Γ ` A true

∆; Γ ` 2A true ∆, A; Γ ` B true

∆; Γ ` B true

It was apparent from the beginning that this proof theory could be fruitfully interpreted as a type

theory, and Pfenning and Davies [PD01] already begin to develop the metatheory of such a system.

Other work picked up where Pfenning and Davies [PD01] had le� o� and began to develop the theory

of dual-context lambda calculi. Recently, Kavvos [Kav17] presented a uni�ed picture of several di�erent

modal logics into this proof theory. On the type-theoretic side, it has long been believed that the dual-

context calculus should generalize to support full dependent types. �is generalization is re�ected in

both de Paiva and Ri�er [dR15] and Shulman [Shu18]. Similarly, contextual modal type theory [NPP08;

BP11; BS15; Pie+19] has used a dual-context-like structure in order to give a systematic account of

higher-order abstract syntax.

Recent work by Zwanziger [Zwa19] continues this program by formulating a precise categorical

semantics based on natural models [Awo18] for a dependent type theory with either an adjunction

(AdjTT) or comonad (CoTT). �e categorical semantics of MTT andAdjTT are closely related, though

with minor di�erences in the precise de�nition of the modality. For instance, in MTT only the µ op-

erator is required to act upon the context, while in AdjTT the modalities themselves must extend to

contexts.
9

�ese di�erences arise because Zwanziger [Zwa19] characterizes only a certain, seman-

tically well-behaved, subclass of models, while Section 1.4 describes models which capture not only

these situations, but the syntactic model as well as the gluing model from �eorem 1.5.9. Syntactically,

AdjTT is multimode type theory, including a mode for “both ends” of the adjunction, but it is not

multimodal and allows for only one adjunction.

�e limitation of this dual-context style is its lack of generality. As the complexity of the modal

situation increases, the complexity of the context structure must increase. Moreover, this increased

complexity is not linear in the number of distinct modalities, and it quickly becomes unmanageable.

Moreover, the structure of a dependent dual-context type theory enforces that a valid type (one belong-

ing to ∆) may not depend on a true type (one belonging to Γ). �is is a reasonable enough restriction

8

Unfortunately, even this �rst statement is gross revisionism; the idea of dual-contexts was present well before

2001 [And92; Gir93; Plo93].

9

�is is similar to the relation between a CwF+A and a CwDRA from Birkedal et al. [Bir+20], and we expect a similar

relation to exist between the semantics of MTT with a single modality and AdjTT.



CHAPTER 1. THE SYNTAX AND SEMANTICS OF MTT 62

in the case of 2, but it is already somewhat limiting. For instance, it should be allowed for a valid type

to depend on a merely true type if that type is 2A, or equivalent to one of this shape. Making such an

adjustment would not only present a typographical problem (with a type occurring to the le� of one of

its dependencies), it would render the introduction rule for 2A nonsensical.

�is restriction proves even more di�cult to manage once there is not merely one modality, but two

distinct modalities within the system, say µ and ν. Should the µ-modi�ed types be allowed to depend

on ν-modi�ed types? Vice-versa? Should there be three contexts: µ-modi�ed, ν-modi�ed, unmodi�ed?

Or perhaps a fourth, µν-modi�ed? �ese questions can be addressed for each speci�c modal situation,

indeed both Shulman [Shu18] and Zwanziger [Zwa19] both hand-cra� a system for two modalities, but

these systems must be constructed for each case speci�cally.

Indeed, there is very li�le to complain about for any given dual-context calculi. Many of these

type theories satisfy desirable meta-theoretic properties, well-de�ned semantics, and are reasonable for

programming [Vez18]. What is lacking with the dual-context style is the ability to work systematically

with a large class of modal situations without reconsidering the properties of the system in each case.

Some of MTT’s rules can be directly traced to rules in dual-context calculi (in particular, the elimination

rule for modal types) but the structure of the context is radically di�erent in order support a wide variety

of modal situations out of the box.

1.8.2 Modal Type Theories based on Le�-Division

Developed concurrently with the dual-context calculi has been a series of modal type theories based

on what Nuyts, Vezzosi, and Devriese [NVD17] called “le� division”. Under this discipline, rather than

having a �xed set of contexts, there is a single context consisting of variables annotated with modal

annotations. We trace this structure to Pfenning [Pfe01], where the annotations described the relevance

of the variable. For instance, a variable could be tagged as irrelevant, which could only be used in other

irrelevant positions and could be skipped over when checking terms for conversion.

In a non-dependent type system, the distinction between annotations and di�erent contexts is a

li�le arti�cial: we could simply sort variables by their annotation and obtain di�erent context zones.

Once generalized to a dependent type theory, annotated contexts do not require the same �xed dis-

cipline for which zones may depend on others. Instead, a type may depend on anything prior in the

context, but the nature of that dependence is moderated through their annotations.

�e term “le� division” is chosen to describe this structure because of the behavior of the introduc-

tion rules for modal types. For instance, in Pfenning [Pfe01], there is a rule for introducing a term in

an irrelevant context:

Γ⊕ `M : A

Γ `M :irr A

Here −⊕ is a metaoperation de�ned by traversing the context and modifying the annotations by re-

moving irrelevant annotations. �e e�ect of this is that all the variables in Γ⊕ can be used freely, which

is su�cient when type-checkingM becauseM itself is irrelevant. If one is su�ciently careful, one can

construe this operation as a division operation, we divide all the annotations in Γ by irr. �e metatheory

of a full dependent type theory based on this idea was considered by Abel and Scherer [AS12], which

ensures the soundness and decidability of modeling irrelevance in this way.

More recently, Nuyts, Vezzosi, and Devriese [NVD17], and especially Nuyts and Devriese [ND18]

have carried this idea to its natural conclusion and incorporated modalities for more modes of use than

“irrelevant”, “relevant”, or “intensional”. By including these extra modalities, in addition to modeling

irrelevance Nuyts and Devriese [ND18] can prove and internalize the identity extension lemma of

relational parametricity [Rey83] even for large types. We will explore the relation between MTT and

Nuyts and Devriese [ND18] in greater detail (Section 2.4), but for the moment we content ourselves

with discussing the relationship between this le�-division style and MTT.
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In a related but distinct line of work, the Granule Project [Gab+16; OLE19] has exploited a similar

structure to give a systematic account of substructurality. �ere is ongoing work to extend this to a full

dependent type theory.

�e structure of MTT’s contexts is closely related to the contexts of these calculi. Contrasting MTT
with Pfenning [Pfe01] in particular, we �nd that in both of these calculi the contexts are generated

by di�erent sorts of variables. For instance, Pfenning [Pfe01] has normal variables (wri�en x : A),

irrelevant variables (x ÷ A), and valid variables (x :: A). Each sort of context entry acts a di�erent

modal modi�er: x÷Amarks x as irrelevant, and prevents us from using it as a normal term and on the

opposite end, x :: A marks a variable as treated “intensionally”. MTT could accommodate this setup

with a single mode that has three endomodalities: irrelevance, extensionality (the identity modality),

and intensionality. A composition table for these modalities can be built by sorting out what is the

strongest modality under which the composite function can be de�ned in Pfenning’s calculus.

�e rules for interacting with the modalities in Pfenning’s system traverse the context and modify

the binding used for each variable. Suppose, for example, we are typing M(N), where M is a function

marked as irrelevant in its �rst argument, we then typecheck N in a modi�ed context in which all

variables x ÷ A have been replaced with x : A. Dually, if M as tagged as being intensional in its

argument we replace all the occurrences of x : A with x ÷ A, ensuring that we do not depend on

variables which are not themselves intensional.

�is bulk operation is di�erent than MTT-style locks, but amounts to the same constraints on vari-

able use. By tagging the context with a lock, every time we use a variable we must ensure that the

modality tagging the variable is su�ciently strong. When we bulk-update the context, the same re-

strictions occur but they are done “eagerly”.

�e use of “lazy” locks has several advantages over eager bulk updates:

• We do not have to explain what it means to divide one modality by another,

• We can allow non-trivial 2-cells: with the bulk-update strategy there is no place for the user to

specify how a variable is extracted from under the modality,

• When interpreting the calculus in a model, we do not have to sort out how a variable by variable

modality update a�ects the interpretation of the entire context (which Nuyts [Nuy18a] found to

be a somewhat painful endeavour).

We remark that admissibility of the le� division operation on both contexts and substitutions is not

that hard to prove for a general mode theory for which le� division (µ \ −) is de�ned on modalities

and is le� adjoint [Abe06; Abe08] to postcomposition (µ ◦ −). �is is in contrast to certain lock or

variable removal operations necessary in Fitch-style approaches (Section 1.8.3).

1.8.3 Modal Type Theories Based on The Fitch Style

A recent series of paper [BGM17; Bir+20; GSB19] have used a similar judgmental structure to man-

age a variety of modalities. �is judgmental structure, o�en informally referred to as the “Fitch-

style” [Clo18], divides the context into regions of variables separated by locks. Locks are dynamically

included or removed throughout the typing derivation of a term.

�e central advantage of the Fitch-style is the impressively simple introduction rule for modalities:

whenever we wish to introduce a modality we simply append a lock to the context to tag the modal

shi� and continue. We do not, in particular, ever need to remove variables from the context during

the introduction of a modal term, which alleviates a signi�cant sore point of the dual-context calculi.

Of course, this style of rule is only sound for a modality which comes equipped with some sort of le�

adjoint, but this restriction is also present in MTT.

Another desirable property of the Fitch-style calculi are their strong elimination rules for modalities.

Rather than the pa�ern matching-style rules of other systems, Fitch-style calculi have had an open-scope
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elimination rule for their modalities. �is stronger rule also o�en permits a de�nitional η-rule for 2A.

�e elimination rule is generally of the following shape:

F (Γ) `M : 2A

Γ ` open(M) : A

In this rule, F is a meta-theoretic operation on contexts which removes some number of locks and

variables from Γ. For instance, in Birkedal et al. [Bir+20], F (Γ) was de�ned as follows:

F (Γ,b,Γ′) = Γ where b 6∈ Γ′

�is rule is convenient, and also strictly more powerful than the elimination rule in MTT (see Sec-

tions 1.4.2 and 2.6) but rules which remove elements of the context are traditionally problematic in

type theory. �e source of the trouble in this case is that we must show that substitutions can be com-

muted past open. For instance, suppose we have some substitution γ : ∆→ Γ,b,Γ′. It is necessary to

ensure that this substitution uniquely gives rise to a substitutionF (γ) : F (∆)→ Γ, and this is not at all

guaranteed. For instance, in Birkedal et al. [Bir+20], an induction over the structure of the substitutions

is needed to produce γ, and it cannot be done without knowing both ∆ and Γ′ in advance. In Gratzer,

Sterling, and Birkedal [GSB19], it is laboriously proven that if γ : ∆ → Γ, then γ : F (∆) → F (Γ),

but at the expense of several complex and arti�cial typing rules. �e situation is in some ways similar

to dual-context calculi, where each modal situation requires expert a�ention in order to show that the

elimination rule is syntactically well-behaved.

�e other, more serious, issue with the Fitch-style is the di�culty of accounting for multiple distinct

modalities. Intuitively, each modality should give rise to a di�erent lock but the structural rules gov-

erning their interactions are complex even in relatively simple cases. For instance, it is well-understood

how to model the � modality in a Fitch-style type theory, and Gratzer, Sterling, and Birkedal [GSB19]

developed an extensive account of the 2 modality, but it is exceptionally di�cult to combine the two.

�ere is work to this e�ect in a simple type theory [BGM19], but even in this case there are restrictions

on 2 and � which prevent recovering, e.g. Gratzer, Sterling, and Birkedal [GSB19] as a subsystem.

�e root of the issue seems to mirror the problems in Section 1.8.1, having a rule which removes

elements of the context is di�cult to account for in more complex situations. Drawing on this intuition,

MTT has adopted the simple introduction rules from Fitch-style calculi, but not the elimination rules.

�e result is that MTT has a less powerful elimination rule, and a weaker de�nitional equality than

Fitch-style calculi. In particular, there is no equivalent of the de�nitional η-equality. In return for these

weaker rules, MTT can smoothly incorporate multiple interacting modalities.

1.8.4 Other General Modal Frameworks

A recent line of work [LS16; LSR17] has tackled the same question as MTT: how to design one calculus

which can be systematically adapted to many di�erent modal situations. Currently, there is ongoing

work to extend Licata, Shulman, and Riley [LSR17] to a full dependent type theory, as of April 2020

this work remains unpublished.

In fact, this line of research (which we refer to as LSR a�er the authors), is more general still. LSR

is designed to handle a wide variety of modal situations as well as a variety of di�erent structural

principles. �is is an axis of generalization entirely outside the scope of MTT, promising to address the

some of the major shortcomings in the interaction between dependent types and substructural logics.

Owing, however, to the fact that MTT is a �rmly structural type theory, we will focus on the modal

aspects of LSR.

�e very idea of parametrizing a type theory by a mode theory, as we have done with MTT, orig-

inates with LSR [LS16]. Indeed, the modal situations that can be handled by MTT are a strict subset

of those which can be handled by LSR; LSR not only includes a modal connective for the right adjoint
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described in the mode theory, but the le� adjoint as well. For instance, in Section 2.8, we will discuss

how MTT can model an adjunction of modalities, but this situation is limited to the case where the

le� adjoint has a further le� adjoint. LSR has no such restrictions, and can freely talk about arbitrary

adjunctions inside the type theory.

�e contribution of MTT is not increased generality of LSR. Instead, we have focused on ensuring

that MTT is a simpler type theory which still accounts for some of the interesting modal situations that

LSR handles. In particular, by explicitly avoiding substructurality, MTT has a simpler syntax which is

amenable to current proof and implementation techniques. �is is re�ected in our proof of canonic-

ity (�eorem 1.5.9), and our experimental implementation e�orts [Nuy19]. We therefore believe that

MTT is a natural halfway point between current modal type theories (which are custom-��ed for each

modal situation) and the full generality of LSR.



2 Applications of MTT

�e slogan is “Adjoint functors arise

everywhere.”

Saunders Mac Lane

Categories for the Working
Mathematician

�us far we have only studied properties of MTT that remain invariant under a change of mode

theory. �ese general theorems constitute a strong justi�cation of our programme, as we do not need

to repeat a proof of—say—canonicity for each modal situation that MTT is called to express. Instead,

we prove it once and for all for an arbitrary mode theory. Likewise, we have no need to change the

syntax, or to describe a specialised kind of model each time we want to study a new modality.

Such general theorems come at a price: this good behaviour is contingent on our limiting the modal

expressivitity of our system. In particular, our modal types are a form of weak dependent right adjoint,

and more general modalities—such as arbitrary functors or le� adjoints—are beyond our reach. �e

purpose of this chapter is to demonstrate that this restriction is not as severe as it might �rst appear.

By working through a series of important examples, we argue that MTT can be used to reason about

a variety of modal situations. Moreover, we argue that programming in MTT is not just tractable, but

also a simpler alternative to many existing modal type theories.

66
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2.1 Constructing Dependent Right Adjoints

Most of our examples of models of MTT will factor through �eorem 1.4.11: we will �rst construct

models of Martin-Löf Type �eory (MLTT) at each mode m, and then relate them by presenting de-

pendent right adjoints (DRAs) between them. In many cases we will work with well-known models

of MLTT—e.g. presheaf categories—so that the only hard work will pertain to the construction of the

relevant DRAs.

In this section we present a general result that allows us to li� a general right adjoint to a dependent

right adjoint. �is lemma, versions of which have appeared before in the work of Birkedal et al. [Bir+20]

and Nuyts [Nuy18a], will simplify many of our later constructions. We will demonstrate its use by

proving that the adjunctions between le� Kan extension, precomposition, and right Kan extension

induce a DRA structure on the la�er two.

Remark 2.1.1. Recall that a dependent right adjoint is stronger than what is required for a model of

MTT: we only need an action on terms and types, and an appropriate li�ing structure. However, all the

models we actually consider come with a full dependent right adjoint, and the weaker concept appears

to be an artifact of the syntax. �

Recall from Section 1.4 and De�nition 1.4.13 the notion of morphism of natural models. Using the

same notation we de�ne the following weaker notion, for which see also [New18, §§2.3.9].

De�nition 2.1.2. A weak morphism of natural models (C, Tc)→ (D, Td) consists of a functor F : C →
D, and a commuting square

T̃c F ∗T̃d

Tc F ∗Td

τc

ϕ̃

ϕ

F ∗τd

such that F (1) = 1 and the canonical morphism F (Γ.A)→ FΓ.ϕ(A) is an isomorphism. We say that

this morphism of natural models preserves size whenever there is a commuting square

Sc F ∗Sd

Tc F ∗Td

lift

Sϕ

ϕ

F ∗lift

We show that a right adjoint that is also a morphism of natural models can be li�ed to a DRA.

Lemma 2.1.3. Suppose that (C, τC) and (D, τD) are natural models, and that L a R is an adjunction
between C and D. If the right adjoint R : C → D extends to a weak morphism of natural models then it
gives rise to a dependent right adjoint. Moreover, the resulting DRA is size-preserving whenever R is.
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Proof. We �rst �x some notation: we write L : D → C for the le� adjoint, and η : Id ⇒ RL for the

unit of the adjunction L a R. We assume a commuting square

T̃C R∗T̃D

TC R∗TD

τC

r

R

R∗τD

(2.1)

that witnesses the weak natural model morphism structure of R, and write

νΓ,A : RΓ.R(A)
∼=−→ R(Γ.A)

for the canonical isomorphism corresponding to bAc : y(Γ)⇒ TC . We then de�ne the square

L∗T̃C

L∗TC

L∗R∗T̃D

L∗R∗TD

T̃D

TD

L∗τC

L∗r

L∗R

τDL∗R∗τD

η∗
T̃D

η∗TD

�e le� part of the square is the image of (2.1) under the L∗ functor, and the right part is a naturality

square for the natural transformation η∗ : L∗R∗ = (RL)∗ ⇒ Id induced by the unit of the adjunction.

