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Abstract

This document describes formally the trans�nite version of the Iris program logic. It is based on the

technical documentation of Iris, available at https://plv.mpi-sws.org/iris/appendix-3.3.pdf. Every result in

this document has been fully veri�ed in Coq.

https://plv.mpi-sws.org/iris/appendix-3.3.pdf


Contents
1 Meta-Logic 5

2 Step-Indices 6
2.1 Constructive Step-Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Non-Constructive, Large Step-Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Existential Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Model 13
3.1 Ordered Families of Equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Complete Ordered Families of Equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Resource Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.5 Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5.1 Trivial Pointwise Lifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5.2 Next (Type-Level Later) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5.3 Product Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5.4 Sum Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5.5 Option Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5.6 Finite Partial Functions Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5.7 Agreement Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5.8 Exclusive Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5.9 Fractions Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5.10 Monotone List Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5.11 Authoritative Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5.12 Natural Numbers Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5.13 Ordinal Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Base Logic 23
4.1 Uniform Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Deduction System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Loss of Later Commuting Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4.1 Satis�ability and Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4.2 Compositional Soundness Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Recursive Domain Equation 30
5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 A Solution Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2.1 Solution over ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2.2 Additions for Trans�nite Index Types . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.4 Additional Properties of OFEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.5 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.6 Base Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.7 Successor Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2



5.8 Limit Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.8.1 Step 1: Pre-solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.8.2 Step 2: Full Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.9 Deriving the Final Isomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.10 Closing the Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Derived Notions of the Base Logic 50
6.1 Derived Rules about Base Connectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2 Persistent Propositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.3 Timeless Propositions and Except-0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.4 Dynamic Composeable Higher-Order Resources . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Invariants and Update Modalities 54
7.1 World Satisfaction and Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.2 Fancy Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.3 Invariant Namespaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.4 Non-atomic (“Thread-Local”) Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.5 Satis�ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.6 Logical Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

8 Languages 59
8.1 Concurrent Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

9 Program Logic 61
9.1 Weakest Precondition for Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

9.2 Generalized Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

9.3 Re�nement Weakest Precondition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

9.3.1 Source languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

9.3.2 De�nition of the re�nement weakest precondition . . . . . . . . . . . . . . . . . . 69

9.3.3 Derived rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

9.3.4 Adequacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

9.3.5 Sequential weakest precondition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

9.4 Time-credits Weakest Precondition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

9.5 Hoare Triples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

9.5.1 General Hoare Triples for the Re�nement Weakest Precondition . . . . . . . . . . 76

10 HeapLang 77
10.1 Heap Encoding and State Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

11 Termination and Re�nements for HeapLang 80
11.1 Termination with HeapLang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

11.2 Re�nements with HeapLang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

11.2.1 HeapLang Source Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

11.2.2 Stuttering HeapLang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

11.2.3 Adequacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

11.2.4 Re�nement Hoare Triples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3



12 Logical Relation for Termination 84
12.1 Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

12.2 Simpli�ed Logical Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

12.3 Adding Impredicative Polymorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4



1 Meta-Logic
We use a constructive extensional type theory as a foundation for stating de�nitions and proving lemmas.

This theory features a hierarchy of type universes T0 ⊆ T1 ⊆ T2 ⊆ . . ., as well as an impredicative

universe Prop ⊆ T0 of meta-level propositions. Think of Prop in Coq or B in classical mathematics. We

write T to denote an arbitrary suitable universe of the hierarchy as the exact universes do not matter except

for a few instances. The standard notation x : X to denote that x is of type X is used.

We make use of the standard type formers. Given two types X,Y , the product type X × Y contains

pairs (x, y) of elements x : X and y : Y .

The sum type X + Y ::= L(x : X)|R(y : Y ) contains elements of X or Y , while the option type

X? ::= S(x : X)|⊥ adds an “error element” ⊥ to X . For elements z : X + Y of sum types, we slightly

abuse notation and write z : X for the assertion that z = L(x) for some x : X and z : Y for z = R(y) with

y : Y . Similarly, for elements m : X?
, m : X denotes that m = S(x) for some x : X .

For a function P : X → T, Σ(x : X).P x denotes the standard dependent sum type containing

dependent pairs (x : X, y : P x). In case that P : X → Prop, one can imagine Σ(x : X).P x as the subset

type of X whose objects satisfy the predicate P .

Similarly, for P : X → T,

∏
(x : X).P x is the dependent product type containing functions λx.e

where the return type may depend on the argument x. In the special case that P : X → Prop, we also write

∀(x : X).P x to emphasize the connection to universal quanti�cation via the Curry-Howard isomorphism.

For some results, we need non-constructive reasoning. We will always make clear in which places we

need to assume classical axioms. The following axioms are of relevance here:

• Functional Extensionality (FE): If f, g : X → Y and ∀x.fx = gx, then f = g.

• Propositional Extensionality (PE): If P,Q : Prop with P ↔ Q, then P = Q.

• Excluded Middle (XM): If P : Prop, then P ∨ ¬P .

• Choice: For P : X → Prop, if ∃x.P x, then Σx.P x.

In several instances, we need to “quotient” some type X by an equivalence relation ≡, obtaining a type

X�≡ with x = y ⇔ x ≡ y for x, y : X�≡. While this is not natively supported in most type theories,

we can formally resolve this in the standard way by de�ning a setoid structure with ≡ on top of X and

overloading the usual equality sign = to refer to the relation ≡ in corresponding contexts. As the formal

details are not interesting, we will not go into more detail on paper.
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2 Step-Indices
From the perspective of the model, Iris is a particular step-indexed logical relation. Traditionally, only

natural numbers are used for step-indexing. For trans�nite Iris, we allow more general types to be used

as step-indices such as constructive and non-constructive ordinals. As we shall see in the following, each

of these types o�ers its own advantages and disadvantages. We allow the user of Iris the choice of which

step-index type is appropriate by parameterizing de�nitions over the type that is used. We impose the

following requirements on step-index types:

De�nition 1 (Step-Index Type). A step-index type (I,≺,S, 0) consists of a type I , a relation ≺ : I → I →
Prop on I , a successor function S : I → I , and a zero element 0 : I , with:

≺ is transitive and well-founded (index-rel)

∀α, β. (α≺β) +(α = β) +(β≺α) (index-linear)

∀α.¬(α≺ 0) (index-zero-least)

∀α. α≺Sα (index-succ-greater)

∀α, β. α≺β ⇒ Sα�α (index-succ-least-greater)

∀α. (Σβ. α = Sβ) +(∀β≺α. Sβ≺α) (index-distinguish-limit)

The values of I are called step-indices.

Note that the disjunctions in index-linear and index-distinguish-limit as well as the existential quanti�er

in index-distinguish-limit have to carry computational content, meaning we can write functions which

inspect whether the left or right hand side was chosen and can access the witness β.

2.1 Constructive Step-Indices
Traditionally, natural numbers are used for step-indexing. In the sense of De�nition 1, natural numbers

form a step-index type with (N, <, n 7→ n + 1, 0). Natural numbers contain all ordinals up to the �rst

proper limit ordinal ω1
. In this sense, natural numbers are �nite step-indices.

We obtain a trans�nite notion of step-indices by extending the indices we consider with the ordinals

ω, ω + 1, . . . up to but not including ω2
:

0, 1, . . . , ω, ω + 1, . . . , ω · 2, . . . , ω · 3, . . . , ω · 4, . . .

Formally, each such ordinal ω ·m+ n may be represented as a pair (m,n). For example, we represent the

ordinal ω + 42 by (1, 42), the ordinal ω by (1, 0), and the ordinal 1 by (0, 1).

We obtain an ordering on the pairs that coincides with the ordering on the ordinals they represent by

ordering them lexicographically:

(m,n)≺(m′, n′) , (m < m′) or (m = m′ and n < n′)

The successor is given by S(m,n) , (m,n+ 1) and the zero by (0, 0). Each ordinal of the form ω · (m+ 1),

represented by (m+ 1, 0), is a proper limit ordinal since it is larger than all of the ordinals ω ·m+ n for

n = 0, 1, . . .

1
Technically, 0 is also a limit ordinal but not a very interesting one at that. We dub all other limit ordinals proper limit ordinals.

6



Lexicographic Product To obtain step-indices for larger ordinals than ω2
such as ω3, ω4, . . . we gen-

eralize the above approach. We de�ne operation I ×lex J which constructs the lexicographic product of

two step-index types I and J . We then obtain step-indices up to ω2
as N×lexN, step-indices up to ω3

as

N×lex(N×lexN), . . .

De�nition 2 (Lexicographic Step-Index Product). Let (I,≺I ,SI , 0I) and (J ,≺J ,SJ , 0J ). We de�ne:

I ×lex J , (I × J ,≺lex,Slex, 0lex)

where:

(i, j)≺lex(i
′, j′) , (i≺I i′) or (i = i′ and j≺J j′)

Slex(i, j) , (i,SJ j)

0lex , (0I , 0J )

2.2 Non-Constructive, Large Step-Indices
All of the constructions above are constructive, meaning they do not require any classical reasoning

principles such as the law of excluded middle or the axiom of choice. If we assume such reasoning principles,

we can construct even larger ordinals such as uncountable ordinals
2
. As we shall see in Section 2.3, such

large ordinals can be used to derive powerful existential properties. We (non-constructively) construct such

large ordinals by embedding a set theory in our type theory.

Ordinals in Set Theory

The construction of these large ordinals in a set theory proceeds in two steps, building on the work of Kirst

and Smolka [2018]. First, a type of sets is de�ned in type theory using Aczel trees [Aczel, 1978; Werner,

1997]. Second, the notion of ordinals is de�ned on top of the set theory.

Aczel Trees In the following, we construct sets from Aczel trees. As the name indicates, Aczel trees can

be used to represent trees — �nitely and in�nitely branching trees, to be precise.

De�nition 3 (Aczel Trees). We inductively de�ne Aczel trees as:

a, b : Acz ::= T(X : Type)(f : X → Acz)

with the projections:

π1 : Acz→ Type

π1(TXf) , X

π2 : Πa : Acz. π1a→ Acz

π2(TXf) , f

The intuition behind this de�nition is that each fx for x : X is a direct subtree of the tree TXf .

For example, we obtain the empty tree, displayed in Figure 1a, as a0 , T⊥ abortAcz where ⊥ is the

empty type and abortAcz : ⊥ → Acz is the vacuous function from the empty type to Aczel trees. We

obtain a singleton tree, displayed in Figure 1b, as a1 , T 1 (() 7→ a0) and a binary tree, displayed

in Figure 1c, as a2 , TB (b 7→ if b then a0 else a1). We obtain an in�nite tree, displayed in Figure 1d, as

a∞ , TN (n 7→ sna0) where sa , T 1 (() 7→ a).

2
Uncountable ordinals are those ordinals α where the number of ordinals β≺α is uncountable.
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(a) Empty (b) Singleton (c) Binary

· · ·

(d) In�nite

Figure 1: Tree Examples

Constructive Set Theory To build a set theory on top op Aczel trees, we need a suitable notion of

membership and equality. For membership, we consider the direct subtrees of a tree a to be the elements of

a. For equality, we incorporate the usual notion of equality on sets that two sets are equal if their elements

are equal. We de�ne:

eq (TXf) (TY g) , (∀x : X.∃y : Y. eq (fx) (gy)) and (∀y : Y.∃x : X. eq (fx) (gy))

in a (TY g) , ∃y : Y. eq a (gy)

Aczel trees equipped with the above notions of equality and membership form give rise to a constructive

set theory. For example, we can de�ne the usual set operations by:

∅ , T ⊥ abort

{a, b} , T B (b 7→ if b then a else b)

map f (TXg) , T X (x 7→ f(gx))

filter P (TXf) , T (Σx : X. Px) ((x, _) 7→ fx)⋃
(TXf) , T (Σx : X. π1(fx))((x, a) 7→ (π2(fx))a)

P(TXf) , T (X → Prop)(P 7→ T(Σx : X. Px)((x, _) 7→ fx))

Non-Constructive Set Theory If we were to use the constructive version of set theory de�ned above,

then, in practice, we would need to ensure that every predicate, every function, and every de�nition is

compatible with the custom notion of equality eq de�ned above. Instead, we use classical axioms to derive

a set theory where the notion of equality coincides with syntactic equality. Using the axiom of choice,

propositional extensionality, and functional extensionality, we obtain a normalizer η : Acz→ Acz that returns

the canonical representative for a given Aczel tree, meaning:

∀a. eq a (ηa) (normal-eqal)

∀a, b. eq a b⇒ ηa = ηb (normal-ext)

We use the normalizer η to quotient the type of Aczel trees Acz with the equivalence relation eq and

de�ne:

Set , Σa : Acz. a = ηa
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All of the constructive set operations lift to Set, including membership which we denote with ∈ for values

of type Set. Additionally, we obtain the following extensionality principle
3
:

Lemma 1. If A ⊆ B and B ⊆ A, then A = B where A ⊆ B , ∀x ∈ A.x ∈ B.

Ordinals Using standard constructions from set-theory, formalized by Kirst and Smolka [2018], we de�ne

ordinals in set-theory using the von-Neumann approach. That is, each ordinal α is the set of all smaller

ordinals, meaning:

α = {β |β≺α}

De�nition 4. We de�ne IOrd , (Ord,≺Ord,SOrd, 0Ord) where:

α≺Ord β , α ∈ β SOrd α , α ∪ {α} 0Ord , ∅

Further, we de�ne a limit operation limx:X fx ,
⋃
{fx |x : X} which yields the supremum of all the

ordinals fx for x : X . For example, we obtain ω as ω , limn:N Sn 0.

2.3 Existential Properties
From the perspective of the logic, the interesting di�erences between the step-indexing types de�ned above

all arise in the context of existential quanti�cation. In the remainder of this section, we focus on their

di�erences with respect to existential quanti�cation on a high level, before we descend into the details of

the model of Iris propositions (including ordered families of equivalences, resource algebras, and uniform

predicates, . . . ) in the next sections. To this end, we assume some step-index type (I,≺,S, 0) and focus on

step-indexed propositions sPropI instead of actual propositions in Iris. Step-indexed propositions sPropI are

predicates of type I → Prop which are down-closed, meaning for a step-indexed proposition P : sPropI ,

we have ∀α, β. α ≺ β ⇒ Pβ ⇒ Pα.

To adequately discuss the di�erences between the step-index types, we equip step-indexed propositions

with a notion of true, false, a later operation, and existential quanti�cation:

> , α 7→ True

⊥ , α 7→ False

.P , α 7→ ∀β≺α. P β
∃x : X.Φx , α 7→ ∃x : X. (Φx)α

We say a proposition P : sProp entails a proposition Q : sProp, written P ` Q, if P α implies Qα for all α.

We say a proposition P : sProp is valid, written ` P , if ∀α. Pα.

We highlight the subtle interplay of existential quanti�cation and step-indexing by considering an

example, trying to prove the following:

` .⊥ ` .n⊥ ` ∃n : N. .n⊥

For natural numbers, we know that it is impossible to prove ` .⊥ and ` .n⊥. The reason is that in the

former case, we can pick α = 1 to obtain a contradiction and in the later case, we can pick α = n. The

situation changes drastically if we existentially quantify within the logic over the number of laters. More

precisely, the statement ` ∃n : N. .n⊥ is, in fact, provable. Unfolding the de�nitions, the statement reads

3
Using proof irrelevance, a corollary of propositional extensionality

9



∀m. ∃n. (.n⊥)m. For step-index m, we can pick the witness n , m+ 1. The step-index m reaches 0 after

m later operations and we trivially have (.⊥) 0.

For a trans�nite step-indexing type, both ` .⊥ and ` .n⊥, but also ` ∃n : N. .n⊥ are impossible

to prove. To see why ` ∃n : N. .n⊥ is impossible to prove, we consider what happens at step-index ω.

Unfolding the de�nitions, at step-index ω, some witness n must have been chosen such that (.n⊥)ω. Thus,

we have ∀m.(.n⊥)m by downward-closure which we know is impossible to prove.

Abstractly, the interaction between step-indexing and existential quanti�cation boils down to the

following question: “When can a quanti�er over step-indices be commuted with an existential quanti�er?”.

More formally, for which choices of X and Φ : X → sProp do the following rules hold?

∀α. ∃x : X. (Φx)α

∃x : X. ∀α. (Φx)α

∀β≺α. ∃x : X. (Φx)β

∃x : X. ∀β≺α. (Φx)β

We refer to the former as the existential property and to the latter as the bounded existential property.

Bounded Existential Property Of the step-indexing types introduced above, natural numbers are the

only type which satis�es the bounded existential property for all inhabited types X and all choices of Φ.

The reason is that every index except for zero has a largest predecessor. To �nd the right witness x, we can

just use the witness of the largest predecessor which is su�cient for smaller step-indices by down-closure.

Trans�nite step-index types cannot enjoy the bounded existential property. For trans�nite step-index

types, we have already seen in the example above that the proposition ∃x : X. ∀β≺ω. (Φx)β is false

for X , N and Φn , .n⊥. However, ∀β≺ω. ∃x : X. (Φx)β is true for X , N and Φn , .n⊥ with

x , β + 14
as we also argued above.

The bounded existential property is equivalent to the following entailment, unfolding the de�nitions of

the operations on sProp:

X is a non-empty type

.(∃x : X.Φx) ` (∃x : X. .Φx)

Consequently, any trans�nite step-indexing type cannot prove soundness of the commuting rule of later

with existential quanti�cation.

Existential Property By de�nition, the existential property is equivalent to the following (meta-level)

rule:

` ∃x : X.Φx

∃x : X. ` Φx

The example above shows that natural numbers do not enjoy the general existential property for all types

X and predicates Φ. More precisely, we know that ` ∃n : N. .n⊥ is provable. However, ∃n : N. ` .n⊥
cannot be true since for each n, we know that ` .n⊥ is false.

This fact suggests a certain relation between the size of the step-index type and the size of the types

X for which we can validate the existential property. In principle, one may therefore expect that any

step-index type I cannot validate the existential property for types X which are at least as large as I .

However, in practice in proofs many existential quanti�ers are not instantiated based on the current

step-index. As we shall see in subsequent sections, it can be really useful to have existential properties in

these cases. In fact, we can recover existential properties for speci�c choices of X and Φ.

4
Technically, the embedding of β into the natural numbers.
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Finite Existential Properties For �nite existential quanti�ers, we can recover the existential properties

classically. That is, we can show (under the assumption of the law of excluded middle):

.P ∨Q ` (.P ) ∨ (.Q)
` P ∨Q
` P or ` Q

where P ∨Q , ∃b : B. if b thenP elseQ. For �nite sets other than B, we can use repeated application of

the rules for disjunction to obtain the existential properties. We showcase the proof of the latter property:

Lemma 2. If ` P ∨Q, then ` P or ` Q.

Proof. Let ` P ∨Q. If ` P , then the claim is trivial. Let ¬ ` P . Then there is some step-index α such that

¬Pα. By down-closure, we know ¬Pβ for all β with α�β. Since ` P ∨Q, we know Qβ for all β with

α�β. By down-closure, we also know Qβ for all β≺α. Thus, we have shown ` Q.

Small Existential Property As was suggested above, in general it does not seem possible to prove the

general existential property:

` ∃x : X.Φx

∃x : X. ` Φx

However, as we shall see below, for the non-constructive ordinals, we can show the property for all types

X which are signi�cantly smaller in cardinality than the ordinal type Ord. To explain what signi�cantly

smaller means and how we can obtain such a proof, we take a closer look at the universe mechanism

underlying our meta logic.

To this end, assume the meta theory does not contain a hierarchy of universes but only a single one

Type and recall the de�nition of Aczel trees:

a, b : Acz ::= T(X : Type)(f : X → Acz)

What happens if we construct the “tree of all trees” (in analogy to the set of all sets). That is, we de�ne

aAcz , T Acz (a 7→ a). In this case, we obtain ∀a.¬ina a by induction on a but also inaAczaAcz, an

inconsistency.

We can avoid this inconsistency by using a hierarchy of universes Type0 : Type1 : Type2 . . . The

hierarchy allows us to place the type of Aczel trees Acz one universe above the typeX . That is, ifX : Typei,
then TXf : Acz where Acz : Typei+1. By extension, the types Set and Ord are in universe i if they are

constructed using Aczel trees in universe i.
The small existential property gives us a soundness result for quanti�ers X : Typei where the step-index

type I is Ord : Typei+1, written Ordi+1.

Lemma 3. Let X : Typei and φ : X → Ordi+1 → Prop such that φx is up-closed for all x, meaning

∀xαβ. α�β ⇒ φxα⇒ φxβ. If ∀x : X. ∃α : Ordi+1. (φx)α, then ∃α : Ordi+1. ∀x : X. (φx)α.

Proof. Using the axiom of choice, there is a function f : X → Ordi+1 such that ∀x. (φx) (fx). We de�ne

α : Ordi+1 , limx:X f x. It remains to show ∀x : X. (φx)α which follows by up-closure, given that

fx�α : Ordi+1 , limx:X f x for all x : X .

Lemma 4 (Small Existential Property). Let X : Typei and the step-index type be Ordi+1.

` ∃x : X.Φx

∃x : X. ` Φx

11



Proof. Unfolding the de�nitions, assume ∀α : Ordi+1. ∃x : X. (Φx)α. By way of contradiction, assume

¬∃x : X. ` Φx. That is (classically), ∀x : X. ∃α : Ordi+1. ¬(Φx)α. The predicate x 7→ α 7→ ¬(Φx)α
is up-closed, since Φx is down-closed for all x. By Lemma 3, we have ∃α : Ordi+1. ∀x : X. ¬(Φx)α, a

contradiction to ∀α : Ordi+1. ∃x : X. (Φx)α.

Existential Properties Overview We summarize the results of this section in the following table:

Step-Index Type Finite Bounded Bounded Finite Small

Natural Numbers yes yes classically N/A

Constructive Trans�nite classically no classically N/A

Non-Constructive Trans�nite yes no yes yes

12



3 Model

3.1 Ordered Families of Equivalences
The model of �nite Iris lives in the category of Ordered Families of Equivalences (OFEs). For trans�nite Iris,

we generalize OFEs to arbitrary step-indexing types. To this end let I be an arbitrary step-index type.

De�nition 5. An ordered family of equivalences (OFE) is a tuple (T�≡, (
α
= : T → T → Prop)α:I) satisfying

∀α. (α=) is an equivalence relation (ofe-eqiv)

∀α, β. β�α⇒ (
α
=) ⊆ (

β
=) (ofe-mono)

where x ≡ y , ∀α.x α
= y.

The idea of this de�nition is that larger step-indices α may be understood as more “time” to com-

putationally distinguish two objects. In other words, as α increases,
α
= becomes more and more re�ned

(ofe-mono)—and in the limit, it agrees with plain equality, due to the required quotienting
5
.

De�nition 6. An value x : T of an OFE is called discrete if

∀y : T. x
0
= y ⇒ x = y

An OFE A is called discrete if all its elements are discrete. For a type X , we write ∆X for the discrete OFE

with x
α
= x′ , x = x′.

De�nition 7. A function f : T → U between two OFEs is non-expansive (written f : T
ne−→ U ) if

∀α. ∀x, y : T. x
α
= y ⇒ f(x)

α
= f(y)

It is contractive if

∀α. ∀x, y : T. (∀β≺α. x β
= y)⇒ f(x)

α
= f(y)

Intuitively, applying a non-expansive function to some data will not suddenly introduce di�erences

between seemingly equal data. A contractive function will make seemingly equal data even more indistin-

guishable.

De�nition 8. The category OFE consists of OFEs as objects, and non-expansive functions as arrows.

Note that OFE is bicartesian closed, i.e., it has all sums, products and exponentials as well as an initial

and a terminal object. In particular:

De�nition 9. Given two OFEs T and U , the non-expansive function space T
ne−→ U is itself an OFE with

f
α
= g , ∀x : T. f(x)

α
= g(x)

Note that with this de�nition of step-indexed equality for function-space OFEs, functions f : T
ne−→ U

are extensional, even though we do not assume functional extensionality at the meta-level
6
.

5
Formally, according to Section 1, this just means that we de�ne a setoid structure with ≡ on top of the arbitary type T and

overload the equality symbol.

6
Formally, this works due to the implicit “quotienting” (i.e., the setoid structure on top of OFEs).
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De�nition 10. A (bi)functor F : OFE→ OFE is called locally non-expansive if its action F1 on arrows is

itself a non-expansive map. Similarly, F is called locally contractive if F1 is a contractive map.

The function space (−)
ne−→ (−) is a locally non-expansive bifunctor. Note that the composition of

non-expansive (bi)functors is non-expansive, and the composition of a non-expansive and a contractive

(bi)functor is contractive.

One very important OFE is the OFE of step-indexed propositions sProp, which we have already encoun-

tered in Section 2.3: For every step-index, such a proposition either holds or does not hold. Moreover, if a

proposition holds for some n, written as n ∈ P , it also has to hold for all smaller step-indices.

sProp , ΣP : N→ Prop.∀αβ. α�β ⇒ P β ⇒ P α

P
α
= Q , ∀β�α. P β ⇔ Qβ

P
α
⊆ Q , ∀β�α. P β ⇒ Qβ

3.2 Complete Ordered Families of Equivalences
COFEs are complete OFEs, which means that we can take limits of chains.

De�nition 11 (Chain). Given some OFE T , a chain is a function c : I → T such that ∀α, β. α�β ⇒
c(β)

α
= c(α).

In the trans�nite setting, we not only need to be able to take limits of chains but also of bounded chains,

that is chains which are bounded by an index α.

