
Normalization for Multimodal Type Theory
Daniel Gratzer
gratzer@cs.au.dk
Aarhus University
Aarhus, Denmark

Abstract
We prove normalization forMTT, a general multimodal de-
pendent type theory capable of expressing modal type theo-
ries for guarded recursion, internalized parametricity, and
various other prototypical modal situations. We prove that
deciding type checking and conversion in MTT can be re-
duced to deciding the equality of modalities in the underlying
modal situation, immediately yielding a type checking al-
gorithm for all instantiations of MTT in the literature. This
proof follows from a generalization of synthetic Tait com-
putability—an abstract approach to gluing proofs—to account
for modalities. This extension is based onMTT itself, so that
this proof also constitutes a significant case study of MTT.

CCSConcepts: •Theory of computation→Type theory;
Modal and temporal logics; Categorical semantics.

Keywords: type theory, modal type theory, normalization,
modalities, categorical semantics, Artin gluing

ACM Reference Format:
Daniel Gratzer. 2022. Normalization for Multimodal Type Theory.
In 37th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS) (LICS ’22), August 2–5, 2022, Haifa, Israel. ACM, New York,
NY, USA, 20 pages. https://doi.org/10.1145/3531130.3532398

1 Introduction
If type theory is classically the study of objects invariant
under change of context, modal type theory is the study of
adding non-invariant connectives—modalities—to type the-
ory. Given that many natural features of particular models of
type theory are not invariant under substitution, modal type
theories have sparked considerable interest. By nature, how-
ever, modal type theories must thread the needle of present-
ing modalities in such a way that the classical substitution
theorems of type theory still hold.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
LICS ’22, August 2–5, 2022, Haifa, Israel
© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9351-5/22/08. . . $15.00
https://doi.org/10.1145/3531130.3532398

Typically, modal type theories require modifications to
the apparatus of contexts and substitutions. Unfortunately,
these tweaks are often more art than science, with expert
attention required even to make the most trivial modifica-
tion to the modal structure of a type theory. In order to
address this complexity, general modal type theories have
been introduced [14, 25]. These theories can be instantiated
by a description of a modal situation to produce a system
enjoying the theorems usually laboriously proved by experts.

1.1 Multimodal type theory
We focus on one such general modal type theory: MTT [14].
MTT can be instantiated with an arbitrary collection of
modalities and transformations between them to yield a
highly usable syntax. The modalities in MTT behave like
(weak) dependent right adjoints (DRAs) [8] so thatMTT can
be used to internalize nearly any right adjoint. This flexi-
bility allows MTT to encode calculi for guarded recursion,
internalized parametricity, and other handcrafted calculi.

More precisely,MTT can be instantiated by amode theory,
a strict 2-category describing modes, modalities, and natural
transformations between these modalities. This 2-categorical
structure is then reflected into the structure of substitutions
in MTT, ensuring that e.g., a transformation between two
modalities 𝜇 and 𝜈 gives rise to a function ⟨𝜇 | 𝐴⟩ → ⟨𝜈 | 𝐴⟩.
While this flexibility allows MTT to accommodate many

interesting calculi, it becomes proportionally more challeng-
ing to prove metatheoretic results about MTT. In particular,
the rich substitution structure inherited from the mode the-
ory can introduce subtle equations between terms. The proof
that the crisp induction principles can be reconstructed in
MTT [15, Theorem 10.4], for instance, exemplifies this and
hinges on many such calculations. In fact, the metatheo-
retic results established by Gratzer et al. [14] (soundness and
canonicity) are results on closed terms inMTT, allowing their
proofs to avoid the majority of the substitution apparatus.

Crucially, it remained open whether MTT admitted a nor-
malization algorithm and, consequently, whether type check-
ing was decidable. Even in the presence of a normalization
algorithmMTT cannot admit an unconditional type check-
ing algorithm: it is not only necessary to have a decision
procedure for terms in the language, but also for modalities
and 2-cells as both appear in terms for MTT.

In this paper we show the best possible result holds: MTT
admits an unconditional normalization algorithm and con-
version of normal forms is decidable if and only if conversion

https://orcid.org/0000-0003-1944-0789
https://doi.org/10.1145/3531130.3532398
https://doi.org/10.1145/3531130.3532398

LICS ’22, August 2–5, 2022, Haifa, Israel Daniel Gratzer

is decidable in the mode theory. As corollaries, we show that
type constructors in MTT are always injective and that type
checking is decidable when the mode theory is decidable.1

1.2 Normalization for type theories
A normalization algorithm must begin by defining normal
forms. Their precise formulation varies depends on the situa-
tion but they always satisfy two crucial properties. First, the
equality of normal forms 𝑢 = 𝑣 is clearly decidable—often
no more than structural equality—and there is a function
dec(𝑢) decoding a normal form to a term of the same type.

Relative to a notion of normal form, a normalization algo-
rithm sends a term Γ ⊢ 𝑀 : 𝐴 to a normal form nfΓ (𝑀,𝐴)
such that (nfΓ (−, 𝐴), dec(−)) lifts to an isomorphism be-
tween equivalence classes of terms of𝐴 and normal forms [1].

Proving normalization is an involved affair. Traditionally,
one begins by fixing a strongly normalizing confluent rewrit-
ing system presenting the equational theory of the type
theory. The normal forms are then exactly the terms of the
theory which cannot be further reduced. This approach does
not scale, however, to type theories with type-directed equa-
tions such as the unicity principles of dependent sums and
the unit type. These equations defy attempts to present them
in a rewriting system and require type-directed algorithms.

The preeminent type-directed technique for normalization
is normalization-by-evaluation (NbE) [1]. Proving that anNbE
algorithm works, however, is an extremely intricate affair
involving a variety of complex constructions. Recent work
by Gratzer et al. [17] extended NbE to a type theory with
an idempotent comonad but even in this minimal case the
correctness proof occupied a 90 page technical report [18].

1.2.1 Normalization-by-gluing. These difficulties are not
unique to modal type theories, and a long line of research
focuses on taming the complexity of NbE through gluing [3,
4, 12, 13, 34, 37]. This line of work recasts normalization
algorithms as the construction of models of type theory in
categories defined by Artin gluing. Objects in this model are
proof-relevant logical relations: proof-relevant predicates on
syntax taken up to definitional equality.
To prove normalization, types in the gluing model are

supplemented with reify and reflect maps reminiscent of
those from classical NbE which e.g., send a witness of a
predicate on some term to a normal form of that term. This
structure, together with the initiality of syntax, allows us to
extract a normalization algorithm from this model.

Normalization-by-gluing proofs force a number of design
decisions which are not inherently categorical, but vital to
simplifying the proof. Working with syntax up to defini-
tional equality, for instance, may appear a minor point but it
is essential: connectives in type theory only have universal
properties when considered up to definitional equality. Only
1This requirement is potentially nontrivial e.g., the word problem for groups
is known to be undecidable and is subsumed by the problem for 2-categories.

when working with equivalences classes therefore, can we
use these universal properties and benefit from existing re-
sults. For instance, the local cartesian closure of the gluing
category can be used to automatically close the model un-
der dependent products. In a similar vein, proof-relevance is
essential for a natural interpretation of the universe, where
witnesses encode the data of a type in the model. In a proof-
irrelevant setting, one must laboriously work around the
inability to encode this data indirectly [2].

1.2.2 Synthetic Tait computability. Using gluing to prove
normalization is certainly an improvement over ‘free-hand’
proofs of normalization-by-evaluation, but the picture is not
as rosy at may first appear. Models of type theory are subject
to a variety of strict equations which often force external con-
structions, where naturality obligations can be prohibitive.
Worse, the passage between between mathematics internal
to the gluing category and external constructions is difficult,
and the boundary frequently raises subtle mismatches.

We follow Sterling and Harper [36] and adopt a synthetic
approach to gluing. By ensuring that the gluing category
is a (presheaf) topos we obtain a rich internal language for
manipulating logical relations synthetically. By further ex-
tending this language with a pair of lex monads and the
strictification axiom stated by Orton and Pitts [28], we can
construct the normalization model completely internally.

Sterling and collaborators have termed this approach syn-
thetic Tait computability (STC) and shown that working inter-
nally simplifies constructions involved in the gluing model,
making it practical to prove normalization for even extremely
complex type theories like cubical type theory [34, 35].

1.2.3 Synthetic Tait computability for MTT. Unlike
Martin-Löf type theory or cubical type theory, a model of
MTT is not a single category equipped with additional struc-
ture. Rather, a model is a network of categories, each sup-
porting their own individual model of type theory which
are then connected by various adjoints and natural transfor-
mations. The internal language of any of these categories is
insufficient to construct the gluing model, so it is necessary
to generalize from working in the extensional type theory
of a topos to working in all topoi simultaneously using ex-
tensional MTT. Each topos then comes equipped with the
structure of STC: a pair of lex monads and a strictification
axiom. We prove that this mode-local structure is respected
by the MTT modalities between topoi and call the resulting
language multimodal synthetic Tait computability.
With this machinery, we are able to give a concise and

conceptual construction of the gluing model and extract the
first normalization algorithm for multimodal type theory.

1.3 Contributions
We contribute a normalization algorithm for MTT equipped
with the full suite of connectives: dependent sums, products,
booleans, intensional identity types, a universe, and modal

Normalization for Multimodal Type Theory LICS ’22, August 2–5, 2022, Haifa, Israel

types. In addition to the usual corollaries of normalization
(decidability of type checking, injectivity of type construc-
tors, etc.), this sharpens the canonicity result of Gratzer et al.
[14]. This algorithm applies to any choice of mode theory and
therefore simultaneously establishes normalization results
for many specialized modal calculi.
In order to prove this result, we advance modern gluing

techniques to apply to modal type theories and demonstrate
that extensional MTT itself is a suitable metalanguage for
carrying out the proof of normalization-by-gluing. We fur-
ther argue that these techniques scale by extending the proof
to a version of MTT supplemented with crisp induction prin-
ciples and deduce e.g. normalization continues to hold.

Section 2 gives a brief tutorial onMTT and introduces nor-
mal forms for this type theory. In Section 3, we discuss the
models of MTT and relax the definition of a model of MTT to
obtainMTT cosmoi. We prove that the syntactic cosmos en-
joys a privileged position amongMTT cosmoi (Theorem 3.8).
Section 4 introduces multimodal synthetic Tait computability
and shows that gluing together a network of topoi results in
a model of extensionalMTT equipped with STC structure in
each mode (Theorem 4.13). Finally, in Section 5 we construct
the normalization cosmos (Theorem 5.7) and extract the nor-
malization function in Section 6 (Theorem 6.3). Section 7
extends this proof to support crisp induction.

Metatheory. We work in a constructive metatheory such
as IZF equipped with a hierarchy of Grothendieck universes.

2 A primer on MTT
We collect the key ideas of MTT [15]. First, as mentioned in
Section 1, MTT is parametrized by a mode theory: a strict 2-
categoryM whose objects are modes, morphisms are modal-
ities, and 2-cells are maps between modalities. Henceforth,
we will work withMTT over a fixed mode theoryM. Second,
we formally view MTT as a particular generalized algebraic
theory (GAT). Accordingly, binding is handled by de Bruijn
indices and the theory uses explicit substitutions [26]. We re-
fer the reader to Gratzer et al. [15, Section 4] for a discussion
of the motivations and consequences behind this choice.

2.1 Mode-local connectives inMTT
Each mode in MTT constitutes its own separate type the-
ory. In fact, each mode 𝑚 is equipped with its own copy
the of judgments of type theory e.g., Γ cx@𝑚, Γ ⊢ 𝐴@𝑚,
Γ ⊢ 𝑀 : 𝐴@𝑚. Much of the theory of MTT is mode-local
and only mentions a single copy of these judgments at a time.
For these connectives the rules are precisely the standard
rules fromMLTT, replicated for each mode. The connectives
of type theory—dependent sums, dependent products, in-
tensional identity types, booleans—are all incorporated in
this fashion. Each mode also contains a weak universe à la
Tarski. Explicitly, this means that there are separate codes
and an El(−) operation decoding a code to a type, but the

decoding operation only commutes with connectives up to
isomorphism. While the restriction to weak universes is not
fundamental, it simplifies the proof and recent implementa-
tions have shown them to be practical [29].