We must show that this de�nes a pullback, and it su�ces to do so on the representables. Assume

we have bAc : y(∆)⇒ L∗TC and a bMc : y(∆)⇒ TD such that the diagram commutes. Switching to

type-theoretic notation, this amounts to a type L(∆) ` A type—which gives rise to a type R(L(∆)) `
R(A) type by applying R—and a term ∆ ` M : R(A)[η∆]. �e universal property of the pullback

dictates that we must show the existence of a unique term L(∆) ` N : A such that

RL(∆) ` r(N)[η∆] = M : R(A)[η∆] (2.2)

We do this as follows. First, observe that we can form the substitution η∆.M : ∆ → RL∆.R(A). We

can then postcompose the isomorphism ν∆,A to obtain a morphism of type ∆ → R(L∆.A). To this

we can apply L and postcompose the counit εL∆.A to obtain a substitution

k , εL∆.A ◦ L(ν∆,A ◦ η∆.M) : L∆→ L∆.A

Using naturality of the counit and the equations satis�ed by the canonical isomorphism ν∆,A, it is easy

to show that p ◦ k = id : L∆→ L∆, and hence that we can extract a term

L(∆) ` N , q[k] : A

from k. Using naturality of r(−), naturality of the unit, and the one of the triangle identities for the

adjunction, we can then calculate that this satis�es equation (2.2). Finally, we can prove this choice is

unique by calculating that any such N necessarily implies that k = id.N , and hence that q[k] = N .

It is routine to show that this is size-preserving, using the fact that R preserves size.
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Lemma 2.1.4. Given a functor µ : C → D, the precomposition functor µ∗ : PSh(D) → PSh(C)
induces a dependent right adjoint. Moreover, µ∗ is size-preserving for any Grothendieck universe.

Proof. It is well-known that this functor has a le� adjoint (via Kan extension). It therefore su�ces

to show that it satis�es the other requirements of a dependent right adjoint, namely that it induces

a natural action on types and terms and preserves context extension and the empty context up to

isomorphism.

Let us recall that the standard CwF structure on PSh(D) de�nes types in context Γ as the objects

PSh(
∫

Γ) and the terms as the global sections of these objects. We can li� the action of µ∗ to these

terms as follows:

µ∗A ∈ PSh(
∫
µ∗Γ) = (C : C, a ∈ Γ(µ(C))) 7→ A(µ(C), a)

µ∗M ∈ Hom(1, µ∗A) = (C : C, a ∈ Γ(µ(C))) 7→M(µ(C), a)

It is routine to check that these are functorial (respectively natural) using the fact that A and M both

satisfy the corresponding condition. In order to show that these commute with substitution, we use

the functoriality of µ. For instance, suppose that we have δ : ∆→ Γ and A ∈ PSh(
∫

Γ).

(µ∗A)[µ∗δ] = ((C, a) 7→ A(µ(C), a))[µ∗δ]

= (C, a) 7→ A(µ(C), (µ∗δ)C(a))

= (C, a) 7→ A(µ(C), δµ(C)(a))

= (C, a) 7→ (A[δ])(µ(C), a)

= µ∗(A[δ])

�e proof for terms is similar.

�e preservation of the terminal context is immediate: a terminal object is always preserved by a

right adjoint. Context extension is preserved up to isomorphism by a simple calculation:

µ∗(Γ.A) = µ∗(D 7→ (γ ∈ Γ(D))×A(D, γ))

= C 7→ (γ ∈ µ∗Γ(C))×A(µ(C), γ)
∼= µ∗Γ.µ∗A

In order to show size preservation, we recall that A is said to be V-small if each �ber of A is V-small.

Since, however, the �bers of µ∗A are a subset of those of A, it is immediate that µ∗A is V-small when-

ever A satis�es this condition.

Lemma2.1.5. Given a functorµ : C → D, the right adjoint to precomposition, µ∗ : PSh(C)→ PSh(D)
induces a dependent right adjoint. Moreover, µ∗ is size-preserving for any Grothendieck universe.

Proof. At this point we have a le� adjoint to µ∗, namely µ∗, so it again su�ces to show that this functor

li�s to a natural action on types and terms and that the functor respects context extension.

We de�ne the li�ing of µ∗ as follows:

µ∗A ∈ PSh(
∫
µ∗Γ) = (D : D, a ∈ µ∗Γ(D)) 7→ Hom

PSh(
∫
µ∗(y(D)))(1, A

[
b̂ac
]
)

µ∗M ∈ Hom(1, µ∗A) = (D : D, a ∈ µ∗Γ(D)) 7→ (b̂ac)∗M

In these de�nitions, b̂ac ∈ Hom(µ∗(y(D)),Γ).
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The presheaf action. �e fact that µ∗A results in a presheaf is subtle, and we take a moment to specify

its action. Given f : HomD(D′, D), a ∈ µ∗Γ(D), A ∈ PSh(
∫

Γ), and x ∈ µ∗A(D, a), we de�ne x · f
as follows:

x · f : µ∗A(D′, a · f) , (µ∗y(f))∗x

In order to see that this typechecks, recall that (µ∗y(f))∗x is an element of the following set:

Hom
PSh(

∫
µ∗(y(D′)))((µ∗y(f))∗1, A

[
b̂ac ◦ µ∗y(f)

]
)

We can immediately see that (µ∗y(f))∗x = 1, since reindexing is a right adjoint. Moreover, we have

the following chain of equalities:

b̂ac ◦ µ∗y(f) = ̂bac ◦ y(f) = â · f

�erefore, this term is an element of µ∗A(D′, a · f) as required. �e fact that this action respects

composition and identity follows from the fact that reindexing respects composition and identity.

Naturality. We must show that both of these de�nitions are natural with respect to substitutions. �at

is, (µ∗γ)∗(µ∗A) = µ∗(γ
∗A) and similarly for terms. Again, we will show only the case for types, which

is representative for the case on terms.

Suppose we are given γ : Γ′ → Γ and A ∈ PSh(
∫

Γ). We wish to show that the following sets are

equal: (
Hom

PSh(
∫
µ∗y(−))(1, A

[
b̂−c
]
)

)
[µ∗γ] = Hom

PSh(
∫
µ∗y(−))(1, A

[
γ̂ ◦ b−c

]
)

Unfolding the de�nition of reindexing, we see that the le�-hand side of this equation is the following:

Hom
PSh(

∫
µ∗y(−))(1, A

[
b̂γ(−)c

]
)

However, the naturality of Yoneda means that γ ◦ bxc is identical to bγ(x)c. �erefore, these two sides

are identical.

Context Extension. We now must show that this functor preserves context extension up to isomor-

phism. Let us consider the following morphism:

µ∗(Γ.A) µ∗Γ.µ∗A
〈µ∗p,µ∗q〉

We wish to show that this is invertible. To start with, we consider a global element y(D) µ∗(Γ.A)e
.

We can transpose and then decompose e to obtain a pair of maps:

µ∗y(D) Γe0 1 e∗0A
e1

Here e1 is a morphism in PSh(
∫
µ∗y(D)). We can unfold de�nitions to see that this is equivalent

to e1 ∈ µ∗(A)(D, d̂e0e). Next, we can compute the action of 〈µ∗p, µ∗q〉 on this e, to observe that it

reduces to 〈ê0, e1〉:

〈µ∗p, µ∗q〉 ◦ e = 〈µ∗(p) ◦ e, e∗(µ∗q)〉

= 〈 ̂p ◦ 〈e0, e1〉, ê∗q〉
= 〈ê0, 〈e0, e1〉∗q〉
= 〈ê0, e1〉

We can now de�ne an inverse to this map at the level of global elements, sending 〈γ,M〉 to the transpose

of 〈γ̂,M〉.
Size preservation is an easy result of the de�nition: if A is small, so are its reindexings and so are

the collection of its points in each slice.
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2.2 Multiple Presheaf Categories

As a warm up to some of the more interesting applications of MTT, we will start by showing how

MTT can model the internal type theories of multiple presheaf categories, interconnected by a graph of

essential geometric morphisms. Unlike the rest of §2, this section is not motivated by a particular modal

situation in the literature. Accordingly, it is perhaps less interesting than the remaining applications.

It does, however, give a good overview of how to apply MTT in a se�ing where there are relatively few

irrelevant details obscuring the main ideas.

Suppose we have some small 2-category I and a functor J : I → Cat. We will construct a model

of MTT for reasoning about the internal type theories of PSh(J(i)), for each i : I . More interestingly,

we will allow these type theories to interact through the functors J(f)∗, for each f ∈ HomI(i0, i1).

Now that we have an intended model, we must construct a mode theory that allows us to capture

it with MTT. Our mode theory in this case is easy to �nd in the case, it is I . Instantiating MTT with I
immediately gives us a type theory, but it remains to show that we can interpret this type theory in the

situation we described above. We want to show that there is an interpretation of MTT with C[i] being

sent to PSh(J(i)) and with Jµf K being J(f)∗. We need to show that this is a contravariant functor,

but this is immediate because J(f)∗ ◦ J(g)∗ = (J(g) ◦ J(f))∗ = J(g ◦ f)∗.

Remark 2.2.1. Already there is a point worth discussing: why should Jµf K to be J(f)∗, when we want

a modality corresponding to J(f)∗? Recall from Section 1.4.1 that a model of MTT is determined by a

mapMcoop → Cat. In this case, we haveM = I (which has discrete 1-cells, so the−co
has no e�ect),

so if we de�ne C[i] to be J(i)∗ then J(f)∗ would point the wrong way.

One might wonder why specify a model as a functor out of Mcoop
in the �rst place, if it only

leads to this contravariance. �is choice, however, is forced: recall that the modalities in MTT do not
necessarily have to have an action on contexts. Modalities are only required to be de�ned on types

and terms while their adjoints twins, µµ, only act on contexts. �is is why Section 1.4 requires that

the functor interpreting the mode theory picks out the interpretation of µµ, not 〈µ | −〉: asking for the

la�er would not always be possible. �e end result of these technicalities is that our interpretation of

µf should pick out the le� adjoint of J(f)∗, being J(f)!.

�is is particularly confusing in this instance because in this model J(f)∗ does have an action on

contexts, not just types and terms. In fact, this will be the case in many models because many of

our models are democratic [CD14]. Moreover, J(f)∗ is a dependent right adjoint, and so it uniquely

determines the interpretation of µf because adjoints are unique. �erefore, in this particular instance

we could write a description of the interpretation of the modalities, not the locks, and deduce from it the

input required by �eorem 1.4.11. When this occurs in applications going forward, we will skip straight

to this more natural description and illustrate our interpretation with a diagram like the following:

i

j

k

PSh(J(i))

PSh(J(j))

PSh(J(k))

J(f)∗

J(g)∗

�

Now that we have chosen a collection of categories and morphisms between them, we must show

two more facts in order to apply �eorem 1.4.11.
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1. We must show that each C[i], PSh(J(i)), supports a model of Martin-Löf Type �eory.

2. We must show that Jµf K is le� adjoint to a dependent right adjoint.

For the �rst point, recall that a presheaf topos always gives rise to a quite rich model of type theory,

supporting dependent sums and products, extensional identity types (which are su�cient to model

intensional identity types), and general indexed inductive types. A standard reference for this model

can be found in Hofmann [Hof97] and a description of the interpretation of universes can be found in

Coquand [Coq13] or Hofmann and Streicher [HS97]. Again, to make this paper more self-contained,

we brie�y recall the interpretation of sorts, types, and terms here.

Contexts Γ are interpreted as objects of the presheaf category PSh(C). A type is not interpreted

as an object of PSh(C)/Γ, as this would lead to strictness issues with substitution. If we were working

in an arbitrary locally cartesian closed category, we would be forced to interpret types in this manner,

and then apply a stricti�cation theorem [Hof94; LW15]. In the particular case of presheaves, we have

a richer model and do not need to resort to such contortions. Instead, types are interpreted as objects

of PSh(
∫

Γ), which is justi�ed by the equivalence PSh(C)/Γ ' PSh(
∫

Γ). A term of type A is then

a section of A in PSh(
∫

Γ), a morphism Hom
PSh(

∫
Γ)(1, A).

�e crucial fact for this model is the interpretation of substitution. Any morphism γ : ∆→ Γ gives

rise to a functor γ∗ : PSh(
∫

Γ)→ PSh(
∫

∆), de�ned by essentially precomposition. �ese functors

are then necessarily strictly functorial, γ∗ ◦ δ∗ = (δ ◦ γ)∗, justifying the interpretation of substitutions

by γ∗.

Remark 2.2.2 (Size Issues). �ere is a small issue of size in considering PSh(C) as a model of type

theory in general, and MTT in particular. We have de�ned a category of contexts to be a small cate-

gory so that the category of models can be formulated without issue. PSh(C), however, is certainly not

small. �is obstacle can be avoided with the introduction of Grothendieck universes into our metathe-

ory. Instead of considering presheaves valued in all of Set, we consider presheaves valued in V . �ere

is no loss of expressivity, because V is closed under all set-theoretic operations. With this restriction,

PSh(C) is small.

�ese maneuvers with Grothendieck universes are technically necessary, but fundamentally unin-

teresting. To a type theorist, this is just the standard technique of “bumping a universe level” when

using PSh(C) as a model. With this justi�cation, we shall not remark further on issues of size and will

assume the Grothendieck universe axiom to ensure an ample supply of universes. For instance, the

interpretation of universes will require that the choice of Grothendieck universe for PSh(C) be large

enough to contain an inner universe of its own. �

Now that we have addressed the “mode local” models of type theory, we must show that Jµf K =
L(f)∗ forms the le� half of a dependent right adjoint. �is follows from Lemma 2.1.5 and the standard

fact that L(f)∗ a L(f)∗. All that remains to complete the construction of this model is to apply

�eorem 1.4.11.

�is instantiation of MTT gives us a way to reason simultaneously in multiple presheaf categories

at once, passing back and forth using the modal types. It also illustrates the standard process for con-

structing a model of MTT: picking a mode theory and interpretation, constructing mode-local models

of type theory, and applying �eorem 1.4.11. �is example also would easily scale up to incorporate

non-trivial 2-cells, or modalities of other shapes to this type theory. All that is needed is to add these

to I and explain how the new components are interpreted.

Remark 2.2.3 (Interpreting the Modality as Precomposition). In this example we have interpreted the

modality as the direct image of a functor, F∗, and the lock is interpreted as the le� adjoint to this functor,

F ∗. One might wish to instead interpret the modality as F ∗, this is a right adjoint as well as le� adjoint

with F! a F ∗.
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�e construction of this model is not quite as simple as the model using F∗. �e issue is a strictness

mismatch: we have F! ◦ G!
∼= (G ◦ F )!, but this isomorphism not an equality as required by �eo-

rem 1.4.11. On the other hand, if we use �eorem 1.6.26, then this mismatch can be papered over by

replacing the pseudo-functor interpreting one-cells with F! with an equivalent strict functor. In fact,

assuming this conjecture we can freely mix modalities which are interpreted using both −∗ and −∗ in

the same type theory. �
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2.3 Guarded Recursion

In this application we wish to study the simplest form of guarded recursion. Let’s start by picking the

following mode theory,M:

t

s

�e Adjoint Bowling Pin

`

δ γ

δ ◦ γ ≤ 1 1 = γ ◦ δ
1 ≤ ` γ = γ ◦ `

We wish to construct an interpretation of this mode theory with s being interpreted as Set and t being

interpreted as PSh(ω). Moreover, we will want the interpretation of 〈` | A〉 to be induced by the

adjunction � a �1
from Birkedal et al. [Bir+12], 〈δ | A〉 by Π0 a ∆, and 〈γ | A〉 by ∆ a Γ. To begin

with, we must construct a 2-functor, L, fromMcoop
to Cat.

Rather than constructing L directly, it proves simpler to factor it through the 2-functor PSh(−) :
Poscoop → Cat. �e advantage of this factorization is that Pos is poset-enriched, like M, and

so checking the enrichment of the factorization is far simpler. We will write the factorization L =
PSh(−) ◦ L′ and de�ne L′ as follows on the 0- and 1-cells:

L′(s) = ? L′(`) = n 7→ n+ 1

L′(t) = ω L′(δ) = ? 7→ 0

L′(γ) = n 7→ ?

What remains is to show that there exist the required (in)equalities between the interpretation of the 1-

cells. �ere is no extra data to be conveyed here: there is at most one inequality between maps between

posets. We must show the following (in)equalities

δ ◦ γ ≤ 1 1 = γ ◦ δ
1 ≤ ` γ = γ ◦ `

Each of these can be checked calculation. We will show δ ◦ γ ≤ 1 for a representative example. We

must show for all n, that L′(δ ◦ γ)(n) ≤ n. We can unfold L′(δ ◦ γ)(n) as follows:

L′(δ ◦ γ)(n) = L′(δ)(L′(γ)(n)) = L′(δ)(?) = 0

Since 0 ≤ n for any n, this inequality holds. Having constructed with L′, we post-compose it with

PSh(−) to construct the required 2-functor M coop → Cat. We can unfold the de�nitions to see that

we have interpreted the 0- and 1-cells in the expected way:

L(s) = Set L(`) = �

L(t) = PSh(ω) L(δ) = Π0

L(γ) = ∆

�ese computations tell us that L is a valid 2-functor M coop → Cat. Additionally, because Set and

PSh(ω) are both presheaf categories, we have a standard model of Martin-Löf Type �eory in both. Fi-

nally, we may apply Lemma 2.1.5 to the adjunctions� a �, ∆ a Γ, and Π0 a ∆ to see that each of these

adjunctions gives rise to a dependent right adjoint. �is is all the data needed to apply �eorem 1.4.11

and so we have the following.

1� is induced by precomposition with n 7→ n+ 1, this adjunction is proven in Birkedal et al. [Bir+12].
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�eorem 2.3.1. �ere is a model of MTT with mode theory M interpreting s as Set, t as PSh(ω).
Furthermore, this model interprets δ by the dependent right adjoint arising from Π0 a ∆, γ by ∆ a Γ,
and ` by � a �.