De�nition 12 (Bounded Chain). Given some OFE T , an α-bounded chain is a function c : Πβ. β≺α→ T

such that ∀β≺α, γ≺α. β� γ ⇒ c(γ)
β
= c(β).

De�nition 13. A complete ordered family of equivalences (COFE) is a tuple (T : OFE, lim : chain(T )→
T, blim : Πα� 0. bchainα(T )→ T ) satisfying

∀α, (c : chain(X)). lim(c)
α
= c(α) (cofe-compl)

∀α� 0, β≺α, (c : bchainα(X)). blim(c)
β
= c(β) (cofe-bcompl)

∀α� 0, β. ∀(c, d : bchainα(X)). (∀γ≺α.c(γ)
β
= d(γ))⇒ blim(c)

β
= blim(d) (cofe-bcompl-ne)

De�nition 14. The category COFE consists of COFEs as objects, and non-expansive functions as arrows.

The function space T
ne−→ U is a COFE if U is a COFE (i.e., the domain T can actually be just an OFE).

sProp as de�ned above is complete, i.e., it is a COFE.

Completeness is necessary to take �xed-points.

Theorem 1 (Banach’s �xed-point). Given an inhabited COFE T and a contractive function f : T → T , there
exists a unique �xed-point fixT f such that f(fixT f) = fixT f . Moreover, this theorem also holds if f is just

non-expansive and fk is contractive for an arbitrary k.
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3.3 Resource Algebras
De�nition 15. A resource algebra (RA) is a tuple

(M,V : M → Prop, |−| : M →M?, (·) : M ×M →M) satisfying:

∀a, b, c. (a · b) · c = a · (b · c) (ra-assoc)

∀a, b. a · b = b · a (ra-comm)

∀a. |a| : M ⇒ |a| · a = a (ra-core-id)

∀a. |a| : M ⇒ ||a|| = |a| (ra-core-idem)

∀a, b. |a| : M ∧ a 4 b⇒ |b| : M ∧ |a| 4 |b| (ra-core-mono)

∀a, b. V(a · b)⇒ V(a) (ra-valid-op)

where a? · ⊥ , ⊥ · a? , a?

a 4 b , ∃c : M. b = a · c (ra-incl)

RAs are closely related to Partial Commutative Monoids (PCMs), with two key di�erences:

1. The composition operation on RAs is total (as opposed to the partial composition operation of a PCM),

but there is a speci�c subset of valid elements that is compatible with the composition operation

(ra-valid-op). These valid elements are identi�ed by the validity predicate V .

This take on partiality is necessary when de�ning the structure of higher-order ghost state, cameras,

in the next subsection.

2. Instead of a single unit that is an identity to every element, we allow for an arbitrary number of units,

via a function |−| assigning to an element a its (duplicable) core |a|, as demanded by ra-core-id. We

further demand that |−| is idempotent (ra-core-idem) and monotone (ra-core-mono) with respect to

the extension order, de�ned similarly to that for PCMs (ra-incl).

Notice that the codomain of the core is the option type M?
, adding a dummy element ⊥ to M . Thus,

the core can be partial: not all elements need to have a unit. Partial cores help us to build interesting

composite RAs from smaller primitives. We use the metavariable a?
to indicate elements of M?

. We

also lift the composition (·) to M?
. In a slight abuse of notation, we write a? : M for the assertion

that there exists a′ : M with

Notice also that the core of an RA is a strict generalization of the unit that any PCM must provide,

since |−| can always be picked as a constant function.

De�nition 16. It is possible to do a frame-preserving update from a : M to elements satisfyingP : M → Prop,

written a P , if
∀a?

f : M?. V(a · a?
f )⇒ ∃b : M. P b ∧ V(b · a?

f )

We further de�ne a b , ∀a?
f : M?. V(a · a?

f )⇒ V(b · a?
f ).

The proposition a P says that every element a?
f compatible with a (we also call such elements frames),

must also be compatible with some b satisfying P b. Notice that a?
f could be ⊥, so the frame-preserving

update can also be applied to elements that have no frame. Intuitively, this means that whatever assumptions

the rest of the program is making about the state of γ, if these assumptions are compatible with a, then

updating to b will not invalidate any of these assumptions. Since Iris ensures that the global ghost state is

valid, this means that we can soundly update the ghost state from a to a non-deterministically picked b
with P b.
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3.4 Cameras
De�nition 17. A camera is a tuple (M : OFE,V : M

ne−→ sProp, |−| : M ne−→M?,

(·) : M ×M ne−→M) satisfying:

∀a, b, c. (a · b) · c = a · (b · c) (camera-assoc)

∀a, b. a · b = b · a (camera-comm)

∀a. |a| : M ⇒ |a| · a = a (camera-core-id)

∀a. |a| : M ⇒ ||a|| = |a| (camera-core-idem)

∀a, b. |a| : M ∧ a 4 b⇒ |b| : M ∧ |a| 4 |b| (camera-core-mono)

∀a, b. V(a · b) ⊆ V(a) (camera-valid-op)

∀α, a, b1, b2. α ∈ V(a) ∧ a α
= b1 · b2 ⇒

Σc1, c2. a = c1 · c2 ∧ c1
α
= b1 ∧ c2

α
= b2 (camera-extend)

where

a 4 b , Σc. b = a · c (camera-incl)

a
α4 b , Σc. b

α
= a · c (camera-inclN)

This is a natural generalization of RAs over OFEs
7
. All operations have to be non-expansive, and the

validity predicate V can now also depend on the step-index. We de�ne the plain V as the “limit” of the

step-indexed approximation:

V(a) , ∀α. α ∈ V(a)

The extension axiom (camera-extend). Notice that the existential quanti�cation in this axiom is con-

structive, i.e., it is a sigma type in Coq. The purpose of this axiom is to compute a1, a2 completing the

following square:

a b

b1 · b2a1 · a2

α
=

α
=

= =

where the α-equivalence at the bottom is meant to apply to the pairs of elements, i.e., we demand a1
α
= b1

and a2
α
= b2. In other words, extension carries the decomposition of b into b1 and b2 over the α-equivalence

of a and b, and yields a corresponding decomposition of a into a1 and a2.

With �nite step-indices, this operation is needed to prove that . commutes with separating conjunction:

.(P ∗Q)⇔ .P ∗ .Q

Trans�nite indices do not enjoy this commuting property (see Section 4).

7
The reader may wonder why on earth we call them “cameras”. The reason, which may not be entirely convincing, is that “camera”

was originally just used as a comfortable pronunciation of “CMRA”, the name used in earlier Iris papers. CMRA was originally

supposed to be an acronym for “complete metric resource algebras” (or something like that), but we were never very satis�ed with

it and thus ended up never spelling it out. To make matters worse, the “complete” part of CMRA is now downright misleading, for

whereas previously the carrier of a CMRA was required to be a COFE (complete OFE), we have relaxed that restriction and permit it to

be an (incomplete) OFE. For these reasons, we have decided to stick with the name “camera”, for purposes of continuity, but to drop

any pretense that it stands for something.
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De�nition 18. An element ε of a cameraM is called the unit ofM if it satis�es the following conditions:

1. ε is valid:
∀α. α ∈ V(ε)

2. ε is a left-identity of the operation:

∀a ∈M. ε · a = a

3. ε is its own core:

|ε| = ε

Lemma 5. IfM has a unit ε, then the core |−| is total, i.e., ∀a. |a| ∈M .

De�nition 19. It is possible to do a frame-preserving update from a ∈M to elements satisfying P : M →
Prop, written a P , if

∀α, a?
f . α ∈ V(a · a?

f )⇒ ∃b : M. P b ∧ α ∈ V(b · a?
f )

We further de�ne a b , ∀α, a?
f . α ∈ V(a · a?

f )⇒ α ∈ V(b · a?
f ).

Note that for RAs, this and the RA-based de�nition of a frame-preserving update coincide.

De�nition 20. A cameraM is discrete if it satis�es the following conditions:

1. M is a discrete OFE

2. V ignores the step-index:

∀a ∈M. 0 ∈ V(a)⇒ ∀α. α ∈ V(a)

Note that every RA is a discrete camera, by picking the discrete OFE for the equivalence relation.

Furthermore, discrete cameras can be turned into RAs by ignoring their OFE structure, as well as the

step-index of V .

De�nition 21 (Camera homomorphism). A non-expansive function f : M1
ne−→M2 between two cameras is

a camera homomorphism if it satis�es the following conditions:

1. f commutes with composition:

∀a1 : M1, a2 : M1. f(a1) · f(a2) = f(a1 · a2)

2. f commutes with the core:

∀a : M1. |f(a)| = f(|a|)
3. f preserves validity:

∀α. ∀a : M1. α ∈ V(a)⇒ α ∈ V(f(a))

De�nition 22. The category Camera consists of cameras as objects, and camera homomorphisms as arrows.

Note that every object/arrow in Camera is also an object/arrow of OFE. The notion of a locally

non-expansive (or contractive) bifunctor naturally generalizes to bifunctors between these categories.

3.5 Constructions
3.5.1 Trivial Pointwise Lifting

The (C)OFE structure on many types can be easily obtained by pointwise lifting of the structure of the

components. This is what we do for option T ?
, product (Mi)i∈I (with I some �nite index set), sum T + T ′,

and �nite partial functions K
�n−⇀M over some countable domain K .
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3.5.2 Next (Type-Level Later)

Given a OFE T , we de�ne IT as follows (using a datatype-like notation to de�ne the type):

IT , next(x : T )

next(x)
α
= next(y) , ∀β≺α.x β

= y

I(−) is a locally contractive functor from OFE to OFE.

3.5.3 Product Camera

Given a family (Mi)i∈I of cameras (I �nite), we construct a camera for the product

∏
i∈IMi by lifting

everything pointwise.

Frame-preserving updates on the Mi lift to the product:

prod-update

a Mi P

f [i← a] λx.x = f [i← b] ∧ P b

3.5.4 Sum Camera

The sum cameraM1 + M2 for any cameras M1 and M2 is de�ned as:

M1 + M2 , inl(a1 : M1) | inr(a2 : M2) |  
V( ) , False

V(inl(a)) , V1(a)

inl(a1) · inl(b1) , inl(a1 · b1)

|inl(a1)| ,

⊥ if |a1| = ⊥

inl(|a1|) otherwise

Above, V1 refers to the validity of M1. The validity, composition and core for inr are de�ned symmetrically.

The remaining cases of the composition and core are all  .

Notice that we added the arti�cial “invalid” (or “unde�ned”) element  to this camera just in order to

make certain compositions of elements (in this case, inl and inr) invalid.

The step-indexed equivalence is inductively de�ned as follows:

x
α
= y

inl(x)
α
= inl(y)

x
α
= y

inr(x)
α
= inr(y)

 α
=  

We obtain the following frame-preserving updates, as well as their symmetric counterparts:

sum-update

a M1 P

inl(a) λx.x = inl(b) ∧ P b

sum-swap

∀af ∈M,α. α /∈ V(a · af) V(b)

inl(a) inr(b)

Crucially, the second rule allows us to swap the “side” of the sum that the camera is on if V has no possible

frame.
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3.5.5 Option Camera

The de�nition of the camera/RA axioms already lifted the composition operation on M to one on M?
. We

can easily extend this to a full camera by de�ning a suitable core, namely

|⊥| , ⊥
|a?| , |a| If a? = S(a)

Notice that this core is total, as the result always lies in M?
(rather than in M??

).

3.5.6 Finite Partial Functions Camera

Given some countable K and some camera M , the OFE of �nite partial functions K
�n−⇀ M is equipped

with a camera structure by lifting everything pointwise.

We obtain the following frame-preserving updates:

fpfn-alloc-strong

I in�nite V(a) I(γ : K)

∅ [γ← a]

fpfn-alloc

V(a) γ : K

∅ [γ← a]

fpfn-update

a M P

f [i← a] λx.x = f [i← b] ∧ P b

Above, V refers to the (full) validity of M .

K
�n−⇀ (−) is a locally non-expansive functor from Camera to Camera.

3.5.7 Agreement Camera

Given some OFE T , we de�ne the camera Ag(T ) as follows:

Ag(T ) , (Σa : list(T ). a 6= [])/ ∼

where a
α
= b , (∀x ∈ a. ∃y ∈ b. x α

= y) ∧ (∀y ∈ b. ∃x ∈ a. x α
= y)

a ∼ b , ∀α. a α
= b

V(a)(α) , ∀x, y ∈ a. x α
= y

|a| , a
a · b , a++ b

Ag(−) is a locally non-expansive functor from OFE to Camera.

We de�ne a non-expansive injection ag into Ag(T ) as follows:

ag(x) , [x]

There are no interesting frame-preserving updates for Ag(T ), but we can show the following:

ag-val

V(ag(x))
ag-dup

ag(x) = ag(x) · ag(x)
ag-agree

α ∈ V(ag(x) · ag(y))⇒ x
α
= y
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3.5.8 Exclusive Camera

Given an OFE T , we de�ne a camera Ex(T ) such that at most one x ∈ T can be owned:

Ex(T ) , ex(T ) |  

V(a)(α) , a
α

6=  

All cases of composition go to  .

|ex(x)| , ⊥ | | ,  

Remember that ⊥ is the “dummy” element in M?
indicating (in this case) that ex(x) has no core.

The step-indexed equivalence is inductively de�ned as follows:

x
α
= y

ex(x)
α
= ex(y)

 α
=  

Ex(−) is a locally non-expansive functor from OFE to Camera.

We obtain the following frame-preserving update:

ex-update

ex(x) ex(y)

3.5.9 Fractions Camera

We de�ne an RA structure on the rational numbers in (0, 1] as follows:

Frac , frac(Q ∩ (0, 1]) |  
V(a) , a 6=  

frac(q1) · frac(q2) , frac(q1 + q2) if q1 + q2 ≤ 1

|frac(x)| , ⊥
| | ,  

All remaining cases of composition go to  . Frequently, we will write just x instead of frac(x).

The most important property of this RA is that 1 has no frame. This is useful in combination with

sum-swap, and also when used with pairs:

pair-frac-change

(1, a) (1, b)
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3.5.10 Monotone List Camera

Given a type A, we de�ne an RA structure on lists of elements of A as follows:

MList , mlist(ListA) |  
V(a) , a 6=  

mlist(l1) ·mlist(l2) ,


l1 if l2 is a pre�x of l1

l2 if l1 is a pre�x of l2

 otherwise

|mlist(l)| , mlist(l)

| | ,  

Frequently, we will write just l instead of mlist(x).

3.5.11 Authoritative Camera

Given a camera M , we construct Auth(M) modeling someone owning an authoritative element a of M ,

and others potentially owning fragments b 4 a of a. We assume that M has a unit ε, and hence its core is

total. (If M is an exclusive monoid, the construction is very similar to a half-ownership monoid with two

asymmetric halves.)

Auth(M) , Ex(M)? ×M
V((x, b))(α) , (x = ⊥ ∧ α ∈ V(b)) ∨ (∃a. x = ex(a) ∧ b 4α a ∧ α ∈ V(a))

(x1, b1) · (x2, b2) , (x1 · x2, b2 · b2)

|(x, b)| , (⊥, |b|)

(x1, b1)
α
= (x2, b2) , x1

α
= x2 ∧ b1

α
= b2

Note that (⊥, ε) is the unit and asserts no ownership whatsoever, but (ex(ε), ε) asserts that the authoritative

element is ε.
Let a, b ∈M . We write • a for full ownership (ex(a), ε) and ◦ b for fragmental ownership (⊥, b) and

• a, ◦ b for combined ownership (ex(a), b).

The frame-preserving update involves the notion of a local update:

De�nition 23. It is possible to do a local update from a1 and b1 to a2 and b2, written (a1, b1)
l
 (a2, b2), if

∀α, a?
f . α ∈ V(a1) ∧ a1

α
= b1 · a?

f ⇒ α ∈ V(a2) ∧ a2
α
= b2 · a?

f

In other words, the idea is that for every possible frame a?
f completing b1 to a1, the same frame also

completes b2 to a2.

We then obtain

auth-update

(a1, b1)
l
 (a2, b2)

• a1, ◦ b1  • a2, ◦ b2
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3.5.12 Natural Numbers Camera

We can de�ne an RA structure on top of N, with the RA operation being given by addition. This will be

particularly useful in conjunction with timecredits later on.

V(n) , >
n1 · n2 , n1 + n2

|n| , 0

The inclusion 4 is just the usual ≤ relation. Of course, 0 is the unit of the induced discrete camera.

3.5.13 Ordinal Camera

A very similar RA structure can be de�ned on top of the non-constructive ordinals of §2.2. For addition, we

do not use the naive (non-commutative) addition, but instead the (natural) Hessenberg sum which is both

associative and commutative. We will denote it by the operation ⊕ : Ord→ Ord→ Ord.

V(α) , >
α1 · α2 , α1 ⊕ α2

|α| , 0Ord

Clearly, 0Ord is the unit of the induced discrete camera. The implication α1 4 α2 ⇒ α1�α2 is valid.
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4 Base Logic
Compared to �nite Iris, the changes to the base logic are modest. Below we de�ne a trans�nite version of

uniform predicates and use the existential property to develop new kinds of soundness proofs.

4.1 Uniform Predicates
Given a camera M , we de�ne the COFE UPred(M) of uniform predicates over M as follows:

M
mon,ne−−−−→ sProp , ΣΦ : M

ne−→ sProp. ∀α, a, b. a α4 b⇒ Φ(a)
α
⊆ Φ(b)

UPred(M) , (M
mon,ne−−−−→ sProp)�≡

Φ ≡ Ψ , ∀β, a. β ∈ V(a)⇒ (β ∈ Φ(a) ⇐⇒ β ∈ Ψ(a))

Φ
α
= Ψ , ∀β�α, a. β ∈ V(a)⇒ (β ∈ Φ(a) ⇐⇒ β ∈ Ψ(a))

The reader can think of uniform predicates as monotone, step-indexed predicates over a camera that “ignore”

invalid elements (as de�ned by the quotient).

UPred(−) is a locally non-expansive functor from Camera to COFE.

Given an OFE T , an type A, uniform predicates P,Q : UPred(M) and a predicate φ : A→ UPred(M),

we de�ne the following logical connectives on uniform predicates:

t =T u , 7→ α 7→ t
α
= u

False , 7→ 7→ False

True , 7→ 7→ True

P ∧Q , a 7→ α 7→ P aα ∧Qaα
P ∨Q , a 7→ α 7→ P aα ∨Qaα
P ⇒ Q , a 7→ α 7→ ∀β, b. β�α ∧ a 4 b ∧ β ∈ V(b)⇒ P aβ ⇒ Qaβ

∀x : A. φx , a 7→ α 7→ ∀x : A. (φx) aα

∃x : A. φx , a 7→ α 7→ ∃x : A. (φx) aα

P ∗ Q , a 7→ α 7→ ∃b1, b2. a
α
= b1 · b2 ∧ P b1 α ∧Qb2 α

P −∗ Q , a 7→ α 7→ ∀β, b. β�α ∧ β ∈ V(a · b)⇒ P β b⇒ Qβ (a · b)
Own (b) , a 7→ α 7→ b

α4 a

V(b) , 7→ α 7→ α ∈ V(b)

�P , a 7→ α 7→ P |a|α

�P , 7→ α 7→ P εα

.P , a 7→ α 7→ ∀β≺α. P a β
˙|VP , a 7→ α 7→ ∀β, a′. β�α ∧ β ∈ V(a · a′)⇒ ∃b. β ∈ V(b · a′) ∧ P b β
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4.2 Deduction System
Uniform predicates give rise to a logic P ` Q, the base logic, de�ned by:

P ` Q , ∀α, a. α ∈ V(a)⇒ P aα⇒ Qaα

Laws of intuitionistic higher-order logic with equality.

Asm

P ` P

Cut

P ` Q Q ` R
P ` R

Eq

φ : T → UPred(M) P ` φ t P ` t =T u

P ` φu

Refl

True ` t =τ t

⊥E

False ` P
>I

P ` True

∧I

P ` Q P ` R
P ` Q ∧R

∧EL

P ` Q ∧R
P ` Q

∧ER

P ` Q ∧R
P ` R

∨IL

P ` Q
P ` Q ∨R

∨IR

P ` R
P ` Q ∨R

∨E

P ` R Q ` R
P ∨Q ` R

⇒I

P ∧Q ` R
P ` Q⇒ R

⇒E

P ` Q⇒ R P ` Q
P ` R

∀I

φ : A→ UPred(M) ∀x : A. P ` φx
P ` ∀x : A. φx

∀E

φ : A→ UPred(M) P ` ∀x : A. φx x : A

P ` φx

∃I

φ : A→ UPred(M) P ` φx x : A

P ` ∃x : A.φx

∃E

∀x : A. φx ` Q φ : A→ UPred(M)

∃x : A. φx ` Q

Laws of (a�ne) bunched implications.

True ∗ P a` P
P ∗Q ` Q ∗ P

(P ∗Q) ∗R ` P ∗ (Q ∗R)

∗-mono

P1 ` Q1 P2 ` Q2

P1 ∗ P2 ` Q1 ∗Q2

−∗I-E
P ∗Q ` R
P ` Q −∗ R

Laws for the plainness modality.

�-mono

P ` Q
�P ` �Q

�-E

�P ` �P
(�P ⇒ �Q) ` �(�P ⇒ Q)

�((P ⇒ Q) ∧ (Q⇒ P )) ` P =iProp Q

�P ` ��P
∀x. �P ` � ∀x. P
�∃x. P ` ∃x. �P

Laws for the persistence modality.

�-mono

P ` Q
�P ` �Q

�-E

�P ` P
(�P ⇒ �Q) ` �(�P ⇒ Q)

�P ∧Q ` �P ∗Q

�P ` ��P
∀x. �P ` �∀x. P
�∃x. P ` ∃x. �P
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Laws for the later modality.

.-mono

P ` Q
.P ` .Q

.-I

P ` .P ∀x. . P ` .∀x. P
.P ` . False ∨ (. False⇒ P )

.P ∗ .Q ` . (P ∗Q)

� .P a` .�P
� .P a` .�P

I enjoys the bounded existential property

. ∃x. P ` . False ∨ ∃x. . P
I enjoys the bounded existential property

. (P ∗ Q) ` .P ∗ .Q

I enjoys the �nite existential property

. (P ∨Q) ` .P ∨ .Q

Laws for resources and validity.

Own (a) ∗Own (b) a` Own (a · b)
Own (a) ` �Own (|a|)

True ` Own (ε)

Own (a) ` V(a)

V(a · b) ` V(a)

V(a) ` �V(a)

I enjoys the bounded existential property

.Own (a) ` ∃b.Own (b) ∧ .(a = b)

Laws for the basic update modality.

upd-mono

P ` Q
˙|VP ` ˙|VQ

upd-intro

P ` ˙|VP
upd-trans

˙|V ˙|VP ` ˙|VP
upd-frame

Q ∗ ˙|VP ` ˙|V(Q ∗ P )

upd-update

a P

Own (a) ` ˙|V∃b. P b ∧Own (b)
upd-plainly

˙|V�P ` P

The premise in upd-update is a meta-level side-condition that has to be proven about a and P .

4.3 Loss of Later Commuting Rules
When using trans�nite step-index types (which necessarily refute the bounded existential property, as

proved in Section 2), we lose the following rules compared to �nite Iris:

(1) the later modality commutes with separating conjunction: .(P ∗ Q) ` .P ∗ .Q

(2) for in�nite types X , the later modality commutes with existential quanti�cation: .(∃x : X. P ) ` ∃x :
X. .P

(3) the later modality can be pulled down under ownership: .Own (a) ` ∃b.Own (b) ∧ .(a = b)
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In �nite Iris, rule (3) is merely used to derive another rule which is still directly provable in the model

for trans�nite index types, so that its loss is negligible. On the other hand, the loss of (1) and (2) is more

serious: these commuting rules are frequently used when opening invariants (which provide the invariant

under a later) in the Iris program logic.

However, we can in fact prove that there is no model validating both the existential property, the usual

rules for later necessary in a step-indexed logic, and (2).

Lemma 1. There is no sound step-indexed logic ` which has

• a later operation which is sound in the sense that ` .P implies ` P ,

• Löb induction (if .P ` P , then ` P ),

• later existential commuting (2),

• and the existential property.

Proof. We derive a contradiction by assuming that the �rst three assumptions hold for the logic and refuting

the existential property for N.

We claim that there exists n : N such that ` .n False. By applying the existential property, we can prove

∃n : N. .n False in the logic.

By Löb induction we may assume . ∃n : N. .n False. Now we use later existential commuting (2) and

have ∃n : N. . .n False. We obtain n : N with .1+n False. We may pick n+ 1 as the witness and are done.

It remains to show that ` .n False contradicts soundness, i.e., we prove ` False. We do an induction on

n. In the base case, the claim is trivial. In the successor case, we use the assumed soundness of later and are

done.

Since separating conjunction is de�ned using existential quanti�cation for splitting the resources in our

model, it is not very surprising that our model also does not validate it.

4.4 Soundness
Traditionally, the soundness result of the base logic of Iris is stated as consistency:

True 6` (.)nFalse

where (.)n is short for . being nested n times. Compared to the standard formulation True 6` False of

consistency, the idea is that it should be impossible to derive a contradiction below the modalities. For� and

�, this follows from the elimination rules. For updates, we use the fact that
˙|VFalse ` ˙|V� False ` False.

However, there is no elimination rule for ., so we declare that it is impossible to derive a contradiction

below any number of laters. The traditional soundness theorem does not cover True 6` ∃n.(.)nFalse as

True ` ∃n.(.)nFalse is provable in �nite Iris.

