Computability with higher-order functions

Daniel Gratzer Tuesday 29th April, 2025

Turings Venner

- I'm an assistant professor in the logsem $group/\mathsf{PL}^2\mathsf{S}^2$ section
- I'm interested in programming languages.

- I'm an assistant professor in the logsem group/ $\mathsf{PL}^2\mathsf{S}^2$ section
- I'm interested in programming languages.
- "how do (weird) programming language interact with (weirder) geometry."
- Key words: type theory, higher category theory, homotopy theory.

- I'm an assistant professor in the logsem $group/PL^2S^2$ section
- I'm interested in programming languages.
- "how do (weird) programming language interact with (weirder) geometry."
- Key words: type theory, higher category theory, homotopy theory.

Real type theory, done by real type theorists:

 $\begin{aligned} &\hom_{\widehat{C}}(X, f^*d_*Z) \\ &\simeq \prod_{c:\langle \operatorname{op}|C \rangle} X(c) \to \operatorname{hom}(f^{\dagger}c, d) \to Z \\ &\simeq \left(\sum_{c:\langle \operatorname{op}|C \rangle} X(c) \times \operatorname{hom}(f^{\dagger}c, d) \right) \to Z \end{aligned}$

Good news: I'm not talking about type theory today

Today's talk:

- not my work!
- not super proof-y/rigorous
- mostly from a blogpost I read 10+ years ago.
- we get to where we get to; just interrupt with questions $\ensuremath{\textcircled{\odot}}$

Real goal: show something I found surprising and exciting

What sort of problems admit *computable* solutions?

What sort of problems admit *computable* solutions?

- considered informally in math for a *long* time
- lots of attention in the early 20^{th} century
- NB: predates computers as we know them

Definition

A partial function $\mathbb{N} \rightarrow \mathbb{N}$ is computable if there is a *Turing machine* tracking it.

Theorem (Church and Turing)

A bunch of reasonable-looking problems are not computable.

Definition

A partial function $\mathbb{N} \rightarrow \mathbb{N}$ is computable if there is a *Turing machine* tracking it.

Theorem (Church and Turing)

A bunch of reasonable-looking problems are not computable.

Small quiz, do we know who those people are?

Definition

A partial function $\mathbb{N} \rightarrow \mathbb{N}$ is computable if there is a *Turing machine* tracking it.

Theorem (Church and Turing)

A bunch of reasonable-looking problems are not computable.

Why is this a good definition though?

The Chuch–Turing Hypothesis

Turing machines unintuitive, I propose the following instead:

Definition (Daniel computability)

 $f : \mathbb{N} \rightarrow \mathbb{N}$ is computable if Daniel can guess f(n) for each n in ≤ 3 seconds.

More seriously: why not some other definition?

We hypothesize all reasonable ones coincide:

Thesis

All effective models of computation encode the same computable functions $\mathbb{N} \rightharpoonup \mathbb{N}.$

Primary evidence:

Theorem (Church, Turing, Rosser, ...)

Turing machines, the λ -calculus, Post's machines, ... all recover the same functions

So, why is this a good definition? It's incredibly robust

And thus the problem of what computation is was solved forever...

We actually have two problems to consider:

- 1. How do we describe *data* (how do we describe/encode input and output)
- 2. How do we describe *computation*

Thus far, we've basically assumed that our data was various natural numbers.

- $\bullet\,$ We can encode a lot of stuff using just $\mathbb N$
- As CS people, we encode stuff as a bunch of bits all the time!

So... why care about anything besides \mathbb{N} ?

- $\bullet\,$ We can encode a lot of stuff using just $\mathbb N$
- As CS people, we encode stuff as a bunch of bits all the time!
- Mathematician term: Gödel encoding

So... why care about anything besides $\mathbb{N}?$

Two basic ways we could fail to adequately encode something:

- Need to make sure every widget w is represented by some $n (n \Vdash w)$.
- If $n \Vdash w$, we need to compute just the expected operations for widgets on n.

Two basic ways we could fail to adequately encode something:

- Need to make sure every widget w is represented by some $n (n \Vdash w)$.
- If $n \Vdash w$, we need to compute just the expected operations for widgets on n.

Two basic ways we could fail to adequately encode something:

- Need to make sure every widget w is represented by some $n (n \Vdash w)$.
- If $n \Vdash w$, we need to compute just the expected operations for widgets on n.