2.2 Modalities in MTT
MTT draws inspiration from Fitch-style type theories [8, 11]
with each modality defined together with an adjoint action
on contexts. Accordingly, each 𝜇 : 𝑛 𝑚 defines a context
former sending contexts in mode𝑚 to contexts in mode 𝑛
and this is then used to define modal types ⟨𝜇 | 𝐴⟩:

Γ cx@𝑚

Γ.{𝜇} cx@𝑛

Γ.{𝜇} ⊢ 𝐴@𝑛

Γ ⊢ ⟨𝜇 | 𝐴⟩@𝑚

Γ.{𝜇} ⊢ 𝑀 : 𝐴@𝑛

Γ ⊢ mod𝜇 (𝑀) : ⟨𝜇 | 𝐴⟩@𝑚

These context operations assemble into a 2-functor𝑚 ↦→
Cx𝑚 fromMcoop2 to the category of contexts. Concretely,
a substitution Δ ⊢ 𝛾 : Γ @𝑚 lifts to a substitution Δ.{𝜇} ⊢
𝛾 .{𝜇} : Γ.{𝜇}@𝑛 and each 2-cell 𝛼 : 𝜈 𝜇 induces a substi-
tution Γ.{𝜇} ⊢ {𝛼} : Γ.{𝜈}@𝑛. These operations satisfy sev-
eral equations to organize them into a 2-functor e.g., Γ.{𝜇} ⊢
id.{𝜇} = id : Γ.{𝜇}@𝑛 and Γ.{𝜇}.{𝜉} = Γ.{𝜇 ◦ 𝜉} cx@𝑜 .

Two basic questions remain: what is the elimination prin-
ciple for ⟨𝜇 | 𝐴⟩ and which terms can be constructed in the
context Γ.{𝜇}? Both of these problems are addressed through
the same idea, the final component of MTT. We generalize
the context extension Γ.𝐴 from MLTT to annotate each vari-
able with a modality:

Γ cx@𝑚 Γ.{𝜇} ⊢ 𝐴@𝑛

Γ.(𝜇 | 𝐴) cx@𝑚

Intuitively, Γ.(𝜇 | 𝐴) plays the same role as Γ.⟨𝜇 | 𝐴⟩ and
comes equipped with a similar universal property: a substitu-
tionΔ ⊢ 𝛾 : Γ.(𝜇 | 𝐴)@𝑚 is precisely determined by a substi-
tution Δ ⊢ 𝛾 ′ : Γ @𝑚 and a term Δ.{𝜇} ⊢ 𝑀 : 𝐴[𝛾 ′.{𝜇}]@𝑛.

Despite this similarity, they occupy different positions in
the theory. The variable rule of MTT is adjusted to take into
account modal annotations and require that the modalities
in the context must ‘cancel’ a variable’s annotation:

Γ cx@𝑚 Γ.{𝜇} ⊢ 𝐴@𝑛

Γ.(𝜇 | 𝐴).{𝜇} ⊢ v0 : 𝐴[↑.{𝜇}]@𝑛

As in Martin-Löf type theory, it is necessary to apply a weak-
ening substitution ↑ to 𝐴 when describing the type of v0.
The normal context extension rule and normal variable rules
are special cases of this principle, obtained by setting 𝜇 = id.

Remark 1. From the view of Fitch-style type theories, where
−.{𝜇} is a left adjoint to the modal type, this rule plays the
role of the counit; it allows us to pass from 𝐿(𝑅(𝐴)) to 𝐴.
2Given a 2-category C, recall that Ccoop is a 2-category with the same
objects as C but with 1- and 2-cells reversed.

LICS ’22, August 2–5, 2022, Haifa, Israel Daniel Gratzer

The addition of modal annotations creates a redundancy in
our system: wemay hypothesize of ⟨𝜈 | 𝐴⟩ with annotation 𝜇
or directly hypothesize over𝐴with annotation 𝜇 ◦𝜈 . There is
a substitution navigating in one direction, but not the other:

Γ.(𝜇 ◦ 𝜈 | 𝐴) ⊢ ↑.mod𝜈 (v0) : Γ.(𝜇 | ⟨𝜈 | 𝐴⟩)@𝑜

Thismismatch is addressed through elimination for ⟨𝜈 | −⟩.
Informally, this rule ensures that these two contexts are iso-
morphic ‘from the perspective of a type’:

𝜈 : 𝑜 𝑛 𝜇 : 𝑛 𝑚

Γ cx@𝑚 Γ.{𝜇}.{𝜈} ⊢ 𝐴@𝑜

Γ.(𝜇 | ⟨𝜈 | 𝐴⟩) ⊢ 𝐵 @𝑚 Γ.{𝜇} ⊢ 𝑀0 : ⟨𝜈 | 𝐴⟩@𝑛

Γ.(𝜇 ◦ 𝜈 | 𝐴) ⊢ 𝑀1 : 𝐵 [↑.mod𝜈 (v0)]@𝑚

Γ ⊢ let𝜇 mod𝜈 () ← 𝑀0 in𝑀1 : 𝐵 [id.𝑀0]@𝑚

let𝜇 mod𝜈 () ← mod𝜈 (𝑀0) in𝑀1 = 𝑀1 [id.𝑀0]
Modal types organize into a “pseudo-functor”with ⟨id | 𝐴⟩ ≃

𝐴 and ⟨𝜇 | ⟨𝜈 | 𝐴⟩⟩ ≃ ⟨𝜇 ◦ 𝜈 | 𝐴⟩. They also satisfy axiom K:

(⊛) : ⟨𝜇 | 𝐴→ 𝐵⟩ → ⟨𝜇 | 𝐴⟩ → ⟨𝜇 | 𝐵⟩

Remark 2. In fact, dependent products inMTT aremodalized
so that 𝐴→ 𝐵 is replaced by (𝜇 | 𝐴) → 𝐵:

Γ.(𝜇 | 𝐴) ⊢ 𝑀 : 𝐵 @𝑚

Γ ⊢ 𝜆(𝑀) : (𝜇 | 𝐴) → 𝐵 @𝑚

Γ ⊢ 𝑀 : (𝜇 | 𝐴) → 𝐵 @𝑚 Γ.{𝜇} ⊢ 𝑁 : 𝐴@𝑛

Γ ⊢ 𝑀 (𝑁) : 𝐵 [id.𝑁]@𝑚

This feature will be a useful convenience when usingMTT
as a metalanguage, but for space reasons we will only prove
normalization for non-modal dependent products.

2.3 Normal and neutral forms in MTT
As mentioned in Section 1.2, the starting point for normaliza-
tions is the definition of normal form. InMTT—as in other
type theories—normal forms are presented together with
a class of neutral forms. Intuitively, normal forms capture
terms in 𝛽-normal and 𝜂-long form while neutrals are chains
of eliminations applied to a variable.

We define normal and neutral forms as separate syntactic
classes, equipped with their own family of typing judgments
and decoding functions sending them to terms. Dependency
complicates this definition as various typing rules require
substitution in the types of premises or the conclusion. Un-
fortunately, it is just as hard to define substitution on normal
forms as it is to define normalization in general [40]. Accord-
ingly, a normal form (resp. neutral, normal type) is typed
by the judgment Γ ⊢nf 𝑢 : 𝐴@𝑚 (resp. Γ ⊢ne 𝑒 : 𝐴@𝑚,
Γ ⊢nf 𝜏 @𝑚) where𝐴 is not required to be any sort of normal
form. Furthermore, these judgments are defined inductive-
recursively with decoding functions |𝑢 | (resp. |𝑒 |, |𝜏 |) which

send a normal form (resp. neutral, normal type) to its cor-
responding piece of syntax. Normal and neutral forms for
mode-local connectives are unchanged from their standard
presentation in type theory:

(Normals) 𝑢 F 𝜆(𝑢) | up(𝑒) | mod𝜇 (𝑢) | . . .
(Neutral) 𝑒 F v𝛼

𝑘
| 𝑒 (𝑢) | letmod(𝜇;𝜈 ;𝜏 ; 𝑒;𝑢) | . . .

(Normal types) 𝜏 F 𝜏 → 𝜎 | ⟨𝜇 | 𝜏⟩ | El(𝑢) | . . .

We defer a more complete presentation of the judgments
and decoding function to Fig. 3, but remark that the neutral
form for variables is annotated with a 2-cell and index, de-
coding to v0 together with a combination of weakening and
2-cell substitutions ↑ and {𝛼} .

To ensure that normal forms are 𝜂-long, neutrals can only
be ‘injected’ into normals by up(−) for types without an
𝜂 law e.g., at modal types but not at dependent products.
Finally, we emphasize that normal forms are freely gener-
ated, so their equality is decidable if and only if equality of
modalities and 2-cells is decidable.

Renamings. While normal and neutral forms are not sta-
ble under substitution, they are stable under the restricted
class of renamings. While we properly define renamings
through their own judgment and decoding function in Fig. 4,they
are intuitively the smallest class of substitutions closed un-
der weakening, composition, identity, modal substitutions
(−.{𝜇},{𝛼}), and extension by variables v𝛼

𝑘
.

Renamings are easily seen to act on normal forms, neutral
forms, and normal types. Unlike normals and neutrals, how-
ever, renamings are taken up to a definitional equality which
ensures that e.g., composition is associative and that modal
substitutions organize into a 2-functor. This poses no issue
as the action of renamings on normals and neutrals send defi-
nitionally equal renamings to identical normals and neutrals,
ensuring that the action lifts to equivalences classes.

A nontrivial definitional equality on renamings is essential,
however, as it ensures that the class of contexts of mode
𝑚 and renamings between them organizes into a category
Ren𝑚 and that the assignments𝑚 ↦→ Ren𝑚 , 𝜇 ↦→ −.{𝜇}, and
𝛼 ↦→ {𝛼} define a 2-functorMcoop Cat.

Lemma 2.1. The decoding of renamings to substitutions gives
a 2-natural transformation i[−] : Ren− Cx−.

3 Models and cosmoi
Gratzer et al. [15] introducedMTT as a generalized algebraic
theory so thatMTT is automatically equipped with a cate-
gory of models. A standard result of GATs ensures that that
the syntax of MTT organizes into an initial model which
opens the possibility of semantic methods for proving results
about syntax. Gratzer et al. [15, Section 5] then repackages
the definition of models in the language of natural models [6].

Normalization for Multimodal Type Theory LICS ’22, August 2–5, 2022, Haifa, Israel

3.1 Natural models of MTT
We begin by recalling the presentation of a model of MTT
given by Gratzer et al. [15]. Recall that a natural model of
type theory [6] is a pair of a category C—representing a
category of contexts—together with a representable natural
transformation 𝜏 : T • T:
Definition 3.1. A natural transformation 𝑓 : 𝑋 𝑌 :
PSh (C) is representable when each fiber of 𝑓 over a rep-
resentable point of 𝑌 is itself representable i.e., y(𝐶) ×𝑌 𝑋 is
representable for each y(𝐶) 𝑌 .

Intuitively, 𝜏 displays pairs of terms with their types over
types. These two objects organize into presheaves through
substitution on terms and types. With this in mind, the rep-
resentability condition encodes context extension.
In order to adapt this to MTT, we can no longer con-

sider just a category of contexts. The existence of multi-
ple modes mandates that we consider a 2-functor of con-
texts 𝐹 : Mcoop Cat. The action of modalities 𝐹 (𝜇) :
𝐹 (𝑚) 𝐹 (𝑛) gives the semantic equivalent of −.{𝜇}, while
the 2-cell component 𝐹 (𝛼) interprets {𝛼} .
Each mode 𝑚 : M is equipped with a morphism 𝜏𝑚 :
T •𝑚 T𝑚 : PSh (𝐹 (𝑚)) representing the terms and types
of mode𝑚 and each modality 𝜇 : 𝑛 𝑚 induces a functor
which acts by precomposition 𝐹 (𝜇)∗.
Definition 3.2. Amodel of MTTwithout any type construc-
tors is a strict 2-functor 𝐹 : Mcoop Cat together with a
collection of morphisms 𝜏𝑚 : T •𝑚 T𝑚 : PSh (𝐹 (𝑚)) such
that 𝐹 (𝜇)∗ (𝜏𝑛) is representable for each 𝜇 : 𝑛 𝑚.

