
NORMALIZATION FOR MULTIMODAL TYPE THEORY

DANIEL GRATZER

Abstract. We consider the conversion problem for multimodal type theory

(MTT) [Gra+21] by characterizing the normal forms of the type theory and

proving normalization (Theorem 8.5). Normalization follows from a novel
adaptation of Sterling’s Synthetic Tait Computability [Ste21; SH21] which

generalizes the framework to accommodate a type theory with modalities and

multiple modes. As a corollary of our main result, we reduce the conversion
problem of MTT to the conversion problem of its mode theory (Corollary 8.8)

and show the injectivity of type constructors (Corollary 8.9).

Contents

1. Introduction 1
2. Normalization via Synthetic Tait Computability 5
3. MTT Cosmoi 7
4. Foundations of multimodal Synthetic Tait Computability 10
5. The category of renamings for MTT 15
6. Prerequisites for the normalization model 17
7. The normalization model 20
8. The normalization function 26
Acknowledgments 29
Appendix A. Neutral and normal forms 29
Appendix B. A full definition of an internal MTT cosmos 33
Appendix C. Neutral and normal forms, internally 35
References 38

1. Introduction

The last twenty years of development of type theory has seen many different
extensions of type theories to account for different modalities. Most of these type
theories are specialized—accounting for a specific collection of modalities—and in-
tended for a particular model. This specialization has allowed for concise and
practicable syntax in some cases, but has also created a tremendous amount of
churn where even the smallest change to the modal situation requires substantial
work to produce a new type theory.

In response to this situation, several “frameworks” for modal type theory have
been put forward. A framework for modal type theory should enjoy the following:

(1) sufficient generality to accommodate a large class of modalities,
(2) practicable syntax in specific applications,

Date: Sunday 20th March, 2022.

1

2 DANIEL GRATZER

(3) a wide variety of theorems which hold for instantiations.

There is a degree of tension between these three goals: a framework which is more
general often admits more cumbersome syntax, and wider classes of type theories
typically enjoy fewer shared properties. Recently, Gratzer, Kavvos, Nuyts, and
Birkedal [Gra+20] introduced MTT, a type theory parameterized by a collection
of modalities. MTT aims to support a highly usable syntax for any collection of
modalities which behave like (dependent) right adjoints [Bir+20]. This proves to be
a rich class of modalities, allowing encodings of type theories for guarded recursion,
internal parametricity, axiomatic cohesion, etc.

1.1. MTT. We briefly recall some of details of MTT. For a full account, see the
extended submission on MTT [Gra+21]. As mentioned, MTT is parameterized by
a collection of modalities. Formally, MTT is defined over a mode theory [LS16]: a
strict 2-category whose objects represent modes, while 1-cells determine modalities
and 2-cells natural transformations between them.

Given a mode theory M, each mode m :M determines a mode in MTT. Each
mode behaves somewhat like its own type theory. There are separate judgments
for each mode Γ cx@m, Γ ⊢ A@m, and Γ ⊢ M : A@m and types in mode m
are closed under the standard connectives in Martin-Löf type theory (dependent
products, sums, booleans, an intensional identity type, and a universe).

Different modes only interact through modalities. Given a morphism µ : n m,
there is an induced modality ⟨µ | −⟩ in MTT which sends types from mode n to
mode m. This modality behaves like a right adjoint [Bir+20], whose left adjoint
is given an action only on contexts −.{µ}.1 This operation is a proper functor
between context categories, with an induced action on substitutions γ.{µ}. As the
left adjoint, −.{µ} sends context from mode m to mode n. This left adjoint is used
to give the formation and introduction rules for MTT by transposition:

Γ.{µ} ⊢ A@n

Γ ⊢ ⟨µ | A⟩@m

Γ.{µ} ⊢M : A@n

Γ ⊢ modµ(M) : ⟨µ | A⟩@m

Two questions remain: how does one eliminate an element of ⟨µ | A⟩ and how
can one use a context of the form Γ.{µ}. While related modal type theories solve
both issues through defining the elimination rule to be transposition in the opposite
direction, this causes issues for the substitution property. Instead, MTT employs an
alternative approach. First, variables in the context is annotated with a modality:

Γ cx@m Γ.{µ} ⊢ A@n

Γ.(µ | A) cx@m

These modal annotations are used to determine when a variable can be accessed;
a variable annotated with µ can be accessed precisely when it is behind −.{µ}:

Γ.(µ | A).{µ} ⊢ v0 : A[↑.{µ}] @m

Next, the elimination rule for ⟨µ | −⟩ is used to bridge the gap between a variable
annotated with ν◦µ of type A and a variable annotated with ν of type ⟨µ | A⟩. There
is a canonical substitution Γ.(ν ◦ µ | A) Γ.(ν | ⟨µ | A⟩), but a priori no map in
the reverse direction. While we do not provide an inverse outright, the elimination

1Other presentations of MTT and Fitch-style modal type theories write −.µµ for this action,

but we find −.{µ} more uniform and less cumbersome.

NORMALIZATION FOR MULTIMODAL TYPE THEORY 3

rule ensures that these two contexts are isomorphic “from the perspective of a
type”. Semantically, one ensures that display maps are weakly right orthogonal to
this map, but more concretely we add the following elimination principle:

ν : o n µ : n m
Γ cx@m Γ.{µ}.{ν} ⊢ A@ o Γ.(µ | ⟨ν | A⟩) ⊢ B@m

Γ.{µ} ⊢M0 : ⟨ν | A⟩@n Γ.(µ ◦ ν | A) ⊢M1 : B[↑.modν(v0)]@m

Γ ⊢ letµ modν()←M0 in M1 : B[id.M0] @m

Finally, the interactions between modalities are codified by organizing the collec-
tion of functors −.{−} into a single 2-functor out ofMcoop. Concretely, this ensures
that there is a substitution Γ.{µ} ⊢ {α}Γ : Γ.{ν}@m for each 2-cell α : ν µ and
that a variety of functoriality equations hold e.g.:

Γ.{µ ◦ ν} = Γ.{µ}.{ν} cx@ o Γ.{idm} = Γ cx@m

2-functoriality is sufficient to ensure that the modal types organize into a weak
2-functor, with type-theoretic equivalences between e.g., ⟨idm | A⟩ and A.

1.2. Normalization for MTT. Returning to the criterion for a framework for
modal dependent type theories, Gratzer, Kavvos, Nuyts, and Birkedal [Gra+21]
showed that MTT enjoys substantial metatheoretic properties. In particular, every
instantiation of MTT is sound and enjoys a canonicity result. Both of these results
are proven semantically, taking advantage of the fact that an instantiation of MTT
comes equipped with a well-behaved class of models in which syntax is initial.
Notably, however, they stopped short of showing that MTT enjoys a normalization
result, and the lack of such a result precludes a general approach to implementing
instantiations of MTT.

Here, we rectify the situation and show that MTT admits a normalization result.
As a corollary, conversion in MTT is decidable when equality of modalities and 2-
cells is decidable. This result paves the way for an implementation of MTT which
does not necessitate a full reimplementation for each tweak of the modalities.

Normalization results for dependent type theories are typically involved affairs,
requiring the construction of a sophisticated PER model, families of logical rela-
tions, and other technical constructions. For this proof, however, we adapt recent
gluing arguments for normalization to give a concise and detailed proof [AHS95;
AK16; Coq19; Fio02; Ste21].

While the literature contains a large number of modal dependent type theories,
very few are proven to enjoy normalization. Of these, the most closely related
is MLTTµ [GSB19a]. This is a type theory extending MLTT with an idempo-
tent comonad. However, compared to the normalization proof of MLTTµ given by
Gratzer, Sterling, and Birkedal [GSB19a], this result is significantly shorter and
more conceptual.2 Furthermore, the result for MTT applies to a wide variety of
modal situations, including modal type theory with an idempotent comonad.

1.3. Proof outline. In broad strokes, the proof of normalization forMTT proceeds
in several stages. First, we introduce the technical device of MTT cosmoi in Sec-
tion 3. An MTT cosmos is a more flexible version of the models of MTT originally
described. In particular, cosmoi are only required to be locally Cartesian closed, so

2As a crude measurement, the proof of normalization for MLTTµ occupies the bulk of the ac-

companying 90 page technical report [GSB19b]. The proof of normalization for MTT, by contrast,
takes approximately 25 pages to present with more detail.

4 DANIEL GRATZER

that there is no ‘fiberwise representability’ requirement, and morphisms between
models are only required to preserve several structures up to isomorphism. This
definition of model is more closely related to the presentations of type theories as
representable map categories [Uem19] or locally Cartesian closed categories [GS20].
This flexibility is essential for the application of synthetic Tait computability and
allows us to avoid tedious calculations.

Remark 1. We emphasize, however, this change of categories is a technical detail of
the proof: the normalization function is defined on the stricter syntax constituting
an initial object of the CwF models as originally defined rather than the initial
object of the category of cosmoi. While it is more work to obtain a normalization
result of this form, it ensures that one does not need to accept the initial MTT
cosmos as syntax; such acceptance would require a leap of faith, because there is no
adequacy result for MTT cosmoi corresponding those proven by Uemura [Uem19]
and Gratzer and Sterling [GS20]. Such an adequacy result is difficult to formulate
for MTT cosmoi because of the lack of established modal logical frameworks.

In Section 4 we introduce the necessary mathematics to generalize synthetic
Tait computability (STC) from working internally to a single gluing category to
applying to a collection of gluing categories interconnected by functors and natu-
ral transformations. In particular, we show that one may work internally to this
network of categories in MTT, using MTT modalities to pass between gluing cate-
gories. We also show that the fibered modalities available in each gluing category
commute with modalities already present in MTT, a crucial result for constructing
the normalization model.

With this framework in place, Section 5 and Section 6 define the basic objects of
the normalization model: renamings, normal and neutral forms, etc. In particular,
Section 6 defines the gluing categories used for normalization, along with the func-
tors between them. This portion of the proof proceeds with minimal alternations
from a standard proof of normalization for MLTT. The only changes are to account
for multiple modalities, and this change is mostly one of book-keeping. One nov-
elty of Section 5 is the usage of a non-free presentation of renamings. By allowing
renamings to enjoy non-trivial equations, we vastly simplify the development. As a
consequence of this decision, we only must show that the action of a renaming on
a normal form respects these equations — a straightforward calculation.

The actual construction of the normalization model, and the heart of the proof,
takes place in Section 7. In particular, we define an MTT cosmos of glued categories
together with the reify and reflect maps needed to define the normalization function.
Those familiar with proofs of normalization by gluing, and in particular with those
given by STC will find much of the construction familiar. The central challenge is
the construction of modal types in the normalization model (Lemma 7.6), and in
particular the construction of the modal elimination law. Other connectives which
do not interact with modalities (booleans, universes, dependent sums, etc.) can be
constructed in this multimodal setting with no alteration.

Finally, the normalization function is extracted from this model in Section 8.
Taking advantage of the fact that this proof is constructive, we also observe that
the normalization function is effective. This uses a novel approach to derive a nor-
malization result for strict syntax, rather than the initial MTT cosmos. Using these
results, we establish several other corollaries such as the decidability of equality and
the injectivity of type-constructors.

NORMALIZATION FOR MULTIMODAL TYPE THEORY 5

2. Normalization via Synthetic Tait Computability

The proof of normalization for MTT follows from a systematic generalization
of Synthetic Tait Computability (STC) to multimodal type theories. While a full
introduction of the theory of STC is beyond the scope of this work, given that
a comprehensive account has not yet emerged3 we give a short summary of the
key ideas here. We focus in particular on proving normalization via STC. Other
descriptions of STC are given by Sterling and Harper [SH21], Sterling and Gratzer
[SG20], and Sterling and Angiuli [SA21].

Prior to discussing STC, we remark that in the process of embracing STC we
are naturally led to a number of ideas which are not intrinsically categorical but
still crucial to the concision of the proof.

• Our normalization proof is reduction-free, and
• the algorithm works only over equivalences classes of well-typed terms.

More explicitly, our proof is reduction-free in that it does not proceed by fixing a
rewriting system presenting the equational theory which we then prove to be conflu-
ent and strongly normalizing. This avoids the thorny issue of finding an rewriting
system which faithfully presents the equational theory of MTT—the inclusion of
η-laws for dependent sums greatly complicates such a task.

To the second point, working with terms only up to definitional equality obviates
the need for a separate proof of completeness of the normalization algorithm. More
than this, it is also a necessary step to treating MTT categorically; without this
quotienting, the category of contexts is not even a category. Similarly, the universal
properties of various connectives of MTT are crucially leveraged to simplify aspects
of the normalization proof, but these universal properties only come into being after
taking terms up to definitional equality.

2.1. Normalization by gluing. Proving normalization via STC involves working
internally to a particular glued category. This idea branches off the observation that
that logical relations arguments could be systematically recast as the construction
of a model of type theory in a Freyd cover or Sierpinski cone (scone) [MS93]. This
is a special case of the more general gluing construction:

Definition 2.1. Given a functor F : C D, the gluing category Gl(F) is the
comma category (idD ↓ F). Explicitly, objects are triples (D,C, f : D F (C))
and morphisms are commuting squares between them.

Definition 2.2. Given a category C, The Sierpinski cone S(C) is Gl([1C ,−]C).

To a rough approximation, a logical relation can be seen as an assignment of
types to predicates on their closed terms. Taking T to be the category of contexts
and substitutions between them and blurring the distinction between contexts and
types as is often done in the simply-typed case, this is more or less the content of
an object of S(T); a triple (S,A, f : S [1, A]) can be viewed as a predicate on
the closed elements of A with P (a) = f−1(a). Notice that the correspondence is
imperfect because there may be multiple distinct elements in the fiber P (a). In fact,
f−1(−) determines a proof-relevant predicate on closed elements of A. This can be
fixed by cutting S(T) down to consist of objects (S,A, f : S [1, A]), but this is
both less categorically natural and, as we shall see in later, counterproductive.

3We hope that the forthcoming work of Sterling [Ste21] will serve this role

6 DANIEL GRATZER

What makes this shift in perspective so useful is the remarkable ability of S(C) to
seemingly inherit all the structure of C in such a way that the projection S(C) C
preserves this structure. For instance, if C is Cartesian closed, then so too is S(C)
and the projection preserves all this structure. In fact, an explicit construction of
e.g., the exponential in S(C) yields almost precisely the standard construction of
the logical relation at function type. The benefit of relying on such technology,
however, is that one can typically avoid these explicit calculations; once it is known
that S(C) is Cartesian closed, canonicity at ground type can be proven without ever
needing to explicitly calculate the construction of exponentials.

The correspondence between logical relations and gluing was pushed further in
multiple directions [Alt+01; AHS95; Fio02; Str98]. In particular, the insistence of
logical relations of closed terms of a type can be relaxed by switching to a different
comma category. We are interested in proving normalization, emphatically not a
result solely concerned with closed terms.

Accordingly, rather than considering a model in S(C), we will consider a glued
category valued in presheaves over renamings. It is perhaps more natural to expect
one to examine presheaves over contexts: after all, terms organize into a presheaf
over arbitrary contexts and substitutions, with substitution giving rise to the rein-
dexing action of the presheaf. One would then consider a model in Gl(y); the
category given by gluing along the Yoneda embedding.

The first attempts at categorical proofs of normalization constructed models in
Gl(y), so that one considered predicates not on the closed terms of type A, but
over the family ([Γ, A])Γ. The presheaf condition corresponds to the monotonic-
ity conditions familiar to all Kripke logical relations, but in particular those for
normalization. Unfortunately, these presheaf conditions are too onerous to view
normal forms as a presheaf on contexts — normal forms are never stable under all
substitutions — so that the resultant normalization function is given as a map from
terms to terms and indistinguishable from the identity function on terms.