The halting problem is decidable... if we encode a TM with a halting bit in front!

Where this comes to a head: computing with functions.

- The halting problem etc., are about computing with source-code
- Can we study what it means to just compute with functions on their own?

Serious problems encoding these as natural numbers if we want all functions...

If this was a math-y talk

I can't resist just defining computability structures:

Definition (via Longley-Normann)

A computability structure C basically describes

- A collection of types T
- A bunch of sets C_{τ} describing the values of type τ .
- A predicate comp : $(C_{\tau} \rightharpoonup C_{\sigma}) \rightarrow \{\top, \bot\}$ telling us what's *C*-computable.
- We insist that C-computable functions contain (1) the identity and (2) compose.

Just a way to talk about computing with different data.

Really, what we want to think about is a programming language!

- We have a bunch of types and values/constants
- We know how to run a program on an input and inspect the result.

Our goal: study what programs we can write at types other than nat.

The bitter truth:

Theorem

The Church–Turing thesis does **not** extend to computability at higher type.¹

This is actually true already for the λ -calculus and Turing machines.

(Be careful though! This is sensitive to how we encode functions)

¹One way to mathematize this: $\mathbf{RT}(\mathcal{K}_1)$ is not equivalent to $\mathbf{RT}(\mathcal{K}_2)$.

Our goal for the rest of the day: give an example such a divergence.

- To describe our example, we need a programming language for it.
- I am a PL person; become agitated if my talk doesn't introducing a new language.

Let's define a baby functional programming language to work in.

Questions? 5 minute break?

I want a language with the following types:

- 1. Natural numbers nat
- 2. Booleans bool
- 3. First-class functions $\tau \rightarrow \sigma$

The basic values of these types are as follows:

true:bool false:bool $ar{n}:$ nat fn $x
ightarrow e: au
ightarrow \sigma$

Besides values, we have a few key program constructs we'll use:

- Recursive functions
- if b then e_t else e_f
- $\bullet \ \texttt{inc}, \texttt{dec}: \texttt{nat} \to \texttt{nat}$
- isZero : nat \rightarrow bool

Using these we can define things like addition, equality operators for **nat** and **bool**.

Besides values, we have a few key program constructs we'll use:

- Recursive functions
- if b then e_t else e_f
- $\bullet \ \texttt{inc}, \texttt{dec}: \texttt{nat} \to \texttt{nat}$
- isZero : nat \rightarrow bool

Using these we can define things like addition, equality operators for **nat** and **bool**.

Sometimes called PCF

let n + m =
 if isZero(n) then m else inc(dec(n) + m)
let n * m =
 if isZero(n) then 0 else m + (dec(n) * m)
let factorial n =
 if isZero(n) then 1 else n * factorial(dec(n))

let n + m =
 if isZero(n) then m else inc(dec(n) + m)
let n * m =
 if isZero(n) then 0 else m + (dec(n) * m)
let factorial n =
 if isZero(n) then 1 else n * factorial(dec(n))

let n + m =
 if isZero(n) then m else inc(dec(n) + m)
let n * m =
 if isZero(n) then 0 else m + (dec(n) * m)
let factorial n =
 if isZero(n) then 1 else n * factorial(dec(n))

We're using Currying for multi-argument functions; could also just add pairs.

type $BitStream = nat \rightarrow bool$

type $BitStreamPred = BitStream \rightarrow bool$

Our main result:

Theorem

We can decide the equality of total BitStreamPreds:

 $\mathsf{eq}:\mathsf{BitStreamPred}\to\mathsf{BitStreamPred}\to\mathtt{bool}$

This result is a bit hard to attribute precisely; it has many related incarnations

In addition to Berger, Escardó, and Simpson, these people are certainly relevant:

All of these operators are hereditarily total:

- For ground types (bool, nat), hereditary totality is just termination.
- For $\tau \rightarrow \sigma,~{\rm HT}$ means mapping HT inputs to HT outputs.

Example

An HT BitStreamPred needs to terminate only when given an HT bitstream

Warning!

All of our operators may do whatever they want on non-HT inputs

No, this is actually very weird:

- BitStream does not admit decidable equality.
- (nat
 ightarrow nat)
 ightarrow bool does not admit decidable equality.
- This is *not true* for Turing machine model!

Consequence: $nat \rightarrow bool$ and $nat \rightarrow nat$ are not equivalent!