4.4.1 Satis�ability and Validity

In the following, we pursue a di�erent approach to proving soundness and adequacy results. Instead of

stating a single consistency theorem, we develop a modular framework for proving soundness and adequacy

results. Given the framework, it is trivial to derive True 6` (.)nFalse, for example, as a corollary.
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To this end, we introduce the meta-level notions of valid and satis�able propositions. A uniform predicate

P : UPred(M) is said to be valid, if it is true for all step-indices and valid resources. It is said to be satis�able,

if for every step-index there is some valid resource for which the proposition is true.

valid(P ) , ∀α, a. α ∈ V(a)⇒ P aα

satisfiable(P ) , ∀α. ∃a. α ∈ V(a) ∧ P aα

Lemma 6. Let φ be a meta level proposition embedded into Iris. If valid(ϕ) or satisfiable(ϕ) where ϕ : Prop,
then ϕ holds.

Satis�ability vs. validity. Any valid proposition is satis�able, but not vice versa. Satis�able propositions

are valid, if they do not care about the resource, i.e. they are plain. Validity can be expressed internally in

the logic as True ` P whereas we are not aware of an internal notion of satis�ability.

valid(P )

satisfiable(P )

satisfiable(�P )

valid(P )
valid(P ) ⇐⇒ True ` P

Satis�ability and validity share many of the same properties
8
. Let pred ∈ {satisfiable, valid}.

pred(P ) P ` Q
pred(Q)

pred(.P )

pred(P )

pred(P ∨Q) I enjoys the �nite existential property

pred(P ) ∨ pred(Q)

pred(∃x : A. φx) I enjoys the small existential property A is small

∃x : A. pred(φx)

Satis�ability admits an elimination rule for updates on the global resource:

satisfiable( ˙|VP )

satisfiable(P )

Validity does not admit this rule since it requires the predicate P to hold for all global resources. For

example, the update might allocate some resource which is then required to be contained in the global

resource by P . Thus, the proposition P would not be valid as it is not true with the empty resource ε.
Validity admits rules for combining uniform predicates such as:

valid(P ) valid(Q)

valid(P ∗ Q)

which can be derived from the rules above. Combining satis�able propositions is usually harder since they

might be satis�ed by di�erent global resources.

8
We have only mechanized the properties of satisfiable since those are the properties we use in adequacy proofs.
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4.4.2 Compositional Soundness Results

We demonstrate the use of valid and satisfiable by proving three soundness results, the original formulation

of consistency, a stronger notion of consistency which relies on trans�nite step-indexing, and an adequacy

theorem for a simpli�ed version of the weakest precondition. The examples demonstrate how we can

derive soundness results compositionally: we �rst prove rules along the lines of the rules shown above

and then, we derive the desired soundness result by successive application. These speci�c examples are

not mechanized: their purpose is only to illustrate how we obtain compositional adequacy and soundness

proofs using the two notions. (We will see actual adequacy proofs with satisfiable in Section 9.3.) For the

last two examples, we assume that the step-index I satis�es the small existential property and hence also

the �nite existential property.

Traditional consistency. Recall that the traditional formulation of adequacy is True 6` (.)nFalse. We

�rst prove an elimination rule for the derived modality (.)n and obtain the consistency result as a corollary.

Lemma 7. Let pred ∈ {valid, satisfiable}.

pred((.)nP )

pred(P )

Proof. By induction on n. For n = 0, the claim is trivial. For n > 0, we have by assumption pred(.(.)n−1P )
and thus pred((.)n−1P ). The claim follows by induction.

Corollary 1 (Traditional Consistency). True 6` (.)nFalse

Proof. By way of contradiction assume True ` (.)nFalse. Thus valid((.)nFalse) and hence valid(False)
by Lemma 7, a contradiction by Lemma 6.

Trans�nite consistency. Recall that the traditional consistency theorem does not cover True 6` ∃n.(.)nFalse
as True ` ∃n.(.)nFalse is provable in �nite Iris. In the trans�nite version of Iris, we can also prove this

stronger consistency theorem. That is, we can prove True 6` .ω False where .ω P , ∃n. (.)nP .

Lemma 8. Let pred ∈ {valid, satisfiable}.
pred(.ω P )

pred(P )

Proof. Let pred(.ω P ). Then pred(.n P ) for some n : N. The claim follows by Lemma 7.

Corollary 2 (Trans�nite Consistency). True 6` .ω False

A simpli�ed weakest precondition. We demonstrate the compositionality of the approach by prov-

ing adequacy of a simpli�ed version of the weakest precondition. The actual de�nition of the weakest

precondition, which is used in the de�nition of Hoare triples, can be found in Section 9. We de�ne
9
:

wp v {φ} , φ v
wp e {φ} , (∃e′. e e′) ∧ ∀e′. e e′ ⇒ ˙|V.ω wp e′ {φ} where e is not a value

9
The modality .ω is contractive which makes it possible to de�ne the weakest precondition using the fix operator given by

Banach’s Theorem 1.

28



where we assume e, e′ range over expressions of some language, v over values of that language, and e e′

denotes a single, small step in the operational semantics.

In the following, we prove adequacy of the weakest precondition. That is, we prove that if one can

prove True ` wp es {φ} and further es  ∗ et, then et is a value or there is some e′t such that et  e′t.
In general, we obtain a compositional proof of adequacy by proving soundness results for the modalities

used inside of the weakest precondition and then using those results to obtain soundness results about the

weakest precondition itself. We already have soundness results for
˙|VP and .ω P which means we can

proceed to derive soundness results for the weakest precondition itself.

Lemma 9.
wp-sound-step

satisfiable(wp e {φ}) e e′

satisfiable(wp e′ {φ})

wp-sound-steps

satisfiable(wp e {φ}) e ∗ e′

satisfiable(wp e′ {φ})

wp-sound-progress

satisfiable(wp e {φ}) e is not a value

satisfiable(∃e′. e e′)

Proof.

1. WP-SOUND-STEP. Since e e′, we know e is not a value. Thus, we have:

satisfiable((∃e′. e e′) ∧ ∀e′. e e′ ⇒ ˙|V.ω wp e′ {φ})

and hence satisfiable(∀e′. e  e′ ⇒ ˙|V.ω wp e′ {φ}). We obtain satisfiable( ˙|V.ω wp e′ {φ}) by

e e′ and thus satisfiable(.ω wp e′ {φ}). Using Lemma 8, we have satisfiable(wp e′ {φ}).

2. WP-SOUND-STEPS. By induction on e ∗ e′.

(a) Let e = e′. The claim is trivial.

(b) Let e  e′′  ∗ e′. By WP-SOUND-STEP, we have satisfiable(wp e′′ {φ}). By induction, we

obtain satisfiable(wp e′ {φ}).

3. WP-SOUND-PROGRESS. Since e is not a value, we have:

satisfiable((∃e′. e e′) ∧ ∀e′. e e′ ⇒ ˙|V.ω wp e′ {φ})

Thus satisfiable(∃e′. e e′).

We can now derive an adequacy theorem for the simpli�ed weakest precondition:

Lemma 10 (Simpli�ed Adequacy). If True ` wp es {φ} and es  ∗ et, then et is a value or there is some e′t
such that et  e′t.

Proof. By assumption, we have valid(wp es {φ}) and thus satisfiable(wp es {φ}). By Lemma 9, we have

satisfiable(wp et {φ}). If et is a value, the claim follows. If not, then we have satisfiable(∃e′t. et  e′t).

Thus, there is some e′t such that et  e′t by Lemma 6.
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5 Recursive Domain Equation
We will use UPred as the basis for a step-indexed model iProp for Trans�nite Iris, parameterised over a

resource type (formally, a camera). Importantly, in order to support higher-order ghost state, the resource

type must be allowed to depend on iProp itself. We therefore formulate the resource type as a function G
parameterised over the model and returning a camera. Thus, we need to solve a recursive equation of the

following form:

iProp ' UPred(Res) with Res , G(iProp)

Formally, we can interpret G as a bifunctor G : OFEop × OFE→ UCMRA of mixed variance, where

OFE is the category of OFEs with non-expansive maps between them and UCMRA is the evident category

of unital cameras. Composing with the UPred : UCMRA→ COFE functor, where COFE is the subcategory

of OFE containing only the COFEs, our problem reduces to �nding a COFE X such that

F (X,X) ' X

for a functor F : OFEop × OFE→ COFE.

F (and G, respectively) has mixed variance to allow for recursive occurrences in negative positions. For

instance, the classic domain equation for the untyped λ calculus can be formulated as

F (X−, X+) = (X− → X+).

In practice, we have stronger structural requirements onF , most importantly that it is locally contractive.

These will be outlined below.

5.1 Related Work
In Iris, the solution of recursive domain equations was based on a theorem by America and Rutten [America

and Rutten, 1989; Birkedal et al., 2010]. This allows to solve domain equations where F is of the form

F : COFEop × COFE → COFE. Compared to the form OFEop × OFE → COFE above, this is a weaker

requirement on F , as F only needs to work on COFEs. While the construction of the Iris model itself does

not require such a stronger theorem, more complex constructions like the one in Actris [Hinrichsen et al.,

2019] seem to rely on this.

In contrast to Iris, for Trans�nite Iris we need to solve such domain equations over arbitrary step-index

types, not just over ω. For COFEs, this is not covered by the literature.

Svendsen et al. [2016] take steps in exploring trans�nite logical relations and have to solve domain

equations over ω2
in the process. They claim to solve domain equations of the form COFEop × COFE→

COFE, but hinge on the misconception that non-expansive maps preserve bounded limits, in particular

∀(f : A
ne−→ B)(c : bchainω(A)).f( lim

γ≺ω
cγ) = lim

γ≺ω
f(cγ),

which is not true in general. For instance, consider the de�nition of UPred (which also satis�es the relevant

aspects of their COFE de�nition) over some camera and the constant chain (>)γ≺ω with the function

f : UPred→ UPred , λx.x ∧ (∃n.Bn ⊥). Then f(limγ≺ω cγ) does not hold at ω, but limγ≺ω f(cγ) does.

The inverse limit that is taken in the case of limit ordinals of the form ω · i for i ∈ N is thus not a COFE,

breaking the proof. Luckily, the rest of their paper does also work with a weaker domain equation solver

for functors OFEop × OFE → COFE, as they only need to solve domain equations over (some form of)
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UPred, similar to our situation. Even with this stronger requirement, their construction contains another

�aw, which we will explain below.

We note that the category-theoretic solution of recursive domain equations in a more general setting

over sheaves is well understood. ? show that for any complete Heyting algebra A with a well-founded basis,

domain equations in the topos of sheaves over A can be solved. However, as sheaves are hard to mechanise

and it does not seem feasible to use them as a model for Trans�nite Iris in Coq, we need the more restrictive

setting of COFEs. COFEs over trans�nite step-index types are less well-behaved than sheaves, which is

cause for some of the problems in Svendsen et al. [2016]’s proof. For instance, the category COFE does not

have limits, in general.

5.2 A Solution Sketch
Formally, we prove the statement

Theorem 2 (Solution of Trans�nite Recursive Domain Equations). Let 1 be the discrete OFE on the unit

type. Given a locally contractive bifunctor F : OFEop × OFE→ COFE which satis�es

• F (1,1) is inhabited by ?F (1,1),

• F (O,O) has unique limits of bounded chains up to limit ordinals for any O (Limit Uniqueness),

• and F (O,O) has a truncation operation for any O (Truncatability),

there exists a COFE T such that F (T, T ) ' T 10
.

Note that we require F : OFEop × OFE→ COFE instead of COFEop × COFE→ COFE. It does not

seem possible to go with the weaker requirement in the trans�nite case.

The two latter requirements on F can be understood as “regularity conditions” on COFEs. Our de�nition

of COFEs is quite minimal because more regularity is only used for select COFEs in the Coq formalisation

in the model construction, but the conditions are useful for solving domain equations. We give their formal

statement and an explanation below. Interestingly, they are true of any COFE under classical logic with a

choice principle.

We will now give an outline of the construction to motivate the formulation of the theorem and give an

intuitive account before delving into the technical details below.

5.2.1 Solution over ω

We start with a recap of the proof over ω. Thus assume a locally contractive bifunctor F : OFEop×OFE→
COFE such that F (1,1) is inhabited. Our goal is to de�ne X with F (X,X) ' X .

The key idea is to follow the step-index structure and de�ne, for every ordinal up to ω, an approximation

which will become “�ner” with every step. Formally, for every i : N, a COFE Xi with Xi
i'→ F (Xi, Xi), is

de�ned by induction. Xi
i'→ F (Xi, Xi) means that the two COFEs are (asymmetrically) isomorphic up to i,

i.e., there are maps φi : Xi
ne−→ F (Xi, Xi), ψi : F (Xi, Xi)

ne−→ Xi with φi ◦ψi
i
= id and ψi ◦φi = id . This

asymmetry does not only make sense intuitively (there should be an injection from “smaller” approximations

to “larger” approximations), but it is crucially needed later on.

For the base case, we set X0 := F (1,1).

10
Probably, this COFE is also unique (classically), but we’d need to investigate that.
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In the successor case, we already have an approximationXi with accompanying maps φi, ψi. Intuitively,

we now just apply the functor F once, which will bring our approximation closer to a full solution as F
is locally contractive. We set Xi+1 , F (Xi, Xi), φi+1 , F (ψi, φi), and ψi+1 , F (φi, ψi). As functors

preserve composition, the equations for the isomorphisms are easy to prove.

In the end, we have approximations Xi
i'→ F (Xi, Xi) for every i : N. In order to de�ne X , we need

some form of limit of the Xi. We do not give a precise de�nition in this outline, but the situation looks like

this:

X0 F (X0, X0)0'→ X1 F (X1, X1)= 1'→ · · · Xn F (Xn, Xn)n'→ · · ·

X

0'→
1'→

n'→

Intuitively,X should subsume everyXi by an isomorphism up to i, as we want to de�ne an isomorphism

X ' F (X,X) by “lifting” the “bounded” isomorphismsXi
i'→ F (Xi, Xi). A �rst approach to achieving this

is to setX as

∏
i:NXi (with pointwise equality) or equivalently (due to the isomorphisms) as

∏
i:N F (Xi, Xi).

Choosing one over the other does not make a fundamental di�erence, but the latter will make the presentation

a bit simpler later on. De�ning maps pi,ω : X
ne−→ F (Xi, Xi) is trivial with this de�nition as we can just

project out. However, this simple choice does not allow us to de�ne inverse maps F (Xi, Xi)
ne−→ X , yet, as

we somehow need to turn an element x : F (Xi, Xi) into elements of F (Xj , Xj) for every j.
It turns out that we need more structure between the Xi for this. Namely, we can de�ne embedding-

projection pairs ei,j : Xi
ne−→ Xj and pi,j : Xj

ne−→ Xi for i < j, such that ei,j ◦pi,j
i
= id and pi,j ◦ei,j = id .

The de�nitions proceed by inductively composing the maps φi, ψi.

With this, we can de�ne maps ei,ω : F (Xi, Xi)
ne−→ X . Proving that ei,ω inverts pi,ω is not yet possible,

however: when using pi,ω on x : X , we throw away all but the i-th component of x; in order to accurately

restore the other components by using the ei,j , pi,j maps, some form of coherence is required for the

elements of X . Therefore, we de�ne X by “slicing out” the elements of the product

∏
i:N F (Xi, Xi) for

which the components are coherent, i.e., ∀i, j.pi+1,j+1(xj) = xi. We call this an equalisation property,

referring to the underlying category-theoretic notion of equalisers. Then, de�ning ei,ω and proving that it

is well-de�ned, i.e., that its image satis�es this coherence, requires that pi,j ◦ ei,j = id , motivating the

asymmetry in our notation

·'→ .

Next, we de�ne X ' F (X,X). As we have Xi
i'→X , we consequently get F (Xi, Xi)

i'→ F (X,X). For

de�ning ψ : F (X,X)
ne−→ X , it is therefore possible to just map down to each component individually.

The converse direction φ : X
ne−→ F (X,X) is more di�cult: we can de�ne a map into F (X,X) for each

component individually and, for each x : X , the resulting sequence of elements in F (X,X) will form a

chain, of which we can take the limit (as F (X,X) is a COFE).

This �nishes our outline of the essential parts for the ω case.

5.2.2 Additions for Trans�nite Index Types

The most obvious change in the trans�nite case is that we also need to de�ne intermediate approximations

Xβ at limit ordinals β. Conceptually, the construction for this is quite similar to the �nal limit of the
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proof for ω, but we use the bounded limit operation for de�ning the map Xβ
ne−→ F (Xβ , Xβ). A di�culty

with proving the bounded isomorpisms here is that bounded limits of chains are potentially sensitive to

“di�erences” of the chain’s elements at indices > β which are not interesting when de�ning the β-th

approximation. We would like to make such di�erences irrelevant and eliminate all interesting behaviour

above index β. In principle, there are two available choices here:

• we make the limit operations ignore such di�erences, that is, for any two chains c, d : bchainα, if

cγ
γ
= dγ for any γ ≺ α, then limγ≺α cγ = limγ≺α dγ (strongly unique limits).

• we completely remove such di�erences above β at the OFE level, i.e., setup Xβ such that for all

x, y : Xβ , x
β
= y ⇔ x = y (truncate Xβ at index β).

The �rst approach is taken by Svendsen et al. [2016]. Their proof goes wrong, however, as they again rely

on non-expansive maps preserving bounded limits in setting up φ, ψ in the limit case. It does not seem

clear how to �x this, except for going with the second approach (truncation) which eliminates unwanted

di�erences at a much more global level. Thus, we take the second approach.

Another di�culty lies with the fact that COFEs now need to be equipped with bounded limit operations.

It turns out that this is quite problematic for “slicing out” elements of a COFE, for instance by forming

dependent sums. In practice, it seems like the best we can achieve is to make the limit approximation

Xβ a “lower-bounded COFE” in the following sense: it only has limit operations for chains which go at

least up to i. If a chain is too short, then it does not seem possible to prove that that the limits of chains

whose elements live in Xβ are again in Xβ , satisfying the equalisation property. Svendsen et al. [2016]

wrongly used that non-expansive maps preserve bounded limits here. However, by restricting to functors

F : OFEop × OFE→ COFE, we can just turn the OFE Xi into a COFE again by applying F to it.

Finally, the structure of the induction becomes considerably more complicated: as we need to have

the maps ei,j , pi,j de�ned to use the inverse limit construction in the limit case and to even state the type

of ei,j , we need to know Xi and Xj , these must be de�ned simultaneously to the types Xi. In contrast,

for the ω proof this is not necessary as the inverse limit only has to be taken once at the very end and

thus this can be split up over multiple recursions. Simultaneous de�nitions of types and maps/properties

on them are possible in enclosing type theories featuring induction-recursion principles [Dybjer, 2000].

In type theories without native support for this, considerable e�ort has to be taken to encode “small”

induction-recursion
11

[Hancock et al., 2013].

5.3 Preliminaries
In the following, we setup some basic de�nitions and prove important lemmas before delving into the

details of the proof. Let us �x a step-index type I for the rest of this section.

We use the notation A
α' B to denote that two OFEs A,B are isomorphic up to α, i.e., there are

non-expansive maps f : A
ne−→ B, g : B → A which invert each other up to α, meaning f ◦ g α

= id and

g ◦ f α
= id . If the stronger equality g ◦ f = id holds, then we write A

α'→B.

Whenever an equality in an OFE A holds for all indices ≺ β, we use the notation

a
<β
= b , ∀α ≺ β.a α

= b.

Throughout this section, we make use of the usual notations for limits. If c : chain(A) for a COFE A,

then we write limα cα for lim(c). If c : bchainβ(A), then we write limα≺β cα for blim(c).

11
Small induction-recursion does not allow the de�nition of universes and is all what is needed by our construction.
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Fact 1 (Non-expansive maps preserve bounded limits in a restricted way). Suppose that f : A
ne−→ B and

c : bchainβ(A). Then

f(lim
γ≺β

cγ)
<β
= lim

γ≺β
(f(cγ)).

In Section 5.1, we have already seen a counterexample showing that a stronger equality need not hold.

Fact 2 (Non-expansive maps preserve limits). Suppose that f : A
ne−→ B and c : chain(A). Then

f(lim
γ
cγ) = lim

γ
f(cγ).

Fact 3 (Weak Limit Uniqueness). Given two bounded chains c, d : bchainβ(A) such that ∀γ ≺ β, cγ
γ
= dγ ,

we have that limγ≺β cγ
<β
= limγ≺β dγ .

Fact 4 (Limit uniqueness for full chains). Given two chains c, d : chain(A) such that ∀γ, cγ
γ
= dγ , we have

that limγ cγ = limγ dγ .

Note how these facts di�er in strength between full limits and bounded limits.

De�nition 1 (Truncation). An OFE A is truncated at an ordinal α if it has no interesting behaviour after

ordinal α. Formally,

truncatedα(A) , ∀xyβ.x β
= y ↔ x

min(α,β)
= y.

This means that equality at β � α is just equality at α.

5.4 Additional Properties of OFEs
In this subsection, we motivate the Truncatability and Limit Uniqueness requirements of Theorem 2. It

would have been possible to choose other requirements, one of which (Strong Limit Uniqueness) is taken

in Svendsen et al. [2016]; however, as noted in Section 5.2.2, truncation seems to be the right choice. We

(constructively) prove relations between them, but classically with choice, all of these properties are trivial.

Limit Uniqueness (A1) The bounded limit of every chain c : bchainβ(A) is unique up to

β
= with this

property for every ordinal β. Formally, if c, d : bchainβ(A) and cγ
γ
= dγ for all γ ≺ β, then

limγ≺β cγ
β
= limγ≺β dγ .

One can consider a (weaker) variation (A1’) where we add the requirement that β is a limit ordinal.

Strong Limit Uniqueness (A2) One can consider a variation of (A1) where full equality is required: if

c, d : bchainβ(A) and cγ
γ
= dγ for all γ ≺ β and β is a limit ordinal, then limγ≺β cγ = limγ≺β dγ .

Intuitively, this means that the limit operation chooses a unique representative of chains for each

equivalence class of the pointwise equality relation and then takes the limit of this representative.

Truncatability (A3) Intuitively, an OFEA is truncatable if it allows to cut o� all behaviour of elements after

a certain ordinal. For that, it o�ers a collection of OFEs [A]α such that A
α' [A]α and truncatedα[A]α

for every ordinal α. We use d·eα : [A]α
ne−→ A and b·cα : A

ne−→ [A]α to denote the two witnessing

maps.
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Figure 2: Constructively provable relations between the OFE properties.

Proto-Truncatability (A4) This property follows the same intuition as (A3), but is more elementary. An

OFE A is proto-truncatable i� there is a (non-expansive) operation truncα : A
ne−→ A for every ordinal

α. We require that, if x
α
= y, then truncαx = truncαy. Moreover, x

α
= truncαx.

Intuitively, trunc implements a choice operation selecting a unique representative for each equivalence

class of
α
=.

We have the following relations (depicted in Figure 2) between these properties:

Lemma 2 (Strong Limit Uniquness implies Proto-Truncatability). LetX be a COFE satisfying (A2). ThenX
satis�es (A4).

Proof. The idea is to take the limit of a constant chain for the truncation operation:

truncα(x) , lim
γ≺α

x

• truncα is non-expansive: suppose that x
β
= y. By cofe-bcompl-ne, limγ≺α x

β
= limγ≺α y.

• Suppose that x
α
= y. Then in particular for all γ ≺ α it holds that x

γ
= y, so that by (A2) limγ≺α x =

limγ≺α y.

• x
α
= limγ≺α x holds by de�nition of limits.

Lemma 3 (Proto-Truncatability implies Truncatability). Let A by an OFE satisfying (A4). Then A satis�es

(A3).

Proof. Fix a step-index α. De�ne

A , x for x : X

[A]α , A with x
β
= y , truncαx

β
= truncαy

bxcα , x
dxeα , truncαx
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Here, we have used A and x to make clear that these are (essentially) the same types, but the equivalence

relations on top change. The most interesting part is verifying that the truncations have limits again. This

can be done by mapping a chain in [A]α to a chain in A, taking the limit there, and mapping back.

Lemma 4 (Truncatability and Limit Uniqueness imply Strong Limit Uniqueness). Assume thatX is a COFE

satisfying (A1) and (A3). Then X satis�es (A2).

Proof. The key idea is to rede�ne the bounded limit operation. For bounded limits up to β, we �rst map the

chain into [X]β , take the limit there, apply (A1), and then map back. This yields a unique choice of limits

due to the normalisation performed by the truncation, following directly the intuition for strongly unique

limits given above: we �rst choose an essentially unique representative for chains and then take a limit.

Lemma 5. Let X be a OFE. Assuming XM, PE, FE, and Choice, X satis�es property (A4).
Moreover, if X is a COFE, it satis�es (A2) under these axioms.

We also note that the non-expansiveness condition on bounded limits cofe-bcompl-ne is already implied

by Strong Limit Uniqueness.

Strong Limit Uniqueness is required of COFEs in the ω2
proof by Svendsen et al. [2016]. In principle,

our assumptions Limit Uniqueness and Truncatability are equivalent to theirs, but we have additionally

weakened Limit Uniqueness (A1) to only require the uniqueness for chains up to limit ordinals (A1’).
However, the strongly unique limits e�ectively need to be used to regularly truncate approximations to the

solution in the proof. Svendsen et al. [2016] use Strongly Unique Limits di�erently, which is cause for a

�aw in their limit case construction.

More on Truncation Consider again the “truncatability” o�ered by property (A3). We call [A]α the

truncation of A at α, for an OFE A. Recall that we require A
α' [A]α.

