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Riehl and Shulman [1] introduced simplicial type theory (STT), a variant of homotopy type theory which

aimed to study not just homotopy theory, but its fusion with category theory: (∞, 1)-category theory. While

notoriously technical, manipulating∞-categories in simplicial type theory is often easier than working with

ordinary categories, with the type theory handling infinite stacks of coherences in the background. We

capitalize on recent work by Gratzer et al. [2] defining the (∞, 1)-category of∞-groupoids in STT to define

presheaf categories within STT and systematically develop their theory. In particular, we construct the Yoneda

embedding, prove the universal property of presheaf categories, refine the theory of adjunctions in STT,
introduce the theory of Kan extensions, and prove Quillen’s Theorem A. In addition to a large amount of

category theory in STT, we offer substantial evidence that STT can be used to produce difficult results in

∞-category theory at a fraction of the complexity.

Dedicated to the dear memory of Thomas Streicher

1 INTRODUCTION
Russell [3] famously described two styles of formalizing mathematics as the difference between

theft and honest toil. Both approaches can be seen in the present use of dependent type theory.

Honest toil involves proceeding analytically: treating types as basic objects equivalent to sets and

defining and reasoning about objects like the real numbers, groups, and topological spaces as one

would ordinarily. This is what is done in e.g., the Coq proof of the Odd Order Theorem [4]. The

more expeditious route of theft involves treating type theory as a bespoke synthetic language for a
particular kind of mathematical object and postulating their basic properties. This narrows the scope

of type theory but, by the same token, makes proofs about those particular objects far more concise.

For instance, homotopy type theory (HoTT) [5] postulates various axioms that ensure that types

behave like spaces (up to homotopy), making it possible to prove theorems from algebraic topology

without ever introducing an explicit description of a space. In reality, the synthetic approach is

less akin to theft than a loan; one pays for the customized type theory with a semantic model that

interprets types as the intended objects and validates the additional axioms.

In this work, we embrace the synthetic methodology to use type theory to study category theory.

In particular, we add various axioms to homotopy type theory in order to construct a system where

HoTT’s slogan “all types are spaces and all functions are continuous” is replaced by “(some) types

are (∞-)categories and all functions are functors”.1 This extension of type theory is called simplicial
type theory (STT) and was introduced by Riehl and Shulman [1].

While knowledge of∞-categories is not necessary to use our theory, rough intuition for them is

helpful for understanding STT. We therefore recall the following fuzzy definition. An∞-category𝐶
is a collection of objects with a space of arrows between objects 𝑐 and 𝑑 , hom (𝑐, 𝑑), rather than a set,

equipped with a continuous composition operation and assignment of identity arrows. Crucially, the

composition operation need only be associative and unital up to homotopy, but with the constraint

1
In this paper, by∞-category we mean (∞, 1)-category.
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that those homotopies themselves satisfy coherence laws in the form of additional homotopies, and

so on with coherences between coherences, etc. As a loose analogy, just as a monoidal category

relaxes monoids by allowing ⊗ to be associative up to isomorphisms satisfying certain coherence

equations,∞-categories weaken ordinary categories to allow for the category laws to only hold up

to (infinitely coherent) isomorphisms.

Remarkably, essentially every theorem one might hope for of ordinary categories holds for∞-
categories.

2
However, the proofs are vastly more complex as they work withmodels of∞-categories

(tools used to organize and manage the tower of coherences [6]). The goal of STT is to use type

theory to hide coherences from the user and to allow for proofs that are no more difficult than the

classical arguments for 1-categories.

In this work, we provide substantial evidence of this hypothesis by developing a large swathe of

category theory—several of the main results of Categories for the Working Mathematician [7]—purely
within STT.

1.1 Simplicial type theory
To construct a type theory for synthetic category theory, one may hope to interpret type theory

into the category of categories (∞ or otherwise) to ensure that types realize categories. However,

the category Cat of small categories is too poorly behaved to form a model of Martin-Löf type

theory (MLTT). Instead, Riehl and Shulman [1] enlarge Cat and embed it as a reflective subcategory

in the (∞-)presheaf category on the simplex category Δ̂ which is rich enough to model HoTT. STT
then axiomatizes some of Δ̂ to isolate Cat as a reflective subuniverse within the type theory [8].

We will introduce the full suite of additions in Section 2 (collected in Appendix B for convenience),

but the most important among them is the postulated interval type I : U0. We further assume that

I is a bounded linear order with endpoints 0, 1 : I. Intuitively, I is meant to capture the category

{0→ 1}—it is interpreted as such in Δ̂—and we may use this to define and probe the type of

synthetic morphisms in an arbitrary type 𝑋 : an arrow in 𝑋 corresponds to an ordinary function

I→ 𝑋 with evaluation at 0, 1 yielding the domain and codomain. For instance, the identity arrow

at 𝑥 : 𝑋 is given by 𝜆_. 𝑥 .

However, just as the intended model Δ̂ is strictly larger than Cat, not all types in STT faithfully

model categories. In particular, while one is always able to construct identity morphisms, not all

types enjoy a composition operator. Remarkably, however, composition operators are unique when

they exist and their existence for a type𝑋 is captured by a relatively short proposition (Definition 2.9).

With a composition operation for 𝑋 to hand, we can define the type of isomorphisms in 𝑋 and we

define a category to be a type where (1) the composition operation exists uniquely up to homotopy,

and (2) the type of isomorphisms in 𝑋 is equivalent to the identity type =𝑋 .

Remark 1.1. This last point hinges crucially on not assuming the uniqueness of identity proofs lest we

accidentally forbid any synthetic category from having an object with a non-trivial automorphism.

However, by assuming isomorphisms and identify proofs coincide, we are able to leverage type

theory’s support for replacing equals by equals to seamlessly transport proofs along isomorphisms.

This is why working with HoTT/intensional type theory when formulating synthetic category

theory proves more convenient than extensional type theory, even if one is unconcerned with

∞-categories.

2
At least, provided on calibrates one’s hopes correctly.
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1.2 Category theory inside of STT
While some recent work has investigated STT for its applications to programming languages [2, 9,

10], the majority of work on simplicial type theory has focused on proving results from category the-

ory inside of type theory [1, 11–16]. To this end, the theory of adjunctions, discrete and Grothendieck

fibrations, and (co)limits have been introduced and studied within simplicial type theory. Some of

these results, e.g., a fibrational Yoneda lemma [1], were subsequently mechanized [17].

Until recently, however, there were no closed types in STT which represented non-trivial cate-

gories. As a result, while an excellent definition of adjunctions is presented by Riehl and Shulman

[1], no examples can be given. This was changed by Gratzer et al. [2] who extended STT to construct

the (∞-categorical version of) the category of sets S. Objects of S are elements ofU0 that encode

∞-groupoids and morphisms in S correspond to functions thereof. Op. cit. uses S as a building

block to recover algebraic categories (groups, rings) as well as other examples (posets, the simplex

category, etc.).

Gratzer et al. extends HoTT with various modalities to construct S. While we take S wholesale,

some modalities they used are critical for stating natural theorems in category theory. Accordingly,

we will work within a modal extension of HoTT based onMTT [18] within this paper.

1.3 Contributions
We revisit the basic category theory in light of the construction of S and show that the majority

of classical results one encounters in category theory are now within reach of simplicial type

theory. For the first time, we show that STT can be used to prove vital theorems in ∞-category
theory without recourse to complex models. Many of these theorems (e.g., fully-faithful essentially

surjective functors are equivalences) do not explicitly mentionS, but crucially rely on the reasoning
principles enabled by S. We prove two workhorse results from presheaf categories 𝐶:

• We construct a fully-faithful function y : 𝐶 → 𝐶 .

• We prove that 𝐶 is the “free cocompletion of 𝐶”.

The key technical innovation for these is the twisted arrow category, which we integrate into STT
as a modality. We are then able to deduce various classical results, e.g.:

• that pointwise invertible maps in 𝐶 → 𝐷 are invertible;

• that pointwise left adjoints are left adjoints;

• that (co)limits are computed pointwise in 𝐶 → 𝐷 ;

• the theory and existence of pointwise Kan extensions;

• Quillen’s theorem A;

• the properness of cocartesian fibrations.

The synthetic approach yields concise proofs for many of these theorems compared with classical

expositions in 1-category theory, but our proofs apply to ∞-categories as well and there the

improvements are far more radical: it takes hundreds of pages for Lurie [19] to prove that y is

fully-faithful and the proof that pointwise natural transformations are isomorphisms takes nearly

five pages of effort by Cisinski [20]. By dividing work between a construction within STT and the

already-existing model of STT, we are able to avoid many of these technicalities and give proofs

more familiar to 1-category theorists. In particular, we show that just as homotopy type theory

allowed type theorists to produce new arguments in algebraic topology, simplicial type theory

enables type theorists to do the same with∞-category theory.

Remark 1.2. Given that STT extends HoTT with a number of axioms, it is natural to ask whether

these axioms are complete in any sense. Our present suite of axioms is not complete for the intended

models of simplicial objects in an∞-topos (though they are sound) but this is neither surprising



4 Daniel Gratzer, Jonathan Weinberger, and Ulrik Buchholtz

nor undesirable: HoTT itself is not complete for its intended models (∞-topoi) and its exotic models

are a source of considerable interest. Similarly, we expect STT to have interesting exotic models

and cannot reasonably hope for a finite set of axioms to be complete for standard models. What

is far more important is whether these axioms suffice to derive the standard results in category

theory, an empirical rather than a mathematical question. Indeed, in related synthetic approaches

to domain theory [21], differential geometry [22], and algebraic geometry [23], the precise axioms

arose over the course of multiple years and several iterations. To this end, we view our results as

providing firm evidence towards the expressivity of this axiom set.

1.4 Organization
In Section 2 we review the highlights of the basis of this work: homotopy type theory, basic

simplicial type theory, modal homotopy type theory, and their synthesis: STT. In Section 3, we

study the twisted arrow category and use it to construct the Yoneda embedding. We prove several

increasingly sophisticated versions of the Yoneda lemma and conclude with a fully functorial version

(Theorem 3.12). In Section 4 we put the Yoneda lemma to work to revisit the theory of adjunctions

given by Riehl and Shulman [1]. We develop several tools for constructing adjunctions and use them

to give the first non-trivial examples of adjunctions in STT. We also use this machinery to show that

𝐶 is the free cocompletion of𝐶 (Theorem 4.20). In Section 5 we develop the theory of Kan extensions

in STT and prove several vital results: the existence of pointwise Kan extensions (Theorem 5.3),

Quillen’s theorem A (Theorem 5.12), and the properness of cocartesian maps (Theorem 5.24). Our

proof of the last fact is particularly notable, as our use of type theory led us to a far simpler proof

than those we are aware of in the literature.
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2 MODAL AND SIMPLICIAL TYPE THEORY
In this paper we take STT largely for granted and focus on working within the theory. However,

to make this paper more self-contained, we devote this section to carefully explaining the novel

constructs of modal homotopy type theory and the axioms supplementing it which form simplicial

type theory.

2.1 Homotopy type theory
We begin by recalling the basic concepts and notation from homotopy type theory we use in this

paper. The canonical reference is the HoTT book [5]. We work within intensional Martin-Löf type

theory and note how HoTT extends this.

Notation 2.1. We write 𝑎 =𝐴 𝑏 for the identity type (often suppressing 𝐴). Given 𝑝 : 𝑎 =𝐴 𝑏 and

𝐵 : 𝐴→U, we write 𝑝! for the map 𝐵(𝑎) → 𝐵(𝑏).
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Definition 2.2. We say that a function 𝑓 : 𝐴 → 𝐵 is an equivalence if 𝑓 admits both a left and a

right inverse:

isEquiv(𝑓 ) = ∑
𝑔,ℎ:𝐵→𝐴 (𝑔 ◦ 𝑓 = id) × (𝑓 ◦ ℎ = id)

We write 𝐴 ≃ 𝐵 for the sum

∑
𝑓 :𝐴→𝐵 isEquiv(𝑓 ).

HoTT is an extension of intensional type theory with a hierarchy of universes satisfying the

univalence axiom:

univ𝑖 :

∏
𝐴,𝐵:U𝑖

isEquiv(𝜆𝑝. (𝑝!, · · · ) : 𝐴 =U𝑖
𝐵 → 𝐴 ≃ 𝐵)

We shall suppress the 𝑖 in univ𝑖 andU𝑖 and ignore size issues unless they are relevant. Univalence

produces a great number of paths inU that are distinct from refl. We are often interested in types

that are trivial, have only trivial paths, or trivial paths between paths, etc. These conditions are

organized into a family of predicates referred to as the truncation level (−2,−1, 0, . . .) of a type. We

will only use the first three levels, stating that a type is contractible or a (homotopy) proposition or

set:

isContr(𝐴) = ∑
𝑎:𝐴

∏
𝑏:𝐴 𝑎 = 𝑏 isProp(𝐴) = ∏

𝑎,𝑏:𝐴 isContr(𝑎 = 𝑏)

isSet(𝐴) = ∏
𝑎,𝑏:𝐴 isProp(𝑎 = 𝑏)

Proposition 2.3 (Shulman [24]). All type-theoretic model topoi (and, therefore, Grothendieck∞-topoi)
model HoTT.

We shall also have occasion to use various higher inductives types (HITs). The semantics of HITs

is complex and not directly addressed by the above result [25]. In particular, while Shulman [24]

shows that the above model supports all higher inductive types, he does not show that universes

are strictly closed under these constructions. While it is work-in-progress to obtain this result, it is

easy to show that universes are weakly closed under these constructions. For instance, there exists

a type 𝐷 : U0 such that 𝐷 ≃ 𝐴 ⨿𝐶 𝐵 whenever 𝐴, 𝐵,𝐶 : U0. Accordingly, we shall assume that our

universes are closed under higher inductive types, albeit only with propositional 𝛽 rules.

2.2 Simplicial type theory
With HoTT to hand, we turn to simplicial type theory. This is an extension of HoTT by a handful

of axioms that allow us to treat (certain) types as (∞, 1)-categories, henceforth just referred to

as categories. We will consequently drop the (∞, 1)- or ∞-prefix everywhere. First and most

fundamentally, we add the following:

Axiom A. There is a set I that forms a bounded distributive lattice (0, 1,∨,∧) such that
∏

𝑖, 𝑗 :I 𝑖 ≤
𝑗 ∨ 𝑗 ≤ 𝑖 holds.

We view I as a directed interval, and Riehl and Shulman [1] use this to equip every type with a

notion of synthetic morphism:

Definition 2.4. A synthetic morphism 𝑓 : hom𝑋 (𝑥,𝑦) where 𝑥,𝑦 : 𝑋 is a function 𝑓 : I → 𝑋

together with propositional equalities 𝑓 0 =𝑋 𝑥 and 𝑓 1 =𝑋 𝑦.

Remark 2.5. In Riehl and Shulman [1], the synthetic interval is defined as more primitive judgmental

structure and hom (𝑥,𝑦) uses strict extension types. This yields more definitional equalities: 𝑓 0

and 𝑥 would coincide definitionally when 𝑓 : hom (𝑥,𝑦). However, the judgmental approach does

not straightforwardly include I as a normal type and its interactions with modalities (Section 2.4)

are complex. For these reasons, we work with the simpler but less strict definition of hom (𝑥,𝑦). In
a system where both are available these two notions are equivalent [14].
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Fig. 1. Visualization of I2, Δ2, and Λ2

1
.

One can define the identity morphism id𝑥 : 𝑥 → 𝑥 as 𝜆_. 𝑥 . Moreover, every function 𝑓 : 𝑋 → 𝑌

automatically has an action on synthetic morphisms 𝛼 : I→ 𝑋 by post-composition 𝑓 ◦ 𝛼 : I→ 𝑌 .

