CRISP INDUCTION FOR INTENSIONAL IDENTITY TYPES

DANIEL GRATZER

ABSTRACT. We investigate the interaction between modal types and identity
types in MTT and emphasize the connection to function extensionality. We
show that the desired “extensionality” principle holds in extensional MTT and
conjecture the same for cubical MTT. Finally, we show that extending MTT
with ‘crisp’ induction principles yields the same extensionality principles in
MTT without disrupting canonicity or normalization.
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Throughout this note we work in MTT with a fixed mode theory M containing
at least a modality p: n—m.

Notation 1. When working informally in MTT, we write {u} F ... to denote a
judgment taking place in the ambient context locked by pu.

1. MODAL IDENTITY TYPES

The central question is the relationship between the identity type of modal types
Id(,,) 4y (mod,, (M), mod,(N)) and the modalized identity type (u | Id4(M,N)). In
particular, we are interested in the following equivalence

|d<MA>(mOdH(M),mOdM(N)) ~ (u|lda(M,N)) (1)
Unfortunately, we can quickly show that Eq. (1) cannot be defined in MTT.

Theorem 1.1. The equivalence Id,,4y(mod, (M), mod, (N)) ~ (u | IdA(M, N)) is
independent of MTT

Proof. Tt is trivial to construct models of MTT where this equivalence is satisfied
(interpret all modalities with the identity for instance). It remains to construct a
model where it is false. Consider the model of MTT where all modes are inter-
preted by the same category: the syntactic model of MLTT. Let us then interpret
each modality as exponentiation by a closed types, chosen so that 2-cells between
modalities can be realized by maps between these closed types.

In this model, the equivalence under consideration unfolds to the following:

Idass A (AM), A(V)) == (b : ) — 1d4 (M (b), N(b))
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This is the axiom of function extensionality, which is well-known to be independent
of MLTT. Therefore, this equivalence cannot be interpreted into this model, thus
it cannot be proven in MTT. O

We obtain three important ideas from the connection between Eq. (1) and func-
tion extensionality exploited in Theorem 1.1. The first is the name ‘modal exten-
sionality’ for Eq. (1). The second, perhaps more useful, is the intuition we should
have at least one direction of Eq. (1). The final insight is that the solutions to
function extensionality should have some bearing on Eq. (1).

Theorem 1.2. There is a canonical map p : 1d, .4y (mod, (M), mod,(N)) — (u | Ida(M, N))

Proof. While intuitively the proof is simply “induct and use reflexivity” we take
the time to write out this term with some care. In particular, we specify the motive
of this induction properly:

C (o, w1 : (p | A)) = 1dya) (w0, 21) = U
C = Ao, 1, -. let mod,,(x¢) < mg in let mod,(x1) <= mq in (u | lda(zo,z1))
The actual inductive argument is then quite straightforward:
p = J(C,z.let mod,(2') < x in mod,,(refl(z")), —)
By computation, we see that p(refl(mod,(M))) = mod,, (refl(M)). O

Theorem 1.3. In the presence of equality reflection, p is an isomorphism.

Proof. We can easily define a candidate inverse p through equality reflection. To
this end, we assume (u | p: Ida(M, N)), whereby we may prove {u} F M =N : A
by reflection so the result follows by congruence. We immediately have po p = id
by UIP, so it only remains to argue that po p =id.

We prove this by showing that (u | A) is a proposition if A is a proposition. Fix
two elements of (u | A), which by induction are of the form mod,, () and mod, (y)
where (i | z,y : A). By the assumption that A is a proposition, we conclude that
{p} Fz =y : A whence mod,(z) = mod,(y) : (i | A). O

Remark 2. In fact, in many models of MTT the modalities are realized by full
right adjoints. Therefore Theorem 1.3 is an incarnation of the fact that right ad-
joints preserve limits (equalizers in this case). Given the subtle differences between
right adjoints and dependent right adjoints and compounding with the distinction
between dependent right adjoints and MTT modalities, one should be not to take
such arguments as a proof for MTT itself; it is only valid in well-behaved models.

2. CRISP INDUCTION PRINCIPLES

Eq. (1) has already been explored in prior modal type theories, including MTT.
For instance, Shulman [Shul8] and Gratzer, Kavvos, Nuyts, and Birkedal [Gra+21]
show that Eq. (1) is validated by a modality with a right adjoint. These theorems
are proven by a “crisp” induction principle which is an indirect way of stating that
modalities preserve identity types.