If A is a COFE, then every truncation [A]α is also a COFE, and if A satis�es property (A1), (A1’), or

(A2), then also [A]α satis�es it.

We can let maps between two truncatable OFEs A,B descend to arbitrary truncations. Let f : A
ne−→ B

and α, β : I , then de�ne [f ]αβ : [A]α
ne−→ [B]β by

[f ]αβ(x) , bf(dxeα)cβ .

Note that this map is again non-expansive as it is the composition of non-expansive maps.

Truncation of maps is functorial in the following sense: if f : A
ne−→ B, g : B

ne−→ C , and γ0, γ1, γ2 : I ,

then [g ◦ f ]γ2γ0
γ1
= [g]γ1γ0 ◦ [f ]γ2γ1 .

It may seem peculiar that we see truncatability as an explicit property of a particular OFE. The problem

is that general (constructive) constructions like quotienting in a suitable way do not yield the properties

we need: the expansion operation d·eα will not be non-expansive in this case – we really need that the

truncations choose canonical representatives. Intuitively, one can understand this as follows: with a

truncation at α by quotienting, we just hide the behaviour of elements at larger ordinals than α. What

we really need, however, is to cut o� all ways to distinguish elements at ordinals larger than α, so that

expanding/mapping out of the truncation cannot restore di�erences at ordinals larger than α that were not

already there at α.
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5.5 Proof
We now turn to the actual proof. Fix a locally contractive functor F : OFEop × OFE→ COFE. Moreover,

as mentioned previously, we require that for every X : OFE:

• F (X,X) is truncatable at all ordinals (A3)

• F (X,X) has unique limits at limit ordinals (A1’)

Finally, we need that F (1,1) is inhabited by an element ?F (1,1).

We show that there exists an (inhabited) COFE X such that X ' F (X,X). Our proof roughly follows

the outline in Section 5.2, but adds in all the formal details needed for truncation, verifying the equations,

and making it a sound induction.

Essentially, the proof is by recursion on the well-founded order of the ordinal type, in a scheme which

is akin to small induction-recursion. In each step β of the induction, we de�ne an approximation Xβ which

satis�es the isomorphism we are after up to β and is truncated at β. Compared to the previous outline, we

truncate each approximation Xβ at β in order to avoid the mentioned di�culties in the limit case. All of

these approximations will need to form a chain of which we will take the limit in the end; therefore, we

need additionally embedding-projection pairs eγ,β : Xγ
ne−→ Xβ and pγ,β : Xβ

ne−→ Xγ for every γ ≺ β.

These embeddings and projections need to be inverses up to β and moreover functorial.

The embeddings and projections need to be de�ned in the same induction as the approximations Xβ

themselves as we need them to de�ne the approximation in the limit case – therefore, we need to take an

induction-recursion-like approach.

In total, we de�ne the following things in each step at ordinal β, all packed up in a dependent tuple:

Xβ : COFE (IH-0)

∀γ ≺ β.eγ,β : Xγ
ne−→ Xβ (IH-1)

∀γ ≺ β.pγ,β : Xβ
ne−→ Xγ (IH-2)

pγ,β ◦ eγ,β = id (IH-3)

eγ,β ◦ pγ,β
γ
= id (IH-4)

∀γ0 ≺ γ1 ≺ γ2 � β.eγ0,γ2 = eγ1,γ2 ◦ eγ0,γ1 (IH-5)

∀γ0 ≺ γ1 ≺ γ2 � β.pγ0,γ2 = pγ0,γ1 ◦ pγ1,γ2 (IH-6)

φβ : Xβ
ne−→ [F (Xβ , Xβ)]1+β (IH-7)

ψβ : [F (Xβ , Xβ)]1+β
ne−→ Xβ (IH-8)

ψβ ◦ φβ = id (IH-9)

φβ ◦ ψβ
β
= id (IH-10)

truncatedβ(Xβ) (IH-11)
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If β is a successor ordinal β = 1 + β′, then (IH-12)

X1+β′ = [F (Xβ′ , Xβ′)]1+β′ (IH-12-i)

φ1+β′ = [F (ψβ′ , φβ′)]1+β′

1+1+β′ (IH-12-ii)

ψ1+β′ = [F (φβ′ , ψβ′)]1+1+β′

1+β′ (IH-12-iii)

pβ′,1+β′ = ψβ′ (IH-12-iv)

eβ′,1+β′ = φβ′ (IH-12-v)

∀γ0 ≺ β′.[F (eγ0,β′ , pγ0,β′)]1+β′

1+γ0
= p1+γ0,1+β′ (IH-12-vi)

If β is a limit ordinal and γ0 ≺ β, we have [F (eγ0,β , pγ0,β)]1+γ0
1+β = p1+γ0,β ◦ ψβ (IH-13)

Note how the dependent tuple refers to the previous approximations at previous steps of the induction,

therefore it is not so clear that this induction is sound. That is why we �rst consider the three cases of the

induction – the zero ordinal, successor ordinals, and limit ordinals – and only after that describe how we

can piece that together into one coherent induction where this is legal.

We quickly comment on all of these properties.

• Properties IH-0, IH-1, and IH-2 de�ne the approximations as well as the embedding-projection pairs

between them. The embedding-projection pairs between Xγ and Xβ are inverses up to γ (IH-3 and

IH-4) and moreover they are functorial (IH-5 and IH-6).

• For the �nal limit construction we need that Xβ is already a bounded solution (up to β) of the domain

equation. This is stated by properties IH-7, IH-8, IH-9, and IH-10.

• Xβ is truncated at β (IH-11).

• Property IH-12 captures the de�ning equations of X , e, and p for the successor case; IH-12-vi is a

statement which follows inductively from the equations and which we need to carry through for the

limit case.

• IH-13 is the statement corresponding to IH-12-vi, but for the limit case.

In the statement, we use a stronger form of isomorphisms which is asymmetric, for instance, pγ0,γ1 ◦
eγ0,γ1 = id should hold instead of an equality at γ0. While this full equality is required, in our setup

γ0
=

would also su�ce since Xγ0 is truncated at γ0.

5.6 Base Case
First note that most of the properties we need to show are trivial as there are no ordinals below 0. The

interesting part is the de�nition of X0 itself and the maps φ0, ψ0.

The straightforward approach would be to set X0 , 1, φ0 (x) , b?F (1,1)c1+0 and φ0 (x) , ?1. The

problem is that these are not inverses up to 0, as F (1,1) might have more than one element. One way to

�x this would be to make equality at 0 trivial in the de�nition of OFEs (as is done by Svendsen et al. [2016]).

Instead, we essentially apply the functor one more time and use that it is locally contractive, thus “shifting
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by one ordinal”. This leaves us with the following de�nitions:

X ′0 , 1

X0 , [F (X ′0, X
′
0)]0

φ′0 : X ′0
ne−→ X0 , λ_.b?F (1,1)c0

ψ′0 : X0
ne−→ X ′0 , λ_.?1

φ0 : X0
ne−→ [F (X0, X0)]1+0 , [F (φ′0, ψ

′
0)]01+0

ψ0 : [F (X0, X0)]1+0
ne−→ X0 , [F (ψ′0, φ

′
0)]1+0

0

As φ′0 and ψ′0 are inverses for all γ ≺ 0 (vacuously) and F is locally contractive, φ0 and ψ0 are inverses

up to 0.

5.7 Successor Case
Suppose that we have a solution up to β, featuring in particular an approximationXβ and maps φβ : Xβ

ne−→
[F (Xβ , Xβ)]1+β and ψβ : [F (Xβ , Xβ)]1+β

ne−→ Xβ which are inverses up to β.

We then go on to de�ne:

X1+β , [F (Xβ , Xβ)]1+β

φ1+β : X1+β
ne−→ [F (X1+β , X1+β)]1+1+β , [F (ψβ , φβ)]1+β

1+1+β

ψ1+β : [F (X1+β , X1+β)]1+1+β
ne−→ X1+β , [F (φβ , ψβ)]1+1+β

1+β

Compared to the previous outline, we have just added the truncations. Again, as F is locally contractive

and φβ , ψβ are inverses up to β, these are inverses up to 1 + β. Speci�cally, we have

φ1+β ◦ ψ1+β = [F (ψβ , φβ)]1+β
1+1+β ◦ [F (φβ , ψβ)]1+1+β

1+β

1+β
= [F (φβ ◦ ψβ , φβ ◦ ψβ)]1+1+β

1+1+β

1+β
= [id ]1+1+β

1+1+β

1+1+β
= id

and

ψ1+β ◦ φ1+β = [F (φβ , ψβ)]1+1+β
1+β ◦ [F (ψβ , φβ)]1+β

1+1+β

1+β
= [F (ψβ ◦ φβ , ψβ ◦ φβ)]1+β

1+β

1+β
= [id ]1+β

1+β

1+β
= id .

For the latter property,

1+β
= is in fact equivalent to full equality as X1+β is truncated at 1 + β.

We can now already show properties IH-11 and IH-12-i - IH-12-iii, which follow directly from the

de�nition.

Next, we tackle the embedding-projection pairs. We assume that we have eγ0,γ1 : Xγ0
ne−→ Xγ1 and

pγ0,γ1 : Xγ1
ne−→ Xγ0 for γ0 ≺ γ1 � β available by induction and that these satisfy IH-3 and IH-4 (inverses)

as well as IH-5 and IH-6 (functoriality). Thus, we just have to add the maps ei,j , pi,j where j = 1 + β.
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eγ0,1+β ,

φβ for γ0 = β

φβ ◦ eγ0,β for γ0 ≺ β

As the functions used in both cases are non-expansive, it is clear that e is non-expansive.

pγ0,1+β ,

ψβ for γ0 = β

pγ0,β ◦ ψβ for γ0 ≺ β

We can now verify properties IH-3-IH-6. First, we prove that pγ0,1+β ◦ eγ0,1+β = id (IH-3). This is by

case analysis on γ0 = β or γ0 ≺ β. Both cases are straightforward to check as pγ0,β ◦ eγ0,β = id and

ψβ ◦ φβ = id .

Next is eγ0,1+β ◦ pγ0,1+β
γ0
= id (IH-4). This follows again by a case analysis and the inductive hypothesis.

The functoriality facts IH-5 and IH-6 follow similarly from the de�nition and the inductive hypothesis. It

remains to prove the rather technical facts IH-12-iv, IH-12-v, and IH-12-vi, since IH-13 holds vacuously as

1 + β is not a limit ordinal. IH-12-iv and IH-12-v hold straightforwardly by the de�ning equations. IH-12-vi

is by far the most complicated equation:

∀γ0 ≺ β.[F (eγ0,β , pγ0,β)]1+β
1+γ0

= p1+γ0,1+β .

We do a case analysis on 1 + γ0 = β or 1 + γ0 ≺ β, along the de�nition of p1+γ0,1+β :

• If 1 + γ0 = β, we prove [F (eγ0,1+γ0 , pγ0,1+γ0)]1+1+γ0
1+γ0

= ψ1+γ0 by de�nition of p_,1+β . By IH-12-iv

and IH-12-v, we can rewrite the LHS to

[F (φγ0 , ψγ0)]1+1+γ0
1+γ0

= ψ1+γ0 .

With IH-12-iii we are then done.

• If 1 + γ0 ≺ β, we show [F (eγ0,β , pγ0,β)]1+β
1+γ0

= p1+γ0,β ◦ ψβ by de�nition of p_,1+β . Our goal is to

apply the inductive hypothesis. For that, we distinguish whether β is a limit ordinal or a successor

ordinal β = 1 + β′.

– In case β is a limit ordinal, the statement that we need to prove is exactly the inductive hypothesis

IH-13.

– If β = 1 + β′, we show

[F (eγ0,1+β′ , pγ0,1+β′)]1+1+β′

1+γ0
= p1+γ0,1+β′ ◦ ψ1+β′

Due to truncation, it actually su�ces to show the equality up to 1 + γ0 � β′.

[F (eγ0,1+β′ , pγ0,1+β′)]1+1+β′

1+γ0
| functoriality

1+β′

= [F (eγ0,β′ , pγ0,β′)]1+β′

1+γ0
◦ [F (eβ′,1+β′ , pβ′,1+β′)]1+1+β′

1+β′ | IH-12-iv, IH-12-v, IH-12-vi

=p1+γ0,1+β′ ◦ [F (φβ′ , ψβ′)]1+1+β′

1+β′ | IH-12-iii

=p1+γ0,1+β′ ◦ ψ1+β′
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5.8 Limit Case
Finally, we dicuss the limit case. This case is the most critical one. Assume that β is a limit ordinal and we

already have approximations for all smaller ordinals γ ≺ β; in particular, that we have the embeddings and

projections eγ0,γ1 , pγ0,γ1 for all γ0 ≺ γ1 ≺ β.

As in the case for the 0 ordinal, we proceed in two steps by �rst de�ning an approximation X ′β which

is a solution up to ≺ β and then applying the functor F once more to obtain the �nal approximation Xβ ,

using local contractivity.

5.8.1 Step 1: Pre-solution

Essentially, we need to take an inverse limit of all the previous approximations Xγ for γ ≺ β, as shown

graphically in the outline. We do this in a slight variation, which is however equivalent. Namely, de�ne

X ′β , Σx :
∏
γ≺β

[F (Xγ , Xγ)]1+γ .∀γ0 ≺ γ1 ≺ β.xγ0 = [F (eγ0,γ1 , pγ0,γ1)]1+γ1
1+γ0

(xγ1)

as a dependent sum where the predicate “equalises” the components of the product. Hence, for every x : X ′β ,

we have

∀γ0 ≺ γ1 ≺ β.xγ0 = [F (eγ0,γ1 , pγ0,γ1)]1+γ1
1+γ0

(xγ1). (lim-eqalise)

In the de�nition, we �rst apply the functor one more time before taking the limit. We could also directly

take the limit and then do this application later when de�ning the maps φβ and ψβ . Morally, due to

inductive hypotheses IH-12-i and IH-12-vi, [F (Xγ , Xγ)]1+γ is X1+γ and [F (eγ0,γ1 , pγ0,γ1)]1+γ1
1+γ0

(xγ1) is just

p1+γ0,1+γ1 .

We use the notation xγ , πγx for projecting out a particular component of the limit. Equality on X ′β is

de�ned point-wise. For x, y : X ′β , x
α
= y is equivalent to xγ

α
= yγ for all γ ≺ β.

Note that X ′β is truncated at β as its components are truncated at some γ ≺ β.

We make the crucial observation that X ′β does not seem to be a COFE: if we have a bounded chain of

elements (cγ)γ≺α and we take the limit point-wise, then the limits will not necessarily ful�ll lim-eqalise

again. The critical case is when α ≺ β: then we need to show that(
lim
γ≺α

cγ

)
γ0

= [F (eγ0,γ1 , pγ0,γ1)]1+γ1
1+γ0

(xγ1)

(
lim
γ≺α

cγ

)
γ1

for γ0 ≺ γ1 ≺ β, assuming that this holds for each element of the chain c. By truncation, it su�ces to show

this equality at γ0. If β � α (implying γ0 ≺ α), we can just make use of the fact that limγ≺α cγ
γ0
= cγ0 , but

if α � γ0, we cannot reduce this equation to the components of the chain.

It does not seem clear how one could de�ne the limits di�erently such that the conditions posed by

point-wise equality are still met. Hence, it will be important that our functor works on arbitrary OFEs
12

.

12
As mentioned earlier, one can however de�ne limits for chains of length � β and in this way also solve domain equations for

functors which work for such “lower-bounded COFEs”. Currently, this is not mechanised in Coq due to dependent typing ugliness. In

the case of �nite index types (N), lower-bounded COFEs correspond to COFEs, such that our proof subsumes the �nite Iris domain

equation solver if one assumes classical logic.
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De�ning the embeddings and projections Now we can de�ne the maps e′γ,β : Xγ
ne−→ X ′β , p

′
γ,β :

X ′β
ne−→ Xγ . e′γ,β needs to map into the inverse limit, hence we de�ne it component-wise for γ′ ≺ β:

e′γ,β(x)
γ′ ,


p1+γ′,γ for 1 + γ′ ≺ γ

x for 1 + γ′ = γ

eγ,1+γ′ for 1 + γ′ � γ

Of course, we need to show that this is well-de�ned, i.e., non-expansive and the result does actually satisfy

lim-eqalise in the de�nition of X ′β . Non-expansiveness follows by case analysis. The equalisation needs

more case analyses, along the de�nition of e′γ,β . Most cases are contradictory and for the other ones we

need equations IH-3-IH-6 from the inductive hypothesis as well as, crucially, IH-13. De�ning p′γ,β is easier.

We take p′γ,β(x) , ψγ(xγ).

We now verify properties IH-3-IH-6.

• We have

p′γ,β ◦ e′γ,β = ψγ ◦ eγ,1+γ = pγ,1+γ ◦ eγ,1+γ = id

where the second step follows by IH-12-iv.

• We use that equality on X ′β is de�ned point-wise. So, suppose that δ ≺ β. We show that

e′γ,β(p′γ,βx)
δ

γ
= xδ.

A case analysis along the de�nition of e′γ,β is required. All of the cases follow relatively directly using

the properties from the IH, in particular IH-12-iv, IH-12-vi, and IH-3-IH-6, as well as lim-eqalise. For

the case that γ ≺ 1 + δ, another case analysis on the relation of γ and δ is helpful.

• We show that e′γ0,β = e′γ1,β ◦ eγ0,γ1 for γ0 ≺ γ1 ≺ β. We use point-wise equality and make a case

analysis on the relation of 1 + γ, γ0, and γ1. All of the cases are straightforward.

• p′γ0,β = pγ0,γ1 ◦ p′γ1,β follows directly using equalisation and functoriality.

De�ning the bounded isomorphisms Finally, we can turn to the interesting part: de�ning φ′β : X ′β
ne−→

[F (X ′β , X
′
β)]β and ψ′β : [F (X ′β , X

′
β)]β

ne−→ X ′β . As we will see below, we could not de�ne these maps

betweenX ′β and [F (X ′β , X
′
β)]1+β , so the two-stepped de�nition ofXβ (where we �rst truncate at β′) really

seems to be necessary.

For ψ′β , we take

ψ′β(x)
γ
, [F (e′γ,β , p

′
γ,β)]β1+γ(x),

following the idea of lifting given in the outline. Well-de�nedness is easy to check.

φ′β is more complicated: we can easily map from each F (Xγ , Xγ) into F (X ′β , X
′
β), but this needs to be

done for all components simultaneously in order to obtain that ψ′β and φ′β are inverses up to ≺ β. The only

possibility here is to take a limit in [F (X ′β , X
′
β)]β .

φ′β(x) , lim
γ≺β

[F (p′γ,β , e
′
γ,β)]1+γ

β (xγ)

Proving that this is well-de�ned is quite instructive and sheds some light on where we need some

properties.
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• First of all, we need to prove that this is actually a bounded chain. So let γ′ ≺ γ ≺ β be given.

[F (p′γ′,β , e
′
γ′,β)]1+γ′

β (xγ′) | lim-eqalise

=[F (p′γ′,β , e
′
γ′,β)]1+γ′

β ([F (eγ′,γ , pγ′,γ)]1+γ
1+γ′(xγ))

1+γ′

= [F (eγ′,γ ◦ p′γ′,β , e
′
γ′,β ◦ pγ′,γ)]1+γ

β (xγ) | IH-3-IH-6

γ′

=[F (p′γ,β , p
′
γ,β)]1+γ

β (xγ)

where the last step requires functoriality and that eγ′,γ , pγ′,γ are inverses up to γ′.

• Now we show that the map is non-expansive. Suppose that x, y : X ′β satisfy x
α
= y. We show

lim
γ≺β

[F (p′γ,β , e
′
γ,β)]1+γ

β (xγ)
α
= lim
γ≺β

[F (p′γ,β , e
′
γ,β)]1+γ

β (yγ).

Do a case analysis on the relation of α and β. If α ≺ β, then it su�ces to show

[F (p′α,β , e
′
α,β)]1+α

β (xα)
α
= [F (p′α,β , e

′
α,β)]1+α

β (yα),

which is straightforward as the involved maps are non-expansive.

In the case that α � β, we use truncation at β, so that it su�ces to show
13

lim
γ≺β

[F (p′γ,β , e
′
γ,β)]1+γ

β (xγ)
β
= lim
γ≺β

[F (p′γ,β , e
′
γ,β)]1+γ

β (yγ).

By applying Limit Uniqueness (A1’), we can then reduce this case to the previous one.

Next, we prove properties IH-9 and IH-10. We start with an auxiliary fact needed for IH-9, essentially

stating that, for an element of the inverse limit, projecting out the γ′-th component, expanding back to

an element of X ′β , and then mapping back down to an element of Xγ is the same (up to γ′) as directly

projecting to the γ-th component.

Fact 5. For γ, γ′ ≺ β and x : X ′β , we have

[F (p′γ′,β ◦ e′γ,β , p′γ,β ◦ e′γ′,β)]1+γ′

1+γ (xγ′)
γ′

= xγ

Proof. Case analysis, lim-eqalise, and properties of e, p.

• For IH-9, we show ψ′β ◦ φ′β = id . By point-wise equality and truncation of the γ-th component at

1 + γ, we show

[F (e′γ,β , p
′
γ,β)]β1+γ( lim

γ′≺β
[F (p′γ′,β , e

′
γ′,β)]1+γ′

β (xγ′))
1+γ
= xγ .

Now we use Fact 1 to move the map inside the limit, which we can do as 1 + γ′ ≺ β (since β is a

limit ordinal).

Here is the point where truncating the OFEs explicitly pays o�: due to the truncation, we can actually

move the map inside the limit. Svendsen et al. [2016] do not truncate their OFEs and despite that

13
At this point, truncating F (X′

β , X
′
β) at 1 + β would break without strong limit uniqueness.
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(mistakenly, as we showed above) use this commutation property. It does not seem clear how just

Strongly Unique Limits could help here without using them to truncate the OFEs (i.e., in a more

“direct” way).

lim
γ′≺β

[F (e′γ,β , p
′
γ,β)]β1+γ([F (p′γ′,β , e

′
γ′,β)]1+γ′

β (xγ′)) | Fact 3, composition

<β
= lim

γ′≺β
[F (p′γ′,β ◦ e′γ,β , p′γ,β ◦ e′γ′,β)]1+γ′

1+γ (xγ′) | Facts 3,5

<β
= lim

γ′≺β
xγ | cofe-bcompl

<β
=xγ

All the

<β
= equalities are in particular

1+γ
= equalities, since γ ≺ β and (since β is a limit ordinal)

therefore also 1 + γ ≺ β.

• We can only prove a weaker version of property IH-10 for this preliminary de�nition:

φ′β ◦ ψ′β
<β
= id

Again, we use weak limit uniqueness (Fact 3).

lim
γ≺β

[F (p′γ,β , e
′
γ,β)]1+γ

β ([F (e′γ,β , p
′
γ,β)]β1+γ(x)) | Fact 3, IH-5, IH-6

<β
= lim

γ≺β
[F (e′γ,β ◦ p′γ,β , e′γ,β ◦ p′γ,β)]ββ(x) | Fact 3, IH-3, IH-4

<β
= lim

γ≺β
x | cofe-bcompl

<β
=x

The last step is what prevents us from proving an equality at β, even though we could use the assumed

limit uniqueness to make the previous steps hold at

β
=.

Finally, we show that this preliminary solution satis�es property IH-13:

[F (e′γ,β , p
′
γ,β)]β1+γ = p′1+γ,β ◦ ψ′β

The proof is mostly straightforward and uses truncation, IH-10 which we just proved, lim-eqalise, and

some of the inductive hypotheses.

5.8.2 Step 2: Full Approximation

In the previous subsection, we have de�ned an inverse limit which is already close to satisfying the

requirements posed by the inductive proof, but falls short in three places: �rst of all, the maps go into

[F (X ′β , X
′
β)]β , truncated at β (not at β + 1); secondly, φ′β and ψ′β are only inverses up to ≺ β; �nally, X ′β

isn’t even a COFE.
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We �x this in a similar way as for the base case, essentially by applying the functor F one more time.

Xβ , [F (X ′β , X
′
β)]β

φβ : Xβ
ne−→ [F (Xβ , Xβ)]1+β , [F (ψβ , φβ)]β1+β

ψβ : [F (Xβ , Xβ)]1+β
ne−→ Xβ , [F (φβ , ψβ)]1+β

β

One can directly see that now, φβ and ψβ are inverses up to β as F is locally contractive. Next, we lift

the embedding-projection maps:

eγ,β : Xγ
ne−→ Xβ , φ

′
β ◦ e′γ,β

pγ,β : Xβ
ne−→ Xγ , p

′
γ,β ◦ ψ′β

These are trivially inverses and functorial as required. To close the proof, property IH-13 needs to be shown:

[F (eγ,β , pγ,β)]1+β
1+γ = p1+γ,β ◦ ψβ

This follows from the preliminary version of IH-13 which we showed in the previous subsection.

Property IH-12 only applies to the successor case and thus need not be shown. Truncation IH-11 holds

by our de�nition of Xβ .

5.9 Deriving the Final Isomorphism
Now, assume that we have an approximation for every ordinal β available, as well as proofs that these are

bounded solutions of F up to β (witnessed by φβ , ψβ), and additionally embeddings/projections between

all of them.

We now derive the full solution and isomorphism by taking a limit of these approximations. The

construction is very similar to the limit case.