Connectives are individually specified on top of this struc-
ture. For instance, the following pullback square in PSh (𝐹 (𝑚))
for each mode𝑚 ensures closure under dependent products:∑

𝐴:T𝑚
∑

𝐵:𝜏𝑚 [𝐴]→T𝑚
∏

𝑎:𝜏𝑚 [𝐴] 𝜏𝑚 [𝐵(𝑎)]

∑
𝐴:T𝑚

∏
_:𝜏𝑚 [𝐴] T𝑚

T •𝑚

T𝑚 (1)

Diagram 1 takes advantage of the model of extensional
MLTT in a presheaf topos [19]. We will freely take advan-
tage of this model and use our assumption of a hierarchy
of Grothendieck universes to equip it with an infinite hier-
archy of cumulative universes [21]. We refer to a family of
presheaves as small if it is classified by a universe.

Given 𝜇 : 𝑛 𝑚, we can specify the formation and intro-
duction rules of ⟨𝜇 | −⟩ with another commuting square:

𝐹 (𝜇)∗T •𝑛

𝐹 (𝜇)∗T𝑛

T •𝑚

T𝑚 (2)

Unlike dependent products, modal types do not have a uni-
versal property—an 𝜂 law—so they cannot be encoded by a

single pullback. Instead we must describe the elimination
principle separately. However, this principle is rather com-
plex and, since we will soon be in a position to present a
much simpler account of modal elimination, we refer the
reader to Gratzer et al. [15, Section 5] for the full definition.
As models of a particular GAT, models of MTT assemble

into a category. A morphism between models 𝐹 and 𝐺 is
given by a 2-natural transformation 𝐹 𝐺 along with nat-
ural assignments of terms and types of 𝐹 to the terms and
types of 𝐺 . All of these operations are required to strictly
preserve term, type, and context formers. We refer the reader
to Gratzer et al. [15, Section 5] for a precise description.

Finally, a standard result of GATs is that the syntactic model
occupies a distinguished place in the category of models:

Theorem 3.3. Syntax is the initial model of MTT.

3.2 MTT cosmoi
As mentioned in Section 1, normalization is proven through
the construction of a model of MTT together with a map
from this model to syntax. Models of MTT and morphisms
between them are difficult to construct, however, because
of the extreme strictness of morphisms and the requirement
that each 𝜏𝑚 be a representable natural transformation. Prior
to normalization, therefore, we introduce a weakened notion
of model: anMTT cosmos. AnMTT cosmos is an axiomati-
zation of a natural model of MTT, but rather than working
in presheaf topoi and requiring that 𝜏𝑚 is a representable
natural transformation a cosmos requires only that 𝜏𝑚 be a
morphism in a locally cartesian closed category equipped
with structure such as Diagrams 1 and 2.

Definition 3.4. A cosmos is a pseudofunctor 𝐹 :M Cat
such that each 𝐹 (𝑚) is a locally cartesian closed category
and each 𝐹 (𝜇) has a left adjoint 𝐹! (𝜇) ⊣ 𝐹 (𝜇).

Example 3. Amodel of MTT 𝐹 assembles into a cosmos𝐺 by
taking 𝐺 (𝑚) = PSh (𝐹 (𝑚)) and 𝐺 (𝜇) = 𝐹 (𝜇)∗. In particular,
we write S :M Cat for the cosmos induced by the initial
model of MTT specified by Theorem 3.3.

The additional requirements imposed by natural models
of MTT to encode various connectives can be transferred
mutatis mutandis to a cosmos; they are all stated within the
language of locally cartesian closed categories. For instance,
we model the formation and introduction rules of modal type
by requiring the following diagram:

𝐹 (𝜇) (T •𝑛)

𝐹 (𝜇) (T𝑛)

T •𝑚

T𝑚 (3)

Definition 3.5. An MTT cosmos 𝐹 is a cosmos equipped
with the choice of morphism 𝜏𝑚 : T •𝑚 T𝑚 : 𝐹 (𝑚) for each
𝑚 : M along with choices of diagrams à la Diagram 3 to

LICS ’22, August 2–5, 2022, Haifa, Israel Daniel Gratzer

close each 𝜏𝑚 under dependent products, sums, booleans,
identity types, a weak universe, and modal types.

Definition 3.6. A morphism of cosmoi 𝛼 : 𝐹 𝐺 is a
2-natural transformation such that each naturality square
satisfies Beck-Chevalley and each 𝛼𝑚 is an LCC functor.

Definition 3.7. A morphism of MTT cosmoi 𝛼 : 𝐹 𝐺

is a morphism of cosmoi such that 𝛼𝑚 strictly preserves 𝜏𝑚
and all connectives.

A morphism of MTT cosmoi is both more and less restric-
tive than a morphism of MTT models. While a morphism of
models need not induce an LCC functor between the relevant
presheaf categories, a morphism of cosmoi is not required to
strictly preserve context extension or the choice of terminal
context. It so happens that the only map of consequence in
this proof is locally cartesian closed, so the additional struc-
ture of morphisms of cosmoi poses no issue. Not requiring
the strict preservation of context extension and dropping the
representability requirements fromMTT cosmoi, however,
ensures that cosmoi are far easier to construct.

Merely defining a normalization cosmos G and projection
𝜋 : G S, however, is not enough to prove normalization;
we also need a section to 𝜋 . In the category of models, this
section would exist as a consequence of initiality, but S is
not initial in the category of MTT cosmoi.3 Accordingly, we
cannot easily obtain a section of a map into S and in fact
sections rarely exist. Any such map, however, is surjective
on definable terms and this ‘quasi-projectivity’ is sufficient:

Theorem 3.8. Fix an MTT cosmos 𝐺 and 𝜋 : 𝐺 S.
1. For Γ cx@𝑚, there exists JΓK : 𝐺 (𝑚) and a canonical

isomorphism 𝛼Γ : 𝜋 (JΓK) � y(Γ).
2. For every Γ ⊢ 𝐴@𝑚, there exists J𝐴K : JΓK T𝑚 such

that 𝜋 (J𝐴K) ◦ 𝛼Γ = ⌊𝐴⌋.
3. For every Γ ⊢ 𝑀 : 𝐴@𝑚, there exists J𝑀K : JΓK T •𝑚

lying over J𝐴K such that 𝜋 (J𝑀K) ◦ 𝛼Γ = ⌊𝑀⌋.
Here ⌊−⌋ is the isomorphism induced by the Yoneda lemma.

Remark 4. Both Theorem 3.3 and Theorem 3.8 are categorical
abstractions of rule induction. Indeed, Theorem 3.3 is used to
prove Theorem 3.8—via the construction of an appropriate
displayed model [23]—and the latter takes the place of rule
induction in the proof of normalization (see Theorem 6.3).

3.3 Presheaf cosmoi
Example 3 shows that each model of MTT induces an MTT
cosmos. In fact, such cosmoi are particularly well-behaved as
they are comprised over presheaf topoi connected by adjoint
triples. These cosmoi enjoy a privileged role in our proof
and we observe some of their unique behavior.

32-monad theory [16, 24] yields an initial cosmos I but we work with S
because—unlike I—it is known to adequately represent syntax.

Prod : (𝐴 : Ty𝑚) (𝐵 : Tm𝑚 (𝐴) → Ty𝑚) → Ty𝑚
𝛼Prod : (𝐴 : Ty𝑚) (𝐵 : Tm𝑚 (𝐴) → Ty𝑚)

→ Tm𝑚 (Prod(𝐴, 𝐵)) �
[∏

𝑎:Tm𝑚 (𝐴) Tm𝑚 (𝐵(𝑎))
]

Mod𝜇 : (𝜇 | Ty𝑛) → Ty𝑚
m𝜇 : (𝜇 | 𝐴 : Ty𝑛) (𝜇 | Tm𝑛 (𝐴)) → Tm𝑚 (Mod𝜇 (𝐴))
letmod𝜇;𝜈 : (𝜈 ◦ 𝜇 | 𝐴 : Ty𝑛)
(𝐵 : (𝜇 | Tm𝑛 (Mod𝜇 (𝐴))) → Ty𝑜)(
𝑏 :

(
𝜈 ◦ 𝜇 | 𝑥 : Tm𝑛 (𝐴)

)
→ Tm𝑜

(
𝐵(m𝜇 (𝐴, 𝑥))

))
(𝜈 | 𝑎 : Tm𝑚 (Mod𝜇 (𝐴)))
→ Tm𝑜 (𝐵(𝑎))

Mod/beta𝜇;𝜈 : (· · ·) → letmod𝜇;𝜈 (𝐴, 𝐵,𝑏,m𝜇 (𝐴, 𝑎)) = 𝑏 (𝑎)

Figure 1. Dependent products and modal types, internally

Definition 3.9. A presheaf cosmos 𝐹 is a cosmos where
each 𝐹 (𝑚) is a presheaf topos and each right adjoint 𝐹 (𝜇)
sends small families to small families.

What distinguishes presheaf cosmoi from other cosmoi is
the rich internal language they offer. Gratzer et al. [15] have
proven that such a cosmos 𝐹 supports a model of extensional
MTTwith the samemode theory where ⟨𝜇 | −⟩ is interpreted
by 𝐹 (𝜇). We will now use extensional MTT as a multimodal
metalanguage to specify the structure of an MTT cosmos as
a sequence of constants, thereby reducing its construction
to a series of programming exercises.
Some caution is required here, as a presheaf cosmos will

frequently host more than one interpretation of MTT. A
presheaf cosmos is always equipped with this modal metalan-
guage (extensionalMTT) which can then be used to specify a
model of (intensional)MTT. This is comparable to Diagram 1,
where type theory is used to describe a model of type theory.

Within this internal language, the universe 𝜏𝑚 : T •𝑚 T𝑚
is encoded by a pair of small types ⊢ Ty𝑚 : U0 @𝑚 and
𝐴 : Ty𝑚 ⊢ Tm𝑚 (𝐴) : U0 @𝑚. Translating Diagram 3 into
this language yields the following constants:

Mod𝜇 : (𝜇 | Ty𝑛) → Ty𝑚
m𝜇 : (𝜇 | 𝐴 : Ty𝑛) (𝜇 | Tm𝑛 (𝐴)) → Tm𝑚 (Mod𝜇 (𝐴))

Figure 1 contains the complete specification of modal
types—including modal elimination—and dependent prod-
ucts.The remaining connectives are detailed in Appendix C.

4 Multimodal synthetic Tait computability
In light of Section 3, we revise the proof outlined in Section 1:
instead of constructing a glued model of MTT, we will con-
struct a gluedMTT cosmos. In fact, we will construct a glued
presheaf cosmos, and take advantage of the internal language
discussed in Section 3.3 to upgrade it to anMTT cosmos with
a projection onto S. Prior to this, however, we must show

Normalization for Multimodal Type Theory LICS ’22, August 2–5, 2022, Haifa, Israel

that (1) a pair of cosmoi can be glued together and (2) that
each mode of the internal language of the resulting cosmos
can be extended with synthetic Tait computability primitives
compatible with the already-present MTT modalities.

4.1 Synthetic Tait computability
For this subsection, fix two presheaf topoi E and F along
with a continuous functor 𝜌 : E F .
Definition 4.1. The Artin gluing Gl(𝜌) is a category whose
objects are triples

(
𝐸 : E, 𝐹 : F , 𝐹 𝜌 (𝐸)

)
whilemorphisms

are commuting squares:

𝐹0

𝜌 (𝐸0)

𝐹1

𝜌 (𝐸1)

𝑓0

𝜌 (𝑓1)

Projection induces functors𝜋0 : Gl(𝜌) E and𝜋1 : Gl(𝜌) F .
Example 5. Intuitively Gl(𝜌) is a category of proof-relevant
F -predicates on 𝜌-elements of E. To cultivate this intuition,
consider F = Set and 𝜌 = [1,−] . An object of Gl([1,−]) is
a triple of (𝑆, 𝐸, 𝑓) which induces a proof-relevant predicate
Φ(𝑒) = 𝑓 −1 (𝑒) on the global points of 𝐸. Following Tait
[38], we refer to elements in the image of 𝑓 as computable
elements. Morphisms are then morphisms of E equipped
with additional structure ensuring that computable elements
are sent to computable elements.

