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Abstract
Recently, there has been a growing interest in type theories which include modalities, unary type
constructors which need not commute with substitution. Here we focus on MTT [12], a general
modal type theory which can internalize arbitrary collections of (dependent) right adjoints [5]. These
modalities are specified by mode theories [17], 2-categories whose objects corresponds to modes,
morphisms to modalities, and 2-cells to natural transformations between modalities. We contribute
a defunctionalized NbE algorithm which reduces the type-checking problem for MTT to deciding
the word problem for the mode theory. The algorithm is restricted to the class of preordered mode
theories—mode theories with at most one 2-cell between any pair of modalities. Crucially, the
normalization algorithm does not depend on the particulars of the mode theory and can be applied
without change to any preordered collection of modalities. Furthermore, we specify a bidirectional
syntax for MTT together with a type-checking algorithm. We further contribute mitten, a flexible
experimental proof assistant implementing these algorithms which supports all decidable preordered
mode theories without alteration.
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1 Introduction

A fundamental benefit of using type theory is the possibility of working within a proof assistant,
which can check and even aid in the construction of complex theorems. Implementing a proof
assistant, however, is a highly nontrivial task. In addition to a solid theoretical foundation
for the particular type theory, numerous practical implementation issues must be addressed.

Recently, interest has gathered around type theories with modalities, unary type con-
structors which need not commute with substitution. Unfortunately, the situation for modal
type theories is even more fraught; the theory for modalities is poorly understood in general,
and it is unknown whether standard implementation techniques extend to support them.

Despite these challenges, mainstream proof assistants have begun to experiment with
modalities [23], but these implementations are costly and only apply to a particular modal
type theory. In practice, a type theorist may use a particular collection of modalities for only
one proof or construction and it is impractical to invest in a specialized modal proof assistant
each time. This churn has pushed type theorists to define general modal type theories which
can be instantiated to a variety of modal situations [18, 13].

We choose to focus on MTT [12], a general modal type theory which can internalize
an arbitrary collection of modalities so long as they behave like right adjoints [5]. Despite
limiting consideration to right adjoints, MTT can be used to model a variety of existing
modal type theories including calculi for guarded recursion, internalized parametricity, and
axiomatic cohesion. Better still, MTT has a robustly developed metatheory [12, 10] which
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applies irrespective of the chosen modalities. An implementation of MTT could therefore
conceivably be designed to allow the user to freely change the collection of modalities without
re-implementing the entire proof assistant each time. This, in turn, enables the kind of
specialized modal proof assistants previously impractical for one-off modal type theories.

1.1 MTT: a general modal type theory
As mentioned, MTT can be instantiated with a collection of modalities. More precisely, MTT
is parameterized by a mode theory, a strict 2-category which describes a modal situation.
Intuitively, objects (m,n, o) of this mode theory represent distinct type theories which are
then connected by 1-cells (µ, ν, ξ) which describe the modalities. The categorical structure
ensures that modalities compose and that there is an identity modality. In order to describe
more intricate connections and structure, the mode theory also contains 2-cells (α, β). A
2-cell induces a ‘natural transformation’ between modalities. By carefully choosing 2-cells we
can force a modality to e.g. become a comonad, a monad, or an adjoint.

To give a paradigmatic example, consider the mode theory M with a single object m, a
single non-identity morphism µ : m m and a 2-cell ϵ : µ idm subject to the equations
µ ◦ µ = µ and ϵ ⋆ µ = µ ⋆ ϵ. This description defines M as a 2-category with a strictly
idempotent comonad µ. Instantiating MTT with this mode theory yields a modality ⟨µ | −⟩
together with definable operations shaping ⟨µ | −⟩ into an idempotent comonad:

extractA : ⟨µ | A⟩ → A dupA : ⟨µ | A⟩ ≃ ⟨µ | ⟨µ | A⟩⟩

Even this simple modal type theory is quite useful; it can serve as a replacement for the
experimental version of Agda [23] used to formalize a construction of univalent universes [16].

Given the generality, it is natural to wonder whether instantiating MTT yields a calculus
which is feasible to work with in practice. Fortunately, prior Fitch-style type theories have
been highly workable [2, 3, 22] and this trend has continued with MTT [12, 10, 11].

1.2 From theory to practice
Unfortunately, converting the theoretical guarantee of normalization into an executable
program is not a small step. A first obstacle is the syntax of MTT itself: prior work has
exclusively considered an algebraic presentation of the syntax as a generalized algebraic
theory. While mathematically elegant, a proof assistant requires a more streamlined and
ergonomic syntax. Once a more convenient syntax has been designed, one must adapt the
normalization proof to a normalization algorithm. Normalization is proven by a sophisticated
gluing argument, and while the proof is reminiscent of normalization-by-evaluation [1] it
remains to extract such an algorithm. Finally, the normalization algorithm does not give any
insight into representing common mode theories or solving their word problems.

Restriction to preordered mode theories

Many difficulties flow not from the modalities per se, but from the 2-cells of our mode
theory, which induce a new primitive type of substitutions. During normalization these
key substitutions accumulate at variables. Unfortunately, they disrupt a crucial property of
modern NbE algorithms: variables can no longer be presented in a way that is invariant
under weakening. Therefore, we restrict our attention to mode theories that are preordered,
with at most one 2-cell between any pair of modalities.
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This allows us to present a syntax that never talks about 2-cells and relies entirely on the
elaboration procedure to insert and check 2-cells. In addition to avoiding annotations, this
simplifies the normalization algorithm since the troublesome key substitutions trivialize.

Although such a restriction does preclude some examples, preordered mode theories are
still expressive enough to model guarded recursion together with an everything now modality
similar to the one introduced by Clousten et al. [8].

A surface syntax for MTT

As a generalized algebraic theory, MTT is presented with explicit substitutions and fully
annotated connectives [12]. In order to avoid this bureaucracy, we introduce a bidirectional
version of MTT which allows a user of mitten to omit almost all type annotations [9].

Normalization-by-evaluation

The normalization proof for MTT follows the structure of a normalization-by-evaluation
proof. Rather than fixing a rewriting system, a term is evaluated into a carefully chosen
semantics equipped with a quotation function reifying an element of the semantic domain
to a normal form. The entire normalization function is then a round-trip from syntax to
semantics and then back to normal forms. While the proof of normalization uses a traditional
denotational model for a semantic domain, this approach is unsuitable for implementation.

Instead mitten follows the literature on normalization-by-evaluation and uses a defunc-
tionalized and syntactic semantic domain [1]. This approach has previously been adapted to
work with particular a modal type theories [14, 15].

Mode theories

As mentioned previously, normalization for MTT does not immediately imply the decidability
of type equality. Terms (and therefore types) mention both 1- and 2-cells from the mode
theory, and deciding the mode theory is a necessary precondition for deciding type equality.
Moreover, deciding the equality of 1- and 2-cells, even in a finitely presented 2-category, is
well-known to be undecidable.1 For us, this situation is slightly improved since for preordered
mode theories at least 2-cell equality is trivial. Unfortunately, the undecidability of 1-cell
equality remains. Special attention is therefore necessary for each mode theory to ensure
that the normalization algorithm for MTT is sufficient to yield a type-checker.

