
Computability with higher-order functions

Daniel Gratzer
Tuesday 29th April, 2025

Turings Venner

0/39



Hi!

• I’m an assistant professor in the logsem group/PL2S2 section
• I’m interested in programming languages.

• “how do (weird) programming language interact with (weirder) geometry.”
• Key words: type theory, higher category theory, homotopy theory.

Real type theory, done by real type theorists:

1/39



Hi!

• I’m an assistant professor in the logsem group/PL2S2 section
• I’m interested in programming languages.
• “how do (weird) programming language interact with (weirder) geometry.”
• Key words: type theory, higher category theory, homotopy theory.

Real type theory, done by real type theorists:

1/39



Hi!

• I’m an assistant professor in the logsem group/PL2S2 section
• I’m interested in programming languages.
• “how do (weird) programming language interact with (weirder) geometry.”
• Key words: type theory, higher category theory, homotopy theory.

Real type theory, done by real type theorists:

1/39



Good news: I’m not talking about type theory today

Today’s talk:

• not my work!
• not super proof-y/rigorous
• mostly from a blogpost I read 10+ years ago.
• we get to where we get to; just interrupt with questions ,

Real goal: show something I found surprising and exciting

2/39



A bit of history

What sort of problems admit computable solutions?

• considered informally in math for a long time
• lots of attention in the early 20th century
• NB: predates computers as we know them

3/39



A bit of history

What sort of problems admit computable solutions?

• considered informally in math for a long time
• lots of attention in the early 20th century
• NB: predates computers as we know them

3/39



Turing Machines

Definition
A partial function N ⇀ N is computable if there is a Turing machine tracking it.

Theorem (Church and Turing)
A bunch of reasonable-looking problems are not computable.

Small quiz, do we know who those people are?

4/39



Turing Machines

Definition
A partial function N ⇀ N is computable if there is a Turing machine tracking it.

Theorem (Church and Turing)
A bunch of reasonable-looking problems are not computable.

Small quiz, do we know who those people are?

4/39



Turing Machines

Definition
A partial function N ⇀ N is computable if there is a Turing machine tracking it.

Theorem (Church and Turing)
A bunch of reasonable-looking problems are not computable.

Why is this a good definition though?

4/39



The Chuch–Turing Hypothesis

Turing machines unintuitive, I propose the following instead:
Definition (Daniel computability)
f : N ⇀ N is computable if Daniel can guess f (n) for each n in ≤ 3 seconds.

More seriously: why not some other definition?

We hypothesize all reasonable ones coincide:
Thesis
All effective models of computation encode the same computable functions N ⇀ N.

Primary evidence:
Theorem (Church, Turing, Rosser, ...)
Turing machines, the λ-calculus, Post’s machines, ... all recover the same functions

So, why is this a good definition? It’s incredibly robust

5/39



The Chuch–Turing Hypothesis

We hypothesize all reasonable ones coincide:

Thesis
All effective models of computation encode the same computable functions N ⇀ N.

Primary evidence:

Theorem (Church, Turing, Rosser, ...)
Turing machines, the λ-calculus, Post’s machines, ... all recover the same functions

So, why is this a good definition? It’s incredibly robust

5/39



A bit of history: II

And thus the problem of what computation is was solved forever...

We actually have two problems to consider:

1. How do we describe data (how do we describe/encode input and output)
2. How do we describe computation

Thus far, we’ve basically assumed that our data was various natural numbers.

6/39



A bit of history: II

We actually have two problems to consider:

1. How do we describe data (how do we describe/encode input and output)
2. How do we describe computation

Thus far, we’ve basically assumed that our data was various natural numbers.

6/39



In defense of N

• We can encode a lot of stuff using just N
• As CS people, we encode stuff as a bunch of bits all the time!

• Mathematician term: Gödel encoding

So... why care about anything besides N?

7/39



In defense of N

• We can encode a lot of stuff using just N
• As CS people, we encode stuff as a bunch of bits all the time!
• Mathematician term: Gödel encoding

So... why care about anything besides N?

7/39



Leaky encodings...

Two basic ways we could fail to adequately encode something:

• Need to make sure every widget w is represented by some n (n ⊩ w).
• If n ⊩ w , we need to compute just the expected operations for widgets on n.

The halting problem is decidable... if we encode a TM with a halting bit in front!

8/39



Leaky encodings...

