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Abstract. We show that it is possible to construct a universe in all Grothendieck

topoi with injective codes à la Pujet and Tabareau [PT22] which is nonetheless
generic for small families. As a trivial consequence, we show that TTobs admits

interpretations in Grothendieck topoi suitable for use as internal languages.
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Remark 1. We shall assume the Grothendieck universe axiom throughout this note
to ensure a plentiful supply of Grothendieck universes.

In recent work, Pujet and Tabareau [PT22] have provided a comprehensive ob-
servational type theory complete with a hierarchy of universes and proven their
theory enjoys decidable type-checking and a number of other pleasant results. In
order to ensure this, op. cit. requires a number of counter-intuitive properties of
the universes. Specifically, they require that the type-constructors on the universe
are injective. In the case of dependent products, this means that given a proof
e :

∏
a:A0

B0(a) ∼
∏

a:A1
B1(a), one can always produce a pair of proofs:

e0 : A0 ∼ A1 e1 :
∏

a:A0
B0(a) ∼ B1(cast(A0, A1, e0, a))

In other words, they require that
∏

− − is injective.
Semantically, this is far from natural. Imagine, for instance, that A0 = A1 = 0,

so that both function types are equivalent to 1, regardless of the choice of B0 or
B1. One can easily construct a model where these types are identified, so that
we have no hope of producing e1 in such a model. In fact, this small example
already shows that TTobs cannot be given the standard set-theoretic model wherein
the universe is realized by a Grothendieck universe. Pujet and Tabareau [PT22],
however, have shown that TTobs admits a model in setoids by using an inductive-
recursive construction to model the universe. We show that this approach is easily
generalized to give a model of TTobs in arbitrary Grothendieck topoi and that a
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simple modification to the standard IR universe ensures that TTobs forms the basis
for a workable internal language in all of these settings.

Remark 2. In a concession to brevity and convenience we modify TTobs in several
ways to better fit our techniques. Firstly, we regard the type theory as a signature
in some logical framework (generalized algebraic theories, QIITs, representable map
categories, LCCCs, or the like) thereby drop all discussions of coherence and partial
interpretation functions featured prominently in Pujet and Tabareau [PT22].

Secondly, we work with the universes as strict à la Tarski universes. Without this
change its inconceivable to have models of the theory in more complex categories
where the distinction between objects and morphisms cannot be blurred away. For
a user, however, the gap is substantially smaller than one might fear. We can always
add a largest Uω universe à la Tarski and systematically replace genuine types in a
program with codes in this universe. Even this change is unnecessary however, as
a type-directed elaboration procedure can easily paper over the mismatches.

Remark 3. We have occasion in this note to discuss both strong and weak Tarski
universes. A strong Tarski universe is the standard notion: a type U and an explic-
itly decoding function El which commutes with a choice of codes in U for dependent
products, sums, etc. A weak Tarski universe requires the same operations, but only
satisfies the commutativity conditions up to isomorphism. The latter tends to more
natural to obtain categorically, and some implementation-work has shown the no-
tion to be workable in practice [Red20].

1. Modeling TTobs through induction-recursion

One can model TTobs in Set by interpreting the universe not by a Grothendieck
universe, but instead by an inductive-recursive (IR) universe [Dyb00]. For our
purposes, we will focus on small induction [Han+13], where the eliminator is
valued in a universe of types smaller than the inductive definition. More ver-
bosely, a small inductive-recursive definition is a pair of some inductively defined
family A : U1 defined simultaneously with a function r : A U0. Importantly,
while induction-recursion generally has remarkable proof-theoretic strength, small
induction-recursion is a fairly innocuous reasoning principle and can be encoded in
extensional type theory with indexed inductive types.