While this rules out a truly generic proof assistant for MTT which works regardless of the
choice of mode theory, mitten shows that the best theoretically possible result is obtainable.
We implement mitten to be parameterized by a module describing the mode theory so that
the type-checker relies only on the existence of such a decision procedure. In particular, there
is no need to alter the entire proof assistant when changing the mode theory; only a new
mode theory module is necessary. Crucially, while the user must write a small amount of
code, no specialized knowledge of proof assistants is required.

We have implemented several mode theories commonly used with MTT in this way,
showing that in practice decidability is no real obstacle. For instance, we have configured
mitten to support guarded recursion with a combination of two modalities 2 and �. This is
the first proof assistant to support this combination of modalities.

1 The word problem is well-known to be undecidable for finitely presented groups which can be realized
as finitely-presented categories and therefore locally discrete finitely-presentable 2-categories.
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1.3 Contributions
We contribute a bidirectional syntax for MTT (restricted to preordered mode theories)
together with a defunctionalized normalization-by-evaluation algorithm which reduces the
type-checking problem to deciding the word problem for the mode theory. We have put
these results into practice with mitten, an prototype implementation of MTT based on
this algorithm. mitten also supports the replacement of the underlying mode theory with
minimal alterations, allowing a user to construct specialized proof assistants for modal type
theories by merely supplying a single module specifying the mode theory together with
equality functions for 0-, 1-, and 2-cells.

In Section 2 we provide a guided tour of MTT. This section also introduces the bidirec-
tional syntax for MTT and shows how even in this general setting the modalities introduce
minimal overhead. Section 3 introduces the defunctionalized normalization algorithm for
non-specialists and Sections 4 and 5 completes the description of the core components of
mitten by describing the type-checking algorithm. In so doing, we also describe the novel
interface mitten uses to represent modalities and show how this interface is implemented.

In Section 6 we discuss the realization of mode theories with a representative example:
guarded recursion. As previously mentioned, this is the first proof assistant able to support
this pair of modalities simultaneously.

2 A surface syntax for MTT

Prior to specifying a type-checking algorithm for MTT, we must specify the surface syntax
for the language. This question is not satisfactorily addressed in the prior work on MTT;
the generalized algebraic version of syntax is too verbose to be workable, but the informal
pen-and-paper syntax which omits all type annotations cannot be type-checked. Our surface
syntax is formulated with an eye towards the type-checking algorithm we will eventually use:
a version of Coquand’s semantic type-checker [9]. In particular, we will employ a bidirectional
surface syntax which minimizes the number of mandatory annotations while still ensuring
the decidability of type-checking.

To a first approximation, the surface syntax is divided into two components: checkable
and synthesizable terms. Checkable terms include introduction forms while synthesizable
terms include elimination forms and variables. By carefully controlling where checkable and
synthesizable terms are used, we thereby avoid unnecessary type annotations.

We present the grammar for surface syntax in Section 2.1. While we will defer presenting
the actual type-checking algorithm until Section 5, in order to make this account as self-
contained as possible we provide an example-based introduction to MTT in Section 2.2.

2.1 Bidirectional Syntax
As previously mentioned, MTT is parameterized by a mode theory [17] which specifies the
modes and modalities of the type theory. We begin by more precisely defining a mode theory
in our situation.

▶ Definition 1. A mode theory is a category whose objects m,n, o we refer to as modes and
whose morphisms µ, ν we refer to as modalities. We further require that each hom-set be
equipped with a pre-order ≤ compatible with composition. Explicitly, given µ, ν ∈ Hom(m,n)
and ρ, σ ∈ Hom(n, o) with µ ≤ ν and ρ ≤ σ we require ρ ◦ µ ≤ σ ◦ ν.

Equivalently, a mode theory is a preorder-enriched category.
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For the remainder of this subsection, we fix a mode theory M. The grammar of the
surface syntax is presented below:

(Checkable) A, M, N, C ::= R | (µ | A)→ B | A×B | Nat | U | λ(M) | (M, N) | zero
| succ(M) | ⟨µ | A⟩ | modµ(M) | IdA(M, N) | reflM

(Synthesizable) R, S ::= M : A | vk | R(M)µ | pr1(R) | pr2(R)
| letµ modν( )← R in M over C | rec(C, Mzero, Msuc, N)
| J(C, crefl, M)

As mentioned previously, checkable terms consist essentially of introduction forms while
synthesizable terms are elimination principles. For instance, the presentation of dependent
sums above includes A×B and (M,N) as checkable terms while pri(R) is synthesizable.

By stratifying terms in this way we ensure that annotations are required exactly where
ambiguity would arise during type-checking. For instance, this stratification prevents un-
annotated β-redexes from occurring. Consider again the case of dependent sums. In order
to apply a projection to an element (M,N) of dependent sum type, the element must be
synthesizable. However, since (M,N) is checkable, the only way to represent pr1((M,N)) in
this discipline is to promote (M,N) to a synthesizable term by annotating it: (M,N) : A×B.
▶ Remark 2. In particular, terms in β-normal and η-long form fit into this surface syntax
with no additional annotations. Consequently, the normalization theorem for MTT [10]
ensures that any term is convertible to one expressible in the surface syntax.
▶ Remark 3. We have made a concession to simplicity and used de Bruijn indices for variables
rather than names. This makes the normalization and type-checking algorithms far easier to
specify and it is well-known how to pass between syntax with named variables and de Bruijn
indices. We will use named variables in examples e.g., letµ modν(y)← R in M over x.C
or (µ | x : A)→ B for modal elimination and dependent products respectively.

2.2 The surface syntax by example
We will crystallize when a term in the surface syntax is well-formed in Section 5 when
presenting the type-checking algorithm. In order to cultivate intuition for the theory before
this, we will now work through several examples in the language.
▶ Remark 4. We refer the reader to Gratzer et al. [12] for a long form explanation of MTT.

MTT with one mode and one generating modality
Consider MTT instantiated with the mode theory with one mode m and one modality ϕ with
no non-trivial equations or inequalities. Then each modality µ is uniquely expressible as ϕn,
the composition of n copies of ϕ. Just as in ordinary type theory, MTT then has dependent
sums, natural numbers, identity types, and their behavior is unchanged.

Unlike in ordinary type theory, each variable is annotated with a modality x : (µ | A)
(pronounced x : A annotated by µ). Variables annotated with the identity modality behave
like ‘ordinary’ variables; they can be used freely when working with e.g. natural numbers.
Conversely, variables annotated with ϕn+1 cannot be used except in the construction of an
element the modal type ⟨ϕ | A⟩.