We now reap the first reward from considering proof-
relevant predicates: Gl(𝜌) is extremely well-behaved.

Theorem 4.2 (Artin et al. [5], Carboni and Johnstone [10]).
Gl(𝜌) is a presheaf topos and 𝜋0 is a LCC functor with left and
right adjoints.

As a presheaf topos, Gl(𝜌) enjoys a model of extensional
type theory with a strictly cumulative hierarchy of universes
and a universe of propositions Ω. We can use this language
to synthetically build logical relations models [36]. In order
to effectively construct such models, however, we must sup-
plement type theory with primitives specific to Gl(𝜌). The
most fundamental of these is a proposition:

Definition 4.3. The syntactic proposition syn : Ω is inter-
preted in Gl(𝜌) as the subterminal object (1E, 0F, !).
Recalling the correspondence between objects of Gl(𝜌)

and predicates, syn is the predicate on 1E with no com-
putable elements. What makes this proposition useful is its
ability to wipe out the obligation to track computable ele-
ments. A morphism 𝑓 : syn ×𝐴 𝐵 must contain a mor-
phism 𝜋0 (𝑓) : 𝜋0 (syn ×𝐴) � 𝜋0 (𝐴) 𝜋0 (𝐵), but there are
no computable elements of syn ×𝐴 so 𝜋0 (𝑓) entirely deter-
mines 𝑓 ; there is a bijection [syn ×𝐴, 𝐵]Gl(𝜌) � [𝜋0 (𝐴), 𝜋 (𝐵)]E .
Internally, hypothesizing syn collapses the category to E:

Lemma 4.4. There is an equivalence E ≃ Gl(𝜌)/syn.

In topos-theoretic terms, E is an open subtopos of Gl(𝜌).
As an open subtopos, we can present E internally to Gl(𝜌)
through a lex idempotent monad #𝐴 = syn→ 𝐴 [30]. This
modality has a strongly disjoint lex idempotent modality,
 𝐴 [30, Section 3.4]. While we could work with entirely
through this characterization, it is helpful to fix a definition:

syn ×𝐴

syn

𝐴

 𝐴 (4)

Intuitively, 𝐴 is the portion of 𝐴 with a trivial E compo-
nent. This is even clearer if one calculates the behavior of
 on a closed type 𝐴 = (𝐸, 𝐹, 𝑓) as 𝐴 = (1, 𝐹 , !). Just as
hypothesizing syn i.e., working under # recovers E inter-
nally to Gl(𝜌), working under recovers F . Phrased in
topos-theoretic terms, F is a closed subtopos of Gl(𝜌).
The final ingredient we must add to our type theory is

the realignment axiom [7, 28, 36], stating that the following
canonical map has an inverse re for any 𝐵 : U:(∑

𝐴:U [𝐴 � 𝐵]
)
→

(∑
𝐴:syn→U

∏
𝑧:syn𝐴(𝑧) � 𝐵

)
(5)

Unfolding these conditions yields the following:

Definition 4.5. Fix 𝐵 : U, 𝐴 : #U, and 𝛼 :
∏

𝑧:syn𝐴(𝑧) � 𝐵.
The realignment re(𝐵,𝐴, 𝛼) of 𝐵 along 𝛼 is a term of type∑

𝐴∗:U 𝐴∗ � 𝐵 satisfying the following condition:∏
𝑧:syn re(𝐵,𝐴, 𝛼) = (𝐴(𝑧), 𝛼 (𝑧))

More intuitively, realignment states that a predicate lying
over an object in E can be shifted to lie over an isomorphic
object. A proper motivation of realignment is deferred to
its use in Section 5, but broadly realignment will be used to
satisfy the strict equalities demanded by Definition 3.6 where
a priori two constants might agree only up to isomorphism.

Orton and Pitts [28, Theorem 8.4] show that a Hofmann–
Streicher universe satisfies realignment for levelwise de-
cidable propositions. Using the presentation of Gl(𝜌) as a
presheaf topos [10], syn is clearly levelwise decidable and
so realignment at syn is constructively valid.

Definition 4.6. The language of synthetic Tait computabil-
ity is extensional type theory with a cumulative hierarchy
of universes and a universe of propositions equipped with a
distinguished proposition syn : Ω such that each universe
satisfies the realignment axiom for syn.

This subsection is summarized by the following result,
which might be termed the ‘fundamental lemma’ of STC:

Theorem 4.7. Gl(𝜌) is a model of STC.

LICS ’22, August 2–5, 2022, Haifa, Israel Daniel Gratzer

4.2 Gluing together cosmoi
While a model in Gl(𝜌) for a carefully chosen E, F , and 𝜌 is
sufficient to prove many results of MLTT [12] the situation
for MTT is more complex. Rather than gluing along a single
functor, it is necessary to glue along an entire 2-natural
transformation of continuous functors between 2-functors
of presheaf topoi. We begin by considering a pair of presheaf
cosmoi for the mode theory

{
𝜇 : 𝑛 𝑚

}
and a 2-natural

transformation of continuous functors between them:

E𝑛

E𝑚

𝑓

F𝑛

F𝑚

𝜌𝑛

𝑔

𝜌𝑚
(6)

Let us further assume that 𝑓 and 𝑔 preserve finite colimits.
Gluing ‘horizontally’, we obtain a pair of categoriesGl(𝜌𝑛)

and Gl(𝜌𝑚) and by Theorems 4.2 and 4.7 both are presheaf
topoi and models of STC. Artin gluing is functorial, and
Diagram 6 induce a functor Gl(𝑓 , 𝑔) : Gl(𝜌𝑛) Gl(𝜌𝑚)
sending (𝐸𝑛, 𝐹𝑛, 𝑥) to (𝑓 (𝐸𝑛), 𝑔(𝐹𝑛), 𝑔(𝑥)).

Lemma 4.8. Gl(𝑓 , 𝑔) : Gl(𝜌𝑛) Gl(𝜌𝑚) is a right adjoint.

Proof. While this follows classically from the special adjoint
functor theorem, an explicit construction is useful. There is
a comparison 𝛽 : 𝑔! ◦ 𝜌𝑚 𝜌𝑛 ◦ 𝑓! induced by transposition
and the unit of the 𝑓! ⊣ 𝑓 . The left adjoint Gl(𝑓 , 𝑔)! sends
𝑓 : 𝐹 𝜌𝑚 (𝐸) to 𝛽 ◦ 𝑔! (𝑓) : 𝑔! (𝐹) 𝜌𝑛 (𝑓! (𝐸)). □

Lemma 4.9. The adjunction Gl(𝑓 , 𝑔)! ⊣ Gl(𝑓 , 𝑔) induces a
dependent right adjoint.

As a consequence of Lemma 4.9, we obtain a model of
MTT with the mode theory

{
𝜇 : 𝑛 𝑚

}
which interprets 𝑛,

𝑚, and 𝜇 as Gl(𝜌𝑛), Gl(𝜌𝑚), and Gl(𝑓 , 𝑔) respectively. This
model of MTT is particularly well-behaved: equality is exten-
sional and Gl(𝑓 , 𝑔) validates the strong transposition-style
elimination rules specified by [8].

Lemma 4.10. In this model of MTT, ⟨𝜇 | syn𝑛⟩ � syn𝑚

Proof. Externally, syn𝑛 = (1, 0, !) but 𝑔 preserves 0 while 𝑓

preserves 1, so Gl(𝑓 , 𝑔) (syn𝑛) � (1, 0, !) = syn𝑚 . □

In fact, in this model#⟨𝜇 | 𝐴⟩ � ⟨𝜇 | #𝐴⟩ and ⟨𝜇 | 𝐴⟩ �
⟨𝜇 | 𝐴⟩. These isomorphisms are not automatic consequences
of Lemma 4.10 but both follow from similar calculations.

Remark 6. Technically, syn, #, and should be always
annotated with a mode. In light of these results, however,
we shall omit this annotation and systematically identify
syn𝑚 and ⟨𝜇 | syn𝑛⟩. As both are subterminal, there are no
coherence issues in this identification.

Definition 4.11. The language of multimodal STC (MSTC)
is extensionalMTTwith a cumulative hierarchy of universes
and a universe of propositions such that

• Each mode is equipped with a proposition syn.
• Each universe satisfies the realignment axiom for syn.
• MTT modalities commute with syn, #, and .

Summarizing the preceding discussion:

Theorem 4.12. Gl(𝜌𝑛), Gl(𝜌𝑚), and Gl(𝑓 , 𝑔) assemble into
a presheaf cosmos and a model of MSTC.

In fact, it is only a small step from this result to the full
fundamental lemma of multimodal STC:

Theorem 4.13. Given a pair of cosmoi 𝐹,𝐺 : M Cat
and a 2-natural transformation 𝜌 : 𝐹 𝐺 such that each
𝐹 (𝜇),𝐺 (𝜇) preserves finite colimits and each 𝜌𝑚 is continuous,
Gl(𝜌) : M Cat both a presheaf cosmos and a model of
MSTC. Furthermore 𝜋0 : Gl(𝜌) 𝐹 is a morphism of cosmoi.

5 The normalization cosmos
Recall from Section 2.3 the 2-functor of categories of renam-
ings Ren−. By an identical construction to Example 3, we ob-
tain the cosmos of renamings R(−) = PSh (Ren−) and the 2-
natural transformation i[−] : Ren− Cx− acts by precom-
position to yield a 2-natural transformation i[−]∗ : S R.
Theorem 4.13 then yields the following:

Definition 5.1. The normalization cosmos G is a presheaf
cosmos and model of MSTC where G(𝑚) = Gl(i[𝑚]∗).

As a further consequence of Theorem 4.13, the projection
map 𝜋0 : G S is a morphism of cosmoi. In this section,
we equip G with the structure of an MTT cosmos and show
that 𝜋0 extends to a morphism of MTT cosmoi.

5.1 Prerequisites for the normalization cosmos
Before we extend G to an MTT cosmos, we import features
of G into the language of MSTC to specialize the latter to this
situation. In this section, we begin using the interpretation
of MTT to work internally to G and explicitly record the
extensions to MSTC required for the normalization proof.

Notation 5.2 (Dependent open modality). As #𝐴 = syn→
𝐴, we will write #𝑧𝐴(𝑧) = (𝑧 : syn) → 𝐴(𝑧) for the depen-
dent version of the open modality.

Notation 5.3 (Extension types). Given a type 𝐴, a proposi-
tion𝜙 , and an element𝑎 : 𝜙 → 𝐴, wewrite {𝐴 | 𝑥 : 𝜙 ↦→ 𝑎(𝑥)}
for subtype of 𝐴 of elements equal to 𝑎 under 𝜙 . Formally:

{𝐴 | 𝑥 : 𝜙 ↦→ 𝑎(𝑥)} = ∑
𝑎′:𝐴 (𝑥 : 𝜙) → 𝑎′ = 𝑎(𝑥)

We treat the coercion {𝐴 | 𝑥 : 𝜙 ↦→ 𝑎(𝑥)} → 𝐴 as silent and
refer to the equation 𝑎′ = 𝑎(𝑥) as a boundary condition.

Recall from Example 3 that S already contains the struc-
ture of anMTT cosmos. As a presheaf cosmos, this manifests
through a series of constants in the internal language of S.
Using Lemma 4.4 we import these constants into G.

Normalization for Multimodal Type Theory LICS ’22, August 2–5, 2022, Haifa, Israel

Extension 1. For each𝑚 : M, there is a pair of constants
𝑧 : syn ⊢ Ty𝑚 (𝑧) : U0 @𝑚 and 𝑧 : syn, 𝐴 : Ty𝑚 (𝑧) ⊢
Tm𝑚 (𝑧,𝐴) : U0 @𝑚. These constants are further equipped
with operations à la Fig. 1 closing them under dependent sums,
dependent products, modal types, etc.

