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Abstract
Step-indexed separation logic has proven to be a powerful

tool for modular reasoning about higher-order stateful pro-

grams. However, it has only been used to reason about safety

properties, never liveness properties. In this paper, we ob-

serve that the inability of step-indexed separation logic to

support liveness properties stems fundamentally from its

failure to validate the existential property, connecting the

meaning of existential quantification inside and outside the

logic. We show how to validate the existential property—and

thus enable liveness reasoning—by moving from finite step-

indices (natural numbers) to transfinite step-indices (ordi-

nals). Concretely, we transform the Coq-based step-indexed

logic Iris to Transfinite Iris, and demonstrate its effective-

ness in proving termination and termination-preserving re-

finement for higher-order stateful programs.

1 Introduction
In the past decade, separation logics [47] have emerged as

an essential tool for verifying complex stateful programs.

Of particular note are the so-called step-indexed separation

logics, including VST [5, 13, 29], HOCAP [51], iCAP [50],

and Iris [33–35, 38]. The distinguishing feature of these step-

indexed separation logics is their ability to reason modularly

about programs—and their ability to build semantic models

of programming languages—with “cyclic” features like recur-

sive types and higher-order state (pointers to higher-order

objects). Step-indexing has proven indispensable in a variety

of major verification efforts, in languages ranging from C [5]

to Go [14] to OCaml [45] to Rust [18, 31, 32] to Scala [27].

Unfortunately, all the existing step-indexed separation log-

ics suffer from a shared Achilles heel: they support reasoning

about safety properties (“bad things never happen”), but not

liveness properties (“good things eventually happen”). There

is a simple intuitive explanation for this limitation: the whole

idea of step-indexing is to give semantics to a program based

only on its finitary behavior (i.e., the finite prefixes of its

traces), and safety properties are precisely those properties

of a program that can be determined from examining its

finitary behavior. In contrast, determining whether a pro-

gram satisfies a liveness property fundamentally requires

examination of its infinite traces.

Nevertheless, as we will show in this paper, it is in fact

possible to equip step-indexed separation logics with sup-

port for liveness reasoning. Specifically, we will show how

to transform the step-indexed separation logic Iris into a

new logic Transfinite Iris that (unlike Iris) supports the

verification of two essential liveness properties—termination

and termination-preserving refinement—in the presence of

higher-order state. In order to do so, we need to revisit the

most basic foundations of step-indexed separation logics,

because it turns out that the root of the problem concerns

the very notion of what a “step-index” is. But before we get

there, let us begin with a concrete example to illustrate the

kind of properties we are interested in proving.

Amotivating example. Consider the following example,

a combinator for recursive memoization written in OCaml
1
:

1 let memo_rec t =
2 let m = Hashtbl.create 0 in
3 let rec g x =
4 match Hashtbl.find_opt m x with
5 Some y -> y
6 None -> let y = t g x in
7 Hashtbl.add m x y; y
8 in g

Recursive memoization is a well-known optimization tech-

nique for recursive functions: results of recursive calls are

cached and retrievedwhenever those calls are executed again.

To memoize a recursive function f: 𝜎 -> 𝜏 , the combinator

memo_rec: ((𝜎 -> 𝜏) -> (𝜎 -> 𝜏)) -> (𝜎 -> 𝜏)

is applied to a template t: (𝜎 -> 𝜏) -> (𝜎 -> 𝜏) of f. In addi-

tion to the argument of type 𝜎 , the template takes an argu-

ment of type 𝜎 -> 𝜏 to use for making recursive calls. The

recursive function let rec f x = e is memoized by:

let t = fun f x -> e
let f_memo = memo_rec t

The implementation of memo_rec uses a map m (here a hash

map of initial size 0) to store results. The resulting function

f_memo behaves like f, except for one key difference: it re-

trieves entries from the map m if they have been computed

previously, and stores results in m after it has computed them.

1
For this example, we use OCaml syntax. In principle, any higher-order

stateful language suffices, including Java, Python, and JavaScript.
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Now, consider what is required to verify memo_rec. As a

combinator, memo_rec is written in a generic fashion (i.e., para-

metric over the template t) and does not impose many restric-

tions on the template t, and hence the original function f. For

example, if the original function f diverges on argument x,

so will the memoized version f_memo. Moreover, the original

function f does not need to be verified itself, or even have

a known specification for memo_rec to be of use. In short, the

correct behavior of f_memo is relative to the possible behavior

of f. One way to establish this formally is by showing the

memoized function f_memo to be a refinement of the original

function f, meaning that the behaviors exhibited by f_memo

are contained within those exhibited by f.

On the one hand, due to the presence of higher-order state

(the type 𝜏 of values stored in the hash table is arbitrary),

step-indexed separation logics are one of the only tools avail-

able for proving this type of refinement. On the other hand,

there is an important caveat: the refinement these logics

support merely establishes that if f_memo v terminates with

a result r, then f v terminates with a related result (we call

this a result refinement). This result refinement says nothing,

however, about what happens if f_memo v diverges (i.e., does

not terminate). For example, if we were to replace t g x with

g x in line 6 of the definition of memo_rec, then the resulting

function returned by memo_rec would still be a refinement of

f according to the theorem provable in existing step-indexed

logics—yet it would diverge on every input!

What we would really like to prove is a stronger theorem,

stating additionally that if f_memo v has a non-terminating ex-

ecution, then so does f v—or equivalently, if f v terminates,

then so does f_memo v. In this case, we say that f_memo is a

termination-preserving refinement of f. To prove this, how-

ever, requires examining infinite traces of f_memo’s behavior—

in other words, liveness reasoning.

There has been some prior work on proving approxima-

tions of liveness reasoning within existing step-indexed log-

ics. In particular, Dockins and Hobor [19, 20] and Mével et al.

[44] have shown how to prove termination if the user gives

explicit time complexity bounds. Tassarotti et al. [53] have

shown how to prove termination-preserving refinement un-

der some restrictions: the original (source) program must

only exhibit bounded nondeterminism, and internally, the

refinement proof can only rely on bounded stuttering (with

the bound chosen up front).

In all of the above, however, the restrictions effectively

serve to turn the property being proven from a liveness

property into a safety property. For example, although “𝑒

terminates” is a liveness property, “𝑒 terminates in 𝑛 steps”

(where 𝑛 is an explicit user-specified bound) is a safety prop-

erty, since its validity can be determined after examining

only the first 𝑛 steps of 𝑒’s execution. Moreover, the restric-

tions of Tassarotti et al. [53]’s approach render it insufficient

to prove termination-preserving refinement for even a seem-

ingly simple example like memo_rec, since the number of steps

required for the hash table lookup in memo_rec is unbounded.

Transfinite Iris and the existential property. In this

paper, we show how step-indexed separation logics can be

transformed to support true liveness reasoning, albeit with

a fundamental change to how they are modeled.

Our first step is to identify the key property that existing

step-indexed separation logics fail to satisfy, but that would

enable liveness reasoning if it held. We observe that what is

missing is the existential property [36] (sometimes called the

existence property):

If ⊢ ∃𝑥 : 𝑋 .𝛷𝑥, then ⊢ 𝛷𝑥 for some 𝑥 : 𝑋 .

(Here, ⊢ 𝑃 denotes provability in the step-indexed logic.) The

existential property ensures that existential quantification

inside the step-indexed logic corresponds to existential quan-

tification outside the step-indexed logic (i.e., at the meta-level).

Intuitively, the existential property is useful for liveness

reasoning because, when we do liveness reasoning inside a

step-indexed logic, we often need to prove propositions that

are existentially quantified. For example, when we prove a

termination-preserving refinement, we will end up needing

to show that for any steps of execution in the target program

(e.g., memo_rec t), there exist some corresponding steps in the

source program (e.g., the original recursive function f). The

existential choice of source steps is made inside the proof in

the step-indexed logic, but ultimately in order to establish

the termination-preserving refinement, we need to be able

to hoist that existential choice out to the meta-level. The

existential property enables us to do just that.

Unfortunately, the existential property is fundamentally

incompatible with how step-indexed logics have thus far

been modeled. In particular, existing step-indexed logics

model propositions as predicates over a “step-index” in the

form of a natural number 𝑛. Under this standard step-indexed

model, the existential property is demonstrably false (§ 2.7).

To validate the existential property, and thereby enable

liveness reasoning, we thus propose to change the underly-

ing notion of “step-index” from a finite one to a transfinite

one: from natural numbers to ordinals. Concretely, we do this

for one of the most widely used step-indexed logics, Iris [33–

35, 38], resulting in a new logic we call Transfinite Iris. We

use Transfinite Iris to establish two key liveness properties—

termination and termination-preserving refinement—and ap-

ply it to a range of interesting examples.

Transfinite Iris inherits Iris’s support for safety reasoning

about higher-order, concurrent programs. However, in order

to get to the heart of our core “existential dilemma”—how the

existential property can enable liveness reasoning for step-

indexed logics, and how to provide a semantic foundation for

it—we focus our attention in this paper on one of the primary

raisons d’être of step-indexed separation logics: reasoning
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about sequential, higher-order stateful programs. Supporting

step-indexed liveness reasoning for concurrent programs

remains an important direction for future work.