Two basic ways we could fail to adequately encode something:

• Need to make sure every widget w is represented by some n (n ⊩ w).
• If n ⊩ w , we need to compute just the expected operations for widgets on n.

The halting problem is decidable... if we encode a TM with a halting bit in front!

8/39



Leaky encodings...

Two basic ways we could fail to adequately encode something:

• Need to make sure every widget w is represented by some n (n ⊩ w).
• If n ⊩ w , we need to compute just the expected operations for widgets on n.

The halting problem is decidable... if we encode a TM with a halting bit in front!

8/39



First-class functions

Where this comes to a head: computing with functions.

• The halting problem etc., are about computing with source-code
• Can we study what it means to just compute with functions on their own?

Serious problems encoding these as natural numbers if we want all functions...

9/39



If this was a math-y talk

I can’t resist just defining computability structures:

Definition (via Longley–Normann)
A computability structure C basically describes

• A collection of types T
• A bunch of sets Cτ describing the values of type τ .
• A predicate comp : (Cτ ⇀ Cσ) → {⊤, ⊥} telling us what’s C -computable.
• We insist that C -computable functions contain (1) the identity and (2) compose.

Just a way to talk about computing with different data.

10/39



This is not a math-y talk

Really, what we want to think about is a programming language!

• We have a bunch of types and values/constants
• We know how to run a program on an input and inspect the result.

Our goal: study what programs we can write at types other than nat.

11/39



Encodings matter

The bitter truth:
Theorem
The Church–Turing thesis does not extend to computability at higher type.1

This is actually true already for the λ-calculus and Turing machines.

(Be careful though! This is sensitive to how we encode functions)

1One way to mathematize this: RT(K1) is not equivalent to RT(K2).

12/39



An example

Our goal for the rest of the day: give an example such a divergence.

• To describe our example, we need a programming language for it.
• I am a PL person; become agitated if my talk doesn’t introducing a new language.

Let’s define a baby functional programming language to work in.

13/39



Questions? 5 minute break?

13/39



A minimal, statically-typed, functional language

I want a language with the following types:

1. Natural numbers nat

2. Booleans bool

3. First-class functions τ → σ

The basic values of these types are as follows:

true : bool false : bool

n̄ : nat

fn x → e : τ → σ

14/39



Primitive expressions

Besides values, we have a few key program constructs we’ll use:

• Recursive functions
• if b then et else ef

• inc, dec : nat → nat

• isZero : nat → bool

Using these we can define things like addition, equality operators for nat and bool.

Sometimes called PCF

15/39



Primitive expressions

Besides values, we have a few key program constructs we’ll use:

• Recursive functions
• if b then et else ef

• inc, dec : nat → nat

• isZero : nat → bool

Using these we can define things like addition, equality operators for nat and bool.

Sometimes called PCF

15/39



An example: factorial

let n + m =
if isZero(n) then m else inc(dec(n) + m)

let n ∗ m =
if isZero(n) then 0 else m + (dec(n) ∗ m)

let factorial n =
if isZero(n) then 1 else n ∗ factorial(dec(n))

We’re using Currying for multi-argument functions; could also just add pairs.

16/39



An example: factorial

let n + m =
if isZero(n) then m else inc(dec(n) + m)

let n ∗ m =
if isZero(n) then 0 else m + (dec(n) ∗ m)

let factorial n =
if isZero(n) then 1 else n ∗ factorial(dec(n))

We’re using Currying for multi-argument functions; could also just add pairs.

16/39



An example: factorial

let n + m =
if isZero(n) then m else inc(dec(n) + m)

let n ∗ m =
if isZero(n) then 0 else m + (dec(n) ∗ m)

let factorial n =
if isZero(n) then 1 else n ∗ factorial(dec(n))

We’re using Currying for multi-argument functions; could also just add pairs.

16/39



Now back to the good part

type BitStream = nat → bool

type BitStreamPred = BitStream → bool

Our main result:
Theorem
We can decide the equality of total BitStreamPreds:

eq : BitStreamPred → BitStreamPred → bool

17/39



Who worked this out?

This result is a bit hard to attribute precisely; it has many related incarnations

In addition to Berger, Escardó, and Simpson, these people are certainly relevant:

18/39



A few words about totality

All of these operators are hereditarily total:

• For ground types (bool, nat), hereditary totality is just termination.
• For τ → σ, HT means mapping HT inputs to HT outputs.