Next, observe that normals, neutrals, and normal types are
equipped with an action by renamings, so that they can be
structured as presheaves overRen−. The decoding operations
further organize them into proof-relevant predicates over
terms and types e.g., the presheaf of normal types as an object
of G lying over the presheaf of types from S(𝑚). In fact,
because renamings map variables to variables, the collection
of variables of a given type organizes into a presheaf over
Ren− and part of an object in G. We import these objects
into the internal language as additional constants:

Extension 2. Given𝑚 :M and 𝐴 : #𝑧Ty𝑚 (𝑧), we have con-
stantsNf𝑚 (𝐴),Ne𝑚 (𝐴),V𝑚 (𝐴) : {U0 | 𝑧 : syn ↦→ Tm𝑚 (𝑧,𝐴(𝑧))}
and NfTy𝑚 : {U0 | 𝑧 : syn ↦→ Ty𝑚 (𝑧)}.
We treat the coercion from V𝑚 (𝐴) to Ne𝑚 (𝐴) as silent.

Notation 5.4. We frequently omit explicitly passing 𝑧 : syn
as an argument to𝑀 : #𝑋 . For instance, given 𝐴, 𝐵 : #Ty𝑚
we writeNf𝑚 (Prod(𝐴, 𝐵)) notNf𝑚 (𝜆𝑧. Prod(𝑧,𝐴(𝑧), 𝐵(𝑧))).

The normals and neutrals themselves lift to constants of
type Nf𝑚 (𝐴), Ne𝑚 (𝐴), and NfTy𝑚 using a form of higher-
order abstract syntax [20]. For example, the constants for
dependent products and modal types are presented in Fig. 2.
These operations collapse to the corresponding syntactic
constants specified by Extension 1 under 𝑧 : syn—recall
from Extension 2 that here e.g. Nf𝑚 (𝐴) = Tm𝑚 (𝑧,𝐴). The
full collection of constants is specified in Appendix D.

Extension 3. There are constants internalizing normals, neu-
trals, and normal types.

Finally, inspecting Definition 5.1 reveals that modalities
are interpreted by functors which are both left and right
adjoints. As a result, modalities preserve coproducts:

Extension 4. ⟨𝜇 | 𝐴 + 𝐵⟩ � ⟨𝜇 | 𝐴⟩ + ⟨𝜇 | 𝐵⟩

5.2 The MTT cosmos
We now extend G to an MTT cosmos. To ensure that 𝜋0
induces a morphism of MTT cosmoi, it suffices to ensure
that each constant we add to G is equal to the corresponding
piece of S as internalized by Extension 1 under 𝑧 : syn.

The universe of computable types and terms. We be-
gin with the definition of types and terms in this cosmos.
Concretely, we require the following for each𝑚 :M:

Ty∗𝑚 : {U2 | 𝑧 : syn ↦→ Ty𝑚 (𝑧)}
𝐴 : Ty∗𝑚 ⊢ Tm∗𝑚 (𝐴) : {U1 | 𝑧 : syn ↦→ Tm𝑚 (𝑧,𝐴)}

Prod : (𝐴 : NfTy𝑚) (𝐵 : V𝑚 (𝐴) → NfTy𝑚) → NfTy𝑚

Mod𝜇 : (𝜇 | NfTy𝑛) → NfTy𝑚

lam : (𝜇 | 𝐴 : #Ty𝑚) (𝐵 : (𝜇 | #Tm𝑚 (𝐴)) → #Ty𝑚)
→ ((𝑎 : V𝑚 (𝐴)) → Nf𝑚 (𝐵(𝑎)))
→ Nf𝑚 (Prod(𝐴, 𝐵))

app : (𝐴 : #Ty𝑚) (𝐵 : (#Tm𝑚 (𝐴)) → #Ty𝑚)
→ Ne𝑚 (Prod(𝐴, 𝐵)) → (𝑎 : Nf𝑚 (𝐴)) → Ne𝑚 (𝐵(𝑎))

up : (𝜇 | 𝐴 : Ty𝑛) → Ne𝑚 (Mod𝜇 (𝐴)) → Nf𝑚 (Mod𝜇 (𝐴))

mod𝜇 : (𝜇 | 𝐴 : #Ty𝑛) (𝜇 | Nf𝑛 (𝐴)) → Nf𝑚 (𝜆𝑧. Mod𝜇 (𝑧,𝐴(𝑧)))

letmod𝜇;𝜈 : (𝜈 ◦ 𝜇 | 𝐴 : #Ty𝑛)
→ (𝐵 : (𝜈 | 𝑎 : V𝑚 (Mod𝜇 (𝐴))) → NfTy𝑜)
→ ((𝜈 ◦ 𝜇 | 𝑎 : V𝑛 (𝐴)) → Nf𝑜 (𝐵(m𝜇 (𝑎))))
→ (𝜈 | 𝑎 : Ne𝑚 (Mod𝜇 (𝐴))) → Ne𝑜 (𝐵(𝑎))

Figure 2. Neutral and normal forms, internally

We start with the following putative definition of types:

record 𝑇 : U2 where
code : NfTy𝑚
pred : {U1 | 𝑧 : syn ↦→ Tm𝑚 (𝑧, code)}
reflect : {Ne𝑚 (code) → pred | syn ↦→ id}
reify : {pred→ Nf𝑚 (code) | syn ↦→ id}

(7)

In prose, 𝐴 : 𝑇 contains the code of a normal type 𝐴.code as
well as a proof-relevant predicate on the elements of 𝐴.code.

The last two fields ensure that (1) all elements tracked
by this predicate can be assigned normal forms, and (2) all
neutrals lie within the predicate. We write ↓𝐴 and ↑𝐴 for
𝐴.reify and𝐴.reflect. Of the two, the reify is the crucial oper-
ation needed for the normalization algorithm: it ensures that
computable elements can be given normal forms. Tait [38],
however, has shown that the pair of operations is necessary
to close all type formers under just reify.
We cannot simply define Ty∗𝑚 = 𝑇 , as 𝑇 does not satisfy

the equation 𝑧 : syn ⊢ 𝑇 = Ty𝑚 (𝑧). It does, however, satisfy
this condition up to isomorphism: under 𝑧 : syn, the types
of pred, reflect, and reify collapse to singletons, while the
type of code collapses to Ty𝑚 (𝑧) by Extension 2:

𝛼# (𝑧,𝐴) = 𝐴.code :
∏

𝑧:syn𝑇 � Ty∗𝑚 (𝑧)
Observe (Ty𝑚, 𝛼#) :

∑
𝐴:#U

∏
𝑧:syn𝐴(𝑧) � 𝑇 , so the re-

alignment axiom of Definition 4.5 applies and we can define

(Ty∗𝑚, 𝛼) = re(𝑇, Ty𝑚, 𝛼#) (8)

The equation 𝑧 : syn ⊢ Ty∗𝑚 = Ty𝑚 (𝑧) follows immediately
from the second half of Definition 4.5. On elements 𝐴 : Ty∗𝑚 ,
this implies 𝑧 : syn ⊢ 𝐴 = 𝛼 (𝐴).code. For readability, we
continue to use record notation to manipulate Ty∗𝑚 .
Given 𝐴 : Ty∗𝑚 , we define Tm∗𝑚 (𝐴):

Tm∗𝑚 (𝐴) = 𝐴.pred : {U1 | 𝑧 : syn ↦→ Tm∗𝑚 (𝑧,𝐴)} (9)

LICS ’22, August 2–5, 2022, Haifa, Israel Daniel Gratzer

To see that this is well-typed, we must show Tm∗𝑚 (𝐴) =

Tm𝑚 (𝑧,𝐴) given 𝑧 : syn. The type of 𝐴.code in Construc-
tion 7 ensures Tm∗𝑚 (𝐴) = Tm𝑚 (𝑧,𝐴.code). We have ob-
served that𝐴 = 𝐴.code under 𝑧 : syn so Tm∗𝑚 (𝐴) = Tm𝑚 (𝑧,𝐴).

Type connectives. It remains only to close (Ty∗𝑚, Tm∗𝑚)
under all connectives. For mode-local connectives, these
constructions are identical to those given in Sterling [34].
Accordingly, we detail only dependent products as a rep-
resentative mode-local connective along with modal types.
The remaining connectives are discussed in Appendix E.

Lemma 5.5. (Ty∗𝑚, Tm∗𝑚) is closed under dependent products.

Proof. We must define two constants:

Prod∗ : (𝐴 : Ty∗𝑚) (𝐵 : Tm∗𝑚 (𝐴) → Ty∗𝑚) → Ty∗𝑚
𝛼Prod∗ : (𝐴 : Ty∗𝑚) (𝐵 : Tm∗𝑚 (𝐴) → Ty∗𝑚)

→ Tm∗𝑚 (Prod∗ (𝐴, 𝐵)) �
[∏

𝑎:Tm∗𝑚 (𝐴) Tm
∗
𝑚 (𝐵(𝑎))

]
Additionally, we must show that if 𝑧 : syn then Prod∗ =

Prod(𝑧) and 𝛼Prod∗ = 𝛼Prod (𝑧).
We begin by fixing 𝐴 : Ty∗𝑚 and 𝐵 : Tm∗𝑚 (𝐴) → Ty∗𝑚 .

Define Φ =
∏

𝑎:Tm∗𝑚 (𝐴) → Tm∗𝑚 (𝐵(𝑎)) and observe under
𝑧 : syn that Φ =

∏
𝑎:Tm𝑚 (𝑧,𝐴) → Tm𝑚 (𝐵(𝑧, 𝑎)) and therefore

𝛼Prod (𝑧) : Tm𝑚 (𝑧, Prod(𝑧,𝐴, 𝐵)) � Φ

We now realign Φ along this isomorphism to obtain a type Ψ
and isomorphism 𝛽 : Ψ � Φ. Under 𝑧 : syn these restrict to
Tm𝑚 (𝑧, Prod(𝑧,𝐴, 𝐵)) and 𝛼Prod (𝑧) respectively. With these
to hand we define Prod∗ and 𝛼Prod∗ :

Prod∗ (𝐴, 𝐵).code = Prod(𝐴.code, 𝜆𝑣 . 𝐵(↓𝐴𝑣).code)
Prod∗ (𝐴, 𝐵).pred = Ψ

Prod∗ (𝐴, 𝐵).reflect = 𝜆𝑒. 𝛽−1 (𝜆𝑎. app(𝑒, ↓𝐴𝑎))
Prod∗ (𝐴, 𝐵).reify = 𝜆𝑓 . lam(𝜆𝑣. ↑𝐵 (↑𝐴𝑣)𝛽 (𝑓) (↑𝐴𝑣))
𝛼Prod∗ = 𝛽

It remains to check a variety of boundary conditions under
𝑧 : syn. In particular, we must show that Prod∗ (𝐴, 𝐵) =

Prod(𝑧,𝐴, 𝐵) and that reflect and reify become the identity.
These follow directly from assumptions about 𝐴, 𝐵, and the
boundaries of various constructors. For instance

Prod∗ (𝐴, 𝐵) = Prod∗ (𝐴, 𝐵).code
= Prod(𝐴.code, 𝜆𝑣 . 𝐵(↓𝐴𝑣).code)
= Prod(𝑧,𝐴.code, 𝜆𝑣 . 𝐵(↓𝐴𝑣).code)
= Prod(𝑧,𝐴, 𝜆𝑣 . 𝐵(↓𝐴𝑣))
= Prod(𝑧,𝐴, 𝐵) □

Lemma 5.6. (Ty∗𝑚, Tm∗𝑚) is closed under modal types.