X , Σx :
∏
γ

[F (Xγ , Xγ)]1+γ .∀γ0 ≺ γ1.xγ0 = [F (eγ0,γ1 , pγ0,γ1)]1+γ1
1+γ0

(xγ1)

De�ne embeddings and projections as follows:

eγ : Xγ
ne−→ X

eγ(x)γ′ ,


p1+γ′,γ for 1 + γ′ ≺ γ

x for 1 + γ′ = γ

eγ,1+γ′ for 1 + γ′ � γ

pγ : X
ne−→ Xγ , λx.ψγ(xγ)

We can, similarly to the limit case, show that these are functorial and bounded inverses.

More interesting is the de�nition of the maps φX : X
ne−→ F (X,X) and ψX : F (X,X)

ne−→ X which is

slightly di�erent as we take an unbounded limit and do not have the truncation.

φX(x) , lim
γ
F (pγ , eγ)dxγe1+γ

ψX(x)γ , bF (eγ , pγ)(x)c1+γ
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We verify that these form an isomorphism.

φX(ψX(x)) = lim
γ
F (pγ , eγ)dbF (eγ , pγ)(x)c1+γe1+γ | Fact 4

= lim
γ
F (eγ ◦ pγ , eγ ◦ pγ)(x) | Fact 4, IH-3, IH-4

= lim
γ
x | cofe-compl

= x,

using Fact 4 to rewrite inside the limit.

ψX(φX(x))γ′ = bF (e′γ , p
′
γ)(lim

γ
F (pγ , eγ)(dxγe1+γ))c1+γ′ | Fact 2

= lim
γ
bF (e′γ , p

′
γ)(F (pγ , eγ)(dxγe1+γ))c1+γ′ | cofe-compl

= bF (eγ′ , pγ′)(F (p1+γ′ , e1+γ′)(dx1+γ′e1+1+γ′
))c1+γ′

In this last step we have equated the limit to its 1 + γ′-th component and used truncation at 1 + γ′ to get

full equality. Using functoriality, we get

bF (eγ′ , pγ′)(F (p1+γ′ , e1+γ′)(dx1+γ′e1+1+γ′
))c1+γ′

=bF (eγ′ , pγ′)(F (pγ′,1+γ′ ◦ pγ′ , eγ′ ◦ eγ′,1+γ′)(dx1+γ′e1+1+γ′
))c1+γ′ | functoriality

=b(F (pγ′,1+γ′ ◦ pγ′ ◦ eγ′ , pγ′ ◦ eγ′ ◦ eγ′,1+γ′)(dx1+γ′e1+1+γ′
))c1+γ′ | IH-3, IH-4

=bF (pγ′,1+γ′ , eγ′,1+γ′)(dx1+γ′e1+1+γ′
)c1+γ′ | lim-eqalise

=xγ′

In the second step, we have used that F is locally contractive, so that we get an equality at 1 + γ′ from

pγ′ , eγ′ being inverses up to γ′. The last step holds by the equalisation property lim-eqalise of the inverse

limit X .

To conclude the proof, we have to show that X is a COFE. A priori, this again need not hold as COFE
does not, in general, have limits. But as F (X,X) is a COFE and X ' F (X,X), we can just equip X with

limits by mapping chains to F (X,X), taking the limit there, and mapping back.

5.10 Closing the Induction
Up to now, we have quietly assumed that we can actually de�ne an approximation Xβ and the maps

eγ,β , pγ,β at the same time, having access to the Xγ we de�ned at previous steps. However, a “plain”

trans�nite induction does not allow this: in the statement P : I → T itself, we would need access to the

inductive hypothesis (i.e., the smaller Xγ ) to say anything about the projections eγ,β , pγ,β .

To solve this problem, we have to de�ne a full chain of all approximations up to β at step β. In this

way, the statement P : I → T we want to derive for all indices is well-de�ned as it need not refer to the

inductive hypothesis.

For various reasons which will become clear as we present the construction, we do not simply parame-

terise the statement over an ordinal, but over a predicate on ordinals: A : (I → Prop)→ T. Intuitively, we

can then obtain the above predicate P β by instantiatingA(λγ.γ � β). Formally,A p, where p : I → Prop,
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has the following important components, where the proof components are analogous to the ones above and

therefore omitted:

∀γ.p γ → Xγ : COFE

∀γ0 ≺ γ1.eγ0,γ1 : p γ0 → p γ1 → Xγ0
ne−→ Xγ1

∀γ0 ≺ γ1.pγ0,γ1 : p γ0 → p γ1 → Xγ1
ne−→ Xγ0

∀γ.φγ : p γ → Xγ
ne−→ [F (Xγ , Xγ)]1+γ

∀γ.ψγ : p γ → [F (Xγ , Xγ)]1+γ
ne−→ Xγ

In this setting, we can just regard the list of components given initially, which refer to previous

approximations, as an extension E : ∀β.A(λγ.γ ≺ β) → T which is parameterised over a collection of

approximations for all smaller ordinals. As we have seen above, in each step of the induction, we de�ne

such an extension to the previous approximations.

We can now look formally at the structure of the “induction” given above:

• in the base case, we de�ne A0 : A(λγ.γ � 0).

• in the successor case, we assume IH : A(λγ.γ ≺ 1 + β) and de�ne e1+β : E (1 + β) IH ,

• in the limit case, we assume IH : A(λγ.γ ≺ β) and de�ne eβ : E β IH ,

• for the �nal limit, we assume IH : A(λγ.>).

With this, we can now clearly see what is missing to close the induction:

• for the successor and limit cases, we need to extend the inductive hypothesis IH : A (λγ, γ ≺ β′) by

the extension e : E β′ IH into a new collection of approximations extend IH e : A(λγ.γ � β′).

• for the limit case, the inductive hypothesis we assume is not what we get from a trans�nite induction;

actually, our inductive hypothesis would be IH ′ : ∀γ ≺ β.A(λγ′.γ′ � γ). We need to merge all these

approximations into one coherent one.

• after completing the full trans�nite induction, we end up with the statement ∀β.A(λγ.γ � β), but

we would like to obtain A(λγ.>) to apply the �nal limit construction. We need a similar merging

operation as for the limit case.

The extension operation extend : ∀γ(A : A (λγ′.γ′ ≺ γ)).E A → A (λγ′.γ′ � γ) essentially just

straps the additional approximation onto the sequence of approximations we already have. With this, we

get the following inductive steps:

A0 : A(λγ.γ � 0)

AS : ∀β.A(λγ.γ ≺ 1 + β)→ A(λγ.γ � 1 + β)

Alim : ∀β.A(λγ.γ ≺ β)→ A(λγ.γ � β) for a limit ordinal β

Clearly, for the merging operation, we cannot just merge arbitrary approximations, but they need to

agree in some way. In the induction, we need to carry this agreement through. The idea here is that two

approximations a0 : A(λγ.γ � β0) and a1 : A(λγ.γ � β1) must have been de�ned in the same way for all
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γ � min(β0, β1), as they originate from the same induction. Let this form of agreement be captured by a

predicate agree : ∀P0 P1.A P0 → A P1 → Prop
14

.

The merging operation

merge : ∀P (IH : ∀γ.P γ → A (λγ′.γ′ � γ))→ (∀γ0 γ1 H0 H1.agree (IH γ0 H0) (IH γ1 H1))→ A P

takes, for every γ with P γ, the approximation Xγ of IH γ to de�ne the new merged collection of

approximations. The maps e, p, φ, ψ can then be de�ned canonically since all of the collections agree. We

can prove that merge preserves agreement, i.e., two pointwise agreeing chains are merged to two agreeing

collections of approximations, and the merged collection itself agrees with each of the collections of the

chain from which it was created.

We need a similar form of agreement for extensions:

eagree : ∀P0 P1(A0 : A P0)(A1 : A P1).agree A0 A1 → Prop.

Essentially, we prove that the successor and limit case constructions preserve agreement, in the sense that,

if we put agreeing collections in, we get agreeing extensions out. They are coherent in a similar way as the

merging operation: they preserves agreement and the resulting collection of approximations agrees with

the collection we put in.

The only thing which is missing now is to prove that we can actually apply the merging operation

when we need it, that is, we need to prove that the collections we get by the inductive hypothesis agree. We

de�ne a speci�cation which exactly captures the structure of the induction:

spec : ∀γ.A (λγ′.γ′ � γ)→ Prop

spec0 : specA0

specS : ∀β A.spec β A→ spec(1 + β)(AS A)

speclim : ∀β (IH : ∀γ.γ ≺ β → A (λγ′.γ′ � γ)),

(∀γ Hγ .spec(IH γHγ))

→ (∀γ0 γ1 H0 H1.agree(IH γ0 H0)(IH γ1 H1))

→ spec β (Alim IH (merge IH ))

By trans�nite induction we can prove:

Fact 6. If spec A0 and spec A1, then agree A0 A1.

Now, by trans�nite recursion we can de�ne for every indexβ a dependent pair of type ΣA : A(λγ.γ � β).specA,

using the inductive steps we considered before. In the limit case, we use the previous fact to prove agree-

ment for all approximations of the inductive hypothesis in order to apply the merging operation. By the

previous fact, all of these approximations do then agree; thus, we can apply the merge operation to obtain

an approximation A(λγ.>) as desired.

In the Coq formalisation, this last step to close the induction is setup slightly di�erently and the speci�c

trans�nite induction-recursion principle is derived from a more general well-founded principle.

We remark that, while the uniqueness-based approach for closing the induction is simple and the

proofs are rather trivial in an extensional type theory, this construction is extremely technical (though

14
In our extensional type theory, this just means that the common components (the components where both P0 and P1 hold) are

equal. In intensional type theories (like Coq’s), this says that the OFEs are equal and the maps e, p, φ, ψ and bounded limits agree

modulo typecasts.
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mathematically boring) and rather complicated to mechanise in an intensional type theory such as Coq’s

due to the involved equalities between OFEs (types).

This completes our description of the recursive domain equation solver.

49



6 Derived Notions of the Base Logic
In this section we consider rules and de�nitions that were derived from the base logic in �nite Iris.

As it turns out, we can retain most of them in Trans�nite Iris, although some rules cannot be derived in

the presence of trans�nite step-indexing. Luckily, these rules do however still hold in the model, but for

proving them we need to break Iris’ base logic abstractions. Since some of these rules rely on quite complex

derived de�nitions, we have not listed them as primitives of the base logic in Section 4. We leave it to future

work to �nd suitable abstractions for these notions to restore a proper separation into a base logic.

6.1 Derived Rules about Base Connectives
We collect here some important and frequently used derived proof rules.

Löb

(.P ⇒ P ) ` P P ⇒ Q ` P −∗ Q P ∗ ∃x. Q a` ∃x. P ∗Q P ∗ ∀x. Q ` ∀x. P ∗Q

�(P ∗Q) a` �P ∗�Q �(P ⇒ Q) ` �P ⇒ �Q �(P −∗ Q) ` �P −∗ �Q

�(P −∗ Q) a` �(P ⇒ Q) .(P ⇒ Q) ` .P ⇒ .Q .(P −∗ Q) ` .P −∗ .Q True ` � True

Noteworthy here is the fact that Löb induction can be derived from .-introduction and the fact that we

can take �xed-points of functions where the recursive occurrences are below . [Löb, 1955].
15

Furthermore,

True ` � True can be derived via � commuting with universal quanti�cation ranging over the empty type

0. To derive that existential quanti�ers commute with separating conjunction requires an intermediate

step using a magic wand: From P ∗ ∃x.Q ` ∃x. P ∗Q we can deduce ∃x. Q ` P −∗ ∃x. P ∗Q and then

proceed via ∃-elimination.

6.2 Persistent Propositions
We call a proposition P persistent if P ` �P . These are propositions that “do not own anything”, so we

can (and will) treat them like “normal” intuitionistic propositions.

Of course, �P is persistent for any P . Furthermore, True, False, t = t′ as well as |a| γ and V(a) are

persistent. Persistence is preserved by conjunction, disjunction, separating conjunction as well as universal

and existential quanti�cation and ..

6.3 Timeless Propositions and Except-0
One of the troubles of working in a step-indexed logic is the “later” modality .. It turns out that we can

somewhat mitigate this trouble by working below the following except-0 modality:

�P , . False ∨ P
Except-0 satis�es the usual laws of a “monadic” modality (similar to, e.g., the update modalities):

ex0-mono

P ` Q
�P ` �Q

ex0-intro

P ` �P
ex0-idem

� � P ` �P
�(P ∗Q) a` �P ∗ �Q
�(P ∧Q) a` �P ∧ �Q
�(P ∨Q) a` �P ∨ �Q

�∀x. P a` ∀x. � P
�∃x. P a` ∃x. � P 16

��P a` � �P
� .P ` .P

15
Also see https://en.wikipedia.org/wiki/L%C3%B6b%27s_theorem.
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In particular, from ex0-mono and ex0-idem we can derive a “bind”-like elimination rule:

ex0-elim

P ` �Q
�P ` �Q

This modality is useful because there is a class of propositions which we call timeless propositions, for

which we have

timeless(P ) , .P ` �P
In other words, when working below the except-0 modality, we can strip away the later from timeless

propositions (using ex0-elim):

ex0-timeless-strip

timeless(P ) P ` �Q
.P ` �Q

In fact, it turns out that we can strip away later from timeless propositions even when working under

the later modality:

later-timeless-strip

timeless(P ) P ` .Q
.P ` .Q

This follows from .P ` . False ∨ P , and then by straightforward disjunction elimination.

The following rules identify the class of timeless propositions:

Γ ` timeless(P ) Γ ` timeless(Q)

Γ ` timeless(P ∧Q)

Γ ` timeless(P ) Γ ` timeless(Q)

Γ ` timeless(P ∨Q)

Γ ` timeless(P ) Γ ` timeless(Q)

Γ ` timeless(P ∗Q)

Γ ` timeless(P )

Γ ` timeless(�P )

Γ ` timeless(Q)

Γ ` timeless(P ⇒ Q)

Γ ` timeless(Q)

Γ ` timeless(P −∗ Q)

Γ, x : τ ` timeless(P )

Γ ` timeless(∀x : τ. P )

Γ, x : τ ` timeless(P )

Γ ` timeless(∃x : τ. P )
timeless(True)

timeless(False)
a is a discrete OFE element

timeless(Own (a))

t or t′ is a discrete OFE element

timeless(t =τ t
′)

a is an element of a discrete camera

timeless(V(a))

The rules highlighted in blue are currently proved in the model as they cannot just be derived anymore,

where the last two rules essentially depend on the fact that pure propositions (re�ected from the metalogic)

are timeless, which we currently have to prove in the model, and the rule about ownership needs to be

derived in the model due to the loss of the commuting rule of later with ownership (see §4.3). We leave it to

future work to �nd a suitable (minimal) set of rules that can be incorporated into the base logic to make

these laws derived again.

16
The direction from left to right requires that the type over which the existential quanti�er ranges is inhabited.
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6.4 Dynamic Composeable Higher-Order Resources
The base logic described in §4 works over an arbitrary camera M de�ning the structure of the resources. It

turns out that we can generalize this further and permit picking cameras “Σ(iProp)” that depend on the

structure of propositions themselves. Of course, iProp is just the syntactic type of propositions; for this to

make sense we have to look at the semantics.

Furthermore, there is a composability problem with the given logic: if we have one proof performed

with camera M1, and another proof carried out with a di�erent camera M2, then the two proofs are actually

carried out in two entirely separate logics and hence cannot be combined.

Finally, in many cases just having a single “instance” of a camera available for reasoning is not enough.

For example, when reasoning about a dynamically allocated data structure, every time a new instance of

that data structure is created, we will want a fresh resource governing the state of this particular instance.

While it would be possible to handle this problem whenever it comes up, it turns out to be useful to provide

a general solution.

The purpose of this section is to describe how we solve these issues.

Picking the resources. The key ingredient that we will employ on top of the base logic is to give some

more �xed structure to the resources. To instantiate the logic with dynamic higher-order ghost state, the

user picks a family of locally contractive bifunctors (Σi : OFEop ×OFE → Camera)i∈I . (This is in

contrast to the base logic, where the user picks a single, �xed camera that has a unit.)

From this, we construct the bifunctor de�ning the overall resources as follows:

GName , N

ResF(T op, T ) ,
∏
i∈I

GName
�n−⇀ Σi(T

op, T )

We will motivate both the use of a product and the �nite partial function below. ResF(T op, T ) is a camera

by lifting the individual cameras pointwise, and it has a unit (using the empty �nite partial function).

Furthermore, since the Σi are locally contractive, so is ResF.

Now we can write down the recursive domain equation:

iPreProp
∼= UPred(ResF(iPreProp, iPreProp))

Here, iPreProp is a COFE de�ned as the �xed-point of a locally contractive bifunctor, which exists by

Theorem 2, so we obtain some object iPreProp such that:

Res , ResF(iPreProp, iPreProp)

iProp , UPred(Res)

ξ : iProp
ne−→ iPreProp

ξ−1 : iPreProp
ne−→ iProp

ξ(ξ−1(x)) , x

ξ−1(ξ(x)) , x

Now we can instantiate the base logic described in §4 with Res as the chosen camera. E�ectively, we just

de�ned a way to instantiate the base logic with Res as the camera of resources, while providing a way for

Res to depend on iPreProp, which is isomorphic to iProp.
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We thus obtain all the rules of §4, and furthermore, we can use the maps ξ and ξ−1
in the logic to convert

between logical propositions iProp and the domain iPreProp which is used in the construction of Res – so

from elements of iPreProp, we can construct the elements that can be owned in our logic.

Proof composability. To make our proofs composeable, we generalize our proofs over the family of

functors. This is possible because we made Res a product of all the cameras picked by the user, and because

we can actually work with that product “pointwise”. So instead of picking a concrete family, proofs will

assume to be given an arbitrary family of functors, plus a proof that this family contains the functors they

need. Composing two proofs is then merely a matter of conjoining the assumptions they make about the

functors. Since the logic is entirely parametric in the choice of functors, there is no trouble reasoning

without full knowledge of the family of functors.

Only when the top-level proof is completed we will “close” the proof by picking a concrete family that

contains exactly those functors the proof needs.

Dynamic resources. Finally, the use of �nite partial functions lets us have as many instances of any

camera as we could wish for: Because there can only ever be �nitely many instances already allocated, it is

always possible to create a fresh instance with any desired (valid) starting state. This is best demonstrated

by giving some proof rules.

So let us �rst de�ne the notion of ghost ownership that we use in this logic. Assuming that the family

of functors contains the functor Σi at index i, and furthermore assuming that Mi = Σi(iPreProp, iPreProp),

given some a ∈Mi we de�ne:

a : Mi
γ
, Own ((. . . , ∅, i : [γ← a] , ∅, . . .))

This is ownership of the pair (element of the product over all the functors) that has the empty �nite partial

function in all components except for the component corresponding to index i, where we own the element

a at index γ in the �nite partial function.

We can show the following properties for this form of ownership:

res-alloc

G in�nite a ∈ VMi

True ` ˙|V∃γ ∈ G. a : Mi
γ

res-update

a Mi
B

a : Mi
γ ` ˙|V∃b ∈ B. b : Mi

γ

res-empty

ε is a unit of Mi

True ` ˙|V ε
γ

res-op

a : Mi
γ ∗ b : Mi

γ a` a · b : Mi
γ

res-valid

a : Mi
γ ⇒ VMi

(a)

res-timeless

a is a discrete OFE element

timeless( a : Mi
γ
)

Below, we will always work within (an instance of) the logic as described here. Whenever a camera is

used in a proof, we implicitly assume it to be available in the global family of functors. We will typically

leave the Mi implicit when asserting ghost ownership, as the type of a will be clear from the context.
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7 Invariants and Update Modalities
The encoding of invariants and the de�nition of the fancy update modality in Trans�nite Iris is unchanged

from Iris. We state the encoding here for completeness.

However, in order to alleviate the loss of the later commuting rules for separating conjunction and

existentials, which are frequently used when opening invariants, we introduce a new update modality,

logical steps, which will be used in the de�nition of our trans�nite weakest precondition for safety.

7.1 World Satisfaction and Invariants
To introduce invariants into our logic, we will de�ne weakest precondition to explicitly thread through the

proof that all the invariants are maintained throughout program execution. However, in order to be able to

access invariants, we will also have to provide a way to temporarily disable (or “open”) them. To this end,

we use tokens that manage which invariants are currently enabled.

We assume to have the following four cameras available:

InvName , N

Inv , Auth(InvName
�n−⇀ Ag(IiPreProp))

En , ℘(InvName)

Dis , ℘fin(InvName)

The last two are the tokens used for managing invariants, Inv is the monoid used to manage the invariants

themselves.

We assume that at the beginning of the veri�cation, instances named γState, γInv, γEn and γDis of these

cameras have been created, such that these names are globally known.

World Satisfaction. We can now de�ne the proposition W (world satisfaction) which ensures that the

enabled invariants are actually maintained:

W , ∃I : InvName
�n−⇀ iProp. • [ι← ag(next(ξ(I(ι)))) | ι ∈ dom(I)]

γInv∗

∗ι∈dom(I)

(
. I(ι) ∗ {ι} γDis ∨ {ι} γEn

)
Invariants. The following proposition states that an invariant with name ι exists and maintains proposi-

tion P :

P
ι
, ◦ [ι← ag(next(ξ(P )))]

γInv

7.2 Fancy Updates
Next, we de�ne fancy updates, which are essentially the same as the basic updates of the base logic (§4),

except that they also have access to world satisfaction and can enable and disable invariants:

|VE1 E2 P ,W ∗ E1
γEn −∗ ˙|V�(W ∗ E2

γEn ∗ P )

Here, E1 and E2 are the masks of the view update, de�ning which invariants have to be (at least!) available

before and after the update. We use > as symbol for the largest possible mask, N, and ⊥ for the smallest

possible mask ∅. We will write |VE P for |VE E
P . Fancy updates satisfy the following basic proof rules:
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fup-mono

P ` Q
|VE1 E2 P ` |VE1 E2 Q

fup-intro-mask

E2 ⊆ E1
P ` |VE1 E2 |VE2 E1 P

fup-trans

|VE1 E2 |VE2 E3 P ` |VE1 E3 P

fup-upd

˙|VP ` |VE P

fup-frame

Q ∗ |VE1 E2 P ` |VE1]Ef E2]Ef Q ∗ P

fup-update

a Φ

Own (a) ` |VE ∃b. Φ(b) ∧Own (b)

fup-timeless

timeless(P )

.P ` |VE P

(There are no rules related to invariants here. Those rules will be discussed in the following subsection.)

We can further de�ne the notions of view shifts and linear view shifts:

P ≡−∗E1 E2 Q , P −∗ |VE1 E2 Q

P VE1 E2 Q , �(P −∗ |VE1 E2 Q)

P VE Q , P VE E Q

These two are useful when writing down speci�cations and for comparing with previous versions of Iris,

but for reasoning, it is typically easier to just work directly with fancy updates. Still, just to give an idea of

what view shifts “are”, here are some proof rules for them:

vs-update

a Φ

a
γ
V∅ ∃b. Φ(b) ∧ b

γ

vs-trans

P VE1 E2 Q Q VE2 E3 R

P VE1 E3 R

vs-imp

� (P ⇒ Q)

P V∅ Q

vs-mask-frame

P VE1 E2 Q

P VE1]E′ E2]E′ Q

vs-frame

P VE1 E2 Q

P ∗R VE1 E2 Q ∗R

vs-timeless

timeless(P )

.P V∅ P

vs-disj

P VE1 E2 R Q VE1 E2 R

P ∨Q VE1 E2 R

vs-exist

∀x. (P VE1 E2 Q)

(∃x. P ) VE1 E2 Q

vs-always

�Q ` P VE1 E2 R

P ∧�Q VE1 E2 R

vs-false

False VE1 E2 P

7.3 Invariant Namespaces

In §7.1, we de�ned a proposition P
ι

expressing knowledge (i.e., the proposition is persistent) that P is

maintained as invariant with name ι. The concrete name ι is picked when the invariant is allocated, so

it cannot possibly be statically known – it will always be a variable that’s threaded through everything.

However, we hardly care about the actual, concrete name. All we need to know is that this name is di�erent

from the names of other invariants that we want to open at the same time. Keeping track of the n2
mutual

inequalities that arise with n invariants quickly gets in the way of the actual proof.

To solve this issue, instead of remembering the exact name picked for an invariant, we will keep track

of the namespace the invariant was allocated in. Namespaces are sets of invariants, following a tree-like

structure: Think of the name of an invariant as a sequence of identi�ers, much like a fully quali�ed Java

class name. A namespace N then is like a Java package: it is a sequence of identi�ers that we think of as

containing all invariant names that begin with this sequence. For example, conf.pldi.transfiris
is a namespace containing the invariant name conf.pldi.transfiris.heap.
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The crux is that all namespaces contain in�nitely many invariants, and hence we can freely pick the

namespace an invariant is allocated in – no further, unpredictable choice has to be made. Furthermore,

we will often know that namespaces are disjoint just by looking at them. The namespaces N .iris and

N .gps are disjoint no matter the choice of N . As a result, there is often no need to track disjointness of

namespaces, we just have to pick the namespaces that we allocate our invariants in accordingly.

Formally speaking, let N ∈ InvNamesp , List(N) be the type of invariant namespaces. We use the

notation N .ι for the namespace [ι] ++N . (In other words, the list is “backwards”. This is because cons-ing

to the list, like the dot does above, is easier to deal with in Coq than appending at the end.)

The elements of a namespaces are structured invariant names (think: Java fully quali�ed class name).