Key Idea

The only way to use a function $f : \tau \to \sigma$ is to apply f.

- In particular: all we can do with f : BitStream is query bits
- If $\Phi(f)$: BitStreamPred terminates, then Φ queries only finitely many bits of f.
- In fact, upper bound for these queries across all *f*s

Theorem

If Φ : BitStreamPred is HT, then there is N such that:

 $\forall f,g : \mathsf{BitStream}. f,g \text{ are } HT \rightarrow (\forall i \leq N. f(i) = g(i)) \rightarrow \Phi(f) = \Phi(g)$

Informally: Φ never looks past N bits of its input.

N is the *modulus of uniform continuity* of Φ .

Theorem

If Φ : BitStreamPred is HT, then there is N such that:

 $\forall f,g : \mathsf{BitStream}. f,g \text{ are } HT \rightarrow (\forall i \leq \mathsf{N}. f(i) = g(i)) \rightarrow \Phi(f) = \Phi(g)$

Informally: Φ never looks past N bits of its input.

N is the *modulus of uniform continuity* of Φ .

"Proof".To the board! □

Moral idea

To compute $\Phi = \Psi$, suffices to check output on finitely many cases $(2^{\max(N_{\Phi}, N_{\Psi})})$.

This... isn't enough.

- Given Φ , if we could *compute* N, that'd be good.
- This is possible
- Subtle differences in definition of modulus of uniform continuity matter

We'll be more indirect, but it only works because of N's existence.

 $\mathsf{search}:\mathsf{BitStreamPred}\to\mathsf{BitStream}$

 $\mathsf{forall}:\mathsf{BitStreamPred}\to\mathsf{bool}$

 $\mathsf{exists}:\mathsf{BitStreamPred}\to\mathsf{bool}$

We'll define these three functions

 $\textbf{search}: \mathsf{BitStreamPred} \to \mathsf{BitStream}$

 $\mathsf{forall}:\mathsf{BitStreamPred}\to\mathsf{bool}$

 $\mathsf{exists}:\mathsf{BitStreamPred}\to\mathsf{bool}$

Find an example satisfying this predicate, otherwise return junk

 $\mathsf{search}:\mathsf{BitStreamPred}\to\mathsf{BitStream}$

 $\textbf{forall}: \mathsf{BitStreamPred} \to \mathsf{bool}$

 $\mathsf{exists}:\mathsf{BitStreamPred}\to\mathsf{bool}$

Check whether a predicate is always true

 $\mathsf{search}:\mathsf{BitStreamPred}\to\mathsf{BitStream}$

 $\mathsf{forall}:\mathsf{BitStreamPred}\to\mathsf{bool}$

 $\overset{\text{exists}}{:} \mathsf{BitStreamPred} \to \mathsf{bool}$

Check whether a predicate is ever true

Suppose that we have search, forall, and exists:

eq : BitStreamPred \rightarrow BitStreamPred \rightarrow bool eq $\Phi \Psi = \text{forall}(\texttt{fn} \ s \rightarrow \Phi(s) = \Psi(s))$

Moral: two predicates being equal everywhere can be expressed as a third predicate!

Suppose that we have search, forall, and exists:

eq : BitStreamPred \rightarrow BitStreamPred \rightarrow bool eq $\Phi \Psi = \text{forall}(\texttt{fn } s \rightarrow \Phi(s) = \Psi(s))$

Moral: two predicates being equal everywhere can be expressed as a third predicate!

Let's assume search for a bit:

exists, forall : BitStreamPred \rightarrow bool exists $\Phi = \Phi(\text{search}(\Phi))$ forall $\Phi = \text{not}(\text{exists}(\texttt{fn } s \rightarrow \text{not}(\Phi(s))))$ Let's assume search for a bit:

exists, forall : BitStreamPred \rightarrow bool exists $\Phi = \Phi(\text{search}(\Phi))$ forall $\Phi = \text{not}(\text{exists}(\texttt{fn } s \rightarrow \text{not}(\Phi(s))))$

Something is always true if it's not the case that it's ever false.

Questions? 5 minute break?

Now, at last, we arrive at search.

Big idea:

- First, run search on fn $s \to \Phi(\texttt{false} \rhd s)^2$
- If the result s actually satisfies $\Phi(\texttt{false} \triangleright -)$, return $\texttt{false} \triangleright s$.
- Otherwise, return whatever we can find for $fn \ s \rightarrow \Phi(true \triangleright s)$ with true append.