In this case, we often write 𝑓 (𝛼).
From I we immediately obtain the 𝑛-cubes I𝑛 and from them we can isolate simplices Δ𝑛

,

boundaries 𝜕Δ𝑛
, and horns Λ𝑛

𝑘
. In particular, Δ2 → 𝑋 represents an 2-cell in 𝑋 witnessing the

composite of two arrows, and Λ2

1
→ 𝑋 represents a pair of composable arrow (without a composite).

We recall the definitions of these types below:

Δ𝑛 = {(𝑖1, . . . , 𝑖𝑛) : I𝑛 | 𝑖1 ≥ 𝑖2 ≥ · · · ≥ 𝑖𝑛} Λ2

1
= {(𝑖, 𝑗) : I2 | 𝑖 = 1 ∨ 𝑗 = 0}

Notation 2.6. We write 𝑖 : Δ𝑛
(0 ≤ 𝑖 ≤ 𝑛) as shorthand for sequence of 𝑖 copies of 1 followed by 0:

(1, 1, . . . , 0, . . . ).

A map 𝑓 : Δ2 → 𝑋 is said to witness that the composite of 𝑓 (−, 0) followed by 𝑓 (1,−) is 𝜆𝑖. 𝑓 (𝑖, 𝑖).
We emphasize that this is data; there can be many distinct 𝑓 ’s witnessing the same composition as

𝑋 may have many non-equivalent 2-cells with the same boundary. By the same token however,

it is not always the case that a pair of composable morphisms Λ2

1
→ 𝑋 extends to a composition

datum Δ2 → 𝑋 . This is precisely because not every type in STT can be regarded as a category;

even though we have defined hom𝑋 (𝑥,𝑦) for every 𝑋 , there is no a priori way of composing these

morphisms. Precategories are types for which all composites exist:

Definition 2.7. A precategory is a type 𝑋 satisfying the Segal condition: isEquiv(𝑋Δ2 → 𝑋Λ2

1 ).

Roughly, the Segal condition ensures that every pair of composable morphisms in 𝑋 extends

(uniquely) to a 2-cell witnessing their composition and, in particular, there is an induced composition

function hom (𝑥,𝑦)×hom (𝑦, 𝑧) → hom (𝑥, 𝑧). Uniqueness automatically ensures that this operation

is associative and unital. The definition of a category refines this slightly. In a precategory 𝑋 we

are able to define the type of isomorphisms 𝑥 � 𝑦 between 𝑥,𝑦 : 𝑋 and so there are two potentially

distinct types of evidence for 𝑥 and𝑦 being identical: 𝑥 =𝑋 𝑦 and 𝑥 �𝑋 𝑦. A category is a precategory

for which these two types are canonical equivalent.

Definition 2.8. 𝛼 : hom (𝑥,𝑦) is an isomorphism (isIso(𝛼)) if there exist 𝛽0, 𝛽1 : hom (𝑦, 𝑥) such that

𝛽0 ◦ 𝑓 = id,𝑓 ◦ 𝛽1 = id.3 We write iso (𝑥,𝑦) or 𝑥 � 𝑦 for the subtype of isomorphisms.

Definition 2.9. A precategory 𝐶 is a category if it satisfies the Rezk condition:∏
𝑥,𝑦:𝐶 isEquiv((𝑥 = 𝑦) → iso (𝑥,𝑦))

If every morphism in 𝐶 is an isomorphism, then 𝐶 is a groupoid.

Example 2.10. I,Δ𝑛, I𝑛 are all categories [2].

Lemma 2.11. 𝐶 is a groupoid if and only if isEquiv(𝐶 → 𝐶I) (𝐶 is I-null [8]).

3
This is precisely the HoTT equivalence but recast into synthetic morphisms.
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Riehl and Shulman [1] develop the basic theory of these synthetic categories. As noted above,

every function has an action onmorphisms and op. cit. shows that this action preserves compositions

and identities and therefore defines a functor. They also show that 𝐶 → 𝐷 is then a category

whenever 𝐷 is, and that synthetic morphisms hom𝐷𝐶 (𝑓 , 𝑔) are precisely natural transformations.

One can reformulate various classical categorical notions rather directly:

Definition 2.12 (Bardomiano Martínez [12]). A natural transformation 𝛼 : hom𝐶𝐼 (const(𝑐), 𝐹 )
witnesses 𝑐 as the limit of 𝐹 : 𝐶𝐼

if 𝛼 induces an equivalence hom (𝑐′, 𝑐) ≃ hom (const(𝑐′), 𝐹 ) for all
𝑐′.

Definition 2.13. An adjunction between two categories𝐶, 𝐷 consists of a pair of functions 𝑓 : 𝐶 → 𝐷

and 𝑔 : 𝐷 → 𝐶 with a natural isomorphism 𝜄 :

∏
𝑐,𝑑 hom (𝑓 (𝑐), 𝑑) ≃ hom (𝑐, 𝑔(𝑑)).

While we have given a few examples of categories above, a notable type that is not category is

the universeU. Maps 𝐴 : I→U are too unstructured to compose and, in particular, correspond

neither to functions 𝐴(0) → 𝐴(1) nor 𝐴(1) → 𝐴(0) (consider 𝜆𝑖. 𝑖 = 0 or 𝜆𝑖. 𝑖 = 1). In Section 2.4,

we shall discuss the subuniverseS constructed by Gratzer et al. [2], which is a category of groupoids

whose morphisms correspond to functions. To properly situate this definition, we recall what it

means for 𝑋 : 𝐴→U to be covariant [1], giving an assignment from morphisms hom (𝑎0, 𝑎1) to
functions 𝑋 (𝑎0) → 𝑋 (𝑎1).
Notation 2.14. Given 𝑋 : 𝐴→U we write 𝑋 for

∑
𝑎:𝐴 𝑋 (𝑎).

Definition 2.15. A family 𝑋 : 𝐴→ U is covariant if for every 𝑎 : hom (𝑎0, 𝑎1) and 𝑥0 : 𝑋 (𝑎0), the
following is contractible:

Lift(𝑎, 𝑥0) =
∑

𝑥1:𝑋 (𝑎1 )
∑

𝑥 :hom ( (𝑎0,𝑥0 ),(𝑎1,𝑥1 ) ) 𝜋1 (𝑥) =hom (𝑎0,𝑎1 ) 𝑎

Here, 𝑥 is a morphism in 𝑋 . We further say the projection

∑
𝑎:𝐴 𝑋 (𝑎) → 𝐴 is covariant when 𝑋 is.

For a general map 𝜋 : 𝑋 → 𝐴 we write 𝑋𝑎 for

∑
𝑥 :𝑋 𝜋 (𝑥) = 𝑎 and say 𝜋 is covariant when 𝜆𝑎. 𝑋𝑎 is.

Since Lift(𝑎, 𝑥0) is contractible it has an inhabitant 𝑥1. This yields a function 𝑎, 𝑥0 ↦→ 𝑥1 which

defines 𝑎! : 𝑋 (𝑎0) → 𝑋 (𝑎1). The contractibility of Lift(𝑎, 𝑥0) ensures that these functions compose

correctly, etc.

Lemma 2.16. A family 𝑋 : 𝐴 → U is covariant if and only if the map 𝜆𝑝. (𝑝 (0), 𝜋1 ◦ 𝑝) : 𝑋 I →
𝑋 ×𝐴 𝐴I is an equivalence.

In Sections 4.1 and 5.3, we shall briefly use a weakening of covariance:

Definition 2.17. A family 𝑋 : 𝐴→U is cartesian if 𝑋 I → 𝐴I ×𝐴{1} 𝑋 {1} is a right adjoint ℓ ⊣ 𝜋 such

that 𝜋 ◦ ℓ = id.

One can give an equivalent characterization in terms of cartesian morphisms and show that e.g.,

every morphism in 𝐷 can be factored as a vertical morphism followed by a cartesian morphism:

Theorem 2.18 (Buchholtz and Weinberger [14]). A map 𝜋 : 𝐷 → 𝐶 is cartesian if for every
𝑐 : I→ 𝐶 the category Lift(𝑎, 𝑥0) has an initial object.

Finally, we note that since categories and groupoids are defined by certain orthogonality condi-

tions, by Rijke et al. [8] they define reflective subuniverses.

Proposition 2.19. There are idempotent monads ⃝cat,⃝grpd such that, e.g., ⃝cat𝑋 is a category
and 𝐶⃝cat 𝑋 ≃ 𝐶𝑋 when 𝐶 is a category.

Proposition 2.20 (Riehl and Shulman [1]). When Proposition 2.3 is specialized to simplicial spaces
(Δ̂), the resulting model validates Axiom A and in this model categories are realized by∞-categories
(modeled by complete Segal spaces) and groupoids by∞-groupoids.
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2.3 Modal homotopy type theory
Many theorems in category theory require the ability to quantify over the objects in a category, e.g.,

“if 𝛼 : 𝐹 → 𝐺 is a natural transformation of functors C → D and each 𝛼𝑐 is invertible, then 𝛼 is

invertible”. A version of this is proven by Riehl and Shulman [1]:

(∏
𝑐 :𝐶 isIso(𝜆𝑖. 𝛼 𝑖 𝑐)

)
→ isIso(𝛼),

but this is subtly different as we discuss below. In fact, as it stands we cannot directly capture the

classical statement in STT.
To understand the divergence between the STT and classical results, note that by working

internally to type theory when proving

∏
𝑐 :𝐶 isIso(𝜆𝑖. 𝛼 𝑖 𝑐) we cannot assume that 𝑐 is just an

object in 𝐶: since it is an arbitrary element, we have to assume it is constructed in an arbitrary

context which might contain, e.g., a copy of I such that 𝑐 represents a synthetic morphism. In fact,

if we unfold the above type into the model we find that constructing

∏
𝑐 :𝐶 isIso(𝜆𝑖. 𝛼 𝑖 𝑐) already

entails proving that the chosen inverses are natural. A great deal of the power of simplicial type

theory comes from this implicit naturality, but it makes this particular result weaker. After all, its

purpose in standard category theory was that in this particular situation, a priori unnatural choices
of inverses will automatically be natural. Moreover, we shall encounter theorems that are simply

false when naively translated in this way.

Accordingly, to make STT practical we must extend it with modalities: unary type constructors

distinguished by their failure to respect substitution or apply in arbitrary contexts. For instance,

we shall eventually equip STT with a modality ⟨♭ | −⟩ which discards all non-invertible synthetic

morphisms from a type to produce its core, which we then use to faithfully encode pointwise

invertibility (see Example 2.23).

A complete reference to the modal type theory we use—MTT [18]—is given by Gratzer [26] and

we record formal rules in Appendix A. Fortunately, the rules for, e.g.,

∑
-types are unaffected by

the addition of modalities. Accordingly, for brevity we recall only recall the new rules which must

be added to MLTT to extend HoTT with modalities à la MTT.
MTT is parameterized by amode theory: a strict 2-category describing the collection of modalities

(the morphisms) available along with the natural transformations between them (the 2-cells). We

use 𝜇, 𝜈, 𝜉 to range over modalities. In the case of simplicial type theory, our mode theory will have

only one object along with a handful of generating modalities and 2-cells. There are four generating

modalities ♭, ♯, op, tw subject to the following equations:

♭ = ♭ ◦ ♭ = ♭ ◦ ♯ = ♭ ◦ op = tw ◦ ♭ ♯ = ♯ ◦ ♯ = ♯ ◦ ♭ = ♯ ◦ op op ◦ op = id

We further require the following generating 2-cells:

𝜖 : ♭→ id 𝜁 : id → ♯ 𝜏 : tw � tw ◦ op (with 𝜏−1
) 𝜋 tw

0
: tw→ op 𝜋 tw

1
: tw→ id

These 2-cells are likewise subjected to a number of equations. For 𝜖 and 𝜁 , we require 𝜁 ★♯ =

♯★𝜁 = id viewing all of these as 2-cells ♯→ ♯ and ♭★𝜁 = id : ♭→ ♭ (using★ to denote whiskering).

We require the dual equations on 𝜖 . For the remaining four 2-cells, we require that the following

diagrams commute:

tw

tw ◦ opop id

𝜏

𝜋 tw
0

★op𝜋 tw
1

★op

𝜋 tw
1

𝜋 tw
0

♭

twop id

tw★𝜖

𝜋 tw
0

𝜋 tw
1

𝜖
𝜖★op
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Each morphism 𝜇 in the mode theory induces a modal type ⟨𝜇 | −⟩. We will describe the rules

for these modal types in a moment, but first we give some idea of what they are intended to denote.

For now this is merely intuition, though the axioms and model described in Section 2.4 will make

it so. As already mentioned, ⟨♭ | −⟩ removes all non-identity synthetic morphisms from a type.

⟨♯ | −⟩ is the right adjoint to this operation and so it discards all non-identity morphisms but then

freely adds all morphisms so that an 𝑛-simplex Δ𝑛 → ⟨♯ | 𝑋 ⟩ is exactly a collection of 𝑛 points

in 𝑋 .4 Next, ⟨op | −⟩ sends a type to its opposite and, in particular, reverses the directions of all

synthetic morphisms. Finally, ⟨tw | −⟩ sends a type to its corresponding type of twisted arrows; we
shall analyze it in more depth in Section 3.

The formation rule for ⟨𝜇 | −⟩ is complex: the entire point of modalities is that Γ ⊢ 𝐴 does not

imply Γ ⊢ ⟨𝜇 | 𝐴⟩. Instead,MTT introduces a novel form of context operation which acts like a “left

adjoint” to ⟨𝜇 | −⟩:

⊢ Γ
⊢ Γ, {𝜇}

Γ, {𝜇} ⊢ 𝐴
Γ ⊢ ⟨𝜇 | 𝐴⟩

Γ, {𝜇} ⊢ 𝑎 : 𝐴

Γ ⊢ mod𝜇 (𝑎) : ⟨𝜇 | 𝐴⟩

We refer to {𝜇} as a modal restriction. It is helpful to compare ⟨𝜇 | 𝐴⟩ with dependent products

and, therefore, to see −, {𝜇} as extending the context by something akin to a substructural “𝜇

variable” [27, 28]. The real force of modalities comes through how these {𝜇}s interact with variables.

In particular, it is not the case that Γ, 𝑥 : 𝐴, {𝜇} ⊢ 𝑥 : 𝐴; since −, {𝜇} is intended to model a left

adjoint, we cannot generally assume that there is a weakening substitution Γ, {𝜇} → Γ. Instead, we
alter the rule extending a context with a variable so that each variable is annotated with a modality:

⊢ Γ Γ, {𝜇} ⊢ 𝐴
⊢ Γ, 𝑥 :𝜇 𝐴

𝛼 : 𝜇 → mods(Γ1)
Γ0, 𝑥 :𝜇 𝐴, Γ1 ⊢ 𝑥𝛼 : 𝐴𝛼

In the above, 𝑥𝛼 is the new form of variable rule while 𝐴𝛼
is an admissible operation on the syntax

which traverses the term 𝐴 and appropriately updates all free variables 𝑦𝛽 occurring within 𝐴 and

modifying 𝛽 appropriately using 𝛼 . In particular, if 𝐴 is closed then 𝐴𝛼 = 𝐴. In the formal syntax,

both 𝑥𝛼 and 𝐴𝛼
are realized by form of substitution, see Gratzer et al. [29] for further details.

The original context extension is given by taking 𝜇 = id. In the second rule, mods(Γ1) is the
composite 𝜈0 ◦ 𝜈1 ◦ · · · of all the {𝜈𝑖 }s occurring in Γ1 (and is id if there are no such occurrences).