They, too, are lists of N, the same type as namespaces. In order to connect this up to the de�nitions of §7.1,

we need a way to map structured invariant names to InvName, the type of “plain” invariant names. Any

injective mapping namesp_inj will do; and such a mapping has to exist because List(N) is countable and

InvName is in�nite. Whenever needed, we (usually implicitly) coerceN to its encoded su�x-closure, i.e., to

the set of encoded structured invariant names contained in the namespace:

N ↑ , {ι | ∃N ′. ι = namesp_inj(N ′ ++N )}

We will overload the notation for invariant propositions for using namespaces instead of names:

P
N
, ∃ι ∈ N ↑. P ι

We can now derive the following rules (this involves unfolding the de�nition of fancy updates):

inv-persist

P
N ` � P

N
inv-alloc

.P ` |V∅ P
N

inv-open

N ⊆ E

P
N
VE E\N .P ∗ (.P ≡−∗E\N E True)

inv-open-timeless

N ⊆ E timeless(P )

P
N
VE E\N P ∗ (P ≡−∗E\N E True)

7.4 Non-atomic (“Thread-Local”) Invariants
Sometimes it is necessary to maintain invariants that we need to open non-atomically, for instance when

we are working in a sequential setting and do not care about functions being thread-safe. Clearly, for

this mechanism to be sound we need something that prevents us from opening the same invariant twice,

something like the masks that avoid reentrancy on the “normal”, atomic invariants. The idea is to use

tokens
17

that guard access to non-atomic invariants. Having the token [NaInv : p.E ] indicates that we can

open all invariants in E non-atomically. The p here is the name of the invariant pool. This mechanism

allows us to have multiple, independent pools of invariants that all have their own namespaces.

One way to think about non-atomic invariants is as “thread-local invariants”, where every pool is a

thread. Every thread thus has its own, independent set of invariants. Every thread threads through all

the tokens for its own pool, so that each invariant can only be opened in the thread it belongs to. As a

consequence, they can be kept open around any sequence of expressions (i.e., there is no restriction to

atomic expressions) – after all, there cannot be any races with other threads.

17
Very much like the tokens that are used to encode “normal”, atomic invariants
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Concretely, this is the monoid structure we need:

PId , GName

NaTok , ℘fin(InvName)× ℘(InvName)

For every pool, there is a set of tokens designating which invariants are enabled (closed). This corresponds

to the mask of “normal” invariants. We re-use the structure given by namespaces for non-atomic invariants.

Furthermore, there is a �nite set of invariants that is disabled (open).

Owning tokens is de�ned as follows:

[NaInv : p.E ] , (∅, E)
p

[NaInv : p] , [NaInv : p.>]

Next, we de�ne non-atomic invariants. To simplify this construction,we piggy-back into “normal”

invariants.

NaInvp.N (P ) , ∃ι ∈ N . P ∗ ({ι} , ∅) p ∨ [NaInv : p. {ι} ]
N

We easily obtain:

NAInv-new-pool

TrueV⊥ ∃p. [NaInv : p]
NAInv-tok-split

[NaInv : p.E1 ] E2]⇔ [NaInv : p.E1] ∗ [NaInv : p.E2]

NAInv-new-inv

.P VN �NaInvp.N (P )

NAInv-acc-open-timeless

timeless(P ) N ↑ ⊆ E N ↑ ⊆ F
NaInvp.N (P ) ∗ [NaInv : p.F ] ` |VE .(P ∗ [NaInv : p.F \ N ↑] ∗ (.P ∗ [NaInv : p.F \ N ↑] ≡−∗E [NaInv : p.F ]))

NAInv-acc-open

N ↑ ⊆ E N ↑ ⊆ F I satis�es the �nite bounded existential property

NaInvp.N (P ) ∗ [NaInv : p.F ] ` |VE .(P ∗ [NaInv : p.F \ N ↑] ∗ (.P ∗ [NaInv : p.F \ N ↑] ≡−∗E [NaInv : p.F ]))

While the last two rules seem quite complicated, they essentially state the following: if we know that an

invariant on P holds, then we open it to obtain P and the other invariants. Then, if we can return P and

the assertion about the other invariants, we can restore the invariants we had intially. We note that the last

two rules di�er slightly (namely in the placement of the later modality) from the rules obtained in �nite Iris.

7.5 Satis�ability
We de�ne

satisfiable at E P , satisfiable(W ∗ E γEn ∗ P )

for a notion of satis�ability which allows us to interact with fancy updates (and by extension invariants).

The meta-level proposition satisfiable at E P means that P is satis�able and the current mask is E . At

mask E , the invariants in E can be opened. Speci�cally, we have the update rule:

satisfiable at E1 ( |VE1 E2 P )

satisfiable at E2 P
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Apart from that, all the relevant rules of satisfiable lift to satisfiable at E :

satisfiable at E P P ` Q
satisfiable at E Q

satisfiable at E (.P )

satisfiable at E P

satisfiable at E (P ∨Q) I enjoys the �nite existential property

satisfiable at E P ∨ satisfiable at E Q

satisfiable at E (∃x : A. φx) I enjoys the small existential property A is small

∃x : A. satisfiable at E (φx)

7.6 Logical Steps
It will be useful to have a modality which allows to perform updates, akin to a fancy update, as well as to

take steps using a later. We will call this modality logical steps.

The idea for the de�nition is to essentially alternate an arbitrary number of fancy updates and laters in

a careful way.

We �rst de�ne the auxiliary eventually modality which stays at one mask E while interleaving laters

and fancy updates.

〈E〉0P , |VE P
〈E〉(1+n)P , |VE . |VE 〈E〉nP

〈E〉P , |VE ∃n. 〈E〉nP

As we will never use eventually on its own, but rather use at as a component for de�ning logical steps,

we do not provide any rules.

For a logical step, we �rst open up all the invariants from a mask E1, use eventually, and �nally close

the invariants again, shifting to another mask E2.

|=⇒E1 E2
nP , |VE1 ∅ 〈∅〉n |V

∅ E2 P

|=⇒E1 E2P , |VE1 ∅ 〈∅〉 |V∅ E2 P

We can obtain the following properties:

lstep-fupd-left

|VE1 E2 |=⇒E2 E3P ` |=⇒E1 E3P
lstep-fupd-right

|=⇒E1 E2 |VE2 E3 P ` |=⇒E1 E3P

lstep-sqash

|=⇒E1 E2 .P ` |=⇒E1 E2P

lstepn-lstep

|=⇒E1 E2
nP ` |=⇒E1 E2P

lstepn-later

. |=⇒E1 E2
nP ` |=⇒E1 E2

(1+n)P
lstepn-intro

|VE1 E2 P ` |=⇒E1 E2
0P

lstepn-step-mono

k1 ≤ k2

|=⇒E1 E2
k1P ` |=⇒E1 E2

k2P

lstep-mono

P −∗ Q ` |=⇒E1 E2P −∗ |=⇒E1 E2Q

lstepn-mono

P −∗ Q ` |=⇒E1 E2
nP −∗ |=⇒E1 E2

nQ
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8 Languages
A language Λ consists of a set Expr of expressions (metavariable e), a set Val of values (metavariable v), a set

Obs of observations
18

(or “observable events”) and a set State of states (metavariable σ) such that

• There exist functions val to expr : Val → Expr and expr to val : Expr ⇀ Val (notice the latter is

partial), such that

∀e, v. expr to val(e) = v ⇒ val to expr(v) = e ∀v. expr to val(val to expr(v)) = v

• There exists a primitive reduction relation

(−,− −−→t −,−,−) ⊆ (Expr× State)× List(Obs)× (Expr× State× List(Expr))

A reduction e1, σ1
~κ−→t e2, σ2, ~e indicates that, when e1 in state σ1 reduces to e2 with new state σ2, the

new threads in the list ~e is forked o� and the observations ~κ are made. We will write e1, σ1 −→t e2, σ2

for e1, σ1
()−→t e2, σ2, (), i.e., when no threads are forked o� and no observations are made.

• All values are stuck:

e, _ −→t _, _, _⇒ expr to val(e) = ⊥

De�nition 24. An expression e and state σ are reducible (written red(e, σ)) if

∃~κ, e2, σ2, ~e. e, σ
~κ−→t e2, σ2, ~e

De�nition 25. An expression e is strongly atomic if it reduces in one step to a value:

strongly atomic(e) , ∀σ1, ~κ, e2, σ2, ~e. e, σ1
~κ−→t e2, σ2, ~e⇒ expr to val(e2) 6= ⊥

De�nition 26 (Context). A functionK : Expr→ Expr is a context if the following conditions are satis�ed:

1. K does not turn non-values into values:

∀e. expr to val(e) = ⊥ ⇒ expr to val(K(e)) = ⊥

2. One can perform reductions belowK :

∀e1, σ1, ~κ, e2, σ2, ~e. e1, σ1
~κ−→t e2, σ2, ~e⇒ K(e1), σ1

~κ−→t K(e2), σ2, ~e

3. Reductions stay belowK until there is a value in the hole:

∀e′1, σ1, ~κ, e2, σ2, ~e. expr to val(e′1) = ⊥ ∧K(e′1), σ1
~κ−→t e2, σ2, ~e⇒

∃e′2. e2 = K(e′2) ∧ e′1, σ1
~κ−→t e

′
2, σ2, ~e

18
See https://gitlab.mpi-sws.org/iris/iris/merge_requests/173 for how observations are useful to encode prophecy variables.
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8.1 Concurrent Language
For any language Λ, we de�ne the corresponding thread-pool semantics.

Machine syntax
T ∈ ThreadPool , List(Expr)

Machine reduction T ;σ
~κ−→tp T

′;σ′

e1, σ1
~κ−→t e2, σ2, ~e

T ++ [e1] ++ T ′;σ1
~κ−→tp T ++ [e2] ++ T ′ ++ ~e;σ2

We use
−−→∗tp for the re�exive transitive closure of

−−→tp, as usual concatenating the lists of observations

of the individual steps. For the case that we do not care about the observations, we de�ne

T ;σ −→tp T
′;σ′ , ∃~κ.T ;σ

~κ−→tp T
′;σ′.
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9 Program Logic
We now describe how we can build a program logic for an arbitrary language as de�ned in Section 8 on top

of the Trans�nite Iris base logic with invariants and higher-order ghost state.

Fix some language Λ for the rest of this section. We assume that everything making up the de�nition

of the language, i.e., values, expressions, states, the conversion functions, reduction relation and all their

properties, are suitably re�ected into the logic.

Weakest preconditions are the core piece of the program logic, allowing us to reason about program

behaviour. We de�ne several variations of them: �rst an adaption of the standard �nite Iris weakest

precondition allowing to reason about safety; secondly a weakest precondition for termination-preserving

re�nement; and �nally, we can derive a weakest precondition ensuring termination as a special case of the

re�nement weakest preconditon.

9.1 Weakest Precondition for Safety
In principle, we could leave the de�nition of weakest preconditions unchanged from �nite Iris for reasoning

about safety: the minor changes to the base logic do not invalidate the de�nition. However, its usefulness

would be severely restricted when working with invariants. Due to our de�nition of invariants involving

higher-order ghost state, we can only get the contents of an invariant under a later when opening it. In �nite

Iris, we could then use the commuting properties for later with separating conjunctions and existentials

to still directly access some timeless parts of an invariant. Many existing Iris developments rely on this

pattern for their choice of invariants.

As we have seen, we cannot get these commuting properties in Trans�nite Iris. In order to mitigate this

loss, we change the de�nition of weakest preconditions to allow us to eliminate a �nite amount of laters

in each step of program execution. Our de�nition will add a logical step as de�ned in Section 7.6 to the

de�nition in order to achieve that.

De�ning the weakest precondition The weakest precondition is parameterized over a state interpre-

tation S : State × List(Obs) × N → iProp that interprets the execution state as an Iris proposition, and

a predicate ΦF : Val → iProp serving as a postcondition for forked-o� threads. The state interpretation

can depend on the current physical state, the list of future observations as well as the total number of

forked threads (that is one less that the total number of threads). This can be instantiated, for example, with

ownership of an authoritative RA to tie the physical state to fragments that are used for user-level proofs.

Finally, the weakest precondition takes a parameter s ∈ {NotStuck, Stuck} indicating whether program

execution is allowed to get stuck.

We now provide the de�nition of the weakest precondition, with the only change being that we change

the fancy update for opening the invariants to a logical step, highlighted in blue:

wp(S, ΦF , s) , µ wp rec. λ E , e, Φ.
(∃v. expr to val(e) = v ∧ |VE Φ(v)) ∨(

expr to val(e) = ⊥ ∧ ∀σ,~κ,~κ′, n. S(σ,~κ++ ~κ′, n) −∗ |=⇒E ∅

(s = NotStuck⇒ red(e, σ)) ∗ ∀e′, σ′, ~e. (e, σ ~κ−→t e
′, σ′, ~e) ≡−∗∅ ∅ . |V∅ E

S(σ′, ~κ′, n+ |~e|) ∗ wp rec(E , e′, Φ) ∗∗e′′∈~e wp rec(>, e′′, ΦF )
)

wpS;ΦF

s;E e {v. P} , wp(S, ΦF , s)(E , e, λ v. P )
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We use Banach’s �xpoint theorem (Theorem 1) in this de�nition. The S and ΦF will always be set by the

context; typically, when instantiating Iris with a language, we also pick the corresponding state interpretation

S and fork-postcondition ΦF . All proof rules leave S and ΦF unchanged. If we leave away the mask E , we

assume it to default to >. If we leave away the stuckness s, it defaults to NotStuck.

Note that we retain the later in the de�nition after proving a step for compatibility reasons: we could in

principle remove it (as the logical steps already make the de�nition contractive), but that would require

larger changes to existing proofs in �nite Iris. The logical step will essentially allow us to pull out an

arbitrary number of laters (that we however have to �x before starting to pull out laters) before proving that

we can take a step, giving us a way to deal with the loss of commuting rules. Using logical steps instead of a

single later is additionally not only useful for working around the commuting rules, but also for uses where

multiple laters need to be eliminated, e.g., for opening nested invariants in a single step of the program

(which is currently not possible in �nite Iris).

In order to actually facilitate this, we additionally de�ne a stronger weakest precondition swp parameter-

ized over a natural number k. Instead of allowing us to take an arbitrary number of laters (via the logical

step), we can only take a previously chosen number of steps k. Additionally, the swp requires us to prove

that we can actually take a step, omitting the case that we have already reached a value.

swpk;S;ΦF

s;E e {v. P} , ∀σ,~κ,~κ′, n. S(σ,~κ++ ~κ′, n) −∗ |=⇒E ∅
k

(s = NotStuck⇒ red(e, σ)) ∗ ∀e′, σ′, ~e. (e, σ ~κ−→t e
′, σ′, ~e) ≡−∗∅ ∅ . |V∅ E

S(σ′, ~κ′, n+ |~e|) ∗ wpS;ΦF

s;E e′ {v. P} ∗∗e′′∈~e wp
S;ΦF

s;> e′′ {ΦF }

Laws of the weakest precondition The crucical new rule of this trans�nite weakest precondition is

that we can transition from a weakest precondition to the strong weakest precondition:

swp-wp

expr to val(e) = ⊥
swpks;E e {v. P} ` wps;E e {v. P}

As one would expect, the minor change of the de�nition does not impact the rules known from Iris

much, with the only exception being wp-atomic where we currently require strong atomicity independently

62



of the stuckness:

wp-value

P [v/x] ` wps;E v {x. P}

wp-mono

E1 ⊆ E2 Γ, x : val | P ` |VE2 Q (s2 = Stuck ∨ s1 = s2)

Γ | wps1;E1 e {x. P} ` wps2;E2 e {x. Q}

fup-wp

|VE wps;E e {x. P} ` wps;E e {x. P}
wp-fup

wps;E e {x. |VE P} ` wps;E e {x. P}

wp-atomic

strongly atomic(e)

|VE1 E2 wps;E2 e
{
x. |VE2 E1 P

}
` wps;E1 e {x. P}

wp-frame

Q ∗ wps;E e {x. P} ` wps;E e {x. Q ∗ P}

wp-frame-step

expr to val(e) = ⊥ E2 ⊆ E1
wps;E2 e {x. P} ∗ |VE1 E2 . |VE2 E1 Q ` wps;E1 e {x. Q ∗ P}

wp-bind

K is a context

wps;E e
{
x.wps;E K(val to expr(x)) {y. P}

}
` wps;E K(e) {y. P}

We will also want a rule that connect weakest preconditions to the operational semantics of the language.

This basically just copies the second branch (the non-value case) of the de�nition of weakest preconditions,

but without o�ering the logical step.

wp-lift-step

expr to val(e1) = ⊥

∀σ1, ~κ,~κ
′, n. S(σ1, ~κ++ ~κ′, n) ≡−∗E ∅ (s = NotStuck⇒ red(e1, σ1)) ∗

∀e2, σ2, ~e. (e1, σ1
~κ−→t e2, σ2, ~e) ≡−∗∅ ∅ . |V∅ E(

S(σ2, ~κ
′, n+ |~e|) ∗ wpS;ΦF

s;E e2 {x. P} ∗∗ef∈~e wp
SΦF

s;> ef {ΦF }
)

` wpS;ΦF

s;E e1 {x. P}

Laws of the strong weakest precondition Very similar laws hold for the strong weakest precondition,

with the outstanding rule being the following one, allowing us to pull out a later while decreasing the index:

swp-do-step

. swpks;E e {x. P} ` swp(1+k)
s;E e {x. P}
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swp-mono

E1 ⊆ E2 Γ, x : val | P ` |VE2 Q (s2 = Stuck ∨ s1 = s2)

Γ | swpks1;E1 e {x. P} ` swpks2;E2 e {x. Q}

fup-swp

|VE swp
k
s;E e {x. P} ` swpks;E e {x. P}

swp-fup

swpks;E e {x. |VE P} ` swpks;E e {x. P}

swp-atomic

strongly atomic(e)

|VE1 E2 swpks;E2 e
{
x. |VE2 E1 P

}
` swpks;E1 e {x. P}

swp-frame

Q ∗ swpks;E e {x. P} ` swpks;E e {x. Q ∗ P}

swp-bind

K is a context

swpks;E e
{
x.wps;E K(val to expr(x)) {y. P}

}
` swpks;E K(e) {y. P}

swp-lift-step

∀σ1, ~κ,~κ
′, n. S(σ1, ~κ++ ~κ′, n) ≡−∗E ∅ (s = NotStuck⇒ red(e1, σ1)) ∗

∀e2, σ2, ~e. (e1, σ1
~κ−→t e2, σ2, ~e) ≡−∗∅ ∅ . |V∅ E(

S(σ2, ~κ
′, n+ |~e|) ∗ wpS;ΦF

s;E e2 {x. P} ∗∗ef∈~e wp
SΦF

s;> ef {ΦF }
)

` swpk;S;ΦF

s;E e1 {x. P}

Adequacy of the weakest precondition The purpose of the adequacy statement is to show that our

notion of weakest preconditions is realistic in the sense that it actually has anything to do with the actual

behavior of the program. Since we have only changed the de�nition of the weakest precondition for safety

in minor ways, we can keep the adequacy theorem and change the proof to account for the added logical

step
19

. This will however only enable the adequacy result for trans�nite step-index types as we cannot

obtain a soundness result for logical steps with �nite index types.

Theorem 3 (Adequacy). Assume that the underlying step-index type is trans�nite.

Assume we are given some e1, σ1, ~κ, T2, σ2 such that ([e1], σ1)
~κ−→∗tp (T2, σ2), and we are also given a

meta-level property p that we want to show. We assume that p has been suitably re�ected into our logic ( i.e.,

added to its signature) so that we can talk about it inside Trans�nite Iris. The signature can of course state

arbitrary additional properties of p, as long as they are proven sound.

To verify that p holds, it is su�cient to show the following Iris entailment:

True ` |V> ∃s, S, Φ, ΦF . S(σ1, ~κ, 0) ∗ wpS;ΦF

s;> e1 {x. Φ(x)} ∗
(
CS;Φ;ΦF
s (T2, σ2) V> ∅ p

)
19

We do not currently use our new notion of satis�ability (see Section 4.4.1) to enable a modular proof. However, our adequacy

proof for the re�nement weakest precondition introduced later makes use of the new technique.
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where C describes states that are consistent with the state interpretation and postconditions:

CS;Φ;ΦF
s (T2, σ2) , ∃e2, T

′
2. T2 = [e2] ++ T ′2 ∗

(s = NotStuck⇒ ∀e ∈ T2. expr to val(e) 6= ⊥ ∨ red(e, σ2)) ∗
S(σ2, (), |T ′2|) ∗
(expr to val(e2) 6= ⊥ −∗ Φ(expr to val(e2))) ∗(∗e∈T ′

2
expr to val(e) 6= ⊥ −∗ ΦF (expr to val(e))

)
Jp̂K : JiPropK
Jp̂K , λ . {n | p}

In other words, to show that p holds, we have to prove an entailment in Iris that, starting from the

empty context, chooses some state interpretation, postcondition, forked-thread postcondition and stuckness

and then proves:

• the initial state interpretation,

• a weakest-precondition,

• and a view shift showing the desired p under the extra assumption C(T2, σ2).

Notice that the state interpretation and the postconditions are chosen after doing a fancy update, which

allows them to depend on the names of ghost variables that are picked in that initial fancy update. This

gives us a chance to allocate some “global” ghost state that state interpretation and postcondition can refer

to.

CS;Φ;ΦF
s (T2, σ2) says that:

• The �nal thread-pool T2 contains the �nal state of the main thread e2, and any number of additional

forked threads in T ′2.

• If this is a stuck-free weakest precondition, then all threads in the �nal thread-pool are either values

or are reducible in the �nal state σ2.

• The state interpretation S holds for the �nal state.

• If the main thread reduced to a value, the post-condition Φ of the weakest precondition holds for that

value.

• If any other thread reduced to a value, the forked-thread post-condition ΦF holds for that value.

As the crucial di�erence to the �nite Iris adequacy proof, we use the following soundness result for

logical steps:

Lemma 11 (Soundness of Logical Steps). Assume we are working with a trans�nit step-index type. Let p be
a meta-level property re�ected into our logic.

If True ` ( |=⇒> >
)
n
p, then p holds.

It is clear that this lemma cannot hold for �nite index types as we know that ` ∃n. .n⊥ is provable for

natural number indices (as seen in Section 2.3).
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9.2 Generalized Simulations
While Iris allows us to perform safety reasoning, the novelty of Trans�nite Iris lies in providing liveness

reasoning, justi�ed by the existential property. An interesting class of liveness properties is provided by

termination-preserving re�nements and termination. Abstractly, a termination-preserving re�nement

between two terms s in a source language S and t in a target language T says that (1) if t evaluates to v,

then s evaluates to a related value v′, and (2) if s terminates, then t terminates.

Before getting to the actual de�nition of the re�nement weakest precondition which is able to handle

all features of the Iris program logic, we show at a high level how to generalize the simulation relation from

the key ideas section of this work to handle stuttering steps of the source (explained below). This will then

motivate some of the structure of our de�nition of the weakest precondition.

In the key ideas section, we have only given an internalized simulation (�∗) which establishes a “lock-

step” simulation (i.e., one step of the source for every step of the target) between the target and the source.

Such a lock-step simulation is too strict for verifying examples such as memo_rec. Realistic examples

require the ability to take steps in the target program without corresponding steps in the source program,

also known as stuttering.

A traditional technique to enable stuttering is explicitly counting the stutters (i.e., steps of the target

where the source does not change as well) in the de�nition of the simulation relation (e.g., as a subscript of

the relation). Unfortunately, counting stutters easily becomes tedious in proofs because (1) the number

of stutters has to be maintained explicitly, and (2) counting stutters is not very compositional (e.g., for

function calls in the target, the number of stutters can depend on the argument). Thus, we will use a form

of stuttering which does not require explicit stutter counting for the simulation (�∗). To the best of our

knowledge, this is the �rst simulation which combines guarded recursion (used for cyclic features of the

language) and stuttering without explicit counting.

Now, in the absence of a step count, we have to resort to alternative measures to ensure that the stutters

terminate; otherwise the target could diverge. We incorporate termination (without counting steps) in the

de�nition using a least �xpoint. That is, we de�ne:

t �∗ s , (∃b. s = t = b)∨(
(∃t′. t tgt t

′) ∧ ∀t′. t tgt t
′ ⇒

t′ �∗ s ∨ ∃s′. s src s
′ ∧ . t′ �∗ s′

)

as a least �xpoint. In this version of (�∗), the user is o�ered a choice after each target step t tgt t
′
: either

she proves the simulation for the new target t′, or she simulates the target step by picking one in the source

s src s
′

and then proving the simulation for t′ �∗ s′.
Now, to understand this de�nition in more detail, we consider once more its unfolding in the step-indexed

model
20

. In the model, the simulation relation is de�ned as:

t �0 s , True

t �i+1 s , (∃b. t = s = b)∨(
(∃t′. t tgt t

′) ∧ ∀t′. t tgt t
′ ⇒

t′ �i+1 s ∨ ∃s′. s src s
′ ∧ t′ �i s′

)
20

For simplicity, instead of showing the unfolding with ordinals as step-indices, we show the unfolding with natural numbers as

step-indices (in the style of the key ideas section).
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where for each i, the de�nition of (�i+1) is a least �xpoint. The use of the least �xpoint ensures that for

each (�i+1), the left side of the disjunction can only be taken �nitely often.

In proofs of (�∗), the choice between the left and right side of the disjunction can be made as follows.

The right side should be chosen, if the next target step corresponds to a source step. The left side should

be chosen, if the next target step or the next several target steps do not have a direct correspondence to

source steps but have an intrinsic notion of termination. By intrinsic notion of termination, we mean that

an inductive argument can be made why the execution terminates (e.g., a function structurally recurses on

a list, or a for-loop iterates for a �xed number of iterations).