This can be rectified taking presheaves over the wide subcategory of renamings
R ⊆ T. By cutting down the substitutions allowed between contexts, normal
forms may be organized into an object of PSh(R) [AHS95; Fio02]. Accordingly,
normalization proceeds not by gluing along the Yoneda lemma as still repeated
in literature, but by gluing along a restriction of the Yoneda lemma, the nerve
n : T PSh(R). Unlike canonicity, it is insufficient to simply construct a model
of T inGl(n), extra structure is required which ‘sandwiches’ the predicate for a type
A between the neutral and normal forms of A, so that the following commutative
diagram exists in PSh(R):

(1) NeA PA NfA

n(A)

↑A ↓A

The top two maps of this diagram are categorical realizations of the reflect and
reify maps found in normalization-by-evaluation [Abe13] and are used to extract the
normalization function. In the simply-typed case, these maps can be constructed
by induction after the fact, but in the dependently-typed setting this approach does
not scale and the two must be constructed simultaneously. Accordingly, we require

NORMALIZATION FOR MULTIMODAL TYPE THEORY 7

a type in our glued model to be not just a proof-relevant predicate PA over n(A),
but a triple of (PA, ↑A, ↓A) [AHS95; Fio02].

One final remark is needed prior to the introduction of STC. Thus far we have
limited consideration to simply-typed languages. The full utility of proof-relevance
only becomes apparent when considering dependent type theory with universes.
In these cases, it becomes necessary to associate with an element of a universe
not merely a proposition (computable or not computable) but to instead pair an
element with the computability data of a type again. This is beautifully handled
by the proof-relevance of predicates: the predicate on universes at A : U contains
choices of computability data over El(A) as witnesses [Coq19; Shu15].

2.2. Synthetic Tait Computability. Finally, we now turn to Synthetic Tait
Computability. STC builds on the idea of working with glued categories, but in-
stead of gluing together locally Cartesian closed categories presenting dependent
type theories [GS20], STC is concerned with topoi. Suppose T presents a type
theory, and R ⊆ T is the subcategory of renamings. Rather than gluing together
the locally Cartesian closed categories T and PSh(R) along n, we instead glue
together PSh(T) and PSh(R) along the inverse image of the essentially geometric
morphism induced by the inclusion i : R T. As topoi are closed under gluing,
the resultant glued category Gl(i) is a topos. In fact, by a standard result [AGV72;
CJ95] it is a presheaf topos.

As a result, Gl(i) supports a model of extensional Martin-Löf type theory with
a hierarchy of cumulative universes. Inside this type theory, two fibered modalities,
and , allow us to recover PSh(T) and PSh(R) inside of Gl(i). By relaxing the
definition of a model of Martin-Löf type theory to non-representability universes
moreover, we may specify and construct the glued model purely internally to Gl(i).

This internal approach offers a significant improvement over previous proofs of
gluing for dependent type theory [Coq19; KHS19] which work externally and incur
what Sterling [Ste21] has referred to as an ‘avalanche’ of naturality obligations. As
we shall see in Section 7, these tedious calculations are replaced with programming
exercises in extensional type theory (or MTT in our case). In particular, a model
lying over the model in PSh(T) corresponds to a series of constants subject to the
requirement that they are sent by # to the constants defining the model in PSh(T).

We refer to the internal type theory of Gl(i)—extensional type theory with
cumulative universes, two fibered modalities, and a few axioms governing their
behavior—as the language of Synthetic Tait Computability.

3. MTT Cosmoi

While the basic theory of models of MTT is detailed by Gratzer, Kavvos, Nuyts,
and Birkedal [Gra+21], we generalize to locally Cartesian closed categories. This
change, inspired by Gratzer and Sterling [GS20], is crucial to actually carrying
out the normalization theorem as it removes representability requirements from the
universes of types and terms. These prove superfluous for the theorem, and forcing
the glued model to satisfy them is both unnatural and surprisingly challenging.

Remark 2. Henceforth, we shall consider MTT over a fixed mode theoryM.

Definition 3.1 (Definition 18 [Awo18]). An internal lifting structure s : i ⋔ τ
between a pair of morphisms i : A B and τ : X Y is a section of canonical
map XB Y B ×Y A XA.

8 DANIEL GRATZER

Definition 3.2. The 2-categoryCatg consists of small categories, functors between
them, and invertible natural transformations.

Definition 3.3. The locally full 2-subcategory V of [M,Catg] is spanned by pseud-
ofunctors F enjoying the following two properties:

• For each m :M, F (m) is a locally Cartesian closed category.
• For each µ : n m, F (µ) is a right adjoint.

Note that we do not require that F (µ) preserves the locally Cartesian closed struc-
ture of F (m). We write F (µ)! for the left adjoint of F (µ).

Definition 3.4. An object F : V is an MTT cosmos when equipped with the
following structure:

(1) In F (m), there is a universe τm : Ṫm Tm with a choice of codes witnessing
its closure under dependent sums, identity types, and booleans. Addition-
ally, there is a choice of code making τm closed under modal dependent
products: a code for Pfµ(τn)(τm) for each µ : n m.

(2) For each µ, there exists a chosen commuting square

(2)

F (µ)(Ṫn)

F (µ)(Tn)

Ṫm

Tm
Mod

(3) For each µ : n m and ν : o n, there is a chosen lifting structure

F (µ)(m) ⋔ F (µ ◦ ν)(To) × τm, where m : F (ν)(Ṫo) F (ν)(To)×Tn
Ṫn is

the comparison map induced by Diagram 2.
(4) τm contains a subuniverse also closed under all these connectives.

To a first approximation, anMTT cosmos is a standard model of MTT formulated
in the language in natural models without the requirements that the universes be
legitimate representable natural transformations. By expanding the class of models
in this way, we make it far easier to construct the glued model in Section 7.

Remark 3. In order to simplify matters, we assume MTT has only a weak universe
à la Tarski. Concretely, there exists a universe U and a decoding operation El(−)
just as in Gratzer, Kavvos, Nuyts, and Birkedal [Gra+21]. Unlike the original
presentation of MTT however, we only obtain a chosen isomorphism between each
connective and its decoded code e.g. dec�(−) : El((µ | A) →̂ B) ∼= (µ | El(A)) →
El(B).

Recent unpublished work by Gratzer and Sterling has shown that Synthetic Tait
Computability [Ste21] can be strengthened to accommodate stricter universes, and
can be applied to the following without issue. We remark, however, that there is
experimental evidence that elaboration can be used to alleviate the tedium of these
weaker universes in practice [Red20].

Definition 3.5. A morphism between MTT-structured cosmoi α : F G is a
pseudonatural transformation α such that αm is an LCCC functor and preserves
all connectives strictly. Furthermore, given µ : n m we require that there is a

NORMALIZATION FOR MULTIMODAL TYPE THEORY 9

natural isomorphism βµ : αn ◦ F (µ)! ∼= G(µ)! ◦ αm commuting with transposition.
Precisely, if a : X F (µ)(Y) : F (m) the transposition of αµ◦αm(a) is αn(â)◦β−1

µ .

Theorem 3.6. Any strict model of MTT induces a cosmos by passing to (small)
presheaves over the categories of contexts. In particular, the initial model of MTT
induces a cosmos which we denote SJ−K.

Theorem 3.7 (Quasi-projectivity). Given an arbitrary MTT cosmos G and a map
of cosmoi π : G SJ−K, the following holds:

(1) For every context Γ cx@m, there exists an object JΓK : G(m), together with
a canonical isomorphism αΓ : π(JΓK) ∼= y(Γ).

(2) For every type Γ ⊢ A@m, there is a morphism JAK : JΓK Tm such that
π(JAK) ◦ αΓ = ⌊A⌋.

(3) For every term Γ ⊢M : A@m, there is a morphism JMK : JΓK Ṫm lying
over JAK such that π(JMK) ◦ αΓ = ⌊M⌋.

In the above we have written ⌊−⌋ for one half of isomorphism induced by the Yoneda
lemma.

Remark 4. We have used ‘syntactic’ notation (Γ cx@m, Γ ⊢ M : A@m, etc.)
to denote the components of the initial cosmos SJ−K. This is a mere notational
convenience: we do not rely on the fact that SJ−K may be constructed out of
‘traditional’ syntax.

Remark 5. While we have proven Theorem 3.7 at this level of generality, we will
apply it only in the special case where π is a 2-natural transformation between strict
2-functors and the isomorphisms of left adjoints βµ are identities. The reader may
accordingly safely ignore these coherences when reading the proof of this Theorem
without serious consequence.

Proof. For clarity, we write Elm, Tym and Tmm instead of τm, Tm, and Ṫm in the
syntactic model, reserving the latter exclusively for G. We write JµK for the functor
sending Γ to Γ.{µ}. We may replace G by an equivalent strict 2-functor such that
π becomes strictly 2-natural, so we work under this assumption.

We construct a displayed model of MTT [KKA19] which lies over the syntactic
model. Using the existing coherence result for MTT, we only ensure that Γ.{µ}.{ν}
and Γ.{µ ◦ ν} agree up to pseudonatural isomorphism.

• Contexts in mode m are interpreted by triples (X : G(m),Γ, α : π(X) ∼=
y(Γ)).
• A type in a context (X,Γ, α) is a pair of (Ā : X Tm,Γ ⊢ A@m) such
that π(Ā) = ⌊A⌋ ◦ α.
• A term in a context (X,Γ, α) of type (A∗, A) is a pair of M∗ : X Ṫm
and Γ ⊢M : A@m such that τm ◦M∗ = A∗ and π(M∗) = ⌊M⌋ ◦ α.
• A substitution between (X,Γ, α) and (Y,∆, β) is a pair of f : X Y and
Γ ⊢ δ : ∆@m such that β ◦ π(f) = y(δ) ◦ α

Once this model is constructed, the result is a direct consequence of the initiality
of (strict) syntax. In fact, the construction of contexts, substitutions, terms, and
types is relatively routine owing to the fact that π is a 2-natural transformation,
preserves finite limits, and strictly commutes with all connectives. We show a few
cases to give a flavor for the procedure.

10 DANIEL GRATZER

The action of a modality on a context. Given a triple (X,Γ, α) at mode n and a
modality µ : n m, we define the ‘locked’ context to be the following:

(G(µ)!(X),Γ.{µ}, γ ◦ JµK!α ◦ βµ)

Here, βµ : π(G(µ)!(X)) ∼= JµK!(π(X)) is the isomorphism induced by the definition
of a morphism of cosmoi while γ : JµK!(y(Γ)) ∼= y(Γ.{µ}).

Context extension. Given a context (X,Γ, α) at modem, a modality µ : n m and
a type (A∗, A) in the context (G(µ)!(X),Γ.{µ}, β), we form the context extension

as the triple (X ×G(µ)(Tm) G(Ṫm),Γ.(µ | A), β), where β is the composite:

π(X ×G(µ)(Tm) G(µ)(Ṫm)) ∼= π(X)×JµK∗(Tym) JµK∗(Tmm) ∼= y(Γ.(µ | A))

The first isomorphism follows from the fact that π preserves finite limits, is strictly
2-natural, and strictly preserves τm while the second isomorphism is the universal
property of y(Γ.(µ | A)).

Modal types. Suppose we are given a context (X,Γ, α) and a type (A∗, A) in the
context (G(µ)!(µ)(X),Γ.{µ}, γ ◦ JµK∗(α) ◦ βµ). We form the modal type as

(Modµ(Â∗), ⟨µ | A⟩)

It remains to check that these types are coherent. That is, that

π(Modµ(Â∗)) = ⌊⟨µ | A⟩⌋ ◦ α

By assumption, π(A∗) = ⌊A⌋◦γ ◦JµK∗(α)◦βµ. By our assumption that π commutes

with transposition, π(Â∗) = ⌊̂A⌋ ◦ γ ◦ α. The result follows from the fact that π
preserves Mod. □

3.1. An initial cosmos. While the following material is not strictly necessary for
our proof of normalization, we record it for general interest.

Theorem 3.8. The category of MTT cosmoi can be sketched over V.

Proof. First we show that V is 2-monadic over [|M|,Catg]. This follows directly
from the fact that locally Cartesian closure can be realized as a finitary 2-monad
on Catg [Lac09, Section 5.9] and pseudofunctors whose 1-cells are right adjoints
are finitarily 2-monadic over [|M|,Catg] [Lac09, Section 5.9]. Combining the op-
erations and equations shows V is finitarily 2-monadic over [|M|,Catg].

The constants and equations of MTT-cosmoi are sketchable over this 2-monad
following the work of Kinoshita, Power, and Takeyama [KPT99]. □

Corollary 3.9. The category of MTT-cosmoi has a bi-initial object IJ−K.

4. Foundations of multimodal Synthetic Tait Computability

Eventually, we will wish to work with a collection of models of Synthetic Tait
Computability (STC), connected by a variety of adjunctions. In order for this
to work, however, we need to show that adjunctions between various categories
lift to adjunctions between glued categories. The main result of this section is
Theorem 4.13, which states that a collection of glued categories interconnected by
right adjoints supports a model of “multimodal” STC.

NORMALIZATION FOR MULTIMODAL TYPE THEORY 11

Theorem 4.1. Suppose we are given lex functors ρi : Sh(Xi) Sh(Yi) and a
2-cell α witnessing the weak commutativity of the following diagram:

Sh(X0)

Sh(X1)

f∗

Sh(Y0)

Sh(Y1)

ρ0

g∗

ρ1

Then there is an induced morphism [f, g] : Gl(ρ1) Gl(ρ0) such that [f, g] fits
into the following diagram:

Gl(ρ1)X1 Y1

Gl(ρ0)X0 Y0

Moreover, if both fringe functors ρi are continuous and f and g are essential, then
[f, g] is also essential.

Proof. Explicitly, [f, g]∗ sends F ρ0(E) to g∗(F) ρ1(f
∗(E)). The 2-cell α is

used to obtain this morphism by correcting g
(
F ρ0(E)

)
.

Colimits and finite limits are determined pointwise in Sh(Gl(ρi)), so [f, g]∗ pre-
serves them because f∗ and g∗ both do. If both ρi are continuous, then all limits
are determined pointwise, so [f, g] is essential if both f and g are. □

Theorem 4.2. Suppose that f and g are essential, then [f, g]! is a pointwise ap-
plication of f! and g!.

Proof. Explicitly, fix a morphism x : Y ρ0(X). We then define [f, g]!x to be
x̃ : g!(Y) ρ1(f!(X)), where x̃ = β ◦ g!(x) and β is the canonical natural transfor-
mation determined by the following series of transposes:

β ∈ [g! ◦ ρ1, ρ0 ◦ f!] ∼= [ρ1, g
∗ ◦ ρ0 ◦ f!]

∼= [ρ1, ρ1 ◦ f∗ ◦ f!] ∋ ρ1(η)

It remains to show that this defines an adjoint. We show that there is a bijection
[[f, g]!(x), x

′] ∼= [x, [f, g]∗(x′)]. Given that [f, g]! and [f, g]∗ are defined pointwise,
it suffices to show that the transpose operators for f! ⊣ f∗ and g! ⊣ g∗ lift.

Fix b : X f∗X ′ and a : Y g∗(Y ′) such that α ◦ g∗(x′) ◦ a = ρ1(b) ◦ x. We

wish to show that x′ ◦ â = ρ0(̂b) ◦ x̃.