We can summarize this theorem diagrammatically, by saying that we can interpret MTT into the

following diagram:

PSh(ω)

Set

�

∆ Γ

Of course, this simple diagram is capturing a great deal of information. It is asserting the existence of

model of type theory in both Set and PSh(ω), as well as a le� adjoint to each of the three functors,

an extension of each of the functors as dependent right adjoints, not merely right adjoints, as well as

the validity of all the equalities and 2-cells ofM.

Remark 2.3.2 (Key Substitutions). �is mode theory is merely poset-enriched, as opposed to being

a proper 2-category. As a result, the key substitutions for navigating between Γ.µµ and Γ.µν must

be considerably simpler. In particular, for any µ, ν, there is at most one such key substitution Γ.µµ `
¤
µ≥ν
Γ : Γ.µν @m. �is property means that we can (without any ambiguity) elide key substitutions

entirely in our terms: they can always be uniquely inferred.

�is, however, leads to terms that are more di�cult to type-check, so we adopt a compromise

in what follows. We will write Aν≤µ or Mν≤µ
for the application of the unique key substitution in

context Γ.µµ induced by µ ≥ ν. For instance, given a type Γ ` A type` @ t, we could form Γ ` 〈` |
A1≤`〉 type` @ t. �

2.3.1 Specializing MTT

Now that we have speci�ed our mode theory and explained the intended model, we will specialize our

notation and syntax for this application. We �x the following shorthands:

b = δ ◦ γ
2A = 〈b | A〉
�A = 〈` | A〉
ΓA = 〈γ | A〉
∆A = 〈δ | A〉

�e �rst is a de�nition inM, while all the rest are de�nitions of types. We would like to establish that

MTT with this mode theory specializes in two important ways:

1. �e modalities on mode t should give rise to the standard modalities and operations from Guarded

Type �eory [Biz+16] inside the type theory.
2

2

�ese facts are certainly true in our intended model, but we wish to go a step further and show that this structure can

be constructed inside MTT.
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More explicitly, we will show that 2 is an idempotent comonad by constructing a map 2A →
A, and 2A → 22A and showing that they satisfy the expected laws. Additionally, we will

construct the operations and proofs to demonstrate that � is an applicative functor [MP08] and

that 2�A ' 2A.

2. �e type theory when restricted to mode s is standard Martin-Löf Type �eory.

First, we can show that 2 is an idempotent comonad using the following operations (using terms from

Section 1.3):

dupA : 22A→ 2A
dupA(x) , comp-1

b,b(x)

extractA : 2A→ Ab≤1

extractA(x) , triv-1(coe[b ≤ 1](x))

We still have the K operator from Section 1.3.3: f ~b a. We wish to show that these operations together

give us an (idempotent) comonad. We must show the following equalities:

(x : 2A)→ Id2A(x, box(extract)~ dup(x)) (2.3)

(x : 2A)→ Id2A(x, extract(dup(x))) (2.4)

(x : 2A)→ Id222A(dup(dup(x)), box(dup)~ dup(x)) (2.5)

�ese terms can be constructed essentially by induction and unfolding. In order to make the proofs

slightly more accessible, we have presented them not as terms, but as a series of equational steps. In

what follows, understand that = denotes mere internal equality, not judgmental equality. First, for 2.3

box(extract)~ dup(x)

= modb(λx. triv
-1(coe[b ≤ 1](x)))~ comp-1

b,b(x)

Use induction to consider the case where x = modb(y)

= modb(λx. triv
-1(coe[b ≤ 1](x)))~ comp-1

b,b(modb(y))

= modb(λx. triv
-1(coe[b ≤ 1](x)))~ modb(modb(y))

= modb((λx. triv
-1(coe[b ≤ 1](x)))(modb(y)))

= modb(triv
-1(coe[b ≤ 1](modb(y))))

= modb(y)

= x

�e calculation for 2.4 is similar, proceeding by expanding all relevant de�nitions and performing in-

duction.

extract(dup(x))

= triv-1(coe[b ≤ 1](comp-1

b,b(x))) replace x with modb(y)

= triv-1(coe[b ≤ 1](comp-1

b,b(modb(y))))

= triv-1(coe[b ≤ 1](modb(modb(y))))

= triv-1(mod1(modb(y)))

= modb(y)

= x

�e proof of 2.5 is more of the same, and thus we have elided it.
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We immediately have that � is an applicative functor: this is guaranteed by Section 1.3.3. We

additionally have that � has an appropriate point: next(x) = coe[1 ≤ `](triv(x)).

�e importance of the inclusion of 2 into our type theory is the interaction between 2 and �,

namely that 2 � A ' 2A. We can recover this interaction inside our type theory, with the function

2�A→ 2A coming from Section 1.3.1: now(x) = comp-1

b,`(x).

As a �nal check, we can ensure that the following transformation is the identity:

2A 2�A 2A
box(next)~ − box(now)~ −

�e calculation is as follows:

compb,`(modb(coe[1 ≤ `](triv(−)))~ x) By induction, suppose x = modb(y)

= compb,`(modb(coe[1 ≤ `](triv(−)))~ modb(y))

= compb,`(modb(mod`(y)))

= compb,`(modb(mod`(y)))

= modb(y)

= x

For the second point, we wish to show that if we restrict our a�ention to only types of mode s and

endomodalities µ ∈ Hom(s, s), the result is Martin-Löf Type �eory. A routine calculation shows that

any such modality µ must be equal to 1, using induction and the fact that γ ◦ `n ◦ δ = 1. �is implies

that 〈µ | A〉 is also equivalent to A, using triv(−). Finally, we can specialize our variable rule further,

as there is no non-trivial 2-cell 1⇒ 1:

µ ∈ Hom(s, s) Γ ctx @ s Γ ` A type` @ s (x : (µ | A)) ∈ Γ

Γ ` x : A@ s

Remark 2.3.3. �is same rule does not hold true if we assume that µ ∈ Hom(s, t). Consider µ = `◦δ,

if we think in terms of the semantics with PSh(ω), we then have Modµ = � ◦∆. However, we then

can see that Modµ(∅) is not just 7→ ∅, because it is represented by�0 which is locally non-zero. �

2.3.2 Reasoning about Guarded Streams

We now turn to pu�ing MTT to work. Speci�cally, we wish to use this modal situation to reason about

in�nite streams, the canonical coinductive data type.

Remark 2.3.4 (Historical Context). Using guarded type theories to reason about coinduction is a long

running program, and in this section we will draw on examples presented �rst in Bizjak et al. [Biz+16].

�is type theory was similar to MTT, using the later modality and Löb induction to construct guarded

�xed-points, which could then be re�ned to true coinductive de�nitions. Unlike MTT, however, this

second step used clocks [AM13]. In essence, Bizjak et al. [Biz+16] does not have a single�modality, but

rather an entire collection of them, each indexed by a clock name. �ere is a quanti�er which allows

clock names to be bound inside a particular type, and a crucial isomorphism:

∀κ. �κ A ∼= ∀κ. A (∗)

�is work, however, su�ered from several technical complications. For instance, Bizjak et al. [Biz+16]

is forced to use delayed substitutions in order to handle the combination of dependent types and modal-

ities. Delayed substitutions pollute the equational theory and are well-known to be obstacles to provid-

ing an implementation of gDTT. �is issue was later resolved by Clocked Type �eory (CloTT) [BGM17],
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which introduced a judgmental structure to capture the later modality and proved a normalization re-

sult. It is conjectured that type-checking is decidable for CloTT and there is ongoing implementation

work.

�e other issue, however, is the inherent complexity in using clocks to obtain Eq. (∗). �is complex-

ity is re�ected in the syntax, but it is more serious in the models. Rather than just being interpreted into

PSh(ω), CloTT is modeled in a collection of di�erent presheaf categories, with functors navigating

between them [MM18]. �ese models are well-studied, but it was hoped that some of the complex-

ity could be circumvented by introducing a second modality rather than clocks. In Clouston et al.

[Clo+15], for instance, rather than using clock quanti�ers a new modality is introduced to capture the

same phenomenon in a simple type theory. In particular, Eq. (∗) is replaced by the following:

2�A ∼= 2A (†)

�e main advantage of2 is that PSh(ω) is once again a valid model. On the other hand, the interactions

between2 and� have proven di�cult to capture inside a dependent type theory; indeed, merely adding

2 to a dependent type theory has proven to be a signi�cant technical challenge. Recently, Gratzer,

Sterling, and Birkedal [GSB19] constructed a complete story for the addition of 2 to a full dependent

type theory, building on previous work [BGM17; Bir+20; Shu18]. Despite this e�ort, however, there are

still serious technical obstacles to the addition of � to Gratzer, Sterling, and Birkedal’s [GSB19] type

theory. �is instantiation of MTT continues this line of research by eschewing clocks in favor of 2,

but by providing a su�ciently �exible syntax to incorporate both 2, �, and Eq. (†). �

We will demonstrate thatMTTwith this mode theory is su�ciently expressive to carry out the coin-

ductive constructions from the clocked se�ing by reproducing an example from Bizjak et al. [Biz+16]:

we will show that zipWith(f) on a coinductive stream is commutative if f itself is commutative. Prior

to constructing these programs, however, we will alter MTT in a few ways:

1. We replace the intensional equality IdA(M0,M1) with extensional equality EqA(M0,M1).

2. We add Löb induction as an axiom.

�e �rst change is easily accommodated by our intended model in PSh(ω) and Set: the interpreta-

tion of intensional identity was already a valid interpretation of the stronger extensional version. �e

switch to extensional equality is not strictly necessary: we could carry out the following examples in an

intensional identity se�ing. Doing so, however, would make the proof terms more verbose (much more

so than is pleasant on paper!) and we would have to add a functional extensionality axiom. Moreover,

Bizjak et al. [Biz+16] is an extensional type theory, and we will copy this decision to be�er facilitate a

comparison between MTT and gDTT.

�e second addition is more subtle, but Löb induction is a crucial modal speci�c operator which

cannot be captured directly by a framework like MTT. To be more precise, we add the following rules

to MTT:

Γ ctx @ t Γ ` A type1 @ t

Γ ` löb : (�A1≤` → A)→ A@ t

Γ ctx @ t Γ ` A type1 @ t Γ `M : �A1≤` → A@ t

Γ ` löb(M) = M(next(löb(M))) : (�A1≤` → A)→ A@ t

Notice that these rules are not added at both s and t, these rules admit only a sensible interpretation

in mode t. �is new operation admits a sound interpretation in PSh(ω), which justi�es adding them

to the theory. We have also added a de�nitional unfolding for Löb (which is additionally validated

by PSh(ω)), this certainly disrupts normalization but also provides a pleasant experience in actually

working with guarded �xed points.

�eorem 2.3.5. löb(M) is (internally) the unique �xed point of M , i.e. there is a term of the following
type:

(A : U)(x : El(A))→ EqEl(A)(M(next(x)), x)→ EqEl(A)(löb(M), x)
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Proof. �e term witnessing this construction is just λA. löb(λf. λx. λp. refl(x)). �is type-checks

thanks to the equality re�ection rule, though it is less than informative!

We will instead present the equational reasoning that leads to this term being well-typed. Let us

suppose that we have A : U, f : �((x : El(A)) → EqEl(A)(M(next(x)), x) → EqEl(A)(löb(M), x)),

x : A and p : EqEl(A)(M(next(x)), x).

löb(M) = M(next(löb(M))) Unfolding rule for löb

= M(next(x)) Re�ecting f ~ next(x)~ next(p) : �EqA(löb(M), x)

= x Re�ecting p : EqA(M(next(x)), x)

�is proof uses a general technique that we will note explicitly here: when we have an equality

under a �, we can use it to rewrite terms which appear next (more generally, in a locked context).

We can use Löb operator to form guarded recursive types. We will now �x the primary object of

study in the rest of this section:

Str′ : (δ | U)→ U @ t

Str′ , λA. löb(λx. (∆A)× let mod`(x
′)← x in � x′)

Str : U→ U @ s

Str , λA. Γ(Str′(A))

We have separated this de�nition of coinductive streams into two halves: Str′ uses löb to form a guarded

�xed-point on U which de�nes in�nite streams, while Str does the required modal plumbing to move

this de�nition from mode t to mode s. �ese de�nition is the �rst example of mixing two modalities, so

we will take a moment to type-check Str(A) more explicitly. We end up needing to show the following:

·, A : (1 | U).µγ ` Str′(A) : U @ t

It su�cies to check that ·, A : (1 | U).µγ .µδ ` A : U @ s. �is is not entirely obvious, A is under

two locks but only modi�ed by 1, so it may not be accessible. However, our mode theory tells us that

γ ◦ δ = 1, and so our context is equal to ·, A : (1 | U).µ1, and in this context we can use A.

With this de�nition of streams in hand, we can start by de�ning a few operations for constructing

and deconstructing streams.

cons : (A : U)→ El(A)→ El(Str(A))→ El(Str(A))

consA(h, t) , let modγ(t′)← t in modγ((modδ(h), next(t′)))

head : (A : U)→ El(Str(A))→ El(A)

headA(s) , let modγ(s′)← s in triv-1(compδ,γ(modγ(pr0(s′))))

tail : (A : U)→ El(Str(A))→ El(Str(A))

tailA(s) , let modγ(s′)← s in comp`,γ(modγ(pr1(s′)))

�ose familiar with prior work on guarded streams may be surprised by the type of tail. �e typical

de�nition of guarded streams would have a type more like Str(A) → �Str(A), owing the fact that

Str is de�ned by a guarded �xed-point. In our case, however, the Γ modality is su�ciently strong to

“absorb” this extra �, similar to Eq. (†). In fact, the “obvious” de�nition of tail would be the following:

tailA(s)
?
= let modγ(s′)← s in modγ(pr1(s′))

�is de�nition has the type El(Str(A)) → Γ(�El(Str′(A))). However, we can now make use the

equality γ ◦ ` = γ inM and use Section 1.3.1 to adjust by the isomorphism Γ ∼= Γ ◦ � to obtain the

proper version of tail. �is small di�erence is the crucial di�erence which will make Str(A) a �nal

coalgebra, as we shall demonstrate presently.
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Lemma 2.3.6. �ese operations satisfy the expected β and η laws. �at is, there are terms of the following
types:

1. (h : El(A))(t : El(Str(A)))→ EqEl(A)(headA(consA(h, t)), h)

2. (h : El(A))(t : El(Str(A)))→ EqEl(Str(A))(tailA(consA(h, t)), t)

3. (h : El(A))(t : El(Str(A)))→ EqEl(Str(A))(s, consA(headA(s), tailA(s)))

Proof. We will prove these case by case:

1. First, let us suppose we have some h : El(A) and t : El(Str(A)). We will show that refl(h) has

the appropriate type. In order to do this, we must reduce headA(consA(h, t)):

headA(consA(h, t)) = headA(consA(h,modγ(t′)))

Using induction to replace t with modγ(t′)

= headA(let modγ(x)← modγ(t′) in modγ((modδ(h), next(x))))

= headA(modγ((modδ(h), next(t′))))

= let modγ(s′)← modγ((modδ(h), next(t′))) in triv-1(compδ,γ(modγ(pr0(s′))))

= triv-1(compδ,γ(modγ(pr0((modδ(h), next(t′))))))

= triv-1(compδ,γ(modγ(modδ(h))))

= triv-1(mod1(h))

= h

2. Again, assuming that we have an appropriate h and t, we claim that refl(t) has the appropriate

type. In order to show this, we will reduce tailA(consA(h, t)):

tailA(consA(h, t)) = tailA(consA(h,modγ(t′)))

Using induction to replace t with modγ(t′)

= tailA(let modγ(x)← modγ(t′) in modγ((modδ(h), next(x))))

= tailA(modγ((modδ(h), next(t′))))

= let modγ(s′)← modγ((modδ(h), next(t′))) in comp`,γ(modγ(pr1(s′)))

= comp`,γ(modγ(pr1((modδ(h), next(t′)))))

= comp`,γ(modγ(next(t′)))

= modγ(t′)

= t

3. Finally, we assume that we have s : El(Str(A)). We will show that refl(s) has the appropriate

type. For this, we must calculate on consA(headA(s), tailA(s)):

consA(headA(s), tailA(s))

= consA(headA(modγ(s′)), tailA(modγ(s′)))

Using induction to replace s with modγ(s′)

= consA(headA(modγ(s′)), tailA(modγ(s′)))

= consA(let modγ(s′)← modγ(s′) in triv-1(compδ,γ(modγ(pr0(s′)))), tailA(modγ(s′)))

= consA(triv-1(compδ,γ(modγ(pr0(s′)))), tailA(modγ(s′)))

= consA(triv-1(compδ,γ(modγ(pr0(s′)))), comp`,γ(modγ(pr1(s′))))
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Write s′ = (h, t)

= consA(triv-1(compδ,γ(modγ(h))), comp`,γ(modγ(t)))

Use induction to replace h with modδ(h
′) and t with mod`(t

′).

= consA(triv-1(compδ,γ(modγ(modδ(h
′)))), comp`,γ(modγ(mod`(t

′))))

= consA(h′,modγ(t′))

= modγ((modδ(h
′), next(t′)))

= modγ((modδ(h
′),mod`(t

′)))

= modγ((h, t))

= modγ(s′)

= s

Lemma 2.3.7. Given an elementA : U, the function λB.A×B of elements of U is an internal endofunctor
(considering the category of elements A : U and maps as functions El(A)→ El(B)).

Proof.

�eorem 2.3.8. Str(A) is the �nal coalgebra for B 7→ A×B.