In other words, a variable with annotation 𝜇 can be used precisely when it occurs behind a series

of modal restrictions for which there is a 2-cell navigating from 𝜇 to this composite. It is therefore

in the variable rule where the 2-cells comes into play.

Lemma 2.21. If Γ, 𝑥 :𝜇 𝐴 ⊢ 𝐵, Γ, 𝑥 :𝜇 𝐴 ⊢ 𝑏 : 𝐵, and Γ, {𝜇} ⊢ 𝑎 : 𝐴, then Γ ⊢ 𝐵 [𝑎/𝑥] and
Γ ⊢ 𝑏 [𝑎/𝑥] : 𝐵 [𝑎/𝑥].

The final piece of the puzzle is the elimination rule for modalities. Roughly, this rule says that

modal annotations are equivalent to modal types “from the perspective of a type”, i.e., that giving an

element in context Γ, 𝑥 :𝜈 ⟨𝜇 | 𝐴⟩ is the same as giving one in Γ, 𝑥 :𝜈◦𝜇 𝐴. This concretely amounts

to the following pattern-matching rule which allows us to assume that 𝑥 :𝜈 ⟨𝜇 | 𝐴⟩ is of the form
mod𝜇 (𝑦) where 𝑦 :𝜈◦𝜇 𝐴:

4
Note that while ⟨♭ | 𝑋 ⟩ will always be an∞-category, in fact an∞-groupoid, the same is not true of ⟨♯ | 𝑋 ⟩. In particular,

⟨♯ | 𝑋 ⟩ will hardly ever satisfy the Rezk condition.
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Γ, 𝑥 :𝜈 ⟨𝜇 | 𝐴⟩ ⊢ 𝐵 Γ, 𝑦 :𝜈◦𝜇 𝐴 ⊢ 𝑏 : 𝐵 [mod𝜇 (𝑦)/𝑥] Γ, {𝜈} ⊢ 𝑎 : ⟨𝜇 | 𝐴⟩
Γ ⊢ let mod𝜇 (𝑦) ← 𝑎 in 𝑏 : 𝐵 [𝑎/𝑥]

Γ, 𝑥 :𝜈 ⟨𝜇 | 𝐴⟩ ⊢ 𝐵 Γ, 𝑦 :𝜈◦𝜇 𝐴 ⊢ 𝑏 : 𝐵 [mod𝜇 (𝑦)/𝑥] Γ, {𝜈 ◦ 𝜇} ⊢ 𝑎 : 𝐴

Γ ⊢ (let mod𝜇 (𝑦) ← mod𝜇 (𝑎) in 𝑏) = 𝑏 [𝑎/𝑦] : 𝐵 [mod𝜇 (𝑎)/𝑥]
While these rules account for all of the necessary extensions to handle modal types, we avail

ourselves of a convenience feature as well, modal

∏
-types:

Γ, 𝑥 :𝜇 𝐴 ⊢ 𝑏 : 𝐵

Γ ⊢ 𝜆𝑥 .𝑏 :

∏
𝑥 :𝜇𝐴

𝐵

Γ ⊢ 𝑓 :

∏
𝑥 :𝜇𝐴

𝐵 Γ, {𝜇} ⊢ 𝑎 : 𝐴

Γ ⊢ 𝑓 (𝑎) : 𝐵 [𝑎/𝑥]

Notation 2.22. “If 𝑐 :♭ 𝐶 , then Φ(𝑐)” signifies∏𝑐 :♭𝐶
Φ(𝑐).

Example 2.23. A faithful translation of “pointwise invertibility implies invertibility” where𝐶, 𝐷 :♭ U
and 𝛼 : 𝐶 × I→ 𝐷 is

(∏
𝑐 :♭𝐶

isIso(𝜆𝑖. 𝛼 𝑖 𝑐)
)
→ isIso(𝛼)

Immediately from these rules, we may prove the following:

Proposition 2.24 (Gratzer et al. [18]).
• ⟨𝜇 | −⟩ commutes with

∑
and 1

• comp : ⟨𝜇 | ⟨𝜈 | −⟩⟩ ≃ ⟨𝜇 ◦ 𝜈 | −⟩ and ⟨id | −⟩ ≃ id
• If 𝛼 : 𝜇 → 𝜈 , then there is a map coe𝛼 : ⟨𝜇 | −⟩ → ⟨𝜈 | −𝛼 ⟩.
• transp : ⟨♭ | ⟨♭ | 𝐴⟩ → 𝐵⟩ ≃ ⟨♭ | 𝐴→ ⟨♯ | 𝐵⟩⟩
• transp : ⟨♭ | ⟨op | 𝐴⟩ → 𝐵⟩ ≃ ⟨♭ | 𝐴→ ⟨op | 𝐵⟩⟩

The first point yields ⊛ : ⟨𝜇 | 𝐴→ 𝐵⟩ → ⟨𝜇 | 𝐴⟩ → ⟨𝜇 | 𝐵⟩.

When it is not ambiguous, we will also occasionally suppress the equivalences ⟨𝜇 | ⟨𝜈 | 𝐴⟩⟩ ≃
⟨𝜇 ◦ 𝜈 | 𝐴⟩ and ⟨id | 𝐴⟩ ≃ 𝐴. Furthermore, as there is no ambiguity, we suppress 𝜖 (and its whisker-

ings) and simply write 𝑥 instead of 𝑥𝜖 and similarly for 𝜁 : id → ♯. Consequently, if𝐴 :♭ U then we

are able to simply write ⟨tw | 𝐴⟩ rather than ⟨tw | 𝐴tw★𝜖⟩. By convention, we also avoid writing

𝑥 id .

Notation 2.25. If Γ, {𝜇} ⊢ 𝑓 : 𝐴→ 𝐵, we write 𝑓 † for the function mod𝜇 (𝑓 ) ⊛ −.

Remark 2.26. Since we shall capitalize on the fact repeatedly, we note that coe𝛼 is always suitably

natural. For instance, fix 𝑓 :♭ 𝐴 → 𝐵. Then we construct a path 𝛼 : coe𝜋
tw
1 ◦ 𝑓 † = 𝑓 ◦ coe𝜋 tw

1 as

follows:

𝛼 = funext(𝜆𝑥 . let modtw (𝑥0) ← 𝑥 in refl)
Since this path is essentially a commuting conversion (it is given by induction to allow coe𝜋

tw
1 and

𝑓 † to reduce) it is fully coherent, with higher paths being likewise constructed by induction and

then reflexivity.

In general, ⟨𝜇 | −⟩ need not commute with propositional equality. However, this is true in our

intended models and so we impose it as an axiom:

Axiom B. The mapmod𝜇 (𝑎) = mod𝜇 (𝑏) → ⟨𝜇 | 𝑎 = 𝑏⟩ sending refl tomod𝜇 (refl) is an equivalence
for all 𝑎, 𝑏 :𝜇 𝐴.

Technically, this map is defined by path induction in the family 𝜆(𝑥,𝑦 : ⟨𝜇 | 𝐴⟩). let mod𝜇 (𝑎) ←
𝑥 in let mod𝜇 (𝑏) ← 𝑦 in ⟨𝜇 | 𝑎 = 𝑏⟩. By Gratzer [30], there is a computational account of this

principle.
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Corollary 2.27. Each ⟨𝜇 | −⟩ commutes with (HoTT) pullbacks 𝐴 ×𝐶 𝐵 =
∑

𝑎:𝐴

∑
𝑏:𝐵 𝑓 (𝑎) =𝐶 𝑔(𝑏).

Remark 2.28. For readers familiar with spatial type theory [31], this modal type theory is an

extension of spatial type theory to include two additional modalities (op, tw). In particular, the

results of Shulman [31] that deal with ♭ and ♯ can be reproduced in this setting.

2.4 Modalities and simplicial type theory
To connect the modal and simplicial structures, we impose the following axioms motivated by the

intended model, as described in Proposition 2.20 (and more generally EΔop
for an∞-topos E); see

also the work of Myers and Riley [32]. First, the opposite map should be an anti-equivalence of I:

Axiom C. There is an equivalence ¬ : ⟨op | I⟩ → I which swaps 0 for 1 and ∨ for ∧.

Corollary 2.29. We ¬ extends to an equivalence ¬ : ⟨op | Δ𝑛⟩ ≃ Δ𝑛 .

Next, we require the two possible notions of discreteness (being I-null or ♭-modal) to coincide:

Axiom D. If 𝐴 :♭ U, then ⟨♭ | 𝐴⟩ → 𝐴 is an equivalence (discrete) if and only if 𝐴 → 𝐴I is an
equivalence (I-null).

Axiom E. The canonical map Bool→ I is injective and induces an equivalence Bool ≃ ⟨♭ | I⟩.

Motivated by our intended class of models, we insist that equivalences are jointly detected by

Δ𝑛
:

Axiom F. 𝑓 :♭ 𝐴→ 𝐵 is an equivalence if and only if the following holds:∏
𝑛:♭Nat isEquiv((𝑓∗)

†
: ⟨♭ | Δ𝑛 → 𝐴⟩ → ⟨♭ | Δ𝑛 → 𝐵⟩)

Note that since there is a section-retraction pair Δ𝑛 → I𝑛 → Δ𝑛
, we can replace Δ𝑛

with I𝑛 in the

above principle.

One useful application is the following:

Lemma 2.30. A map 𝜋 :♭ 𝑋 → 𝐴 is covariant if and only if the map ⟨♭ | 𝑋Δ𝑛 ⟩ → ⟨♭ | 𝑋 ⟩ ×⟨♭ |𝐴⟩
⟨♭ | 𝐴Δ𝑛 ⟩ induced by (0∗)† and (𝜋∗)† is an equivalence for all 𝑛 :♭ Nat.

The axiom for ⟨tw | −⟩. Finally, we add a new axiom to STT that governs tw. For motivation, we

recall some facts about the external definition of the twisted arrow functor Δ̂→ Δ̂ which ⟨tw | −⟩
is intended to internalize. Classically, Tw : Δ̂→ Δ̂ is classically defined as follows:

Tw( [𝑛]) = Tw( [𝑛]op ∗ [𝑛])

Here we have written [𝑛]op ∗ [𝑛] instead of the equivalent [2𝑛 + 1] to clarify the action of this

functor on morphisms: 𝑓 ↦→ 𝑓 op ∗ 𝑓 . (I.e., this corresponds to the join operation on finite linear

orders.)

As this functor is defined by precomposition, it is a right adjoint whose left adjoint is defined

by left Kan extension. In particular, it sends Δ𝑛
: Δ̂ to Δ2𝑛+1

(again, with the functorial action

given by twisting). As such, there is a universal map 𝜂𝑛 : Δ𝑛 Tw(Δ2𝑛+1) which, when unfolded,

is given by the identity [2𝑛 + 1] [2𝑛 + 1]. Universality of 𝜂𝑛 amounts to the requirement that

each morphism 𝑓 : Δ𝑛 Tw(𝐶) factors as Tw( ˆ𝑓 ) ◦ 𝜂𝑛 for some unique
ˆ𝑓 : Δ2𝑛+1 𝐶 . Our axiom

governing ⟨tw | −⟩ axiomatizes this 𝜂𝑛 along with the property that Tw(−) ◦𝜂𝑛 : hom (Δ2𝑛+1,𝐶) →
hom (Δ𝑛, Tw(𝐶)) is an equivalence. With this external motivation to hand, we proceed to fix some

notation and state the axiom which governs ⟨tw | −⟩.
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Δ𝑛 ⟨tw | Δ2𝑛+1⟩

⟨op | Δ2𝑛+1⟩

Δ2𝑛+1

𝜂𝑛

coe𝜋
tw
0

coe𝜋
tw
1

𝑖𝑟

𝑖𝑙

Δ𝑛

Δ𝑚

𝑓

⟨tw | Δ2𝑛+1⟩

⟨tw | Δ2𝑚+1⟩

𝜂𝑛

twist(𝑓 )†

𝜂𝑚

Fig. 2. Laws for Axiom G.

Notation 2.31. If 𝑛 :♭ Nat, we have canonical maps 𝑖𝑙 : Δ𝑛 → Δ2𝑛+1
, 𝑖𝑟 : Δ𝑛 → Δ2𝑛+1

, and

𝑖𝑚 : Δ1 → Δ2𝑛+1
which picks out {0, . . . , 𝑛}, {𝑛 + 1, . . . , 2𝑛 + 1}, and {𝑛, 𝑛 + 1} respectively. For

convenience, we write 𝑖𝑙 = 𝑖
†
𝑙
◦ ¬ : Δ𝑛 → ⟨op | Δ2𝑛+1⟩.

Finally, in the statement of new axiom, we require a procedure which extends a map 𝑓 : Δ𝑛 → Δ𝑚

to a map Δ2𝑛+1 → Δ2𝑚+1
given having act appropriately on the images of two inclusions 𝑖𝑙 , 𝑖𝑟 :

Δ𝑛 → Δ2𝑛+1
. To justify this formally, we introduce the blunt join 𝑋 ⋄ 𝑌 :

𝑋 ⋄ 𝑌 = 𝑋 ⨿𝑋×{0}×𝑌 (𝑋 × I × 𝑌 ) ⨿𝑋×{1}×𝑌 𝑌

This is the directed version of the join 𝑋 ★ 𝑌 [5, Ch 6] such that 𝑋 ⋄ 𝑌 is roughly 𝑋
∐

𝑌 with

morphisms adjoined to connect each 𝑥 : 𝑋 to each 𝑦 : 𝑌 .

Lemma 2.32. If 𝐶 is a category, then 𝐶Δ𝑚+1+𝑛 ≃ 𝐶Δ𝑚⋄Δ𝑛

.

Definition 2.33. If 𝑓 :♭ Δ
𝑛 → Δ𝑚

and we take twist(𝑓 ) : Δ2𝑛+1 → Δ2𝑚+1
to be the map given given

by uniquely extending the map 𝑓 † ⋄ 𝑓 : ⟨op | Δ𝑛⟩ ⋄ Δ𝑛 → ⟨op | Δ𝑚⟩ ⋄ Δ𝑚
along the categorical

equivalences ⟨op | Δ𝑖⟩ ⋄ Δ𝑖 → Δ2𝑖+1
.

Axiom G. For each 𝑛 :♭ Nat, there is a (necessarily unique) function 𝜂𝑛 :♭ Δ
𝑛 → ⟨tw | Δ2𝑛+1⟩ such

that the following map is an equivalence, for each category 𝐶 :♭ U:

𝜄 ≔ 𝜆mod♭ (𝑓 ).mod♭ (𝑓 † ◦ 𝜂𝑛) : ⟨♭ | Δ2𝑛+1 → 𝐶⟩ → ⟨♭ | Δ𝑛 → ⟨tw | 𝐶⟩⟩
Additionally, we require that 𝜏 = (coe¬)† : ⟨tw | Δ𝑛⟩ → ⟨tw | ⟨op | Δ𝑛⟩⟩ and that the diagrams in
Fig. 2 commute (these are mere properties—all objects are sets since ⟨𝜇 | −⟩ preserves h-level).

One may visualize 𝜄 as ensuring that ⟨♭ | Δ𝑛 → ⟨tw | 𝐶⟩⟩ is isomorphic to a 2𝑛 + 1 simplex in 𝐶 :

𝑐𝑛 𝑐𝑛−1 · · · 𝑐0

𝑐𝑛+1 𝑐𝑛+2 · · · 𝑐2𝑛

Under this correspondence, 𝜂 is the unique map Δ𝑛 → ⟨tw | Δ2𝑛+1⟩ given by the identity

id : Δ2𝑛+1 → Δ2𝑛+1
and is thus the universal 𝑛-simplex. The map 𝜋 tw

1
picks out the bottom row and

𝜋 tw
0

selects the top but twisted so that it lands in ⟨op | 𝐶⟩ rather than 𝐶 . This axiom will only be

used in the proof of Theorem 3.4, where we use ⟨tw | −⟩ to construct a bifunctorial version of hom.
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Proposition 2.34 (Gratzer et al. [2]). Proposition 2.20 extends to a model of modal HoTT validating
our axioms.