Example
An HT BitStreamPred needs to terminate only when given an HT bitstream

Warning!
All of our operators may do whatever they want on non-HT inputs

19/39



Is this expected?

No, this is actually very weird:

• BitStream does not admit decidable equality.
• (nat → nat) → bool does not admit decidable equality.
• This is not true for Turing machine model!

Consequence: nat → bool and nat → nat are not equivalent!

20/39



What’s special about BitStreamPred?

Key Idea
The only way to use a function f : τ → σ is to apply f .

• In particular: all we can do with f : BitStream is query bits
• If Φ(f ) : BitStreamPred terminates, then Φ queries only finitely many bits of f .
• In fact, upper bound for these queries across all f s

21/39



Modulus of uniform continuity

Theorem
If Φ : BitStreamPred is HT, then there is N such that:

∀f , g : BitStream. f , g are HT → (∀i ≤ N. f (i) = g(i)) → Φ(f ) = Φ(g)

Informally: Φ never looks past N bits of its input.

N is the modulus of uniform continuity of Φ.

“Proof”.
To the board!

22/39



Modulus of uniform continuity

Theorem
If Φ : BitStreamPred is HT, then there is N such that:

∀f , g : BitStream. f , g are HT → (∀i ≤ N. f (i) = g(i)) → Φ(f ) = Φ(g)

Informally: Φ never looks past N bits of its input.

N is the modulus of uniform continuity of Φ.

“Proof”.
To the board!

22/39



Are we then done?

Moral idea
To compute Φ = Ψ, suffices to check output on finitely many cases (2max(NΦ,NΨ)).

This... isn’t enough.

• Given Φ, if we could compute N, that’d be good.
• This is possible
• Subtle differences in definition of modulus of uniform continuity matter

We’ll be more indirect, but it only works because of N’s existence.

23/39



Escardó’s and Simpson’s approach

We’ll break this into defining the following functions:

search : BitStreamPred → BitStream

forall : BitStreamPred → bool

exists : BitStreamPred → bool

We’ll define these three functions

24/39



Escardó’s and Simpson’s approach

We’ll break this into defining the following functions:

search : BitStreamPred → BitStream

forall : BitStreamPred → bool

exists : BitStreamPred → bool

Find an example satisfying this predicate, otherwise return junk

24/39



Escardó’s and Simpson’s approach

We’ll break this into defining the following functions:

search : BitStreamPred → BitStream

forall : BitStreamPred → bool

exists : BitStreamPred → bool

Check whether a predicate is always true

24/39



Escardó’s and Simpson’s approach

We’ll break this into defining the following functions:

search : BitStreamPred → BitStream

forall : BitStreamPred → bool

exists : BitStreamPred → bool

Check whether a predicate is ever true

24/39



Deciding equality

Suppose that we have search, forall, and exists:

eq : BitStreamPred → BitStreamPred → bool

eq Φ Ψ = forall(fn s → Φ(s) = Ψ(s))

Moral: two predicates being equal everywhere can be expressed as a third predicate!

25/39



Deciding equality

Suppose that we have search, forall, and exists:

eq : BitStreamPred → BitStreamPred → bool

eq Φ Ψ = forall(fn s → Φ(s) = Ψ(s))

Moral: two predicates being equal everywhere can be expressed as a third predicate!

25/39



search to exists to forall

Let’s assume search for a bit:

exists, forall : BitStreamPred → bool

exists Φ = Φ(search(Φ))

forall Φ = not(exists(fn s → not(Φ(s))))

Something is always true if it’s not the case that it’s ever false.

26/39



search to exists to forall

Let’s assume search for a bit:

exists, forall : BitStreamPred → bool

exists Φ = Φ(search(Φ))

forall Φ = not(exists(fn s → not(Φ(s))))

Something is always true if it’s not the case that it’s ever false.

26/39



Questions? 5 minute break?

26/39



The main act: search

Now, at last, we arrive at search.

Big idea:

• First, run search on fn s → Φ(false � s)2

• If the result s actually satisfies Φ(false � −), return false � s.
• Otherwise, return whatever we can find for fn s → Φ(true � s) with true

append.

let search s =
if Φ(search(fn s → Φ(false � s)))
then false � search(fn s → Φ(false � s))
else true � search(fn s → Φ(true � s))

2� appends something to the start: (b � s) n = if isZero(n) then b else s(dec(n))
27/39



The main act: search

Now, at last, we arrive at search.