Importantly, small induction-recursion is still sufficient to define IR universes in
a type theory with universes:

data V : U1 where
bool : V
unit : V
pi : (A : V ) → (r(A) → V ) → V
sg : (A : V ) → (r(A) → V ) → V

r : V → U0

r(bool) = 2 r(unit) = 1

r(pi(A,B)) =
∏

a:r(A) r(B(a)) r(sg(A,B)) =
∑

a:r(A) r(B(a))

As an inductive type V admits an induction principle which we can use to prove
that pi is injective, just as we can show that the successor is injective. Consequently,
V provides exactly the basis we need to interpret TTobs into Set.
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Summarizing, to interpret TTobs into Set we start with some Grothendieck uni-
verse U and we then use small IR within U to define a new set V equipped with
injective codes for the type-constructors, and use this new set V to interpret the
universe of TTobs. In fact, because small induction-recursion lifts to Grothendieck
topoi, this same approach yields an interpretation of TTobs into arbitrary topoi.

1.1. The problem with V . While this process yields a workable model of TTobs,
the model does not form the basis of a good internal language. In particular, because
V is defined by explicitly enumerating the various constructors of the universe,
V lacks codes representing objects of the model laying outside the image of the
interpretation function. To pick a specific example, consider attempting replaying
the construction of Orton and Pitts [OP18] in TTobs. We could not specialize the
model above to cSet to justify this development, because they require the universe
to contain an interval object and V simply does not include such a constructor.

Of course, we could specialize the model in cubical sets further and explicitly
include an interval code to the definition of V . This is, however, hardly a satisfac-
tory state of affairs! We do not want a foundation for using TTobs as an internal
language that needs to be changed every time we use a new aspect of our model.

We can quantify the problem more precisely by shifting our perspective on uni-
verses. While in type theory a universe is a particular pair of a type and a family
dependent over that type, in category theory a universe is a collection of maps S
stable under pullback and closed under various operations [Str05]. One also requires
a generic family for such a class—this is the categorical equivalent of what type
theorists call a universe—but generic families are not defined up to isomorphism
and are not an invariant characteristic of universes.

We can phrase our issue with the IR universe (V, r) somewhat more precisely
by saying that it is generic for a class T which lacks many important families in
cSet. In fact, a family is classified by (V, r) only if it lies in the essential image of
the unique functor logical I cSet, where I is the initial elementary topos with
a natural number object. This is clearly an issue if we aim to use the universe to
axiomatize types specific to cSet or indeed any topos E .

1.2. A plausible solution. Of course, no matter how we interpret the universe
some families in E will lay outside it. Indeed, for set-theoretical reasons we cannot
hope to find a universe containing all families in E , but we can hope for the next
best alternative: a universe which contains all ‘small’ families.

The gold standard in this regard for Grothendieck topoi is to have a universe of
all relatively κ-compact families [Shu19], where κ is some inaccessible cardinal. In
fact, given a hierarchy of such universes for ever-increasing κ, we can ensure that
every family lies within some universe.1 Helpfully, Streicher [Str05] shows that for
all sufficiently large κ this universe satisfies all the desirable axioms. Crucially, op.
cit. shows that a generic family for the class of relatively κ-compact morphisms
exists in all Grothendieck topoi. Unfortunately, the supplied generic family is based
upon Grothendieck universes in Set—precisely the generic family we just argued
cannot be used to interpret TTobs.

Fortunately, generic families are not uniquely determined by a universe, and so
we can hope for a better one for the same class of morphisms:

1The Grothendieck universe axiom essentially stipulates this to be the case for Set.
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Conjecture 1.1. There is a generic families for relatively κ-compact morphisms
equipped with injective codes for dependent products, sums, etc. in an arbitrary
Grothendieck topos.

2. A generic family defined by small induction-recursion

Fix some Grothendieck topos E and a pair of inaccessible cardinals κ0 < κ1.
Streicher [Str05] ensures that relatively κi-compact families organize into universes
Sκi in E with generic families τi : U•

i Ui and inspection on the construction of
the generic families reveals that U0 1 is relatively κ1-compact family. We will
now construct a new generic family for Sκ0

along with injective codes closing it
under dependent products, sums, etc.

To make this process a bit more fluid, we work in the internal language of E . That
is, we work with an extensional type theory with a hierarchy of two weak universes
à la Tarski U0 : U1.