Proof. First, given some A : U, we must construct a map uncons : Str(A) → (A × Str(A)). We can

construct this map as follows:

uncons(s) , (headA(s), tailA(s))

We must now show that this coalgebra is �nal. For this, suppose that we have some B and b : B →
El(A) × B. We start by constructing a map of coalgebras b → uncons. �is must be a function

f : B → Str(A) which satis�es the following equation:

uncons(f(x)) = (pr0(b(x)), f(pr1(b(x))))

We will de�ne f as follows:

f ′ : ∆(B → El(A)×B)→ ∆B → El(Str′(A))

f ′(b) , let modδ(b
′)← b in löb(λf ′, x. (h, t))

where h = let modδ(x
′)← x in modδ(pr0(b′(x)))

and t = let modδ(x
′)← x in f ′ ~` next(modδ(pr1(b′(x))))

f : B → El(Str(A))

f(x) , modγ(f ′(modδ(b),modδ(x)))

�is can be shown to satisfy the equation for a morphism of coalgebras by more or less direct compu-

tation. Suppose that we have some x : B:

uncons(f(x)) = (headA(f(x)), tailA(f(x)))

= (pr0(b(x)), tailA(f(x)))

= (pr0(b(x)), comp`,γ(next(löb(...))~` next(modδ(pr1(b′(x))))))

= (pr0(b(x)), comp`,γ(next(f(pr1(b(x))))))

= (pr0(b(x)), f(pr1(b(x))))

Finally, we must show that f is unique with this property. �is is essentially a corollary of �eorem 2.3.5

because we can phrase the property of being a coalgebra as being a solution to a guarded �xed point.
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We conclude this section by showing how we can actually use these mechanisms to prove properties

of coinductive programs. Speci�cally, we will replicate proof from Bizjak et al. [Biz+16] which shows

that the zipWith operator on streams preserves commutativity. We start by de�ning the zipWith

function:

zipWith′ : ∆(El(A)→ El(B)→ El(C))→ El(Str′(A))→ El(Str′(B))→ El(Str′(C))

zipWith′(f) , löb(λr. λx, y. (f ~δ pr0(x)~δ pr0(y), r ~` pr1(x)~` pr1(y)))

zipWith : (El(A)→ El(B)→ El(C))→ El(Str(A))→ El(Str(B))→ El(Str(C))

zipWith(f) , λx, y. modγ(zipWith′(modδ(f)))~γ x~γ y

�is is a common pa�ern when programming in this implementation of guarded recursion: we have

a helper function which lives in mode t, uses Löb induction, and performs the majority of the work.

�en, on top of this, the main function is just a thin wrapper which takes care of the modal plumbing.

�eorem 2.3.9. If f is commutative then zipWith(f) is commutative. �at is, given A,B : U and
f : El(A)→ El(A)→ El(B) there is a term of the following type:

((a0, a1 : El(A))→ EqEl(B)(f(a0, a1), f(a1, a0)))→
(s0, s1 : El(Str(A)))→ EqEl(Str(B))(zipWith(f, s0, s1), zipWith(f, s1, s0))

Proof. Let us suppose that we have e : (a0, a1 : El(A)) → EqEl(B)(f(a0, a1), f(a1, a0)) as well as

s0, s1 : El(Str(A)). We wish to show that the term refl(zipWith(f, s0, s1)) is the desired proof. We will

do this by showing that zipWith(f, s0, s1) is convertible with zipWith(f, s1, s0). We will freely make

use of equality re�ection throughout this proof.

For a �rst step, we note is clearly su�cient to construct a term of the following type (and then to

re�ect it):

(t0, t1 : El(Str′(A)))→ EqEl(Str(B))(zipWith′(modδ(f), t0, t1), zipWith′(modδ(f), t1, t0))

In order to construct this term, it is su�cient to prove the following equality:

löb(λr. λx, y. (f ~δ pr0(x)~δ pr0(y), r ~` pr1(x)~` pr1(y))) =

löb(λr. λx, y. (f ~δ pr0(y)~δ pr0(x), r ~` pr1(y)~` pr1(x)))

We will write löb(F0) for the le� hand side of this equation and löb(F1) for the right.

Now, using �eorem 2.3.5, it then su�ces to show that löb(F1) a �xed-point of F0::

löb(F1) = F0(next(löb(F1))) (2.6)

We will now use löb to construct a term in Eq(löb(F1), F0(next(löb(F1)))).

F0(next(löb(F1))) = λx, y. (f ~δ pr0(x)~δ pr0(y), next(löb(F1))~` pr1(x)~` pr1(y))

= λx, y. (f ~δ pr0(y)~δ pr0(x), next(löb(F1))~` pr1(x)~` pr1(y))

= λx, y. (f ~δ pr0(y)~δ pr0(x), next(F0(next(löb(F1))))~` pr1(x)~` pr1(y))

Using induction to replace pr1(x) and pr1(y) with mod`(t
′
0) and mod`(t

′
1)

= λx, y. (f ~δ pr0(y)~δ pr0(x), next(F0(next(löb(F1))))~` mod`(t
′
0)~` mod`(t

′
1))

= λx, y. (f ~δ pr0(y)~δ pr0(x), next(F0(next(löb(F1)), t′0, t
′
1)))

= λx, y. (f ~δ pr0(y)~δ pr0(x), next(F1(next(löb(F1)), t′1, t
′
0)))

= λx, y. (f ~δ pr0(y)~δ pr0(x), next(F1(next(löb(F1))))~` mod`(t
′
1)~` mod`(t

′
0))

= λx, y. (f ~δ pr0(y)~δ pr0(x), next(F1)~` pr1(y)~` pr1(x))

= löb(F1)
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2.4 Degrees of Relatedness

Of all type systems present in the literature, the most similar to MTT is probably that of Degrees of Re-

latedness [ND18]. In Section 2.4.1, we discuss at a conceptual level how Reynolds’ original formulation

of parametricity [Rey83] was gradually generalized to dependent types. In Section 2.4.2, we explain

how modalities can help to validate the identity extension lemma for large types [NVD17]. In Sec-

tion 2.4.3, we discuss Degrees of Relatedness proper, and in Section 2.4.4, we consider how MTT can

serve as an internal language in which one could build a model of Degrees of Relatedness.

2.4.1 Parametricity, from System F to dependent types

We discuss parametricity in System F [Rey83], System Fω [Atk12], and dependent type theory [AGJ14;

BCM15; Mou16].

System F

System F is relationally parametric [Rey83]. If we think of proof-irrelevant relations R : Rel(A,B)
as notions of heterogeneous equality between elements of A and elements of B, and write a �R b
for R(a, b) in order to emphasize this perspective, then we can conceptually describe proof-relevant

relational parametricity as follows:

• Type-level operations F : ∗ → ∗ preserve (meta-theoretical) equality,
3

• Type-level operations F : ∗ → ∗ preserve relations,

– sending the equality relation on X to the equality relation on FX (this is the identity ex-

tension lemma),

• Parametric functions f : ∀X.FX send relations to proofs of heterogeneous equality,

• Term-level operations hX : FX → GX preserve heterogeneous equality.

�e identity extension lemma asserts that our use of the name ‘heterogeneous equality’ is sensible: in

the homogeneous case, it boils down to mathematical equality.

We can represent this diagrammatically as follows:

A = B

Rel(A,B)

FA = FB

Rel(FA,FB)

Eq Eq

F=

FRel

A = B

R : Rel(A,B)

fA �FRelR fB

Eq fRel

a �FRelR b hAa �GRelR hBb
hRelR

�ese diagrams are a bit awkward in the sense that some of their nodes are meta-theoretic propositions

whereas others are meta-theoretic sets. For example, the arrow Eq : A = B → Rel(A,B) is to be read

as: ifA andB are really the same thing, then Eq will pick out a relation EqA betweenA andB, namely

3

A sane meta-theory will not allow the creation of anything that doesn’t.
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the identity relation. Set theorists who do not balk at dealing with large objects, may prefer to write

this as Eq ∈
∏
A Rel(A,A). Commutativity of the diagram simply means that FRelEqA = EqFA.

�e arrow fRel : (R : Rel(A,B))→ fA �FRelR fB means: for any relationR : Rel(A,B), the re-

lationFRelRwill relate fA and fB. �is would be more typically wri�en as ∀(R ∈ Rel(A,B)).(fA, fB) ∈
FRelR.

An alternative way to make sense of the diagram is by translating every proposition P to the

subsingleton {∗|P}.

System Fω

Atkey [Atk12] extends Reynolds’ ideas to System Fω. Every kind κ is equipped with a ‘native’ proof-

relevant relation _κ : κ× κ → Set, such that _∗ = Rel.4 We say that K1,K2 : κ are related if we

can give an element of K1 _κ K2.
5

Similarly, for every K : κ, we get a proof refl(K) : K _κ K
such that for X : ∗ we get refl(X) = EqX : Rel(X,X). We can then generalize our description of

relational parametricity:

• Type-level operations F : θ → κ preserve equality,

• Type-level operations F : θ → κ preserve relatedness,

– sending refl(X) to refl(FX) (this is the identity extension lemma),

• Parametric functions f : ∀(X : κ).FX send related types to heterogeneously equal terms,

• Term-level operations hX : FX → GX preserve heterogeneous equality.

Diagrammatically (the same interpretation remarks apply as for the System F diagrams above):

A =θ B

A _θ B

FA =κ FB

FA _κ FB

refl refl

F=

F_

A =κ B

R : A _κ B

fA �F_R fB

refl f_

a �F_R b hAa �G_R hBb
h_R

Following Robinson and Rosolini [RR94] and Hasegawa [Has94a; Has94b], Atkey structured all of this

in a re�exive graph model. A re�exive graph Γ is a (contravariant) presheaf over the category RG
generated by the following diagram, subject to the following equations:

6

n e
r ◦ s = 1n,
r ◦ s = 1n.

s

t

r

4

We ignore size issues in this introductory exposition.

5

Note that any two types T1, T2 : ∗ are related. However, as _∗ is a proof-relevant relation, we care not only for the

truth value (whether types are related) but also for the particular proof we choose to give (the relation R : T1 _∗ T2 that

we consider between T1 and T2).

6

Readers who expected the opposite of RG are likely thinking of covariant functors to Set, whereas we take presheaves

to be contravariant functors to Set.
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�e idea is that Γn is the set of nodes, Γe is the set of edges, and that (−)s, (−)t : Γe → Γn extract

the source and target of an edge, whereas (−)r : Γn→ Γe produces the re�exive edge on a node. �e

equations assert that the edge xr really goes from x to x.

In this re�exive graph model, kinds κ are interpreted as large re�exive graphs JκK. �e nodes in

JκKn are the semantic elements of κ, whereas the edges in JκKe can be seen as a triple of two elements

K1,K2 : κwrapped up with a proof ofK1 _κ K2. �e kind ∗ speci�cally is interpreted as the re�exive

graph J∗K whose nodes are small sets and whose edges are proof-irrelevant relations, the re�exive edges

being the equality relations. An open type Γ ` K : κ is then a re�exive graph morphism (i.e. a presheaf

morphism) JKK : JΓK→ JκK. �e fact that these preserve re�exive edges (for ∗ this means the equality

relation), expresses the identity extension lemma.

�is means that a closed type · ` T : ∗ is essentially a small discrete re�exive graph, i.e. a small

re�exive graph whose only edges are the re�exive ones. To see this, note that the empty context is

interpreted as the terminal re�exive graph J·K, having a single node • and a single re�exive edge •r.

�is node • is then mapped to a small set JT K•, and the edge •r to a relation JT K(•r) on that set.

However, since graph morphisms map re�exive edges to re�exive edges, and re�exive edges in J∗K are

the equality relations, we see that

JT K(•r) = (JT K•)r = EqJT K•

i.e. JT K is a set equipped with its equality relation.

A general (open) type Γ ` T : ∗ can be reorganized to be seen as a re�exive graph JΓ|T K → JΓK
over JΓK that li�s re�exive edges (i.e. edges over re�exive edges are re�exive, this is again the identity

extension lemma), and equality of edges (i.e. edges over the same edge in JΓK are necessarily equal,

expressing prove irrelevance). A term Γ | Θ ` t : T is then interpreted as a morphism from JΓ|ΘK →
JΓ|T K in the slice category over JΓK; in particular a closed term is a section.

Dependent type theory

As dependent type theory is not just a programming language but also a logic, we can distinguish three
approaches to parametricity:

• In the external approach, we state and prove parametricity theorems in the meta-theory. �is is

the only possible approach in System F and Fω.

• In the admissible approach, we state the parametricity theorems in some very similar (ideally the

same) type system, and we give a metatheoretic proof that every program is parametric. �at

is, we give a meta-theoretic function that maps program derivation trees to derivation trees of

proofs of the statement that the program is parametric.

• In the internal approach, we have an internal operator that essentially inhabits the theorem “ev-

ery program is parametric”. �is operator will again have type dependencies, and self-application

should prove that it is parametric. �is phenomenon is called iterated parametricity, and gener-

ally needs to be modelled in higher-dimensional re�exive graphs, i.e. cubical sets.

External parametricity, with identity extension only for small types Atkey, Ghani, and Johann [AGJ14]

have reorganized Atkey’s [Atk12] model to a model of dependent type theory. Essentially, they start

from the standard presheaf model of dependent type theory in re�exive graphs [Hof97, Ch. 4] (see

Section 2.2 for a summary). �e idea is that nodes of large types (kinds) represent their elements,

whereas edges represent proofs of relatedness (_κ). For small types, nodes are again elements, but

edges should be proofs of heterogeneous equality (�R, where R is the corresponding edge between

the types).
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�e desired identity extension lemma can now be rephrased as: homogeneous edges (edges living

above re�exive edges in the context) should be re�exive. In order to validate this lemma, we could

naively require all internal types to be discrete, i.e. to satisfy this condition. However, the problem

is that the universe does not satisfy it. Indeed, a homogeneous edge in the universe is like a proof of

A _∗ B in System Fω, which is essentially a relation between A and B. Surely, the existence of a

relation R : Rel(A,B) does not imply that A = B and R = EqA. So the universe is not discrete as it

has non-re�exive homogeneous edges.

For this reason, Atkey, Ghani, and Johann [AGJ14] only adapt the Hofmann-Streicher universe of

small types [HS97] by restricting it to small discrete proof-irrelevant types. Types in general are allowed

to be non-discrete, and hence identity extension is only proven for small types. Proof-irrelevance is

required in order to model function types: for function types to be discrete, we either need to work

in proof-irrelevant graphs, or we need higher-dimensional structure (cubical sets) in order to reason

about equality of functions’ actions on edges.

Writing e : x ÷A y for a homogeneous edge in type A (which generalizes both e : x _A y and

e : x �A y), and e : x ÷R y for a heterogeneous edge where R : A ÷U B, we can summarize the

behaviour of dependent functions f : (x : A)→ B(x) in Atkey, Ghani, and Johann [AGJ14] in a single

diagram:
7

x =A y

e : x÷A y

f(x) =B(x) f(y)

f(x)÷B÷(e) f(y)

(−)r (−)r

f=

f÷

In this diagram, =A denotes mathematical equality. E.g. the arrow (−)r : x =A y → x÷A y means: if

x and y are really the same node of A, then xr is an edge of A whose source xrs equals x and whose

target xrt equals y.

Admissible parametricity �e work on admissible parametricity generally uses di�erent techniques

and is in this sense much less relevant in this historical resume. We cite some important works for

completeness:

• Takeuti [Tak01] gives a parametric translation from every system in the Lambda Cube to a richer

system in the Lambda Cube, and proves soundness of identity extension (calling it the “axiom of

parametricity”) for small types.

• Bernardy, Jansson, and Paterson [BJP12] give a parametric translation from a general pure type

system to (in general) a di�erent pure type system. Identity extension is not considered.

• Keller and Lasson [KL12] give a parametric translation from a variation of the calculus of induc-

tive constructions to itself. �ey use this as a basis to implement the paramcoq plugin for Coq.
8

Identity extension is not considered.

Internal parametricity, without identity extension Bernardy, Coquand, and Moulin [BCM15] and Moulin

[Mou16] have introduced internal operators that allow the creation of proof terms for parametricity

theorems, and provide a model in (unary) cubical sets.

7

�e bo�om arrow in this diagram can be generalized to act on heterogeneous edges (by replacingAwith an edge in the

universe); however then the le� side of the diagram would be ill-typed. Dependent diagrams are always a bit awkward.

8https://github.com/coq-community/paramcoq

https://github.com/coq-community/paramcoq
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�eir system is about unary parametricity and hence cannot feature identity extension, but it can

be converted to a binary system straightforwardly in which we could either postulate the identity

extension lemma for small types as an axiom
9
, or create a universe of types that satisfy the lemma and

is closed under small type formers.

(Binary) cubical sets can be seen as higher-dimensional graphs, which feature not just nodes and

edges, but also squares, cubes, and higher-dimensional cubes. �is higher-dimensional structure is

necessary to model iterated parametricity (see above), as well as to prove the identity extension lemma

for the function type if you want to allow parametricity to be applied to proof-relevant relations.

2.4.2 Parametric �antifiers: internal parametricity with identity extension

Motivation

In order to validate the identity extension lemma for all types, rather than just small types, Nuyts,

Vezzosi, and Devriese [NVD17] create a type system ParamDTT that uses modalities to distinguish

between parametric, continuous and pointwise functions. �ese modalities di�er in how they act on

di�erent �avours of edges:

• Paths p : x � y generalize equality of types and heterogeneous equality of terms in System Fω,

• Bridges b : x _ y generalize relatedness of types.

One might hope to give a model in bridge/path re�exive graphs, which would be presheaves over the

category BPRG generated by the following diagram and equations:

n p b

r ◦ u ◦ s = 1n,
r ◦ u ◦ t = 1n.

s

t

r u

Here, r expresses that every node is path-equal to itself, u expresses that when things are path-equal,

they are also bridge-related, and s and t extract source and target from a bridge. By composing with

u, we can extract source and target of a path, or obtain re�exive bridges.

However, because the bridges in the universe — which will be relations between types — are inher-

ently proof-relevant, we need a model that accommodates proof-relevant parametricity. Furthermore,

because the aim is to provide internal parametricity operators, it is desirable to accommodate iterated

parametricity. For these two reasons, we need a cubical model. Indeed, ParamDTT is modelled in

bridge/path cubical sets, which are presheaves over the category BPCube which is the free carte-

sian monoidal category over BPRG with the same terminal object n. In other words, the objects of

BPCube are �nite products of b and p and the morphisms are generated by weakening (r : p→ ()),

exchange (v × w → w × v), contraction (w → w × w) and u : b→ p.