An element of ⟨ϕ | A⟩ is introduced by modϕ(M), where M is an element of A, subject to
the restriction that M may only use variables with annotation ϕn+1. More concretely, when
we construct M we (1) lose access to all id-annotated variables and (2) replace a variable
x : (ϕn+1 | A) with x : (ϕn | A). As only variables with identity annotation can be used with
the variable rule, this means that within modϕ(−) we may use ϕ-annotated variables freely.
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For instance, in the context with variables x0 : (id | Nat), x1 : (ϕ | Nat), and x2 :
(ϕ ◦ ϕ | Nat) the following programs are well-typed:

x0 : Nat modϕ(x1) : ⟨ϕ | Nat⟩ modϕ(modϕ(x2)) : ⟨ϕ | ⟨ϕ | Nat⟩⟩

On the other hand, both x1 : Nat and modϕ(x0) : ⟨ϕ | Nat⟩ are ill-typed as the annotations
on variables do not match their usage.

This idea generalizes: to construct an element of ⟨ϕk | A⟩ we use modϕk (M) where M : A
in a context where we have (1) lost access to variables with annotations ϕl where l < k (2)
replaced each variable x : (ϕn+k | A) with x : (ϕn | A). In the same context as the example
above therefore, modϕ◦ϕ(x2) : ⟨ϕ ◦ ϕ | Nat⟩. We refer to the modification to the context given
by (1) and (2) as ϕk-restricting the context.

Let us now consider the modal function type (µ | A)→ B. An element of (µ | A)→ B

is precisely a function which binds a variable of type A with annotation µ. Application for
these function types R(M)µ takes µ into account in the following way: R(M)µ : B if (1) R
has type (µ | A)→ B and (2) after µ-restricting the context, M has type A.

One feature remains to be discussed, the elimination principle for modal types:

letµ modν(y)← R in M over x.C

To a first approximation, this principle allows us to replace a variable x : (ν | ⟨µ | A⟩)
with y : (ν ◦ µ | A). More precisely, letµ modν(y)← R in M over C : C[M/x] if (1) after
binding x : (ν | ⟨µ | A⟩), C is a type (2) after ν-restricting the context M has type ⟨µ | A⟩
and (3) after binding y : (ν ◦ µ | A), R has type C[modµ(y)/x].

Multiple modalities
The above approach for ϕ-restriction based on decrementing modal annotations provides
a simple mental model for MTT. To extend these ideas to more complex mode theories,
however, a more refined approach is necessary. We begin by discussing a small adjustment
to the concepts introduced previously.

Rather than eagerly decrementing the annotation on a variable when we restrict a context,
we instead lazily perform this update. Accordingly, we annotate each variable with a pair of
modalities and write x :µ/ν A for a µ-annotated variable with a ν-restriction lazily performed
upon it. The rule for applying a restriction to a variable now becomes more uniform: to
restrict x :µ/ν A by ξ we replace it with x :µ/ν◦ξ A. The variable rule applies only when the
fraction ‘cancels’ i.e., x :µ/µ A ⊢ x : A.

For the mode theory under consideration, this is merely a change in notation as the
behavior of the annotations of x :ϕl/ϕk A ⊢ x : A is entirely determined by the difference
l − k. We therefore introduce the following mode theory to illustrate the need for the ‘lazy’
approach:

▶ Definition 5. Denote byMex
1 the mode theory with one mode and two generating modalities

ψ and ϕ. The preorder is generated by the inequality ψ ◦ ψ ≤ ϕ.

This mode theory introduces two new concepts simultaneously: multiple modalities and
non-trivial inequalities between those modalities. Fortunately, to refine the idea explained
above of µ-restricting a context, only one rule must be altered: To account for the preorder
on modalities, we relax the variable rule slightly: x :µ/ν A ⊢ x : A if µ ≤ ν. With this
modified rule, we can construct a coercion ⟨ψ ◦ ψ | A⟩ → ⟨ϕ | A⟩:

coerce = λx. letid modψ◦ψ(y)← x in modϕ(y) over _. ⟨µ | A⟩
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Multiple modes and multiple modalities
Only one generalization is required at this point to provide a complete description of MTT:
multiple modes. While thus far we have confined ourselves to discussing multiple modalities
on one mode, we are allowed to have multiple modes in MTT as well. Consider the following
mode theory:

▶ Definition 6. Mex
2 is the mode theory equipped with two modes k and l whose modalities

are generated by ϕ : k → k and ψ, ℓ : k → l. The preorder on hom-sets are generated by the
inequalities idk ≤ ϕ and ℓ ≤ ψ:

k lϕ

ψ

ℓ

We note that now Mex
2 now has two different modes k and l. Each mode in MTT gives

rise to a separate type theory so that we must check not only that some term has a type,
but also that the term, type, and all variables in scope live at the correct mode.

All of the standard constructions do not change the mode; thus, e.g., succ(n) will be
well-typed at type Nat at mode m just when the same is true of n. We will notate “M has
type A at mode m” by M : A@m. Prior to discussing the two type constructors involving
modalities, we must explain what it means for a context to be well-formed at mode m.

▶ Definition 7. A variable declaration x :µ/ν A is well-formed at mode m if the following
hold:
1. µ : n o and ν : m o for some o.
2. A is a type at mode n.

The context is well-formed at mode m if all variables in scope are well-formed at mode m.

▶ Example 8. Restricting a well-formed context at m by µ : n m yields a well-formed
context in mode n.

It is worth emphasizing the contravariant nature of the restriction ν in x :µ/ν A. This
is crucial for the rules governing ⟨µ | A⟩. The type ⟨µ | A⟩ is well-formed at mode m if (1)
µ : n m for some n and (2) after µ-restricting the context, A is well-formed at mode n.
In particular, ⟨µ | −⟩ sends types at mode n to types at mode m so restriction must move
contexts contravariantly from mode n to mode m. We remark, however, that aside from
the additional checks to ensure that types are well-moded, this is the same rule as given
previously. Likewise, the rules for introduction and elimination along with all of those for
modal dependent products are merely instrumented with additional checks to ensure that
types and terms live at the correct mode.

We conclude with a few examples.

▶ Example 9. λx.x : (ℓ | A)→ ⟨ψ | A⟩ @ l is well typed. In particular, since ℓ ≤ ψ we
conclude x :ℓ/ψ A ⊢ x : A@ k.

▶ Example 10. We will define a function of the following type:

f : ⟨ψ | ⟨ϕ | Nat⟩⟩ → ⟨ψ ◦ ϕ | Nat⟩@ l

We begin by binding a variable x :id/id ⟨ψ | ⟨ϕ | Nat⟩⟩ so it now suffices to construct a
term ⟨ψ ◦ ϕ | Nat⟩@ l. To this end, we use the modal elimination principle on x to obtain a
new variable y :ψ/id ⟨ϕ | Nat⟩. Applying modal elimination to y, we obtain z :ψ◦ϕ/id Nat.



XX:8 mitten: a flexible multimodal proof assistant

We still wish to construct a term ⟨ψ ◦ ϕ | Nat⟩. Applying the modal introduction rule, we
ψ ◦ ϕ restrict the context (so y becomes y :ψ◦ϕ/ψ◦ϕ Nat). Our goal is then Nat, so y suffices.

