The directed plump ordering

Daniel Gratzer

Michael Shulman

Jonathan Sterling

February 15, 2022

Abstract

Based on Taylor's hereditarily directed plump ordinals, we define the *directed plump ordering* on W-types in Martin-Löf type theory. This ordering is similar to the plump ordering but comes equipped with non-empty finite joins in addition to the usual properties of the plump ordering.

(0*1) The theory of plump ordinals [Tay96] has been adapted to Martin-Löf type theory by Fiore, Pitts, and Steenkamp [FPS21] to produce directed well-founded orders suitable for certain transfinite constructions. Given a pair $(A : U_1, B : A \rightarrow U_1)$, *op. cit.* defines the *plump ordering*: a pair of relations \leq , < on a type W of well-founded trees satisfying the following conditions:

- 1) \leq is reflexive and transitive
- 2) \prec is transitive and well-founded.
- 3) If u < v then $u \le v$.
- 4) If $u < v \le w$ or $u \le v < w$ then u < w.
- 5) (W, \leq) has a least element.
- 6) For each a : A, both \leq and \prec have upper-bounds for all B(a)-families.

Following Taylor's theory of hereditarily directed plump ordinals [Tay96], we refine this ordering to obtain well-behaved least upper-bounds:

- 7) Given u, v : W there exists $u \sqcup v$ such that $u \sqcup v \le w$ if and only if $u, v \le w$.
- 8) If u, v < w then $u \sqcup v < w$.

(0*2) We have partially formalized our results in Martin-Löf type theory with the UIP principle in the Agda proof assistant [SG22].¹ In particular, all results except the well-foundedness of the list ordering \Box of Section 2 are formalized in Agda.

¹http://www.jonmsterling.com/agda-directed-plump-ordering/.

1 An ordering on W-types

(1*1) Fix a U₁-container $A \triangleright B$ in the sense of Abbott, Altenkirch, and Ghani [AAG05], *i.e.* a pair of a type $A : U_1$ together with a family of types $B : A \rightarrow U_1$. The *extension* of $A \triangleright B$ is the endofunctor $[\![A \triangleright B]\!] : U_1 \rightarrow U_1$ defined like so:

record $\llbracket A \triangleright B \rrbracket (X : U_1) : U_1$ where constructor (-, -)lbl : Asub : $B(lbl) \rightarrow X$

The extension of a container is also known as the *polynomial endofunctor* associated to the corresponding morphism $\sum_{x:A} B(x) \longrightarrow A$.

(1*2) The *initial algebra* for the extension $[\![A \triangleright B]\!]$ of a given container can be computed as a W-type in the sense of Martin-Löf [Mar84] consisting of well-founded trees labeled in a : A with subtrees of arity B(a), written $W_AB : U_1$. The structure map for this initial algebra is written ub : $[\![A \triangleright B]\!](W_AB) \longrightarrow W_AB$, which can be thought of as producing an upper-bound in the subtree order.

(1*3) Suppose that the container $A \triangleright B$ is closed under binary coproducts of shapes in the sense that we have an operation $\hat{+} : A \times A \rightarrow A$ such that $B(a_1 + a_2) = B(a_1) + B(a_2)$. Given two trees $u, v : W_A B$, we will write $u \sqcup v$ for ub(u.lbl + v.lbl, [u.sub | v.sub]). For a non-empty finite set of trees $\{u_i \mid i \le n\}$, we will write $\bigsqcup_i u_i$ for the corresponding *n*-ary instance of \sqcup .

(1*4) We may define the following two binary relations $\leq, <$ on W_AB as the smallest ones closed under the following rules:

$$\frac{\exists b_1, \dots b_n : B(v.\mathsf{lbl}). \ u \leq \bigsqcup_i v.\mathsf{sub}(b_i)}{u \prec v} \qquad \qquad \frac{\forall b : B(u.\mathsf{lbl}). \ u.\mathsf{sub}(b) \prec v}{u \leq v}$$

Each of (1*5) through (1*8) has been formally verified in Agda.

(1*5) The relation \leq is reflexive.

(1*6) For any $u, v, w : W_A B$ we have the following:

- 1) *Transitivity*. If $u \le v \le w$ then $u \le w$; likewise if u < v < w then u < w.
- 2) Left flex. If $u \le v$ and $v \prec w$ then $u \prec w$.
- 3) *Right flex.* If u < v and $v \le w$ then u < w.

(1*7) For any $u, v : W_A B$, if $u \prec v$ then $u \leq v$.

(1*8) Let $\{u_i \mid i \leq n\}$ be a non-empty finite family of trees, and let $v : W_A B$ be a tree; we have $\bigsqcup_i u_i \leq v$ if and only if $u_i \leq v$ for all $i \leq n$. Morever, we have $\bigsqcup_i u_i < v$ if $u_i < v$ for all $i \leq n$.

2 An intermezzo on list orderings

(2*1) Given a relation $R : A \times A \longrightarrow \Omega$, define the accessibility predicate as the following inductive type:

data
$$Acc(R) : A \to \Omega$$
 where
acc : $(a : A) \to ((b : A) \to R(b, a) \to Acc(R, b)) \to Acc(R, a)$

A relation is said to be well-founded when all its elements are accessible. Note that a wellfounded relation need not be transitive.