ρ0(̂b) ◦ x̃ = ρ0(̂b) ◦ β ◦ g!(x)

= ρ0(̂b) ◦ ϵ ◦ g!(α−1 ◦ ρ1(η)) ◦ g!(x)

= ρ0(̂b) ◦ ϵ ◦ g!(α−1 ◦ ρ1(η) ◦ x)

= ϵ ◦ g!(g∗(ρ0(̂b)) ◦ α−1 ◦ ρ1(η) ◦ x)

= ϵ ◦ g!(α−1 ◦ ρ1(f∗(̂b)) ◦ ρ1(η) ◦ x)

12 DANIEL GRATZER

= ϵ ◦ g!(α−1 ◦ ρ1(b) ◦ x)
= ϵ ◦ g!(g∗(x′) ◦ a)
= x′ ◦ â

Next, b : f!(X) X ′ and a : g!(Y) Y ′ such that x′ ◦ a = ρ0(b) ◦ x̃. We wish

to show that α ◦ g∗(x′) ◦ â = ρ1(̂b) ◦ x.
α ◦ g∗(x′) ◦ â = α ◦ g∗(x′) ◦ g∗(a) ◦ η

= α ◦ g∗(x′ ◦ a) ◦ η
= α ◦ g∗(ρ0(b) ◦ x̃) ◦ η
= ρ1(f

∗(b)) ◦ α ◦ g∗(ϵ ◦ g!(α−1 ◦ ρ1(η) ◦ x)) ◦ η
= ρ1(f

∗(b)) ◦ α ◦ g∗(ϵ) ◦ η ◦ α−1 ◦ ρ1(η) ◦ x
= ρ1(f

∗(b)) ◦ ρ1(η) ◦ x

= ρ1(̂b) ◦ x □

It is natural to view Gl(ρi) as a topos with a subterminal object syni such
that the open subtopos corresponding to syni is equivalent to Xi, while the closed
subtopos is equivalent to Yi. For readability, we will identify these subtopoi with Xi

and Yi in what follows. Recall that the inverse image of the inclusion Xi Gl(ρi)
is given by −syni . The inverse image of Yi Gl(ρi) is given by − ⋆ syni, where
A ⋆ syni is the pushout A

∐
A×syni

syni.

4.1. Open and closed subtopoi. We now devote substantial effort to showing
that the decomposition of Gl(ρi) is preserved by [f, g].

Lemma 4.3. If A : Gl(ρ0) is contained in Sh(X0), then [f, g](A) : Sh(X1).

Proof. Observe that A is in the open subtopos Sh(X0) if A ∼= ρ0(E) ρ0(E), in
which case [f, g](A) ∼= ρ1(f(E)) ρ1(f(E)) which then lies in the open subtopos.

□

Lemma 4.4. If A : Sh(Gl(ρ0)) is contained in Sh(Y0), then [f, g](A) : Sh(Y1).

Proof. Again, observe that A : Sh(Y0) if A ∼= F ρ0(1Sh(X0)), in which case

[f, g]∗(A) ∼= g(F) ρ1(f(1Sh(X0)))
∼= g(F) ρ1(1Sh(X1))

This then lies in the closed subtopos of Gl(ρ1). □

In fact, a more general theorem is true. Reflecting an object into either subtopos
and applying [f, g] is (naturally) isomorphic to applying [f, g] and then reflecting.

Lemma 4.5. There is an isomorphism syn1 [f, g](syn0).

Proof. Unfolding definitions:

syn0 = 0Sh(Y0) ρ0(1Sh(X0))

syn1 = 0Sh(Y1) ρ1(1Sh(X1))

The result is immediate by computation. □

Corollary 4.6.

(1) [f, g](syn0)
∼= syn1

(2) [f, g](−syn0) ∼= ([f, g](−))syn1

NORMALIZATION FOR MULTIMODAL TYPE THEORY 13

(3) [f, g](syn0 ⋆−) ∼= syn1 ⋆ [f, g](−)

Remark 6. The last fact of Corollary 4.6 is a consequence of the first; ⋆ is preserved
by [f, g] because this functor is lex and cocontinuous and ⋆ is defined by finite
products and pushouts. Exponentiation, however, is not generally preserved by
[f, g]. It is a special fact of syn0 that exponentiation by syn0 is preserved.

As idempotent lex modalities, both of these actions internalize into the internal
type theory of the topoi. In particular, they have actions on a family given by
applying the operation to the entire family, then pulling back along the unit. This is
automatically preserved by [f, g]∗, as [f, g]∗ preserves each step in this construction.
We write # for the action of −syn0 on families, and for −⋆syn0. We will abusively
use the same notation for −syn0 and −syn1 as well as − ⋆ syn0 and − ⋆ syn1.

Theorem 4.7. Both # and are preserved by [f, g]∗

We would like to show a slightly stronger result, namely that the dependent
versions of these modalities are preserved [RSS20]. Prior to this, we must address
the question of universes and models of type theory in this situation.

As a morphism of logoi, we know that [f, g] is a cocontinuous left exact functor.
We would like to show that it induces a dependent right adjoint [Bir+20], but this
is complicated by the murky definition of a model of dependent type theory with
universes in an arbitrary logos. Accordingly, prove a theorem which is sufficient for
the case we have in mind.

Definition 4.8. A functor F : PSh(C) PSh(D) between presheaf categories
is said to preserve a Grothendieck universe U when it sends U-small families in
PSh(C) to U-small families in PSh(D).

Theorem 4.9. A right adjoint F : PSh(C) PSh(D) which preserves universes
larger than |C| and |D| induces a dependent right adjoint.

Remark 7. To be precise, we must specify the particular models of dependent type
theory we consider in PSh(C) and PSh(D). We take the model of type theory in
which a type is an element of the universe of small presheaves [HS97].

Proof. Fix a Grothendieck universe V which is large enough to contain both C and
D. We wish to show that F induces a weak CwF morphism. A type in PSh(C)
is given by a generalized element of TC , the Hofmann-Streicher universe of V-small
presheaves, so it suffices to show that there is a pullback square of the following
shape:

F (ṪC)

F (TC)

F (τC)

ṪD

TD

τD

Proving this is equivalent to showing that F (τC) is U-small because τD is generic for
such maps. This immediately defines a weak CwF morphism using the observation
that context extension in these models is defined by pullback. □

Theorem 4.10. A cocontinuous lex functor F : PSh(C) PSh(D) preserves a
Grothendieck universe U if and only if it restricts to a functor PShU (C) PShU (D).

14 DANIEL GRATZER

Proof. The only if direction is clear, so it remains to show that preserving U-objects
ensures that F preserves U-families. Fix a U-small family f : X Y : PSh(C).

First, we observe that F (Y) = colimi F (y(Ci)) using the canonical decomposition
of Y into colimits. By Yoneda, a morphism y(D) F (Y) then factors through
some F (y(Ci)), followed by F (⌊yi⌋) : F (y(Ci)) F (Y), so it suffices to show that
the pullback of F (f) to F (y(Ci)) is a small family.

As F (f) and F (⌊yi⌋) are both in the image of F , this pullback can be computed
in PSh(C). Therefore, we must show that F (X ×Y y(Ci)) F (y(Ci)) is a small
family. Using the assumption that f was a small family, we observe thatX×Y y(Ci)
is a small object, so F (X ×Y y(Ci)) is U-small. Therefore, this family is a small
family, completing the proof. □

While these results are limited to presheaf topoi, they are sufficient for our
purposes; we are interested in gluing together presheaf topoi along a continuous
functor. The following result shows that the resultant topos is of presheaf type:

Theorem 4.11 (Artin, Grothendieck, and Verdier [AGV72] and Carboni and John-
stone [CJ95]). Gluing together presheaf topoi along a continuous functor results in
a presheaf topos.

Remark 8. Given two presentations of the presheaf logoi with base categories C and
D, the base of the gluing category is the collage C ⋆D. The collection of objects of
C ⋆D is the disjoint union of those of C and D. The morphisms of this category are
specified as follows:

[c, c′]C⋆D = [c, c′]C

[d, d′]C⋆D = [d, d′]D

[c, d]C⋆D = [F (c), d]

[d, c]C⋆D = ∅
Motivated by this, we now assume that Ei and Fi are all presheaf logoi, and all

morphisms involved preserve all Grothendieck universes larger than U . In this case,
we may then pick a Grothendieck universe U large enough to be preserved by both
f and g and so the bases of Gl(ρ1) and Gl(ρ1) are small for this universe. In this
case, [f, g] is a DRA which preserves all universes larger than U .

We now show that [f, g] preserves the dependent version of # and .

Theorem 4.12. [f, g]∗ preserves #̂ and ̂ on any universe preserved by [f, g]∗.

Proof. We will show this for #̂, though the proof is identical for ̂ and indeed for
any lex modality preserved by [f, g].

Let us pick some universe U large enough to be preserved by [f, g] and write

τ0 : Ṫ0 T0 for the Hofmann-Streicher universe it induces in Sh(Gl(ρ0)) and

τ1 : Ṫ1 T1 for the Hofmann-Streicher universe in Sh(Gl(ρ1)). By assumption,
we have a pullback squares

[f, g]∗Ṫ0

[f, g]∗T0

[f, g]∗τ0

Ṫ1

T1

τ1

i

#Ṫi

#Ti

#τi

Ṫi

Ti

τi

#̂

NORMALIZATION FOR MULTIMODAL TYPE THEORY 15

Finally, we note that [f, g]∗ preserves #, meaning that there is a natural isomor-
phism α : [f, g]∗ ◦# # ◦ [f, g]∗.

We may now rephrase: our goal is to show that i ◦ [f, g]∗(#̂) and #̂ ◦ #i ◦ α
represent the same type. First, compute the type represented by #̂ ◦#i ◦ α:

[f, g]∗#Ṫ0 #Ṫ1 Ṫ1

[f, g]∗#T0 #T1 T1
#i ◦ α #̂

The left-hand square is a pullback because # is lex. Next, we compute i◦ [f, g]∗(#̂):

[f, g]∗#Ṫ0 [f, g]∗Ṫ1 Ṫ1

[f, g]∗#T0 [f, g]∗T1 T1
[f, g]∗#̂ i

The left-hand square is now a pullback because [f, g]∗ is lex. □

4.2. Interpreting MTT in glued topoi. The results of the previous subsection
show that [f, g] preserves the open and closed modalities of a glued topos. As a
dependent right adjoint, moreover, [f, g] can be internalized into a model of MTT.
It is this model of MTT that we use to substantiate the language of ‘multimodal’
synthetic Tait computability.

Theorem 4.13. Fix a 2-category M and a 2-natural transformation α between a
pair of 2-functors J−K0, J−K1 :Mop Cat such that both 2-functors assigns 0-cells
to presheaf topoi and 1-cells to essential geometric morphisms between them. There
exists a model of MTT with M such that mode m is given by Gl(JαmK∗) and the
modality µ is interpreted by [JµK∗0, JµK∗1].

Furthermore, each mode has an open and closed modality preserved by the MTT
modalities such that the open (resp. closed) subtopos of mode m is equivalent to
JmK0, (resp. JmK1).

In this model, each mode supports a model of synthetic Tait computability and
the extra structure of this language (the open and closed modalities) is preserved
by the modalities between modes.

5. The category of renamings for MTT

We now isolate a class of renamings: Renm. We also define the neutral and
normal forms of terms in MTT. Unlike the syntax of MTT, neutral and normal
forms are not taken up to a complex equivalence relation, and so their conversion
problem is immediately reducible to conversion in the mode theory.

The judgments for these are slightly atypical, in that the typing judgments for
both neutral and normal forms are defined (1) with formal telescopes as contexts
and (2) inductive-recursively with the inclusion of neutral and normals into terms,

16 DANIEL GRATZER

and renamings into contexts and substitutions. This dependence of the unquo-
tiented raw syntax on actual terms is necessary in order to ensure that the typing
relation can be sensibly defined.

The full collection of neutral and normal forms is given in Appendix A. We
present a few representative cases below.

Θ tele@m⇝ Γ Θ ⊢ ψ : Ψ@m⇝ γ

Θ tele@m⇝ Γ

Θ.{µ} tele@n⇝ Γ.{µ}
Γ,∆ tele@m⇝ Θ,Ψ Θ ⊢ r : Ψ@m⇝ δ

Θ.{µ} ⊢ r.{µ} : Ψ.{µ}@n⇝ δ.{µ}

Θ tele@m⇝ Γ µ, ν : n m α : ν µ

Θ.{µ} ⊢ {α}Θ : Θ.{ν}@n⇝ {α}Γ

Θ ⊢nf τ @m⇝ A

Θ ⊢nf τ @n⇝ A Θ.(idm | A) ⊢nf σ@m⇝ B

Θ ⊢nf τ × σ@m⇝ A×B
Θ.{µ} ⊢nf τ @n⇝ A

Θ ⊢nf ⟨µ | τ⟩@m⇝ ⟨µ | A⟩

Θ tele@m⇝ Γ Θ ⊢nf u : U@m⇝ A

Θ ⊢nf El(u)@m⇝ A

Θ ⊢ne e : A@m⇝M Θ ⊢nf u : A@m⇝M

Θ tele@m⇝ Γ Θ(k) = (µ | A) mods(Θ, k) = ν α : µ ν

Θ ⊢ne vα
k : A[{α} ◦ (↑.{νk−1}) · · · ◦ (↑.{ν0})]@m⇝ v0[{α} ◦ (↑.{νk−1}) · · · ◦ (↑.{ν0})]

Θ tele@m⇝ Γ Γ.{µ} ⊢ A@n Γ.(µ | A) ⊢ B@m
Θ.(µ | A) ⊢nf u : B@m⇝M

Θ ⊢nf λ(u) : (µ | A)→ B@m⇝ λ(M)

Θ tele@m⇝ Γ Γ.{µ} ⊢ A@n Γ.(µ | A) ⊢ B@m
Θ ⊢ne e : (µ | A)→ B@m⇝M Θ ⊢nf u : A@m⇝ N

Θ ⊢ne e(u) : B[id.N] @m⇝M(N)

Θ tele@m⇝ Γ Γ.{µ} ⊢ A@n Θ.{µ} ⊢nf u : A@n⇝M

Θ ⊢nf modµ(u) : ⟨µ | A⟩@m⇝ modµ(M)

Θ tele@m⇝ Γ Γ.{µ} ⊢ A@n Θ ⊢ne e : ⟨µ | A⟩@m⇝M

Θ ⊢nf up(e) : ⟨µ | A⟩@m⇝M

ν : o n µ : n m
Θ tele@m⇝ Γ Γ.{µ}.{ν} ⊢ A@ o Θ.{µ} ⊢ne u : ⟨ν | A⟩@n⇝M

Θ.(µ | ⟨ν | A⟩) ⊢nf τ @m⇝ B Θ.(µ ◦ ν | A) ⊢nf u : B[↑.modν(v0)]@m⇝

Θ ⊢ne letmod(µ; ν; τ ; e;u) : B[id.M] @m⇝ letν modµ()←M in N

NORMALIZATION FOR MULTIMODAL TYPE THEORY 17

Θ tele@m⇝ Γ Θ ⊢ne e : El(b̂ool)@m⇝M

Θ ⊢ne dec�(e) : bool@m⇝ dec�(M)

Θ tele@m⇝ Γ Θ ⊢nf u : bool@m⇝M

Θ ⊢nf dec�(u) : El(b̂ool)@m⇝ dec�(M)

There are no equations imposed on any of these generators, except for renamings
which have the necessary equations to organize them into a 2-functor into Cat. We
further define a substitution action applying a renaming to a normal or neutral form,
which we must show respects these equations. This operation and its pertinent
proofs are largely standard, with the exception being the case for variables. We
reproduce the definition of the substitution action on variables here:

vα
k [id] = vα

k

vα
k [↑.{µ}] = vα

k+1

vα
k [r.v

β
j .{µ}] =

{
v
(β ⋆ idµ)◦α
j k = 0

vα
k−1[r.{µ}] otherwise

vα
k [(r ◦ s).{µ}] = vα

k [r.{µ}][s.{µ}]

vα
k [{β}Θ] = vα◦β

k

Remark 9. Note that these normal forms do not necessarily enjoy decidable equality.
Rather, the problem of deciding when two normal forms are convertible is precisely
the problem of deciding whether certain 1- and 2-cells of the mode theory M are
equal. Accordingly, it is possible that MTT may enjoy normalization, but not
decidable type-checking. The mode theories used in instantiations of MTT thus far
are evidently decidable, so we do not expect this to be an issue for practical usage.