All told, the term final term is as follows:

λx.

letidk
modψ(y) = x in

letψ modϕ(z) = y in

modψ◦ϕ(z)
over ⟨ψ ◦ ϕ | Nat⟩

over ⟨ψ ◦ ϕ | Nat⟩

3 Normalization by Evaluation

A crucial ingredient of any type checker is a procedure for determining when two types are
equal. In mitten, we have implemented this decision procedure through a normalization
algorithm: a function which sends a term to a corresponding normal form. The precise
definition of normal form is then less important than the fact that definitional equality for
normal forms is straightforward to decide. Writing NfTerms for the collection of normal
forms, we view our normalization algorithm as a function:

normΓ : Syntax→ NfTerms

Merely having a function from syntax to normal forms, however, is insufficient to decide
definitional equality. Accordingly, we are interested in normalization functions which satisfy
the following properties:

▶ Definition 11. A normalization function is called complete if Γ ⊢ A = B@m implies
normΓ(A) = normΓ(B)

▶ Definition 12. A normalization function is sound if Γ ⊢ A@m implies Γ ⊢ normΓ(A) =
A@m.

Completeness states that normalization lifts to a function on syntax quotiented by
definitional equality while soundness states that this induced function has a section. Taken
together, therefore, we have the following:

▶ Corollary 13. Let normΓ be sound and complete then Γ ⊢ A = B@m if and only if
normΓ(A) = normΓ(B).

The traditional approach to constructing a normalization function is to specify an abstract
rewriting system which directs and presents the equational theory. Equality of terms is
then convertibility within this rewriting system so that strong normalization ensures both
soundness and completeness. This approach, however, turns out to be unworkable for more
elaborate dependent type theories with type-directed rules. We therefore adopt an entirely
different approach to associating terms to normal forms: normalization by evaluation (NbE).

Normalization by evaluation breaks the process of normalizing a term into two distinct
phases: evaluation and quotation. The first evaluates a term into a semantic domain.
Historically and in certain contexts, semantic domains were drawn from genuine semantic
models. For the purposes of implementation, however, the semantic domain is simply a
more restrictive form of syntax which disallows β-reducible terms. The process of evaluation
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boils down to placing a term in β-normal form while crucially retaining various pieces of
type information for the next phase. The second phase, quotation, takes an element of the
semantic domain and quotes it back to syntax. In the process, however, it η expands terms
wherever possible. As a result, the full loop of evaluation and quotation sends a term to its
β-normal η-long form as required. Figure 1 gives a graphical overview of the process.

We describe the semantic domain in detail in Section 3.1. The actual algorithm is
described over the following three sections (Sections 3.2–3.4). Our algorithm is inspired by
Gratzer’s gluing-based argument for normalization [10] and we conjecture that this link can
be made sufficiently precise to establish the soundness and completeness of our code.

▶ Remark 14. The version of normalization-by-evaluation we use is robust enough to require
only local modifications in order to accommodate modal types. Accordingly, we focus
primarily on connectives like dependent products and modal types whose behavior is impacted
and refer the reader to, e.g., Abel [1] for a description how the algorithm works on the
remaining connectives.

Val

NfVal Neutrals Level

Syntax NfTerms NeTm Index

↓A

quo(−)n

↑A

quo(−)n

vn−k

J−Kρ

|−| ⊆ vk

Figure 1 Overview of the algorithm inspired by [14] and [1].

3.1 The Domain
We start by a brief overview of the semantic domains described in Figure 1:

(values) A, u ::= ↑A e | λ(f) | (µ | A)→ B | zero | suc(v) | Nat | (v1, v2) | A×B

| ⟨µ | A⟩ | modµ(v)
(neutrals) e ::= vk | app[µ](e, d) | pr1(e) | pr2(e) | letmod(µ, ν, C, c, A, e)

| rec(C, u, v, e)
(environments) ρ ::= · | ρ.v

(closures) C, f ::= clo(M, ρ)
(normals) d ::= ↓A v

Informally, neutral forms are generated by variables and elimination forms stuck on other
neutrals. To a first approximation, a neutral is a chain of eliminations which are stuck
on a variable. On the other hand, values—the codomain of the evaluation function—are
primarily generated by introduction forms. In particular, there are no elimination forms
directly available on values and there is no uniform way to turn a value into a neutral form.
Consequently, β-reducible terms cannot be expressed in this grammar. One can, however,
lift a neutral into a value after annotating the neutral form with its type. Tersely, values are
β-short but not necessarily η-long.

A defining aspect of our approach to NbE is the handling of open terms. Rather than
directly evaluating under a binder, when we reach, e.g., a lambda, we suspend the computation
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and store the intermediate result in a closure. The evaluation is resumed as soon as further
information is gathered. In the case of a function, for instance, the evaluation of the body
is resumed only after the function is applied. A closure is a combination of the term being
evaluated and “the state of the evaluation algorithm.” The latter amounts to the environment
of variables which is reified and stored in the closure alongside the term.

Normal forms have only one constructor, reification. Values are lifted to normals by
annotating them with a type. This type annotation is used during the quotation process in
Section 3.3 in order to deal with the η-laws.

We emphasize that while terms use De Bruijn indices, neutral forms use De Bruijn
levels to represent variables. This small maneuver ensures that values, neutral forms, and
normal forms are can be silently weakened and we will capitalize on this fact throughout our
algorithm. See Abel [1] for further explanation.

3.2 Evaluation

Evaluation is the procedure of interpreting syntax into the semantic domains, specifically
values. At a high-level, this amounts to β-reducing all terms (recall β-reducible terms
cannot be represented as values). The presence of variables, however, will ensure that some
elimination forms will become stuck. These stuck terms are evaluated into neutrals and
annotated with a type to embed them as values.

We single out a few interesting cases of the evaluation algorithm shown in Figure 2.

J_K_ : Syntax → Env→ Val

eval/var
ρ(i) = v

JviKρ = v

eval/pi
JAKρ = A

J(µ | A)→ BKρ = (µ | A)→ clo(B, ρ)

eval/modify
JAKρ = A

J⟨µ | A⟩Kρ = ⟨µ | A⟩

eval/mod
JMKρ = v

Jmodµ(M)Kρ = modµ(v)

eval/app
JMKρ = u JNKρ = v

JM(N)µKρ = app(u, v)

eval/letmod
JMKρ = v

Jletν modµ( )←M in N : AKρ = letmodµ;ν(clo(A, ρ), clo(N, ρ), v)

(ρ.v)(0) = v (ρ.v)(i+ 1) = ρ(i)

Figure 2 Evaluation function, selected cases.