Remark 2.35. While Gratzer et al. [2] do not handle ⟨tw | −⟩, the methods employed there scale

directly to this situation. In particular, Mukherjee and Rasekh [33] give an explicit description of

the necessary twisted arrow operation and shows it is a Quillen right adjoint as required to extend

the model.

With modalities to hand, a number of results from classical category theory can be proven

directly. For instance, the so-called fundamental theorem of∞-category theory:

Theorem 2.36. If𝐶, 𝐷 :♭ U are categories, then 𝐹 :♭ 𝐶 → 𝐷 is an equivalence if (1) the induced map
⟨♭ | 𝐶⟩ → ⟨♭ | 𝐷⟩ is surjective, and (2) for any 𝑐, 𝑐′ :♭ 𝐶 the map hom (𝑐, 𝑐′) → hom (𝐹 (𝑐), 𝐹 (𝑐′)) is
an equivalence.

Proof. Suppose (1) and (2) holds. We prove that 𝐹 is an equivalence using Axiom F and fix

𝑛 :♭ Nat such that it suffices to show isEquiv(𝐹 †∗ : ⟨♭ | Δ𝑛 → 𝐶⟩ → ⟨♭ | Δ𝑛 → 𝐷⟩).
If 𝑛 = 0, then by (1) 𝐹

†
∗ is surjective and by (2) combined with the Rezk condition, it is an

embedding. Accordingly, 𝐹
†
∗ is an equivalence in this case. The case for 𝑛 = 1 is an immediate

consequence of the cases for 𝑛 = 0 along with (2). In general, since 𝐶Δ𝑛 ≃ 𝐶Δ1 ×𝐶 · · · ×𝐶 𝐶Δ1

by

the Segal condition and likewise for 𝐷 , and ⟨♭ | −⟩ commutes with pullbacks, the case for 𝑛 ≥ 2

follows from 𝑛 = 0, 1. □

2.5 Basic building blocks for categories
Finally, we recall two results from Gratzer et al. [2] we shall use repeatedly within this work to

construct new categories. The first is a construction of full subcategories using ♯:

Proposition 2.37. If𝐶 :♭ U is a category and𝜙 :♭ ⟨♭ | 𝐶⟩ → HProp, then𝐶𝜙 =
∑

𝑐 :𝐶 ⟨♯ | 𝜙 (mod♭ (𝑐))⟩
is a category such that (1) the projection map 𝐶𝜙 → 𝐶 induces an equivalence on hom-types, (2)
⟨♭ | 𝐶𝜙 ⟩ ≃

∑
𝑐 :⟨♭ |𝐶 ⟩ 𝜙 (𝑐), and (3) a map 𝐹 :♭ 𝐷 → 𝐶 factors through𝐶𝜙 if and only if 𝜙 (mod♭ (𝐹 (𝑑)))

holds for all 𝑑 :♭ 𝐷 .

Corollary 2.38. If 𝐶, 𝐷 :♭ U are categories and 𝐹 :♭ 𝐶 → 𝐷 , then hom (𝑐, 𝑐′) → hom (𝐹 (𝑐), 𝐹 (𝑐′))
is an equivalence for all 𝑐, 𝑐′ : 𝐶 if and only if it an equivalence when 𝑐, 𝑐′ :♭ 𝐶 .

Next, we recall their construction of the category of groupoids which plays the role of the category

of sets in simplicial type theory, e.g., we shall use this category to define presheaves:

Axiom/Proposition 2.39. There is a category S𝑖 :♭ U𝑖+1 with an embedding S𝑖 →U𝑖 such that:

• If 𝑋 : 𝐴→ S𝑖 , then the composite 𝐴→U𝑖 is covariant.
• The converse holds for 𝐴 :♭ U𝑖 , 𝑋 :♭ 𝐴→U𝑖 : if 𝑋 is covariant, then 𝑋 factors through S𝑖 .

Corollary 2.40 (Directed univalence). SI ≃ ∑
𝑋0,𝑋1:S 𝑋

𝑋0

1
and composition in S is the composition

of functions.

Corollary 2.41. If 𝑋 :♭ U is a groupoid, then 𝑋 : S.

Warning 2.42. Gratzer et al. [2] prove Axiom/Proposition 2.39 in a richer variation of STT (triangu-
lated type theory). Since we only require this result, we take it as an “axiom” of sorts to work in a

simpler type theory and note that one could extend STT to triangulated type theory to prove this

theorem outright.
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3 THE YONEDA EMBEDDING
Within this section, we fix a category𝐶 :♭ U. Our goal is to study the type𝐶 = S ⟨op |𝐶 ⟩ of presheaves
on 𝐶 . As S is a category, so is 𝐶 and by directed univalence:

Lemma 3.1. If 𝐹,𝐺 : 𝐶 then hom (𝐹,𝐺) ≃∏
𝑐 : ⟨op |𝐶 ⟩ 𝐹 𝑐 → 𝐺 𝑐

Remark 3.2. Just as with e.g., completeness, 𝐶 implicitly fixes a universe level such that 𝐶 =

⟨op | 𝐶⟩ → S𝑖 . We may regard 𝑖 as a parameter or simply take 𝑖 = 0. Occasionally, we shall need to

insist that 𝐶 ≃ 𝐶′ where 𝐶′ : U𝑖 and in such situations we shall say that 𝐶 is small. We assume all

categories are locally small—that each hom𝐶 (𝑐, 𝑐′) is small.

One may recast the fibrational Yoneda lemma proven by Riehl and Shulman [1] to take advantage

of 𝐶 rather than quantifying over contravariant families as in op. cit.:

Lemma 3.3. If 𝐹 : 𝐶 and 𝑐 : ⟨op | 𝐶⟩ then 𝐹 (𝑐) �∏
𝑐′ :⟨op |𝐶 ⟩ hom⟨op |𝐶 ⟩ (𝑐, 𝑐′) → 𝐹 (𝑐′)

3.1 The twisted arrow category and the Yoneda embedding
In light of this last result, the natural next step is to define a map 𝐶 → 𝐶 which sends 𝑐 : 𝐶 to

something like hom (−, 𝑐).5 However, caution is required: hom (−, 𝑐) has type 𝐶 → U and not

the required ⟨op | 𝐶⟩ → S. Upon reflection, the reader should find it surprising that hom (−,−) :

𝐶 × 𝐶 → U at all; if all maps are functorial in STT how can hom (−,−) be covariant in both

arguments? In fact, this is a consequence of the strange behavior of synthetic morphisms inU.

While hom (−,−) is functorial in both arguments, the lack of directed univalence forU makes this

useless. This strangeness ensures that hom (−,−) does not restrict to a function into S.
What is required instead is a functionΦ : ⟨op | 𝐶⟩×𝐶 → S such thatΦ(modop (𝑐),−) = hom (𝑐,−)

whenever 𝑐 :♭ 𝐶 , i.e., a function that agrees on objects with hom (−,−) and has the same functoriality

in the second argument, but takes ⟨op | 𝐶⟩ as its first argument. In fact, it is highly non-obvious

where such a function should come from; Riehl and Verity [34, p. xii] specifically highlight this

construction as remarkably subtle in∞-category theory. It is for this reason that we introduced

⟨tw | −⟩. Recall the visualization of ⟨♭ | Δ𝑛 → ⟨tw | 𝐶⟩⟩:
𝑐𝑛 𝑐𝑛−1 · · · 𝑐0

𝑐𝑛+1 𝑐𝑛+2 · · · 𝑐2𝑛

(1)

The projection to ⟨op | 𝐶⟩ gives the top row and the map to 𝐶 yields the bottom. This visualization

for 𝑛-simplices is very similar to that of 𝐶I =
∑

𝑐0,𝑐1

hom (𝑐0, 𝑐1), but the top row has been twisted

to ensure that one restriction lands in ⟨op | 𝐶⟩ as required for a bifunctorial version of hom (−,−):

Theorem 3.4. If 𝐶 :♭ U is a category, then the following holds:

• The map ⟨coe𝜋 tw
0 , coe𝜋

tw
1 ⟩ : ⟨tw | 𝐶⟩ → ⟨op | 𝐶⟩ ×𝐶 straightens to Φ : ⟨tw | 𝐶⟩ ×𝐶 → S.

• For every 𝑐 :♭ 𝐶 , the map 𝛼𝑐 : hom (hom (𝑐,−),Φ(modop (𝑐),−)) induced by the Yoneda lemma
(Lemma 3.3) applied to 𝜄 (mod♭ (id𝑐 )) : Φ(modop (𝑐), 𝑐) is an equivalence.

Lemma 3.5. Given 𝑓 :♭ Δ
1 → 𝐶 and let ¯𝑓 = 𝜄 (mod♭ (𝑓 )) : ⟨tw | 𝐶⟩, then there exists paths:

𝜃 (𝑓 )0 : (coe𝜋 tw
0 ◦ extract( ¯𝑓 )) (∗) = modop (𝑓 (0)) 𝜃 (𝑓 )1 : (coe𝜋 tw

1 ◦ extract( ¯𝑓 )) (∗) = 𝑓 (1)

5
Here we see why𝐶 must be flat: we wish to discuss both𝐶 and ⟨op | 𝐶 ⟩. It is helpful to understand𝐶 :♭ U as a closed
type which depends on nothing in the context and, in particular, need not be treated functorially.
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These paths are natural in 𝐶 so that e.g., the two paths of the following shape induced by 𝜃 (𝑔 ◦ 𝑓 )1
and 𝜃 (𝑓 )1 with the naturality of coe𝜋

tw
1 at 𝑔 agree:

(coe𝜋 tw
1 ◦ extract(𝜄 (mod♭ (𝑔 ◦ 𝑓 )))) (∗) = 𝑔(𝑓 (1))

Here ∗ : Δ0 is the unique element of the unit type.

Proof. We show the second, as they are symmetric. We define 𝜃1 using the naturality of coe𝜋
tw
1

and the behavior of coe𝜋
tw
1 on 𝜂 from Fig. 2:

(coe𝜋 tw
1 ◦ extract(𝜄 (mod♭ (𝑓 )))) (∗)

= (coe𝜋 tw
1 ◦ 𝑓 † ◦ 𝜂0) (∗)

= (𝑓 ◦ coe𝜋 tw
1 ◦ 𝜂0) (∗) By naturality, Remark 2.26

= 𝑓 (1) By the first diagram in Fig. 2

To prove that 𝜃1 is natural in 𝐶 , we observe that the terms agree up to a commuting conversion

of elimination rules for modal types. Accordingly, we may prove that these two paths agree by

induction on 𝜂0 (∗) and then reflexivity. □

Proof of the Theorem 3.4. We begin by showing that the map ⟨coe𝜋 tw
0 , coe𝜋

tw
1 ⟩ : ⟨tw | 𝐶⟩ →

⟨op | 𝐶⟩ ×𝐶 is a covariant family. By Lemma 2.30 the following map induced by {0} : Δ0 → Δ𝑛
is

an equivalence:

𝜖 : ⟨♭ | ⟨tw | 𝐶⟩Δ𝑛 ⟩ →
(
⟨♭ | ⟨tw | 𝐶⟩⟩ ×⟨♭ | ⟨op |𝐶 ⟩⟩×⟨♭ |𝐶 ⟩ (⟨♭ | ⟨op | 𝐶⟩Δ

𝑛 ⟩ × ⟨♭ | 𝐶Δ𝑛 ⟩)
)

For convenience, we begin by applying a few modal transformations (in particular, using transp :

⟨♭ | 𝐴→ ⟨op | 𝐵⟩⟩ ≃ ⟨♭ | ⟨op | 𝐴⟩ → 𝐵⟩) such that it suffices to show that the following map is an

equivalence:

𝜖′ : ⟨♭ | ⟨tw | 𝐶⟩Δ𝑛 ⟩ →
(
⟨♭ | ⟨tw | 𝐶⟩⟩ ×⟨♭ |𝐶 ⟩×⟨♭ |𝐶 ⟩ (⟨♭ | 𝐶 ⟨op |Δ

𝑛 ⟩⟩ × ⟨♭ | 𝐶Δ𝑛 ⟩)
)

To prove this, we shall construct a commutative diagram:

⟨♭ | 𝐶Δ2𝑛+1⟩

⟨♭ | ⟨tw | 𝐶⟩Δ𝑛 ⟩

𝜄

⟨♭ | Δ1 → 𝐶⟩ ×⟨♭ |𝐶 ⟩×⟨♭ |𝐶 ⟩ (⟨♭ | 𝐶 ⟨op |Δ
𝑛 ⟩⟩ × ⟨♭ | 𝐶Δ𝑛 ⟩)

⟨♭ | ⟨tw | 𝐶⟩⟩ ×⟨♭ |𝐶 ⟩×⟨♭ |𝐶 ⟩ (⟨♭ | 𝐶 ⟨op |Δ
𝑛 ⟩⟩ × ⟨♭ | 𝐶Δ𝑛 ⟩)

𝜙

(𝜄, id)

𝜖′
(2)

We define 𝜙 momentarily, but we first remark that (𝜄, id) is well-formed because of Lemma 3.5,

which ensures that applying 𝜄 and then evaluating commutes appropriately with projection.

Note also that the two vertical maps are equivalences because 𝜄 is an equivalence. Accordingly,

by 3-for-2, to show 𝜖′ is an equivalence, it suffices to ensure that 𝜙 is an equivalence making the

diagram commute.
6
We now define 𝜙 as follows:

𝜙 (mod♭ (𝑓 )) ≔ (mod♭ (𝑓 |𝑛≤𝑛+1), (mod♭ (𝑓 |0≤···≤𝑛 ◦ ¬),mod♭ (𝑓 |𝑛+1≤···≤2𝑛+1)), refl)
𝜙 is given by restricting along a categorical equivalence (⟨op | Δ𝑛⟩ ⋄ Δ𝑛 → Δ2𝑛+1

), so it is an

equivalence.

6
We emphasize that the filler for this square is irrelevant. Any filler suffices to show that 𝜖′ is an equivalence, which in turn

implies that 𝜖 is an equivalence as required.
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Next, we note that all four of the maps in this diagram are weakly natural in 𝐶 . For the bottom

and top maps, this is an easy observation—the top is given by restriction and the bottom uses

restriction along with coe𝜋
tw
1 , which is also natural by Remark 2.26. For the left-hand map, this is a

consequence of the naturality of 𝜄. For the right-hand map, the only wrinkle is the paths used to

witness that 𝜄 commutes with evaluating on projections. This requires a filler for a certain path, but

this is precisely the naturality coherence supplied by the latter part of Lemma 3.5.