6. Prerequisites for the normalization model

6.1. Key syntactic categories. Recall from Section 5 that for each mode there
is a category Renm of telescopes and renamings, together with a functor i[m] :
Renm Cxm which sends a telescope the corresponding context and formal re-
naming to substitution. The collection of these functors induces a natural trans-
formation between the 2-functors Cx−,Ren− :Mcoop Cat.

The functor i[m] induces a functor i[m]∗ : PSh(Cxm) PSh(Renm). More-
over, because PSh(−) preserves strict equalities, this gives rise to a 2-functor
M×∆1 Cat. As a morphism defined by precomposition each i[m]∗ has a left
adjoint and a right adjoint: i[m]! ⊣ i[m]∗ ⊣ i[m]∗. The left adjoint extends i[m] in
the sense that i[m]!(y(Θ)) ∼= y(i[m](Θ)). We may now apply Theorem 4.13.

Theorem 6.1. There exist a model GJ−K of MTT with a hierarchy of cumulative
universes in Gl(i[m]∗).

In this model, GJmK is Gl(i[m]∗), and GJµK is interpreted by precomposition
with µ in both components. Furthermore, there is a (dependent) open and closed
modality in GJmK, preserved by all modalities.

In what follows, we will freely use MTT to work with this model. As the inter-
pretation of identity types in this model supports equality reflection, we will work
with extensional equality when reasoning with MTT.

18 DANIEL GRATZER

6.2. Basic properties of GJmK. The MTT modalities in this model are particu-
larly well-behaved because the arise from the inverse image of essential geometric
morphisms. In particular, they preserve colimits internally to the theory.

Theorem 6.2. For each µ there is an equivalence ⟨µ | A+B⟩ ≃ ⟨µ | A⟩+ ⟨µ | B⟩.

Proof. Recall that each modality in this model is interpreted by a morphism which
is simultaneously a left and right adjoint. Therefore, this model can be extended
to the mode theoryMadj, which extendsM by adding a right adjoint µ̄ for each µ
fromM [Gra+21, Section 10.2].

The crisp induction principles derived in Gratzer, Kavvos, Nuyts, and Birkedal
[Gra+21, Section 10.5] now show that ⟨µ | −⟩ preserves coproducts internally with
this extended mode theory, so the equivalence is validated by the model from The-
orem 6.1 (though is no longer internally derivable). □

Remark 10. We note that this model of MTT enjoys Γ.(µ ◦ ν | A) ∼= Γ.(µ | ⟨ν | A⟩):
the modalities are interpreted by proper dependent right adjoints. We therefore
blur the distinction between a variable (µ | x : A) and a variable (id | x : ⟨µ | A⟩).

Notation 6.3. It’s convenient to recall that # is defined by exponentiation with
a subterminal (a proposition) syn. We accordingly write #z:synA(z).

Remark 11. Strictly speaking, syn should contain a mode annotation. However,
⟨µ | synn⟩ ∼= synm, and as both are subterminal we identify synm and ⟨µ | synn⟩.

Finally, we note also that # and enjoy two important properties:

Theorem 6.4 (Fracture [AGV72]). For any type A we have A ∼= #A× #A A.

Theorem 6.5 (Internal realignment [OP18; SH21]). Let us denote the type of types
isomorphic to A as Iso(A):

Iso(A) =
∑

B:U(A
∼= B)

There is a section re to η : Iso(A) #Iso(A).

Remark 12. The following constructive proof is due to Christian Sattler.

Proof. This follows directly from the argument given by Orton and Pitts [OP18,
Theorem 8.4]. It suffices to show that syn is levelwise decidable externally. This is
immediate when we unfold the presentation of GJmK as a presheaf topos.

Explicitly, Carboni and Johnstone [CJ95] show that GJmK can be presented
as PSh(Coll([−, i[m](−)])). While the precise definition of Coll([−, i[m](−)]) is
given by Carboni and Johnstone [CJ95], for our purposes it suffices to recall that
the collection of objects of this collage is the disjoint union of the objects of Cxm
and Renm. Under this presentation moreover, syn can be defined as follows:

syn(Θ) = ∅ syn(Γ) = {⋆}

The levelwise decidability of syn is then immediate. □

In anticipation of using this model of MTT to construct the normalization model
in the next section, we also introduce several constants interpreted by specific
presheaves in GJmK.

Definition 6.6. There is a constant ⊢ Tym : #U@m in GJmK given by Tm.

NORMALIZATION FOR MULTIMODAL TYPE THEORY 19

Definition 6.7. There is a type z : syn,Tym(z) ⊢ Tmm : U in GJmK whose total

space is given by τm : T̃m Tm.

Definition 6.8. There is pair of types #zTym(z) ⊢ Nfm and #zTym(z) ⊢ Nem
in GJmK given by normal and neutral forms viewed as a presheaf over i[m]∗(T̃m).
Similarly, there is a closed type NfTym of normal types lying over i[m]∗(Tm).

Definition 6.9. There is a type #zTym(z) ⊢ Vm given by viewing the presheaf of

variables as lying over i[m]∗(T̃m). There is an induced inclusion Vm(A) Nem(A)
which we shall treat as silent.

Using realignment if necessary, we choose Nfm, Nem, Vm such that under the
assumptions z : syn and A : #zTym(z), we have the following equations:

Vm(A) = Nem(A) = Nfm(A) = Tmm(z,A(z))

Similarly, under just the assumption of z, we have NfTym = Tym(z).

6.3. An MTT cosmos, internally. In Section 7 we will construct a model of
MTT in GJ−K lying over the syntactic model. To that end, we recast the existence
of a model of MTT into a structure we can express in the internal language of GJ−K.
Explicitly, we rephrase Definition 3.3 as a sequence of constants in the internal type
theory e.g., a pair Tym and Tym ⊢ Tmm, combinators for all the type codes, etc.
The full list of constants is described in Appendix B.

Remark 13. There is potential for confusion here: we are using the internal language
of GJ−K (extensional MTT) as a framework to express the structure of an MTT
cosmos. This is not a circularity; the interpretation of extensional MTT into GJ−K
is formulated in terms of the models and metatheory developed already in Gratzer,
Kavvos, Nuyts, and Birkedal [Gra+21].

Already, we can immediately obtain an MTT cosmos internal to GJ−K by re-
stricting to the open subtopos: SJ−K. In this cosmos, types are interpreted as
elements of the constant Tym(z) while terms are elements of Tmm(z,−). This the
syntactic MTT cosmos. Externally, this is the MTT cosmos SJ−K where universes
are interpreted by the traditional representable natural transformations [Awo18].
Eventually, we will construct the normalization model as a second cosmos in GJ−K
which lies strictly over the syntactic cosmos.

We will use the “unqualified” names such as Prod(z) to refer to elements of this
syntactic cosmos. So, for instance, under the assumption z : syn we the following:

Mod[µ] : (µ | A : Tyn(z))→ Tym(z)

m[µ] : (µ | A : Tyn(z))(µ | a : Tmn(z,A))→ Tmm(Mod[µ](A))

letmod[µ; ν] : (ν ◦ µ | A : Tyn(z))
[
B : ⟨µ | Tmn(z,Mod[µ](A))⟩ → Tyo(z)

]
→[

(ν ◦ µ | x : Tmn(z,A))→ Tmo(z,B(m[µ](A, x)))
]
→

(ν | a : Tmm(z,Mod[µ](A)))→
Tmo(z,B(a))

: (ν ◦ µ | A : Tyn(z))
[
B : ⟨µ | Tmn(z,Mod[µ](A))⟩ → Tyo(z)

]
→[

b : (ν ◦ µ | x : Tmn(z,A))→ B(m[µ](A, x))
]
→

(ν ◦ µ | a : Tmn(z,A))→ letmod[µ; ν](A,B, b,m[µ](A, a)) = b(a)

20 DANIEL GRATZER

Now, because # commutes with dependent products, sums, and modalities, we
may equivalently view, e.g. Prod as a constant with the following type:[∑

A:⟨µ|#zTyn(z)⟩
⟨µ | #zTmn(z,A)⟩ → #zTym(z)

]
→ #zTym(z)

Similarly, we will abusively write Prod(A,B) for λz. Prod(A(z), B(−, z)).

6.4. Higher-order abstract syntax for neutral and normal forms. The types
Nem, Nfm can be used to encode a form of HOAS inside of GJmK [Hof99]. We record
the constants that result from this in Appendix C.

In the proof of normalization we will take advantage of the fact that under
an open modality, a normal and neutral form decode to the appropriate terms.
Therefore, under the open modality proj0(pair(M,N)) is well-typed and equal to
M along with other expected equations.

7. The normalization model

We now construct a model of MTT in GJ−K which lies over the over the syntactic
model of MTT built around Tym and Tmm introduced in Section 6.3. Concretely,
this means that we must construct a series of constants (Ty∗m, Tm∗

m, Prod∗, etc.)
in GJ−K such that under z : syn these constants are equal to their corresponding
syntactic components (Tym(z), Tmm(z,−), Prod(z), etc.). This family of constants
will define a model in GJ−K and the ‘alignment’ condition ensures that there is a
morphism of models (Theorem 7.10). See Appendix B for the full list of constants.
Throughout this section we will use extensional MTT as an internal language for
GJ−K (Theorem 6.1) to define these constants. The strict equations will follow from
repeated applications of the realignment theorem (Theorem 6.5). Many of these
computations will be familiar to readers experienced with STC. The main novelties
are modal connectives Lemmas 7.5 and 7.6.

Definition 7.1. We define Ty∗m as the realignment of the following over Tym:

record T : {U2 | z : syn 7→ Tym} where
A : NfTym
Φ : {U1 | z : syn 7→ Tmm(z,A)}
↑ : {Nem(A)→ Φ | z : syn 7→ id}
↓ : {Φ → Nfm(A) | z : syn 7→ id}

Taking advantage of the isomorphism Ty∗m
∼= T , we construct elements of Ty∗m by

specifying A, Φ, ↑, and ↓. By realignment, η({A; Φ; ↓; ↑}) = η(A).

Definition 7.2. We define A : Ty∗m ⊢ Tm∗
m(A)@m by Tm∗

m({ ; Φ; ; }) = Φ.

Lemma 7.3. Tm∗
m lies strictly over Tmm. Explicitly for each A : Ty∗m = Tym(z),

Tm∗
m(A) = Tmm(z,A).

Proof. Using the boundary condition on Φ, we compute Tm∗
m(A) = ΦA = Tmm(z,AA).

Under the hypothesis z : syn, we obtain an equality A = AA because η(A) = η(AA)
by definition. The conclusion now follows. □

Lemma 7.4. Fixing T0 : Ty∗m and T1 : Tm∗
m(T0) → Ty∗m, there exists a pair of

constants:

Sig∗ : {Ty∗m | z : syn 7→ Sig(z, T0, T1)}

αSig∗ :
{
Tmm(Sig∗(T0, T1)) ∼=

∑
t:Tm∗

m(T0)
Tm∗

m(T1(t))
∣∣∣ z : syn 7→ αSig(z, T0, T1)

}

NORMALIZATION FOR MULTIMODAL TYPE THEORY 21

Proof. Let us start by apply Theorem 6.5 to αSig(z) and
∑

t0:ΦT0
ΦT1(t0) to produce

Ψ : U1 such that z : syn ⊢ Ψ = Sig(z, T0, T1) and αSig∗ : Ψ ∼=
∑

t0:ΦT0
ΦT1(t0) which

restricts to αSig under z : syn.
We now define Sig∗(T0, T1) as follows:

ASig∗(T0,T1) = Sum(AT0
, λv. AT1(↑T0

v))

ΦSig∗(T0,T1) = Ψ

↑Sig∗(T0,T1) = λe. α−1
Sig∗⟨↑T0

(proj0(e)), ↑T1(↑T0
(proj0(e)))

(proj1(e))⟩

↓Sig∗(T0,T1) = λt. pair(↓T0
(αSig∗(t)0), ↓T1(αSig∗ (t)0)

(αSig∗(t)1))

The fact that ↓ and ↑ lie over the identity follows directly from the β and η laws
of dependent sums in MTT. We show the calculations for ↑. Fix z : syn:

↑Sig∗(T0,T1)(e) = α−1
Sig∗⟨↑T0

(proj0(e)), ↑T1(↑T0
(proj0(e)))

(proj1(e))⟩

= α−1
Sig⟨proj0(e),proj1(e)⟩

= α−1
Sig⟨αSig(T0,T1)(e)0, αSig(T0,T1)(e)1⟩

= e

The fact that ASig∗(T0,T1) and ΦSig∗(T0,T1) lie over Sig(T0, T1) and Tmm(z,Sig(z, T0, T1))
respectively follows from definition and realignment. □

Lemma 7.5. Fixing T0 : (µ | Ty∗n) and T1 : (µ | Tm∗
n(T0)) → Ty∗m, there exists a

pair of constants:

Prod∗ : {Tym | z : syn 7→ Prod∗(z, T0, T1)}

αProd∗ :
{
Tmm(Prod(T0, T1)) ∼=

∏
t:⟨µ|Tm∗

n(T0)⟩ Tm
∗
m(T1(t))

∣∣∣ z : syn 7→ αProd(z, T0, T1)
}

Proof. Apply Theorem 6.5 to αProd(z) and (µ | t0 : ΦT0
)→ ΦT1(t0) to produce Ψ : U1

such that z : syn ⊢ Ψ = Prod(z, T0, T1) and αProd∗ : Ψ ∼= (µ | t0 : ΦT0) → ΦT1(t0)

which restricts to αProd under z : syn. We now define Prod(T0, T1) as follows:

AProd∗(T0,T1) = Prod(AT0 , λv. AT1(↑T0
v))

ΦProd∗(T0,T1) = Ψ

↑Prod∗(T0,T1) = λe. α−1
Prod(λt. ↑T1(t)(app(e)(↓T0

(t))))

↓Prod∗(T0,T1) = λt. lam(λv. ↑T1(↑T0
(v))(αProd(t)(↑T0

(v))))

Once again, the fact that everything lies over the correct terms follows from the β
and η laws for dependent products, as well as the conclusions of realignment. □

Lemma 7.6. Fixing T : (µ | Ty∗n), the following constants exist:

Mod∗[µ] : {Tym | z : syn 7→ Mod[µ](z, T)}
m∗[µ] : (µ | a : Tm∗

n(T))→ {Tm
∗
m(Mod∗[µ](T)) | z : syn 7→ m[µ](z, T, a)}

letmod∗[µ; ν] :
[
B : ⟨ν | Tm∗

m(Mod∗[µ](T))⟩ → Ty∗o
]

→
[
b : (ν ◦ µ | x : Tm∗

n(T))→ Tm∗
o(B(m∗[µ](T, x)))

]
→ (ν | a : Tm∗

m(Mod∗[µ](T)))

→ {Tm∗
o(B(a)) | z : syn 7→ letmod[µ; ν](z, T,B, b, a)}

:
[
B : ⟨ν | Tm∗

m(Mod∗[µ](T))⟩ → Ty∗o
]

22 DANIEL GRATZER

→
[
b : (ν ◦ µ | x : Tm∗

n(T))→ Tm∗
o(B(m∗[µ](T, x)))

]
→ (ν ◦ µ | a : Tm∗

n(T))

→ letmod∗[µ; ν](B, b,m∗[µ](a)) = b(a)

Proof. As is typical now, we will proceed by realigment. We define Φ to be the
realignment of the following type along the subsequent isomorphism:

Ψ =
∑

m:Nfm(Mod[µ](T))
[(∑

e:Nem(Mod[µ](T)) up(e) = m
)
+
(∑

a:⟨µ|ΦT ⟩ modµ(↓Ta) = m)
)]

α# : #Ψ ∼=
∑

m:#Nfm(Mod[µ](T)) 1
∼= #zTmm(z,Mod[µ](z, T))

This gives a type Φ and an isomorphism α : Φ ∼= Ψ such that α−1(⟨m, . . . ⟩) = m
in a context with z : syn.