The work of evaluation is done around eliminators. Therefore, we single these cases out
and define ‘helper’ functions for this portion of the algorithm. The interesting new cases are
letmod and app, but generally for every syntax elimination form we define a suggestively
named function that automatically beta-reduces eliminators applied to an introduction form,
or returns a neutral and annotates it with its type.

app(u, v) : Val proji(v) : Val letmodµ;ν(C, c, v) : Val J(C, crefl, p) : Val
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u = λ(clo(M,ρ)) JMKρ.v = w

app(u, v) = w

u = ↑A0 e A0 = (µ | A)→ C inst(C, v) = B

app(u, v) = ↑B app[µ](e, ↓A v)

v = modµ(v′) inst(c, v′) = u

letmodµ;ν(C, c, v) = u

v = ↑A0 e A0 = ⟨µ | A⟩ inst(C, ↑⟨µ|A⟩ e) = B

letmodµ;ν(C, c, v) = ↑B letmod(µ, ν, C, c, A, e)

inst(clo(M,ρ), v) = JMKρ.v

As mentioned previously, we use closures to represent syntax that cannot be evaluated in
the present environment. Once we have found the value to complete the environment, we
instantiate the closure with it and continue the evaluation in the extended environment as in
e.g., app(λ(clo(M,ρ)), v).

3.3 Quotation
Quotation is the process of turning normals into terms. We will ensure that the results of
quotation are always normal form terms, that is, β-short and η-long terms.

To account for the fact that normal forms mention values and neutral forms, quotation is
split into three mutually recursive functions. Quotation must perform η-expansion and is
therefore type-directed. Accordingly, while we have a quotation procedure which applies to
values, this portion of the algorithm can only be used for quoting types where there is no
associated η-expansions. All three of these functions take a natural number in addition to
the actual term being quoted. This number represents the next available De Bruijn level for
a free variable; it is used to quote terms with binders.

We present the novel cases of quotation of normal forms—those with modalities—below:

A0 = (µ | A)→ B inst(B, ↑Avk) = B quo(↓B app(v, ↑Avk))k+1 = M

quo(↓A0 v)k = λ(M)

A0 = ⟨µ | A⟩ v = modµ(w)
quo(↓A0 v)k = modµ(quo(↓Aw)k)

A0 = ⟨µ | A⟩ v = ↑B e
quo(↓A0 v)k = quo(e)k

A0 = ↑A e v = ↑A
′
e

quo(↓A0 v)k = quo(e)k

We draw attention to one aspect of the first rule. This rule quotes a function, so consider
the case where v = λ(clo(M,ρ)). We create a fresh variable ↑Avk and make the semantic
application app(λ(clo(M,ρ)), ↑Avk). This last step is only sensible because values are closed
under silent weakening; the environment ρ would otherwise need to be weakened over the
freshly created variable vk.

Finally, we record the novel cases of quotation for neutral forms:

quo(app[µ](e, d))k = quo(e)k(quo(d)k)µ

inst(C,modµ(↑Avk)) = B inst(c, ↑Avk) = v

quo(letmod(µ, ν, C, c, A, e))k = letν modµ( )← quo(e)k in quo(↓B v)k+1
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3.4 The NbE function
Having defined both evaluation and quotation, we are almost in a position to define the
complete normalization algorithm. The only missing step is the construction of the initial
environment from a context. This portion of the algorithm takes a context Γ and produces
an environment consisting of the variables bound in Γ. We then use this environment to kick
off the evaluation of terms in context Γ:

reflect(1) = · reflect(Γ.(µ | A)) = reflect(Γ).↑JAKreflect(Γ) v|Γ|

Finally, the complete normalization algorithm evaluates a term Γ ⊢ M : A@m in the
initial environment specified by Γ and quotes it back:

normΓ,A(M) = quo(↓JAKreflect(Γ) JMKreflect(Γ))|Γ|

4 Implementing a Mode Theory

Thus far we have been somewhat vague about which mode theory we were instantiating
MTT with. The normalization algorithm given in Section 3, for instance, did not need to
manipulate or compare modalities and so this point was easy to gloss over. The type-checker,
on the other hand, must manipulate and scrutinize modalities and its definition requires a
precise specification of a mode theory. Accordingly, we now present a representation of mode
theories and operations upon them suitable for implementing a type-checker.

Concretely, our presentation closely follows the actual representation of mode theories
used in mitten, our implementation of MTT. In mitten, all information specific to a mode
theory is confined to a single OCaml module on which the type-checker depends. In particular,
to configure mitten to work with a new mode theory, it is only necessary to implement
that single module. Our signature for mode theories is compromised of three essential parts
(summarized in Figure 3):

1. Two abstract types; one for modes and one for modalities.
2. Various operations to compose modalities, extract the domain or codomain mode from a

modality, or construct the identity modality.
3. Three operations to compare modes for equality and modalities for (in)equality.

It is these last two operations which are particularly crucial. Recall that not all mode
theories admit decidable (in)equality and without it, type-checking MTT is undecidable.
Accordingly, any implementation of MTT will require the user to supply a decision procedure
for the mode theory. Our implementation shows that this information is both necessary and
essentially sufficient. We note that the decision procedures for mode theories are completely
separate from the terms and types of MTT and no knowledge of e.g., normalization-by-
evaluation is required for their implementation.2

▶ Remark 15. The reader might wonder why idm is not parametrized over mode. This is
because idm internally is a placeholder for some identity modality, whose mode is elaborated.
This alleviates practitioners of some tedious bookkeeping obligations in their proofs. This
approach necessitates that the boundary projections dom_mod and cod_mod take an additional
argument of type mode, which is returned on input idm. Essentially, we assume that always
one part of the boundary is known so dom_mod gets a modality and its codomain as argument
whereas cod_mod a gets modality and its domain as argument.

2 See the following for examples: https://github.com/logsem/mitten_preorder/blob/main/src/lib/

https://github.com/logsem/mitten_preorder/blob/main/src/lib/
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type mode
val eq_mode : mode→ mode→ bool

type m
val idm : m
val compm : m→ m→ m
val dom_mod : m→ mode→ mode
val cod_mod : m→ mode→ mode
val (=) : m→ m→ bool
val (≤) : m→ m→ bool

Figure 3 A fragment of the signature for mode theories used in mitten.

5 Semantic Type-Checking Algorithm

Having defined the normalization algorithm, we now define the type-checking algorithm for
MTT. As mentioned in Sections 1 and 2, the algorithm is a variant of Coquand’s semantic
type checking algorithm for dependent type theory [9]. Accordingly, the algorithm breaks
into two distinct phases: checking and synthesis. The checking portion of the algorithm
accepts a context Γ, a term M , and a type A and checks that M has type A in context Γ.
The synthesis phase accepts only the context and term, and synthesizes the type of the term
in this context.

This simple picture is slightly complicated in the case of MTT, where various side
conditions must be managed. For instance, we must ensure that the modalities a user writes
in modal types are well-formed and that the term and type exist at the same mode as the
context. These same considerations also require us to form a more intricate notion of a
semantic context specifically for the type-checking algorithm.

We discuss the definition of semantic contexts in Section 5.1 and present a representative
fragment of the type-checking algorithm itself in Section 5.2.

5.1 Semantic Contexts

In Section 2.2, we explained the intuitions behind MTT while working informally with the
collection of variables in scope. Prior to discussing the type checker, we must describe the
precise notion of context to organize these variables. Two factors complicate this otherwise
standard structures: the modal annotations and restrictions and the need to evaluate terms
during type-checking.