Functions f : (x : A) → B(x) in ParamDTT are then classi�ed according to how they act on

bridges and paths.

9

�is axiom would be partly justi�ed by a cubical generalization of Atkey, Ghani, and Johann’s [AGJ14] model, but

Moulin’s [Mou16] model is more subtle in that it uses re�ned presheaves (based on I-sets) to strictify certain isomorphisms

related to the internal parametricity operators. To our knowledge no one has created a re�ned presheaf model of identity

extension.
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A pointwise function f : (x : (ptw | A)) → B(x) maps path-connected inputs p : x � y to

path-connected outputs f�(p) : f(x) � f(y), witnessing that it preserves heterogeneous equality.

However, it has no action on bridges b : x _ y, meaning that bridge-related inputs may be mapped to

arbitrary outputs. In particular, pointwise quanti�cation over types has no action on relations between

types. �e only way to assert bridge-connected outputs from a pointwise function, is by feeding it path-

connected inputs; then f�(p)u is the desired bridge. �e pointwise modality may be used to soundly

assume the law of excluded middle:

(X : (ptw | U))→ X ] (X → ⊥)

Stating it with the parametric modality would imply that either all types are inhabited or all types are

empty.

A continuous function f : (x : (con | A)) → B(x) sends path-connected inputs p : x � y
to path-connected outputs f�(p) : f(x) � f(y), and bridge-connected inputs b : x _ y to bridge-

connected outputs f_(b) : f(x) _ f(y). �us, it preserves heterogeneous equality and relatedness.

�is corresponds to the behaviour of a type-level operation in System Fω.

A parametric function f : (x : (par | A)) → B(x) sends bridge-connected inputs b : x _ y
to path-connected outputs f_(b) : f(x) � f(y). Hence, it also sends paths p : x � y to paths

f_(pu) : f(x) � f(y) and bridges b : x _ y to bridges f_(b)u : f(x) _ f(y). In particular, a

function f : (X : (par | U))→ T (X) sends a relation B : X _ Y to a proof f_(B) : f(X) � f(Y )
that the instantiations f(X) and f(Y ) are heterogeneously equal according to the relation T_(B) :
T (X) _ T (Y ).

10

x � y

x _ y

f(x) � f(y)

f(x) _ f(y)

(−)u (−)u

f�

ptw

x � y

x _ y

f(x) � f(y)

f(x) _ f(y)

(−)u (−)u

con

x � y

x _ y

f(x) � f(y)

f(x) _ f(y)

(−)u (−)u

par

Remark 2.4.1. We remark that Vezzosi’s ParamDTT implementation agda-parametric [NVD17]

features three additional and at the time experimental modalities, for which we need to include a triv-

ially satis�ed relation sending x and y to the singleton >: irrelevance (irr), shape-irrelevance (shi),

10

�e codomain T is required to be continuous for the parametric function type to be well-formed.
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and the join of shape-irrelevance and parametricity (shi ∨ par):

x � y

x _ y

>

f(x) � f(y)

f(x) _ f(y)

>

(−)u (−)u

irr

x � y

x _ y

>

f(x) � f(y)

f(x) _ f(y)

>

(−)u (−)u

shi

x � y

x _ y

>

f(x) � f(y)

f(x) _ f(y)

>

(−)u (−)u

shi ∨ par

�

The Mode Theory and the Corresponding Instance of MTT

De�nition 2.4.2. �e mode theory for ParamDTT is the poset-enriched category

• that has a single object ∗,

• such that Hom(∗, ∗) = {ptw < con < par},

• where con is the identity and composition is given by

↓ ◦ → ptw con par

ptw ptw ptw par
con ptw con par
par ptw par par.

It is clear that the identity function is continuous. �e modality of a composite function, can be

found by pasting together the above diagrams, which yields the above composition table.

Note also that, using (−)u, we can prove that all parametric functions are continuous. All contin-

uous functions are clearly also pointwise (as we can forget the action on bridges), which con�rms the

postulated order on modalities.

�eorem 2.4.3. �e instantiation of MTT with the mode theory for ParamDTT yields a type system
ParamMTTwhich can be modelled in the category PSh(BPCube) as an instance of Section 2.2. ParamMTT
is not the system ParamDTT [NVD17].

Remark 2.4.4. ParamDTT deviates from MTT in two important respects:

• It uses eager le� division µ \ Γ, rather than lazy locks Γ,µµ (see Section 1.8.2),

• It features a parametric type decoding rule

par \ Γ ` T : U @ ∗
Γ ` T type` @ ∗

(2.7)

which has the e�ect of making variables available in a term and its type (or more precisely its

type’s code) by a di�erent modality (e.g. parametric functions have continuous type).
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Furthermore, it lacks all system-speci�c features, such as internal parametricity operators. �

Lemma 2.4.5. We have three adjoint functors + a [ a ] : BPCube → BPCube which are the
cartesian monoidal functors such that:

+p = (), [p = b, ]p = p,
+b = b, [b = b, ]b = p.

Proof. Le� as an exercise to the reader, but note that these functors are de�nable on BPRG and that

the adjunctions can be proven there and carry over.

Proof of �eorem 2.4.3. We need to �nd a functor J : M → Cat where M is the mode theory for

ParamDTT, such that J(µ)∗ is a good interpretation of the dependent right adjoint. Clearly, we will

take J(∗) = BPCube.

Before we de�ne the action of J on morphisms, we will de�ne K : Mcoop → Cat, and then we

will construct J so that J(µ) a K(µ). �is means that K(µ)∗ will be naturally isomorphic to J(µ)∗.
Of course all of this is only well typed assuming we take K(∗) = J(∗) = BPCube.

In general,K(µ)b should be the weakest relation (represented by an object of BPCube) such that

a µ-modal function will sendK(µ)b-related inputs to bridge-related outputs. Similarly,K(µ)p should

be the weakest relation such that a µ-modal function will send K(µ)p-related inputs to path-equal

outputs.

For con, which is the identity modality, this meansK(con) = 1. For parametricity, a bridge in the

domain is su�cient to guarantee either a path or a bridge in the codomain, so we take K(par) = [.
For pointwise functions, we need a path in the domain to guarantee either a path or a bridge in the

codomain, so we take K(ptw) = ]. �is is immediately seen to reverse 2-cells.

For J then, we simply take the le� adjoints:

J(con) = 1, J(par) = +, J(ptw) = [.

Let us now map concepts from System Fω to those of ParamDTT by looking for similarities between

the corresponding diagrams. Type level operators in Fω become continuous functions in ParamDTT.

Parametric functions in System Fω become parametric functions in ParamDTT. One can imagine a

modal extension of System Fω that allows ad hoc polymorphism, so that we can have a typecase

operator or postulate a non-parametric law of excluded middle. �e la�er is sound in ParamDTT.

When we consider term level functions in System Fω, we notice an awkward aspect of the model of

ParamDTT, namely that small types, too, come equipped with a path (�) and a bridge (_) relation. In

System Fω on the other hand, we could only consider heterogeneous equality (�) for elements of small

types. In fact, we have no need for these two relations, and unless we allow HITs with bridge construc-

tors, all small closed types will be bridge-discrete, meaning essentially that (−)u is an isomorphism. An

immediate consequence is that if a function’s domain is a small closed type, then its modality does not

ma�er. However, the type system does distinguish between the corresponding function types and has

no way of coercing upstream against the order on the modality monoid. �is shortcoming is addressed

in Nuyts and Devriese [ND18] (Section 2.4.3) by having a separate mode for types that have no bridge

relation, thus con�ating the di�erent modalities.

Remark 2.4.6. If we add shi, irr and shi ∨ par (Remark 2.4.1), then the inequality relation is given

by

ptw < con <
par
shi

< (shi ∨ par) < irr, (2.8)
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and shi and par are incomparable. Composition is given by

↓ ◦ → ptw con par shi shi ∨ par irr

ptw ptw ptw par ptw par irr
con ptw con par shi shi ∨ par irr
par ptw par par irr irr irr
shi shi shi shi ∨ par shi shi ∨ par irr

shi ∨ par shi shi ∨ par shi ∨ par irr irr irr
irr irr irr irr irr irr irr

Since ptw ◦ shi = ptw < con and con < shi = shi ◦ ptw, we see that ptw a shi. Furthermore,

shi ∨ par = shi ◦ par and irr = par ◦ shi. �ese observations inspire us to extend the semantics

from �eorem 2.4.3 with:

J(shi) = ], J(shi ∨ par) = ] ◦ +, J(irr) = + ◦ ].

Together, these are all 6 ‘relation shi�ing’ modalities whose modal functions still preserve path-equality.

If we want to also classify functions that do not preserve path-equality, then we get 4 more modalities,

but their locks cannot be interpreted as inverse images, so we would have to rely on Remark 2.2.3 and

�eorem 1.6.26 to build a model. �

Extending the MTT instance to ParamDTTµ

While ParamMTT is not ParamDTT, we can extend it soundly and come pre�y close. �e main re-

maining di�erences will be:

• �e use of locks,

• �at face restrictions on the context will have a modality annotation, which we consider an

improvement over ParamDTT proper.

�eorem 2.4.7. We can soundly extend ParamMTT to a system ParamDTTµ by adding:

1. Bridge interval variables, face propositions, Glue- and Weld-types [NVD17],

2. A judgement form for discrete types Γ ` T dtype` @ ∗ which is closed under discreteness-preserving
type formers with modality annotations as in MTT and such that

Γ ` T dtype` @ ∗
Γ ` T type` @ ∗

(2.9)

3. �e degeneracy axiom, stating that homogeneous paths in discrete types are constant,11

4. Parametric existential quanti�ers,

5. A universe` UDD dtype` @ ∗which is closed under discreteness-preserving type formers with modal-
ity annotations as in ParamDTT, which features a parametric decoding rule

Γ,µpar ` T : UDD
@ ∗

Γ ` El(T ) dtype` @ ∗
. (2.10)

11

�is is the internalization of the identity extension lemma.
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Note that discreteness-preserving type formers most notably exclude the Hofmann-Streicher universe

and 〈par | −〉,12
which is why parametric existentials are explicitly listed as a separate addition.

Proof. 1. �e bridge interval is simply interpreted by y(b). Glue and Weld exist in any presheaf

category. We refer to the original work [NVD17; Nuy18a] for details.

2. �e semantics of this judgement is simply a type which satis�es the degeneracy axiom.

3. �is is then trivial.

4. Because discreteness is a robust notion of �brancy [Nuy18b; Nuy18a], the discrete replacement

commutes with substitution. �us, we can simply take the Σ-type over 〈par | A〉 and then take

the discrete replacement of that.

5. Using standard techniques, we obtain a closed type UNDD
that is a classi�er for the discrete

typing judgement but is itself not discrete and still has a continuous decoding rule [Nuy18a]. It’s

symbol stands for ‘non-discrete universe of discrete types’. �en we de�ne UDD , (]+)∗UNDD
,

as motivated below.

Remark 2.4.8 (Construction of UDD
). �e non-discrete universe UNDD

behaves like the Hofmann-

Streicher universe, only it classi�es discrete types.

A bridge B : X _UNDD Y then encodes a notion of heterogeneous bridges (x : X) _B (y : Y ),

and path P : X �UNDD Y encodes notions of paths (x : X) �P (y : Y ) and also a notion of bridges

(x : X) _Pu (y : Y ). �e la�er is inevitable, as P must contain all information needed to form the

bridge Pu : X _UNDD Y . It is immediately clear that the existence of a P does not assert that X = Y ,

i.e. UNDD
is not itself discrete.

In the desired discrete universe of discrete types UDD
, all paths are re�exive, i.e. we would like to

have UDDp = UNDD().

Meanwhile, we want to model the parametric decoding rule by making sure that there exists a

function El(−) : 〈par | UDD〉 → UNDD
. �is means that a bridge in UDD

must be (at least) a path in

UNDD
. We can achieve this if UDDb = UNDDp:

X �UDD Y

X _UDD Y

X =UNDD Y

X �UNDD Y

X �UNDD Y

X _UNDD Y

(−)u (−)r (−)uEl_

par

Both equations are satis�ed by taking UDD = (]+)∗UNDD
, since

]+p = ]() = (), ]+b = ]b = p, (2.11)

(and ]+ is the unique cartesian monoidal functor respecting these equations). �

�e a�entive reader might wonder why we found it appropriate to discard the bridge relation

_UNDD when building UDD
. �e unsatisfactory answer is that the path relation�UNDD contains more in-

formation and that we ran out of slots so we had to discard something. An issue that can be traced back

to this discarding, is that the internal parametricity operators of ParamDTT have an extremely conta-

gious pointwise dependency that essentially renders proofs of parametricity theorems non-parametric

themselves, ge�ing in the way of iterated parametricity despite having a cubical model.

12

as well as 〈shi | −〉, 〈shi ∨ par | −〉 and 〈irr | −〉.
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Wrapping up

In ParamDTT, ParamMTT and ParamDTTµ, we see two important causes of discomfort: we have too

many relation slots in small types (which feature an unnecessary bridge relation), and we have one

too few in the universe. In Degrees of Relatedness (Section 2.4.3), small types are equipped with just a

single relation, and every universe has one relation slot more than the types that it classi�es.

2.4.3 Degrees of Relatedness

In comparison to ParamDTT [NVD17], the type system RelDTT [ND18] makes two improvements:

• It o�cially contains modalities that interact with the trivially and uniquely provable relation >
(which were already available in agda-parametric but not in ParamDTT or its model),

• It addresses the aforementioned shortcomings of ParamDTT by moving to a multimode system

in which types come equipped with a di�erent number of relations, depending on their mode.

We focus on the second improvement. �e modes of RelDTT (called depths) are integers starting from

−1 and types of mode m are equipped with m + 1 relations called _0 through _m. �e mode m
segment of the type system is modelled in ‘depth m cubical sets’, which are presheaves over Cubem,

the free cartesian monoidal category (with same terminal object) over RGm, which is generated by:

n e0 e1 · · · em

r ◦ u1
0 ◦ . . . ◦ umm−1 ◦ s = 1n,

r ◦ u1
0 ◦ . . . ◦ umm−1 ◦ t = 1n.

s

t

r u1
0 u2

1 umm−1

By convention, Cube−1 is the point category.

�e modalities µ : HomM(m,n) will be, essentially, all diagrams from m ordered relations (and

>) to n ordered relations (and >) such that a 0-edge in the domain always gives rise to a 0-edge in the

codomain, and such that we can also map from > to >.

A succinct way to denote such a diagram is by answering, for all i = 0 . . . n, the question: how

related do the arguments need to be, if I want the results to be i-related? �is gives rise to an increasing

function {0 < 1 < . . . < n} → {0 < 1 < . . . < m < >}. Hence, we de�ne:

De�nition 2.4.9. �e mode theory for RelDTT is the poset-enriched category

• whose objects are integers starting from −1,

• such that Hom(m,n) is the set of increasing functions

µ : {0 < 1 < . . . < n} → {0 < 1 < . . . < m < >} : i 7→ i · µ,

also denoted 〈0 · µ, . . . , n · µ〉,

• where the identity modality con is given by i · con = i and composition is given by

i · (ν ◦ µ) =

{
(i · ν) · µ if i · ν 6= >,

> if i · ν = >,
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where µ ≤ ν whenever i · µ ≤ ı · ν for all i.

Example 2.4.10. We refer to Nuyts and Devriese [ND18] for a compendium of interesting modalities.

Here, we just mention parametricity par : HomM(m + 1,m) for which i · par = i + 1 and its right

adjoint structurality str : HomM(m,m+ 1) for which 0 · str = 0 and (i+ 1) · str = i. �ey have the

following form:

x _0 y

x _1 y

x _2 y

. . .

x _m+1 y

>

f(x) _0 f(y)

f(x) _1 f(y)

. . .

f(x) _m f(y)

>

x _0 y

x _1 y

. . .

x _m y

>

f(x) _0 f(y)

f(x) _1 f(y)

f(x) _2 f(y)

. . .

f(x) _m+1 f(y)

>

�

�eorem 2.4.11. �e instantiation of MTT with the mode theory for RelDTT yields a type system RelMTT
which can be modelled in the categories PSh(Cubem) as an instance of Section 2.2. RelMTT is not the
system RelDTT [ND18].

Remark 2.4.4 applies also for RelMTT vs. RelDTT.

Lemma 2.4.12. �e modalities µ : Hom(m,n) are, by Galois connection (κ a µ), in 1-1 correspondence
with increasing functions

κ : {0 < 1 < . . . < m} → {(=) < 0 < 1 < . . . < n} : j 7→ j · κ,

which are called contramodalities.

Proof of �eorem 2.4.11. We de�ne the 2-functor J : M → Cat that sends modes to base categories.

Of course, we need J(m) = Cubem. In order to de�ne J(µ), let κ a µ be the corresponding con-

tramodality. Since J(µ)∗ is going to be the interpretation of the DRA of µ, we can think of J(µ)∗ as the

interpretation of κ. Hence, we de�ne J(µ) to be the cartesian monoidal functor such that J(µ)ei = ei·κ
if i · κ 6= (=), and to the terminal object otherwise.
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Proposition 2.4.13. ParamMTT is a subsystem of RelMTT with the same semantics. Concretely, we have
a functor I :MParamDTT →MRelDTT, invertible on Hom-posets, from the mode theory of ParamDTT to the
mode theory of RelDTT such that the following diagram commutes if we identify BPCube = Cube1:

MParamDTT MRelDTT

Cat

I

J
J

�is still works if we include the modalities from Remark 2.4.6.

Proof. �e following de�nition of I does the job:

I(∗) = 1,
I(ptw) = 〈0, 0〉 , I(con) = 〈0, 1〉 , I(par) = 〈1, 1〉 ,
I(shi) = 〈0,>〉 , I(shi ∨ par) = 〈1,>〉 , I(irr) = 〈>,>〉 .