While the idea of transfinite step-indexing is not new (see

§ 6 for a discussion of related work), Transfinite Iris is to

our knowledge the first program logic to be founded on a

transfinitely step-indexed model, and the first step-indexed

logic to support true liveness reasoning.

Contributions. We make the following contributions:

• We identify the existential property as the key property

missing from existing step-indexed separation logics

from the perspective of supporting liveness reason-

ing, and we show that this property is fundamentally

inconsistent with standard step-indexed models (§ 2).

• Based on the Iris logic, we develop a new logic, Trans-

finite Iris, which supports verification of termination-

preserving refinement (§ 3) and termination (§ 4).

• We demonstrate the power of Transfinite Iris on a

range of interesting examples, including the memo_rec

example presented above (§ 3.4 and § 4.2).

• Establishing the soundness of Transfinite Iris required

us to solve a new and challenging recursive domain

equation formodeling the type of Transfinite Iris propo-

sitions. Due to space constraints, we cannot go into

detail about this construction, but we describe it at a

high level (§ 5). See the appendix [48] for details.

• All examples in § 3.4 and § 4.2, as well as the sound-

ness of Transfinite Iris, are fully mechanized in Coq

using the Iris Proof Mode [37, 39]. See [48] for the Coq

proofs.

2 Key Idea: The Existential Property
In this section, we explain how the existential property is

the key to enabling step-indexed logics to support proofs

of termination and termination-preserving refinement. We

formally define refinements (§ 2.1) and how they are proven

using simulations (§ 2.2). We show why step-indexing is use-

ful for defining such simulations, but why it falls short in

the case of termination-preserving refinements (§ 2.3). We

then show how step-indexing is internalized in a logic (§ 2.4)

and how a step-indexed logic with the existential property

enables proofs of termination-preserving refinements (§ 2.5)

and termination (§ 2.6). Finally, we describe how the existen-

tial property is justified by transfinite step-indexing (§ 2.7).

2.1 Refinements
Intuitively, a refinement between a target program 𝑡 and a

source program 𝑠 expresses that all observable behaviors of

the target 𝑡 are also valid behaviors of the source 𝑠 . To make

this notion precise (and to distill the difference from prior

work), we fix an abstract and simplified setting. We assume

a source language 𝑆 and a target language 𝑇 . We assume

programs in both languages are expressions, equipped with

a small-step operational semantics. We write 𝑠 {src 𝑠
′
for a

step of the source language, and 𝑡 {tgt 𝑡
′
for a step of the

target language. We assume (for simplicity) that the only

values in both languages are Booleans, denoted by 𝑏.

To clarify what a refinement is in this abstract setting, we

have to specify what the “observable behaviors” of a program

should be. In the simplest case, the only observable behavior

is the result of the evaluation of a program. In this case, the

corresponding refinement between target 𝑡 and source 𝑠 ,

which we dub a result refinement, is given by:

For all 𝑏, if 𝑡 evaluates to 𝑏, then 𝑠 evaluates to 𝑏.

Here, “evaluates to 𝑏” means there exists an execution that

ends in the Boolean value 𝑏.

For a termination-preserving refinement, we additionally

consider divergence (i.e., non-termination) as an observable

behavior. Formally, a termination-preserving refinement be-

tween target 𝑡 and source 𝑠 is given by:

(1) For all 𝑏, if 𝑡 evaluates to 𝑏, then 𝑠 evaluates to 𝑏.

(2) If 𝑡 diverges, then 𝑠 diverges.

Here, “diverges” means there exists a divergent execution.

This refinement, as the name suggests, preserves termina-

tion
2
from the source 𝑠 to the target 𝑡 .

2.2 Proving Refinements using Simulations
A well-known technique to prove refinements is to (1) give
a small-step simulation (⪯) between target and source ex-

pressions, and (2) show that the simulation is adequate, i.e.,

for every target 𝑡 and source 𝑠 expression, the simulation

𝑡 ⪯ 𝑠 implies the desired refinement between 𝑡 and 𝑠 .

For example, we can prove a termination-preserving re-

finement by establishing that 𝑠 simulates 𝑡 in lock-step, as

captured by the following coinductively-defined relation:

𝑡 ⪯ 𝑠 ≜coind (∃(𝑏 : B). 𝑡 = 𝑠 = 𝑏) ∨(
(∃𝑡 ′. 𝑡 {tgt 𝑡

′) ∧
∀𝑡 ′. 𝑡 {tgt 𝑡

′ ⇒ ∃𝑠 ′. 𝑠 {src 𝑠
′ ∧ 𝑡 ′ ⪯ 𝑠 ′

)
In the definition of 𝑡 ⪯ 𝑠 , either both sides have reached the

same result 𝑏, or the target 𝑡 can take some step (to avoid

cases where the target is a Boolean different from the source),

and every step of the target (𝑡 {tgt 𝑡
′
) can be replayed in

the source (𝑠 {src 𝑠
′
) such that the resulting expressions 𝑡 ′

and 𝑠 ′ are again in the simulation.

2.3 Step-Indexed Simulations
While the coinductively-defined simulation relation from

§ 2.2 is intuitive and suffices to prove refinements of first-

order programs, it falls short when considering programming

languages with “cyclic” features like recursive types and

higher-order state (pointers to higher-order objects).

2
“if 𝑠 terminates on all execution paths, then 𝑡 terminates on all execution

paths” is (classically) equivalent to “if 𝑡 diverges, then 𝑠 diverges”.

3
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Step-indexing [1, 2, 6] has proved to be a very fruitful tech-

nique for defining simulation relations for such languages, as

shown by the abundance of work on step-indexed techniques

for proving result refinements, e.g., [3, 22–24, 39, 40, 54–56].

The key idea of step-indexing is to stratify the simulation

relation into a family of approximations (⪯𝑖 ), indexed by a

natural number 𝑖 , called the step-index:

𝑡 ⪯0 𝑠 ≜ True

𝑡 ⪯𝑖+1 𝑠 ≜ (∃(𝑏 : B). 𝑡 = 𝑠 = 𝑏) ∨(
(∃𝑡 ′. 𝑡 {tgt 𝑡

′) ∧
∀𝑡 ′. 𝑡 {tgt 𝑡

′ ⇒ ∃𝑠 ′. 𝑠 {src 𝑠
′ ∧ 𝑡 ′ ⪯𝑖 𝑠

′

)
The above definition is structurally recursive on the natural

number 𝑖 . The simulation relation 𝑡 ⪯ 𝑠 is then redefined as

the limit of the approximations, i.e., 𝑡 ⪯ 𝑠 ≜ ∀𝑖 . 𝑡 ⪯𝑖 𝑠 .

While the simplified form of step-indexed simulation rela-

tion given above does not show it, the step-index 𝑖 is com-

monly used as “fuel” to incorporate additional information

into the simulation relation related to the unfolding level

of recursive types [1], or recursively-defined worlds [11]

(which are used to model higher-order references).

Step-indexing works well for result refinements, since it

suffices to only inspect finite prefixes of the evaluation. (the

kind of reasoning step-indexing was designed for):

Lemma 2.1. If 𝑡 ⪯ 𝑠 , then 𝑡 is a result refinement of 𝑠 , i.e., if

𝑡 evaluates to 𝑏, then 𝑠 evaluates to 𝑏.

Proof Sketch. Let 𝑡 = 𝑡0 {tgt · · · {src 𝑡𝑛 = 𝑏 be the execu-

tion of 𝑡 to 𝑏. Recall that 𝑡 ⪯ 𝑠 means ∀𝑖 . 𝑡 ⪯𝑖 𝑠 . We pick

𝑖 ≜ 𝑛 + 1 and extract an execution 𝑠 = 𝑠0 {src · · · {src 𝑠𝑛
such that 𝑡𝑛 ⪯1 𝑠𝑛 from 𝑡 ⪯𝑛+1 𝑠 by unrolling the definition

of (⪯𝑖 ) 𝑛 times. Since 𝑡𝑛 = 𝑏, the expression 𝑡𝑛 can no longer

take steps. Consequently, in the definition of 𝑡𝑛 ⪯1 𝑠𝑛 , only

the first clause can be true. We obtain 𝑠𝑛 = 𝑏. □

Unfortunately, unlike the coinductively-defined simula-

tion relation from § 2.2, the step-indexed simulation relation

is not adequate for termination-preserving refinements. Let

us try to prove that it implies a termination-preserving re-

finement, and see where it goes wrong:

If 𝑡 ⪯ 𝑠 , and 𝑡 diverges, then 𝑠 diverges.
If we attempt a proof similar to the proof of Lemma 2.1, we

are stuck when we try to determine a sufficient value of the

step-index 𝑖 . We have seen that for any natural number 𝑖 ,

we can extract a finite trace of the source (of length 𝑖) from

𝑡 ⪯𝑖 𝑠 . However, which execution we obtain this way can

depend on the step-index 𝑖 , meaning for each step-index 𝑖

there could be a different (finite) execution of the source.

For example, consider the case where the target 𝑡∞ is

an infinite loop, and the source 𝑠<∞ non-deterministically

picks a natural number 𝑛, and then executes 𝑛 steps before

terminating. For every 𝑖 , we can find a trace of 𝑖 steps where

𝑠<∞ simulates 𝑡∞, but there is no divergent execution of 𝑠<∞.