Finally, we argue that the diagram commutes. Fix mod♭ (𝑓 ) : ⟨♭ | Δ2𝑛+1 → 𝐶⟩. We wish to show

that 𝜖′ (𝜄 (mod♭ (𝑓 ))) = (𝜄, id) (𝜙 (mod♭ (𝑓 ))). By naturality, however, we may use 𝑓 to reduce to the

case where 𝐶 = Δ2𝑛+1
and 𝑓 = id. In this case, everything involved is a set and so it suffices to

argue the diagram commutes when we replace each pullback with a simple product. With this in

place, we now calculate:

𝜖′ (𝜄 (mod♭ (id))) = 𝜖′ (mod♭ (𝜂𝑛))

= (mod♭ (𝜂𝑛 0), (transp(mod♭ (coe𝜋
tw
0 ◦ 𝜂𝑛)),mod♭ (coe𝜋

tw
1 ◦ 𝜂𝑛)))

= (mod♭ (𝜂𝑛 0), (transp(mod♭ (𝑖𝑙 )),mod♭ (𝑖𝑟 )))
= (mod♭ (𝑖𝑚 (𝜂0 ∗)), (mod♭ (𝑖𝑙 ◦ ¬),mod♭ (𝑖𝑟 )))
= (𝜄, id) (mod♭ (𝑖𝑚), (mod♭ (𝑖𝑙 ◦ ¬),mod♭ (𝑖𝑟 )))
= (𝜄, id) (𝜙 (mod♭ (id)))

This completes the first step of the argument. The second is to show that for each 𝑐 :♭ 𝐶 the map

𝛼𝑐 : hom𝐶→S (hom (𝑐,−),Φ(modop (𝑐),−)) is an isomorphism. Passing to total spaces, it suffices to

show the following map is an equivalence:

𝛼𝑐 = 𝜆(𝑑, 𝑓 ). (𝑑, 𝑓∗ (𝜄 (mod♭ (id𝑐 )))) :

∑
𝑑 :𝐶 hom (𝑐, 𝑑) → ∑

𝑑 :𝐶 Φ(modop (𝑐), 𝑑)

In the above, 𝑓∗ is the covariant transport operation on Φ(modop (𝑐),−). Since both sides of this

map are categories, it suffices to show that this map is fully faithful and essentially surjective.

In fact, 𝛼𝑐 is an equivalence on objects. To this end, we observe that if 𝑓 :♭ hom (𝑐, 𝑑) for some

𝑑 :♭ 𝐶 , then we can construct the transport 𝑓∗ alternatively as follows. Define a path ℎ : Δ1 →
⟨tw | 𝐶⟩ by ℎ ≔ 𝜄 (mod♭ (𝜆_, _, 𝑘 . 𝑓 (𝑘))), i.e., ℎ corresponds to the following doubly degenerate

3-simplex in 𝐶:

𝑐 𝑐

𝑐 𝑑

id𝑐

id𝑐

𝑓

We then consider the morphism 𝜆𝑖. (𝜋 tw
1
(ℎ 𝑖), ℎ 𝑖) in ∑

𝑑 :𝐶 Φ(modop (𝑐), 𝑑). Using the definition of

𝜄 and the naturality of 𝜂, this is a morphism from (𝑐, 𝜄 (mod♭ (id𝑐 ))) to (𝑑, 𝜄 (mod♭ (𝑓 ))). Moreover,

the naturality of coe𝜋
tw
1 ensures that it lies over 𝑓 in 𝐶 . Consequently, 𝛼𝑐 (𝑑, 𝑓 ) = (𝑑, 𝜄 (mod♭ (𝑓 )))

when restricted to 𝑑 :♭ 𝐶 and 𝑓 :♭ hom (𝑐, 𝑑), which is an equivalence because 𝜄 is invertible.

For fully-faithfulness, it suffices to show that the following map is an equivalence:

𝛼𝑐 :

〈
♭ | I→ ∑

𝑑 :𝐶 hom (𝑐, 𝑑)
〉
→

〈
♭ | I→ ∑

𝑑 :𝐶 Φ(modop (𝑐), 𝑑)
〉

However, as both sides are the total spaces of covariant families, it suffices to show that the following

map is an equivalence:

𝛼𝑐 :

〈
♭ | ∑𝑑 :I→𝐶 hom (𝑐, 𝑑 0)

〉
→

〈
♭ | ∑𝑑 :I→𝐶 Φ(modop (𝑐), 𝑑 0)

〉
The conclusion now follows from the previous case. □
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Notation 3.6. We write Φ𝐷 : ⟨op | 𝐷⟩ ×𝐷 → S for the same construction applied to some category

𝐷 . Within this section, we continue to write Φ as shorthand for Φ𝐶 .

Corollary 3.7. If 𝑐0 : ⟨op | 𝐶⟩ and 𝑐1 : 𝐶 , then Φ(𝑐0, 𝑐1) = Φ⟨op |𝐶 ⟩ (modop (modop (𝑐1)), 𝑐0).

Proof. Passing to total spaces, it suffices to find an equivalence ⟨tw | 𝐶⟩ → ⟨tw | ⟨op | 𝐶⟩⟩
fitting into the following diagram:

⟨tw | 𝐶⟩ ⟨tw | ⟨op | 𝐶⟩⟩

⟨op | 𝐶⟩ ×𝐶

Themap coe𝜏 precisely satisfies this role: it is invertible because the 2-cell 𝜏 is an isomorphism and

it fits into the commuting diagram because of the corresponding diagram in the mode theory. □

3.2 The Yoneda lemma
With a bi-functorial version of hom (−,−) to hand, we can now straightforwardly define the Yoneda

embedding y and leverage Lemma 3.3 into a result about y:

Definition 3.8 (Yoneda). y = 𝜆𝑐.Φ(−, 𝑐) : 𝐶 → 𝐶 .

Lemma 3.9. hom (y(𝑐), 𝑋 ) � 𝑋 (modop (𝑐)) for all 𝑋 : 𝐶 and 𝑐 :♭ 𝐶 .

Proof. Since 𝑐 is ♭-annotated, using Theorem 3.4 and Corollary 3.7 we have the following

identification hom⟨op |𝐶 ⟩ (modop (𝑐),−) = Φ(−, 𝑐). Moreover, by Lemma 3.1 we additionally have the

following: ∏
𝑐′ :⟨op |𝐶 ⟩ Φ(𝑐′, 𝑐) → 𝑋 (𝑐′) � hom (y(𝑐), 𝑋 )

The conclusion now follows by Lemma 3.3. □

A great deal of category theory is contained within Lemma 3.9. It shows that y is fully-faithful

on ♭-annotated elements of 𝐶 and that 𝐶 is a full subcategory of 𝐶:

Lemma 3.10. y : 𝐶 → 𝐶 induces an equivalence 𝐶 ≃ 𝐶isRepr where isRepr = 𝜆𝑋 .
∑

𝑐 :𝐶 𝑋 = y(𝑐).7

While Lemma 3.9 follows directly from Lemma 3.3, the above consequence can only be expressed

once there exists a category of presheaves—something missing from Riehl and Shulman [1]. This

opens up a new proof strategy: to prove a result of 𝐶 , we first prove that it holds for S, then
𝐶 , then that it restricts to the full subcategory. For instance, we may prove the aforementioned

characterization of natural isomorphisms:

Theorem 3.11. If𝐶, 𝐷 :♭ U are categories, 𝐹,𝐺 :♭ 𝐶 → 𝐷 , and 𝛼 :♭ hom (𝐹,𝐺), then∏𝑐 :𝐶 isIso(𝛼 𝑐)
if
∏

𝑐 :♭𝐶
isIso(𝛼 𝑐).

Proof. Note that this theorem is trivial for 𝐶 = Δ0
and for 𝐶 = Δ1, 𝐷 = S it is a consequence of

Corollary 2.40. The Segal condition for S then implies the theorem for 𝐶 = Δ𝑛, 𝐷 = S.
By Lemma 3.10, it suffices to assume 𝐷 = 𝐷0. By Axiom D and Proposition 2.24 it suffices to

show that

(∑
𝑐 :𝐶 isIso(𝛼 𝑐)

)
→

(∑
𝑐 :𝐶 ⟨♯ | isIso(𝛼 𝑐)⟩

)
is an equivalence. By Axiom F, it suffices to

prove for all 𝑛:

isEquiv
(〈
♭ |

(∑
𝑐 :𝐶 isIso(𝛼 𝑐)

)Δ𝑛 〉 → 〈
♭ |

(∑
𝑐 :𝐶 ⟨♯ | isIso(𝛼 𝑐)⟩

)Δ𝑛 〉)
7
Note that isRepr(𝑋 ) is a proposition due to Lemma 3.9 and Corollary 2.38.
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Unfolding and commuting ♭ with
∑
, it suffices to show that for every 𝑐 :♭ Δ

𝑛 → 𝐶 the following

holds: ∑
𝜎 :Δ𝑛 isIso(𝛼 (𝑐 𝜎)) ≃

∑
𝜎 :♭Δ𝑛 isIso(𝛼 (𝑐 𝜎))

Replacing 𝛼 with 𝛼 ◦ 𝑐 , however, reduces us to the already proven case of 𝐶 = Δ𝑛, 𝐷 = S. □

Lemma 3.9 is already powerful. However, it does not capture that this equivalence is natural in
both 𝑐 and 𝑋—or, more precisely, since 𝑐 is ♭-annotated and the equivalence is inU, the naturality

it yields is trivial. We are able to prove a far stronger version of the Yoneda lemma that (1) does not

need to assume that 𝑐 :♭ 𝐶 , and (2) yields the desired functoriality in both 𝑐 and 𝑋 . To do so, we

replace hom (−,−) with Φ:

Theorem 3.12 (Functorial Yoneda lemma). There is a natural isomorphism Φ
𝐶
(y† (−),−) � eval :

⟨op | 𝐶⟩ ×𝐶 → S.

Remark 3.13. This result uses a handful of results from Section 4. These forward references are

justified: we do not use Theorem 3.12 till Section 4.3. We present the proof here for conceptual

coherence.

Proof. The central difficulty in this proof is to find a map Φ
𝐶
(y† (−),−) → eval which can then

be checked to be an equivalence. To construct this map, we use the presentation of ⟨op | 𝐶⟩×𝐶 → S
as covariant families over ⟨op | 𝐶⟩ ×𝐶 . In particular, we consider the following pullback diagrams:

⟨tw | 𝐶⟩

⟨op | 𝐶⟩ ×𝐶

𝑉

⟨op | 𝐶⟩ ×𝐶

Φ̃𝐶

⟨op | 𝐶⟩ ×𝐶

𝑣

y† × idid × y

∑
𝐴:S 𝐴

S

𝑊

⟨op | 𝐶⟩ ×𝐶

⟨tw | 𝐶⟩

⟨op | 𝐶⟩ ×𝐶

𝑤

evalid × y

The claim is then that 𝑉 ≃𝑊 . To show this, we argue that if we replace the composite ⟨tw | 𝐶⟩ →
⟨op | 𝐶⟩ ×𝐶 → ⟨op | 𝐶⟩ ×𝐶 with free covariant family, then the maps 𝑣, 𝑤̄ induced by 𝑣 and𝑤 are

both equivalences. The conclusion then follows 𝑣 ◦ 𝑤̄−1
is the desired equivalence.

Using Rijke et al. [8, Theorem 2.41] there is a free covariant fibration 𝑍 : ⟨op | 𝐶⟩ ×𝐶 →U and

if 𝑐 :♭ 𝐶 and 𝑋 :♭ 𝐶 then by Corollary 4.10 we have the following:

𝑍 (𝑐, 𝑋 ) =
⃝grpd

(∑
𝑐0,𝑐1

hom (𝑐0, 𝑐) × hom (y(𝑐1), 𝑋 ) × Φ(𝑐0, 𝑐1)
)

To show that e.g., 𝑣 induces an equivalence, we must show that the following map is an equivalence:

𝑍 (𝑐, 𝑋 ) → hom (y† (𝑐), 𝑋 )
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We may use Theorem 3.11 and assume that there exists 𝑐′ :♭ 𝐶 such that 𝑐 = modop (𝑐) and that

𝑋 :♭ 𝐶 . Moreover, since the right-hand side is a groupoid, this map is uniquely induced by extending

the canonical map of the following type:(∑
𝑐0,𝑐1

hom (𝑐0, 𝑐) × hom (y(𝑐1), 𝑋 ) × Φ(𝑐0, 𝑐1)
)

→ Φ(y† (𝑐), 𝑋 ) ≃ 𝑋 (𝑐′)

This map sends (𝑐0, 𝑐1, 𝑓 , 𝛼, 𝑡) to 𝛼 𝑐 (Φ(𝑓 , id) 𝑡) and one may check directly that the assignment

𝑥 ↦→ 𝜂 (𝑐, 𝑐′, id, id, 𝐹𝑥 ) is a quasi-inverse to this map where 𝐹𝑥 : hom (y(𝑐′), 𝑋 ) corresponds to
𝑥 : 𝑋 (modop (𝑐′)) under Lemma 3.9. The case for𝑤 is similar. □

4 REVISITING ADJUNCTIONS
With presheaves and the Yoneda embedding available, we now revisit the theory of adjoint functors

introduced by Riehl and Shulman [1] in STT. They define a pair of functions 𝑓 : 𝐶 → 𝐷 and

𝑔 : 𝐷 → 𝐶 to be adjoint when equipped with 𝜄 :

∏
𝑐,𝑑 hom (𝑓 (𝑐), 𝑑) ≃ hom (𝑐, 𝑔(𝑑)). While they

produce several equivalent reformulations using a unit and counit natural transformations, no non-

trivial examples of adjunctions are given—unsurprisingly, since concrete examples of categories in

STT are relatively recent. Even with S available it is quite difficult to produce examples of such

adjunctions.

It is far more feasible to construct only 𝑓 and then show that Φ(𝑓 † (−), 𝑑) : 𝐶 is representable for

every 𝑑 :♭ 𝐷 . This is comparable to Theorem 3.11: we wish to give a functorial definition of either

𝑓 or 𝑔 and a non-functorial definition of the other, and then show that this can be upgraded to a

full adjunction. In this section, we show that this is indeed possible, and we observe that a number

of important adjunctions and results are then immediately within reach. In particular, we shall use

this technique to prove that 𝐶 is cocomplete and, moreover, is the free cocompletion of 𝐶 .

4.1 Pointwise adjunctions to adjunctions
Let us begin by formalizing the notion of pointwise adjoints:

Definition 4.1. We say that 𝑓 :♭ 𝐶 → 𝐷 is a pointwise left adjoint if

∏
𝑑 :♭𝐷

isRepr(Φ(𝑓 † (−), 𝑑)); 𝑓
is a pointwise right adjoint if 𝑓 † : ⟨op | 𝐶⟩ → ⟨op | 𝐷⟩ is a pointwise left adjoint.

Our main theorem relies on two crucial preliminary results. The first shows that any pointwise

left adjoint 𝑓 gives rise to a function in the other direction picking out the various (necessarily

unique) representing objects for Φ(𝑓 † (−), 𝑑).

Lemma 4.2. If 𝑓 :♭ 𝐶 → 𝐷 is a pointwise left adjoint, then the type of morphisms 𝑔 :♭ 𝐷 → 𝐶

equipped with a natural isomorphism 𝜄 : Φ(𝑓 † (−),−) � y ◦ 𝑔 is contractible.

Proof. Since y is an embedding, this type is a proposition. It therefore suffices to show that

it is inhabited. By assumption, 𝑔 = Φ(𝑓 † (−), 𝑑) is representable for all 𝑑 :♭ 𝐷 , and thus it factors

through 𝐶isRepr. Post-composing with the equivalence 𝐶isRepr ≃ 𝐶 yields the desired 𝑔 : 𝐷 → 𝐶 . □

Using this, we prove a universal case of the theorem improving a pointwise adjoint to an adjoint:

every 𝑔 :♭ 𝐷 → 𝐶 that is a cartesian fibration [14] such that the fiber over every 𝑐 :♭ 𝐶 has an initial

object [12] admits a left adjoint.