We now use this to define Mod∗[µ](T):

AMod∗[µ](T) = Modµ(AT)

ΦMod∗[µ](T) = Φ

↑Mod∗[µ](T) = λe.α−1⟨up(e), η(in0(⟨e, ⋆⟩))⟩
↓Mod∗[µ](T) = π0 ◦ α

Unlike with dependent sums and products, however, this is not the end of the
story. We must also define the introduction and elimination forms for this type.
First, the intro form:

m∗[µ](T,m) = α−1⟨modµ(↓T (m)), η(in1(m, ⋆))⟩

In order to define the elimination form, we need the elimination principle for A.
Recall A = syn ⋆ A so we may use the induction principle of a pushout on A.

With this in mind, we define the elimination rule letmod∗[µ; ν](T, Tm, b, s) as fol-
lows. First, recall that s : ⟨ν | Tm∗

m(Mod∗[µ](T))⟩. We use the fact that ⟨ν | −⟩ pre-
serves dependent sums, the closed modality (Theorem 6.1), and coproducts (The-
orem 6.2) to decompose s into two terms:

m : ⟨ν | Nfm(Mod[µ](T))⟩

q :
[∑

e:⟨ν|Nem(Mod[µ](T))⟩⟨ν | up(e) = m⟩+
∑

a:⟨ν◦µ|ΦT ⟩⟨ν |modµ(↓Ta) = m⟩)
]

We may now perform induction on q:
letmod[µ; ν](z, T, Tm, b, s) q = in0(z)

↑Tm(s) letmodµ;ν(T, λv. ATm(↑Mod∗[µ](T)v)
, λx. ↓Tm(m∗[µ](↑T x))b(↑Tx), e) q = in1(in0(modν(e),))

b(a) q = in1(in1(modν(a),))

The fact that these agree on overlaps follows from the β rule for modal types
from MTT. By construction, the elimination and introduction forms lie over their
syntactic counterparts, and calculation shows that the β equation holds. □

Lemma 7.7. The following constants exist:

Bool∗ : {Ty∗m | z : syn 7→ Bool(z)}
true∗ : {Tm∗

m(Bool) | z : syn 7→ true}
false∗ : {Tm∗

m(Bool) | z : syn 7→ false}
if∗ : (T : Tm∗

m(Bool(z))→ Ty∗m)→

NORMALIZATION FOR MULTIMODAL TYPE THEORY 23

Tm∗
m(T (true∗))→ Tm∗

m(T (false∗))→ (b : Tm∗
m(Bool∗))→

{Tm∗
m(T (b)) | z : syn 7→ if(T, t, f, b)}

: (T : Tm∗
m(Bool∗)→ Ty∗m)(t : Tm∗

m(T (true∗)))(f : Tm∗
m(T (false∗)))→

(if∗(T, t, f, true∗) = t)× (if∗(T, t, f, false∗) = f)

Proof. The proof proceeds much as Lemma 7.6, so we present the relevant defini-
tions without much commentary. First, we realign Ψ along α# :

Ψ =
∑

m:Nfm(Bool)
[(∑

e:Nem(Bool) up(e) = m
)
+
(∑

b:2m = rec2(b; tt;ff))
)]

α# : #zΨ ∼=
∑

m:Nfm(Bool) 1
∼= Tmm(z,Bool(z))

As a result, we obtain Φ along with α : Φ ∼= Ψ such that z : syn ⊢ α−1⟨m, . . . ⟩ = m.
We may now define Bool∗:

ABool∗ = Bool

ΦBool∗ = Φ

↑Bool∗ = λe.α−1⟨up(e), η(in0(e, ⋆))⟩
↓Bool∗ = π0 ◦ α

The true and false constants are defined as follows:

true∗ = ⟨tt, η(in1(0, ⋆))⟩
false∗ = ⟨ff , η(in1(1, ⋆))⟩

Again, the elimination principle is defined using the induction principle for A.

if∗(Tm, t0, t1, s = α−1⟨b, q⟩) =
if(z, Tm, t0, t1, s) q = in0(z)

↓Tm(s)if(λv. ATm(↑bool∗v)
, ↓Tm(true∗)t0, ↓Tm(false∗)t1, e) q = in1(in0(e, ⋆)),up(e) = b

ti q = in1(in1(i, ⋆)), rec(i; tt;ff) = b

The boundary conditions and the computation rule follow from computation. □

Lemma 7.8. The following constants exist:

Id∗ : (A : Ty∗m)(a0, a1 : Tm∗
m(A))→ {Ty∗m | z : syn 7→ Id(z,A, a0, a1)}

refl∗ : (A : Ty∗m)(a : Tm∗
m(A))→ {Tm∗

m(Id(A, a, a)) | z : syn 7→ refl(z,A, a)}
J∗ : (A : Ty∗m)(B : (a0, a1 : Tm∗

m(A))(p : Tm∗
m(Id∗(A, a0, a1)))→ Ty∗m)→

(b : (a : Tm∗
m(A))→ Tm∗

m(B(a, a, refl(a))))→
(a0, a1 : Tm∗

m(A))(p : Tm∗
m(Id∗(A, a0, a1)))→ {Tm∗

m(B(a0, a1, p)) | z : syn 7→ J(z,B, b, p)}
: (A : Ty∗m)(B : (a0, a1 : Tm∗

m(A))(p : Tm∗
m(Id∗(A, a0, a1)))→ Ty∗m)→

(b : (a : Tm∗
m(A))→ Tm∗

m(B(a, a, refl(a))))→
(a : Tm∗

m(A))→ J∗(A,B, b, refl∗(a)) = b(a)

Proof. The proof proceeds much as Lemma 7.7. Let us fix A : Ty∗m along with
a0, a1 : Tm∗

m(A). We realign Ψ along α# :

Ψ =
∑

m:Nfm(Id(A,a0,a1))

[(∑

e:Nem(Id(A,a0,a1))
up(e) = m

)
+ (a0 = a1 ×m = refl(a0))

]
α# : #zΨ ∼= Tmm(z, Id(z,A, a0, a1))

24 DANIEL GRATZER

We have Φ and α : Φ ∼= Ψ such that z : syn ⊢ α−1⟨m, . . . ⟩ = m. We may now
define Id∗:

AId∗(A,a0,a1) = IdAA
(↑Aa0, ↑Aa1)

ΦId∗(A,a0,a1) = Φ

↑Id∗(A,a0,a1) = λe.α−1⟨up(e), η(in0(e, ⋆))⟩
↓Id∗(A,a0,a1) = π0 ◦ α

We define reflexivity by refl∗ = ⟨refl, η(in1(⋆, ⋆))⟩. Finally, as is now routine, the
elimination principle is defined using the induction principle for A.

J∗(Tm, t, a0, a1, s = α−1⟨p, q⟩) =
J(z, Tm, t, a0, a1, s) q = in0(z)

↓Tm(s)J(λa0, a1, p. ATm(↑a0,↑a1,↑p), λa. ↓Tm(a,a,refl∗(a))t(↑Ta), e) q = in1(in0(e, ⋆)),up(e) = p

t(a0) q = in1(in1(⋆, ⋆)) □

Lemma 7.9. The glued model supports a universe. Specifically, this means that
the following constants exist:

Uni∗ : {Ty∗m | z : syn 7→ Uni}
El∗ : (T : Tm∗

m(Uni∗))→ {Ty∗m | z : syn 7→ El(T)}

Moreover, Uni∗ is closed under various type-formers:

Ŝig
∗
:
{[∑

A:Tm∗
m(Uni∗) Tm

∗
m(El∗(A))→ Tm∗

m(Uni)
]
→ Tm∗

m(Uni∗)
∣∣∣ z : syn 7→ Ŝig

}
P̂rod

∗
:
{[∑

A:⟨µ|Tm∗
n(Uni

∗)⟩[⟨µ | Tm
∗
n(El

∗(A))⟩ → Ty∗m]
]
→ Tm∗

m(Uni∗)
∣∣∣ z : syn 7→ P̂rod

}
B̂ool

∗
: {Tm∗

m(Uni∗) | z : syn 7→ B̂ool}

M̂od
∗
: {⟨µ | Tm∗

n(Uni
∗)⟩ → Tm∗

m(Uni∗) | z : syn 7→ M̂od}
dec∗

Ŝig
: (A : Tm∗

m(Uni∗))(B : Tm∗
m(El∗(A))→ Tm∗

m(Uni∗))→

Tm∗
m(El∗(Ŝig

∗
(A,B))) ∼= Tm∗

m(Sig∗(El∗(A),El∗ ◦B))

dec∗
P̂rod

: (µ | A : Tm∗
m(Uni∗))(B : (µ | Tm∗

n(El
∗(A)))→ Tm∗

m(Uni∗))→

Tm∗
m(El∗(P̂rod

∗
(A,B))) ∼= Tm∗

m(Prod∗(El∗(A),El∗ ◦B))

dec∗
B̂ool

: Tm∗
m(El∗(B̂ool

∗
)) ∼= Tm∗

m(Bool∗)

dec∗
M̂od

: (µ | A : Tm∗
m(Uni∗))→ Tm∗

m(El∗(M̂od
∗
(A))) ∼= Tm∗

m(Mod∗[µ](El∗(A)))

Furthermore, when given z : syn we require the following equations:

dec∗
Ŝig

= dec
Ŝig

(z) dec∗
P̂rod

= dec
P̂rod

(z) dec∗
B̂ool

= dec
B̂ool

(z) dec∗
M̂od

= dec
M̂od

(z)

Proof. At this point we take advantage of the fact that ΦTy∗m is an element of U1;
in particular, we use the fact that is a universe U0 small enough to fit inside U1.

NORMALIZATION FOR MULTIMODAL TYPE THEORY 25

The universe and El(−) constant. We may then define Ψ by realigning the following
element of U1 along the evident isomorphism to Tm∗

m(z,Uni(z)):

(3) record T : U1 where
A : Nfm(Uni)
Φ : {U0 | z : syn 7→ Tmm(z,El(z,A))}
↑ : {Nem(λz. El(z,A))→ Φ | z : syn 7→ id}
↓ : {Φ → Nfm(λz. El(z,A)) | z : syn 7→ id}

As a result, we obtain Ψ : U1 and α : Ψ ∼= T such that α−1({A; . . . }) = A given
z : syn. With Ψ in hand, we may define Uni∗:

AUni∗ = Uni

ΦUni∗ = Ψ

↑Uni∗ = λe. α−1⟨up(e);Nem; id;λe. up(e)⟩
↓Uni∗ = π0 ◦ α

The definition of El∗ is essentially “just” cumulativity:

El∗(α−1⟨A; Φ; ↓; ↑⟩) = α⟨El(A); Φ; ↓; ↑⟩

Here we have used both the isomorphism realigning Uni∗ and the isomorphism
realigning Ty∗m. When restricting with z : syn, El∗ restricts to A 7→ El(A).

It remains to show that the universe is closed under the various codes for depen-
dent sums, products, etc. For the sake of space, we show only two of these cases:
dependent products and modal types.

Let us fix t0 : (µ | Tm∗
n(Uni

∗)) and t1 : (µ | Tm∗
n(El

∗(t0))) → Tm∗
m(Uni∗). First

we realign Tm∗
m(Prod∗(El∗(A),El∗ ◦B)) along dec

P̂rod
to obtain Ψ which lies strictly

over Tm∗
m(z,Prod(z,El(z, t0),El(z) ◦ t1)).

We also get an isomorphism dec∗
P̂rod

: Ψ ∼= Tm∗
m(Prod∗(El∗(A),El∗ ◦ B)) lying

over dec. Note that by the uniqueness of inverses, (dec∗)−1 lies over dec−1.

We use this now to define P̂rod
∗
(t0, t1):

A
P̂rod

∗
(t0,t1)

= (µ | At0) →̂ λx. At1(↑t0
(x))

Φ
P̂rod

∗
(t0,t1)

= Ψ

↑
P̂rod

∗
(t0,t1)

= λe. (dec∗
P̂rod

)−1(↑Prod∗(El∗(t0),El∗◦t1)dec
�(e))

↓
P̂rod

∗
(t0,t1)

= λf. dec�(↓Prod∗(El∗(t0),El∗◦t1)dec
∗
P̂rod

(f))

The procedure for modal types is similar. Let us fix t : (µ | Tm∗
n(Uni

∗)). Again,
we realign Tm∗

m(Mod∗[µ](El∗(t))) along the isomorphism dec
M̂od

to obtain Ψ and

dec∗Mod[µ]. The actual construction of M̂od
∗
is almost identical to P̂rod

∗
:

A
M̂od

∗
(t)

= ̂⟨µ | At⟩
Φ

M̂od
∗
(t)

= Ψ

↑
M̂od

∗
(t)

= λe. (dec∗
M̂od

)−1(↑Mod∗[µ](El∗(t))dec
�(e))

↓
M̂od

∗
(t)

= λm. dec�(↓Prod∗(El∗(t))dec
∗
M̂od

(m))

The checks that all constructions lie over their syntactic counterparts follow imme-
diately from the conclusions of realignment. □

26 DANIEL GRATZER

Theorem 7.10. There exists an MTT cosmos built around Ty∗m and Tm∗
m which

lies strictly over the syntactic MTT cosmos. Externally, there is an MTT cosmos
GJ−K :M Gl(i[−]∗) together with a morphism of cosmoi π : GJ−K SJ−K.

Proof. This is combination of Definitions 7.1 and 7.2 and Lemmas 7.3 to 7.9. That π
is 2-natural is immediate from Theorem 4.1 and that it commutes with transposition
is precisely Theorem 4.2. □

8. The normalization function

8.1. Initiality, revisited. As formulated, the cosmos based around the generalized
algebraic syntax of MTT SJ−K is not initial. By Corollary 3.9, there is an initial
cosmos IJ−K but it is a distinct object and IJmK is not even cocomplete, let alone
a presheaf topos.

Despite this, SJ−K enjoys a certain distinguished place amongMTT cosmoi owing
to Theorem 3.7. In particular, we have the following

(1) For every context Γ cx@m, there exists an object GJΓK : GJmK, together
with a canonical isomorphism αΓ : π(GJΓK) ∼= y(Γ).

(2) For every type Γ ⊢ A@m, there is a morphism GJAK : GJΓK Ty∗m such
that π(GJAK) ◦ αΓ = ⌊A⌋.

(3) For every term Γ ⊢M : A@m, there is a morphism GJMK : GJMK Tm∗
m

lying over GJAK such that π(GJMK) ◦ αΓ = ⌊M⌋.

8.2. The proof of the normalization theorem. Prior to the proof of the nor-
malization theorem (Theorem 8.5), we require several preliminary results.

Recall that there is a closed immersion of topoi i : PSh(Renm) GJmK. In fact,
this closed immersion is essential because the morphism PSh(Renm) PSh(Cxm)
is essential. Accordingly, for each X : PSh(Renm) there is an object i!(X) : GJmK.
This functor has a familiar result when applied to a representable in PSh(Renm).
Consider a telescope Θ tele@m⇝ Γ, we then have the following:

(|Θ|) ≜ i!(y(Θ)) = y(Θ) i[m]∗(y(Γ))

Lemma 8.1. For an arbitrary X : GJmK, we have [(|Θ|), X] ∼= i∗(X)(Θ).

By the previous discussion, for a telescope Θ tele@m ⇝ Γ, there is also the
object GJΓK, which lies over Γ in GJmK. While this object is different than (|Θ|),
there is a canonical natural transformation between them.