Proof. Fix a modality 𝜇 : 𝑛 𝑚. In this case we define the
four constants specified by Fig. 1, subject to the expected
boundary conditions. Fix a variable 𝐴 : Ty∗𝑛 under the modal

annotation 𝜇 i.e., (𝜇 | 𝐴 : Ty∗𝑛). We define the unaligned pred-
icate as follows:

record Φ : U1 where
tm : Nf𝑚 (Mod𝜇 (𝐴))

prf :

(∑
𝑒 :Ne𝑚 (Mod𝜇 (𝐴)) tm = up(𝑒)

+∑𝑎:⟨𝜇 |𝐴.pred⟩ tm = mod𝜇 (↓𝐴𝑎)

)
For the first time, we have used the closed modality to
explicitly tweak the proof-relevant predicate. Intuitively, Φ is
a predicate on Tm𝑚 (𝑧,Mod𝜇 (𝑧,𝐴)) and tm ensures that this
predicate tracks elements with normals forms. The second
field, moreover, ensures that these normal are either neu-
tral or mod𝜇 (𝑎) where 𝑎 is computable. Without the closed
modality shielding the second field of Φ, however, this could
never have the correct extent along 𝑧 : syn. Using# 𝑋 � 1
and the boundary of Nf𝑚 (Mod𝜇 (𝐴)), we can now define the
following isomorphism:

𝛼# (𝑧, 𝑝) = 𝑝.tm :
∏

𝑧:syn Φ � Tm𝑚 (𝑧,Mod𝜇 (𝑧,𝐴))

Realigning Φ along 𝛼# , we obtain Ψ and 𝛼 : Ψ � Φ which
under 𝑧 : syn become Tm𝑚 (𝑧,Mod𝜇 (𝑧,𝐴)) and 𝛼# .

We now defineMod∗𝜇 :

Mod∗𝜇 (𝐴).code = Mod𝜇 (𝐴.code)
Mod∗𝜇 (𝐴).pred = Ψ

Mod∗𝜇 (𝐴).reflect = 𝜆𝑒. 𝛼−1⟨up(𝑒), 𝜂 𝜄1⟨𝑒,★⟩⟩
Mod∗𝜇 (𝐴).reify = 𝜆𝑚. 𝛼 (𝑚).tm

Unlike Lemma 5.5, the introduction and elimination prin-
ciples are not automatically obtained from 𝛼 and they must
be constructed separately:

m∗𝜇 (𝐴, 𝑎) = 𝛼−1⟨↓𝐴𝑎, 𝜂 𝜄2⟨𝑎,★⟩⟩

It remains to define the elimination principle letmod∗𝜇;𝜈 .
This is an involved affair and we describe it step-by-step.
Begin by fixing 𝜈 : 𝑚 𝑜 along with the following:

𝐵 : (𝜈 | Tm∗𝑚 (Mod∗𝜇 (𝐴))) → Ty𝑜
𝑏 : (𝜈 ◦ 𝜇 | 𝑥 : Tm∗𝑛 (𝐴)) → Tm∗𝑜 (𝐵(m∗𝜇 (𝐴, 𝑥)))
(𝜈 | 𝑚 : Tm∗𝑚 (Mod∗𝜇 (𝐴)))

Wemust construct an element of Tm∗𝑜 (𝐵(𝑎)). We begin by in-
specting𝑚. AsMTTmodalities in extensionalMTT commute
with dependent sums, equality, , and—by Extension 4—with
finite coproducts,𝑚 can be decomposed into the following:

(𝜈 | tm : Nf𝑚 (Mod𝜇 (𝐴)))

prf :

(∑
𝑒 :⟨𝜈 |Ne𝑚 (Mod𝜇 (𝐴)) ⟩ mod𝜈 (tm) = up ⊛ 𝑒

+∑𝑎:⟨𝜈◦𝜇 |𝐴.pred⟩ mod𝜈 (tm) = (mod𝜇 ◦ ↓𝐴) ⊛ 𝑎

)
Recall from Diagram 4 that 𝑋 is a pushout of syn and

𝑋 . To define a map out of 𝑋 , therefore, it suffices to define

Normalization for Multimodal Type Theory LICS ’22, August 2–5, 2022, Haifa, Israel

a map out of 𝑋 which is constant assuming 𝑧 : syn. We
conclude by scrutinizing prf:{
𝜄1 (mod𝜈 (𝑒), _) ↦→ ↑letmod𝜇;𝜈 (𝐴, 𝜆𝑣 . 𝐵(↑𝑣).code, 𝜆𝑥 . ↓𝑏 (↑𝑥), 𝑒)
𝜄2 (mod𝜈 (𝑎), _) ↦→ 𝑏 (𝑎)

Given 𝑧 : syn, both branches collapse to letmod𝜇;𝜈 (𝑧,𝐴, 𝐵, 𝑏, 𝑎)
so this yields a well-defined map. We omit the routine com-
putations of boundary conditions for space reasons. □

Theorem5.7. G supports anMTT cosmos built around (Ty∗𝑚, Tm∗𝑚)
and 𝜋0 : G S is a map of MTT cosmoi.

6 Normalization
After Theorem 5.7, it remains only to parlay the existence of
the normalization cosmos into a normalization function.

6.1 The normalization function
At this point, it becomes necessary to shift from working
purely internally to G to inspecting some constructions ex-
ternally. Accordingly, we will have use for the total spaces
of terms and normal forms e.g. Tm∗𝑚 =

∑
𝐴:Ty∗𝑚 Tm∗𝑚 (𝐴). We

write T𝑚 and T •𝑚 for the presheaves of types and terms in
S(𝑚) to disambiguate them from Ty∗𝑚 and Tm∗𝑚 .

Lemma 6.1. There is a morphism ↓ : Tm∗𝑚 Nf𝑚 which
restricts to id under syn.

Proof. Working internally, ↓(𝐴,𝑀) = (𝐴, ↓𝐴𝑀). □

Fix a term Γ ⊢ 𝑀 : 𝐴@𝑚. Theorems 3.8 and 5.7 define a
map J𝑀K : JΓK Tm∗𝑚 in G(𝑚) along with an isomorphism
𝛼 : 𝜋0 (JΓK) � y(Γ) such that 𝜋0 (J𝑀K) = ⌊𝑀⌋ ◦ 𝛼 .

We would like to obtain a normal form for 𝑀 from J𝑀K.
To this end, we can unfold J𝑀K along with ↓ from Lemma 6.1
to obtain a commuting diagram:

𝜋1 (JΓK)

i[𝑚]∗ (y(Γ))

𝛼 ◦ JΓK

𝜋1 (Tm∗𝑚)

i[𝑚]∗ (T •𝑚)i[𝑚]∗ (⌊𝑀⌋)

𝜋1 (Nf𝑚)

To normalize𝑀 , it suffice to construct atomsΓ : 𝜋1 (JΓK)Γ
such that 𝛼 (JΓK(atomsΓ)) = id : i[𝑚]∗ (y(Γ))Γ : pushing
atomsΓ along the top of the diagram would yield a normal
form (an element of 𝜋1 (Nf𝑚)) which decodes to𝑀 by Yoneda.

Lemma 6.2. For any Γ cx@𝑚 there exists atomsΓ : 𝜋1 (JΓK)Γ
lying over id : i[𝑚]∗ (y(Γ)).

Proof. This proof proceeds by induction on Γ.
Case. Γ = 1

Here JΓK is terminal, so atoms1 is its unique element.
Case. Γ = Δ.(𝜇 | 𝐴)

In this case JΓK = JΔK ×G(𝜇) (Ty∗𝑛) G(𝜇) (Tm
∗
𝑛). First,

we reindex atomsΔ by Γ ⊢ ↑ : Δ@𝑚 to obtain 𝛿 ∈

JΔKΓ . Next, using the element v0 ∈ G(𝜇) (Ne𝑛 (𝐴))Γ
we define atomsΓ = (𝛿, ↑𝐴v0).

Case. Γ = Δ.{𝜇}
We define atomsΓ = G(𝜇)! (atomsΔ) □

Remark 7. atomsΓ is analogous to the initial environment
used in classical NbE proofs to kick off normalization. Abel
[1], for instance, denotes the environment ↑Γ .

Combining Lemma 6.2 with the argument above, we con-
clude that for term Γ ⊢ 𝑀 : 𝐴@𝑚, there exists Γ ⊢nf 𝑢 :
𝐴@𝑚 such that |𝑢 | = 𝑀 . Moreover, because we have consis-
tently worked with equivalences class of terms, this function
automatically respects definitional equality. Summarizing:

Theorem 6.3. There is a function nfΓ (−, 𝐴) sending terms
of type Γ ⊢ 𝐴@𝑚 to normal forms such that

1. If Γ ⊢ 𝑀 : 𝐴@𝑚 then Γ ⊢ |nfΓ (𝑀,𝐴) | = 𝑀 : 𝐴@𝑚.
2. If Γ ⊢ 𝑀 = 𝑁 : 𝐴@𝑚 then nfΓ (𝑀,𝐴) = nfΓ (𝑁,𝐴).

We can repeat this process to normalize types instead of
terms. Given Γ ⊢ 𝐴@𝑚, we obtain J𝐴K : JΓK Ty∗𝑚 which
unfolds to an analogous diagram with only a small change:
rather than using ↑ to pass from 𝜋1 (Tm∗𝑚) to normal forms,
we use code to shift from Ty∗𝑚 to normal types:

𝜋1 (JΓK)

i[𝑚]∗ (y(Γ))

𝛼 ◦ JΓK

𝜋1 (Ty∗𝑚)

i[𝑚]∗ (T𝑚)
i[𝑚]∗ (⌊𝐴⌋)

𝜋1 (NfTy𝑚)

By again pushing atomsΓ along the top of this diagram,
we obtain a normalization function for types.

Theorem 6.4. There is a function nftyΓ (−) sending types to
normal types such that

1. If Γ ⊢ 𝐴@𝑚 then Γ ⊢ |nftyΓ (𝐴) | = 𝐴@𝑚.
2. If Γ ⊢ 𝐴 = 𝐵 @𝑚 then nftyΓ (𝐴) = nftyΓ (𝐵).

6.2 Corollaries of normalization
A number of important theorems follow as corollaries of
Theorems 6.3 and 6.4. For instance, we can reduce the decid-
ability of conversion to the decidability of the mode theory.

Corollary 6.5 (Decidability of conversion).
1. Γ ⊢ 𝑀 = 𝑁 : 𝐴@𝑚 iff nfΓ (𝑀,𝐴) = nfΓ (𝑁,𝐴).
2. Γ ⊢ 𝐴 = 𝐵 @𝑚 iff nftyΓ (𝐴) = nftyΓ (𝐵).

Proof. We show only the proof for this first claim. The ‘only
if’ direction is established by the second point of Theorem 6.3.
Suppose instead nfΓ (𝑀,𝐴) = nfΓ (𝑁,𝐴), so |nfΓ (𝑀,𝐴) | =
|nfΓ (𝑁,𝐴) |. By the first point of Theorem 6.3, |nfΓ (𝑀,𝐴) | =
𝑀 and |nfΓ (𝑀,𝐴) | = 𝑁 , so the conclusion follows. □

LICS ’22, August 2–5, 2022, Haifa, Israel Daniel Gratzer

Equality of normal forms and normal types is evidently
decidable if equality inM is decidable, so this proves the
promised sharp bound on the decidability of conversion in
MTT. While we have not developed a bidirectional syntax
for MTT, the fully annotated presentation of its syntax is
decidable precisely when conversion is decidable:

Corollary 6.6. IfM is decidable, type checking is decidable.

A priori, however, a given term could have multiple nor-
mal forms which complicates further analysis. We therefore
strengthen Theorem 6.3 with the following:

Theorem 6.7 (Tightness).
1. If Γ ⊢nf 𝑢 : 𝐴@𝑚, then nfΓ (|𝑢 |, 𝐴) = 𝑢.
2. If Γ ⊢nf 𝜏 @𝑚, then nftyΓ (|𝜏 |) = 𝜏 .

This result is proven by a straightforward inductive argu-
ment over neutrals, normal forms, and normal types and by
inspecting the relevant portions of the normalization cosmos
in each case.

Corollary 6.8. Normalization is an isomorphism between
equivalence classes of terms (resp. types) and normal forms
(resp. normal types).

Proof. Corollary 6.5 already shows that normalization is in-
jective and Theorem 6.7 provides a section. □

These results imply the injectivity of type constructors,
an essential property for implementation.