Thus, we cannot extract one coherent, infinite execution of

𝑠<∞ from the step-indexed simulation 𝑡∞ ⪯ 𝑠<∞.

2.4 Logical Step-Indexed Simulations
To show how we will remedy the inability of step-indexing

to prove termination-preserving refinements, we will take a

look at the logical approach to step-indexing [7, 22] as em-

ployed in step-indexed logics like Iris. The logical approach

to step-indexing does away with explicit indexing by natural

numbers, and instead internalizes step-indexing using the

“later” modality (⊲) [7, 46]. We consider a version of our sim-

ulation relation that is defined using logical step-indexing:

𝑡 ⪯∗ 𝑠 ≜ (∃(𝑏 : B). 𝑡 = 𝑠 = 𝑏) ∨(
(∃𝑡 ′. 𝑡 {tgt 𝑡

′) ∧
∀𝑡 ′. 𝑡 {tgt 𝑡

′ ⇒ ∃𝑠 ′. 𝑠 {src 𝑠
′ ∧ ⊲(𝑡 ′ ⪯∗ 𝑠

′)

)
The simulation relation ⪯∗ is no longer defined in ordinary

mathematics, but rather within a step-indexed logic like Iris.

One can think of the propositions of a step-indexed logic

as sets of natural numbers. All logical connectives are lifted

in the expected ways to such sets, while the later modality

(⊲) is defined as ⊲ 𝑃 ≜ {𝑖 ∈ N | (𝑖 = 0) ∨ (𝑖 − 1) ∈ 𝑃}, i.e., it
decrements the step-index. The notion of provability ⊢ 𝑃 of

a step-indexed logic is the limit, i.e., ⊢ 𝑃 ≜ ∀𝑖 . 𝑖 ∈ 𝑃 .

2.5 The Existential Property
In step-indexed logics like Iris, one cannot prove that the

simulation relation ⪯∗ implies a termination-preserving re-

finement. After all, when expanding the definition of ⪯∗ into
the step-indexed model, we end up with the same definition

as the explicit step-indexed relation ⪯𝑖 we have seen in § 2.3.

If we no longer think of the step-indexing in terms of propo-

sitions modeled as sets of natural numbers, we may wonder,

what property are step-indexed logics missing that prohibit

us from proving termination-preserving refinements? The

answer to this question is the existential property:

If ⊢ ∃𝑥 : 𝑋 .𝛷𝑥, then ⊢ 𝛷𝑥 for some 𝑥 : 𝑋 .

If we assume we work in a step-indexed logic that does enjoy

the existential property, then we can, in fact, prove:

Lemma 2.2. If ⊢ 𝑡 ⪯∗ 𝑠 and 𝑡 diverges, then 𝑠 diverges.

Proof Sketch. Let 𝑡 = 𝑡0 {tgt 𝑡1 {tgt · · · be an infinite exe-

cution of the target. We will construct an infinite execution

of the source 𝑠 = 𝑠0 {src 𝑠1 {src · · · . Initially, we know

⊢ 𝑡 ⪯∗ 𝑠 . With 𝑡 = 𝑡0 {tgt 𝑡1, we can use ⊢ 𝑡 ⪯∗ 𝑠 to obtain

⊢ ∃𝑠 ′. 𝑠 {src 𝑠
′ ∧ ⊲(𝑡1 ⪯∗ 𝑠 ′). With the existential property,

we obtain an 𝑠1 such that 𝑠 {src 𝑠1 and ⊢ ⊲(𝑡1 ⪯∗ 𝑠1). Step-
indexed logics enjoy the soundness rule ⊢ ⊲ 𝑃 implies ⊢ 𝑃 ,
allowing us to strip off a later modality. Thus, we obtain

⊢ 𝑡1 ⪯∗ 𝑠1. We repeat this process to obtain 𝑠2, 𝑠3, . . . □
4
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2.6 Termination
We show that the simulation relation (⪯∗) can be repurposed
to prove another liveness property: termination. We observe

that the source language in our simulation does not have to

be a programming language—it merely has to be a transition

system. If we instantiate it with a relation that always termi-

nates, e.g., the order (>) on natural numbers or on ordinals,

we are guaranteed termination of the target.

Lemma 2.3. If ⊢ 𝑡 ⪯∗ 𝑠 for some 𝑠 , and the source relation

({src) is the inverse of a well-founded relation, then 𝑡 termi-

nates along all execution paths.

2.7 Justifying the Existential Property
Of course, we cannot simply postulate the existential prop-

erty: we have to justify that it is a sound extension of exist-

ing step-indexed logics like Iris. Unfortunately, it is not. To

demonstrate this, we instantiate the existential property

If ⊢ ∃𝑥 : 𝑋 .𝛷𝑥, then ⊢ 𝛷𝑥 for some 𝑥 : 𝑋 .

with the type 𝑋 ≜ N and the predicate𝛷 (𝑛) ≜ ⊲𝑛 ⊥, where
⊲𝑛 is short for 𝑛 iterated later modalities. In Iris, the proposi-

tion in the premise ⊢ ∃(𝑛 : N). ⊲𝑛 ⊥ is provable, while the

conclusion ⊢ ⊲𝑛 ⊥ is false for any 𝑛.

To see why that is the case, we take a closer look at the

proposition ⊢ ∃(𝑛 : N). ⊲𝑛 ⊥. Intuitively, this proposition
means that eventually the step-index runs out. More pre-

cisely, if we drop down to the step-indexed model, we see

that ⊢ ∃(𝑛 : N). ⊲𝑛 ⊥ means ∀(𝑖 : N) . ∃(𝑛 : N). 𝑛 > 𝑖 , which

holds trivially by picking the witness 𝑛 ≜ 𝑖 + 1.

Transfinite step-indexing to the rescue. How can we

transform Iris (to Transfinite Iris) so that it will enjoy the

existential property? The fundamental modificationwemake

is to move from finite step-indexing with natural numbers

to transfinite step-indexing with ordinals.

To explain how transfinite step-indexing validates the ex-

istential property, we consider what went wrong in the case

of step-indexing with natural numbers. Both in the above

example ⊢ ∃(𝑛 : N). ⊲𝑛 ⊥ and the simulation ⊢ 𝑡∞ ⪯∗ 𝑠<∞
from § 2.3, the problem was that the witnesses of existen-

tial quantification could depend on the step-index 𝑖 . For

⊢ ∃(𝑛 : N). ⊲𝑛 ⊥, given any step-index 𝑖 , we could always

pick a witness 𝑛 greater than it; for ⊢ 𝑡∞ ⪯∗ 𝑠<∞, given any

step-index 𝑖 , we could always pick an execution of 𝑠<∞ that

takes longer than 𝑖 steps to terminate. However, if we use

large enough ordinals as step-indices, then this is no longer

the case. For example, there is no 𝑛 : N that is larger than

𝜔 , which is (by definition) the first ordinal larger than all

natural numbers. As a result, ⊢ ∃(𝑛 : N). ⊲𝑛 ⊥ is no longer

provable in a transfinitely step-indexed model. In return,

as we show formally in § 5, such a model does validate the

existential property, thus enabling liveness reasoning.

3 Termination-Preserving Refinement
We now put the key ideas from § 2 into action by introducing

Transfinite Iris—a full-fledged separation logic capable of

proving termination-preserving refinements of higher-order

stateful programs. Transfinite Iris follows the “Iris approach”

of modularly building up complex reasoning principles from

simple abstractions. As such, it does not have a simulation re-

lation (⪯∗) built in as one of its primitive logical connectives.

Instead, the simulation relation is defined in terms of simpler

connectives. Specifically, it is defined using Hoare triples and

separation-logic resources, following the approach of Turon

et al. [55] for result refinements (explained below).

In this section, we do not discuss how Hoare triples and

the underlying separation-logic resources are themselves

defined. These connectives are based on their definition in

vanilla Iris [34, 38] extended with ideas from § 2 to support

termination-preserving refinements. (For a precise discus-

sion, we refer the reader to the supplementary material [48].)

Instead, we will focus on the key rules of Transfinite Iris that

enable us to prove termination-preserving refinements.

Although Transfinite Iris is parametric in the source and

target language, we use a specific language, called Sequen-

tial HeapLang (§ 3.1). We recap the approach of Turon et al.

[55] for proving result refinements in separation logic (§ 3.2),

and show how it can be extended to termination-preserving

refinements in Transfinite Iris (§ 3.3). We conclude this sec-

tion by proving a termination-preserving refinement for the

challenging memo_rec example from the introduction (§ 3.4).

3.1 Sequential HeapLang
We use the sequential fragment of HeapLang, the default lan-

guage in Iris’s Coq implementation [30]. This language offers

the features of a standard (untyped) functional programming

language augmented with ML-like references:

v ∈ Val ::= () | 𝑏 | 𝑧 | ℓ | (v1,v2) | rec 𝑓 𝑥 . 𝑒 | · · ·
𝑒 ∈ Expr ::= v | 𝑥 | 𝑒1 𝑒2 | ref (𝑒) | !𝑒 | 𝑒1 := 𝑒2 | · · ·
𝐾 ∈ Ctx ::= · |𝐾 v | 𝑒 𝐾 | ref (𝐾) | !𝐾 | · · ·
ℎ ∈ Heap ::= · | ℓ ↦→ v, ℎ

Here, 𝑏 ranges over Booleans, 𝑧 ranges over integers, and ℓ

ranges over heap locations.