Lemma 4.3. If 𝑔 :♭ 𝐷 → 𝐶 is cartesian and for each 𝑐 :♭ 𝐶 the fiber 𝐷𝑐 has an initial object, then
there exists 𝑓 : 𝐶 → 𝐷 such that 𝑓 (𝑐) is initial in 𝐷𝑐 for all 𝑐 : 𝐶 .
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Proof. Note that hasInitialObj(𝐷𝑐 ) is a proposition and, therefore, by Axiom D we may assume

⟨♭ | hasInitialObj(𝐷𝑐 )⟩ holds for each 𝑐 :♭ 𝐶 . With this observation to hand, we can show that 𝑔 is

a pointwise right adjoint: if 𝑐 :♭ 𝐶 , 𝑑 : 𝐷 :

Φ𝐶 (modop (𝑐), 𝑔(𝑑)) ≃ hom (𝑐, 𝑔(𝑑))
≃ hom (0𝐷𝑐

, 𝑑) 𝑔 is cartesian

≃ Φ𝐷 (modop (0𝐷𝑐
), 𝑑)

In this last step, we use our observation that ⟨♭ | hasInitialObj(𝐷𝑐 )⟩ and not only hasInitialObj(𝐷𝑐 )
holds. In particular, we rely on the fact that 0𝐷𝑐

:♭ 𝐷𝑐 .

Accordingly, we obtain a function 𝑓 :♭ 𝐶 → 𝐷 which sends 𝑐 :♭ 𝐶 to 0𝐷𝑐
. It remains to show that

𝑓 (𝑐) is initial in 𝐷𝑐 for all 𝑐 : 𝐶 . Since 𝐷 =
∑

𝑐 :𝐶 𝐷𝑐 , this amounts to the following map being an

equivalence:

(∑
𝑑 :𝐷 hom𝐷𝑔 (𝑑 ) (𝑓 (𝑔(𝑑)), 𝑑)

)
→ 𝐷 .

To prove this, we use Theorem 2.36 which allows us to reduce to the ♭-annotated case, where

the conclusion follows from the fact that 𝑓 (𝑐) is then initial in 𝐷𝑐 . □

Theorem 4.4. Pointwise right adjoints are right adjoints.

Proof. Given a map 𝑔 :♭ 𝐷 → 𝐶 , consider the cartesian family

𝜋 : (𝐶 ↓ 𝑔) =
(∑

𝑐 :𝐶

∑
𝑑 :𝐷 hom (𝑐, 𝑔(𝑑))

)
→ 𝐶

Since 𝑔 is a pointwise right adjoint, each fiber of 𝜋 over 𝑐 :♭ 𝐶 has an initial object. We then apply

Lemma 4.3 to obtain
¯𝑓 : 𝐶 → (𝐶 ↓ 𝑔). Finally, the composite 𝜋2 ◦ ¯𝑓 is the desired left adjoint to 𝑔:

hom𝐶 (𝑐, 𝑔(𝑑))
≃ ∑

𝛼 :hom𝐶 (𝑐,𝑔 (𝑑 ) ) hom(𝐶↓𝑔)𝑐 ( ¯𝑓 (𝑐), (𝑐, 𝑑, 𝛼))
≃ ∑

𝛼 :hom𝐶 (𝑐,𝑔 (𝑑 ) )
∑

𝛽 :hom𝐷 (𝑓 (𝑐 ),𝑑 ) 𝑔(𝛽) ◦ 𝜋3 ( ¯𝑓 (𝑐)) = 𝛼

≃ hom𝐷 (𝑓 (𝑐), 𝑑)

The first step uses the initiality of
¯𝑓 (𝑐) in the fiber over 𝑐 and the second unfolds the definition of a

morphism in (𝐶 ↓ 𝑔). □

4.2 Examples of adjunctions
We take advantage of Theorem 4.4 to produce vital examples of adjoints.The most important is the

following:

Theorem 4.5. If 𝑓 :♭ 𝐷 → 𝐶 and 𝐷 is small, then 𝑓 ≔ (𝑓 †)∗ : 𝐶 → 𝐷 is a right adjoint with left
adjoint 𝑓!.

Proof. For notational simplicity, we replace𝐶 and𝐷 with ⟨op | 𝐶⟩ and ⟨op | 𝐷⟩. By Theorem 4.4,

it suffices to assume 𝑋 :♭ 𝐷 → S and to construct 𝑓! (𝑋 ) : 𝐶 → S along with a natural bijection∏
𝑌 hom (𝑓! (𝑋 ), 𝑌 ) ≃ hom (𝑋, 𝑓 ∗ (𝑌 )). This is an immediate consequence of Rijke et al. [8, Theorem

2.41] after localizing the composite

∑
𝑐 :𝐶 𝑋 (𝐶) → 𝐷 against the map {0} → I. □

Corollary 4.6. The left adjoint 𝑓! ⊣ 𝑓 satisfies 𝑓! ◦ y � y ◦ 𝑓 .

Corollary 4.7. S is small cocomplete: const : S → S𝐶 is a right adjoint with left adjoint lim−−→ for
small categories 𝐶 :♭ U. Explicitly, if 𝑋 :♭ 𝐶 → S, then lim−−→𝐶

𝑋 = ⃝grpd
(∑

𝑐 :𝐶 𝑋 (𝑐)
)
.

Remark 4.8. One can prove S is complete (that const ⊣ lim←−−) by a result of Gratzer et al. [2]. In

particular, they show

∏
𝑐 :𝐶 𝑋 (𝑐) : S whenever𝑋 : 𝐶 → S and𝐶 :♭ U. Corollary 2.40 and Lemma 3.1

then imply that hom

(
𝐴,

∏
𝑐 :𝐶 𝑋 (𝑐)

)
≃ hom (const𝐴,𝑋 ).
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Lemma 4.9. If 𝑐 :♭ 𝐶 then 𝑐̂ : 𝐶 → S is a left adjoint.

Proof. For simplicity, we once more replace 𝐶 with ⟨op | 𝐶⟩ and invoke Theorem 4.4. We then

assume that we are given 𝑋 :♭ S and define 𝑐∗𝑋 to be 𝜆𝑐′ . 𝑋 hom (𝑐′,𝑐 )
. This is covariant in 𝑐′ by

Gratzer et al. [2]. It then suffices to show that the map 𝑋 hom (𝑐,𝑐 ) → 𝑋 given by evaluation at

the identity map induces an equivalence hom𝐶→S (𝑌, 𝑐∗𝑋 ) ≃ homS (𝑌 (𝑐), 𝑋 ). This, in turn, is a

consequence of the fact that the map 𝑌 (𝑐) → ⃝grpd
(∑

𝑐′ :𝐶 hom (𝑐′, 𝑐) × 𝑌 (𝑐′)
)
is an equivalence,

so we may decompose the evaluation map as follows:

hom𝐶→S (𝑌, 𝑐∗𝑋 )
≃∏

𝑐′ :𝐶 𝑌 (𝑐′) → 𝑋 hom (𝑐′,𝑐 )

≃∏
𝑐′ :𝐶 hom (𝑐′, 𝑐) × 𝑌 (𝑐′) → 𝑋

≃ ⃝grpd
(∑

𝑐′ :𝐶 hom (𝑐′, 𝑐) × 𝑌 (𝑐′)
)
→ 𝑋

≃ 𝑌 (𝑐) → 𝑋 □

Combining Theorem 4.5 and Lemma 4.9, we obtain the following characterization of 𝑓!𝑋 :

Corollary 4.10. If𝑋 :♭ 𝐶 , 𝑓 :♭ 𝐶 → 𝐷 , and𝑑 :♭ 𝐷 then (𝑓!𝑋 ) 𝑑 = ⃝grpd
(∑

𝑐 :⟨op |𝐶 ⟩ 𝑋 (𝑐) × hom (𝑓 †𝑐, 𝑑)
)
.

Proof. We first observe that𝑑 𝑓! (𝑋 ) = (𝑓!𝑋 ) 𝑑 . Transposing, we have hom (𝑑 𝑓!𝑋,𝑍 ) ≃ hom (𝑋, 𝑓 𝑑∗𝑍 )
for every 𝑍 :♭ S. We calculate hom (𝑋, 𝑓 𝑑∗𝑍 ) using the definition of 𝑑∗ provided above:

hom
𝐶
(𝑋, 𝑓 ∗𝑑∗𝑍 )

≃∏
𝑐 : ⟨op |𝐶 ⟩ 𝑋 (𝑐) → hom (𝑓 †𝑐, 𝑑) → 𝑍

≃
(∑

𝑐 : ⟨op |𝐶 ⟩ 𝑋 (𝑐) × hom (𝑓 †𝑐, 𝑑)
)
→ 𝑍

Therefore 𝑑 𝑓!𝑋 satisfies the universal property of ⃝grpd
(∑

𝑐 : ⟨op |𝐶 ⟩ 𝑋 (𝑐) × hom (𝑓 †𝑐, 𝑑)
)

□

The following lemma does not require Theorem 4.4, but is merely a consequence of manipulating

natural transformations:

Lemma 4.11. If 𝑓 : 𝐶 → 𝐷 is an adjoint so is 𝑓∗ : 𝐶𝐴 → 𝐷𝐴.

Corollary 4.12. If 𝐶 is (co)complete so is 𝐶𝐷 and (co)limits are computed pointwise. In particular, 𝐶
is (co)complete.

Corollary 4.13. The Yoneda embedding preserves all limits.

Proof. If 𝐹 :♭ 𝐼 → 𝐶 and lim←−− 𝐹 exists, then functoriality of y induces a map y(lim←−− 𝐹 ) →
lim←−−(y ◦ 𝐹 ), so it suffices to check that this map is invertible at all 𝑐 :♭ 𝐶 . Unfolding, we must argue

that hom

(
𝑐, lim←−− 𝐹

)
≃ lim←−− hom (𝑐, 𝐹 ) is an equivalence, but this is immediate by Lemma 3.1. □

Finally, we show the full subcategories S≤𝑛 of S defined by 𝑛-truncated types form reflective

subcategories of S. The idea is simple: use the truncation HITs. However, it is not automatic that

they restrict to ∥−∥𝑛 : S → S≤𝑛 . We prove this alongside with the reflectivity of S≤𝑛 using

Theorem 4.4:

Corollary 4.14. The inclusion S≤𝑛 → S is a right adjoint.

Corollary 4.15. S≤𝑛 is (co)complete.

The same methodology applies to the subcategory of modal types associated to an idempotent

monad [8].
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Example 4.16 (Isbell conjugation). If 𝐶 :♭ U, then the Isbell conjugation map 𝜙 is a left adjoint:

𝜙 : 𝐶 → ⟨op | 𝐶 → S⟩
𝜙 (𝑋 ) = modop (𝜆𝑐.Φ(𝑋, y(𝑐)))

4.3 The universal property of presheaf categories
Next, we generalize Theorem 4.5 to show that if 𝑓 :♭ 𝐶 → 𝐸 where 𝐶 is a small category and 𝐸 is a

cocomplete category, then Φ(𝑓 † (−),−) : 𝐸 → 𝐶 is a right adjoint loosely following the argument

given by Cisinski [20]. We begin with a few general lemmas. In what follows, fix 𝐶 and 𝐸 as above.

First, as a corollary of the proof of Theorem 4.5:

Lemma 4.17. The colimit of y : 𝐶 → 𝐶 is 1
𝐶
= 𝜆_. 1.

From the above, and further inspection of colimits, we are able to derive a result of independent

interest: Every presheaf is the colimit of representable presheaves.

Lemma 4.18 (Density of y). If 𝑋 :♭ 𝐶 , then 𝑋 � lim−−→⟨op |𝑋 ⟩ y ◦ 𝜋
†, where 𝑋 =

∑
𝑐 :⟨op |𝐶 ⟩ 𝑋 (𝑐).

Proof. We begin with the following computation where 𝜋 : 𝑋 → ⟨op | 𝐶⟩ and 𝜋†
!

: S𝑋 → 𝐶:

𝜋
†
!
1 � 𝜋

†
!

(
lim−−→⟨op |𝑋 ⟩ y

)
� lim−−→⟨op |𝑋 ⟩ 𝜋

†
!
◦ y � lim−−→⟨op |𝑋 ⟩ y ◦ 𝜋

†

We have used the fact that 𝜋
†
!
, a left adjoint, commutes with colimits [12]. To show 𝜋

†
!
1 � 𝑋 , we

note that for all 𝑍 : 𝐶:

hom (𝜋†
!
1, 𝑍 ) ≃ hom

𝑋→S (1, 𝑍 ◦ 𝜋)
≃∏

(𝑐,𝑥 ) :∑𝑐 :⟨op|𝐶⟩ 𝑋 (𝑐 ) 𝑍 (𝑐)
≃∏

𝑐 :⟨op |𝐶 ⟩ 𝑋 (𝑐) → 𝑍 (𝑐)
≃ hom (𝑋,𝑍 )

The conclusion now follows from the Yoneda lemma. □

Lemma 4.19. n𝑓 = Φ(𝑓 † (−),−) : 𝐸 → 𝐶 is a right adjoint.

Proof. We will prove that n𝑓 is a pointwise right adjoint. Accordingly, fixing 𝑋 :♭ 𝐶 we must

construct 𝑒 : ⟨op | 𝐸⟩ such that Φ(𝑒,−) � Φ(modop (𝑋 ), n𝑓 (−)). Since 𝑋 � lim−−→⟨op |𝑋 ⟩ y ◦ 𝜋
†
and 𝐸 is

cocomplete, by the dual of Corollary 4.13 it suffices to assumemodop (𝑋 ) = y† (𝑐) with 𝑐 : ⟨op | 𝐶⟩.8
Finally, take 𝑒 = 𝑓 † (𝑐) and Φ(𝑓 † (𝑐),−) � Φ(y† (𝑐), n𝑓 (−)) by Theorem 3.12. □

We are now able to prove, as promised, the universal property of 𝐶 . If we write CC(𝐶, 𝐸) for
the full subcategory of 𝐶 → 𝐸 spanned by functors preserving all colimits, then y∗ : CC(𝐶, 𝐸) →
(𝐶 → 𝐸) is an equivalence. To prove this, we essentially argue that there is a map sending 𝑓 to the

left adjoint to n𝑓 and that this is the inverse to y∗.

Theorem 4.20. y∗ : CC(𝐶, 𝐸) → (𝐶 → 𝐸) is an equivalence.

Proof. We use Theorem 2.36. If 𝑓 :♭ 𝐶 → 𝐸, then 𝑓! : 𝐶 → 𝐸 satisfies 𝑓! ◦ y = 𝑓 and so y∗

essentially surjective:

Φ((𝑓! ◦ y)† (−),−) � Φ(y† (−), n𝑓 (−)) � n𝑓 = Φ(𝑓 † (−),−)
8
Note the lack of ♭-annotation here: we must ensure that we are functorial in 𝑐 in order to obtain a diagram in 𝐸.
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Moreover, if 𝐹 :♭ CC(𝐶, 𝐸), then (𝐹 ◦ y)! � 𝐹 , so that y∗ is a bijection on ♭-elements. Let us

write 𝑓 = 𝐹 ◦ y. We first construct a comparison map hom (𝑓!, 𝐹 ) by constructing construct a

natural transformation hom (id, n𝑓 (𝐹 (−))). Currying, this is equivalent to constructing a natural

transformation between maps ⟨op | 𝐶⟩ ×𝐶 → S and, in this form, id is given by evaluation 𝜖 and

n𝐹 (𝐹 (−)) isΦ(𝑓 (−), 𝐹 (−)). We can replace 𝜖 withΦ(y(−),−) by Theorem 3.12 andΦ(𝑓 (−), 𝐹 (−)) =
Φ(𝐹 (y(−)), 𝐹 (−)) by definition. Accordingly, the relevant map is supplied by Φ𝐹 . It is routine to

check that this is pointwise an equivalence by Lemma 4.18.