Corollary 6.9. If Γ ⊢ 𝐴0 → 𝐵0 = 𝐴1 → 𝐵1 @𝑚 then
Γ ⊢ 𝐴0 = 𝐴1 @𝑚 and Γ.(id | 𝐴0) ⊢ 𝐵0 = 𝐵1 @𝑚.

Proof. Set 𝜏𝑖 = nftyΓ (𝐴𝑖) and 𝜎𝑖 = nftyΓ.(id |𝐴0) (𝐵𝑖). Unfold-
ing definitions shows that |𝜏𝑖 → 𝜎𝑖 | = |𝜏𝑖 | → |𝜎𝑖 | = 𝐴𝑖 → 𝐵𝑖 .
By Corollary 6.8, nftyΓ (𝐴𝑖 → 𝐵𝑖) = 𝜏𝑖 → 𝜎𝑖 .
Next, we recall that Γ ⊢ 𝐴0 → 𝐵0 = 𝐴1 → 𝐵1 @𝑚 by

assumption, so 𝜏0 → 𝜎0 = 𝜏1 → 𝜎1. As an operation on
normal forms, however, − → − is clearly injective, so 𝜏0 = 𝜏1
and 𝜎0 = 𝜎1. The result now follows from Corollary 6.5. □

Finally, Gratzer et al. [14] show canonicity for MTT ex-
tended with the equality 1.{𝜇} = 1. Normalization provides
a (heavy-handed) proof of canonicity without this equation:

Corollary 6.10. If 1.{𝜇} ⊢ 𝑀 : bool@𝑚 then𝑀 ∈ {tt,ff}.

7 Crisp identity induction principles
In Shulman [32] and Gratzer et al. [15], crisp induction princi-
ples are a variation of the induction principles for types such
as bool or Id𝐴 (𝑎0, 𝑎1) which allow the scrutinee of the induc-
tion to occur beneath a modality. Crisp induction principles
are derivable in MTT if the modality has an internal right
adjoint [15], but they are justified in other situations. In par-
ticular, crisp induction for identity types is validated if and
only if the canonical map Id⟨𝜇 |𝐴⟩ (mod𝜇 (𝑀0),mod𝜇 (𝑀1)) →
⟨𝜇 | Id𝐴 (𝑀0, 𝑀1)⟩ is an equivalence:
Id⟨𝜇 |𝐴⟩ (mod𝜇 (𝑀0),mod𝜇 (𝑀1)) ≃ ⟨𝜇 | Id𝐴 (𝑀0, 𝑀1)⟩ (10)

This is true if e.g., Id𝐴 (𝑎0, 𝑎1) supports equality reflection.
This equivalence is often indispensable when reasoning

about modal operations inMTT; it plays essentially the same
role as function extensionality. Accordingly, it is frequently
useful to add the following strengthened version of the in-
duction principle for identity types which implies Eq. (10):

Γ.(𝜇 | 𝐴).(𝜇 | 𝐴[↑]).(𝜇 | Id𝐴 [↑2] (v1, v0)) ⊢ 𝐵 @𝑚

Γ.(𝜇 | 𝐴) ⊢ 𝑀 : 𝐵 [↑.v0 .v0 .refl(v0)]@𝑚

Γ.{𝜇} ⊢ 𝑁0, 𝑁1 : 𝐴@𝑛 Γ.{𝜇} ⊢ 𝑃 : Id𝐴 (𝑁0, 𝑁1)@𝑛

Γ ⊢ J𝜇 (𝐵,𝑀, 𝑃) : 𝐵 [id.𝑁0.𝑁1.𝑃]@𝑚

J𝜇 (𝐵,𝑀, refl(𝑁)) = 𝑀 [id.𝑁]

Given, however, that Eq. (10) is analogous to function
extensionality, it is unclear that MTT continues to enjoy
canonicity and normalization under this extension.
The modularity of our proof of normalization ensures,

however, that only local changes to the construction of iden-
tity types inG are needed to adapt the entire proof to support
crisp induction. We conclude that all the results of Section 6
continue to hold after the addition of this induction scheme.
See Appendix F for a complete description of the necessary
changes.

8 Related work
We have built on top of a long line of research systematically
structuring logical relations as gluing models [3, 12, 13, 22,
27, 31, 34, 35, 37]. In particular, Altenkirch et al. [3] and
Fiore [13] recast NbE into the construction of a gluing model
in which types are triples (𝐴, ↓, ↑). Generalizing from this
work to dependent type theory has proven a considerable
challenge [4]. The final ingredient for Martin-Löf type theory
was provided by Coquand [12]: a construction of a universe
in this gluing model similar to that of Shulman [31].

Gluing for modal type theory. Gratzer et al. [17] gave a
classical normalization-by-evaluation proof for a Fitch-style
type theory. The complexity of this proof, however, makes
it intractable to extend to a general modal type theory like
MTT. Unfortunately, extending gluing techniques to modal
type theories has proven challenging. In particular, Gratzer
et al. [14] used gluing to prove canonicity for MTT, but they
were forced to add an additional equality toMTT (1.{𝜇} = 1)
to tame the construction of the gluing model. The challenge
lies in fitting the glued category of contexts into a CwF-
style model of type theory; the natural definition of glued
types and terms fails to admit modalities. While there have
been some attempts to systematize the construction of glued
CwFs [22], they do not apply toMTT.

Synthetic Tait computability. The introduction of rep-
resentable map categories [39] and LCCCs [16] for modeling
the syntax of (non-modal) type theory offered an alternative
approach. Crucially, they show that syntax can be given a

Normalization for Multimodal Type Theory LICS ’22, August 2–5, 2022, Haifa, Israel

universal property among structured categories with better
behavior than CwFs. Sterling and collaborators [34–36] have
built on this idea and introduced synthetic Tait computability
to prove syntactic metatheorems via gluing together LCCCs
rather than CwFs. Unlike other approaches to gluing, STC
generalizes well to a multimodal setting and by extending
STC to MSTC normalization for MTT becomes tractable.

MTT as a metalanguage. In a parallel line of work, Boc-
quet et al. [9] have also used MTT as a metalanguage in the
construction of models of type theory. They, however, do not
work with a modal object type theory and instead use MTT
to internalize a functor 𝐹 rather than working internally to
Gl(𝐹). As a result, while both proofs use MTT modalities,
the modalities used by op. cit. are encoded in our proof by
fibered lex monads (#,) which prove easier to manipulate.

9 Conclusions and future work
We prove normalization for MTT (Theorem 6.3) and thereby
reduce the decidability of conversion and type checking to
the decidability of equality of the underlying mode theory
(Corollaries 6.5 and 6.6). In addition, we deduce a number of
corollaries from normalization itself, including the injectivity
of type constructors and canonicity (Corollaries 6.9 and 6.10).

By working constructively, we have obtained an effective
procedure for normalization. This, along with our results
on type checking, open the door to a theoretically-sound
implementation of MTT generic in the mode theory. In the
future, we intend to develop a bidirectional syntax for MTT
and implement it. Stassen et al. [33] have made promising
initial steps in this direction for poset-enriched mode theories.

Acknowledgments
We are thankful for discussions with Carlo Angiuli, Martin
Bidlingmaier, Lars Birkedal, Thierry Coquand, Alex Kavvos,
Christian Sattler, and Jonathan Sterling. The author was
supported in part by a Villum Investigator grant (no. 25804),
Center for Basic Research in Program Verification (CPV),
from the VILLUM Foundation.

References
[1] Andreas Abel. 2013. Normalization by Evaluation: Dependent Types

and Impredicativity. Habilitation.
[2] Stuart Frazier Allen. 1987. A non-type-theoretic semantics for type-

theoretic language. Ph.D. Dissertation. Cornell University.
[3] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. 1995.

Categorical reconstruction of a reduction free normalization proof.
In Category Theory and Computer Science (Berlin, Heidelberg), David
Pitt, David E. Rydeheard, and Peter Johnstone (Eds.). Springer Berlin
Heidelberg, 182–199.

[4] Thorsten Altenkirch and Ambrus Kaposi. 2016. Normalisation by
Evaluation for Dependent Types. In 1st International Conference on
Formal Structures for Computation and Deduction (FSCD 2016) (Leibniz
International Proceedings in Informatics (LIPIcs), Vol. 52), Delia Kesner
and Brigitte Pientka (Eds.). Schloss Dagstuhl–Leibniz-Zentrum fuer

Informatik, Dagstuhl, Germany, 6:1–6:16. https://doi.org/10.4230/
LIPIcs.FSCD.2016.6

[5] Michael Artin, Alexander Grothendieck, and Jean-Louis Verdier. 1972.
Théorie des topos et cohomologie étale des schémas. Springer-Verlag.
Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA
4), Dirigé par M. Artin, A. Grothendieck, et J.-L. Verdier. Avec la col-
laboration de N. Bourbaki, P. Deligne et B. Saint-Donat, Lecture Notes
in Mathematics, Vol. 269, 270, 305.

[6] Steve Awodey. 2018. Natural models of homotopy type theory.
Mathematical Structures in Computer Science 28, 2 (2018), 241–286.
https://doi.org/10.1017/S0960129516000268 arXiv:1406.3219

[7] Lars Birkedal, Aleš Bizjak, Ranald Clouston, Hans Bugge Grathwohl,
Bas Spitters, and Andrea Vezzosi. 2019. Guarded Cubical Type Theory.
Journal of Automated Reasoning 63 (2019), 211–253.

[8] Lars Birkedal, Ranald Clouston, Bassel Mannaa, Rasmus Ejlers Møgel-
berg, Andrew M. Pitts, and Bas Spitters. 2020. Modal dependent
type theory and dependent right adjoints. Mathematical Structures
in Computer Science 30, 2 (2020), 118–138. https://doi.org/10.1017/
S0960129519000197 arXiv:1804.05236

[9] Rafaël Bocquet, Ambrus Kaposi, and Christian Sattler. 2021. Induc-
tion principles for type theories, internally to presheaf categories.
arXiv:2102.11649 [cs.LO]

[10] Aurelio Carboni and Peter Johnstone. 1995. Connected limits, fa-
milial representability and Artin glueing. Mathematical Structures
in Computer Science 5, 4 (1995), 441–459. https://doi.org/10.1017/
S0960129500001183

[11] Ranald Clouston. 2018. Fitch-Style Modal Lambda Calculi. In Foun-
dations of Software Science and Computation Structures, Christel Baier
and Ugo Dal Lago (Eds.). Springer International Publishing, 258–275.

[12] Thierry Coquand. 2019. Canonicity and normalization for dependent
type theory. Theoretical Computer Science 777 (2019), 184–191. https:
//doi.org/10.1016/j.tcs.2019.01.015

[13] Marcelo Fiore. 2002. Semantic Analysis of Normalisation by Eval-
uation for Typed Lambda Calculus. In Proceedings of the 4th ACM
SIGPLAN International Conference on Principles and Practice of Declar-
ative Programming (Pittsburgh, PA, USA) (PPDP ’02). ACM, 26–37.
https://doi.org/10.1145/571157.571161

[14] Daniel Gratzer, G.A. Kavvos, Andreas Nuyts, and Lars Birkedal. 2020.
Multimodal Dependent Type Theory. In Proceedings of the 35th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS ’20). ACM.
https://doi.org/10.1145/3373718.3394736

[15] Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal. 2021.
Multimodal Dependent Type Theory. Logical Methods in Computer
Science Volume 17, Issue 3 (July 2021). https://doi.org/10.46298/lmcs-
17(3:11)2021

[16] Daniel Gratzer and Jonathan Sterling. 2020. Syntactic cat-
egories for dependent type theory: sketching and adequacy.
arXiv:2012.10783 [cs.LO]

[17] Daniel Gratzer, Jonathan Sterling, and Lars Birkedal. 2019. Implement-
ing a Modal Dependent Type Theory. Proc. ACM Program. Lang. 3
(2019). Issue ICFP. https://doi.org/10.1145/3341711

[18] Daniel Gratzer, Jonathan Sterling, and Lars Birkedal. 2019.
Normalization-by-Evaluation for Modal Dependent Type The-
ory. https://jozefg.github.io/papers/2019-implementing-modal-
dependent-type-theory-tech-report.pdf Technical Report for the
ICFP paper by the same name.

