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To a first approximation, type theory is the study of objects invariant under change of
context i.e. fibered connectives. Unfortunately, many important features of models of type
theory are not fibered and this limits the utility of type theory as an internal language. To
manage this contradiction, a number of modal type theories have been proposed which allow
for a controlled introduction of non-fibered connectives. Such modal type theories are often
delicate to construct, which has motivated type theories which can be instantiated to different
modal situations [10, 14].

We focus on one such general modal type theory: MTT, a multimodal dependent type
theory [10]. MTT can be instantiated by a strict 2-category specifying a collection of modes,
modalities and natural transformations between them—a mode theory—and by altering the
input mode theory MTT can be used to reason about e.g., guarded recursion, internalized para-
metricity, axiomatic cohesion, and the metatheory of type theories [6]. Each instantiation of
MTT is known to enjoy certain metatheorems regardless of the mode theory (soundness, canon-
icity) however, lacking a similarly general normalization result, MTT cannot be implemented
in a way which permits easy reuse between different mode theories.

We contribute a normalization algorithm for MTT which applies irrespective of its mode
theory [9]. As a corollary of this normalization result, we show that type constructors are
injective and that conversion in MTT is decidable if and only if equality in the underlying mode
theory is decidable. As a further consequence, we show that the typechecking problem for MTT
is decidable under these same circumstances. Accordingly, this result is provides a theoretical
grounding for an implementation which can be instantiated to a variety of modal situations.

Normalization by gluing Our normalization proof follows in the tradition of semantic proofs
of normalization and gluing arguments [1-3, 7, 8, 13, 16, 20]. More precisely, we do not proceed
by fixing rewriting system which we prove to be strongly normalizing nor by defining a nor-
malization algorithm on raw terms which is then shown to be sound and complete. Instead, we
construct a model in the category given by gluing the syntactic model along a nerve restrict-
ing from substitutions to renamings. Normalization follows from this model together with the
initiality of syntax. While this approach is standard for normalization-by-gluing proofs, the
multimodal apparatus introduces several complications.

MTT Cosmoi In order to discuss the novel features of this proof, we must review the model
theory of MTT. For the remainder of this abstract, we consider MTT over a fixed mode theory
M. A model of MTT is a strict 2-functor F' : M — Cat sending m : M to a category F(m)
which supports a model of MLTT. More precisely, in the language of natural models, we require
a representable natural transformation 7, : 75, — Ty, in PSh(F(m)) closed under the standard
connectives of type theory [4]. For each modality px : n— m, we require a commutative square:

! |

F(u) Tn —— Tm
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The bottom (resp. top) map of this commutative square interprets the formation (resp. intro-
duction) rule of the modal type, see Gratzer et al. [11, Section 5] for further details.

The extra complexity of a 2-functor of models precludes directly constructing the necessary
model of MTT. Instead, we begin by generalizing the definition of models following Gratzer
and Sterling [12]. We require a pseudofunctor G : M — Cat such that G(m) is merely locally
Cartesian closed and G(u) is a right adjoint, intuitively capturing PSh(F(m)) and F(m)*
respectively. Even in this weaker setting, we can still state all the requirements of a model
(a universe 7, closed under various connectives, etc.) with one exception: we must drop
the requirement that each 7, is fiberwise representable. A pseudofunctor equipped with the
remaining applicable structure is an MTT cosmos. Note that a model of MTT induces a cosmos,
in particular presheaves over contexts induce a cosmos S[—].

We define a category of renamings Ren,, and a functor ifm] embedding it into the category
of contexts Cx,,. Similarly, we define neutral and normal forms together with an embedding
into terms such that normal forms correspond to S-normal and 7-long terms and show that
they form a presheaves over Ren,,. Like terms, normal forms contain modalities and 2-cells
from M so, while they are not quotiented by a definitional equality, their equality is decidable
if and only if the equality in M is decidable.

By gluing along i[m|* : PSh(Cx,,) — PSh(Ren,,), we obtain a presheaf topos G[m] and
the 2-naturality of i[—] ensures that G[—] organizes into a 2-functor out of M. The crux of our
normalization argument is the construction of a cosmos in G[—] lying over S[—].

The normalization cosmos While G[m] is a presheaf topos, it is cumbersome to manip-
ulate directly. In order to construct the normalization cosmos in G[—], we adapt synthetic
Tait computability (STC) [17-19] to our multimodal setting and work exclusively in the in-
ternal language of G[—]. Specifically, we show that MTT can be interpreted into G[—] and
under this interpretation there is a proposition syn,, which presents S[m] = PSh(Cx,,) (resp.
PSh(Ren,,)) as an open (resp. closed) subtopos of G[m]. Having relaxed from models of MTT
to cosmoi, the required additional structure can be presented as a sequence of constants to
be implemented in the internal language, with the open modality being used to ensure that a
connective lies strictly over its counterpart in S[—].

Working internally, we substantiate the constants of an MTT cosmos while ensuring that
they lie strictly over their counterparts in S[m]. Unlike typical gluing proofs, there is no need
to ever exit the internal language and so many subtle constructions are transformed into a
sequence of programming exercises in MTT. Following Sterling and Harper [19], we use the
internal realignment axiom [5, 15] to ensure that natural constructions various connectives lie
strictly over their counterparts in S[—]. We conclude that there is an MTT cosmos in G[—]
and a morphism of cosmoi 7 : G[—] — S[-].

The normalization function While syntax S[—] is the initial model of MTT, it is not initial
among cosmoi. It still, however, enjoys a privileged position in this category which ensures that
each context, term, and type in S[—] is in the essential image of 7. From this fact and the
definition of w, we conclude the following almost immediately.

Theorem 1. FEach term and type in MTT has a unique normal form.

As our proof of this fact is constructive, it yields an effective procedure which parallels a
familiar normalization-by-evaluation algorithm. Consequently, we obtain the following:

Corollary 2. The conversion problem in MTT is equivalent to the conversion problem of M.

Corollary 3. If modalities and 2-cells enjoy decidable equality, typechecking MTT is decidable.
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