Again, we can extend RelMTT to something that di�ers from RelDTT mainly in the use of locks vs.

le� division:

�eorem 2.4.14. We can soundly extend RelMTT to a system RelDTTµ by adding:

1. Interval variables, face propositions, Glue- and Weld-types,

2. A judgement form for discrete types Γ ` T dtype` @mwhich is closed under discreteness-preserving
type formers with modality annotations as in MTT and such that

Γ ` T dtype` @m

Γ ` T type` @m
(2.12)

3. �e degeneracy axiom, stating that homogeneous 0-edges in discrete types are constant,13 or at mode
−1 that elements of the same type are equal,

4. Modal existential quanti�ers for modalities µ such that 0 · µ 6= 0,

5. A universe ` UDD dtype` @m+ 1 which is closed under discreteness-preserving type formers with
modality annotations as in RelDTT, which features a parametric decoding rule

Γ,µpar ` T : UDD
@m+ 1

Γ ` El(T ) dtype` @m
. (2.13)

Note that discreteness-preserving type-formers most notably exclude the Hofmann-Streicher uni-

verse and 〈µ | −〉 when 0 · µ 6= 0, which is why existentials for those modalities are explicitly listed as

a separate addition.

Proof. All points but the last are proved as in �eorem 2.4.7.

Using standard techniques, we obtain a non-discrete universe of discrete types UNDD
at every mode

m. �en we de�ne UDD , J(par)∗UNDD
(where J is de�ned as in the proof of �eorem 2.4.3), which

lives at mode m + 1. Note that J(par) sends e0 to the terminal object and ei+1 to ei. Hence, the

0-edges of UDD
are the points of UNDD

(so it is discrete) and we shove aside all other relations so that

the (i+1)-edges of UDD
are the i-edges of UNDD

. �is indexation shi� allows for a parametric function

〈par | UDD〉 → UNDD
.

In this system, we can think of terms at mode −1 as proofs, at mode 0 as programs, at mode 1 as

types, at mode 2 as kinds, etc.

13

�is is the internalization of the identity extension lemma.
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2.4.4 MTT as an internal language of the model

As mentioned, neither ParamDTT nor RelDTT are themselves instances of MTT, their most stark devia-

tion being the parametric type decoding rule which causes both systems to enforce di�erent modalities

for terms and their types (e.g. parametric functions have continuous types and irrelevant functions

have shape-irrelevant types).

Fleshing out the semantics of both systems was a major e�ort and produced a technical report

[Nuy18a], some parts of which could be classi�ed as ‘write-only’. It would have been desirable to carry

out these proofs in a proof-assistant, i.e. internal to another type system. For the authors, this has

the advantage that a lot of tedious bookkeeping could be done automatically, and RelDTT’s end users

would of course have more con�dence in the system.

As both models start with an instantiation of Section 2.2, MTT seems quite well-suited as a metathe-

ory in which discreteness, UNDD
and UDD

could be de�ned, and ParamDTT and RelDTT could be shal-

lowly embedded. �is is in fact one of the central motivations behind the Menkar project [Nuy19].

�ere is one important di�culty, namely that the creation of UDD
out of UNDD

needs to insert an

equality relation in relation slot 0, which the internal modalities of ParamDTT and RelDTT are unable

to do. A contramodality κ a µ has the capacity to do so, however. If in the above construction, we set

JµκK = J(µ)!, then an i-edge in 〈κ | A〉 is an (i · κ)-edge in A, or an equality proof if i · κ = (=).

On the other hand, modalities such as irrelevance and shape-irrelevance interact with > and as

such are not contramodalities. So an ideal metatheory in which to embed RelDTT, has as its dependent

right adjoints both inverse and direct images, which may compose to DRAs that are neither. As such,

it becomes di�cult to provide semantics that are strictly functorial on locks, and we need to invoke

Remark 2.2.3 and �eorem 1.6.26 to model an appropriate metatheory.

De�nition 2.4.15. �e mode theory for the model of RelDTT is the poset-enriched category

• whose objects are integers starting from −1,

• such that Hom(m,n) is the set of increasing functions

µ : {0 < 1 < . . . < n} → {(=) < 0 < 1 < . . . < m < >} : i 7→ i · µ,

• where the identity modality con is given by i · con = i and composition is given by

i · (ν ◦ µ) =


(i · ν) · µ if i · ν 6∈ {=,>},
(=) if i · ν = (=),

> if i · ν = >,

where µ ≤ ν whenever i · µ ≤ ı · ν for all i.

�eorem 2.4.16. Using �eorem 1.6.26, there is a model in categories equivalent to Cubem for MTT over
the mode theory for the model of RelDTT.

Proof. Every modality of this mode theory can be wri�en as a composite of a modality µ of RelDTT
and a contramodality κ of RelDTT. We can interpret JµµK = J(µ)∗ and JµκK = J(ν)! where κ a ν.

One can show that this constitutes a pseudofunctor.
14

As inverse and direct images are always DRAs,

we can invoke �eorem 1.6.26.

14

E.g. by noting that the category of presheaves over Cubem is equivalent to the category of 0-discrete sheaves over

Cubem+1 and interpreting the modalities strictly functorially in the sheaf categories.
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2.5 Idempotent S4

One of the most studied modal logics is S4 [PD01; Shu18; GSB19; Zwa19]. �is system includes a

single comonad, traditionally wri�en 2. Here, we consider an instantiation of MTT which models an

idempotent version of S4. �e mode theory,M, consists of a single mode m, and a single idempotent

endomorphism µ:

m

µ

We have required µ◦µ = µ, so HomM(m,m) = {1, µ}. We further specify a single inequality between

modalities: µ ≤ 1. �is mode theory is merely poset enriched, but if we wished to model a non-strictly

idempotent comonad we would need to use a non-posetal 2-category.

Notation 2.5.1. We will write 2A for 〈µ | A〉 in keeping with more traditional calculi for S4.

�eorem 2.5.2. In MTT withM, 2A is an idempotent comonad internally to the type theory.

Proof. In order to show this, we must exhibit a function 2A → A and 2A → 22A which satisfy

the comonad equations. Both of these functions can be taken wholesale from Section 1.3.1. �e �rst

is coe[µ ≤ 1](−), and the second is triv-1(compµ,µ(−)). �e equations hold up to internal equality

and follow from a straightforward calculations.

We can do be�er than merely showing that2 behaves like a comonad, this instantiation of MTT has

a very similar �avor to a dependent version of Pfenning and Davies [PD01] (such as Shulman [Shu18]).

In particular, because there are precisely two modalities in the system, there are two variable rules:

Γ0, x : (µ | A),Γ1 ctx @m

Γ0, x : (µ | A),Γ1 ` x : A@m

Γ0, x : (1 | A),Γ1 ctx @m locks(Γ1) = 1

Γ0, x : (1 | A),Γ1 ` x : A@m

One should contrast this with the variable rule for accessing a valid variable and the rule for accessing

an ephemeral variable. One major di�erence between our system and a dual-context approach is that

our style of context management is based on locks, rather than a pair of static zones. �is allows for

valid types to depend on ephemeral variables, in a limited way of course.
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2.6 Dependent Right Adjoints

A closely related modal type theory is the calculus of dependent right adjoint, developed in Birkedal

et al. [Bir+20]. We have already discussed some of the relation between dependent right adjoints and

MTT’s notion of modalities (e.g. Section 1.4.2). In this section, we a�empt to compare the expressivity

of both systems.

Birkedal et al. [Bir+20] has a single modality (wri�en 2) which encodes the rules of a dependent

right adjoint. In order to represent this syntax for MTT, we instantiateM to a category with a single

mode, m, and one generator for HomM(m,m):

m

µ

We impose no further equations on this category (so in particular, µ ◦ µ 6= µ).

�eorem 2.6.1. Any model of Birkedal et al. [Bir+20] is a model of this instantiation of MTT

Proof. �is is an immediate corollary of �eorem 1.4.11.

�is result tells us our syntax is certainly sound with respect to the calculus of dependent right

adjoints. At a more intuitive level, we can encode the contexts from MTT as contexts in the calculus of

dependent right adjoints as follows:

J·K = ·
JΓ.(µn | A)K = JΓK.2nA

JΓ.µµnK = JΓK.bn

MTT is certainly not complete for the calculus of dependent right adjoints. �e central issue is pre-

cisely the mismatch described in �eorem 1.4.11: our calculus does not require that the same strong

elimination rule as Birkedal et al. [Bir+20]. Moreover, we cannot encode the open-scope eliminator for

2, open, in MTT.

To what extent does this ma�er? It is not evident that the loss of this stronger elimination rule is

as signi�cant as it may appear. For instance, we are certainly still capable of proving the dependent

axiom K (function application under 2).

Moreover, while it is di�cult to prove without a normalization result, it is reasonable to conjecture

that MTT is complete for closed terms. �at is, given any closed term in the DRA calculus, there is a

(non-compositional!) translation of it to MTT. Such a result would allow us to de�nitively prove that

it is su�cient to work with MTT, even though it may be less convenient in some circumstances. With

the addition of appropriate commuting conversions for letν modµ( ) ← M0 in M1, this result may

even to extend to open terms.

�is mismatch is clearly related to the distinction between the Fitch-style calculi and the dual-

context calculi for 2 [PD01; Kav17; Shu18]. In order to further crystallize this divide, let us suppose

that we have a substition inverse to ↑.modµ(v0):

Γ.(µ | A) Γ.(1 | 〈µ | A〉)

↑.modµ(v0)

σ
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�is inverse substitution can be de�ned with the stronger, open-scope version of open: σ = ↑.open(v0)
However, the existence of σ is also su�cient to de�ne the stronger elimination rule:

Γ `M : 2A
Γ.µ ` open(M) : A

,

Γ.(µ | A).µµ ` v0 : A@m

Γ ` id : Γ @m
Γ `M : 〈µ | A〉@m

Γ ` id.M : Γ.(1 | 〈µ | A〉) @m Γ.(1 | 〈µ | A〉) ` σ : Γ.(µ | A) @m

Γ ` σ ◦ (id.M) : Γ.(µ | A) @m

Γ.µµ ` (σ ◦ (id.M)).µµ : Γ.(µ | A).µµ @m

Γ.µµ ` v0[(σ ◦ (id.M)).µµ] : A@m

With the introduction of this primitive substition σ, we can no longer trivially resolve all explicit sub-

stitutions by just pushing them in towards variables and this stronger version of open is an example

of such a stuck term. Substitution is still likely admissible, but it would no longer be automatic and

must be established quite carefully [GSB19].

�erefore, while MTT is certainly sound for the calculus of dependent right adjoints, it is not com-

plete, and the failure of completeness is precisely the lack of an inverse to the substitution ↑.modµ(v0).

It is not clear whether this loss of power is truly problematic, and it is reasonable to conjecture that it

is unimportant overall.
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2.7 Warps

Nakano’s [Nak00] later modality, wri�en�, marks a type as producing information one timestep later.

By capturing this information in the types, Nakano’s [Nak00] system is able to provide an abstract

characterization of productive de�nitions; one that is immune to refactoring or restructuring the de�-

nitions.

�is system has proven to be a tantalizing formulation of coinduction, but in order to capture

coinductive types it is necessary to add more modalities. In particular, Bizjak et al. [Biz+16] showed

how a combination of � and 2 could capture coinductive types, while � alone could not. �ere are

technical complications from combining these two modalities, however, and the interactions between2
and � have proven to be a major challenge for guarded type theories. In Section 2.3, we demonstrated

that MTT could reconcile these two modalities and thus provide a type theory which can smoothly

model coinduction.

Another line of research [Gua18] proposes a way to avoid these challenges by capturing 2 and �
as instantiations of the same parametrized modality. �erefore, rather than dealing with the actions of

two a priori unrelated modalities, Gua�o [Gua18] can just provide a type theory with one modality;

one which is su�ciently �exible to capture both 2 and � as instances. In particular, Gua�o de�nes

this übermodality, ∗p, which is parameterized by a warp: an abstract description of the rate at which

the computation produces information. To be precise, we will de�ne a warp to be a monotone function

from ω + 1→ ω + 1 which preserves all joins and sends ω to ω.

Remark 2.7.1. �is is a deviation from Gua�o [Gua18] which only required that only that p preserves

all joins, a weaker condition allowing α 7→ 0 as a valid warp. We have chosen to restrict warps in this

way because it allows us to work with a semantics in PSh(ω) without undue e�ort, and it still includes

both 2 and �. �

A program of type 〈∗p | A〉 then describes a computation which at stage n has produced the

information required by A at stage p(n). For instance, � would be modeled as ∗n7→n−1:
15

at stage n
this type has only produced the information for step n − 1. On the other hand, 2 can be de�ned as

∗n 7→ω , because at stage n the information for stage ω is already available. Monotonicity ensures that a

type cannot suddenly lose information that it had previously produced, and requiring that ω be sent to

ω ensures that globally a warp does not cause a computation to lose information.

It was challenging to explain how � and 2 should interact when they were separate modalities,

however, there is a simple method for combining them when viewed as particular warps: ∗p◦∗q ∼= ∗q◦p.
Simple computation assures us that our encodings of 2 and � combine as expected, e.g. 2 ◦ � ∼= 2.

Even though the generality of ∗p can be motivated by just two instances (2 and �), there are many,

many warps beyond just these two. �is extra �exibility turns out to be useful in capturing more

complex guarded programs, in which information is produced at various rates. We refer the reader to

Gua�o [Gua18] for further details and examples.

Despite the advantages provided by the warp modalities, the calculus is still complex and Gua�o’s

[Gua18] system is unsuitable for generalizing to a dependent type theory. �e central issue is, as

always, the management of the modal context: the proposed warp calculus does not satisfy a general

substitution principle. With the machinery of MTT, however, there is a simple way to recover this

calculus.

For a mode theory, we consider the poset-enriched category with a single object m and a 1-cell, p̄
for each cocontinuous function p : ω+1→ ω+1. We order these 1-cells such that p̄ ≥ q̄ if p(α) ≤ q(α)
for every α.

�e induced calculus is equipped with a modality for each warp, and Section 1.3 ensures that the

subtyping rules of Gua�o [Gua18] become natural transformations in MTT. �ere is no term corre-

15

Like Gua�o, we only give a warp’s action on �nite non-zero ordinals; its action on 0 and ω is forced.
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sponding to Löb induction, nor can there be: MTT does not ensure the existence of any “modal-speci�c”

operations and only provides the operations enforced by the mode theory. One can add Löb induction

as an axiom, but showing this is sound requires constructing a model of MTT which satis�es Löb in-

duction.

We now turn to constructing a model of MTT in PSh(ω), with ∗−1 and ∗ω being sent to the familiar

� and 2 in this model [Bir+12], thereby showing the soundness of Löb induction. More generally, we

shall arrange ma�ers so that Jµ∗pK is p̂∗, where p̂ is the restriction of the le� Galois connection for a

warp p. �is Galois connection can be constructed as follows:

p̂ : ω + 1→ ω + 1

p̂(α) =
∧
{n ∈ ω | α ≤ p(n)}

Moreover, using the requirement that p(ω) = ω and the fact that p is monotone, we can conclude that

the only situation when p(α) = ω isα = ω. To see this, observe that ifα = n < ω, then p(ω) = ω > n.

We have required that p(ω) =
∨
m p(m), so there must exist some m such that p(m) ≥ n because n is

compact. �erefore, m ∈ {n | n ≤ p(n)} and so p̂(n) ≤ m < ω.

Next, let us observe that p̂ is cocontinuous (as a le� adjoint), and therefore fully determined by its

restriction to ω. We have concluded that p̂(n) ∈ ω for all n ∈ ω, and so p̂ is fully determined as a map

ω → ω.

Lemma 2.7.2. �ere is a 2-equivalence betweenMcoop andM′. HereM′ is the poset-enriched category
with one object, an endomorphism for each monotone function ω → ω which preserves zero, and with
f ≤ g when f(n) ≥ g(n) for all n.

Proof. �is proof is a standard application of some adjoint calculus. First, we observe that since adjoints

(Galois connections) are unique up to isomorphism, the procedure sending p : HomM(m,m) to p̂ is

injective. Moreover, it is bijective because every monotone and 0-preserving function q : ω → ω
extends uniquely to a cocontinuous function q+ : ω+ 1→ ω+ 1, moreover, transposing this function

gives p : ω + 1→ ω + 1 such that p̂ = q. Here, p is determined by the following formula:

p(α) =
∨
{n ∈ ω | q(n) ≤ α}

In this case, we must have that p(ω) =
∨
{n ∈ ω | q(n) ≤ ω}, and since q(n) < ω by de�nition, we

must have that p(ω) ≥ n, for all n. �erefore, p(ω) = ω and so p constitutes a valid 1-cell inM.

�is shows that this functor is full and faithful, so it only remains to show that it respects the

ordering of 1-cells. To show this, it su�ces to recall the standard fact that if p ≤ p′, then p̂ ≥ p̂′.

Lemma 2.7.3. M′ is the full subcategory of Poscoop when we restrict to precisely one object: ω.

Proof. �is follows immediately by unfolding the de�nitions of the 1- and 2-cells inM′.

With this lemma in hand, we will construct our desired model:

�eorem 2.7.4. �ere exists a model of MTT withMwhere the mode is interpreted as the standard model
of type theory on PSh(ω), and each modality p is interpreted by a dependent right adjoint extending
p̂∗ a (p̂)∗. In particular, −1 is interpreted by the adjunction � a � and 7→ ω is interpreted by � a 2.

Proof. We will use �eorem 1.4.11 to construct this model. First, we must de�ne a 2-functor L :
Mcoop → Cat. We will de�ne this functor by factoring through the functor PSh(−) : Poscoop →
Cat. In particular, we de�ne the functor M coop → Poscoop by composing with the equivalence of

Lemma 2.7.2 and the inclusion of Lemma 2.7.3.

�is gives a 2-functorMcoop → Cat which sends the unique object to PSh(ω) and interprets each

lock as an appropriate inverse image functor. We may then apply Lemma 2.1.5 to conclude that each
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lock is then part of an adjunction which induces a dependent right adjoint. �erefore, �eorem 1.4.11

gives an appropriate model. For the �nal part of the theorem, we can simply calculate the behavior of

−1 and 7→ ω as they are fed through various equivalences to see that they indeed come out to the

desired values.