To a first approximation, contexts are still lists of variables with types but with additional
bells and whistles added in order to support these two requirements. In order to record
the necessary modal information, each variable is annotated by a modality. Deviating from
Section 2.2, we add a new context operation Ξ.{µ} to ‘lazily’ restrict all entries in a context
Ξ by µ rather than storing this information on each variable separately.

For the second requirement, recall that type-checking must repeatedly test when two types
are equal for the conversion rule. Accordingly, the context must store enough information to
support this conversion test. We follow Coquand [9] and represent each type in the context by
the corresponding value (in the sense of Section 3) and pair each variable with a corresponding
value. This value may just be ↑Avi, but it may also store the term associated definition.
By storing information in this form, we can easily project out a semantic environment of a
context and use that to evaluate a term and check for convertibility during type checking.

The grammar of semantic contexts is presented below:



XX:14 mitten: a flexible multimodal proof assistant

(semantic contexts) Ξ ::= · | Ξ . (v :µ A @ m) | Ξ.{µ}

We now define two functions: The partial lookup function, which displays the type with
its annotation and restriction as well as the mode it lives at, and the stripping function,
which returns an environment by projecting out only the value components of the semantic
context. The lookup function is undefined whenever a De Bruijn index is larger than the
length of the context.

(Ξ . (v :µ A @ m))(0) = (µ|A)m, {id}
(Ξ . (w :ξ B @ o))(i+ 1) = (µ|A)m, {ν′} where (µ|A)m, ν = Ξ(i)
(Ξ.{ν′})(i) = (µ|A)m, {ν ◦ ν′} where (µ|A)m, ν = Ξ(i)

|·| = ·
|Ξ . (v :µ A @ m)| = |Ξ|.v
|Ξ.{µ}| = |Ξ|

▶ Notation 16. If we extend a semantic context with a type where the value is a fresh
variable, we hide it to make the expression more readable.

Ξ.(µ|A) ≜ Ξ . (↑Av0 :µ A @ m)

If the modality µ is furthermore the identity modality, we omit it and write

Ξ.A ≜ Ξ . (↑Av0 :id A @ m)

5.2 Checking and Synthesis
We now come to the type-checking algorithm which is split into a pair of judgments:
Ξ ⊢M⇐A@m and Ξ ⊢ R⇒A@m. The first, Ξ ⊢M⇐A@m, handles type checking
which tests if M has type A in Ξ. The second, Ξ ⊢M⇒A@m, implements type synthesis
and accordingly takes only the semantic context Ξ and term M and returns type A of M in
context Ξ if one can be inferred.

We present a few representative rules for these judgments (and explain them below).
To ensure that terms and types are well-formed, we utilize the functions exposed by the
signature presented in Section 4. In particular, n ?= m checks whether two modes are
equal and µ ≤ ν is the modality ordering relation. Furthermore, with µ.dom and µ.cod we
denote the respective domain and codomain of a modality—denoted dom_mod and cod_mod
respectively in Section 4. For readability, we leave the second argument of µ.dom and µ.cod
implicit.

pi
Ξ.{µ} ⊢ A⇐U @µ.dom Ξ.(µ|A) ⊢ B⇐U @m µ.cod ?= m

Ξ ⊢ (µ | A)→ B⇐U @m

mod-form
Ξ.{µ} ⊢ A⇐U @µ.dom µ.cod ?= m

Ξ ⊢ ⟨µ | A⟩⇐U @m

mod-intro
Ξ.{µ} ⊢M⇐A@µ.dom µ.cod ?= m

Ξ ⊢ modµ(M)⇐⟨µ | A⟩@m

conv
Ξ ⊢ R⇒B@m A ≡|Ξ| B

Ξ ⊢ R⇐A@m

var
Ξ(k) = (µ|A)m, ν µ ≤ ν m

?= n

Ξ ⊢ vk⇒A@n
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mod-elim
ν.cod ?= m Ξ.{ν} ⊢ R⇒⟨µ | A⟩@ ν.dom Ξ.(ν, ⟨µ | A⟩) ⊢ C⇐U @m

Ξ.(ν ◦ µ,A) ⊢ N⇐ JCK|Ξ|.modµ(↑Avk) @m

Ξ ⊢ letν modµ( )← R in N over C⇒ JCK|Ξ|.JMK|Ξ| @m

We first consider the formation rule for dependent products. First we verify that indeed
µ.cod ?= m to ensure that the modality µ can be used at this mode. Recall that Π-types in
MTT go from a µ-restricted type A to a non restricted type B. Accordingly, we check that A
is a type in the µ-restricted semantic context Ξ.{µ} and that B is well-formed in the context
Ξ.(µ|A). Note that when checking A we change the mode to µ.dom.

Since the modal formation and introduction rules follow a similar pattern we will only
look at the modal introduction rule. To validate that modµ(M) has type ⟨µ | A⟩ at mode m
we first verify that µ.cod ?= m. Next we check that M has type type A in the µ-restricted
environment Ξ.{µ} at mode µ.dom.

Next, we discuss the conversion rule. When considering a synthesizable term R, the
type-checking algorithm proceeds somewhat differently. We first synthesize the type of R and
then compare the result to the type we were given to check R against. It is this comparison
which uses the normalization algorithm of Section 3 to compute the normal forms of A and
B and decides afterwards the equality of the normalized expressions.

To synthesize a variable vk in a semantic context Ξ at mode m we first compute the type
of the variable together with its annotation and restriction (µ|A)m, {ν}, using the lookup
function defined in Section 5.1. Before we return A as the type of vk, we must also perform
an additional check to ensure that µ ≤ ν so that this occurrence of the variable is valid.

Finally, we consider the modal elimination case. Recall from Section 2.2 that the modal
elimination principle allows us to ‘pattern-match’ on a term a M : ⟨µ | A⟩ in a ν-restricted con-
text and replace it with a variable x :ν◦µ A. To synthesize letν modµ( )← R in N over C,
we take advantage of the fact that the user provides the motive C already; if this term is
well-typed, its type must be JCK|Ξ|.JMK|Ξ| .

There are, however, several checks to perform to ensure that the term is actually well-
typed. First, we check that ν.cod ?= m. Next, we synthesize the type of R in the ν-restricted
context and check that the result is of the form ⟨µ | A⟩. Having computed ⟨µ | A⟩, we then
check that both C and N are well-formed. The motive C must be a type in the extended
context Ξ.(ν, ⟨µ | A⟩) while N must have type JCK|Ξ|.JMK|Ξ| in context Ξ.(ν, ⟨µ | A⟩).

A complete implementation of the algorithm can be found at https://github.com/
logsem/mitten_preorder/blob/main/src/lib/check.ml.

6 Case study: guarded recursion in mitten

We now discuss an extended example using mitten with a particular choice of mode theory.
By instantiating mitten appropriately, we convert it into a proof assistant for guarded
recursion and use it to reason about classical examples from the theory.