To justify that the simulation relation de�ned above is actually useful, we show its adequacy, meaning

we show it entails a termination preserving re�nement.

Lemma 6. If ` t �∗ s, then:

• for all b, if t evaluates to b, then s evaluates to b,

• if t diverges, then s diverges.

Proof.

• First we prove the result re�nement: First, we observe that for a single step t tgt t
′
, we obtain from

` t �∗ s:
` t′ �∗ s or (s src s

′
and ` t′ �∗ s′ for some s′)

by using the existential property and other soundness rules of the logic. In particular, this means:

s ∗
src
s′and ` t′ �∗ s′ for some s′

where ( ∗
src

) is the re�exive, transitive closure of ( src).

By repeatedly applying this single step rule to the simulation ` t �∗ s for every step in the execution

of t to b, we obtain:

s ∗
src
s′and ` b �∗ s′ for some s′

By unfolding the de�nition of the simulation relation, we obtain ` b = s′ (since b cannot step), and

hence b = s′.

• Now we show termination re�nement: Let t by diverging. Then we can prove inside of the logic:

` ∃t′, s′. t′ diverges ∧ s src s
′ ∧ . t′ �∗ s′

by induction on the least �xpoint (�∗), incrementally unrolling the in�nite execution of t. Using the

existential property and other standard soundness properties, we obtain:

s src s
′
and t′ diverges and ` t′ �∗ s′ for some t′, s′

By repeating this step, starting at t′, we can extract an in�nite execution of s.
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9.3 Re�nement Weakest Precondition
With this motivation for the core style of reasoning we employ, we introduce a new type of weakest

precondition. We follow the Iris style and setup the re�nement weakest precondition in a very general way.

Instead of specializing to one particular language, we parameterize over a suitable notion of source language.

This will pay o� later as it allows us to obtain a weakest precondition for termination as a special case.

While we are reasoning with the weakest precondition in the target language, we have certain requirements

on making steps in the source language.

9.3.1 Source languages

De�nition 2 (Source language). A source language consists of a type A, a relation ↪→ on A, and a source

interpretation I : A→ iProp.

This de�nition of source languages is very general, with the source interpretation providing a great

deal of �exibility.

De�nition 3 (Source update). It is possible to do a source update to P : iProp, written ||s⇒E P , if

∀a : A.I(a) ≡−∗E ∃b : A. a ↪→+ b ∗ I(b) ∗ P.

Note that P may very well make assertions about the state of the source language if we tie it to the

source interpretation with suitable ghost state.

We have the following notable rules for source updates:

src-update-bind

||s⇒E P ∗ (P −∗ ||s⇒E Q) ` ||s⇒E Q
src-update-mono-fupd

||s⇒E P ∗ (P ≡−∗E Q) ` ||s⇒E Q
fupd-src-update

|VE ||
s⇒E P ` ||

s⇒E P

Trivial source language The trivial source language is given by the unit type 1 with the trivial relation

x ↪→ x , > and the interpretation I(x) , >. Essentially, this source language always loops, so that a

re�nement with this source language poses no further requirements.

Authoritative source language

De�nition 4 (Authoritative source). An authoritative source (M, ↪→) consists of a discrete unital camera

M equipped with a relation ↪→ satisfying the following requirements:

a ↪→ a′ ∧ valid(a · f)⇒ valid(a′ · f) ∧ (a · f) ↪→ (a′ · f) (auth-source-frame)

valid(a · f) ∧ a · f = a · f ′ ⇒ f = f ′ (auth-source-cancel)

We can make an authoritative source (M, ↪→) into a source language by de�ning the source interpreta-

tion as

I(a) , • a γ
. (auth-source-interp)

for some ghost name γ. We use the notation srcA(s) , • a γ
to assert authoritative ownership of the

source element s and srcF(s) , ◦ a γ
to assert ownership of a fragment s.

The following rules can be proved:

auth-source-update

a ↪→ a′

srcF(a) ` ||s⇒E srcF(a′)

srcF-split

srcF(a · b) a` srcF(a) ∗ srcF(b)
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Authoritative ordinal source language We can give an instance of the authoritative source language

by picking the ordinal camera from Section 3.5 as the underlying discrete unital camera. As for the stepping

relation, we pick � (the greater-than relation).

Intuitively, if we have srcF(a), then especially a � b for the authoritative element b, asserting that at

least a is remaining in the ordinal source (formally, whenever we have knowledge of srcA(b), then a � b).
Naturally, we can derive the following rule (recalling the de�nition of the operation for the ordinal RA):

ord-srcF-split

srcF(n⊕m) a` srcF(n) ∗ srcF(m)

Authoritative natural numbers source language In a very similar way, natural numbers can be used

as a source language, with the stepping relation ↪→ , >. The observations for the ordinal source language

hold here as well: if we have knowledge of srcF(n), then we have at least n steps remaining in the natural

numbers source. A similar splitting rule holds:

nat-srcF-split

srcF(n+m) a` srcF(n) ∗ srcF(m)

Lexicographic source language Given two source languages (A, ↪→A, IA) and (B, ↪→B , IB), we can

de�ne a source language on the lexicographic product as follows:

a ↪→A a
′

(a, b) ↪→A×B (a′, b′)

b ↪→B b′

(a, b) ↪→A×B (a, b′)

I(a, b) , I(a) ∗ I(b)

This will allow us to encode stuttering explicitly.

source-update-embed-l

||s⇒E
AP ` ||s⇒E

(A×B)P
source-update-embed-r

||s⇒E
BP ` ||s⇒E

(A×B)P

Other source languages In the case that we want to prove a re�nement between programs, the source

language needs to capture the language the source program is written in. We will see an example of such

an encoding in Section 11.2.

9.3.2 De�nition of the re�nement weakest precondition

We parameterize the re�nement weakest precondition by a state interpretation State × N → iProp that

interprets the execution state as an Iris proposition, and a predicate ΦF : Val → iProp serving as a

postcondition for forked-o� threads
21

. For the state interpretation, we currently do not support lists of

observations for prophecies (unlike the Iris weakest precondition for safety). Furthermore, we parameterize

over a source language A = (A, ↪→, I) for re�nement which we have to thread through.

The key di�erence to the normal weakest precondition of Iris is that we have to build in making steps

of the source language: we should always be required to take a step in the source language after �nitely

many steps in the target language. This ensures that, if the source expression is terminating (has no in�nite

21
However, we do not actually make use of concurrency in this work.

69



executions), the target expression (we are considering in the weakest precondition) must also be terminating.

Therefore, we de�ne the weakest precondition as a least �xpoint.

At the same time, our de�nition still has a guardedly recursive component: for every step of the target,

we decrease the step-index (encoded by a later), which is needed for the higher-order reasoning of Iris,

i.e., to strip laters when opening invariants. Notably, we do not get a later if we do not take a step in the

source language. Otherwise, we could still loop in�nitely in the target and never take a step in the source

by decreasing the step-index (with the later) until it runs out (i.e., becomes zero).

The most important features are highlighted in blue.

rwp(A, S, ΦF , s) , least fp rwp rec.λ E , e, Φ.
(∃v. expr to val(e) = v ∧ ∀σ, n, a. I(a) ∗ S(σ, n)VE I(a) ∗ S(σ, n) ∗ Φ(v)) ∨(

expr to val(e) = ⊥ ∧ ∀σ, n, a. I(a) ∗ S(σ, n) ≡−∗E ∅

∃b. b. |V∅ (s = NotStuck⇒ red(e, σ)) ∗ ∀e′, σ′, ~e,~κ. (e, σ ~κ−→t e
′, σ′, ~e) ≡−∗∅ E

((b = true ∗ ∃a′. a ↪→+ a′ ∗ I(a′)) ∨ (b = false ∗ I(a))) ∗

S(σ′, n+ |~e|) ∗ rwp rec(E , e′, Φ) ∗∗e′′∈~e rwp rec(>, e′′, ΦF )
)

rwpA;S;ΦF

s;E e {v. P} , rwp(A, S, ΦF , s)(E , e, λ v. P )

When proving a re�nement weakest precondition and the target expression is not a value, we can make

a choice: either we want to take a step in the source language (b = true) or we do not. In case that we do,

we obtain a later in the goal upfront
22

. Otherwise, we cannot obtain a later in the goal. After taking a step

in the target language, we have to prove that we can take at least one step in the source language if we

chose to do so, while making sure that the source interpretation is upheld.

This de�nition of the re�nement weakest precondition allows us to take stuttering steps both in the

source and the target without explicitly counting steps
23

.

We remark that this de�nition becomes quite similar (apart from di�erences in placement of later) to

the “normal” weakest precondition for safety known from Iris if we pick the trivial source language that

can always do a step (thus putting no obligation for termination on us).

We provide additionally a strong re�nement weakest precondition which captures the case that we are

not in the value case and have potentially already taken a source step (made a source update). It requires us

to prove a target step. The strong re�nement weakest precondition is parameterized by an index k giving

the number of laters we may get in the goal when proving it. The interesting cases in this work are k = 0
(we have not taken a source step when switching from the re�nement weakest precondition to the strong

version) and k = 1 (we have taken a source step).

rswpk;A;S;ΦF

s;E e {v. P} , ∀σ, n, a. I(a) ∗ S(σ, n) ≡−∗E ∅
(
|V∅ ∅

. |V∅ ∅
)k

(s = NotStuck⇒ red(e, σ)) ∗ ∀e′, σ′, ~e,~κ. (e, σ ~κ−→t e
′, σ′, ~e) ≡−∗∅ E

I(a) ∗ S(σ′, n+ |~e|) ∗ rwpA;S;ΦF

s;E e′ {v. P} ∗∗e′′∈~e rwp
A;S;ΦF

s;> e′′ {ΦF }

The style of reasoning this allows will become clearer with the rules provided below.

22
In principle, we could also get a larger number of laters here, e.g., by including a logical step. We leave this for future work.

23
However, we cannot obtain laters in the goal when proving a re�nement weakest precondition and stuttering in the target
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9.3.3 Derived rules

We �rst show the two central rules that allow for reasoning involving the source language.

rwp-no-step

expr to val(e) = ⊥
rswp0

s;E e {v. P} ` rwps;E e {v. P}

rwp-take-step

expr to val(e) = ⊥
||s⇒E P ∗ (P −∗ rswp1

s;E e {v. P}) ` rwps;E e {v. P}

The �rst rule does not take a step in the source language, thus leaving us at an rswp with 0 laters, while the

second rule takes a source step.

Rules for rwp The other rules we expect of weakest preconditions do also hold.

rwp-value

P [v/x] ` rwps;E v {x. P}

rwp-mono

E1 ⊆ E2 Γ, x : val | P ` |VE2 Q (s2 = Stuck ∨ s1 = s2)

Γ | rwps1;E1 e {x. P} ` rwps2;E2 e {x. Q}

fup-rwp

|VE rwps;E e {x. P} ` rwps;E e {x. P}
rwp-fup

rwps;E e {x. |VE P} ` rwps;E e {x. P}

rwp-atomic

strongly atomic(e)

|VE1 E2 rwps;E2 e
{
x. |VE2 E1 P

}
` rwps;E1 e {x. P}

rwp-frame

Q ∗ rwps;E e {x. P} ` rwps;E e {x. Q ∗ P}

rwp-bind

K is a context

rwps;E e
{
x. rwps;E K(val to expr(x)) {y. P}

}
` rwps;E K(e) {y. P}

Finally, we have the usual lifting lemma:

rwp-lift-step

expr to val(e) = ⊥

∀σ, n, a. I(a) ∗ S(σ, n) ≡−∗E ∅

∃b. b. |V∅ (s = NotStuck⇒ red(e, σ)) ∗ ∀e′, σ′, ~e, ~κ. (e, σ ~κ−→t e
′, σ′, ~e) ≡−∗∅ E

((b = true ∧ ∃a′. a ↪→+ a′ ∗ I(a′)) ∨ (b = false ∧ I(a))) ∗
S(σ′, n+ |~e|) ∗ rwpA;S;ΦF

s;E e′ {x. P} ∗∗e′′∈~e rwp
A;S;ΦF

s;E e′′ {ΦF }
` rwpA;S;ΦF

s;E e {x. P}

Rules for rswp Correspondingly, we have the following rules for the rswp:

rswp-do-step

. rswpks;E e {x. P} ` rswp(1+k)
s;E e {x. P}

71



rswp-mono

E1 ⊆ E2 Γ, x : val | P ` |VE2 Q (s2 = Stuck ∨ s1 = s2)

Γ | rswpks1;E1 e {x. P} ` rswpks2;E2 e {x. Q}

fup-rswp

|VE rswp
k
s;E e {x. P} ` rswpks;E e {x. P}

rswp-fup

rswpks;E e {x. |VE P} ` rswpks;E e {x. P}

rswp-atomic

strongly atomic(e)

|VE1 E2 rswpks;E2 e
{
x. |VE2 E1 P

}
` rswpks;E1 e {x. P}

rswp-frame

Q ∗ rswpks;E e {x. P} ` rswpks;E e {x. Q ∗ P}

rswp-bind

K is a context

rswpks;E e
{
x. rwps;E K(val to expr(x)) {y. P}

}
` rswpks;E K(e) {y. P}

rswp-lift-step

expr to val(e) = ⊥

∀σ, n. S(σ, n) −∗ |=⇒E ∅
k

(s = NotStuck⇒ red(e, σ)) ∗ ∀e′, σ′, ~e, ~κ. (e, σ ~κ−→t e
′, σ′, ~e) ≡−∗∅ E

S(σ′, n+ |~e|) ∗ rwpA;S;ΦF

s;E e′ {v. P} ∗∗e′′∈~e rwp
A;S;ΦF

s;> e′′ {ΦF }
` rswpk;A;S;ΦF

s;E e {x. P}

9.3.4 Adequacy

Of course, we have to prove that our re�nement weakest precondition is adequate, i.e., that the statement

we have proved has a meaning outside the logic. When we prove a re�nement, we essentially desire that

every possible behavior of the target term is also a possible behavior of the source term.

Viewed abstractly with our very general notion of source language in mind, the only behavior we can

reason about in general is (non-) termination. More advanced additional notions of behavior, for instance

a notion of result re�nement when the source term is itself a program, can be encoded via the source

interpretation with ghost state.

Result re�nement Since the concrete phrasing of a result re�nement strongly depends on the language

and the relation between values we want to obtain, we introduce a generic post-condition depending on the

state interpretation and source interpretation. With this, we can prove a general result that can be re-used

for proving concrete result re�nements.

We make use of the notion of satis�ability with masks introduced in Section 7.5.

Theorem 4 (Result Re�nement). Assume that the underlying step-index type validates the small existential

property.

If [e];σ −→tp v :: T ;σ′, i.e., the main thread terminates with a value v and state σ′, and

satisfiable at > (I(a) ∗ S(σ, n) ∗ rwps;> e {Φ}),
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then there exists a source expression a′ and a number of threadsm such that a ↪→∗ a′ and

satisfiable at > (I(a′) ∗ S(σ′,m) ∗ Φ(v)).

We will see examples of the use of this general result in Section 11.

Termination re�nement One of the strong features that Trans�nite Iris o�ers is that we can not only

prove a result re�nement, but also that termination is preserved from the source expression to the target

expression.

We phrase this as a generic adequacy statement essentially stating that if we can prove a re�nement

(phrased in terms of the weakest precondition) between a source term s and a target term t and every

execution of s terminates, then also every execution of t terminates. Here we take the viewpoint that

divergence of the target term is an observable behavior.

To facilitate the proof and for formally de�ning our adequacy statement, we �rst lift the essential parts

of the rwp relevant for termination-preserving re�nement to thread pools, rwp tp. However, while our

de�nition of the re�nement weakest precondition does in principle support concurrency, our adequacy

statement (and re�nement weakest precondition) does not handle fairness. Many interesting, termination-

preserving re�nement in concurrent settings rely on fairness (i.e., some form of fair scheduling between

threads). We leave the study of this for future work.

rwp tp , least fp rwptp rec.λ T.

∀T ′, σ, σ′, ~κ, n, a. T ;σ −→tp T
′;σ′ −∗(

I(a) ∗ S(σ, n) ≡−∗> ∅ ∃b. b. |V∅ > ∃m. S(σ′,m) ∗

((b = true ∗ ∃a′. a ↪→+ a′ ∗ I(a′)) ∨ (b = false ∗ I(a))) ∗ rwptp rec T ′
)

Essentially, this removes the progress requirement, the post condition, as well as the separate handling of

the value case, leaving us with what is essential for dealing with simulations.

Importantly, we can prove the following subsumption for single threads:

rwp-rwp tp

rwps;> e {v. P} ` rwp tp[e]

Now for proving adequacy we employ the satis�ability technique from Section 4.4.1. We �rst de�ne a

predicate guarded : A→ iProp→ iProp which essentially captures that a proposition P is guarded by an

element a of the source language. If we can evaluate a long enough that it terminates (cannot be reduced

anymore by ↪→), then guardedness ensures that we get knowledge of P .

guarded , µ guarded pre. λ (a : A)(P : iProp). |V> ∅

( |V∅ >
P ) ∨ (. |V∅ > ∃a′. a ↪→+ a′ ∗ guarded pre.a′P )

We can formalize the intuition for guardedness if we assume a step-index type validating the existential

property. Intuitively, if we have a terminating execution of the source language, we can just pick a step-index

which is larger than the execution length to be able to trace the whole execution and in the end obtain P .
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Formally, we de�ne strong normalisation (at the meta-level) as follows:

∀y.R x y → SN R y

SN R x

Moreover, for a relation R : A→ A→ Prop, we de�ne co-inductively what it means that there is an

in�nite path from an element a : A:

R x y loops R y

loops R x

Now we can prove the intuition:

Proposition 1. Assume that the underlying step-index type validates the small existential property.

guarded-sat

SN (↪→) a satisfiable at > (guarded a P )

satisfiable at > P

Proof. By induction over the proof of strong normalisation using the compatibility lemmas for satisfiable at E .

Theorem 5 (Termination re�nement). Assume that the underlying step-index type validates the small

existential property.

If SN (↪→) a and satisfiable at > (I(a) ∗ S(σ, n) ∗ rwps;> e {v. P}) then loops (−→tp)([e];σ) is false.

Essentially, the preceding theorem tells us that if the source is strongly normalising and we can prove

the re�nement weakest precondition for the target, then also the target is strongly normalizing
24

.

9.3.5 Sequential weakest precondition

For sequential reasoning about liveness reasoning (which we focus on in this work), it is useful to have a

version of the re�nement weakest precondition using the non-atomic invariants of §7.4. This removes the

obligation to write our algorithms in a thread-safe way, allowing us to open invariants around non-atomic

expressions.

The de�nition as a derived form of rwp is simple:

seqrwpA;S;ΦF

s;E e {v. P} , [NaInv : γseq.E ] −∗ rwpA;S;ΦF

s;> e
{
v. [NaInv : γseq.E ] ∗ P

}
,

where γseq is some arbitrary ghost variable name which we �x beforehand.

Note how the mask parameter is just used for the non-atomic invariants, while we pass the full > mask

to the rwp.

In a similar way, a sequential version of the strong re�nement weakest precondition can be de�ned:

seqrswpk;A;S;ΦF

s;E e {v. P} , [NaInv : γseq.E ] −∗ rswpk;A;S;ΦF

s;> e
{
v. [NaInv : γseq.E ] ∗ P

}
,

24
Strong normalization is classically equivalent to the absence of loops.
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9.4 Time-credits Weakest Precondition
We can instantiate the re�nement weakest precondition with ordinals as a source language, with the

stepping relation given by the usual total order >, in order to obtain a total weakest precondition that

ensures termination. Formally, we make use of the authorative ordinal source language given previously.

This gives us a generalization of time credits Mével et al. [2019]. In their original form, time credits

enable proving the safety property bounded termination in separation logic. That is, with time credits one

can verify (explained below) that a program “terminates in n steps of computation” where the bound n
has to be �xed up-front. By picking ordinals, we obtain trans�nite time credits. Trans�nite time credits go

beyond the safety property bounded termination: they allows us to prove the liveness property termination

for examples where it is non-trivial (if not impossible) to determine su�cient �nite bounds.

We use the established notation

$(α) , srcF(α)

for asserting that there are at least α credits left.

Clearly, we then obtain the rule

tc-split

$(α⊕ β) a` $(α) ∗ $(β)

The time-credits weakest precondition is de�ned by

twpS;ΦF

s;E e {v. P} , rwpOrd;S;ΦF

s;E e {v. P},

just specializing the source language to the ordinal source language.

The following rules are of relevance:

tcwp-burn-credit

expr to val(e) = ⊥
$1 ∗ . rswp0

s;E e {v. P} ` twps;E e {v. P}

tcwp-weaken

expr to val(e) = ⊥ β � α
($β −∗ twps;E e {v. P}) ∗ $α ` twps;E e {v. P}

tcwp-alloc-zero

$0 ∗ twps;E e {v. P} ` twps;E e {v. P}

Adequacy Since the total order on ordinals is well-founded, every ordinal is strongly normalising accord-

ing to the � relation. Thus we can instantiate the generic termination re�nement result (Theorem 5).

Theorem 6 (Adequacy of time-credits). Assume that the underlying step-index type validates the small

existential property and that

satisfiable at > (srcA(α) ∗ S(σ)(n) ∗ twps;> e {v. P}).

Then loops(−→tp)([e];σ) is false, which is classically equivalent to e being strongly normalising.

Sequential version Similarly to the re�nement weakest precondition, we can de�ne a sequential variant

of the time-credits weakest precondition:

seqtwpS;ΦF

s;E e {v. P} , [NaInv : γseq.E ] −∗ twpS;ΦF

s;> e
{
v. [NaInv : γseq.E ] ∗ P

}
,
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9.5 Hoare Triples
While reasoning directly with weakest preconditions is in general easier (in particular in Coq), a more

traditional way of writing down speci�cations are Hoare Triples. We can easily de�ne Hoare Triples in

terms of the re�nement weakest precondition and strong re�nement weakest precondition:

{P } e {v. Q}s;E , �P −∗ rwps;E e {Q}

〈P 〉 e 〈v. Q〉ks;E , �P −∗ rswpks;E e {Q}

〈P 〉 e 〈v. Q〉s;E , �P −∗ rswp0
s;E e {Q}

We will overload these notations for the sequential versions. It will always be clear with which weakest

precondition we are working.

9.5.1 General Hoare Triples for the Re�nement Weakest Precondition

The following rules can be derived for the re�nement weakest precondition:

rht-value

{True} v {w. v = w}E

rht-frame

{P } e {v. Q}E
{P ∗ R} e {v. Q ∗ R}E

rht-bind

{P } e {v. Q}E ∀v. {Q}K[v] {w. R}E
{P }K[e] {w. R}E
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v : Val , i ∈ Z | () | l ∈ Loc | true | false | inl(v) | inr(v) | (v1, v2) | rec f x.e

e : Expr , x | v | inl(e) | inr(e) | (e1, e2) | πi(e) | match e with inl(x).e1 | inr(x).e2

| if e then e1 else e2 | e1(e2) | ref(e) | !e | e1 := e2 | e1 o e2 | u e
o : BinOp , + | − | · | ≤ | = | && | . . .
u : UnOp , − | ∼
K : Ctx , • | inl(K) | inr(K) | (K, e) | (v,K) | !K | K o e | v o K | . . .

σ : State , Loc �n−⇀ Val

Figure 3: Syntax of HeapLang, evaluation contexts, and states.

10 HeapLang
The standard language that is shipped with Iris is HeapLang. HeapLang is a call-by-value λ-calculus with

recursive functions, general higher-order references and fork-style concurrency. Integers and Booleans are

built-in as primitives. HeapLang is a priori untyped with no �xed static typing judgment. Typing relations

(and in this way also polymorphic types), however, can be de�ned on top depending on the application (we

will see an example in §12).

Figure 3 shows the syntax of HeapLang as well as an excerpt of the de�nition of evaluation contexts. We

omit some parts of the language, in particular the support for prophecies and some concurrency primitives,

as they are not relevant in this work.

Some syntacic sugar can be de�ned on top:

λ x.e , rec x.e

let x := e in e′ , (λ x.e′)(e)

let (x, y) := e in e′ , (λ p.λ f.f(π1p)(π2p))(e)(λ x.λ y.e
′)

We de�ne a primitive (thread-local) reduction relation in Figure 4, using the same notation for thread-

local reductions−→t as in the previous section on general languages. This is completely standard. HeapLang

de�ned in this way ful�lls the de�nition of a language according to the previous section. Thus, we can

make use of the general de�nition for machine reduction.

10.1 Heap Encoding and State Interpretation
When we want to reason about HeapLang using the Iris program logic, we have to de�ne its resources

as ghost state and provide a state interpretation to use for the weakest precondition. We simplify the

presentation here and omit HeapLang’s support for prophecies as they are irrelevant for the work at hand
25

.

More speci�cally, in the following we de�ne the points-to connective l 7→ v and the points-to connective

with fractional permissions l
q7→ v.

25
Iris’ actual generic support for heaps is even more complicated, allowing to track additional meta information about each location.