For instance:

−̂1(n) =
∧
{m | n ≤ m− 1} = n+ 1

�erefore, Jµ−1K = (n 7→ n+ 1)∗ = �, and therefore Mod−1 = � as expected.
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2.8 Internal Adjoints

In this section we consider two modalities which are adjoint to each other. We require that all modalities

are a weak form of dependent right adjoint, so they all must have a le� adjoint on the context. In this

section, however, we wish to internalize one of these le� adjoints so that it can be applied to types. �is

is a fundamental example arising in many di�erent se�ings [SS12; ND18; Shu18].

We de�ne a mode theory freely generated by the following diagram

m n

µ

ν

and the following two-cells, subject to the given equalities:

η : 1⇒ µ ◦ ν ε : ν ◦ µ⇒ 1

1µ = (1µ ? ε) ◦ (η ? 1µ) 1ν = (ε ? 1ν) ◦ (1ν ? η)

�is 2-category could be called the “walking adjunction”; a 2-functor out of it classi�es an adjunc-

tion in the codomain. It is routine to calculate that this category is also “self-dual” as a two-category:

M coop ' M (of course, the equivalence swaps m and n, µ and ν, and η and ε). �erefore, a model of

this instantiation of MTT must start from a pair of categories, representing the two sorts of contexts,

and an adjunction between them. We wish to show that this relationship extends to the modal types

themselves, so that 〈ν | −〉 a 〈µ | −〉. We will prove this by exhibiting the unit and counit of such an

adjunction, and show that they satisfy the required properties.

u : (x : A)→ 〈µ | 〈ν | A[¤η
·,x:(1|A)]〉〉

u , λx. modµ(modν(xη))

e : (x : 〈ν | 〈µ | A〉〉)→ A[¤ε
·,x:(1|〈ν|〈µ|A〉〉)]

e , λx. let modν(y0)← x in letν modµ(y1)← y0 in yε1

�eorem 2.8.1. �e terms u and e satisfy the triangle equalities up to internal equality, e.g.:

ν ν ◦ µ ◦ ν ν

µ µ ◦ ν ◦ µ µ

1ν

ν ? η ε ? ν

η ? µ µ ? η

1µ

Proof. We construct the terms witnessing these internal equalities as follows:

: (x : 〈ν | A〉)→ Id〈ν|A〉(x, e(modν(u)~ν x))

, λx. let modν(y)← x in refl(modν(y))

: (x : 〈µ | A〉)→ Id〈µ|A〉(x,modµ(e)~µ u(x))

, λx. let modµ(y)← x in refl(modµ(y))

Recall that~ is the term for axiom K constructed in Section 1.3. �e proof that this term typechecks is

involved and relies on interchange law from Section 1.2. For the sake of explicitness, we present part
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of this proof for the �rst equality. When type-checking this proof, we must show that refl(modν(y))
has the type Id〈ν|A〉(x, e(modν(u) ~ν modµ(y))). Let us consider the rightmost term of this equality

type:

e(modν(u)~ν modµ(y)) = e(modν(u(y)))

= e(modν(modµ(modν(yη))))

= modν(yη)ε

= modν(y[¤η
Γ.µν

])[¤ε
Γ]

= modν(y[¤η
Γ.µν◦¤εΓ.µν

])

= modν(y[¤ν ? η
Γ ◦¤ε ? ν

Γ ]) (∗)
= modν(y[¤ε ? ν◦ν ? η

Γ ])

= modν(y[¤
1µ
Γ ])

= modν(y[id])

= modν(y)

�e crucial move here is to observe that as part of a two-functor, −.µν and ¤−− preserve whiskering,

as was used in (∗). �is preservation is ensured, in particular, by the interchange law demanded in

Section 1.2. (�e line above (∗) just swaps both substitutions visually due to 2-contravariance.)

�eorem 2.8.2. If C and D are two categories which can be equipped with models of type theory, and
there is a pair of dependent right adjoints between them, JµµK, JµνK, where the le� adjoints (the maps
between categories of contexts) are adjoint, JµνK a JµµK, then C and D model MTT withM.

Proof. A straightforward application of �eorem 1.4.11.

�eorem 2.8.3. Any model ofM must interpret JµµK and JµνK as adjoint functors. Moreover, if Modµ
and Modν are induced by the adjunctions JµµK a Rµ and JµνK a Rν li�ed to a dependent right adjoints
(Lemma 2.1.3), then Rν a Rµ.

Proof. �e �rst claim is a result of a the fact that adjoint functors are precisely adjoint morphisms in

the 2-category, Cat. Since adjoint morphisms are preserved by 2-functors, and ν and µ inMcoop
are

internally adjoint, JµνK and JµµK are necessarily adjoint: JµνK a JµµK.

Moreover, if JµνK a Rν , where Rν li�s to Modν , by the uniqueness of adjoints we must have that

Rν ∼= JµµK. If we also have that Modµ is induced by a functorRµ ` JµµK, we then haveRν a Rµ.

2.8.1 When is Transposition Internally Definable?

In Licata et al. [Lic+18], a crucial move in the construction of the univalent universe is a right adjoint to

the path type. �e addition of this adjoint is di�cult, however, because the adjoint does not internalize

in a pleasant way. In particular, Licata et al. [Lic+18] showed that if the transposition action of the

adjunction is de�nable inside the type theory, then the interval is trivial. �us far, we have avoided

such issues in our treatment of adjoints and worked exclusively with the unit and counit. However,

since the adjoint to−I
is de�nable as an adjoint in the above sense, somewhere this issue must emerge.

Indeed, the crucial issue is that not all modalities give rise to an internal functor. Categorically, an

internal functor is one whose action on morphisms can be de�ned as an arrow AB → F (B)F (A)
.
16

Of

course, an immediate problem is that these two arrows do not live in the same category in our case: one

lives in mode m and the other in mode n. Even supposing we are considering an endoadjunction, such

16

�is is a special case of an enriched functor, making use of the observation that a cartesian closed category is self-

enriched.
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a term could still not be constructed. �e functorial action of a modality does not extend to arbitrary

terms. �at is, for the walking adjunction we do not have a term of the following type:
17

(A→ B)→ (〈µ | A〉 → 〈µ | B〉)

Instead, we have something akin to axiom K, which gives us 〈µ | A → B〉 → (〈µ | A〉 → 〈µ | B〉).

Taking advantage of the fact that any term constructible in a closed context is constructible under a

modality, this yields a functor on closed terms. In general, therefore, we cannot de�ne the transposition

operator one might hope for, some isomorphism

(〈ν | A〉 → B) ∼= (A→ 〈µ | B〉)

Instead, we have a pair of terms where Γ.µν◦µ ` A type1 @m and Γ.µµ ` B type1 @m for the �rst

and Γ.µν ` A type1 @m and Γ.µν◦µ ` B type1 @m for the second:

transp→νaµ : 〈µ | 〈ν | A〉 → B〉 → A[¤1
µ◦ν [η]]→ 〈µ | B〉

transp→νaµ , λf. λx. f ~µ u(x)

transp←νaµ : 〈ν | A→ 〈µ | B〉〉 → 〈ν | A〉 → B[¤ν◦µ
1 [ε]]

transp←νaµ , λf. λx. e(f ~ν x)

In certain cases we can simplify these operations, albeit with loss of power. For instance, if these

are endoadjunctions and we have an initial modality ⊥, then we could construct transpositions of the

following type:

〈⊥ | 〈ν | A〉 → B〉 → 〈⊥ | A[¤⊥◦ν⊥ ]→ 〈µ | B[¤⊥◦ν⊥ ]〉〉

〈⊥ | A→ 〈µ | B〉〉 → 〈⊥ | 〈ν | A[¤⊥⊥◦ν ]〉 → B[¤⊥◦µ⊥ ]〉

In the case of Licata et al. [Lic+18] this ⊥ modality is precisely the global sections modality and these

operators are the appropriate transpositions required by their constructions.
18

�e status of transposition in MTT is therefore complex, the naı̈ve transposition operation is not

even well-typed, and there are variety of possible replacements. It is worth emphasizing, however, that

these replacements do not require extensions to the mode theory: they are all constructible from the

unit and counit, for which there is no problem of internal versus external.

2.8.2 Crisp or Modal Induction Principles

Recall the typing rule for letν modµ( )←M0 in M1 from Section 1.2:

ν : HomM(o, n)
µ : HomM(n,m) Γ ctx @m Γ.µµ.µν ` A type1 @ o Γ.µµ `M0 : 〈ν | A〉@n

Γ.(µ | 〈ν | A〉) ` B type1 @m Γ.(µ ◦ ν | A) `M1 : B[↑.modν(v0)] @m

Γ ` letµ modν( )←M0 in M1 : B[id.M0] @m

Notice that there is an “extra” modality parameterizing this rule, ν, which modi�es M0 as well as the

data supplied toM1. �is extra generality is not frivolous; we can only de�ne compν,µ in Section 1.3.1

because we can eliminate a modality “under” another.

17

Indeed, if we had a term of this type, we could easily show that all modalities contain a point (a map A → 〈µ | A〉)
which would trivialize any comonads.

18

Note that, while Licata et al. [Lic+18] have the internal types 〈ν | −〉 = ℘ and 〈µ | −〉 =
√

, the type system they use

has only special judgemental support for the global sections modality [ and not for ν and µ.
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One might hope that a similar level of �exibility for all pa�ern matching-type elimination rules.

However, the current rule for booleans does not include this extra modality:

Γ ctx @m Γ.(1 | B) ` A type1 @m
Γ `Mt : A[id.tt] @m Γ `Mf : A[id.ff] @m Γ.µ1 ` N : B@m

Γ ` if(A;Mt;Mf ;N) : A[id.N ] @m

Indeed, if we changed 1 to an arbitrary ν, then this rule would state something considerably stronger:

not only do we have the expected elimination principle for B, but all of our modalities would have to

preserve B. Semantically, this is nonsense: modalities correspond to right adjoints and right adjoints

do not necessarily preserve colimits. For a concrete example, consider axiomitizing the irrelevance

modality. �is modality preserves all limits, and we can arrange it into a dependent right adjoint.

If we could somehow prove the “stronger” boolean elimination rule, we would be able to case on B
when it appears in an irrelevant term. �is would mean that we could construct two computations

which behave di�erently when supplied with di�erent “irrelevant” arguments, which was precisely

what irrelevance was meant to prevent. �e issue here is that while irrelevance preserves limits, it does

not preserve colimits, and in particular it does not preserve B.

In what circumstances can we safely recover the stronger elimination rules? If the stronger boolean

elimination principle corresponded to the preservation of booleans, it seems reasonable to expect that

we can recover it when ν is a le� adjoint: le� adjoints preserve colimits. �is idea underlies the crisp
induction principles in Shulman [Shu18]. �ere, the adjunction [ a ]was su�cient to recover modalized

elimination principles for the identity type, coproducts, and others. We will demonstrate that the same

principle can be applied to MTT when the mode theory speci�es an adjunction of modalities.

�eorem 2.8.4. 〈ν | B〉 ' B

Proof. Rather than directly constructing the equivalence, it will prove slightly easier to factor this pro-

cess into two steps:

1. First, we de�ne a general purpose crisp induction principle for 〈ν | B〉. �is construction mirrors

the one in Shulman [Shu18], though generalized slightly to not rely on the idempotence of any

modalities.

2. We use this crisp induction principle to construct both the maps and the proofs that these maps

are suitably inverse to each other.

For the de�nition of crisp if, parameterize what follows by the motive, Γ.µν◦µ.(ν | B) ` C type1 @m.

Γ.µν ` h : (b : B)→ 〈µ | C(tt)〉 → 〈µ | C(ff)〉 → 〈µ | C[↑.µµ.bη]〉@n

h(b, t, f) , if(b. 〈µ | C(bη)〉; t; f ; b)

Γ ` crisp ifC : (b : (ν | B))→ 〈ν ◦ µ | C(tt)〉 → 〈ν ◦ µ | C(ff)〉 → C[(¤ε
Γ ◦ ↑).b] @m

crisp ifC(b, t, f) , e(modν(h(b))~ν t~ν f)

It is slightly subtle to see that this de�nition is well-typed. In particular, in order to see that the substi-
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tution applied to C is correct, we make use of the following calculation:(
↑.µµ.v0[¤η

Γ.µν .(1|B)
]
)
◦ (↑.µν .v0.µµ) ◦¤ε

Γ.(ν|B)

=
(
↑.µν◦µ.v0[¤η

Γ.µν .(1|B)
◦ ↑.µν .v0.µµ◦ν ]

)
◦¤ε

Γ.(ν|B)

=
(
↑.µν◦µ.v0[↑.µν .v0 ◦¤η

Γ.(ν|B).µν
]
)
◦
(
¤ε

Γ.(ν|B).µµ

)
=
(
↑.µν◦µ.v0[¤η

Γ.(ν|B).µν
]
)
◦¤ε

Γ.(ν|B)

=
(
↑.µν◦µ ◦¤ε

Γ.(ν|B).v0[¤ν ? η
Γ.(ν|B) ◦¤

ε ? ν
Γ.(ν|B)]

)
= (¤ε

Γ ◦ ↑).v0

�is uses the triangle identities again. �e calculation is very similar to the reasoning used in order to

show that e and u satis�es the triangle identities.

With crisp if in hand, we can take actually construct the required equivalence.

b : 〈ν | B〉 → B@m

b(x) , let modν(x′)← x in h(x′)

where h(x) , crisp ifB(modν◦µ(tt),modν◦µ(ff), x)

b-1 : B→ 〈ν | B〉@m

b-1 , λx. if( . 〈ν | B〉; modν(tt); modν(ff);x)

: (b : 〈ν | B〉)→ Id〈ν|B〉(b, b
-1(b(b))) @m

(x) , let modν(x′)← x in h(x′)

where h(x) , crisp ifb. Id〈ν|B〉(modν(b),b-1(h(b)))(modν◦µ(refl(modν(tt))),modν◦µ(refl(modν(ff))), x))

: (b : B)→ IdB(b, b(b-1(b))) @m

(x) , if(b. IdB(b, b(b-1(b))); refl(tt); refl(ff);x)

�eorem 2.8.5. 〈ν | IdA(M0,M1)〉 ' Id〈ν|A〉(modν(M0),modν(M1))

Proof. As in �eorem 2.8.4, we will start by constructing a general modal induction principle and then

use this induction principle to prove this equivalence.

For the de�nition of crisp J, let us �x Γ.µν ` A type1 @mn and the motive:

Γ.µν◦µ, x0 : (ν | Aν ? η), x1 : (ν | Aν ? η), p : (ν | IdAν ? η(x0, x1)) ` C type1 @m

We now de�ne crisp J as follows:

Γ.µν ` h : (x0, x1 : A)(p : IdA(x0, x1))→
〈µ | (a : (ν | Aν ? η))→ C(a, a, refl(a))〉 →
〈µ | C[↑3.µµ.xη0.x

η
1.p

η]〉@n

h(x0, x1, p, b) , J(a0, a1, p. 〈µ | C(xη0, x
η
1, p

η)〉, b, p)

Γ ` crisp JC : (x0, x1 : (ν | A))(p : (ν | IdA(x0, x1)))→
〈ν ◦ µ | (a : (ν | Aν ? η))→ C(a, a, refl(a))〉 →
C[(¤ε

Γ ◦ ↑3).x0.x1.p] @m

crisp JC(x0, x1, p, b) , e(modν(h(x0, x1, p))~ν b)
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We can now construct the desired equivalence directly. Let us suppose we have Γ.µν ` A type1 @ ν
and Γ.µν `M0,M1 : A@ ν:

id : 〈ν | IdA(M0,M1)〉 → Id〈ν|A〉(modν(M0),modν(M1)) @m

id(p) , let modν(p′)← p in h(p′)

where h(p) , crisp Jx0,x1,p. Id〈ν|Aν ? η〉(x0,x1)(modν◦µ(λa. refl(modν(a))),M0,M1, p)

id-1 : Id〈ν|A〉(modν(M0),modν(M1))→ 〈ν | IdA(M0,M1)〉@m

id-1(p) , J(M,x. let modν(x′)← x in modν(refl(x′)), p)

where M(modν(x0),modν(x1), p) , 〈ν | IdA(x′0, x
′
1)〉

: (p : 〈ν | IdA(M0,M1)〉)→ Id〈ν|IdA(M0,M1)〉(p, id
-1(id(p))) @m

(p) , let modν(p′)← p in h(p′)

where h(p) , crisp Jx0,x1,p. Id〈ν|IdAν ? η (x0,x1)〉(modν(p),id-1(h(p)))(modν◦µ(λx. refl(modν(refl(x)))),M0,M1, p))

: (p : Id〈ν|A〉(modν(M0),modν(M1)))→ IdId〈ν|A〉(modν(M0),modν(M1))(p, id(id-1(p))) @m

(p) , J(M,x. let modν(x′)← x in modν(refl(x′)), p)
where M(modν(x0),modν(x1), p) = IdId〈ν|A〉(modν(x0),modν(x1))(p, id(id-1(p)))

For the last equality proof we have adopted the informal pa�ern matching syntax one might expect

in an implementation of MTT; without this syntactic nicety the motive is too unreadable for a paper

proof.
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2.9 Relative Realizability

�us far we have limited our examples to certain presheaf toposes. �is simpli�es ma�ers because

the semantics of dependent type theory and dependent right adjoints are both well understood in this

context. �ere is, however, no fundamental restriction inMTT that requires us to work with presheaves.

In this section we turn our a�ention to examples arising in categorical realizability. �ese include

the category of assemblies, triposes, and realizability toposes. �e use of assemblies as a model of

dependent type theory is far from novel, but we recall some de�nitions and details here.

2.9.1 Preliminary Aspects of Categorical Realizability

To begin with, our notion of realizability isolates a particular abstract model of computation: a PCA.

�is is a combinatorial de�nition which is concise to state and easy to work with, if inconvenient to

actually program in. We refer the reader to Van Oosten [Oos08] and Longley and Normann [LN15] for

a comprehensive summary.