Given that most models of MTT are extensional and therefore already satisfy
Eq. (1) by Theorem 1.3, it is natural to wonder whether MTT could simply be
directly extended by a crisp induction principle for identity types.
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Concretely, we are interested in the following induction scheme:
pin—sm o Db R A D] A) Gl ARG | g (vivo) F B
T.(pu| A)F M : B[t.vg.vo.refl(vg)]
F{/J,}I—No,Nl c A F{[L}"P |dA(N07N1)
'+ J¥(B,M,P) : Blid.Nyg.N;y.P]
We also include the expected definitional equality: J*(B, M, refl(N)) = M(N).
First, we observe that this rule is sufficient to prove Eq. (1):

p(mod,, (p)) = J*(xo, z1, - Id(mod,(x¢), mod,(x1)), z.refl(mod,(x)), p)

We can prove that p is an inverse through (crisp) induction. In fact, this rule
is precisely equivalent to Eq. (1) (assuming the latter sends reflexivity proofs to
reflexivity proofs).

Theorem 2.1. A model of extensional MTT supports crisp identity induction.

Given the connection between modal extensionality and function extensionality,
we should regard this induction principle with healthy skepticism; it is sound but
it seems likely that it would disrupt either canonicity or normalization. In fact,
both of these properties continue to hold after the addition of this principle. This
remarkable fact hinges on the relative paucity of elements of (i | A) compared to
B — A. In particular, there are no closed neutral elements of (i | A) in MTT
without extending the system by some axioms. As a result, the computation rule
JH(B, M,refl(N)) = M(N) is actually sufficient to ensure computational adequacy
in the syntax.

2.1. Normalization with primitive crisp induction. We prove this fact by
extending Gratzer [Gra2l] to support crisp induction. The specific alterations to
the proof are extremely minor. We first alter the neutral for identity elimination
to this more general form as well as the definition of MTT cosmoi. We thereby are
left with two new constants in the gluing topos:

Ju i (Wl A:Ty,)(B: (] ao,ar: Tmy(A)( | p: Tmy(ld(4, ao,a1))) = Ty,,) —
((p]a:Tmu(A)) = Tmy,(B(a, a,refl(a)))) —
(1| agyar : Tmp(A)(p | p: Tmy(ld(A, ag, a1))) = Tmy, (B(ag, a1, p))
Juo(pA:OTy, )(B: (1| ao,a1 : Va(A) (1| p: Vin(ld(4, a0, a1))) — NfTy,,,) —
((n] a:Vy(A) = Nf,(B(a,a,refl(a)))) —
(k| ao,ay - O Tmy(z, A(2))) (1 | p - Nen(Id(A, ag, a1))) — Ney (B(ao, a1,n(p)))

This change impacts the construction of the normalization proof in precisely one
place: the normalization algebra for identity types. Specifically, we must change
the construction of Jj,.

Theorem 2.2. In the context of Section 7 of Gratzer [Gra21], we have a term of
the following type:
J (w] ATy )(B:(p]ag,ar: Tmy(A)(p | p: Tm*n(ld*(4,ap,a1))) — Ty;,) —
(b:(u]a:Tmy(A) — Tm; (B(a,a,refl*(a)))) —
(1| ag,a1 : Tmy, (A)) (| p: Tmy,(Id(A, ap, a1))) —
{Tm}, (B(ag,a1,p)) | z:syn— J, (A, B,b,p)}



4 DANIEL GRATZER

Proof. Let us fix A, B, b, ag, a1, and p with the types described above. Recalling
the definition of pred(ld*(A4, ag,a1)), we can commute (i | —) past the dependent
sum, closed modalities, equality types®, and coproducts to obtain an element of the
following type:

2 (N (1d(A,a0,01))) .[(Z€:<H|N€n(|d(A7a07a1))) up(e) = m) +(ap =a1 xm= ref'(ao))}

Write p’ = (l,r) for the image of p under this isomorphism. We then define
J% (B, b, a9, a1,p) by analyzing 7

J(ZvBabaG'Oaalap) q:Ino(Z)
\LB(p)J(Aaov asz, p- COde(Tm(TamTalaTP))? Aa. \J/B(a,a,reﬂ*(a))b(TAa)? 6) q= inl(ino(e,*)),up(e) =D
b(ao) qg=ini(iny(x,%)) O

Finally, even after altering our neutral forms to include neutral crisp induction,
we have maintained the property that there are no neutral elements in the con-
text 1.{u}. Accordingly, the normalization result simultaneously establishes modal
canonicity for MTT; the only normal forms in contexts of the form 1.{u} are canon-
ical forms.
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