3.2 Result Refinements in Vanilla Iris
We explain the approach of Turon et al. [55] for proving

result refinements. While Turon et al. use a bespoke logic,

our variant is embedded in Iris, based on work by Krebbers

et al. [39]. The central connectives of this variant of Iris are:

𝑃,𝑄 ∈ iProp ::= (𝑥 = 𝑦) | ∀𝑥 . 𝑃 | ∃𝑥 . 𝑃 | ⊲ 𝑃 | 𝑃 ∗ 𝑄 | 𝑃 −∗ 𝑄
| ℓ ↦→ v | {𝑃 } 𝑒 {v. 𝑄} | ℓ ↦→src v | src(𝑒) | · · ·

Hoare triples {𝑃 } 𝑒 {v. 𝑄} are used to reason about the target,
while resources src(𝑒) are used to reason about the source.

Similar to the usual points-to connective ℓ ↦→ v, which states

5
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Basic step-indexed separation logic:

Value

{True}v {𝑤.v = 𝑤 }

Frame

{𝑃 } 𝑒𝑡 {v. 𝑄}
{𝑃 ∗ 𝑅} 𝑒𝑡 {v. 𝑄 ∗ 𝑅}

Bind

{𝑃 } 𝑒𝑡 {v. 𝑄} ∀v. {𝑄} 𝐾 [v] {𝑤. 𝑅}
{𝑃 } 𝐾 [𝑒𝑡 ] {𝑤. 𝑅}

Löb

(⊲ 𝑃 ⇒ 𝑃) ⊢ 𝑃

Result refinements in Iris (these rules are not present in Transfinite Iris):
PureT

{𝑃 } 𝑒 ′𝑡 {v. 𝑄} 𝑒𝑡 { 𝑒 ′𝑡

{⊲ 𝑃 } 𝑒𝑡 {v. 𝑄}

PureS

{src(𝐾 [𝑒 ′𝑠 ]) ∗ 𝑃 } 𝑒𝑡 {v. 𝑄} 𝑒𝑠 { 𝑒 ′𝑠

{src(𝐾 [𝑒𝑠 ]) ∗ 𝑃 } 𝑒𝑡 {v. 𝑄}

StoreT

{ℓ ↦→ v1 ∗ ⊲ 𝑃 } ℓ := v2 {𝑤. (𝑤 = ()) ∗ ℓ ↦→ v2 ∗ 𝑃 }

StoreS

{ℓ ↦→src v2 ∗ src(𝐾 [()])} 𝑒𝑡 {v. 𝑄}
{ℓ ↦→src v1 ∗ src(𝐾 [ℓ := v2])} 𝑒𝑡 {v. 𝑄}

Termination-preserving refinements in Transfinite Iris:
TPPureT

{𝑃 } 𝑒 ′𝑡 {v. 𝑄} 𝑒𝑡 { 𝑒 ′𝑡

⟨𝑃⟩ 𝑒𝑡 ⟨v. 𝑄⟩
TPStoreT

⟨ℓ ↦→ v1⟩ ℓ := v2 ⟨𝑤. (𝑤 = ()) ∗ ℓ ↦→ v2⟩

TPPureS

⟨src(𝐾 [𝑒 ′𝑠 ]) ∗ 𝑃⟩ 𝑒𝑡 ⟨v. 𝑄⟩ 𝑒𝑠 { 𝑒 ′𝑠 𝑒𝑡 ∉ Val

{src(𝐾 [𝑒𝑠 ]) ∗ ⊲ 𝑃 } 𝑒𝑡 {v. 𝑄}

TPStoreS

⟨ℓ ↦→src v2 ∗ src(𝐾 [()]) ∗ 𝑃⟩ 𝑒𝑡 ⟨v. 𝑄⟩ 𝑒𝑡 ∉ Val

{ℓ ↦→src v1 ∗ src(𝐾 [ℓ := v2]) ∗ ⊲ 𝑃 } 𝑒𝑡 {v. 𝑄}

TPStutterT

⟨𝑃⟩ 𝑒𝑡 ⟨v. 𝑄⟩ 𝑒𝑡 ∉ Val

{𝑃 } 𝑒𝑡 {v. 𝑄}

TPStutterSPure

{src(𝑒 ′𝑠 ) ∗ 𝑃 } 𝑒𝑡 {v. 𝑄} 𝑒𝑠 { 𝑒 ′𝑠 𝑒𝑡 ∉ Val

{src(𝑒𝑠 ) ∗ 𝑃 } 𝑒𝑡 {v. 𝑄}

TPStutterSStore

{ℓ ↦→src v2 ∗ src(𝐾 [()]) ∗ 𝑃 } 𝑒𝑡 {v. 𝑄} 𝑒𝑡 ∉ Val

{ℓ ↦→src v1 ∗ src(𝐾 [ℓ := v2]) ∗ 𝑃 } 𝑒𝑡 {v. 𝑄}

Figure 1. A selection of proof rules of Iris and Transfinite Iris.

that location ℓ holds value v in the target heap, there is a

points-to connective ℓ ↦→src v for the source heap. We define

the analog of (⪯∗) from § 2, generalized to arbitrary ground

types𝐺—e.g., unit (𝟙), Booleans (B), natural numbers (N)—as:

𝑒𝑡 ⪯𝐺 𝑒𝑠 ≜ ∀𝐾. {src(𝐾 [𝑒𝑠 ])} 𝑒𝑡 {v. src(𝐾 [v]) ∗ v ∈ 𝐺 }

The Hoare triple expresses that, assuming the source expres-

sion 𝑒𝑠 is currently embedded in some evaluation context

𝐾 , we can execute the target expression 𝑒𝑡 to some ground

value v ∈ 𝐺 . This value v cannot just be any value, though—

it has to be possible to execute the source expression 𝑒𝑠 to

this value. That is, in the proof of the Hoare triple, the as-

sumption src(𝐾 [𝑒𝑠 ]) has to be transformed into src(𝐾 [v])
by executing the source expression.

Proof rules. We have two kinds of rules: the usual sepa-

ration logic rules for Hoare triples (which apply to the target

𝑒𝑡 ), and the rules for interacting with the resource src(𝑒𝑠 )
for the simulating source expression. A selection of rules

is given in Figure 1. As the standard Hoare rules, we have

rules for values Value, framing Frame, reasoning about com-

posite expressions Bind, and executing target steps (i.e., the

expression in the triple). Among the rules for executing tar-

get steps are the rule StoreT for executing a store operation,

and PureT for executing pure steps, denoted by ({). Pure
steps are steps that do not affect the heap, e.g., reducing an if ,
a match, or a function application (rec 𝑓 𝑥 . 𝑒) v. As the addi-
tional source rules, we have StoreS for the store operation in

the source, and PureS for pure steps in the source.

Löb induction. Above, we have not yet explained the

occurrence of the later modality (⊲) in the rules StoreT and

PureT. The later modality is used to interact with the various

logical mechanisms of Iris based on step-indexing, such as

Löb induction, impredicative invariants [50], and higher-

order ghost state [33]. In this section we focus on proofs

about recursive programs through Löb induction. Using Löb

induction, we can prove a proposition 𝑃 in Iris by assuming

⊲ 𝑃 (read “𝑃 holds later”) and then proving 𝑃 . From this rule,

we can derive a reasoning principle in Iris for reasoning

about (recursive) programs:

Hoare-Löb

∀®𝑥 . {𝑃 ∗ ⊲ (∀®𝑥 . {𝑃 } 𝑒 {v. 𝑄})} 𝑒 {v. 𝑄}
∀®𝑥 . {𝑃 } 𝑒 {v. 𝑄}

To prove a (universally quantified) Hoare triple, we can as-

sume (in the precondition) that the Hoare triple already holds

later. Let us consider a simple example.
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Lemma 3.1. If 𝑓 () ⪯B 𝑔(), then loop 𝑓 () ⪯𝟙 loop𝑔 (),
where loop ≜ rec loop 𝑓 𝑥 . if 𝑓 () then loop 𝑓 𝑥 else ().

Proof Sketch. We abbreviate 𝑒f ≜ loop 𝑓 (), 𝑒g ≜ loop𝑔 (),
and 𝜑 v ≜ (src(𝐾 [v]) ∗ v ∈ 𝟙). Recall that (⪯𝐺 ) is de-
fined in terms of Hoare triples, hence by Hoare-Löb, we

have to show {src(𝐾 [𝑒g]) ∗ ⊲(𝑒f ⪯𝟙 𝑒g)} 𝑒f {𝜑} . By execut-

ing a pure step of the recursive function loop in the target

(the recursive unfolding) using PureT, we have to, in turn,

show {src(𝐾 [𝑒g]) ∗ 𝑒f ⪯𝟙 𝑒g} if 𝑓 () then 𝑒f else () {𝜑} . Note
that the later modality (⊲) has been stripped from the pre-

condition. Similarly, we can execute the loop function in the

source for one step to if 𝑔() then 𝑒g else () by rule PureS. The
rest then follows by using Bind to execute 𝑓 () and 𝑔() in
the source and the target using the assumption 𝑓 () ⪯B 𝑔().
Then, depending on the outcome, (1) ending the execution in

both the source and the target, or (2) executing the respective

recursive occurrence of 𝑒f (resp. 𝑒g) using 𝑒f ⪯𝟙 𝑒g. □

Problem. The sketched approach to refinements in Iris

works well for proving result refinements, but is not adequate

for terminating-preserving refinements. For example, defin-

ing 𝑒loop ≜ loop (𝜆 () . true) (), we can prove 𝑒loop ⪯𝟙 skip
by Löb induction, analogously to the proof of Lemma 3.1,

except omitting any source steps (uses of PureS). This is not

a termination-preserving refinement, as the target always

diverges, while the source immediately terminates.