This is of no relevance to us and therefore omitted.
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add

v1 = n1 v2 = n2

v1 + v2 →pure (n1 + n2)

project

πi(v1, v2)→pure vi

match-right

(match inl(v) with inl(x).e1 | inr(x).e2)→pure e1[v/x]

match-left

(match inr(v) with inl(x).e1 | inr(x).e2)→pure e2[v/x]
beta

(rec f x.e)v →pure e[v/x][rec f x.e/f ]

pure

e1 →pure e2

e1, σ →head e2, σ

deref

σ(l) = v

!l, σ →head v, σ

store

σ(l) = v0

l := v, σ →head (), σ[l← v]

alloc

σ(l) = ⊥
ref(v), σ →head l, σ[l← v]

fork

fork{e}, σ →head (), σ, [e]

head

e, σ →head e, σ,~e

K(e), σ −→t K(e), σ, ~e

Figure 4: Selected rules for pure (→pure ) reduction, head reduction (→head) and primitive (thread-local)

(−→t ) reduction in HeapLang.

The resources of HeapLang, namely its heap, are encoded, just as other resources, using a camera. The

heap supports fractional permissions. Speci�cally, we de�ne the following unital camera, where we are

equipping Val with a discrete camera structure:

heap0 , Loc �n−⇀ (Frac× Ag(Val))

heap , Auth(heap0)

This camera keeps track of the values in individual locations. The interaction of the fractional camera and

the agreement camera are quite important. Especially in the case where the fraction is 1 (i.e., we should

intuitively have full ownership of a heap location), the product of the two has an exclusive behavior, as

fractions cannot be 0. In the absence of fractions, it may thus be more intuitive to imagine the de�nition as

Loc �n−⇀ Ex(Val).

The authoritative camera at the outside ensures that we can hand out fragments of the heap (enabling

shared access to the heap), while there will always be exactly one authoritative heap. This authoritative

heap is managed by the state interpretation of the weakest precondition and is tied to the heap used for

physical reduction. We can canonically turn a physical heap σ : l
�n−⇀ Val into an element of heap0 by

(pointwise) using the injection ag into the agreement camera and using the fraction 1. This injection will be

used implicitly whereever necessary from now on.

Let us pick a ghost name γheap for the heap. We can now de�ne the points-to connectives using

fragmental ownership:

l
q7→ v , ◦ ([l←(q, ag(v))])

γheap

l 7→ v , l
17→ v
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The following rules about the points-to connective can be derived:

pointsto-timeless

timeless(l
q7→ v)

pointsto-combine

l
q17→ v1 ∗ l

q27→ v2 ` l
q1+q27→ v1 ∗ v1 = v2

heap-alloc

σ(l) = ⊥
•σ γheap ` ˙|V( •σ [l← v]

γheap ∗ l 7→ v)

heap-update

•σ γheap ∗ l 7→ v1 ` ˙|V •σ [l← v2]
γheap ∗ l 7→ v2

heap-valid

•σ γheap ∗ l q7→ v ` σ(l) = v

The state interpretation (ignoring prophecies) can be de�ned as

S(σ, n) , •σ γheap
,

essentially asserting that the heap encoded in the ghost state matches the physical heap σ.
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11 Termination and Re�nements for HeapLang
In this section, we provide instantiations of the program logic for proving both termination and termination-

preserving re�nement properties in HeapLang with Trans�nite Iris.

11.1 Termination with HeapLang
The following theorem states the adequacy of the sequential time-credits weakest precondition for HeapLang,

derived from the general adequacy in Theorem 6.

Theorem 7 (Adequacy of time-credits for HeapLang). Assume that we are working in a step-index type

validating the existential property. We use Excluded Middle.

If we can prove True ` ∃α.$(α) −∗ seqtwp e {v. True}, then e is strongly normalizing, i.e., SN (−→tp

) ([e];σ) for any σ.

11.2 Re�nements with HeapLang
Here we consider how to prove re�nements between sequential HeapLang programs. As hinted before, we

�rst have to de�ne a suitable source language, according to De�nition 2.

11.2.1 HeapLang Source Language

The challenge with setting up a source language for HeapLang is that we have to encode the full state of a

HeapLang program using the source interpretation.

We de�ne the following cameras, using the discrete camera on Expr and State:

tpool , N �n−⇀ Ex(Expr)

cfg0 , tpool× heap0

cfg , Auth(cfg0)

trace , Auth (MList (List Expr× (Loc→ Val)))

tpool encodes the current execution state for the involved threads. cfg0 adds the heap as de�ned in

Section 10.1. Finally, the whole encoding cfg of HeapLang con�gurations in ghost state wraps this in the

authoritative camera to enable sharing of fragments. Thread pools T can be canonically injected into the

tpool camera and con�gurations T ;σ can be embedded in the cfg camera. We will do this implicitly from

now on. trace records a trace of an execution, as a list of all intermediate thread pools and states.

We assume that the cfg camera is available at a location γsrc, and the trace camera is available at γtrc.
The following connectives for asserting particular execution states of threads or locations can be de�ned:

l
q7→src v , ◦ (⊥, [l←(q, ag(v))])

γsrc

src(n→ e) , ◦ ([n← ex(e)] ,⊥)
γsrc

src(e) , src(0→ e)
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Given a list l of con�gurations, we de�ne tracelist(l) to hold if l represents a trace of steps of exeuction:

tracelist([]) , True

tracelist([T ;σ]) , True

tracelist([T1;σ1] ++ [T2;σ2] ++ l) , T ;σ ↪→ T ′;σ′ ∧ tracelist([T2;σ2] ++ l)

For the de�nition of the HeapLang source language, we let source steps be reduction steps in HeapLang

and de�ne the source interpretation to assert full authoritative ownership of the given con�guration, as

well as a trace recording execution to that point.

T ;σ ↪→ T ′;σ′ , T ;σ ↪→ T ′;σ′

I(T ;σ) , • (T ;σ)
γsrc ∗ ∃l. •mlist(l ++ [T ;σ])

γtrc ∧ tracelist(l ++ [T ;σ])

11.2.2 Stuttering HeapLang

For re�nements we are sometimes in the situation that one step in the source “corresponds” to multiple

steps in the target, or vice versa. That is, we would like to have support for stuttering. While our de�nition

of the re�nement weakest precondition already has built-in support for stuttering in the source (allowing

to take multiple steps in the source for one step of the target) and stuttering in the target, both without

explicitly counting steps, we cannot obtain a later in the goal when we do not take a source step. In case we

need to stutter in the target and open invariants, we can however still count steps explicitly.

Precisely, we will use the lexicographic source language presented in Section 9.3.1 to combine the

HeapLang source language with the natural numbers source language: AHeapS , AHeap ×AN. Everytime

we take a step in the source program, we can pick a natural number describing the number of target steps

we want to do before the next source step. We will make use of the same time-credits notation $k as in

Section 9.4 to denote that we have a stutter budget of k remaining
26

. Formally, the rules of the lexicographic

source language specialized to this setting are as follows:

source-update-heap

||s⇒E
AP ` ||s⇒E

(A×B)P
source-update-embed-r

||s⇒E
BP ` ||s⇒E

(A×B)P

26
The encoding under the hood really is the same, the only di�erence being that we are now using natural numbers instead of the

ordinals.
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We can prove the following source updates:

step-frame

(c1, n) ↪→ (c2,m)

(c1, n+ k) ↪→ (c2,m+ k)

steps-add-stutter

(c1, n) ↪→+ (c2,m) c1 6= c2

(c1, n) ↪→+ (c2,m+ k)

step-inv-alloc

(src(j → e1) −∗ ||s⇒E P ) ∗ (P −∗ ∃e2. src(j → e2) ∗ e2 6= e1) ` src(j → e1) −∗ ||s⇒E (P ∗ $k)

step-stutter

$(1 + k) ` ||s⇒E $k

step-pure

e1 →pure e2

src(j → e1) ` ||s⇒E src(j → e2)

step-load

src(j → K[!l]) ∗ l q7→src` ||s⇒E src(j → K[v]) ∗ l q7→src v

step-store

src(j → K[l := v]) ∗ l 7→src v ` ||s⇒E src(j → K[()]) ∗ l 7→src v

step-alloc

src(j → K[ref(v)]) ` ||s⇒E ∃l. src(j → K[l]) ∗ l 7→src v

11.2.3 Adequacy

From the generic adequacy theorems for the re�nement weakest precondition (see §9.3.4), we get the

following concrete adequacy theorem for the HeapLang re�nement.

Theorem 8 (HeapLang re�nement adequacy). Assume that the underlying step-index type validates the

small existential property.

Let a meta-level predicate Φ : Val× Val→ Prop be given, relating source and target values. Let s;σsrc and
t;σ be the initial source and target con�gurations, respectively.

Assume that we have proved

src(s) ` seqrwp> t {v. ∃v
′.src(v′) ∗ Φ(v, v′)}.

Then we have:

1. Result Re�nement: For any execution [t];σ −→∗tp [v];σ′ of the target, there exist v′, σ′
src
, and a list of

threads T such that

[s];σsrc −→∗tp v
′, T ;σ′

src

and Φ(v, v′).

2. Termination Re�nement: If the source is strongly normalizing, then the target is strongly normalizing:

SN (−→tp ) ([s];σsrc)⇒ SN (−→tp ) ([t];σ)

This result relates the proof done in the Trans�nite Iris logic to a termination-preserving re�nement at

the meta-level.

The proof obligation of this theorem requires us to prove that the target term t evaluates to a value v
and we can simultaneously advance the source term s such that the source ends up in a value v′ related to

v by Φ.
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11.2.4 Re�nement Hoare Triples

In the following, we specialize to the sequential setting and consider the sequential re�nement weakest

precondition as well as the strong sequential re�nement weakest precondition. While we generally prove

speci�cations directly using weakest preconditions, as an example we provide the following Hoare triples

for re�nement, where we �x the mask to be >27
:

store-target

〈l 7→ v1〉 l := v2 〈w. w = () ∗ l 7→ v2〉

store-source

〈l 7→src v2 ∗ src(K[()]) ∗ P 〉 et 〈v. Q〉 et is not a value

{l 7→src v1 ∗ src(K[l := v2]) ∗ .P } et {v. Q}

pure-target

{P } e′t {v. Q} et →pure e
′
t

〈P 〉 et 〈v. Q〉E

pure-source

〈src(K[e′s]) ∗ P 〉 et 〈v. Q〉 es →pure e
′
s et is not a value

{src(K[es]) ∗ .P } et {v. Q}

stutter-target

〈P 〉 et 〈v. Q〉 et is not a value

{P } et {v. Q}

stutter-source-pure

{src(e′s) ∗ P } et {v. Q} es →pure e
′
s et is not a value

{src(es) ∗ P } et {v. Q}

stutter-source-store

{src(K[()]) ∗ l 7→src v2 ∗ P } et {v. Q} et is not a value

{src(K[ref(l)v2]) ∗ P ∗ l 7→src v1} et {v. Q}

27
one could however also prove the more general rules for arbitrary masks
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12 Logical Relation for Termination
In the following, we explain how we obtain the main result of Spies et al. [2021] in Trans�nite Iris:

termination of a linear language with asynchronous channels, modeling the core of promises in JavaScript.

We explain how to encode their language in HeapLang in Section 12.1, we simplify their logical relation

in Section 12.2, and we extend it to handle impredicative polymorphism in Section 12.3.

12.1 Language
The language of Spies et al. [2021], λCHAN is a linear λ-calculus with Booleans, natural numbers, and pairs

extended with asynchronous channels. Besides constructs which are already included in HeapLang (e.g.,

booleans, pairs, and natural numbers), λCHAN features a primitive operation iter for iteration on natural

numbers as well as the chan, put, and get primitives on asynchronous channels. Below, we explain how to

encode these constructs into HeapLang.

Channels can be in three states: empty, containing a value (waiting for a get), or containing a continuation

(waiting for a put). We encode these states with three constant values E, V(v), and C(v) (we can derive

these in HeapLang with nested sums), providing for a corresponding case analysis principle

case e of E⇒ e1 | V(v)⇒ e2 | C(v)⇒ e3.

Channels are then represented by heap locations which contain one of these states. With these features, we

can encode the three essential channel operations as follows:

chan , let c := ref(E) in (c, c)

div , rec f x.f(x)

get , λp.let c := π1(p) in

let v := π2(p) in

case !c of E⇒ c := V(v) | V(v)⇒ div() | C(v)⇒ c := E; f(v)

put , λp.let c := π1(p) in

let f := π2(p) in

case !c of E⇒ c := C(f) | V(v)⇒ c := E; f(v) | C(v)⇒ div()

iter , rec iter s.λn, f.if n = 0 then s else iter(f s)(n− 1)f

In λCHAN, there is no case for C in get and V in put. Being interested in termination, we have replaced these

cases with divergence, ensuring they are never executed.

Type System In its original (monomorphic) formulation, λCHAN is equipped with the linear type system

presented in Figure 5. We write Γ1,Γ2 for the disjoint union of the linear typing contexts Γ1 and Γ2.

12.2 Simpli�ed Logical Relation
In Trans�nite Iris, we de�ne a simpli�ed logical relation for this language. As a semantic interpretation of

types SemType, we pick predicates from values to propositions T,U : Val→ iProp. On these predicates,

we de�ne the semantic type formers:
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x : A ` x : A
Γ ` e : B

Γ, x : A ` e : B
∅ ` () : 1

Γ1 ` e1 : 1 Γ2 ` e2 : A

Γ1,Γ2 ` e1; e2 : A
Γ ` b : B

Γ1 ` e : B Γ2 ` e1 : A Γ2 ` e2 : A

Γ1,Γ2 ` if e then e1 else e2 : A
∅ ` n : N

Γ1 ` e1 : N Γ2 ` e2 : N
Γ1,Γ2 ` e1 + e2 : N

Γ1 ` e : N Γ2 ` e0 : A x : A ` eS : A

Γ1,Γ2 ` iter e0 e (λ x.eS) ` A
Γ, x : A ` e : B

Γ ` λ x.e : A( B

Γ1 ` e1 : A( B Γ2 ` e2 : A

Γ1,Γ2 ` e1(e2) : B

Γ1 ` e1 : A Γ2 ` e2 : B

Γ1,Γ2 ` (e1, e2) : A⊗B

Γ1 ` e1 : A1 ⊗A2 Γ1, x : A1, y : A2 ` e2 : B

Γ1,Γ2 ` let (x, y) := e1 in e2 : B
∅ ` chan() : Get(A)⊗ Put(A)

Γ1 ` e1 : Get(A) Γ2 ` e2 : A( 1

Γ1,Γ2 ` get(e1, e2) : 1

Γ1 ` e1 : Put(A) Γ2 ` e2 : A

Γ1,Γ2 ` put(e1, e2) : 1

Figure 5: The (monomorphic) type system of λCHAN

1sem , λv.v = ()

Bsem , λv.∃b : B.v = b

Nsem , λv.∃n : N.v = n

T ( U , λf.(∀v. T (v) −∗ EJUK(f v))

T ⊗ U , λv.∃v1, v2.v = (v1, v2) ∗ T (v1) ∗ U(v2)

Get(T ) , λv.∃l, γget, γput. $1 ∗ v = l ∗ NaInvγseq.N .l(I(l, T )) ∗ • ()
γget

Put(T ) , λv.∃l, γget, γput. $1 ∗ v = l ∗ NaInvγseq.N .l(I(l, T )) ∗ • ()
γput

EJ−K : Expr→ iProp

EJT K , λe.seqtwp e {v. T (v)}

For the interpretation of the Get(·) and Put(·) types, we maintain an invariant saying that the channel

location points to a valid channel state. To every channel, ghost names γget and γput are associated. Having

• ()
γget

(or • ()
γput

) encodes the permission to use the get or put operation, respectively. The authoritative

camera and the de�nition of the invariant ensure for instance that, when we possess • ()
γget

, the invariant

cannot be in the C(f) case.

I(l, T ) , l 7→ E ∨ (∃v. l 7→ V(v) ∗ T (v) ∗ • ()
γput

) ∨ (∃f. l 7→ C(f) ∗ (T ( 1sem)(f) ∗ • ()
γget

)
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x : T � x : T
Γ � e : U

Γ, x : T � e : U
∅ � () : 1sem

Γ1 � e1 : 1sem Γ2 � e2 : T

Γ1,Γ2 � e1; e2 : T
Γ � b : Bsem

Γ1 � e : Bsem Γ2 � e1 : T Γ2 � e2 : T

Γ1,Γ2 � if e then e1 else e2 : T
∅ � n : Nsem

Γ1 � e1 : Nsem Γ2 � e2 : Nsem

Γ1,Γ2 � e1 + e2 : Nsem

Γ1 � e : Nsem Γ2 � e0 : T x : T � eS : T

Γ1,Γ2 � iter e0 e (λ x.eS) � T

Γ, x : T � e : U

Γ � λ x.e : T ( U

Γ1 � e1 : T ( U Γ2 � e2 : T

Γ1,Γ2 � e1(e2) : U

Γ1 � e1 : T Γ2 � e2 : U

Γ1,Γ2 � (e1, e2) : T ⊗ U

Γ1 � e1 : T1 ⊗ T2 Γ1, x : T1, y : T2 � e2 : U

Γ1,Γ2 � let (x, y) := e1 in e2 : U
∅ � chan() : Get(T )⊗ Put(T )

Γ1 � e1 : Get(T ) Γ2 � e2 : T ( 1sem

Γ1,Γ2 � get(e1, e2) : 1sem

Γ1 � e1 : Put(T ) Γ2 � e2 : T

Γ1,Γ2 � put(e1, e2) : 1sem

Figure 6: The compatibility lemmas

Moreover, the interpretations of Get(·) and Put(·) include one time-credit which is used (with the rule tcwp-

burn-credit) to remove the later we obtain when opening the invariant.

We can now de�ne the semantic typing relation. The only non-standard thing is that we existentially

quanti�er over the number of time-credits initially available. Here, in the semantic interpretation, we use

as contexts Γ1,Γ2 �nite maps from strings to semantic types SemType.

GJΓK , λγ.∗x:T∈Γ
γ(x) is de�ned ∗ T (γ(x))

Γ � e : T , ∃α. $α −∗ ∀γ. GJΓK(γ) −∗ EJT K(γ(e))

Soundness We use the traditional approach to proving soundness of a logical relation. We show that in

each of the rules, we can replace the syntactic notion (`) with the semantic notion (�). Speci�cally, we

prove the lemmas presented in Figure 6.

We can us the logical relation and Theorem 7 to derive the termination result:

Lemma 7. Assume that we are working with a step-index type validating the small existential property. If

∅ � e : T , then SN (−→t ) [e];σ for any σ.

12.3 Adding Impredicative Polymorphism
To add polymorphism to the language, we embed the usual introduction and elimination primitives as

derived forms of the runtime term language:

Λ.e , λ ().e e〈〉 , e() unpack e as x in e′ , (λ x.e′)e pack e , e
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x : A ` x : A
∆; Γ ` e : B

∆; Γ, x : A ` e : B
∆; ∅ ` () : 1

∆; Γ1 ` e1 : 1 ∆; Γ2 ` e2 : A

∆; Γ1,Γ2 ` e1; e2 : A

∆; Γ ` b : B
∆; Γ1 ` e : B ∆; Γ2 ` e1 : A ∆; Γ2 ` e2 : A

∆; Γ1,Γ2 ` if e then e1 else e2 : A
∆; ∅ ` n : N

∆; Γ1 ` e1 : N ∆; Γ2 ` e2 : N
∆; Γ1,Γ2 ` e1 + e2 : N

∆; Γ1 ` e : N ∆; Γ2 ` e0 : A ∆;x : A ` eS : A

∆; Γ1,Γ2 ` iter e0 e (λ x.eS) ` A

∆; Γ, x : A ` e : B

∆; Γ ` λ x.e : A( B

∆; Γ1 ` e1 : A( B ∆; Γ2 ` e2 : A

∆; Γ1,Γ2 ` e1(e2) : B

∆; Γ1 ` e1 : A ∆; Γ2 ` e2 : B

∆; Γ1,Γ2 ` (e1, e2) : A⊗B
∆; Γ1 ` e1 : A1 ⊗A2 ∆; Γ1, x : A1, y : A2 ` e2 : B

∆; Γ1,Γ2 ` let (x, y) := e1 in e2 : B

∆; ∅ ` chan() : Get(A)⊗ Put(A)
∆; Γ1 ` e1 : Get(A) ∆; Γ2 ` e2 : A( 1

∆; Γ1,Γ2 ` get(e1, e2) : 1

∆; Γ1 ` e1 : Put(A) ∆; Γ2 ` e2 : A

∆; Γ1,Γ2 ` put(e1, e2) : 1

∆, α; Γ ` e : A ∆ ` Γ α 6∈ ∆

∆; Γ ` Λ.e : Πα.A

∆; Γ ` e : Πα.A

∆; Γ ` e〈〉 : A[B/α]

∆; Γ ` e : A[B/α]

∆; Γ ` pack e : ∃α.A

∆; Γ1 ` e : ∃α.A ∆, α; Γ2, x : A ` e2 : B ∆ ` B ∆ ` Γ2 α 6∈ ∆

∆; Γ1,Γ2 ` unpack e as x in e2 : B

Figure 7: Polymorphic linear type-system for λCHAN.

This brings us to the linear type system with polymorphism. We use types containing type variables α, we

use a linear typing context Γ over these types, and now additionally a type variable context ∆. We de�ne

the type well-formedness judgement:

T is closed under ∆

∆ ` T
∀x : T ∈ Γ.∆ ` T

∆ ` Γ

The type system is then given in Figure 7.

Semantic Interpetation With impredicative polymorphism, our types can now depend on variables. We

re�ect this in the semantic interpretation by additionally parameterizing the types over semantic types. That

is, we consider polymorphic semantic types PolySemType, predicates from �nite maps of semantic types to

semantic types T,U : (id �n−⇀ SemType)→ SemType. We lift the type formers of the monomorphic case to
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the polymorphic case:

1sem, poly , λ .1sem

Bsem, poly , λ .Bsem

Nsem, poly , λ .Nsem

T( U , λδ.T(δ)( U(δ)

T⊗U , λδ.T(δ)⊗U(δ)

Get(T) , λδ.Get(T(δ))

Put(T) , λδ.Put(T(δ))

ΠαT , λδ. λf.∀U. EJ(T[U/α])(δ)K(f())

∃α.T , λδ.λv.∃U. (T[U/α])(δ)(v)

EJTKδ , λe.seqtwp e {v.T(δ(v))}

where we de�ne T[U/α] , λδ.T(δ[α := U(δ)])

Semantically, we use contexts Γ : id �n−⇀ PolySemType. We de�ne the semantic typing relation as:

DJ∆K , λδ : id �n−⇀ SemType.∗α∈∆
δ(α) is de�ned

GJΓKδ , λγ.∗x:T∈Γ
γ(x) is de�ned ∗ T(δ)(γ(x))

δ =∆ δ′ , ∀(x 7→ T) ∈ ∆. δ(x) = δ′(x)

∆ � T , ∀δ, δ′.δ =∆ δ′ ⇒ T(δ) = T(δ′)

∆ � Γ , ∀(x 7→ T) ∈ Γ.∆ � T

∆; Γ � e : T , ∃α. $α −∗ ∀δ, γ.DJ∆K(δ) −∗ GJΓKδ(γ) −∗ EJTKδ(γ(e))

Soundness We use the traditional approach to proving soundness of a logical relation. We show that

in each of the rules, we can replace the syntactic notion (`) with the semantic notion (�). Speci�cally,

we prove the lemmas presented in Figure 8. We can use the logical relation and Theorem 7 to derive the

termination result:

Lemma 8. Assume that we are working with a step-index type validating the small existential property. If

∅; ∅ � e : T, then SN (−→t ) [e];σ for any σ.
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x : T � x : T
∆; Γ � e : U

∆; Γ, x : T � e : U
∆; ∅ � () : 1

∆; Γ1 � e1 : 1 ∆; Γ2 � e2 : T

∆; Γ1,Γ2 � e1; e2 : T

∆; Γ � b : B
∆; Γ1 � e : B ∆; Γ2 � e1 : T ∆; Γ2 � e2 : T

∆; Γ1,Γ2 � if e then e1 else e2 : T
∆; ∅ � n : N

∆; Γ1 � e1 : N ∆; Γ2 � e2 : N
∆; Γ1,Γ2 � e1 + e2 : N

∆; Γ1 � e : N ∆; Γ2 � e0 : T ∆;x : T � eS : T

∆; Γ1,Γ2 � iter e0 e (λ x.eS) � T

∆; Γ, x : T � e : U

∆; Γ � λ x.e : T( U

∆; Γ1 � e1 : T( U ∆; Γ2 � e2 : T

∆; Γ1,Γ2 � e1(e2) : U

∆; Γ1 � e1 : T ∆; Γ2 � e2 : U

∆; Γ1,Γ2 � (e1, e2) : T⊗U

∆; Γ1 � e1 : T1 ⊗T2 ∆; Γ1, x : T1, y : T2 � e2 : U

∆; Γ1,Γ2 � let (x, y) := e1 in e2 : U

∆; ∅ � chan() : Get(T)⊗ Put(T)
∆; Γ1 � e1 : Get(T) ∆; Γ2 � e2 : T( 1

∆; Γ1,Γ2 � get(e1, e2) : 1

∆; Γ1 � e1 : Put(T) ∆; Γ2 � e2 : T

∆; Γ1,Γ2 � put(e1, e2) : 1

∆, α; Γ � e : T ∆ � Γ α 6∈ ∆

∆; Γ � Λ.e : Πα.T

∆; Γ � e : Πα.T

∆; Γ � e〈〉 : T[U/α]

∆; Γ � e : T[U/α]

∆; Γ � pack e : ∃α.T

∆; Γ1 � e : ∃α.T ∆, α; Γ2, x : T � e2 : U ∆ � U ∆ � Γ2 α 6∈ ∆

∆; Γ1,Γ2 � unpack e as x in e2 : U

Figure 8: Polymorphic compatibility lemmas.
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