6.1 Guarded recursion
Guarded recursion provides a discipline for managing recursive definitions within type theory
without compromising soundness. In particular, guarded type theory extends type theory
with a handful of modalities (�, Γ and ∆) along with a modified version of the fixed-point
combinator:

loeb : (�A→ A)→ A

https://github.com/logsem/mitten_preorder/blob/main/src/lib/check.ml
https://github.com/logsem/mitten_preorder/blob/main/src/lib/check.ml
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By placing the recursive call under a �, this weakened fixed-point combinator does not
result in inconsistencies. Together with the other modalities, moreover, it can be used to
define and reason about coinductive types and gives rise to a synthetic form of domain theory.

Following [6], we are interested in using mitten as a tool to reason about a particular
model of guarded recursion: PSh(ω). In fact, using MTT’s capacity to reason about multiple
categories at once, we will work with a slightly richer model which includes both PSh(ω)
and Set. In this model, the aforementioned modalities are all interpreted by right adjoints:

Γ : PSh(ω)→ Set
Γ(X) = [1, X]

∆ : Set→ PSh(ω)
∆(S) = λ_. S

� : PSh(ω)→ PSh(ω)
� (X)(0) = {⋆} � (X)(n+ 1) = X(n)

In particular, the composite of Γ and ∆ is the global sections comonad 2. The fixed-point
operator loeb in PSh(ω) is definable using induction over ω.

Gratzer et. al [12] have shown that MTT with a mode theory axiomatizing these three
modalities is modeled by these two categories and therefore provides a suitable basis for
guarded recursion. We recall their mode theory in Figure 4.

t sℓ

γ

δ

δ ◦ γ ≤ 1 1 = γ ◦ δ
1 ≤ ℓ γ = γ ◦ ℓ

µ ≤ ν ∧ ν ≤ µ =⇒ µ = ν

Figure 4 G: a mode theory for guarded recursion

The equalities represented in Figure 4 together with the equational theory of MTT ensure
that 2 = δ ◦ γ is an idempotent comonad and that the following equivalence is definable:

⟨2 | ⟨ℓ | A⟩⟩ ≃ ⟨2 | A⟩.

In order to actually reason about guarded definitions, however, we still must add Löb
induction to the system. Adding Löb induction primitively raises substantial issues [11],
so we opt to axiomitize it along with a (propositional) equation specifying its unfolding
principle:

loeb : ((ℓ | A)→ A)→ A@ t unfold : (f : (ℓ | A)→ A)→ IdA(loeb f, f(loeb f)) @ t

As to be expected, these new constants disrupt canonicity but crucially cause no issues for
type checking. We now discuss how to instantiate mitten with this particular mode theory.

6.2 Implementation
In order to use mitten to reason about guarded MTT, we must construct an implementation
of the mode theory module corresponding to Figure 4 and extend mitten with constants for
Löb induction. The latter point is routine; mitten supports adding axioms to a development.
We therefore focus on the first step: the implementation of the mode theory.

The main challenge when implementing Figure 4 is to show that the relation ≤ is decidable.
We have done so by using a (simple) form of normalization-by-evaluation to reduce modalities
in this mode theory to normal forms which can be directly compared.
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▶ Remark 17. We leave the modes during the evaluation implicit and assume, without loss
of generality, that we are only considering well-formed modalities.3

By studying the category generated by Figure 4, it becomes clear that G is far from a
free mode theory. In fact, many possible compositions trivialize; in a chain of composable
modalities we can freely remove any γ ◦ δ as well as any ℓ to the right of a γ. Accordingly,
there are only four kinds of expressions remaining which thus constitute normal modalities:

(Normal modalities) µ, ν ::= ℓk | ℓk ◦ δ | ℓk ◦ δ ◦ γ | γ | ids

Note that k = 0 is allowed and thus in particular δ ◦ γ = ℓ0 ◦ δ ◦ γ as well as id = ℓ0.
There is an evident map i sending a normal form µ to a modality in G. We now construct
an inverse to this map:

eval(idt) = ℓ0

eval(ids) = ids
eval(ℓ ◦ ν) = comp(ℓ, eval(ν))
eval(γ ◦ ν) = comp(γ, eval(ν))
eval(δ ◦ ν) = comp(δ, eval(ν))

comp(ℓ, ℓk) = ℓk+1

comp(ℓ, ℓk ◦ δ) = ℓk+1 ◦ δ
comp(ℓ, ℓk ◦ δ ◦ γ) = ℓk+1 ◦ δ ◦ γ
comp(γ, ℓk) = γ

comp(γ, ℓk ◦ δ ◦ γ) = γ

comp(δ, ids) = ℓ0 ◦ δ
comp(δ, γ) = ℓ0 ◦ δ ◦ γ

▶ Theorem 18. For any modality µ we have that µ = i(eval(µ)).

Next, we define a (decidable )partial ordering on normal modalities:

m ≤ n
ℓm ⊑ ℓn γ ⊑ γ

m ≤ n
ℓm ◦ δ ◦ γ ⊑ ℓn ◦ δ ◦ γ

m ≤ n
ℓm ◦ δ ⊑ ℓn ◦ δ ids ⊑ ids

▶ Theorem 19. For any normal modalities µ and ν we have µ ⊑ ν if and only if i(µ) ≤ i(ν).

▶ Corollary 20. Equality of modes and inequality of modalities are both decidable.

6.3 Streams in guarded mitten

We now illustrate the use of this instantiation of mitten by defining the types of guarded
and coinductive streams and constructing various examples.
▶ Remark 21. In the following we deviate from our surface syntax to enhance readibility of
the derivations. Thus, we leave many arguments implicit and alter certain notations. In
particular, propositional identites are denoted by a ≡ b instead of IdA(a, b) and implicit
arguments are omitted. We furthermore hide the type family C of the modal elimination
rule in the following constructions.

We begin with the type of guarded streams.

gstream_fun : U→ (ℓ | U)→ U @ t

gstream_funAX = A× ⟨ℓ | X⟩
gstream : U→ U @ t

gstreamA = loeb(gstream_funA)

▶ Notation 22. We will make use of several standard functions for intensional identity types
such as the functions transport : A ≡ B → A→ B and −−1 : a ≡ b→ b ≡ a.

3 This assumption is justified since mitten checks all modalities prior to normalization and type-checking.
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Recall that we have added Löb induction only with a propositional unfolding rule.
Accordingly, we must use transport along this equality to obtain the folding and unfolding
operations for gstream:

gfold : (A : U)→ A× ⟨ℓ | gstreamA⟩ → gstreamA@ t

gfoldA = transport (unfold(gstream_funA))−1

gunfold : (A : U)→ gstream A→ A× ⟨ℓ | gstreamA⟩@ t

gunfoldA = transport (unfold (gstream_fun A))

We are able to deduce the following equalities by using the fact that transport p is inverse
to transport p−1:

fold_unfold : (s : gstreamA)→ gfoldA (gunfoldAs) ≡ s@ t

unfold_fold : (s : A× ⟨ℓ | gstreamA⟩)→ gunfoldA (gfoldAs) ≡ s@ t

Using this we can define the familiar operations on guarded streams and prove their
expected equations.

ghead : gstreamA→ A

_ : gtail(gcons a s) ≡ s
_ : ghead(gcons a s) ≡ a

gtail : gstreamA→ ⟨ℓ | gstream A⟩
gcons : A→ ⟨ℓ | gstreamA⟩ → gstreamA

_ : gcons (gheads) (gtails) ≡ s

With Löb induction, these definitions and equalities allow us to construct and work
with guarded streams, which differ from coinductive streams in several important ways. For
instance, the tail operation on guarded streams produces a guarded stream under a later
which prevents us from writing an operation dropping every element of a guarded stream.