3.3 Termination-Preserving Refinements
We present the logical connectives of Transfinite Iris, their

intuitive semantics, and their proof rules. The simulation

relation (⪯𝐺 ) remains the same as the one from § 3.2. How-

ever, since the semantics and proofs rules of Transfinite Iris

are different than those of Iris, the simulation relation is in

fact adequate for termination-preserving refinements (Theo-

rem 3.3). A selection of the proof rules is shown in Figure 1.

Later stripping and source steps. Let us reconsider the
Iris proof of 𝑒loop ⪯𝟙 skip from § 3.2. There, we could prove a

refinement of a diverging target in Iris, without constructing

a diverging source execution. To avoid the same happening

in Transfinite Iris, we identify the core problem that allowed

the target to diverge: the interplay of Löb induction and the

target stepping rules. Specifically, using Löb induction, we

assumed the goal under a later modality (⊲). Once we perform

a target step (using PureT or StoreT), we can strip off the

later, regardless of whether we have already performed a

source step (using PureS or StoreS).

To avoid this issue, we ensure that stripping-off a later

requires both a target and a source step. This is achieved in

Transfinite Iris by having two notions of Hoare triples. The

source-steppingHoare triple {𝑃 } 𝑒 {v. 𝑄} allows us to perform
a step in the source, strip off a later, and continue with the

target (TPPureS, TPStoreS). The target-stepping Hoare triple

⟨𝑃⟩ 𝑒 ⟨v. 𝑄⟩ allows us to perform a step in the target, and

continue with the source (TPPureT, TPStoreT).

To strip off a later, we always need a roundtrip between

both Hoare triples, thereby necessitating a step in both the

target and source. Let us see these Hoare triples in action

by reproving Lemma 3.1 from § 3.2 in Transfinite Iris. Recall

that since the semantics of Hoare triples changed, this now

gives us a termination-preserving refinement.

Lemma 3.2. If 𝑓 () ⪯B 𝑔(), then loop 𝑓 () ⪯𝟙 loop𝑔 ().

Proof Sketch. We abbreviate 𝑒f ≜ loop 𝑓 (), 𝑒g ≜ loop𝑔 (),
and 𝜑 v ≜ (src(𝐾 [v]) ∗ v ∈ 𝟙). By Hoare-Löb, we should

show {src(𝐾 [𝑒g]) ∗ ⊲(𝑒f ⪯𝟙 𝑒g)} 𝑒f {𝜑} . By taking a source

step (unfolding the loop) using TPPureS, we have to show:

⟨src(𝐾 [if 𝑔() then 𝑒g else ()]) ∗ 𝑒f ⪯𝟙 𝑒g⟩ 𝑒f ⟨𝜑⟩
Note that the later modality (⊲) has been stripped from

the precondition, and that we have switched to the target-

stepping Hoare triple. Similarly, we can execute the loop

in the target for one step to if 𝑓 () then 𝑒f else () with PureT,

and thereby switch back to the source-stepping Hoare triple.

The rest of the proof is analogous to Lemma 3.1. □

Stuttering. So far we have only considered lock-step sim-

ulation, i.e., simulations where there is a one-to-one corre-

spondence between target and source steps. For programs

like the challenging memo_rec example from § 1 such a simu-

lation is too restrictive—we need stuttering [12].

The most interesting form is source stuttering—advancing

the target without advancing the source. This is enabled by

rule TPStutterT, which allows us to switch from the source-

stepping Hoare triple {𝑃 } 𝑒 {v. 𝑄} to the target-stepping

Hoare triple ⟨𝑃⟩ 𝑒 ⟨v. 𝑄⟩ without performing a source step.

As a consequence of the source stutter, this rule does not

allow us to strip off a later modality (⊲).

Stuttering of the target is allowed by the rules TPStut-

terSStore and TPStutterSPure. They allow us to perform

multiple (but, at least one) source steps before switching

from the source-stepping Hoare triple {𝑃 } 𝑒 {v. 𝑄} to the

target-stepping Hoare triple ⟨𝑃⟩ 𝑒 ⟨v. 𝑄⟩.

Adequacy. The model of the simulation 𝑒𝑡 ⪯𝐺 𝑒𝑠 resem-

bles the simulation from § 2.4 if one considers the unfolding

of Transfinite Iris’s Hoare triples.
3
Thus, we can prove an

adequacy result that shows the simulation really entails a

termination-preserving refinement.

Theorem 3.3. If ⊢ 𝑒𝑡 ⪯𝐺 𝑒𝑠 is derivable in Transfinite Iris,

then 𝑒𝑡 is a termination-preserving refinement of 𝑒𝑠 .

Proof Sketch. This proof is similar to that of Lemma 2.2. To

prove termination preservation, we construct an infinite

execution using Transfinite Iris’s existential property. □
3
Technically, it moves away from a lock-step simulation, and incorporates

the stuttering to justify what we have just seen above. Details on this change

are given in the supplementary material [48].
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Fib fib 𝑛 ≜ if 𝑛 < 2 then𝑛 else fib(𝑛 − 1) + fib(𝑛 − 2)
Slen slen 𝑠 ≜ if !𝑠 = 0 then 0 else slen(𝑠 + 1) + 1

Lev slen lev (𝑠, 𝑡) ≜
if !𝑠 = 0 then slen 𝑡 else
if !𝑡 = 0 then slen 𝑠 else
if !𝑠 =!𝑡 then lev(𝑠 + 1, 𝑡 + 1) else
1 +max(lev(𝑠, 𝑡 + 1), lev(𝑠 + 1, 𝑠), lev(𝑠 + 1, 𝑡 + 1))

Figure 2. Recursive templates of memoized functions.

3.4 Example Refinement: Memoization
Now that we have seen how termination-preserving refine-

ments can be proven using Transfinite Iris, we return to

the motivating memo_rec example from § 1. Recall that when

memo_rec is used to memoize a recursive function, the results

of recursive calls are cached in a lookup table and reused. We

consider the following definition of memo_rec in HeapLang:

memo_rec ≜ 𝜆 𝑡 . let tbl = map() in
rec 𝑔 𝑥.match get tbl 𝑥 with

| None ⇒ let𝑦 = 𝑡 𝑔 𝑥 in set tbl 𝑥 𝑦; 𝑦

| Some𝑦 ⇒ 𝑦

Here, 𝑡 is the template of the function we want to memoize.

The function map creates a mutable lookup table, which is

then accessed using the functions get and set.
In Transfinite Iris, we proved a generic and modular speci-

fication formemo_rec, and used it to verify two applications:
memoizing the Fibonacci function and memoizing the Lev-

enshtein distance [41]. For both examples, the template code

is given in Figure 2. To keep the explanation concrete, we

focus here on how our specification for memo_rec is used
in these applications. The details of the generic specification

can be found in the supplementary material [48].

Pure templates. We start by considering the memoiza-

tion of pure templates for functions of type N→ N, such as

the Fib template for Fibonacci, shown in Figure 2. Given a

template 𝑡 , we can define the standard recursive version of

the function 𝑟𝑡 and the memoized version𝑚𝑡 as:

𝑟𝑡 ≜ rec 𝑔 𝑛. 𝑡 𝑔 𝑛 𝑚𝑡 ≜ memo_rec 𝑡

We wish to show that𝑚𝑡 refines 𝑟𝑡 , in the sense that for all

natural numbers 𝑛, we have that𝑚𝑡 𝑛 ⪯N 𝑟𝑡 𝑛 is provable in

Transfinite Iris. When specialized to the pure template 𝑡 , our

specification for memo_rec has the following form:

PureMemoRec

∀𝑔. ⊲(∀𝑛. 𝑔 𝑛 ⪯N 𝑟𝑡 𝑛) ⇒ ∀𝑛. 𝑡 𝑔 𝑛 ⪯N 𝑟𝑡 𝑛 𝑟𝑡 is pure

∀𝑛.𝑚𝑡 𝑛 ⪯N 𝑟𝑡 𝑛
The premise requires that when the template 𝑡 is applied

to a function 𝑔 that is assumed to refine 𝑟𝑡 , the result must

continue to refine 𝑟𝑡 . The assumption about 𝑔 is guarded by

a later modality (⊲), so a proof must execute a step of the

source before this assumption can be used.