Lemma 8.2. Given Θ tele@m ⇝ Γ, there is a morphism atomsΘ : (|Θ|) GJΓK.
Moreover, up to the canonical isomorphism j∗GJΓK ∼= y(Γ), j∗atomsΘ = idy(Γ).

Proof. By applying Lemma 8.1, this proof is equivalent to constructing an ele-
ment of g ∈ i∗GJΓK(Θ) such that the image of g under the canonical map to
i[m]∗(y(Γ))(Θ) is the identity. This morphism is constructed by induction on Θ.

Case:

1 tele@m⇝ 1

In this case these two are isomorphic.
Case:

µ : n m Θ tele@m⇝ Γ

Θ.{µ} tele@n⇝ Γ.{µ}

NORMALIZATION FOR MULTIMODAL TYPE THEORY 27

In this case we choose atomsΘ.{µ} = GJµK!(atomsΘ0
) and correcting by

the canonical isomorphisms (|Θ0.{µ}|) ∼= GJµK!((|Θ|)) which exists by Theo-
rem 4.2 and GJΓ.{µ}K ∼= GJµK!(GJΓK) which exists by construction.

Case:
Θ tele@m⇝ Γ Γ.{µ} ⊢ A@n

Θ.(µ | A) tele@m⇝ Γ.(µ | A)
We construct this morphism using the characterization from Lemma 8.1.
Our induction hypothesis gives us an element g ∈ GJΓK0(Θ) lying over
α−1
Γ (id), whence g′ ∈ GJΓ.(µ | A)K(Θ.(µ | A)) lying over ↑ using reindexing.
Moreover, we have an element of Nem(SJAK)(Θ.(µ | A).{µ}) lying over

v0, whence an element of Tm∗
m(GJAK)(Θ.(µ | A).{µ}) lying over v0. This

gives us an element of GJΓ.(µ | A)K0(Θ.(µ | A)) which lies over id = ↑.v0

by the universal property of the pullback. □

Lemma 8.3. Given Γ ⊢ M,N : A@m, if there exists a normal form u such that
Θ ⊢nf u : A@m⇝M and Θ ⊢nf u : A@m⇝ N , then Γ ⊢M = N : A@m.

Lemma 8.4. If Θ ⊢nf u@m⇝ A and Θ ⊢nf u@m⇝ B, then Γ ⊢ A = B@m.

We are now in a position to prove normalization. We note that one of the
conditions of the normalization algorithm (respect for definitional equivalence) is
automatic: we have defined the algorithm to operate only on equivalence classes of
terms, so it must always respect definitional equivalence.

Theorem 8.5. There exists a pair of functions nfΓ(M,A) and nftyΓ(A) such that

(1) If Γ ⊢ A@m and Θ tele@m⇝ Γ then Θ ⊢nf nftyΓ(A)@m⇝ A.
(2) If Γ ⊢M : A@m and Θ tele@m⇝ Γ then Θ ⊢nf nfΓ(M,A) : A@m⇝M .

Proof. We may package this in the language of PSh(Renm). From this viewpoint,
nftyΓ(A) is an element of (NfTym)0 fitting into the following triangle:

i[m]∗(y(Γ)) i[m]∗(y(Γ))

(NfTym)0

⌊A⌋

NfTym

Similarly, nfΓ(M,A) is a section to the inclusion Nfm i[m]∗(T̃m) over ⌊M⌋.
Observe from the initiality of syntax that for any Γ ⊢ A@m, there exists GJAK :

GJΓK Ty∗m, and bi-universality ensures that #GJAK = A, up to an isomorphism of
contexts. In particular, there exists Anf : GJΓK (NfTym)0 such that #Anf = A.
Unfolding to PSh(Renm), we have the following commuting square:

GJΓK0

i[m]∗(y(Γ))

GJΓK

(NfTym)0

i[m]∗(Tm)

Anf

NfTym

i[m]∗(⌊A⌋)

By Lemma 8.2, atomsΘ ∈ GJΓK1(Θ) lies over id. We then define nftyΓ(A) =
Anf (atomsΘ), which satisfies the required properties.

28 DANIEL GRATZER

The procedure is identical for nfΓ(M,A). Given Γ ⊢M : A@m, we use initiality
to obtain the following square:

GJΓK0

i[m]∗(y(Γ))

GJΓK

(Nfm)0

i[m]∗(T̃m)

Mnf

Nfm

i[m]∗(⌊M⌋)

We set nfΓ(M,A) =Mnf (atomsΘ). □

Theorem 8.6. Given a telescope Θ tele@m⇝ Γ then the following two facts hold:

(1) If Θ ⊢nf u : A@m⇝M , then nfΓ(M,A) = u.
(2) If Θ ⊢nf τ @m⇝ A, then nftyΓ(A) = τ .

Proof. In order to prove these results, we show three related facts. Recall that GJ−K
is the function sending a piece of syntax to its interpretation in the normalization
model. Furthermore, recall that by Lemma 8.2 (|Θ|) element atomsΘ : GJΓK.

(1) If Θ ⊢ne e : A@m⇝M , then GJMK(atomsΘ) = ↑GJAK(atomsΘ)e

(2) If Θ ⊢nf u : A@m⇝M , then ↑GJAK(atomsΘ)GJMK(atomsΘ) = u.

(3) If Θ ⊢nf τ @m⇝ A, then AGJAK(atomsΘ) = τ .

Here we have identified a code u (resp. e) as an (|Θ|) element of NfA (resp. NeA),
an abuse justified by unfolding the definition of NfA into PSh(Renm).

Assuming these facts hold, the result immediately follows by unfolding the defi-
nition of nfΓ(M,A) and nftyΓ(A). We prove these facts by mutual induction. All
cases follow from induction except the case of variables, so we show this here.

Case:
Θ tele@m⇝ Γ Θ = Θ0.(µ | A)

Θ ⊢ne vidµ
0 : A[{α} ◦ ↑.{µ}] @m⇝ v0[{α}]

(Note that the case for a general vα
k follows by straightforward induction

on k, but is notationally heavy.)
First, we recall that GJv0K defined by projection from the context. There-

fore, GJv0K(atomsΘ) = ↑GJAK(atomsΘ)v
idµ
0 by unfolding the construction of

atomsΘ in Lemma 8.2.
Case:

Θ.{µ} ⊢nf τ @n⇝ A

Θ ⊢nf ⟨µ | τ⟩@m⇝ ⟨µ | A⟩
In this case, by unfolding the definitions we have

AGJ⟨µ|A⟩K(atomsΘ.{µ}) = Modµ(AA(atomsΘ))

By induction hypothesis, we have AA(atomsΘ) = τ , so the conclusion follows.
Case:

Θ.{µ} ⊢nf u : A@n⇝M

Θ ⊢nf modµ(u) : ⟨µ | A⟩@m⇝ modµ(M)

In this case, by unfolding the definitions we have

↓GJ⟨µ|A⟩K(atomsΘ.{µ})
GJmodµ(M)K(atomsΘ.{µ})

= modµ↓GJAK(atomsΘ)GJMK(atomsΘ)

NORMALIZATION FOR MULTIMODAL TYPE THEORY 29

= modµ(u)

The last step follows from the induction hypothesis. □

Corollary 8.7. Each term and type in MTT has a unique normal form.

Corollary 8.8. The conversion problem in MTT is equivalent the conversion prob-
lem of normal forms.

Proof. Theorem 8.5 and Lemma 8.3 imply that Γ ⊢ M = N : A@m is equivalent
to nfΓ(M,A) = nfΓ(N,A). Similarly, Theorem 8.5 and Lemma 8.4 reduce Γ ⊢
A = B@m to nftyΓ(A) = nftyΓ(B). As the proof given is constructively valid,
these reductions are effective. □

Corollary 8.9. If Γ ⊢ (µ | A0) → B0 = (µ | A1) → B1 @m, then Γ.{µ} ⊢ A0 =
A1 @m and Γ.(µ | A0) ⊢ B0 = B1 @m.

Proof. By inspection on the definition of nftyΓ((µ | Ai)→ Bi), we observe that
both are interpreted using Lemma 7.5. Accordingly, we have the following:

nftyΓ((µ | A0)→ B0) = u = (µ | nftyΓ.{µ}(A0))→ nftyΓ.(µ|A0)(B0)

nftyΓ((µ | A1)→ B1) = v = (µ | nftyΓ.{µ}(A1))→ nftyΓ.(µ|A1)(B1)

From Γ ⊢ (µ | A0)→ B0 = (µ | A1)→ B1 @m and Corollary 8.8, we obtain u = v.
From this, we use inversion to conclude that nftyΓ.{µ}(A0) = nftyΓ.{µ}(A1) and

nftyΓ.(µ|A0)(B0) = nftyΓ.(µ|A1)(B1). The result now follows from Corollary 8.8. □

Corollary 8.10. If modalities and 2-cells enjoy decidable equality, typechecking
MTT is decidable.

Acknowledgments

I am thankful for discussions with Carlo Angiuli, Martin Bidlingmaier, Lars
Birkedal, Thierry Coquand, Alex Kavvos, Christian Sattler, and Jonathan Sterling.
I would like to express particular gratitude to Jonathan Sterling for conversations
about Synthetic Tait Computability and to Lars Birkedal and Alex Kavvos for
feedback on this proof.

Appendix A. Neutral and normal forms

Θ tele@m⇝ Γ

1 tele@m⇝ 1

Θ tele@m⇝ Γ Γ.{µ} ⊢ A@n

Θ.(µ | A) tele@m⇝ Γ.(µ | A)
Θ tele@m⇝ Γ

Θ.{µ} tele@m⇝ Γ.{n}

Θ ⊢ ψ : Ψ@m⇝ γ

Θ ⊢ ! : 1@m⇝ !

Θ tele@n⇝ Γ Γ.{µ} ⊢ A@n

Θ.(µ | A) ⊢ ↑ : Θ@m⇝ ↑
Θ tele@m⇝ Γ

Θ ⊢ id : Θ@m⇝ id

Γ,∆,Ξ tele@m⇝ Θ,Ψ,Φ Θ ⊢ r : Ψ@m⇝ γ Ψ ⊢ s : Φ@m⇝ δ

Θ ⊢ s ◦ r : Φ@m⇝ δ ◦ γ

30 DANIEL GRATZER

Γ,∆ tele@m⇝ Θ,Ψ Θ ⊢ r : Ψ@m⇝ δ

Θ.{µ} ⊢ r.{µ} : Ψ.{µ}@n⇝ δ.{µ}

Θ tele@m⇝ Γ µ, ν : n m α : ν µ

Θ.{µ} ⊢ {α}Θ : Θ.{ν}@n⇝ {α}Γ

Γ,∆ tele@m⇝ Θ,Ψ
Θ ⊢ r : Ψ@m⇝ δ ∆.{µ} ⊢ A@n Γ.{µ} ⊢ne vα

k : A[δ.{µ}] @n⇝M

Θ ⊢ r.vα
k : Ψ.(µ | A)@m⇝ δ.M

Θ ⊢nf τ @m⇝ A

Θ ⊢nf bool@m⇝ bool Θ ⊢nf U@m⇝ U

Θ.{µ} ⊢nf τ @n⇝ A Θ.(µ | A) ⊢nf σ@m⇝ B

Θ ⊢nf (µ | τ)→ σ@m⇝ (µ | A)→ B

Θ ⊢nf τ @n⇝ A Θ.(idm | A) ⊢nf σ@m⇝ B

Θ ⊢nf τ × σ@m⇝ A×B

Θ ⊢nf τ @m⇝ A Θ ⊢nf u, v : A@m⇝M,N

Θ ⊢nf IdA(u, v)@m⇝ IdA(M,N)

Θ.{µ} ⊢nf τ @n⇝ A

Θ ⊢nf ⟨µ | τ⟩@m⇝ ⟨µ | A⟩

Θ tele@m⇝ Γ Θ ⊢nf u : U@m⇝ A

Θ ⊢nf El(u)@m⇝ A

Θ ⊢ne e : A@m⇝M Θ ⊢nf u : A@m⇝M

Θ tele@m⇝ Γ Θ(k) = (µ | A) mods(Θ, k) = ν α : µ ν

Θ ⊢ne vα
k : A[{α} ◦ (↑.{νk−1}) · · · ◦ (↑.{ν0})]@m⇝ v0[{α} ◦ (↑.{νk−1}) · · · ◦ (↑.{ν0})]

Θ ⊢nf tt : bool@m⇝ tt Θ ⊢nf ff : bool@m⇝ ff

Θ ⊢ne e : bool@m⇝M

Θ ⊢nf up(e) : bool@m⇝M

Θ tele@m⇝ Γ Θ.(idm | bool) ⊢nf τ @m⇝ A Θ ⊢ne u : bool@m⇝M
Θ ⊢nf v1 : A[id.tt] @m⇝ N1 Θ ⊢nf v2 : A[id.ff] @m⇝ N2

Θ ⊢ne if(τ ;u; v1; v2) : A[id.M] @m⇝ if(A;M ;N1;N2)

Θ tele@m⇝ Γ Γ ⊢ A@m Θ ⊢nf u : A@m⇝M

Θ ⊢nf refl(u) : IdA(M,M)@m⇝ refl(M)

Θ tele@m⇝ Γ
Γ ⊢ A@m Γ ⊢M0,M1 : A@m Θ ⊢ne e : IdA(M0,M1)@m⇝ N

Θ ⊢nf up(e) : IdA(M0,M1)@m⇝ N

NORMALIZATION FOR MULTIMODAL TYPE THEORY 31

Θ tele@m⇝ Γ
Γ ⊢ A@m Γ ⊢M0,M1 : A@m Θ ⊢ne e : IdA(M0,M1)@m⇝ P

Θ.(idm | A).(idm | A).(idm | IdA[↑2](v1,v0)) ⊢nf τ @m⇝ C

Θ.(idm | A) ⊢nf u : C[id.v0.v0.refl(v0)]@m⇝ N

Θ ⊢ne J(τ ;u; e) : C[id.M0.M1.P] @m⇝ J(C,N, P)

Θ tele@m⇝ Γ Γ.{µ} ⊢ A@n Γ.(µ | A) ⊢ B@m
Θ.(µ | A) ⊢nf u : B@m⇝M

Θ ⊢nf λ(u) : (µ | A)→ B@m⇝ λ(M)

Θ tele@m⇝ Γ Γ.{µ} ⊢ A@n Γ.(µ | A) ⊢ B@m
Θ ⊢ne e : (µ | A)→ B@m⇝M Θ ⊢nf u : A@m⇝ N

Θ ⊢ne e(u) : B[id.N] @m⇝M(N)

Θ tele@m⇝ Γ Γ.{µ} ⊢ A@n Γ.(µ | A) ⊢ B@m
Θ ⊢nf u : A@m⇝M Θ ⊢nf v : B[id.M] @m⇝ N

Θ ⊢nf (u, v) : A×B@m⇝ (M,N)

Θ tele@m⇝ Γ Γ.{µ} ⊢ A@n Γ.(µ | A) ⊢ B@m
Θ ⊢ne u : A×B@m⇝M

Θ ⊢ne pr1(u) : A@m⇝ pr1(M) Θ ⊢ne pr2(u) : B[id.pr1(M)]@m⇝ pr2(M)

Θ tele@m⇝ Γ Γ.{µ} ⊢ A@n Θ.{µ} ⊢nf u : A@n⇝M

Θ ⊢nf modµ(u) : ⟨µ | A⟩@m⇝ modµ(M)