By making use of the other modalities of Figure 4, we are able to define the type of
coinductive streams. To do so, we will use the following operations:

compγ,δ : ⟨γ | ⟨δ | A⟩⟩ → A compγ,ℓ : ⟨γ | ⟨ℓ | A⟩ → ⟨γ | A⟩⟩

Both of these are instances of the general composition principle for modalities available
in MTT. We now define streams as follows:

stream : U→ U @ s

streamA = ⟨γ | gstream ⟨δ | A⟩⟩

head : streamA→ A

head s =
letid modγ(g) = s in
compγ,δ(modγ(ghead g))

tail : streamA→ streamA

tail s =
letid modγ(g) = s in
compγ,ℓ(modγ(gtail g))

We emphasize that the type of coinductive streams lives at mode s, the mode modeled
by sets. Intuitively, by taking the global sections of a guarded stream we obtain the normal
coinductive stream [8]. Indeed, using guarded recursion in mode t, we are able to equip this
type with a coiteration principle:

go : (δ | A : U)(δ | S : U)(δ | S → A× S)→ (δ | S)→ gstream ⟨δ | A⟩@ t

goAS f = loebλg s. gcons(modδ(π1 (f s)),modℓ(g (π2 (f s))))

coiter : (A : U)(S : U)→ (S → A× S)→ S → streamA@ s
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coiterAS f s = modg(goAS f s)

Informally, this coiteration scheme induces a map from any (A×−)-coalgebra to streamA.
It is natural to wonder whether streamA is the final coalgebra for (A×−). In the presence

of equality reflection, this was established by Gratzer et al. [12]. To replay this proof in
mitten, we would require two ingredients not presently available: function extensionality
and modal extensionality. The first is unsurprising, so we focus on the second. Modalities do
not necessarily preserve identity types and therefore in general we cannot have a function:

(ℓ | IdA(a, b))→ Id⟨ℓ|A⟩(modℓ(a), modℓ(b))

Such a map is crucial to establish arguments of equality by Löb induction like the finality
of streamA. Having said this, we emphasize that without disrupting normalization we can
extend MTT with a crisp induction principle which enables us to construct such a map and
prove it to be an equivalence [10]. In the presence of this additional structure—or a postulate
to the same effect—we conjecture that we can prove streamA to be a final coalgebra purely
within mitten.

We conclude with a simple example of the coiteration: the stream of all natural numbers.

nats : stream Nat
nats = coiter (λn. (n, succ(n))) 0

7 Related Work

Modal proof assistants have seen a great deal of attention in the last several years. We
compare our work on mitten to several of the most closely related lines of research.

7.1 Normalization for MTT
In [10], Gratzer proves that MTT enjoys a normalization algorithm. While his proof avoids a
number of technicalities by adopting a synthetic approach to normalization, this obstructs
extracting an actual algorithm for use in implementation. We have taken this next step
and, inspired by the synthetic proof of normalization, obtained an actual algorithm suitable
for implementation in the particular case of preordered mode theories. Furthermore, while
Gratzer works relative to the assumption that the ambient mode theory is decidable, we
have isolated the precise requirements necessary on the mode theory and shown that they
are sufficiently flexible to accommodate common mode theories.

7.2 Guarded recursion in Agda
In Section 6 we discussed an instantiation of mitten for guarded recursion. For this specific
case, an experimental Agda extension is available [21]. This extension implements a version
of clocked cubical type theory [4]. This variant of guarded type theory offers finer-grained
guarded programming by exposing multiple independent later modalities; these can be used to
interleave guarded types without issue. Furthermore, clocked cubical type theory capitalizes
on certain primitives of cubical type theory to expose some definitional equalities around
Löb induction. Guarded cubical Agda builds upon Agda’s existing facilities for interactive
proof developments and the system has been used for non-trivial developments [19, 22].

As a consequence of this more intricate theory, however, the metatheory of guarded
cubical Agda is far less developed than the theory of mitten. Moreover, the infrastructure of
guarded cubical Agda is (necessarily) specialized to just one modal situation. While mitten
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is a more primitive system than guarded cubical Agda, it is therefore far more flexible and
offers a theoretical framework for many modal systems rather than being specialized to one.

7.3 Sikkel

Recently, Ceulemans et al. [7] have explored an alternative strategy for implementing MTT
in Sikkel. Rather than constructing a custom proof assistant like mitten, they have provided
a DSL for a simply-typed version of MTT within Agda. Within this DSL, one may construct
terms in MTT which then compile to elements of an appropriate denotational semantics
expressed within Agda. A major advantage of such an approach is the low startup cost:
the full resources of the Agda proof assistant are available when working within Sikkel. By
embedding within Agda, however, Sikkel’s interface is less convenient and it is currently
restricted only to simple types. Accordingly, we believe that a proof assistant designed for
MTT from its inception offers a more promising route for serious modal programming.

7.4 Menkar

Menkar [20] is an earlier attempt at a proof assistant for multimodal programming developed
by Nuyts. It predates—and in fact partially inspires—MTT, but contains both theoretical and
practical deficiencies which led to its development being suspended in 2019. Inspired by the
advances in proof theory for multimodal type theory obtained since Menkar’s development,
both mitten and Sikkel are early attempts to develop a theoretically sound replacement
for Menkar. While not as fully-featured as Menkar, mitten in particular is an attempt to
develop a principled modal proof assistant.

8 Conclusions and future work

We contribute mitten, a flexible proof assistant which can be specialized to a wide range
of modal type theories. We have designed normalization and type-checking algorithms for
mitten based on recent advances in the metatheory of MTT [10]. Finally, we have argued
for mitten’s utility by instantiating it to a mode theory suitable for guarded recursion and
constructing various classical examples of guarded programs.

Thus far, mitten is restricted to working with preordered mode theories. While this
constitutes a large and important class of examples, it would be desirable to implement full
MTT and allow for arbitrary 2-categories as mode theories. Such an extension, however,
would require a more refined normalization algorithm.

In particular, in our algorithm we have taken advantage of the absence of distinct 2-cells to
avoid annotating variables with modal coercions. This, in turn, preserves a crucial invariant
of NbE: it is never necessary to explicitly substitute within a value. Indeed, in our style
of NbE such substitutions are not even possible; our representation of closures essentially
precludes them. We hope to generalize our approach to cover full MTT by incorporating some
techniques recently used by Hu and Pientka [15] in a normalization algorithm for a particular
modal type theory. Essentially, they enable a small amount of substitution to occur during
the normalization algorithm; by carefully structuring the necessary modal substitutions they
are able to adapt the standard normalization-by-evaluation to their setting. We hope to do
the same in mitten by generalizing their approach to support multiple interacting modalities.
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