Big idea:

• First, run search on fn s → Φ(false � s)2

• If the result s actually satisfies Φ(false � −), return false � s.
• Otherwise, return whatever we can find for fn s → Φ(true � s) with true

append.

let search s =
if Φ(search(fn s → Φ(false � s)))
then false � search(fn s → Φ(false � s))
else true � search(fn s → Φ(true � s))

2� appends something to the start: (b � s) n = if isZero(n) then b else s(dec(n))
27/39



Example 1: a constant predicate

If Φ(s) = true, what happens?

• Φ(...) will always be true, so immediately get to then clause.
• Now return false � search(fn _ → true).
• Clearly HT: just going to keep yield the stream of falses

Moment of thought: search(fn _ → false) yields a stream of trues.

28/39



Example 1: a constant predicate

If Φ(s) = true, what happens?

• Φ(...) will always be true, so immediately get to then clause.
• Now return false � search(fn _ → true).
• Clearly HT: just going to keep yield the stream of falses

Moment of thought: search(fn _ → false) yields a stream of trues.

28/39



Example 2: depth 1 predicate

If Φ(s) = s(0), what happens?

• Φ(false � −) = fn _ → false, so first if will send us to else

• We’re now computing true � search(fn _ → true).
• Back to the previous case: now have true followed by only falses

29/39



Proof sketch of hereditary termination

The general argument:

• We are making recursive calls to search Φ(false � −),Φ(false � −)
• If Φ is depth d , these are depth d − 1.
• We can inductively argue hereditary termination from this.

Crucial point: since every Φ has a modulus of uniform continuity, all have finite depth.3

3We actually need the intensional version of the modulus of uniform continuity. Don’t worry about it.

30/39



What goes wrong with nat → nat?

Here is a function nat → nat which is not uniformly continuous:

f s = s(s(0))

This is where the argument breaks down for deciding (nat → nat) → bool.

31/39



Questions?

31/39



Interlude: some OCaml code

In which Daniel bravely attempts to do some live coding.

32/39



How on Earth did people work this out?

How did Escardó come up with this code/the more complex searches?

• not (just) by meditating on functional programs
• there is actually mathematical reasoning behind it!

In fact, a lot of what we’ve just argued stems from a foundational topological result:

Theorem
The Cantor space C ⊆ [0, 1] is compact.

33/39



Psych, it was a math-y talk after all

Key Ideas
Effective computation is continuous

In the case of PCF, we have an (adequate) model where:

• HT elements of BitStream are roughly C
• HT elements of BitStreamPred are roughly continuous functions C → {0, 1}

Compactness upgrades “continuous” to “uniformly continuous” and the rest unfolds.

34/39



The role of topology

From Escardó:

Thus, in a more abstract level, topology is applied as a paradigm for discovering
unforeseen notions, algorithms and theorems in computability theory.

• Very much ongoing! (Algebraic/differential geometry, stone spaces, ∞-categories)
• The connection between computation and geometry is deep & profound.

35/39



The role of topology

From Escardó:

Thus, in a more abstract level, topology is applied as a paradigm for discovering
unforeseen notions, algorithms and theorems in computability theory.

• Very much ongoing! (Algebraic/differential geometry, stone spaces, ∞-categories)
• The connection between computation and geometry is deep & profound.

35/39



Curious?

Where I learned of this (by Martín Escardó)

• https://math.andrej.com/2007/09/28/seemingly-impossible-functional-programs/
• Infinite sets that admit fast exhaustive search
• Exhaustible sets in higher-type computation

Lots of relevant and interesting stuff on Andrej Bauer’s blog!

36/39

https://math.andrej.com/2007/09/28/seemingly-impossible-functional-programs/


Very curious?

• Gunter: Semantics of Programming Languages
• Vickers: Topology via Logic
• Abramsky & Jung: Domain Theory
• Longley & Normann: Higher-order Computability
• Van Oosten: Realizability theory: an introduction to its categorical side
• Pratchett: Going postal

37/39



Curious and don’t like reading?

My office is Turing 127. Always happy to chat ,

38/39



Thanks

Berger Church Curry Ershov Escardó Gödel Kleene

Kreisel Longley Normann Post Scott Simpson Tait
39/39