² \triangleright appends something to the start: $(b \triangleright s) n = if isZero(n)$ then b else s(dec(n))

Now, at last, we arrive at search.

Big idea:

- First, run search on fn $s \to \Phi(\texttt{false} \rhd s)^2$
- If the result s actually satisfies $\Phi(\texttt{false} \triangleright -)$, return $\texttt{false} \triangleright s$.
- Otherwise, return whatever we can find for $fn \ s \rightarrow \Phi(true \triangleright s)$ with true append.

```
let search s =
    if \Phi(\operatorname{search}(\operatorname{fn} s \to \Phi(\operatorname{false} \rhd s)))
    then false <math>\triangleright search(fn s \to \Phi(\operatorname{false} \rhd s))
    else true <math>\triangleright search(fn s \to \Phi(\operatorname{true} \rhd s))
```

² \triangleright appends something to the start: $(b \triangleright s) n = if isZero(n)$ then b else s(dec(n))

If $\Phi(s) =$ true, what happens?

- $\Phi(...)$ will always be true, so immediately get to then clause.
- Now return false ▷ search(fn _ → true).
- Clearly HT: just going to keep yield the stream of falses

If $\Phi(s) =$ true, what happens?

- Φ(...) will always be true, so immediately get to then clause.
- Now return false ▷ search(fn _ → true).
- Clearly HT: just going to keep yield the stream of falses

Moment of thought: search(fn $_ \rightarrow false$) yields a stream of trues.

- If $\Phi(s) = s(0)$, what happens?
 - $\Phi(\texttt{false} \triangleright -) = \texttt{fn} _ \rightarrow \texttt{false}$, so first if will send us to else
 - We're now computing $true \triangleright search(fn _ \rightarrow true)$.
 - Back to the previous case: now have true followed by only falses

The general argument:

- We are making recursive calls to search $\Phi(\texttt{false} \rhd -), \Phi(\texttt{false} \rhd -)$
- If Φ is depth d, these are depth d-1.
- We can inductively argue hereditary termination from this.

Crucial point: since every Φ has a modulus of uniform continuity, all have finite depth.³

³We actually need the *intensional* version of the modulus of uniform continuity. Don't worry about it.

Here is a function $\mathtt{nat} \to \mathtt{nat}$ which is not uniformly continuous:

 $f \ s = s(s(0))$

This is where the argument breaks down for deciding $(nat \rightarrow nat) \rightarrow bool$.

Questions?

In which Daniel bravely attempts to do some live coding.

How did Escardó come up with this code/the more complex searches?

- not (just) by meditating on functional programs
- there is actually mathematical reasoning behind it!

In fact, a lot of what we've just argued stems from a foundational topological result:

Theorem

The Cantor space $C \subseteq [0, 1]$ is compact.

Key Ideas

Effective computation is continuous

In the case of PCF, we have an (adequate) model where:

- HT elements of BitStream are roughly C
- HT elements of BitStreamPred are roughly continuous functions $C \rightarrow \{0,1\}$

Compactness upgrades "continuous" to "uniformly continuous" and the rest unfolds.

From Escardó:

Thus, in a more abstract level, topology is applied as a paradigm for discovering unforeseen notions, algorithms and theorems in computability theory.

From Escardó:

Thus, in a more abstract level, topology is applied as a paradigm for discovering unforeseen notions, algorithms and theorems in computability theory.

- Very much ongoing! (Algebraic/differential geometry, stone spaces, ∞ -categories)
- The connection between computation and geometry is deep & profound.

Where I learned of this (by Martín Escardó)

- https://math.andrej.com/2007/09/28/seemingly-impossible-functional-programs/
- Infinite sets that admit fast exhaustive search
- Exhaustible sets in higher-type computation

Lots of relevant and interesting stuff on Andrej Bauer's blog!

- Gunter: Semantics of Programming Languages
- Vickers: Topology via Logic
- Abramsky & Jung: Domain Theory
- Longley & Normann: Higher-order Computability
- Van Oosten: Realizability theory: an introduction to its categorical side
- Pratchett: Going postal

My office is Turing 127. Always happy to chat \odot

Thanks

Escardó

Simpson

Kleene

Kreisel

Longley

Normann

Post

Scott