Finally, we now show that y∗ is fully faithful. To show that it is fully faithful, we must show that

if 𝑓 , 𝑔 :♭ 𝐶 → 𝐸, then hom (𝑓!, 𝑔!) � hom (𝑓 , 𝑔). Both sides are groupoids, so it suffices to consider

♭-annotated elements. If 𝛼 :♭ hom (𝑓 , 𝑔), then by transposing we may regard 𝛼 as an element of

⟨♭ | 𝐶 → 𝐸I⟩ and the previous observation ensures that this type is equivalent to ⟨♭ | CC(𝐶, 𝐸I)⟩
which yields the desired conclusion after transposing. □

5 THE THEORY OF KAN EXTENSIONS
A unifying concept in category theory are Kan extensions, which are universal extensions of functors
along functors on the same domain. Mac Lane, one of the founders of category theory, famously

stated: “The notion of Kan extensions subsumes all the other fundamental concepts of category

theory,” such as (co)limits and adjunctions [7, 35].

Definition 5.1 (Kan extensions). Given a map 𝑓 : 𝐶 → 𝐷 and a category 𝐸, the left (right) Kan

extension lan𝑓 (ran𝑓 ) is the left (right) adjoint to 𝑓 ∗ : 𝐸𝐷 → 𝐸𝐶 .

While the definition makes sense in general, to use the results of the previous sections, we shall

assume 𝑓 :♭ 𝐶 → 𝐷 and 𝐸 :♭ U. In Section 5.1 we show that Kan extensions exist whenever 𝐸 is

(co)complete and in Sections 5.2 and 5.3 we put this to work by deducing two important results:

Quillen’s theorem A and the properness of cocartesian fibrations. Our arguments for the existence

of Kan extensions and Quillen’s theorem A adapt the (model-agnostic)∞-categorical arguments of

Ramzi [36].

5.1 Existence and characterization of Kan extensions
We can prove that Kan extensions can be computed in an expected way. For 𝑑 : 𝐷 , we write

𝐶/𝑑 ≔ 𝐶 ×𝐷 𝐷/𝑑 and 𝐶𝑑/ ≔ 𝐶 ×𝐷 𝐷𝑑/. We assume that 𝐶 and 𝐷 are both small so each 𝐶/𝑑 is also

small. By Theorem 4.5 and Lemma 4.11:

Lemma 5.2. If 𝐸 = 𝐴 for some category𝐴 :♭ U, then lan𝑓 exists. Moreover, if 𝑋 :♭ 𝐶 → 𝐸 and 𝑑 :♭ 𝐷 ,
then lan𝑓 𝑋 𝑑 = lim−−→(𝐶/𝑑 → 𝐶 → 𝐸) = ⃝grpd

(∑
(𝑐,_) :𝐶/𝑑 𝑋 (𝑐)

)
.

This yields more generally:

Theorem 5.3. If 𝐸 is cocomplete, then lan𝑓 exists, and if 𝑋 :♭ 𝐶 → 𝐸, 𝑑 :♭ 𝐷 , then lan𝑓 𝑋 𝑑 =

lim−−→(𝐶/𝑑 → 𝐶 → 𝐸).

Proof. It suffices to argue that precomposition is pointwise a right adjoint and so we fix 𝑋 :♭

𝐶 → 𝐸. By Theorem 4.20, we may view 𝑋 as the composition 𝑋 ◦ y, where 𝑋 : 𝐶 → 𝐸 is the left

adjoint to n𝑋 . Next, we observe by Lemma 5.2 that y : 𝐶 → 𝐶 admits an extension to 𝐷 along

𝑓 , namely lan𝑓 y : 𝐷 → 𝐶 , and we claim that 𝑋 ◦ lan𝑓 y is our desired extension of 𝑓 . Fixing

𝑍 : 𝐷 → 𝐸, we calculate:

hom𝐷→𝐸 (𝑋 ◦ lan𝑓 y, 𝑍 ) ≃ hom
𝐷→𝐶
(lan𝑓 y, n𝑋 ◦ 𝑍 )

≃ hom
𝐶→𝐶
(y, n𝑋 ◦ 𝑍 ◦ 𝑓 )
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≃ hom𝐶→𝐸 (𝑋 ◦ y, 𝑍 ◦ 𝑓 )
= hom𝐶→𝐸 (𝑋,𝑍 ◦ 𝑓 )

The expected colimit formula continues to hold as a consequence of Lemma 5.2 and the cocontinuity

of 𝑋 . □

By duality, we obtain the following variant:

Theorem 5.4. If 𝐸 is complete, then ran𝑓 exists and is specified by the dual limit formula: ran𝑓 𝑋 𝑑 =

lim←−−(𝐶𝑑/ → 𝐶 → 𝐸).

5.2 Final and initial functors
It is frequently useful to show that the limit of a complex diagram 𝐷 can be calculated by first

restricting to a simpler diagram using 𝑓 : 𝐶 → 𝐷 and calculating the limit there e.g., restricting

from Z to Z≤0. When this approach is valid, 𝑓 is said to be initial:

Definition 5.5. A functor 𝑓 :♭ 𝐶 → 𝐷 is initial if for every𝑋 :♭ 𝐷 → S the map lim←−−𝐷 𝑋 → lim←−−𝐶 𝑋 ◦ 𝑓
is an equivalence. A map is final if its opposite is initial.

While this definition is asymmetrical in its treatment of initiality and finality, we shall restore

the symmetry as a consequence of Quillen’s Theorem A in the next section, see Corollary 5.16.

Recall that lim←−−𝐷 𝑋 =
∏

𝑑 :𝐷 𝑋 (𝑑) and so the definition of initiality equivalently states that the

restriction map

(∏
𝑑 :𝐷 𝑋 (𝑑)

)
→

(∏
𝑐 :𝐶 𝑋 (𝑓 (𝑐))

)
is an equivalence.

Example 5.6. The {0}/{1} inclusion 1 → I is initial/final.

Lemma 5.7. If 𝑓 :♭ 𝐶 → 𝐷 is initial and 𝑋 :♭ 𝐷 → 𝐸, then lim←−−𝐶 (𝑋 ◦ 𝑓 ) and lim←−−𝐷 𝑋 both exist
whenever either exists and are canonically isomorphic.

Proof. By Corollary 4.13, we replace 𝐸 with 𝐸 and by Corollary 4.12 we reduce to S where the

result is immediate. □

Lemma 5.8. If 𝐶 :♭ U, then ⃝grpd𝐶 ≃ ⃝grpd ⟨op | 𝐶⟩.

Proof. We observe that ⃝grpd𝐶 ≃ ⟨♭ | ⃝grpd𝐶⟩ and likewise for ⟨op | 𝐶⟩. Accordingly, we note
that:

⟨♭ | ⟨op | 𝐶⟩ → ⟨♭ | 𝑋 ⟩⟩ ≃ ⟨♭ | ⃝grpd ⟨op | 𝐶⟩ → ⟨♭ | 𝑋 ⟩⟩
⟨♭ | 𝐶 → ⟨♭ | 𝑋 ⟩⟩ ≃ ⟨♭ | ⃝grpd𝐶 → ⟨♭ | 𝑋 ⟩⟩
⟨♭ | 𝐶 → ⟨♭ | 𝑋 ⟩⟩ ≃ ⟨♭ | ⟨op | 𝐶⟩ → ⟨♭ | 𝑋 ⟩⟩

Finally, the result follows from a simple Yoneda argument. □

Lemma 5.9. For every 𝐶 , the canonical map 𝐶 → ⃝grpd𝐶 is both initial and final.

Proof. By Lemma 5.8, it suffices to argue that this map is initial. To this end, we must show the

following map to be an equivalence for every 𝑋 : ⃝grpd𝐶 → S:(∏
𝑑 :⃝grpd𝐶

𝑋 (𝑑)
)
→

(∏
𝑐 :𝐶 𝑋 (𝜂 (𝑐))

)
However, 𝑋 (𝑑) is discrete for every 𝑑 : ⃝grpd𝐶 and so this is simply the universal property of

⃝grpd. □

Corollary 5.10. If ⃝grpd𝐶 = 1, then lim←−−𝐶 𝐴 = 𝐴 for 𝐴 : S.



The Yoneda embedding in simplicial type theory 25

5.3 Quillen’s Theorem A
Our next goal is to prove the ∞-categorical version of Quillen’s theorem A. Unlike traditional

proofs, we follow Ramzi [36] and rely on having already established the basic apparatus of Kan

extensions to simplify our argument.

Definition 5.11. A functor 𝑓 :♭ 𝐶 → 𝐷 is Quillen final if ⃝grpd (𝐶𝑑/) ≃ 1 for all 𝑑 :♭ 𝐷

Theorem 5.12. A functor 𝑓 :♭ 𝐶 → 𝐷 is final if and only if it is Quillen final.

Remark 5.13. This result shows that, in particular, cofinality doesn’t depend on the particular

universe S chosen.

Lemma 5.14. If 𝑓 :♭ 𝐶 → 𝐷 is Quillen final and 𝑋 :♭ 𝐷 → 𝐴, then lim−−→𝐷
𝑋 ≃ lim−−→𝐶

𝑋 ◦ 𝑓 .

Proof. This statement is pointwise, so we quickly reduce to S instead of 𝐴. In this situation, we

wish to show that the following commutes:

S𝐷 S𝐶

S

𝑓 ∗

lim−→𝐷
lim−→𝐶

Note that all three morphisms are left adjoints, and so it suffices to compare their right adjoints: the

constant functors Δ𝐶 and Δ𝐷 , along with the right Kan extension ran𝑓 . We next note that there is

at least a comparison map Δ𝐷 → ran𝑓 ◦Δ𝐶 given by transposing the identity map 𝑓 ∗ ◦ Δ𝐷 → Δ𝐶 .

We must argue that this map is pointwise invertible, and so we reduce to considering 𝑋 :♭ S and

𝑑 :♭ 𝐷 , and we must show the following, using Theorem 5.4: 𝑋 ≃ lim←−−𝐶𝑑/
𝑋 . This now follows from

our assumption and Corollary 5.10. □

Lemma 5.15. If 𝑓 :♭ 𝐶 → 𝐷 is Quillen final, 𝐸 is cocomplete, and 𝑋 :♭ 𝐷 → 𝐸, then lim−−→𝐷
𝑋 ≃

lim−−→𝐶
𝑋 ◦ 𝑓 .

Proof. We reduce to the case where 𝐸 = 𝐷 (and therefore Lemma 5.14) by factoring 𝑋 as 𝑋 ◦ y
and noting that 𝑋 preserves colimits by construction. □

Proof of Theorem 5.12. To see that Quillen finality implies finality, we apply Lemma 5.15 to

⟨op | S⟩, and calculate:

lim←−−⟨op |𝐷 ⟩ 𝑋 ≃ lim−−→𝐷
𝑋 † ≃ lim−−→𝐶

𝑋 † ◦ 𝑓 ≃ lim←−−⟨op |𝐶 ⟩ 𝑋 ◦ 𝑓
†

For the reverse, suppose that 𝑓 is final. We note that by the dual of Lemma 5.7 (again applied to

⟨op | S⟩), the canonical map lim−−→𝐶
𝑋 ◦ 𝑓 → lim−−→𝐷

𝑋 is an equivalence for any 𝑋 :♭ 𝐷 → S. Fix
𝑑 :♭ 𝐷 and choose 𝑋 = hom(𝑑,−) = Φ(modop (𝑑),−) such that the colimits in question are precisely

⃝grpd 𝐷𝑑/ and ⃝grpd𝐶𝑑/, using Theorem 4.5. This completes the proof since ⃝grpd 𝐷𝑑/ = 1. □

Corollary 5.16. A functor 𝑓 :♭ 𝐶 → 𝐷 is final if and only if, for every 𝑋 :♭ 𝐷 → S the map
lim−−→𝐷

𝑋 → lim−−→𝐶
𝑋 ◦ 𝑓 is an equivalence.

This restores the symmetry between initial and final functors, as promised. We offer another

symmetric definition of cofinality, informed by Cisinski et al. [37, Ch. 8].
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Definition 5.17 (Covariant equivalences). Fix 𝑝 :♭ 𝐶 → 𝐴 and 𝑞 :♭ 𝐷 → 𝐴 between categories

𝐴,𝐶, 𝐷 . Let 𝑓 :♭ 𝐶 → 𝐷 be a fibered map as follows:

𝐶 𝐷

𝐴

𝑓

𝑝 𝑞

We call 𝑓 a covariant equivalence if for all families 𝑋 :♭ 𝐴 → S reindexing gives rise to an

equivalence, i.e.,:

𝑓 ∗ :

(∏
𝑎:𝐴 𝐷𝑎 → 𝑋𝑎

)
→

(∏
𝑎:𝐴𝐶𝑎 → 𝑋𝑎

)
Dually, 𝑓 is called contravariant equivalence precomposition with respect to all contravariant

families is an equivalence.

Lemma 5.18. Let 𝑓 as below be a covariant equivalence with respect to 𝑝 and 𝑞. Then, for any functor
𝑟 :♭ 𝐵 → 𝐴 it is also a covariant equivalence with respect to 𝑟𝑝 and 𝑟𝑞:

𝐶 𝐷

𝐴

𝐵

𝑓

𝑝 𝑞

𝑟

Proof. We get the following induced square:( ∏
𝑏:𝐵 𝐷𝑏 → 𝑋𝑏

) ( ∏
𝑏:𝐵 𝐶𝑏 → 𝑋𝑏

)
( ∏

𝑎:𝐴 𝐷𝑎 → 𝑋𝑟 (𝑎)
) ( ∏

𝑎:𝐴𝐶𝑎 → 𝑋𝑟 (𝑎)
)

𝑓 ∗

≃

≃ ≃

𝑓 ∗

The upper horizontal map is an equivalence by the preconditions. The goal is to show that the

lower horizontal map is an equivalence, too. But this follows from 3-for-2 for equivalences. □

Lemma 5.19 (Characterizations of initiality). Let 𝑓 :♭ 𝐶 → 𝐷 be a functor. Then the following are
equivalent:

(1) 𝑓 is initial.
(2) Let 𝑋 :♭ 𝐴→ S be a family with associated left fibration 𝜋 :♭ 𝑋 → 𝐴. Then any square of the

following form has a filler 𝜑 , uniquely up to homotopy:

𝐶

𝐷

𝑋

𝐴

𝜑

𝑓 𝜋

𝛼

𝜑
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(3) For any family 𝑋 :♭ 𝐴→ S the following square is a pullback:

𝑋𝐷

𝐴𝐷

𝑋𝐶

𝐴𝐶

(4) 𝑓 is a covariant equivalence with respect to any 𝛼 :♭ 𝐷 → 𝐴.

The analogous characterization holds for contravariant equivalences and final functores.

Proof. Conditions (2) and (3) are readily seen to be equivalent by commuting

∏
and

∑
. Con-

dition (4) unfolds to the following: for any 𝑋 :♭ 𝐴 → S reindexing along 𝑓 is an equivalence,

namely

𝑓 ∗ :

(∏
𝑎:𝐴 𝐷𝑎 → 𝑋𝑎

) ∼−→ (∏
𝑎:𝐴 (

∑
𝑑 :𝐷𝑎

𝐶𝑎,𝑑 ) → 𝑋𝑎

)
This, again, is readily seen to be equivalent to (2).

We turn to the implication (4) =⇒ (1). But this is clear, since (1) says that 𝑓 is a covariant

equivalence with respect to itself and id𝐷 .
For the converse direction (1) =⇒ (4) we use the insight justmade togetherwith Lemma 5.18. □

The following alternative characterization is also often useful:

Lemma 5.20. 𝑓 :♭ 𝐶 → 𝐷 is initial (resp. final) if and only if for every covariant (resp. contravariant)
family 𝜋 :♭ 𝑋 → 𝑌 , 𝑓 is left orthogonal to 𝜋 , i.e., isEquiv(𝑋𝐷 → 𝑋𝐶 ×𝑌𝐶 𝑌𝐷 ).