To prove PureMemoRec, we first derive standard Hoare

triples for the operations of the lookup table. After allocating

a lookup table tbl, the expression𝑚𝑡 reduces to:

ℎ ≜ rec 𝑔 𝑥.match get tbl 𝑥 with
| None ⇒ let𝑦 = 𝑡 𝑔 𝑥 in set tbl 𝑥 𝑦; 𝑦

| Some𝑦 ⇒ 𝑦

We should now prove ∀𝑛. ℎ 𝑛 ⪯N 𝑟𝑡 𝑛. We proceed by using

Löb induction in a way similar to Lemma 3.2. The induction

hypothesis from Löb is ⊲(∀𝑛. ℎ 𝑛 ⪯N 𝑟𝑡 𝑛), which matches

the left side of the implication in the premise of PureMemo-

Rec. Given an argument 𝑛, the proof case splits on whether

the result has already been stored in the lookup table. In case

it has not, memo_rec calls 𝑡 ℎ 𝑛. Applying the premise of Pure-

MemoRec to the induction hypothesis, we know 𝑡 ℎ 𝑛 ⪯N 𝑟𝑡 𝑛.
The resulting value is then stored in the lookup table. In case

𝑛 is found in the lookup table, we must argue that the stored

value is equal to the result of 𝑟𝑡 𝑛. To do so, we use Iris’s

invariant assertions to ensure that all values in the lookup

table are the result of running 𝑟𝑡 on the associated keys.

Note that in this proof, it is essential that we can stutter

the source while taking steps in the target. These stutters

allow us to execute get tbl 𝑥 and set tbl 𝑥 𝑦 in the memoized

version without needing to execute steps in the source. These

stutters are important since the steps taken for looking up (or

storing) a value in tbl do not resemble any steps by the source.

The termination of these stuttering steps can be guaranteed

by an induction on the number of entries in tbl.

Stateful templates. Memoization can also be applied to

templates that use state, so long as they execute in a re-

peatable fashion. That is, when the function is run multiple

times, it must return the same value. This ensures that it is

correct to re-use the stored values in the lookup table during

memoization. We omit the details here of how repeatability

can be encoded using Iris’s persistent propositions. Our gen-

eral specification for memoization replaces the purity side

condition in PureMemoRec with this repeatability condition.

To see an example of where our more general specifica-

tion is useful, consider the Levenshtein function template

in Figure 2, which computes the edit distance between two

strings. We parameterize the template by a function slen
used for computing the length of strings. The input strings

are stored on the heap as null-terminated arrays, as in lan-

guages like C, and the function takes pointers to these strings.

Because the length of the same substring is computed multi-

ple times, the Levenshtein function can be optimized further

by additionally memoizing the string length function, us-

ing the template Slen from Figure 2. Thus, to memoize the

8
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Levenshtein function, we define:

mlev ≜ letmslen = memo_rec Slen in
memo_rec (Lev mslen)

The resulting function performs nestedmemoization: it mem-

oizes the length function slen inside of the template Lev.
This use of the Lev template is not pure: it not only reads

from heap allocated state (the string), but also accesses and

modifies the internally allocated memo table used in mslen.
Nevertheless, the template is repeatable, so long as the input

strings are not modified after memoizing. If the strings were

mutated, the memoized function might return the edit dis-

tance of the old versions of the strings.We use Iris’s invariant

mechanism to require that the strings cannot be mutated

after memoization, in order to establish repeatability.

4 Termination
Recall from § 2.6 that termination and termination-preserving

refinement are closely related. In the latter, if the source al-

ways terminates, then the target always terminates. So if

we instantiate the source with the inverse of a well-founded

relation (e.g., (>) on ordinals), we obtain a technique for

proving termination of the target.

To prove termination using Transfinite Iris, we reuse the

simulation relation from § 3.3. We make use of the fact that

Transfinite Iris is parametric in the source language, and

instantiate it with ordinals with the order (>) as the step
relation. The resulting logic is a generalization of what is

known as time credits [8, 44] to transfinite time credits. Trans-

finite time credits were used in an earlier non-step-indexed

logic by da Rocha Pinto et al. [17], and allow for termination

arguments based on dynamic information learned during pro-

gram execution (§ 4.1). However, the logic of da Rocha Pinto

et al. was restricted to first-order programs, whereas step-

indexing allows us to handle higher-order programs. We

demonstrate the power of our technique by mechanizing var-

ious examples, including (in just 850 lines of Coq) a strength-

ened version of the main theorem of Spies et al. [49]: ter-

mination of a linear language with asynchronous channels,

modeling the core of promises in JavaScript (§ 4.2).

4.1 Time Credits
By picking ordinals as the source language of Transfinite Iris,

we obtain slightly different logical connectives and proof

rules. Instead of the resources ℓ ↦→src v and src(𝑒), we have
a connective $𝛼 referring to the ordinal source. Instead of

the source stepping rules (TPPureS and TPStoreS), we have:

TSource

⟨$𝛽 ∗ 𝑃⟩ 𝑒 ⟨v. 𝑄⟩ 𝛽 < 𝛼

{$𝛼 ∗ ⊲ 𝑃 } 𝑒 {v. 𝑄}
TSplit

$(𝛼 ⊕ 𝛽) ⇔ $𝛼 ∗ $𝛽

The rule TSource corresponds to steps in the source language,

and the rule TSplit is a new rule, which we explain below.

In this setting, it falls out for free that we can use Transfi-

nite Iris to prove termination. To prove that an expression

𝑒 terminates, it suffices to prove terminates(𝑒), which is de-

fined as ∃𝛼. {$𝛼} 𝑒 {v.True} , in Transfinite Iris.

Theorem 4.1. If ⊢ terminates(𝑒), then 𝑒 terminates.

Proof. We use the existential property (for the quantifica-

tion over 𝛼 in the definition of terminates), and then simi-

lar reasoning as in the adequacy proof of the termination-

preserving refinement Theorem 3.3. □

Our approach generalizes time credits [8, 44], which are

used traditionally for proving complexity results using sep-

aration logic. Traditional time credits enable one to prove

the safety property of bounded termination. That is, they

enable one to verify that a program “terminates in 𝑛 steps of

computation”, where the bound 𝑛 has to be fixed up-front.

What we obtain in this paper, by using ordinals, are transfi-

nite time credits. Transfinite time credits go beyond bounded

termination: they allow us to prove the liveness property

of termination
4
for examples where it is non-trivial (if not

impossible) to determine sufficient finite bounds.

To illustrate why this is useful, suppose we have a function

𝑓 that returns a natural number, and we want to prove that

𝑒two ≜ 𝑓 () + 𝑓 () terminates. If 𝑛𝑓 is the maximum number

of steps it takes to compute 𝑓 (), then we know that it takes

(roughly) 2 · 𝑛𝑓 steps for 𝑒two to terminate. With (both tradi-

tional and transfinite) time credits, this amounts to proving

{$(2 · 𝑛𝑓 )} 𝑒two {v. True} , where (ignoring stuttering) one

time credit has to be spent for every step of 𝑒two.

To prove this triple modularly, we make use of the distin-

guishing feature of time credits that makes them an ideal

fit for separation logic: time credits can be split and com-

bined. That is, we have (as an instance of TSplit for the finite

case) $(𝑛 +𝑚) ⇔ $𝑛 ∗ $𝑚. We use this rule to factorize the

termination proof of 𝑒two: we first prove termination of 𝑓

as {$𝑛𝑓 } 𝑓 () {𝑚.𝑚 ∈ N} , and then use this triple twice to

prove the termination of 𝑒two.

Transfinite credits. Now, consider a small generaliza-

tion of the example, proving termination of:

let 𝑘 = 𝑢 () in let 𝑎 = ref (0) in
for 𝑖 in 0, ..., 𝑘 − 1 do 𝑎 := !𝑎 + 𝑓 ()

Here, 𝑢 is a function returning a natural number 𝑘 . We com-

pute the sum of 𝑘-times executing 𝑓 , and store that in 𝑎. To

verify this program compositionally, we only assume that

the function 𝑢 when given enough time credits 𝑛𝑢 , returns a

natural number, i.e., {$𝑛𝑢 } 𝑢 () {𝑚.𝑚 ∈ N} .

4
It is well-known that bounded termination is a safety property while

termination (without a bound) is a liveness property [49]. Bounded termi-

nation can be falsified by exhibiting an execution which does not terminate

within the given bound, a finite prefix. For termination, this is not the case:

termination can only be falsified with an infinite execution.

9
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In this setting, finite time credits are no longer sufficient.

The number of steps it takes to execute the whole program

depends on the output of 𝑢 (). The problem is that determin-

ing the number of credits required here requires dynamic

information—it depends on the execution of the program.

With transfinite time credits, i.e., ordinals, we can statically

abstract over this dynamic information. That is, we can show

that $(𝜔 ⊕𝑛𝑢) credits are enough to prove termination of the

whole program. Given $(𝜔 ⊕ 𝑛𝑢) time credits, we can spend

$𝑛𝑢 on the execution of 𝑢 () with TSplit. After obtaining the

result 𝑘 , we can decrease the 𝜔 credits to 𝑘 · 𝑛𝑓 + 1 using

TSource for the remainder of the execution.

The addition operation 𝛼 ⊕ 𝛽 in TSplit is Hessenberg ad-

dition [28]—a well-behaved, commutative notion of addition

on ordinals. Commutativity is important in order for ordinals

to be used as resources in separation logic (separation logic

resources need to form a partial commutative monoid).

While this example is contrived, it highlights the core

problem: in compositional termination proofs, where there

may not be enough information to bound the length of

the execution statically, requiring finite termination bounds

can quickly become infeasible. With transfinite termination

bounds, we can pick the termination bound dynamically

based on information that is only learned during the execu-

tion (e.g., the value of 𝑘 in the above example).