Θ tele@m⇝ Γ Γ.{µ} ⊢ A@n Θ ⊢ne e : ⟨µ | A⟩@m⇝M

Θ ⊢nf up(e) : ⟨µ | A⟩@m⇝M

ν : o n µ : n m
Θ tele@m⇝ Γ Γ.{µ}.{ν} ⊢ A@ o Θ.{µ} ⊢ne u : ⟨ν | A⟩@n⇝M

Θ.(µ | ⟨ν | A⟩) ⊢nf τ @m⇝ B Θ.(µ ◦ ν | A) ⊢nf u : B[↑.modν(v0)]@m⇝

Θ ⊢ne letmod(µ; ν; τ ; e;u) : B[id.M] @m⇝ letν modµ()←M in N

Θ tele@m⇝ Γ Θ ⊢ne e : U@m⇝ A

Θ ⊢nf up(e) : U@m⇝ A

Θ tele@m⇝ Γ Θ.{µ} ⊢nf u : U@n⇝ A Θ.(µ | El(A)) ⊢nf v : U@m⇝ B

Θ ⊢nf (µ | u) →̂ v : U@m⇝ (µ | A) →̂ B

Θ tele@m⇝ Γ Θ ⊢nf u : U@m⇝ A Θ.(idm | El(A)) ⊢nf v : U@m⇝ B

Θ ⊢nf u ×̂ v : U@m⇝ (µ | A) →̂ B

Θ tele@m⇝ Γ Θ.{µ} ⊢nf u : U@m⇝ A

Θ ⊢nf ⟨̂µ | u⟩ : U@m⇝ ⟨̂µ | A⟩

Θ tele@m⇝ Γ

Θ ⊢nf b̂ool : U@m⇝ b̂ool

32 DANIEL GRATZER

Θ tele@m⇝ Γ Θ ⊢nf τ @m⇝ A Θ ⊢nf u, v : A@m⇝M0,M1

Θ ⊢nf Îd(A, u, v) : U@m⇝ Îd(A,M0,M0)

Θ tele@m⇝ Γ Θ ⊢ne e : El(b̂ool)@m⇝M

Θ ⊢ne dec�(e) : bool@m⇝ dec�(M)

Θ tele@m⇝ Γ Θ ⊢nf u : bool@m⇝M

Θ ⊢nf dec�(u) : El(b̂ool)@m⇝ dec�(M)

Θ tele@m⇝ Γ

Γ ⊢ A@m Γ ⊢M0,M1 : A@m Θ ⊢ne e : El(Îd(A,M0,M0))@m⇝ N

Θ ⊢ne dec�(e) : IdA(M0,M1)@m⇝ dec�(N)

Θ tele@m⇝ Γ
Γ ⊢ A@m Γ ⊢M0,M1 : A@m Θ ⊢nf u : IdA(M0,M1)@m⇝ N

Θ ⊢nf dec�(u) : El(Îd(A,M0,M0))@m⇝ dec�(N)

Θ tele@m⇝ Γ Θ ⊢ne e : U@m⇝ A Θ ⊢ne f : El(e)@m⇝M

Θ ⊢nf up(f) : El(A)@m⇝M

Θ tele@m⇝ Γ Θ ⊢nf u : U@m⇝ A
Θ.(idm | El(A)) ⊢nf v : U@m⇝ B Θ ⊢ne e : El(A ×̂ B))@m⇝M

Θ ⊢ne dec�(e) : El(A)× El(B)@m⇝ dec�(M)

Θ tele@m⇝ Γ Θ ⊢nf u : U@m⇝ A
Θ.(idm | El(A)) ⊢nf v : U@m⇝ B Θ ⊢nf w : El(A)× El(B)@m⇝M

Θ ⊢nf dec�(w) : El(A ×̂ B)@m⇝ dec�(M)

Θ tele@m⇝ Γ Θ ⊢nf u : U@n⇝ A
Θ.(µ | El(A)) ⊢nf v : U@m⇝ B Θ ⊢ne e : El((µ | A) →̂ B))@m⇝M

Θ ⊢ne dec�(e) : (µ | El(A))→ El(B)@m⇝ dec�(M)

Θ tele@m⇝ Γ Θ ⊢nf u : U@n⇝ A
Θ.(µ | El(A)) ⊢nf v : U@m⇝ B Θ ⊢nf w : (µ | El(A))→ El(B)@m⇝M

Θ ⊢nf dec�(w) : El((µ | A) →̂ B)@m⇝ dec�(M)

Θ tele@m⇝ Γ Γ.{µ} ⊢ A : U@n Θ ⊢ne e : El(⟨̂µ | A⟩)@m⇝M

Θ ⊢ne dec�(e) : ⟨µ | El(A)⟩@m⇝ dec�(M)

Θ tele@m⇝ Γ Γ.{µ} ⊢ A : U@n Θ ⊢nf u : ⟨µ | El(A)⟩@m⇝M

Θ ⊢nf dec�(u) : El(⟨̂µ | A⟩)@m⇝ dec�(M)

NORMALIZATION FOR MULTIMODAL TYPE THEORY 33

Appendix B. A full definition of an internal MTT cosmos

We present the full definition of an internal MTT cosmos. The fact that these
constants correspond to the exist in e.g. the syntactic MTT cosmos follows from
unfolding the internal language this signature is presented in and observing that
it is identical to Definition 3.4 in cosmoi rich enough to use MTT as an internal
language.

B.1. Term and type sorts.

Tym : U

Tmm : Tym → U

B.2. Dependent sums.

Sig :
[∑

A:Tym
Tmm(A)→ Tym

]
→ Tym

αSig : (A : Tym)(B : Tmm(A)→ Tym)→
[
Tmm(Sig(A,B)) ∼=

∑
a:Tmm(A) Tmm(B(a))

]
B.3. Dependent products.

Prod :
[∑

A:⟨µ|Tyn⟩
let modµ(A)← A in [⟨µ | Tmn(A)⟩ → Tym]

]
→ Tym

αProd : (µ | A : Tyn)→ (B : ⟨µ | Tmn(A)⟩ → Tym)→[
Tmm(Prod(modµ(A), B)) ∼=

∏
a:⟨µ|Tmn(A)⟩ Tmm(B(a))

]
B.4. Booleans.

Bool : Tym

true, false : Tmm(Bool)

if : (A : Tmm(Bool)→ Tym)→
Tmm(A(true))→ Tmm(A(false))→
(b : Tmm(Bool))→ Tmm(A(b))

: (A : Tmm(Bool)→ Tym)(t : Tmm(A(true)))(f : Tmm(A(false)))→
(if(A, t, f, true) = t)× (if(A, t, f, false) = f)

B.5. Identity types.

Id : (A : Tym)(a0, a1 : Tmm(A))→ Tym

refl : (A : Tym)(a : Tmm(A))→ Tmm(Id(A, a, a))

J : (A : Tym)(B : (a0, a1 : Tmm(A))(p : Tmm(Id(A, a0, a1)))→ Tym)→
((a : Tmm(A))→ Tmm(B(a, a, refl(a))))→
(a0, a1 : Tmm(A))(p : Tmm(Id(A, a0a1)))→ Tmm(B(a0, a1, p))

: (A : Tym)(B : (a0, a1 : Tmm(A))(p : Tmm(Id(A, a0, a1)))→ Tym)→
(b : (a : Tmm(A))→ Tmm(B(a, a, refl(a))))→
(a : Tmm(A))→ J(A,B, b, a, a, refl(a)) = b(a)

34 DANIEL GRATZER

B.6. Modal types.

Mod[µ] : (µ | A : Tyn)→ Tym

m[µ] : (µ | A : Tyn)(µ | a : Tmn(A))→ Tmm(Mod[µ](A))

letmod[µ; ν] : (ν ◦ µ | A : Tyn)
[
B : ⟨µ | Tmn(Mod[µ](A))⟩ → Tyo

]
→[

(ν ◦ µ | x : Tmn(A))→ Tmo(B(m[µ](A, x)))
]
→

(ν | a : Tmm(Mod[µ](A)))→
Tmo(B(a))

: (ν ◦ µ | A : Tyn)
[
B : ⟨µ | Tmn(Mod[µ](A))⟩ → Tyo

]
→[

b : (ν ◦ µ | x : Tmn(A))→ B(m[µ](A, x))
]
→

(ν ◦ µ | a : Tmn(A))→ letmod[µ; ν](A,B, b,m[µ](A, a)) = b(a)

B.7. Universe á la Tarski.

Uni : Tym

El : Tmm(Uni)→ Tym

Ŝig :
[∑

A:Tmm(Uni) Tmm(El(A))→ Tmm(Uni)
]
→ Tmm(Uni)

P̂rod :
[∑

A:⟨µ|Tmn(Uni)⟩ let modµ(A)← A in [⟨µ | Tmn(El(A))⟩ → Tym]
]
→ Tmm(Uni)

B̂ool : Tmm(Uni)

M̂od : ⟨µ | Tmn(Uni)⟩ → Tmm(Uni)

dec
Ŝig

: (A : Tmm(Uni))(B : Tmm(El(A))→ Tmm(Uni))→

Tmm(El(Ŝig(A,B,))) ∼= Tmm(Sig(El(A),El ◦B))

dec
P̂rod

: (µ | A : Tmn(Uni))(B : (µ | Tmn(El(A)))→ Tmm(Uni))→

Tmm(El(P̂rod(A,B))) ∼= Tmm(Prod(El(A),El ◦B))

dec
B̂ool

: Tmm(El(B̂ool)) ∼= Tmm(Bool)

dec
M̂od

: (µ | A : Tmn(Uni))→ Tmm(El(M̂od(A))) ∼= Tmm(Mod[µ](El(A)))

B.8. Internal and external MTT cosmoi coincide. Let us fix a cosmos F :
V (see Definition 3.3) such that F supports a model of MTT where types are
interpreted (up to equivalence) by families of objects and a ⟨µ | −⟩ is interpreted
by F (µ). For instance, the syntactic MTT cosmos defined by F (m) = PSh(Cxm).

Theorem B.1. The cosmos F is an MTT cosmos (see Definition 3.4) precisely
when the internal language of F supports the constants of an internal MTT cosmos.

Proof. First, observe that unfolding the constants Tym and Tmm into the model in
F gives an object Tm = JTymK and a family over Tm given by τm = JTmmK. We

call write Ṫm for the domain of τm. Moreover, this transformation is a bijection:
every family τm gives rise to a pair of Tym and Tmm.

Showing that the remain constants induce the structure of an MTT cosmos is
a standard exercise in unfolding the interpretation of MTT into a presheaf topos.
We show only the representative case of modalities.

NORMALIZATION FOR MULTIMODAL TYPE THEORY 35

First, observe that the constant Mod[µ] : (µ | A : Tyn)→ Tym is precisely deter-
mined by a morphism M : F (µ)(Tn) Tm, using the fact that modalities in the
model of MTT are interpreted by F (µ). Similarly, m[µ] : (µ | A : Tyn)(µ | a : Tmn(A))→
Tmm(Mod[µ](A)) is precisely equivalent to a map m : F (µ)(Ṫn) Ṫm such that
τm ◦m =M ◦ F (µ)(τn).

The final equivalence between the elimination constant letmod[µ; ν] and the lift-
ing structure from Definition 3.4 is identical similar: unfolding letmod[µ; ν] and its
equation amounts to an internal lifting structure. □

Appendix C. Neutral and normal forms, internally

We require that all normal and neutral forms become equal to their counterparts
in the syntactic internal MTT cosmos (Appendix B and Section 6) under the as-
sumption z : syn. We avoid repeatedly stating this in the specifications of normals
and neutrals that follows.

C.1. Normal types.

Prod : (µ | A : NfTyn)(B : (µ | Vn(A))→ NfTym)→ NfTym

Sum : (A : NfTym)(B : Vm(A)→ NfTym)→ NfTym
Bool : NfTym

Modµ : ⟨µ | NfTyn⟩ → NfTym

C.2. Dependent products.

lam : (µ | A : #zTyn(z))(B : (µ | #zTmn(z,A(z)))→ #zTymz)

→ ((µ | a : Vn(A))→ Nfm(B(a)))

→ Nfm(Prod(A,B))

app : (µ | A : #zTyn(z))(B : (µ | #zTmn(z,A(z)))→ #Tym)

→ Nem(Prod(A,B))

→ (µ | a : NfnA)

→ Nem(B(a))

C.3. Dependent sums.

pair : (A : #zTym(z))(B : #zTmm(z,A(z))→ #zTym(z))

→ (a : Nfm(A))→ Nfm(B(η(a)))

→ Nfm(Sig(A,B))

proj0 : (A : #zTym(z))(B : #zTmm(z,A(z))→ #zTym(z))

→ Nem(Sig(A,B))

→ Nem(A)

proj1 : (A : #zTym(z))(B : #zTmm(z,A(z))→ #zTym(z))

→ (p : Nem(Sig(A,B)))

→ Nem(B(η(proj0(p))))

36 DANIEL GRATZER

C.4. Booleans.

up : Nem(Bool)→ Nfm(Bool)

tt,ff : Nfm(Bool)

if : (A : Vm(Bool)→ NfTym)

→ Nfm(A(true))→ Nfm(A(false))→ (b : Nem(Bool))→ Nem(A(η(b)))

C.5. Identity types.

up : (A : #zTym(z))(a0, a1 : #zTmm(z,A(z)))→ Nem(Id(A, a0, a1))→ Nfm(Id(A, a0, a1))

refl : (A : #zTym(z))(a : #zTmm(z,A(z)))→ Nfm(Id(A, a, a))

J : (A : #Tym)(B : (a0, a1 : Vm(A))(p : Vm(Id(A, a0, a1)))→ NfTym)→
((a : Vm(A))→ Nfm(B(a, a, refl(a))))→
(a0, a1 : #zTmm(A))(p : Nem(Id(A, a0, a1)))→ Nem(B(a0, a1, η(p)))

C.6. Modal types.

up : (µ | A : #zTyn(z))→ Nem(Mod[µ]A)→ Nfm(Mod[µ]A)

modµ : (µ | A : #zTyn(z))→ ⟨µ | Nfn(A)⟩ → NfMod[µ]A

letmodµ;ν : (ν ◦ µ | A : #zTyn(z))(B : (ν | a : Vm(Mod[µ](z,A(z))))→ NfTyo)

→ ((µ ◦ ν | a : Vn(A))→ Nfo(B(m[µ](A, η(a)))))

→ (ν | a : Nem(Mod[µ](A)))→ Neo(B(η(a)))

C.7. Universe á la Tarski.

Uni : NfTym El : Nfm(Uni)→ NfTym

up : Nem(Uni)→ Nfm(Uni)

P̂rod : (µ | A : Nfn(Uni))(B : (µ | Vn(El(A)))→ Nfm(Uni))→ Nfm(Uni)

Ŝum : (A : Nfm(Uni))(B : Vm(El(A))→ Nfm(Uni))→ Nfm(Uni)

B̂ool : Nfm(Uni)

M̂odµ : ⟨µ | Nfn(Uni)⟩ → Nfm(Uni)

dec�
P̂rod

: (µ | A : Nfn(Uni))(B : (µ | Vn(El(A)))→ Nfm(Uni))

→ Nfm(Prod(El(A),El(B)))→ Nfm(El(P̂rod(A,B)))

dec�
Ŝum

: (A : Nfm(Uni))(B : Vm(El(A))→ Nfm(Uni))

→ Nfm(Sum(El(A),El(B)))→ Nfm(El(Ŝum(A,B)))

dec�
P̂rod

: (µ | A : Nfn(Uni))(B : (µ | Vn(El(A)))→ Nfm(Uni))

→ Nem(El(P̂rod(A,B)))→ Nem(Prod(El(A),El(B)))

dec�
Ŝum

: (A : Nfm(Uni))(B : Vm(El(A))→ Nfm(Uni))

→ Nem(El(Ŝum(A,B)))→ Nem(Sum(El(A),El(B)))

dec�
B̂ool

: Nfm(Bool)→ Nfm(El(B̂ool))

dec�
M̂odµ

: (µ | A : Nfn(Uni))→ Nfm(Mod[µ](A))→ Nfm(El(M̂od(A)))

NORMALIZATION FOR MULTIMODAL TYPE THEORY 37

dec�
B̂ool

: Nem(El(B̂ool))→ Nem(Bool)

dec�
M̂odµ

: (µ | A : Nfn(Uni))→ Nem(El(M̂od(A)))→ Nem(Mod[µ](A))

C.8. Interpreting neutral and normal forms in the glued model. Substan-
tiating these constants in the glued model (see Theorem 6.1) relies on unfolding the
constants described above into this model and showing that the expected normal
or neutral form from Section 5 can be used. These proofs follow Hofmann [Hof99],
and again the main subtlety is showing that binders in constants such as Prod are
correctly interpreted.