Proof. Immediate by Lemma 5.19 for the initial case and by duality and Corollary 5.16 for the

final case. □

As another consequence we get the dual of Theorem 5.12:

Corollary 5.21. A functor 𝑓 :♭ 𝐶 → 𝐷 is initial if and only if ⃝grpd (𝐶/𝑑 ) ≃ 1 for all 𝑑 :♭ 𝐷 (Quillen

initial).

We demonstrate the utility of Theorem 5.12 by giving a new and far simpler proof that cocartesian

fibrations are proper.

Definition 5.22. A functor 𝜋 :♭ 𝐸 → 𝐵 between categories is proper if for all pullbacks (of ♭-functors)
of the following form, 𝑣 is final if 𝑢 is final:

𝐸′

𝐵′

𝜋 ′

𝐸

𝐵

𝜋

𝐸′′

𝐵′′

𝑣

𝑢

We call 𝜋 smooth if 𝜋† : ⟨op | 𝐸⟩ → ⟨op | 𝐵⟩ is proper.

Lemma 5.23. Smooth and proper functors are closed under composition and pullback.9

Theorem 5.24. Cartesian fibrations are smooth and cocartesian fibrations are proper.

9
The definition of properness is formulated specifically to bake in the latter.
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Proof. It suffices to treat the proper case. Fix a cocartesian fibration 𝜋 :♭ 𝐸 → 𝐵 and note that

since cocartesian fibrations are stable under pullbacks, it suffices to that 𝑣 is final in the following

pullback diagram if 𝑢 is final:

𝐴 ×𝐵 𝐸

𝐴

𝐸

𝐵

𝑣

𝜋

𝑢

We now use Theorem 5.12. For 𝑒 :♭ 𝐸 we compute the fiber:

(𝐴 ×𝐵 𝐸) ×𝐸 𝐸𝑒/

≃ 𝐴 ×𝐵 𝐸𝑒/

≃ 𝐴 ×𝐵
(∑

𝑏′ :𝐵,𝑓 :hom (𝜋 (𝑒 ),𝑏′ ) (𝐸𝑏′ )I
)

𝜋 is cocartesian

≃ ∑
(𝑎,𝑓 ) :𝐴×𝐵𝐵𝜋 (𝑒 )/ (𝐸𝑢 (𝑎) ) 𝑓!𝑒/

Applying ⃝grpd to each fiber yields ⃝grpd (𝐸𝑢 (𝑎) ) 𝑓!𝑒/ ≃ 1 (as coslices have initial elements) and

⃝grpd (𝐴 ×𝐵 𝐵𝜋 (𝑒 )/) ≃ 1 since 𝑢 is final by assumption. This implies that applying ⃝grpd to the

entire

∑
-type produces 1 [8]. □

Corollary 5.25. If 𝜋 :♭ 𝐸 → 𝐵 is cocartesian and 𝑋 :♭ 𝐸 → 𝐷 , then the left Kan extension lan𝜋 𝑋
sends 𝑏 :♭ 𝐵 to lim−−→(𝐸𝑏 → 𝐸 → 𝐷).

6 CONCLUSIONS AND FUTUREWORK
We have introduced and studied the impact of the∞-categorical Yoneda embedding in STT. This
includes the development of classical concepts (Kan extensions, adjoints, (co)limits, etc.), all in

the synthetic ∞-categorical setting. While some of the basic theory had been investigated in

STT already, we were able to produce the first non-trivial concrete examples of, e.g., adjunctions

(Theorem 4.5) and give several more refined versions of existing theorems (Theorem 3.11) which

more closely match their standard counterparts.

6.1 Related work
There are several closely related type-theoretic approaches to synthetic (∞-)category theory. We

may roughly divide these into (1) directed type theory, where every type is a category but various

operations (

∏
) must be restricted, and (2) variations on simplicial type theory. For instance, many

directed type theories have been proposed and studied over the years [9, 10, 38–47]. In general,

while these type theories are a promising approach to formalize category theory in type theory,

none of them have thus far received as much attention as STT and, consequently, none have

developed category theory to the extent of this work. Furthermore, it is substantially harder to

design a directed type theory in this style (as it is a more radical alteration of the basic rules of

type theory) and most proposals handle only 1-category theory rather than (∞, 1)-categories. We

note, however, that some of these type theories do include a version of Theorem 3.12 in the form of

directed path induction [39–41]. Given, however, that few of our arguments rely on types which are

not categories, we expect many of them to transfer to sufficiently rich future variants of directed

type theory.

Other variations of simplicial type theory have been considered in the literature. For instance,

several papers use additional judgmental structure (extension types) to get more definitional

equalities around hom-types [1, 12–16] at the cost of making the interval a second-class type
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similar to two-level type theory [48, 49]. Other versions have favored a cubical interval [2] or even

a cubical interval atop a cubical version of HoTT [9, 10]. Aside from the addition of modalities, our

version of STT is deliberately minimalistic: we use only ordinary HoTT with a handful of postulates.

Accordingly, our results can be interpret into essentially any incarnation of modal STT and does

not rely on extra definitional equalities.

Finally, there are many attempts to formulate more conceptual and synthetic foundations for

∞-category theory which do not rely on type theory. For instance, the ∞-cosmos program of

Riehl and Verity [34] aims to give a systematic account of the formal category theory and model-

independence using 2-category theory. On the other hand, most practitioners in the field attempt to

give looser “model independent” arguments which avoid relying on explicit computations as much

as possible. We have successfully translated some of these arguments into our framework, proving

that this informal discipline is effective (e.g., Section 5). More recently, Cisinski et al. [37] have

begun to redevelop∞-category theory in a deliberately informal and high-level language, splitting

the difference between a formal theory like STT and the usual “model-independent” discipline of

practitioners. We expect that their arguments can be translated into STT and we have shown that

some of their primitive axioms are provable in STT (e.g., Axiom/Proposition 2.39, Proposition 2.37,

and Lemma 4.3).

6.2 Future work
Many promising avenues for future work remain to be explored. While we have focused on presheaf

categories and immediate consequences of their theory, we plan to port other foundational results

from category theory (presentable and accessible categories, Bousfield localizations, topos theory,

etc.) into STT. It would also be desirable to adapt more parts of the internal ∞-category theory

and∞-topos theory of Martini and Wolf [50–56] to STT. Additionally, we hope to extend a proof

assistant like Agda [57] with the necessary support for modalities to give machine-checked versions

of the proofs in this paper. On the foundational side, STT presently relies on a handful of axioms

(Appendix B) and therefore satisfies only normalization and not canonicity. In future work, we

hope to examine which of these principles can be given computational interpretations and to what

extent one can ‘compute’ with synthetic∞-categories.

A THE FORMAL RULES OF MTT

The formal syntax of MTT is comprised of four judgments: ⊢ Γ, Γ ⊢ 𝛿 : Δ, Γ ⊢ 𝑎 : 𝐴, and Γ ⊢ 𝐴. We

list the relevant novel rules for these judgments below:

⊢ Γ

⊢ 1
⊢ Γ
⊢ Γ.{𝜇}

⊢ Γ Γ.{𝜇} ⊢ 𝐴
⊢ Γ.(𝜇 | 𝐴)

⊢ Γ
⊢ Γ.{id} = Γ ⊢ Γ.{𝜇}.{𝜈} = Γ.{𝜇 ◦ 𝜈}

Γ ⊢ 𝛿 : Δ

Γ ⊢ ! : 1

⊢ Γ Γ.{𝜇} ⊢ 𝐴
Γ.(𝜇 | 𝐴) ⊢ ↑ : Γ

Γ ⊢ 𝛿 : Δ Γ.{𝜇} ⊢ 𝑎 : 𝐴

Γ ⊢ 𝛿.𝑎 : Δ.(𝜇 | 𝐴)
Γ ⊢ 𝛿 : Δ

Γ.{𝜇} ⊢ 𝛿.{𝜇} : Δ.{𝜇}
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⊢ Γ 𝛼 : 𝜇 𝜈

Γ.{𝜈} ⊢ Γ.{𝛼} : Γ.{𝜇}

Γ ⊢ 𝛾 : 1

Γ ⊢ ! = 𝛾 : 1

Γ ⊢ 𝛿 : Δ Γ.{𝜇} ⊢ 𝑎 : 𝐴

Γ ⊢ ↑ ◦ (𝛿.𝑎) = 𝛿 : Δ

Γ ⊢ 𝛿 : Δ.(𝜇 | 𝐴)
Γ ⊢ (↑ ◦ 𝛿) .v[𝛿] = 𝛿 : Δ.(𝜇 | 𝐴)

Γ ⊢ 𝛿 : Δ

Γ ⊢ 𝛿.{id} = 𝛿 : Δ Γ.{𝜈 ◦ 𝜇} ⊢ 𝛿.{𝜈 ◦ 𝜇} = 𝛿.{𝜈}.{𝜇} : Δ.{𝜈 ◦ 𝜇}

⊢ Γ
Γ.{𝜇} ⊢ Γ.{id} = id : Γ.{𝜇} Γ.{𝜉} ⊢ Γ.{𝛼} ◦ Γ.{𝛽} = Γ.{𝛼 ◦ 𝛽} : Γ.{𝜇}

Γ ⊢ 𝛿 : Δ 𝜇 ≤ 𝜈

Γ.{𝜈} ⊢ Δ.{𝛼} ◦ 𝛿.{𝜇} = 𝛿.{𝜇} ◦ Γ.{𝛼} : Δ.{𝜇}
⊢ Γ 𝛼 : 𝜇0 𝜈0 𝛽 : 𝜇1 𝜈1

Γ.{𝜈1 ◦ 𝜈0} ⊢ Γ.{𝛽 } .{𝜇0 }◦Γ.{𝛼 }
=Γ.{𝛽•𝛼 } : Γ.{𝜇1 ◦ 𝜇0}

Γ ⊢ 𝐴

Γ.{𝜇} ⊢ 𝐴
Γ ⊢ ⟨𝜇 | 𝐴⟩

Γ ⊢ 𝛿 : Δ Δ.{𝜇} ⊢ 𝐴
Γ ⊢ ⟨𝜇 | 𝐴⟩[𝛿] = ⟨𝜇 | 𝐴[𝛿.{𝜇}]⟩

Γ ⊢ 𝑎 : 𝐴

Γ.{𝜇} ⊢ 𝐴
Γ.(𝜇 | 𝐴).{𝜇} ⊢ v : 𝐴[↑.{𝜇}]

Γ.{𝜇} ⊢ 𝑎 : 𝐴

Γ ⊢ mod𝜇 (𝑎) : ⟨𝜇 | 𝐴⟩

Γ.(𝜈 | ⟨𝜇 | 𝐴⟩) ⊢ 𝐵 Γ.(𝜈 ◦ 𝜇 | 𝐴) ⊢ 𝑏 : 𝐵 [↑.mod𝜇 (v)] Γ.{𝜈} ⊢ 𝑎 : ⟨𝜇 | 𝐴⟩
Γ ⊢ let mod𝜇 (−) ← 𝑎 in 𝑏 : 𝐵 [id .𝑎]

Δ.(𝜈 | ⟨𝜇 | 𝐴⟩) ⊢ 𝐵 Δ.(𝜈 ◦ 𝜇 | 𝐴) ⊢ 𝑏 : 𝐵 [↑.mod𝜇 (v)] Δ.{𝜈} ⊢ 𝑎 : ⟨𝜇 | 𝐴⟩ Γ ⊢ 𝛿 : Δ

Γ ⊢ let mod𝜇 (−)←𝑎[𝛿.{𝜈 } ] in 𝑏 [ (𝛿◦↑) .v]
=(let mod𝜇 (−)←𝑎 in 𝑏 ) [𝛿 ] : 𝐵 [𝛿.𝑎]

Γ.{𝜇} ⊢ 𝑎 : 𝐴 Γ ⊢ 𝛿 : Δ

Γ ⊢ mod𝜇 (𝑎) [𝛿] = mod𝜇 (𝑎[𝛿.{𝜇}]) : ⟨𝜇 | 𝐴[𝛿.{𝜇}]⟩

Γ ⊢ 𝛿 : Δ Γ.{𝜇} ⊢ 𝑎 : 𝐴[𝛿.{𝜇}] Δ.{𝜇} ⊢ 𝐴
Γ.{𝜇} ⊢ v[𝛿.𝑎.{𝜇}] = 𝑎 : 𝐴[𝛿.{𝜇}]

Γ.(𝜈 | ⟨𝜇 | 𝐴⟩) ⊢ 𝐵 Γ.(𝜈 ◦ 𝜇 | 𝐴) ⊢ 𝑏 : 𝐵 [↑.mod𝜇 (v)] Γ.{𝜈} ⊢ 𝑎 : ⟨𝜇 | 𝐴⟩
Γ ⊢ (let mod𝜇 (−) ← mod𝜇 (𝑎) in 𝑏) = 𝑏 [id .𝑎] : 𝐵 [id.mod𝜇 (𝑎)]

B THE COMPLETE LIST OF AXIOMS
Axiom A. There is a set I that forms a bounded distributive lattice (0, 1,∨,∧) such that

∏
𝑖, 𝑗 :I 𝑖 ≤

𝑗 ∨ 𝑗 ≤ 𝑖 holds.
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Axiom B. The mapmod𝜇 (𝑎) = mod𝜇 (𝑏) → ⟨𝜇 | 𝑎 = 𝑏⟩ sending refl tomod𝜇 (refl) is an equivalence
for all 𝑎, 𝑏 :𝜇 𝐴.

Axiom C. There is an equivalence ¬ : ⟨op | I⟩ → I which swaps 0 for 1 and ∨ for ∧.
Axiom D. If 𝐴 :♭ U, then ⟨♭ | 𝐴⟩ → 𝐴 is an equivalence (discrete) if and only if 𝐴 → 𝐴I is an
equivalence (I-null).

Axiom E. The canonical map Bool→ I is injective and induces an equivalence Bool ≃ ⟨♭ | I⟩.
Axiom F. 𝑓 :♭ 𝐴→ 𝐵 is an equivalence if and only if the following holds:∏

𝑛:♭Nat isEquiv((𝑓∗)
†

: ⟨♭ | Δ𝑛 → 𝐴⟩ → ⟨♭ | Δ𝑛 → 𝐵⟩)

Axiom G. For each 𝑛 :♭ Nat, there is a (necessarily unique) function 𝜂𝑛 :♭ Δ
𝑛 → ⟨tw | Δ2𝑛+1⟩ such

that the following map is an equivalence, for each category 𝐶 :♭ U:

𝜄 ≔ 𝜆mod♭ (𝑓 ).mod♭ (𝑓 † ◦ 𝜂𝑛) : ⟨♭ | Δ2𝑛+1 → 𝐶⟩ → ⟨♭ | Δ𝑛 → ⟨tw | 𝐶⟩⟩
Additionally, we require that 𝜏 = (coe¬)† : ⟨tw | Δ𝑛⟩ → ⟨tw | ⟨op | Δ𝑛⟩⟩ and that the diagrams in
Fig. 2 commute (these are mere properties—all objects are sets since ⟨𝜇 | −⟩ preserves h-level).
The following duality axiom was first studied by Blechschmidt [58] and implies that, e.g., I is a

category. We did not introduce it in the main body of the paper as it was not explicitly invoked in

any of our proofs.

Axiom H. If 𝐴 is a finitely presented I-algebra (i.e., 𝐴 is a bounded distributive lattice equivalent
to I[𝑥1, . . . , 𝑥𝑛] quotiented by finitely many relations) and homIAlg (𝐴, I) is the type of I-algebra
homomorphisms, then the map 𝜆𝑎 𝑓 . 𝑓 (𝑎) : 𝐴→ (homIAlg (𝐴, I) → I) is an equivalence.
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