2 We will construct a universe (V : U1,ElV (−) : V → U0) with
the following operations:

• up : U0 V such that id = ElV ◦ up.
• pi :

∏
a:V

∏
b:ElV (a)→V V such that pi is injective and El(pi(a, b)) =

∏
x:El(a) El(b(x)).

Remark 4. In fact, V can trivially be extended to enjoy injective constructors
similar to pi for dependent sums, booleans, equality types, etc. but we will focus
on dependent products as a representative example.

The first of these requirements ensures that (V,ElV ) is generic for at least as
many maps as U0 and the second gives the desired injective code for close V under
dependent products. In fact, since U0 is generic for a class of maps already closed
under dependent products (though it does not necessarily witness this fact by an
injective code) we can conclude that V is generic for precisely the same class as U0.

Let us define V by the following (small) inductive-recursive definition:

data V : U1 where
up : U0 → V
pi : (A : V ) → (ElV (A) → V ) → V

ElV (up(A)) = A ElV (pi(A,B)) =
∏

a:ElV (A) ElV (B(a))

The two required functions are now just constructors of V and both satisfy the
required properties simply by definition of ElV . Already from this simple construc-
tion we conclude the following:

Theorem 2.1. In an arbitrary Grothendieck topos E, there exists an interpretation
of TTobs with one weak universe à la Tarksi which sends the universe to a generic
family for relatively κ0-compact families.

Remark 5. Notice here that we have obtained only a weak universe, because
pi(A,B) decodes to a dependent product in U0 which then must be lifted to U1 to
be regarded as a type in our model. Unfortunately, we have not assumed that code
witnessing closure under dependent products in U0 lifts to the equivalent code in
U1, and so do not obtain a model satisfying this equation. If we had assumed this
however—and this requirement is satisfied by e.g. the generic family supplied by
Hofmann and Streicher [HS97]—we could correspondingly strengthen Theorem 2.1.

2We ignore strictness issues here, which can be rectified through any number of well-known
constructions.
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3. A strictly cumulative hierarchy

Theorem 2.1 is an excellent starting point, but we are interested in a hierarchy
of such universes. As before, we will show that we can ‘correct’ a universe without
injective codes to a one with injective codes. We work in an arbitrary Grothendieck
topos E . We work this time with a hierarchy of inaccessible cardinals κ0 < κ1 < . . . .
These induce a hierarchy of universes U0 : U1 : . . . in the extensional type theory of
E , but unlike Section 2, we will assume that we have constructed this hierarchy to
be strictly cumulative. This can be done in presheaf topoi using the construction
of Hofmann and Streicher [HS97]. In a general Grothendieck topos, one can use
a more complex construction of Shulman [Shu15], which is discussed at length in
forthcoming work by Gratzer, Shulman, and Sterling.

We now proceed to inductively replace Ui by Vi such that Vi is equipped with
an injective operation pii :

∏
A:Vi

(ElVi
(A) → Vi) → Vi and (Vi,ElVi

) is generic for
the same class of types as Ui, just as in Section 2. We further ensure that there is
an element unii : Vj for all i < j such that ElVj

(unii) = Vi

Assume that (Vk : Uk+1,ElVk
: Vk → Uk) has been defined for all k < i. We

define Vi and ElVi as follows using small induction-recursion in Uk+1:

data Vi : Ui+1 where
up : Ui → Vi

uni0, · · · , unii−1 : Vi

pi : (A : Vi) → (ElVi
(A) → Vi) → Vi

ElVi(up(A)) = A ElVi(unik) = Vk ElVi(pi(A,B)) =
∏

a:ElVi
(A) ElVi

(B(a))

It is plain that Vi satisfies the required properties. As a final step, for each i < j
we define a function lift : Vi Vj such that ElVi

(A) = ElVj
(lift(A)) and so that lift

commutes with pi and unik. In fact, this specification fully defines lift and directly
translates into a definition using the induction principle for Vi:

lift(up(A)) = up(↑A)

lift(pi(A,B)) = pi(lift(A), lift ◦B)

lift(unik) = unik

Inspection shows that lift is functorial, and we thereby obtain the required strictly
cumulative hierarchy of universes.