4.2 Case Studies
Reentrant event loop. We illustrate how transfinite time

credits interact with other features of step-indexing. We do

so with the example of a reentrant event loop:

mkloop() ≜ stack()
addtask 𝑞 𝑓 ≜ push 𝑞 𝑓

run 𝑞 ≜ match pop 𝑞 with
| None ⇒ ()
| Some 𝑓 ⇒ 𝑓 (); run 𝑞

An event loop consists of a stack of functions 𝑞, which can be

extended through addtask 𝑞 𝑓 , and can be executed through

run 𝑞. Importantly, the event loop is reentrant: a function 𝑓

that is added can extend the event loop with new functions

when executed. As such, proving termination of run is subtle:
there is no intrinsic termination measure since the size of

the stack 𝑞 can increase before it eventually decreases.

To ensure termination, the precondition for addtask con-

sumes a constant 𝑐 credits, which are logically transferred

to the event loop stack. Then, to prove termination of run,
we exploit the step-indexing underlying Transfinite Iris by

using Löb induction, which does not require an intrinsic ter-

mination measure. Instead, with Löb induction, we obtain

an assumption justifying the termination of a recursive ex-

ecution of run guarded by a later modality (⊲). This later is

then removed when using TSource, which requires spend-

ing a time credit. Here, we spend the time credits that were

deposited by the calls to addtask. The intuition is that even

though extra jobs may be added while run executes, only

a finite number can ultimately be added because the total

number of credits available is a well-founded ordinal.

Logical relation for termination. Transfinite time cred-

its allow us to obtain and mechanize the main result of Spies

et al. [49] in Transfinite Iris: termination of a linear language

with asynchronous channels, modeling the core of promises

in JavaScript. For their termination proof, they introduce a

transfinitely step-indexed logical relation which, internally,

uses a bespoke form of transfinite time credits and trans-

finite step-indexing. In Transfinite Iris we can, using our

general form of transfinite time credits, simplify their logical

relation (which they define and use in an appendix of 40

pages), and mechanize their result in 500 lines of Coq. With

an additional 350 lines of Coq, we generalize their result to a

language with impredicative polymorphism, leveraging the

fact that Transfinite Iris has impredicative invariants. The

impredicative invariants of Transfinite Iris rely on the fact

that the model of Transfinite Iris involves the solution to a

recursive domain equation, see § 5.2. If one had attempted

to generalize the logical relation of Spies et al. [49] without

using Transfinite Iris, then it would have been non-trivial

since one would have had to construct a solution to a recur-

sive domain equation. For more details on the polymorphic

extension we refer to the supplementary material [48].

5 Foundations of Transfinite Iris
Thus far we have worked with Transfinite Iris informally,

developing intuitive explanations of the proof rules and high-

level arguments illustrating their use. To ensure that these

arguments are sound, it is necessary to show that Transfinite

Iris is consistent, i.e., ⊢ False does not hold.
Just as in Iris [34], consistency follows from a model with

step-indexed propositions (§ 5.1) and types (§ 5.2), which

interprets the connectives and proof rules. In contrast to

the model of Iris, the model of Transfinite Iris must also

validate the existential property from § 2. This necessitates

switching from types and propositions indexed over natural

numbers to types and propositions indexed over ordinals.

While this switch validates the existential property, it has

subtle implications for the logic of Transfinite Iris. We show

the most important changes, and prove they are inevitable

for a wide class of step-indexed logics (§ 5.3).

5.1 Modeling Step-Indexed Propositions
As with Iris, the model of Transfinite Iris decomposes into

two separate and largely orthogonal parts: the part dealing

with step-indexing, and the part used to model ownership

and resources. The change from finite Iris to Transfinite Iris

affects only the part of the model handling step-indexing,

so we set aside modeling of resources for the moment, and

focus on step-indexing.

10
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Ordinals. The fundamental change in the model is to al-

low step-indices to be drawn from a type of ordinals Ord.

This type subsumes the natural numbers to give a richer no-

tion of ordering. For instance, just like with natural numbers,

there is a zero ordinal and, for each ordinal 𝛼 , a strictly larger

successor ordinal s 𝛼 > 𝛼 exists. Unlike natural numbers, for

a small family of ordinals
5 𝑓 : 𝑋 → Ord, there exists a limit

ordinal sup𝑥 :𝑋 𝑓 (𝑥), which is larger than each 𝑓 (𝑥). For in-
stance, we may form the first infinite ordinal𝜔 as sup𝑛:N s

𝑛
0.

This operation is the linchpin of the proof of the existential

property (Theorem 5.2).

Step-indexed propositions. Propositions of Transfinite
Iris are interpreted as families of propositions 𝑃 : Ord →
Prop. To ensure that they validate rules such as Löb induction,

we limit propositions to families that are down-closed.

Definition 5.1. The type of step-indexed propositions SProp

consists of down-closed predicates 𝑃 : Ord → Prop. Explic-

itly, if 𝛽 ≥ 𝛼 , then 𝑃 𝛽 implies 𝑃 𝛼 .

Given two step-indexed propositions 𝑃,𝑄 : SProp, we say

that 𝑃 ⊢ 𝑄 iff 𝑃 (𝛼) implies𝑄 (𝛼), for all 𝛼 : Ord. The familiar

logical connectives (conjunction, disjunction, implication,

etc.) lift to step-indexed propositions and satisfy the stan-

dard rules of intuitionistic higher-order logic. For instance,

given 𝛷 : 𝑋 → SProp, there is a step-indexed proposition

(∃𝑥 . 𝛷 (𝑥)) (𝛼) ≜ ∃𝑥 . 𝛷 𝑥 𝛼 , which satisfies the standard

logical rules for the existential quantifier.

In addition to the standard operations, step-indexed propo-

sitions also model the later modality (⊲):

(⊲ 𝑃) (𝛼) ≜ ∀𝛽 < 𝛼. 𝑃 (𝛽)
This definition restricts to the more familiar interpretation of

laterwhen restricted to the natural numberswith (⊲ 𝑃) (s𝛼) =
𝑃 𝛼 and (⊲ 𝑃) (0) = True. It also validates the central rules of

step-indexed logics, such as Löb induction, and 𝑃 ⊢ ⊲ 𝑃 .

The existential property. With the machinery of step-

indexed propositions in hand, we can prove the existential

property directly. The proof rests crucially on Ord being

large enough to contain limit ordinals for small families.

Theorem 5.2 (Existential Property). Let𝛷 : 𝑋 → SProp.

If ⊢ ∃𝑥 .𝛷 𝑥 , then there exists 𝑥 : 𝑋 such that ⊢ 𝛷 𝑥 .

Proof. We proceed by contradiction and assume that ⊢ 𝛷 𝑥

is false for each 𝑥 : 𝑋 . Therefore, for each 𝑥 there is 𝛼𝑥 : Ord

such that 𝛷 𝑥 𝛼𝑥 is false. From ⊢ ∃𝑥 . 𝛷 𝑥 we know that

for each 𝛽 there is some 𝑥 such that 𝛷 𝑥 𝛽 . To obtain a

contradiction, we will construct an ordinal 𝛽 , where𝛷 𝑥 𝛽 is

false for each 𝑥 . First, we observe that𝛷 𝑥 is down-closed, so

𝛷 𝑥 𝛼 is false for any 𝛼 ≥ 𝛼𝑥 . We now define 𝛽 ≜ sup𝑥 :𝑋 𝛼𝑥 .

For each 𝑥 , we have 𝛽 ≥ 𝛼𝑥 by construction, hence𝛷 𝑥 𝛽 is

false. The contradiction follows. □
5
The supremum sup can be taken as long as 𝑋 is smaller than the type of

ordinals (think of 𝑋 being a set, compared to Ord being a proper class).

5.2 Modeling Transfinite Iris
Thus far, we have discussed step-indexed propositions, which

suffice for modeling connectives like the later modality (⊲)

and validating rules like Löb induction. It is often necessary,

however, to define propositions and other objects by induc-

tion on the step-index e.g., the simulation relation (⪯∗) in
§ 2.3. Another example is found in the model itself, which

must solve a recursive domain equation to integrate step-

indexed propositions and resources. This recursive equation

is necessary to model Iris’s impredicative invariants [50] and

higher-order ghost state [33], but it does not have a solution

if types are interpreted as naively as sets. In order to cope

with such equations, the model of Transfinite Iris interprets

types as step-indexed types. Step-indexed types appear in the

model of Iris for the same reasons but, as with propositions,

Transfinite Iris alters their form by drawing indices from

ordinals rather than from natural numbers.

Specifically, we define a step-indexed type to be an ordered

family of equivalences (OFE): a pair of a type𝑋 and a family of

equivalence relations (

𝛼
=). These equivalence relations must

become increasingly coarse as 𝛼 decreases, so that 𝑥
𝛼
= 𝑦

implies 𝑥
𝛽
= 𝑦, if 𝛽 ≤ 𝛼 . For instance, SProp is an OFE, with

𝑃
𝛼
= 𝑄 if for all 𝛽 ≤ 𝛼 , 𝑃 (𝛽) holds iff 𝑄 (𝛽) does. Recursive

definitions can also be constructed directly in SProp using a

variant of Banach’s fixed-point theorem [26].