De�nition 2.9.1 (Partial Combinatory Algebra). A partial combinatory algebra is a set A equipped

with a partial operator · : A× A ⇀ A. �is operator represents application and associates to the le�,

we will o�en suppress it entirely, writing ab. Moreover, there must be distinguished elements S,K ∈ A
satisfying the following:

• S · a, S · a · b are both de�ned for all a, b ∈ A.

• S · a · b · c ' (a · c) · (b · c).

• K · a is de�ned for all a ∈ A.

• K · a · b = a

With this abstract notion of computation, we can construct a category which “glues” the category

of sets to A, such that arrows between these sets are computable.

De�nition 2.9.2 (Assembly). An assembly is a pair (X,Φ) of a set X and a map X → P(A) \ {∅}. A

morphism between assemblies X Yf
is a set-theoretic function f : X → Y such that there exists

an element a ∈ A satisfying ∀x ∈ X, b ∈ ΦX(x). ab ∈ ΦY (f(x)). We will say that a tracks f and

write a 
 f .

�eorem 2.9.3. �e category of assemblies over a PCA, Asm(A) is a locally cartesian closed regular
category.

Proof. �is is a standard result. A detailed textbook proof is given by Van Oosten [Oos08] for regularity

and cartesian closure.

De�nition 2.9.4 (Uniform Family). A uniform family (I,Xi) is a pair of an assembly I and a family of

assemblies (Xi)I indexed over the underlying set of I . A morphism of uniform families is a pair of two

functions, (I,Xi) (J, Yj)
(f,g)

where f : I → J is a map of assemblies, and g : Xi → Yj is an indexed

family of maps gi : Xi → Yf(i). Moreover, we require that g be uniformly tracked, that is, there a code

a ∈ A such that for all i ∈ I and n ∈ ΦI(i), e · i 
 gi.

�eorem 2.9.5. UFam(A) is a split �bration of Asm(A) and equivalent to cod : Asm(A)→ →
Asm(A).

Proof. Another standard result, proven in Jacobs [Jac99] for example. We observe that the spli�ing in-

duces a functor Asm(A)op → Cat which acts by precomposition on families. �at is, f∗((I, (Xi)i∈I)) =
(J, (Xf(j))j∈J).
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Corollary 2.9.6. UFam(A) is a model of (extensional) dependent type theory, with contexts being drawn
from Asm(A) and types in context X being uniform families over X .

Proof. �is is proven in Jacobs [Jac99] using categories with a�ributes rather than natural models. We

will discuss this di�erence in greater detail in a moment.

�eorem2.9.7. Each Grothendieck universeV induces a universe in UFam(A), generic for all (�berwise)
V-small types.

Proof. �e universe is given by the following uniform family over 1 (which is just an assembly) U =
((X ∈ V) × X → P(A), λ . A). �e generic �bration is given by U together with the following

assembly over it:

Ũ = (
∑

(A,ΦA)∈UA, λ((A,ΦA), x). ΦA(x))

A textbook account of this proof can be found in Luo [Luo94].

Note that we are not asking of for the impredicative universe of modest sets [Jac99], merely the

standard predicative universes induced by our ambient set theory. While an impredicative universe

could be incorporated into our framework, there is no need for impredicativity in what follows.

Corollary 2.9.8. UFam(A) is a model of Martin-Löf Type �eory with a hierarchy of universes à la
Coquand.

Proof. �is is an immediate corollary of �eorems 2.9.5 and 2.9.7. Since, however, we have used natural

models throughout the rest of this work we will take a moment to show how this structure explicitly

li�s to a natural model. �e distinction is purely formal: full, split comprehension categories, cwfs, and

natural models are all equivalent.

First, we take the category of contexts to be Asm(A). �e presheaf of types over it is de�ned by

sending Γ to the uniform families over Γ. �e presheaf of terms consists is de�ned as follows:

Γ 7→
∑

(Γ,A):UFam(A) HomUFam(A)((Γ, 1), A)

In both cases, the action of substitution is given by precomposition and changing the indices appropri-

ately in the families.

Context extension comes from the comprehension structure, but explicitly given an assembly Γ and

a uniform family A over it:

Γ.A , (Γ×A, λ(γ, a). ΦΓ(γ) ∧ ΦA(γ)(a))

Where ∧ is the standard “cartesian product” of sets of a realizers:

U ∧ V = {a ∈ A | π1 · a ∈ U ∧ π2 · a ∈ V }

It is a routine calculation to show that this induces the required natural model structure. �e remaining

de�nitions of dependent sums, products, equality, etc. are likewise transported between the equivalence

of cwfs and categories with a�ributes. We do not actually need to inspect how these are constructed

in what follows, however, we will not write out the de�nitions here. �e full proof may be found in

Hofmann [Hof97].

Already in this framework there are evident modalities. For instance, the discrete functor ∇ :
Set → Asm(A) induces a size-preserving dependent right adjoint.

19
�is allows us to embed non-

computable data into a universe of computable functions. Further adjoints, however, naturally arise in

the context of relative realizability.

19

It is perhaps confusing that objects∇(A) are called discrete objects in realizability theory, because∇ behaves precisely

like the codiscrete functor in axiomatic cohesion.
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2.9.2 Preliminary Definitions for Relative Realizability

De�nition 2.9.9 (Relative PCA). A relative PCA is a PCA with a chosen subsetA] ⊆ Awhich is closed

under application and contains S and K

One should intuitively see A] as the collection of computable elements of A while A itself may

contain other (continuous) elements. See Birkedal [Bir00] for examples of relative PCAs.

De�nition 2.9.10 (Relative Assemblies). �e category of relative assemblies, Asm(A,A]) has as ob-

jects the objects of Asm(A), but morphisms are required to be tracked by an element of A].

We can now de�ne the functors we wish to interpret in our modal type theory:

Asm(A,A])

Asm(A])

a aΓ∆ ∇

First, the de�nition of ∆ is the straightforward inclusion. We know that A] ⊆ A, and so an assembly

over A] is a speci�c case of an assembly over A. Moreover, the de�nition of morphism is the same in

these two categories so this functor is full and faithful. �e de�nition of Γ is only moderately more

complex:

Γ(X,ΦX) = (X,λx. A] ∩ ΦX(x))

In other words, Γ removes the non-computable realizers from each assembly. �e de�nition on mor-

phisms is trivial since we have already required that morphisms be computable and A] is closed under

application. Finally, the de�nition of ∇. �is is intuitively meant to “pad” each set of realizers with

arbitrary computable data, but its de�nition is slightly more complex than this:

∇(X,ΦX) = (X,λx.
⋃
φ⊆A

φ ∧ (φ ∩A] ⊃ ΦX(x)))

In this de�nition we have used some notation common to tripos theory and categorical realizability

more generally. In particular,

U ∧ V = {a ∈ A | π1 · a ∈ U ∧ π2 · a ∈ V }
U ⊃ V = {a ∈ A | ∀b ∈ U. a · b ∈ V }

We now wish to show that Γ and ∇ can be extended to functors with an action on UFam(A]) and

UFam(A,A]). �e action on objects is obvious for both, sending (I,Xi∈I) to (F (I), (F (Xi))i∈F (I)).

�is de�nition is taking advantage of the fact that both of these maps behave as the identity on all the

set structure. So, for instance, Γ has no impact on the underling set of the indexing assembly I . �e

more di�cult question is to see that this has an action on terms (which is su�cient to see that that this

has an action on terms).

Lemma 2.9.11. Γ li�s to a dependent right adjoint.

Proof. We have already de�ned how Γ acts on types, it remains to show how it acts on terms (mor-

phisms in the UFam(A]) �bers) and to show that it respects context extension weakly and substitution

strictly.
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First, for the action on arrows in UFam(A]), given an arrow (j, y) : (I,Xi∈I) → (J, Yj∈J), we

must show that (j, y) : (Γ(I), (Γ(Xi))i∈I) → (Γ(J), (Γ(Yj))j∈J) is tracked. We know that there is

some ej 
 j in Asm(A,A]). �erefore, this same ej tracks Γ(I) Γ(J)j
in Asm(A]). Next, we

must also have that there is a realizer eg ∈ A], such that for all i and ai ∈ ΦI(i), eg ·i 
 yi. By precisely

the same argument as for ej , we can see that eg is also a valid realizer for g. �is de�nition ensures

that Γ has an extension to types and terms.

Next, it is immediate that this functor strictly preserve substitution, as substitution is given es-

sentially by “precomposition” in the index of the family. What remains to be shown is that context

extension is preserved up to isomorphism.

Recall that context extension in Asm(A) is de�ned as follows:

∆.A = (
∑

γ∈∆Aγ , λ(γ, a). Φ∆(γ) ∧ ΦAγ (a))

However, taking the intersection of U ∧ V with A] is computably equivalent to (U ∩A]) ∧ (V ∩A]).

�erefore Γ(∆.A) ∼= Γ(∆).Γ(A), as required.

Lemma 2.9.12. ∇ extends to a dependent right adjoint.

Proof. We have exactly the same proof obligations as Lemma 2.9.12. To start with, suppose again

that we have (j, y) : (I,Xi∈I) → (J, Yj∈J) in UFam(A]), we wish to show that F (j, y) induces

an arrow in UFam(A,A]). As before, we keep the same set-theoretic arrows. What remains to be

shown is that they are still tracked. We had a realizer ej 
 j before, the new realizer is de�ned as

λ∗〈p, a〉. 〈p, λ∗x. ej(a(x))〉. In order to show that this is type-correct, let us �rst suppose that we have

some realizer 〈p, a〉 ∈ Φ∇I(i). We then have that p ∈ φ ⊆ A and a ∈ (φ∩A] ⊃ ΦX(x)). �erefore, we

can pick the same φ to instantiate the existential quanti�er in Φ∇J(f(i)), and it is easily observed that

〈p, λ∗x. ej(a(x))〉 indeed has the correct type. Now, the same basic procedure applies to the uniform

realizer in the �bers. Given eg which tracks g uniformly in each �ber, we de�ne the following:

λ∗i. λ∗〈p, a〉. 〈p, λ∗x. e · i · (a · x)〉

It is another tedious but routine inspection to see that this has the correct type. It is again easily seen

that this strictly commutes with substitution. It remains to show that this preserves context extension.

Suppose again we have ∆ and ∆ ` A. We know that the following de�nes context extension:

∆.A = (
∑

γ∈∆Aγ , λ(γ, a). Φ∆(γ) ∧ ΦAγ (a))

Now,∇(∆.A) is therefore equipped with the following set of realizers for 〈γ, a〉:⋃
φ⊆A φ ∧ (φ ∩A] ⊃ Φ∆(γ) ∧ ΦAγ (a))

Now, on the other hand, at 〈γ, a〉, we have that ∇(Γ).∇(A) has the following set of realizers:(⋃
φ⊆A φ ∧ (φ ∩A] ⊃ Φ∆(γ))

)
∧
(⋃

φ⊆A φ ∧ (φ ∩A] ⊃ ΦA(γ)(a))
)

In order to complete the isomorphism, it su�ces to give any pair of realizers (not necessarily inverses!)

which go between these two sets. It is obvious how to from �rst to the second. Going from the second

to the �rst requires a small degree of creativity:

λ∗〈〈p1, a1〉, 〈p2, a2〉〉. 〈〈p1, p2〉, λ∗〈x1, x2〉. 〈a1 · x1, a2 · x2〉〉

In particular, we vary the choice of φ between the two. If we are given realizers at φ1 and φ2, we

produce a realizer at φ1 ∧ φ2.
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Lemma 2.9.13. Both Γ and∇ preserve U-smallness.

Proof. �is follows from the fact that both Γ and ∇ have a trivial action on the sets underlying the

assemblies.

�ese results together tell us that the adjoint situation induced by relative realizability is entirely

within the grasp of MTT.

2.9.3 MTT for Relative Realizability

Now that we have proven that these categories of assemblies are models of type theory and that the

functors between them are dependent right adjoints, it is straightforward to use MTT to reason about

this situation.

For our mode theory, we pick the following:

m n

µ

ν

We demand that these form an internal adjoint, following Section 2.8:

η : 1⇒ µ ◦ ν ε : ν ◦ µ⇒ 1

1µ = (µ ? ε) ◦ (η ? µ) 1ν = (ε ? ν) ◦ (ν ? η)

We will interpret µ as ∇ and ν as Γ in our intended model. Under this interpretation, we would also

like to ensure that ν is full and faithful. �is can be enforced in the mode theory by requiring η to be

an isomorphism.

It follows from the calculations in Section 2.8 that they are adjoint to each other. We therefore will

content ourselves with showing that Γ is full and faithful in this subsection.

First, let us recall the standard categorical argument that if the unit is an isomorphism then the le�

adjoint is full and faithful.

Lemma 2.9.14. Given an adjunction L a R, if η is an isomorphism then L is full and faithful.

Proof. We wish to show that Hom(A,B) ∼= Hom(L(A), L(B)). We observe from the adjoint L a R
that Hom(L(A), L(B)) is isomorphic to Hom(A,R(L(B))). However, we can post-compose with the

isomorphism η−1
and conclude that Hom(A,R(L(B))) ∼= Hom(A,B), completing the proof.

A complication emerges when we a�empt to replay this argument in MTT. As discussed in length

in Section 2.8.1, it is not easy to internalize transposition inside MTT. We therefore cannot hope for an

equivalence (A → B) ' (〈ν | A〉 → 〈ν | B〉). Indeed, such a thing is not even possible to state as

wri�en, since A,B must live in mode n, and yet 〈ν | A〉, 〈ν | B〉must live in mode m. Instead, we can

obtain a similar statement.

�eorem 2.9.15. Assuming function extensionality, (A→ B) ' 〈µ | 〈ν | A〉 → 〈ν | B〉〉

Proof. We have already seen most of the le�-to-right direction:

h0 : (A→ B)→ 〈µ | 〈ν | A〉 → 〈ν | B〉〉
h0(f) , let modµ(f ′)← compµ,ν(u(f)) in modµ(λa. f ′ ~ν a)
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For the reverse, we use the following map:

h1 : 〈µ | 〈ν | A〉 → 〈ν | B〉〉 → A→ B

h1(f, a) , coe[η−1 : µ ◦ ν ⇒ 1](f ~µ u(a))

�e proof that these are appropriately mutually inverse requires function extensionality. With function

extensionality, however, it follows the expected pa�er of “induct and reduce”.



3 Conclusions

We have contributed MTT, a type theory for working with multiple interacting modalities. In §1, we

developed a precise account of MTT’s metatheory and semantics. In §2, we explored the applicability

of MTT and demonstrated its utility in working with realistic modal situations.

Towards an Implementation of MTT A major point of future work is the development of an implemen-

tation of MTT. Substantial preliminary implementation e�orts are already underway with Menkar [Nuy19].

In addition to the engineering e�ort, a systematic account for an algorithmic syntax of MTT as well as

proof of normalization is needed. We believe that the general ideas of Gratzer, Sterling, and Birkedal

[GSB19] are applicable to this situation and a similar series of proofs could be carried out for MTT,

perhaps applying more modern gluing techniques [Coq18]. �e hope would be to prove that the judg-

ments Γ ` M = N : A@m and Γ ` A = B type` @m are decidable relative to a decision procedure

for equality in the underlying mode theory.

We have largely ignore the issue of the decidability of our mode theories in §2, but this issue is

central to any implementation of MTT. In particular, some of the mode theories considered in, e.g.

Section 2.7, are clearly undecidable. In the case of Section 2.7 for instance, it would be necessary to

construct a �xed set of warps for which equality is decidable, but which are still expressive enough to

recover most of the original mode theory.

Le� Adjoints As discussed in Section 1.8.4, MTT trades a measure of generality for a degree of sim-

plicity compared to LSR. One might hope, however, that it would be possible to include a connective

for le� adjoints, as well as the current connective which models right adjoints without losing all of this

simplicity. It is not obvious that this can be done without signi�cantly changing MTT; the introduction

rule for modalities is exceptionally speci�c to a right adjoint. �is additionally �exibility would allow

us to model several modalities which are currently out of reach. For instance, when modeling an ad-

joint chain we cannot model the �nal adjoint. If we could include le� adjoints, this would no longer be

an issue.

Directed Type Theory and op In directed type theory [Nor19], there are a wide variety of modalities.

One, however, stands out as a distinctly unique phenomenon: Aop
. However, this does not seem to �t

into our framework, because −op
does not seem to be part of a dependent right adjoint. Essentially,

the le� adjoint must be −op
when constructing the term part of the DRA, and the le� adjoint must be

1 (or−co
when working in 2-categories) when constructing the type part of the DRA. It does not seem

possible, therefore, to make directed type theory with an opposite modality a straightforward instance

of MTT.

In Section 2.4, we built extensions of MTT (�eorems 2.4.7 and 2.4.14) in which terms and their

types’ codes use the available variables with a di�erent modality. It is not unimaginable that the tech-

nique used there may provide a solution to directed type theory.

Modalities which Model E�ects Unfortunately, it is highly unlikely that any modality which captures

an e�ect would form a modality suitable for MTT. Recall that modalities in MTT preserve products and

115
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will also preserve a unit type, if one were added to MTT. �is would give us the following equivalence:

〈µ | 1〉 ' 1

If 〈µ | −〉 is intended to represent an e�ectful computation, this equivalence tells us that there are

no interesting e�ects possible. If there were, we would have at least 2 distinct inhabitants in 〈µ | 1〉:
the computation which has an e�ect and the computation which does not. �is immediately rules out

modeling Moggi [Mog91] within MTT. Additionally, it means that while Call-by-Push-Value [Lev12]

can be partially incorporated in MTT, we can only model one of the two modalities. �at is, while

we can model the inclusion of values into computations, the reverse is not a (weak) dependent right

adjoint.

A framework su�ciently general to include arbitrary monads as modalities must have a notion of

modality which does not assume the existence of a le� adjoint, and therefore must look quite di�erent

than MTT. Since, however, any monad can be decomposed into the composition of a le� and right

adjoint, a framework which can model le� adjoints could likely handle this application.
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