Theorem 3.1. In an arbitrary Grothendieck topos E, there exists an interpretation
of TTobs with cumulative countable hierarchy of universes such that the ith universe
is sent to a generic family for relatively κi-compact families.

In fact, we have really proven the following more general result:

Theorem 3.2. A model of type theory with a cumulative hierarchy also supports a
hierarchy with injective codes which remains generic for the same universes.

4. Cumulativity from weak universes and induction-recursion

Thus far our constructions have used only small induction-recursion, so that
the decoding function associated with the inductive type targets a lower universe
level. This restriction ensures that the process can be decoded to indexed inductive
types. If we assume, however, that we are working in a model which supports
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true induction-recursion we can replicate Theorem 3.1 without assuming the input
universe hierarchy is strictly cumulative.

We feel this construction is potentially interesting for constructivists; a construc-
tively acceptable version of the universes introduced by Shulman [Shu15] remains
elusive, and so a strictly cumulative hierarchy of universes in arbitrary Grothendieck
topoi presently requires choice. A priori, the same might not be true for induction-
recursion and Streicher [Str05] has already shown that a hierarchy of universes
which is merely weakly cumulative exists constructively. Accordingly, this construc-
tion offers an interesting line of attack for a constructively acceptable hierarchy of
universes in all Grothendieck topoi.

Let us fix a hierarchy of weak Tarski universes U0 : · · · : Uω. We proceed as
before and inductively replace Ui by Vi so that the latter equips the former with a
strict choice of codes. Unlike in Section 3, we do not use small induction-recursion
in Ui+1 in order to carry out this construction. Instead we use large IR in Uω each
time, and thereby avoid the need for a coherent choice of connectives in Ui.

3

data Vi : Uω where
up : Ui → Vi

uni0, · · · , unii−1 : Vi

pi : (A : Vi) → (ElVi
(A) → Vi) → Vi

ElVi(up(A)) = A ElVi(unik) = Vk ElVi(pi(A,B)) =
∏

a:ElVi
(A) ElVi(B(a))

The lifting operation is define mutatis mutandis.

Theorem 4.1. A model with a weak hierarchy and induction-recursion can be
extended to support a strict hierarchy generic for the same universes.

We emphasize the last point of this statement. It is well-known that large
induction-recursion is sufficient to define a cumulative hierarchy—this was the orig-
inal example of IR—but we have shown that our up trick is sufficient to define a
cumulative hierarchy which remains generic for e.g., relatively κ-compact families.
This point is unremarkable from within the type theory itself, but crucial when
using type theory as an internal language; it ensures that our universes actually
contain interesting families specific to a model.

Acknowledgments

I am grateful for conversations with Carlo Angiuli and Jonathan Sterling.

References

[Dyb00] Peter Dybjer. “A general formulation of simultaneous inductive-recursive
definitions in type theory”. In: Journal of Symbolic Logic 65.2 (2000),
pp. 525–549. doi: 10.2307/2586554 (cit. on p. 2).

[Han+13] Peter Hancock, Conor McBride, Neil Ghani, Lorenzo Malatesta, and
Thorsten Altenkirch. “Small Induction Recursion”. In: Typed Lambda
Calculi and Applications. Ed. by Masahito Hasegawa. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2013, pp. 156–172. isbn: 978-3-642-
38946-7 (cit. on p. 2).

3In fact, we do not even require that Ui be closed under any connectives in this construction.
We are freely closing the universe classified by Ui with dependent products; if Ui was already

closed under dependent products this is an idempotent operation.

https://doi.org/10.2307/2586554


REFERENCES 7

[HS97] Martin Hofmann and Thomas Streicher. “Lifting Grothendieck Uni-
verses”. Unpublished note. 1997. url: https://www2.mathematik.tu-
darmstadt.de/~streicher/NOTES/lift.pdf (cit. on pp. 4, 5).

[OP18] Ian Orton and Andrew M. Pitts. “Axioms for Modelling Cubical Type
Theory in a Topos”. In: Logical Methods in Computer Science 14.4
(2018). doi: 10.23638/LMCS-14(4:23)2018. arXiv: 1712.04864 (cit.
on p. 3).
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