For each normal and neutral form, the requirement that constant lie over the
appropriate constant from the syntactic cosmos forces the “syntactic portion” of
each constant. More precisely, consider again Prod and set I = (µ | A : NfTyn) ×
Vn(A) and I ′ = (µ | A : Tyn) × Tmn(A). The definition of Prod is a commuting
square of the following shape in PSh(Renm):

JIK1

i[m]∗(JI ′K)

JIK

JNfTymK1

i[m]∗(JTymK)

JProdK1

JNfTymK

JProdK0

The bottom map of this square JProdK0, moreover, must be i[m]∗(Prod) in order
to ensure that Prod = Prod(z) with z : U . It remains to define the top arrow of
this diagram. This is complicated by the difference between the interpretation of
dependent products in GJmK and PSh(Renm). In particular, while the “downstairs”
portion of a dependent product in GJmK is a dependent product in PSh(Cxm), the
upstairs portion is not a dependent product in PSh(Renm).

In order to define JProdK1, it suffices to fix a morphism x : y(Θ) JNfTymK1
and define the action of JProdK1 on it. First, observe that we can extend x to the
following commuting square:

y(Θ)

i[m]∗(y(i[m](Θ)))

JIK0

i[m]∗(JI ′K)

x

JIK

i[m]∗(x̃)

By universal property, therefore, we can decompose x into a pair:

y(Θ.{µ})

i[n]∗(y((i[m](Θ)).{µ}))

JNfTynK1

i[n]∗(JTynK)

x0

JNfTynK

i[n]∗(x̃0)

38 DANIEL GRATZER

y(Θ.x0)

i[m]∗(y(i[m](Θ.(µ | x̃0))))

JNfTymK1

i[m]∗(JTymK)

x1

JNfTynK

i[m]∗(x̃1)

We may now define Prod(x) = (µ | x0)→ x1. The naturality of this assignment,
as well as the fact that it commutes appropriately, are direct computations.

References

[Abe13] Andreas Abel. “Normalization by Evaluation: Dependent Types and
Impredicativity”. Habilitation. Ludwig-Maximilians-Universität München,
2013 (cit. on p. 6).

[Alt+01] T. Altenkirch, P. Dybjer, M. Hofmann, and P. Scott. “Normalization
by Evaluation for Typed Lambda Calculus with Coproducts”. In: Pro-
ceedings of the 16th Annual IEEE Symposium on Logic in Computer
Science. LICS ’01. Washington, DC, USA: IEEE Computer Society,
2001, pp. 303–. url: http://dl.acm.org/citation.cfm?id=871816.
871869 (cit. on p. 6).

[AHS95] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. “Cat-
egorical reconstruction of a reduction free normalization proof”. In:
Category Theory and Computer Science. Ed. by David Pitt, David E.
Rydeheard, and Peter Johnstone. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1995, pp. 182–199. isbn: 978-3-540-44661-3 (cit. on pp. 3,
6, 7).

[AK16] Thorsten Altenkirch and Ambrus Kaposi. “Normalisation by Evalua-
tion for Dependent Types”. In: 1st International Conference on Formal
Structures for Computation and Deduction (FSCD 2016). Ed. by Delia
Kesner and Brigitte Pientka. Vol. 52. Leibniz International Proceedings
in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2016, 6:1–6:16. isbn: 978-3-95977-010-1. doi:
10.4230/LIPIcs.FSCD.2016.6. url: http://drops.dagstuhl.de/
opus/volltexte/2016/5972 (cit. on p. 3).

[AGV72] Michael Artin, Alexander Grothendieck, and Jean-Louis Verdier. Théorie
des topos et cohomologie étale des schémas. Séminaire de Géométrie
Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A.
Grothendieck, et J.-L. Verdier. Avec la collaboration de N. Bourbaki,
P. Deligne et B. Saint-Donat, Lecture Notes in Mathematics, Vol. 269,
270, 305. Berlin: Springer-Verlag, 1972 (cit. on pp. 7, 14, 18).

[Awo18] Steve Awodey. “Natural models of homotopy type theory”. In: Mathe-
matical Structures in Computer Science 28.2 (2018), pp. 241–286. issn:
09601295. doi: 10.1017/S0960129516000268. eprint: 1406.3219 (cit.
on pp. 7, 19).

http://dl.acm.org/citation.cfm?id=871816.871869
http://dl.acm.org/citation.cfm?id=871816.871869
https://doi.org/10.4230/LIPIcs.FSCD.2016.6
http://drops.dagstuhl.de/opus/volltexte/2016/5972
http://drops.dagstuhl.de/opus/volltexte/2016/5972
https://doi.org/10.1017/S0960129516000268
1406.3219

REFERENCES 39

[Bir+20] Lars Birkedal, Ranald Clouston, Bassel Mannaa, Rasmus Ejlers Møgelberg,
Andrew M. Pitts, and Bas Spitters. “Modal dependent type theory and
dependent right adjoints”. In: Mathematical Structures in Computer
Science 30.2 (2020), pp. 118–138. doi: 10.1017/S0960129519000197.
eprint: 1804.05236 (cit. on pp. 2, 13).

[CJ95] Aurelio Carboni and Peter Johnstone. “Connected limits, familial rep-
resentability and Artin glueing”. In: Mathematical Structures in Com-
puter Science 5.4 (1995), pp. 441–459. doi: 10.1017/S0960129500001183
(cit. on pp. 7, 14, 18).

[Coq19] Thierry Coquand. “Canonicity and normalization for dependent type
theory”. In: Theoretical Computer Science 777 (2019), pp. 184–191.
doi: 10.1016/j.tcs.2019.01.015 (cit. on pp. 3, 7).

[Fio02] Marcelo Fiore. “Semantic Analysis of Normalisation by Evaluation for
Typed Lambda Calculus”. In: Proceedings of the 4th ACM SIGPLAN
International Conference on Principles and Practice of Declarative Pro-
gramming. PPDP ’02. Pittsburgh, PA, USA: ACM, 2002, pp. 26–37.
isbn: 1-58113-528-9. doi: 10.1145/571157.571161 (cit. on pp. 3, 6,
7).

[Gra+21] Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal. “Mul-
timodal Dependent Type Theory”. In: Logical Methods in Computer
Science Volume 17, Issue 3 (July 2021). doi: 10.46298/lmcs-17(3:
11)2021. url: https://lmcs.episciences.org/7713 (cit. on pp. 1–3,
7, 8, 18, 19).

[Gra+20] Daniel Gratzer, G.A. Kavvos, Andreas Nuyts, and Lars Birkedal. “Mul-
timodal Dependent Type Theory”. In: Proceedings of the 35th Annual
ACM/IEEE Symposium on Logic in Computer Science. LICS ’20. ACM,
2020. doi: 10.1145/3373718.3394736 (cit. on p. 2).

[GS20] Daniel Gratzer and Jonathan Sterling. Syntactic categories for depen-
dent type theory: sketching and adequacy. 2020. arXiv: 2012.10783
[cs.LO] (cit. on pp. 4, 7).

[GSB19a] Daniel Gratzer, Jonathan Sterling, and Lars Birkedal. “Implementing
a Modal Dependent Type Theory”. In: Proc. ACM Program. Lang. 3
(ICFP 2019). doi: 10.1145/3341711 (cit. on p. 3).

[GSB19b] Daniel Gratzer, Jonathan Sterling, and Lars Birkedal. Normalization-
by-Evaluation for Modal Dependent Type Theory. Technical Report for
the ICFP paper by the same name. 2019. url: https://jozefg.
github.io/papers/2019-implementing-modal-dependent-type-

theory-tech-report.pdf (cit. on p. 3).
[Hof99] Martin Hofmann. “Semantical Analysis of Higher-Order Abstract Syn-

tax”. In: Proceedings of the 14th Annual IEEE Symposium on Logic in
Computer Science. LICS ’99. Washington, DC, USA: IEEE Computer
Society, 1999, pp. 204–. isbn: 0-7695-0158-3. url: http://dl.acm.
org/citation.cfm?id=788021.788940 (cit. on pp. 20, 37).

[HS97] Martin Hofmann and Thomas Streicher. “Lifting Grothendieck Uni-
verses”. Unpublished note. 1997. url: https://www2.mathematik.tu-
darmstadt.de/~streicher/NOTES/lift.pdf (cit. on p. 13).

https://doi.org/10.1017/S0960129519000197
1804.05236
https://doi.org/10.1017/S0960129500001183
https://doi.org/10.1016/j.tcs.2019.01.015
https://doi.org/10.1145/571157.571161
https://doi.org/10.46298/lmcs-17(3:11)2021
https://doi.org/10.46298/lmcs-17(3:11)2021
https://lmcs.episciences.org/7713
https://doi.org/10.1145/3373718.3394736
https://arxiv.org/abs/2012.10783
https://arxiv.org/abs/2012.10783
https://doi.org/10.1145/3341711
https://jozefg.github.io/papers/2019-implementing-modal-dependent-type-theory-tech-report.pdf
https://jozefg.github.io/papers/2019-implementing-modal-dependent-type-theory-tech-report.pdf
https://jozefg.github.io/papers/2019-implementing-modal-dependent-type-theory-tech-report.pdf
http://dl.acm.org/citation.cfm?id=788021.788940
http://dl.acm.org/citation.cfm?id=788021.788940
https://www2.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf
https://www2.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf

40 REFERENCES

[KHS19] Ambrus Kaposi, Simon Huber, and Christian Sattler. “Gluing for type
theory”. In: Proceedings of the 4th International Conference on For-
mal Structures for Computation and Deduction (FSCD 2019). Ed. by
Herman Geuvers. Vol. 131. 2019 (cit. on p. 7).

[KKA19] Ambrus Kaposi, András Kovács, and Thorsten Altenkirch. “Construct-
ing Quotient Inductive-inductive Types”. In: Proc. ACM Program. Lang.
3.POPL (Jan. 2019), 2:1–2:24. issn: 2475-1421. doi: 10.1145/3290315
(cit. on p. 9).

[KPT99] Yoshiki Kinoshita, John Power, and Makoto Takeyama. “Sketches”. In:
Journal of Pure and Applied Algebra 143.1 (1999), pp. 275–291. issn:
0022-4049. doi: 10.1016/S0022-4049(98)00114-5 (cit. on p. 10).

[Lac09] Stephen Lack. “A 2-Categories Companion”. In: The IMA Volumes in
Mathematics and its Applications (Sept. 2009), pp. 105–191. issn: 0940-
6573. doi: 10.1007/978-1-4419-1524-5_4 (cit. on p. 10).

[LS16] Daniel R. Licata and Michael Shulman. “Adjoint Logic with a 2-Category
of Modes”. In: Logical Foundations of Computer Science. Ed. by Sergei
Artemov and Anil Nerode. Springer International Publishing, 2016,
pp. 219–235. doi: 10.1007/978-3-319-27683-0_16 (cit. on p. 2).

[MS93] John C. Mitchell and Andre Scedrov. “Notes on sconing and relators”.
In: Computer Science Logic. Ed. by E. Börger, G. Jäger, H. Kleine
Büning, S. Martini, and M. M. Richter. Springer Berlin Heidelberg,
1993, pp. 352–378. doi: 10.1007/3-540-56992-8_21 (cit. on p. 5).

[OP18] Ian Orton and Andrew M. Pitts. “Axioms for Modelling Cubical Type
Theory in a Topos”. In: Logical Methods in Computer Science 14.4
(2018). doi: 10.23638/LMCS-14(4:23)2018. arXiv: 1712.04864 (cit.
on p. 18).

[Red20] The RedPRL Development Team. cooltt. 2020. url: http://www.
github.com/RedPRL/cooltt (cit. on p. 8).

[RSS20] Egbert Rijke, Michael Shulman, and Bas Spitters. “Modalities in ho-
motopy type theory”. In: Logical Methods in Computer Science 16.1
(2020). eprint: 1706.07526 (cit. on p. 13).

[Shu15] Michael Shulman. “Univalence for inverse diagrams and homotopy canon-
icity”. In: Mathematical Structures in Computer Science 25.5 (2015),
pp. 1203–1277. doi: 10.1017/S0960129514000565. eprint: 1203.3253
(cit. on p. 7).

[Ste21] Jonathan Sterling. “First Steps in Synthetic Tait Computability: The
Objective Metatheory of Cubical Type Theory”. CMU technical report
CMU-CS-21-142. PhD thesis. Carnegie Mellon University, 2021. doi:
10.5281/zenodo.5709838 (cit. on pp. 1, 3, 5, 7, 8).

[SA21] Jonathan Sterling and Carlo Angiuli. “Normalization for Cubical Type
Theory”. In: Proceedings of the 36th Annual ACM/IEEE Symposium
on Logic in Computer Science. LICS ’21. New York, NY, USA: ACM,
2021 (cit. on p. 5).

[SG20] Jonathan Sterling and Daniel Gratzer. Lecture Notes on Synthetic Tait
Computability. Subsumed by Sterling’s forthcoming thesis. 2020 (cit. on
p. 5).

[SH21] Jonathan Sterling and Robert Harper. “Logical Relations as Types:
Proof-Relevant Parametricity for Program Modules”. In: 68.6 (2021).

https://doi.org/10.1145/3290315
https://doi.org/10.1016/S0022-4049(98)00114-5
https://doi.org/10.1007/978-1-4419-1524-5_4
https://doi.org/10.1007/978-3-319-27683-0_16
https://doi.org/10.1007/3-540-56992-8_21
https://doi.org/10.23638/LMCS-14(4:23)2018
https://arxiv.org/abs/1712.04864
http://www.github.com/RedPRL/cooltt
http://www.github.com/RedPRL/cooltt
1706.07526
https://doi.org/10.1017/S0960129514000565
1203.3253
https://doi.org/10.5281/zenodo.5709838

REFERENCES 41

issn: 0004-5411. doi: 10.1145/3474834. arXiv: 2010.08599 [cs.PL]

(cit. on pp. 1, 5, 18).
[Str98] Thomas Streicher. “Categorical intuitions underlying semantic normal-

isation proofs”. In: Preliminary Proceedings of the APPSEM Workshop
on Normalisation by Evaluation. Ed. by O. Danvy and P. Dybjer. De-
partment of Computer Science, Aarhus University, 1998 (cit. on p. 6).

[Uem19] Taichi Uemura. “A General Framework for the Semantics of Type The-
ory”. In: (Apr. 2019). eprint: 1904.04097 (math.CT). url: https:
//arxiv.org/abs/1904.04097 (cit. on p. 4).

https://doi.org/10.1145/3474834
https://arxiv.org/abs/2010.08599
1904.04097
https://arxiv.org/abs/1904.04097
https://arxiv.org/abs/1904.04097

	1. Introduction
	2. Normalization via Synthetic Tait Computability
	3. MTT Cosmoi
	4. Foundations of multimodal Synthetic Tait Computability
	5. The category of renamings for MTT
	6. Prerequisites for the normalization model
	7. The normalization model
	8. The normalization function
	Acknowledgments
	Appendix A. Neutral and normal forms
	Appendix B. A full definition of an internal MTT cosmos
	Appendix C. Neutral and normal forms, internally
	References