(2*2) We eventually wish to show that < is well-founded but prior to this we must introduce a supplementary well-founded ordering. The well-foundedness of < will follow from well-founded induction on this secondary ordering.

Fix a type X and a well-founded relation $\langle X \times X \rightarrow \Omega$ for the remainder of this section. We define a new relation \Box on List(X):

$$\frac{m \ge 1}{[x_1, \dots, x_n] \sqsubset [y_1, \dots, y_m]} \xrightarrow{\exists f : \{1 \dots n\} \rightarrow \{1 \dots m\}, \forall i \le n, x_i < y_{f(i)}}$$

We adapt a proof due to Wilfried Buchholz as described by Nipkow [Nip98] to prove that \Box is well-founded.

(2*3) The empty list is \square -accessible.

(2*4) If a list is \square -accessible, so too is any permutation.

(2*5) Fix y : X. Suppose for all accessible l : List(X) and x < y, cons(x, l) is accessible. Then for all accessible l : List(X), cons(y, l) is accessible.

Proof. Fix an accessible l and suppose that $n \sqsubset cons(y, l)$. By definition, there exists a division of n into n_l and n_y such that $n_l \sqsubset l$ and each element of n_y is dominated by y. Because l is accessible, so too is n_l . Therefore, $n_y + n_l$ is accessible by induction on the size of n_y and repeated use of the assumption. Because n is a permutation of $n_y + n_l$, we conclude that n is accessible.

(2*6) If l : List(X) is \square -accessible and x : X, then cons(x, l) is accessible.

Proof. This follows immediately from the (2*5) and <-induction on x.

(2*7) If < is well-founded, so too is \Box .

Proof. Fix l : List(X). We argue by induction on l that l is accessible. In the base case apply (2*3) and in the inductive step apply (2*6).

3 Well-foundedness of the directed plump ordering

(3*1) Write List⁺(X) for the type of *non-empty* lists. Given an non-empty list $l = [u_0, ..., u_n]$, write $\bigsqcup l$ for $\bigsqcup_{i \le n} u_i$.

(3*2) Given l : List⁺(W_AB), if $u \leq \bigsqcup l$ then u is \prec -accessible.

Proof. This follows by well-founded induction on the \Box -accessibility of l; the details are formalized in Agda. \Box

(3*3) The relation \prec is well-founded.

Proof. We must prove that every $u : W_A B$ is <-accessible, but this is a consequence of (3*2) setting *l* to be the singleton list [u]; the details are formalized in Agda.

(3*4) Summarizing, given a pair $(A : U_1, B : A \to U_1)$ together with an operation an operation $\hat{+} : A \times A \to A$ such that $B(a_1 + a_2) = B(a_1) + B(a_2)$ there exists a type $W_A B$ together with a pair of relations $\leq, \langle : W_A B \times W_A B \to \Omega$ satisfying the following conditions:

- 1) \leq is transitive and reflexive.
- 2) < is transitive and well-founded.
- 3) If u < v, then $u \le v$.
- 4) If $u < v \le w$ or $u \le v < w$ then u < w
- 5) If there exists a : A such that B(a) = 0 then $(W_A B, \leq)$ has a least element.
- 6) For any a : A, both \leq and \prec have upper-bounds for all B(a)-families.
- 7) Given *u*, *v* there exists an element $u \sqcup v$ such that $u \sqcup v \le w$ if and only if $u, v \le w$.
- 8) If u, v < w then $u \sqcup v < w$.

(3*5) Given a pair $(A : U_1, B : A \to U_1)$, define a new pair (C, D) by setting C = List(A) and specifying D inductively:

$$D([]) = \mathbf{0} \qquad D(\operatorname{cons}(a, c)) = B(a) + D(c)$$

Then (3*4) instantiated with this new family shows that $(W_C D, \leq, \prec)$ satisfies the requirements outlined by (0*1).

References

- [Mar84] Per Martin-Löf. Intuitionistic type theory. Notes by Giovanni Sambin. Vol. 1. Studies in Proof Theory. Bibliopolis, 1984, pp. iv+91. ISBN: 88-7088-105-9 (cit. on p. 2).
- [Tay96] Paul Taylor. "Intuitionistic sets and ordinals". In: *The Journal of Symbolic Logic* 61.3 (1996), pp. 705–744. DOI: 10.2307/2275781 (cit. on p. 1).
- [Nip98] Tobias Nipkow. An Inductive Proof of the Wellfoundedness of the Multiset Order. Exposition of a proof due to Wilfried Buchholz. 1998. URL: https://www21.in. tum.de/~nipkow/Misc/multiset.ps (cit. on p. 3).
- [AAG05] Michael Abbott, Thorsten Altenkirch, and Neil Ghani. "Containers: Constructing strictly positive types". In: *Theoretical Computer Science* 342.1 (2005). Applied Semantics: Selected Topics, pp. 3–27. ISSN: 0304-3975. DOI: 10.1016/j.tcs. 2005.06.002 (cit. on p. 2).
- [FPS21] Marcelo P. Fiore, Andrew M. Pitts, and S. C. Steenkamp. *Quotients, inductive types, and quotient inductive types.* 2021. arXiv: 2101.02994 [cs.L0] (cit. on p. 1).
- [SG22] Jonathan Sterling and Daniel Gratzer. agda-directed-plump-ordering. https: //github.com/jonsterling/agda-directed-plump-ordering. 2022 (cit. on p. 1).