Theorem 5.3. Let 𝑓 : SProp → SProp be such that 𝑓 (𝑃) 𝛼
=

𝑓 (𝑄) if ∀𝛽 < 𝛼, 𝑃
𝛽
= 𝑄 . Then there exists 𝑅 such that 𝑅 = 𝑓 (𝑅).

This theorem can be generalized to arbitrary COFEs: OFEs

which, like iProp, enjoy a certain completeness property.

Solving the recursive domain equation. We now re-

turn to a motivating example for step-indexed types: the

recursive domain equation for propositions. To tie together

step-indexing and ownership, the final step of the model in-

terprets a Transfinite Iris proposition as an element of iProp:

essentially monotone predicates from the step-indexed type

of resources to SProp. In order to model e.g., impredicative

invariants, resources must depend on iProp, which in turn

depends on the resources, etc. This is encoded as the domain

equation: iProp ≈ 𝐹 (iProp) mon−−−→ SProp, where 𝐹 describes

the model of resources used in Transfinite Iris.

It is well-known that domain equations can be solved

over finite step-indexed types [4]. However, while transfinite

variants of step-indexed types have been considered before, it

was unclear whether the construction of solutions to domain

equations [10, 26] could be adapted to the transfinite setting.

In order to complete the model, we have therefore defined a

novel construction for solving domain equations, extending

the existence of solutions to the transfinite case. For further

details see the supplementary material [48].

This construction enables us to define iProp as the solution

to the appropriate domain equation and construct the model.

11
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As a consequence, we construct the model of Transfinite Iris

and obtain the following theorem.

Theorem 5.4. There is a model of Transfinite Iris, which en-

sures consistency and validates the existential property.

5.3 Consequences of the Existential Property
With transfinite step-indexing we lose the following rule,

which is present in conventional step-indexed logics like Iris:

LaterExists

𝑋 inhabited

⊲(∃𝑥 : 𝑋 .𝛷 (𝑥)) ⊢ ∃𝑥 : 𝑋 . ⊲𝛷 (𝑥)
This is not by accident. The existential property (regardless

of the step-indexing technique used to model the logic) is

fundamentally incompatible with the rule LaterExists, wit-

nessed by the following theorem:

Theorem 5.5. There exists no consistent logic with a sound

later modality ( i.e., ⊢ ⊲ 𝑃 implies ⊢ 𝑃), Löb induction ( i.e.,

(⊲ 𝑃 ⇒ 𝑃) ⊢ 𝑃), and the commuting rule LaterExists, which

enjoys the existential property.

Proof. By way of contradiction, assume there is a logic satis-

fying these properties. As we will prove below, the propo-

sition ∃(𝑛 : N) . ⊲𝑛 ⊥ is derivable in such a logic. Using the

existential property, we obtain an 𝑛 at the meta-level, so that

⊲𝑛 ⊥ is derivable. By soundness of the later modality, this

gives that ⊥ is derivable, which contradicts consistency.

We prove ⊢ (∃(𝑛 : N). ⊲𝑛 ⊥) by Löb induction, so it suf-

fices to show:

(⊲∃(𝑛 : N). ⊲𝑛 ⊥) ⊢ (∃(𝑛 : N). ⊲𝑛 ⊥)
By the commuting rule LaterExists, this is reduced to:

(∃(𝑛 : N). ⊲ ⊲𝑛 ⊥) ⊢ (∃(𝑛 : N). ⊲𝑛 ⊥)
We eliminate the existential quantifier in the assumption

to obtain a witness 𝑛, and then instantiate the existential

quantifier in the conclusion by picking 𝑛 + 1. The remaining

claim (⊲ ⊲𝑛 ⊥) ⊢ (⊲𝑛+1 ⊥) is immediate. □

Given that LaterExists does not hold, it is not surprising

that we also lose the rule ⊲(𝑃 ∗ 𝑄) ⊢ (⊲ 𝑃) ∗ (⊲𝑄): sepa-
rating conjunction 𝑃 ∗ 𝑄 is defined in terms of existential

quantification in the model of (Transfinite) Iris.

6 Related Work
Transfinite step-indexing. The technique of transfinite

step-indexing has been used to define logical relations before,

but never to define a program logic.

Svendsen et al. [52] use step-indexing up to𝜔2
to decouple

steps of computation from logical steps (such as unfolding an

invariant), meaning to allow multiple logical steps per step

of computation. They do not address liveness reasoning. In

their work, Svendsen et al. already solve a recursive domain

equation on COFEs for the 𝜔2
case. We have extended this

result to arbitrary, even uncountable, ordinals.

Birkedal et al. [10] solve a recursive domain equation over

arbitrary ordinals in the category of sheaves. In the present

work, we solve recursive domain equations in the category of

(transfinite) COFEs, a subcategory of sheaves. While sheaves

form, in principle, a suitable model of Iris, they are not well

suited for mechanization. Given that mechanization is a cen-

tral aspect of Iris, sheaves instead of COFEs are an impracti-

cal choice. Thus, we have resorted to solving the recursive

domain equation in the category of COFEs instead.

Spies et al. [49] use transfinite step-indexing up to 𝜔𝜔
to

prove termination of a linear language with higher-order

channels. As explained in § 4.2, the present work subsumes,

extends, and mechanizes their work, in the process reducing

the size of their proof significantly.

Bahr et al. [9] define a statically-typed pure functional lan-

guage, and use transfinite step-indexing up to 𝜔 · 2 to show

that well-typed programs enjoy a certain liveness property.

Aside from the use of transfinite step-indexing, this work

is far removed from ours. It focuses on type-systems that

ensure liveness properties, rather than techniques for ver-

ification of liveness properties in a general language with

features like general recursion and higher-order state.

Liveness properties in program logics. A number of

program logics have been proposed to reason about liveness

properties. Liang and Feng [42, 43] develop the program

logic LiLi, a “rely-guarantee style program logic for veri-

fying linearizability and progress together for concurrent

objects under fair scheduling”. da Rocha Pinto et al. [17] ex-

tend the concurrent separation logic TaDA [16] with ordinal

time credits to prove program termination. In ongoing work,

D’Osualdo et al. [21] go further and target more general live-

ness properties such as “always-eventually” properties. All

these logics are first-order, which means they do not sup-

port reasoning about programs with higher-order state or

even higher-order functions. As such, they are not expressive

enough to verify, for instance, the memo_rec example. These

logics have not been mechanized in a proof assistant.

On the other hand, in contrast to the present work, these

logics do target concurrency. In this paper, to focus on dealing

with the “existential dilemma” of step-indexed separation

logic, we have explored liveness reasoning in the sequential

setting first. That said, Transfinite Iris is compatible with

concurrency—our Coq development [48] includes several

representative case studies of concurrent safety reasoning,

which we have ported from Iris to Transfinite Iris. In future

work, we expect to take inspiration from the aforementioned

logics in order to extend Transfinite Iris to handle concurrent,

step-indexed liveness reasoning as well.

Yoshida et al. [57] and Charguéraud [15] introduce pro-

gram logics capable of handling liveness reasoning, even

in higher-order stateful settings. Yoshida et al. [57] verify a

termination-preserving refinement of a memoized factorial

function. In contrast to the present work, their logics are

12



Transfinite Iris: Resolving an Existential Dilemma of Step-Indexed Separation Logic Draft, 1 December, 2020

not based on step-indexing, and therefore they do not offer

features like Löb induction, guarded recursion, and impred-

icative invariants. In this paper, we have focused on enabling

liveness in a step-indexed setting, allowing us to use all of

the above logical features. In particular, these features al-

lowed us to prove a generic specification for memo_rec and

then instantiate it for multiple clients.

Approximations of liveness reasoning in step-indexed
logics. Mével et al. [44] extend Iris with time credits to

prove complexity results. As mentioned in § 2 and explained

by Spies et al. [49], time credits support reasoning about

bounded termination, a safety property. Hence, they require

an explicit upper bound proved on the meta level before the

verification can begin. § 4 shows that this can be inconve-

nient when proving termination instead of complexity, and

even insufficient in cases where modularity is desired.

Tassarotti et al. [53] extend Iris with support for prov-

ing concurrent termination-preserving refinements. Because

they use finite instead of transfinite step-indexing, they ob-

tain the existential property only for quantification over fi-

nite sets. Compared to ourwork, thismeans their termination-

preserving simulation is weaker—the source is restricted

to bounded non-determinism, and can only stutter for a

fixed number of times (established at the meta level) be-

tween target steps. With these restrictions, their termination-

preserving simulation becomes a safety property, because

non-simulation can be determined by examining a finite pre-

fix of execution. This means they cannot handle examples

like memo_rec, where the number of steps needed to find a

cached result in the lookup table can grow arbitrarily, requir-

ing an unbounded number of stutters. In contrast to ourwork,

Tassarotti et al. [53] do support concurrency. As mentioned

above, we plan to incorporate liveness for concurrency in

Transfinite Iris in future work.

Frumin et al. [25] define a logic in Iris to prove the secu-

rity property timing-sensitive non-interference. While this

property ensures termination preservation, it is expressed

as a lock-step program equivalence, and thus much stronger

than termination-preserving refinement. The simulation re-

lation they use does not involve an existential quantifier, and

therefore they can prove adequacy without the existential

property or transfinite step-indexing.
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