[19] Martin Hofmann. 1997. Syntax and Semantics of Dependent Types. In
Semantics and Logics of Computation, Andrew M. Pitts and P. Dybjer
(Eds.). Cambridge University Press, 79–130. https://doi.org/10.1017/
CBO9780511526619.004

[20] Martin Hofmann. 1999. Semantical Analysis of Higher-Order Abstract
Syntax. In Proceedings of the 14th Annual IEEE Symposium on Logic in
Computer Science (Washington, DC, USA) (LICS ’99). IEEE Computer
Society, 204–. http://dl.acm.org/citation.cfm?id=788021.788940

https://doi.org/10.4230/LIPIcs.FSCD.2016.6
https://doi.org/10.4230/LIPIcs.FSCD.2016.6
https://doi.org/10.1017/S0960129516000268
https://arxiv.org/abs/1406.3219
https://doi.org/10.1017/S0960129519000197
https://doi.org/10.1017/S0960129519000197
https://arxiv.org/abs/1804.05236
https://arxiv.org/abs/2102.11649
https://doi.org/10.1017/S0960129500001183
https://doi.org/10.1017/S0960129500001183
https://doi.org/10.1016/j.tcs.2019.01.015
https://doi.org/10.1016/j.tcs.2019.01.015
https://doi.org/10.1145/571157.571161
https://doi.org/10.1145/3373718.3394736
https://doi.org/10.46298/lmcs-17(3:11)2021
https://doi.org/10.46298/lmcs-17(3:11)2021
https://arxiv.org/abs/2012.10783
https://doi.org/10.1145/3341711
https://jozefg.github.io/papers/2019-implementing-modal-dependent-type-theory-tech-report.pdf
https://jozefg.github.io/papers/2019-implementing-modal-dependent-type-theory-tech-report.pdf
https://doi.org/10.1017/CBO9780511526619.004
https://doi.org/10.1017/CBO9780511526619.004
http://dl.acm.org/citation.cfm?id=788021.788940

LICS ’22, August 2–5, 2022, Haifa, Israel Daniel Gratzer

[21] Martin Hofmann and Thomas Streicher. 1997. Lifting Grothendieck
Universes. (1997). https://www2.mathematik.tu-darmstadt.de/
~streicher/NOTES/lift.pdf Unpublished note.

[22] Ambrus Kaposi, Simon Huber, and Christian Sattler. 2019. Gluing
for type theory. In Proceedings of the 4th International Conference on
Formal Structures for Computation and Deduction (FSCD 2019), Herman
Geuvers (Ed.), Vol. 131.

[23] Ambrus Kaposi, András Kovács, and Thorsten Altenkirch. 2019. Con-
structing Quotient Inductive-inductive Types. Proc. ACM Program.
Lang. 3, POPL, Article 2 (Jan. 2019), 24 pages. https://doi.org/10.1145/
3290315

[24] Yoshiki Kinoshita, John Power, and Makoto Takeyama. 1999. Sketches.
Journal of Pure and Applied Algebra 143, 1 (1999), 275–291. https:
//doi.org/10.1016/S0022-4049(98)00114-5

[25] Daniel R. Licata, Michael Shulman, and Mitchell Riley. 2017. A Fibra-
tional Framework for Substructural and Modal Logics. In 2nd Interna-
tional Conference on Formal Structures for Computation and Deduction
(FSCD 2017) (Leibniz International Proceedings in Informatics (LIPIcs),
Vol. 84), Dale Miller (Ed.). Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 25:1–25:22. https://doi.org/10.4230/LIPIcs.FSCD.2017.25

[26] Per Martin-Löf. 1992. Substitution calculus. Notes from a lecture
given in Göteborg.

[27] John C. Mitchell and Andre Scedrov. 1993. Notes on sconing and
relators. In Computer Science Logic, E. Börger, G. Jäger, H. Kleine Bün-
ing, S. Martini, and M. M. Richter (Eds.). Springer Berlin Heidelberg,
352–378. https://doi.org/10.1007/3-540-56992-8_21

[28] Ian Orton and Andrew M. Pitts. 2018. Axioms for Modelling Cubical
Type Theory in a Topos. Logical Methods in Computer Science 14, 4
(2018). https://doi.org/10.23638/LMCS-14(4:23)2018 arXiv:1712.04864

[29] The RedPRL Development Team. 2020. cooltt. http://www.github.
com/RedPRL/cooltt

[30] Egbert Rijke, Michael Shulman, and Bas Spitters. 2020. Modalities
in homotopy type theory. Logical Methods in Computer Science 16, 1
(2020). arXiv:1706.07526

[31] Michael Shulman. 2015. Univalence for inverse diagrams and ho-
motopy canonicity. Mathematical Structures in Computer Science
25, 5 (2015), 1203–1277. https://doi.org/10.1017/S0960129514000565
arXiv:1203.3253

[32] Michael Shulman. 2018. Brouwer’s fixed-point theorem in real-
cohesive homotopy type theory. Mathematical Structures in Com-
puter Science 28, 6 (2018), 856–941. https://doi.org/10.1017/
S0960129517000147

[33] Philipp Stassen, Daniel Gratzer, and Lars Birkedal. 2022. A flexible
multimodal proof assistant. InWorkshop on the Implementation of Type
Systems.

[34] Jonathan Sterling. 2021. First Steps in Synthetic Tait Computability:
The Objective Metatheory of Cubical Type Theory. Ph.D. Dissertation.
https://doi.org/10.5281/zenodo.5709838 CMU technical report CMU-
CS-21-142.

[35] Jonathan Sterling and Carlo Angiuli. 2021. Normalization for Cubical
Type Theory. In Proceedings of the 36th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS ’21). ACM, New York, NY, USA.

[36] Jonathan Sterling and Robert Harper. 2021. Logical Relations as Types:
Proof-Relevant Parametricity for ProgramModules. 68, 6 (2021). https:
//doi.org/10.1145/3474834 arXiv:2010.08599 [cs.PL]

[37] Thomas Streicher. 1998. Categorical intuitions underlying semantic
normalisation proofs. In Preliminary Proceedings of the APPSEM Work-
shop on Normalisation by Evaluation, O. Danvy and P. Dybjer (Eds.).
Department of Computer Science, Aarhus University.

[38] W. W. Tait. 1967. Intensional Interpretations of Functionals of Finite
Type I. Journal of Symbolic Logic 32, 2 (1967), 198–212. https://doi.
org/10.2307/2271658

[39] Taichi Uemura. 2019. A General Framework for the Semantics of Type
Theory. (04 2019). arXiv:1904.04097 [math.CT] https://arxiv.org/abs/

1904.04097
[40] Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker.

2004. A Concurrent Logical Framework: The Propositional Fragment.
In Types for Proofs and Programs, Stefano Berardi, Mario Coppo, and
Ferruccio Damiani (Eds.). Springer Berlin Heidelberg, Berlin, Heidel-
berg, 355–377. https://doi.org/10.1007/978-3-540-24849-1_23

https://www2.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf
https://www2.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf
https://doi.org/10.1145/3290315
https://doi.org/10.1145/3290315
https://doi.org/10.1016/S0022-4049(98)00114-5
https://doi.org/10.1016/S0022-4049(98)00114-5
https://doi.org/10.4230/LIPIcs.FSCD.2017.25
https://doi.org/10.1007/3-540-56992-8_21
https://doi.org/10.23638/LMCS-14(4:23)2018
https://arxiv.org/abs/1712.04864
http://www.github.com/RedPRL/cooltt
http://www.github.com/RedPRL/cooltt
https://arxiv.org/abs/1706.07526
https://doi.org/10.1017/S0960129514000565
https://arxiv.org/abs/1203.3253
https://doi.org/10.1017/S0960129517000147
https://doi.org/10.1017/S0960129517000147
https://doi.org/10.5281/zenodo.5709838
https://doi.org/10.1145/3474834
https://doi.org/10.1145/3474834
https://arxiv.org/abs/2010.08599
https://doi.org/10.2307/2271658
https://doi.org/10.2307/2271658
https://arxiv.org/abs/1904.04097
https://arxiv.org/abs/1904.04097
https://arxiv.org/abs/1904.04097
https://doi.org/10.1007/978-3-540-24849-1_23

Normalization for Multimodal Type Theory LICS ’22, August 2–5, 2022, Haifa, Israel

Γ ⊢nf bool@𝑚 Γ ⊢nf U@𝑚

Γ ⊢nf 𝜏 @𝑚 Γ.(id | 𝐴) ⊢nf 𝜎 @𝑚

Γ ⊢nf 𝜏 → 𝜎 @𝑚

Γ ⊢nf 𝜏 @𝑚 Γ.(id | 𝐴) ⊢nf 𝜎 @𝑚

Γ ⊢nf 𝜏 × 𝜎 @𝑚

Γ ⊢nf 𝜏 @𝑚 Γ ⊢nf 𝑢, 𝑣 : 𝐴@𝑚

Γ ⊢nf Id𝐴 (𝑢, 𝑣)@𝑚

Γ.{𝜇} ⊢nf 𝜏 @𝑛

Γ ⊢nf ⟨𝜇 | 𝜏⟩@𝑚

Γ ⊢nf 𝑢 : U@𝑚

Γ ⊢nf El(𝑢)@𝑚

Γ(𝑘) = (𝜇 | 𝐴) mods(Γ, 𝑘) = 𝜈 𝛼 : 𝜇 𝜈

Γ ⊢ne v𝛼
𝑘

: 𝐴[{𝛼} ◦ (↑.{𝜈𝑘−1}) · · · ◦ (↑.{𝜈0})]@𝑚 Γ ⊢nf tt : bool@𝑚 Γ ⊢nf ff : bool@𝑚

Γ ⊢ne 𝑒 : bool@𝑚

Γ ⊢nf up(𝑒) : bool@𝑚

Γ.(id𝑚 | bool) ⊢nf 𝜏 @𝑚 Γ ⊢ne 𝑒 : bool@𝑚 Γ ⊢nf 𝑣1 : 𝐴[id.tt]@𝑚 Γ ⊢nf 𝑣2 : 𝐴[id.ff]@𝑚

Γ ⊢ne if (𝜏 ; 𝑒; 𝑣1; 𝑣2) : 𝐴[id.|𝑒 |]@𝑚

Γ ⊢nf 𝑢 : 𝐴@𝑚

Γ ⊢nf refl(𝑢) : Id𝐴 (𝑀,𝑀)@𝑚

Γ ⊢ 𝑀0, 𝑀1 : 𝐴@𝑚 Γ ⊢ne 𝑒 : Id𝐴 (𝑀0, 𝑀1)@𝑚

Γ ⊢nf up(𝑒) : Id𝐴 (𝑀0, 𝑀1)@𝑚

Γ ⊢ 𝑀0, 𝑀1 : 𝐴@𝑚 Γ ⊢ne 𝑒 : Id𝐴 (𝑀0, 𝑀1)@𝑚

Γ.(id𝑚 | 𝐴).(id𝑚 | 𝐴).(id𝑚 | Id𝐴 [↑2] (v1, v0)) ⊢nf 𝜏 @𝑚 Γ.(id | 𝐴) ⊢nf 𝑢 : 𝐶 [id.v0 .v0.refl(v0)]@𝑚

Γ ⊢ne J(𝜏 ;𝑢; 𝑒) : 𝐶 [id.𝑀0.𝑀1.𝑃]@𝑚

Γ.(id | 𝐴) ⊢nf 𝑢 : 𝐵 @𝑚

Γ ⊢nf 𝜆(𝑢) : (𝜇 | 𝐴) → 𝐵 @𝑚

Γ ⊢ne 𝑒 : (𝜇 | 𝐴) → 𝐵 @𝑚 Γ ⊢nf 𝑢 : 𝐴@𝑚

Γ ⊢ne 𝑒 (𝑢) : 𝐵 [id.|𝑢 |]@𝑚

Γ ⊢nf 𝑢 : 𝐴@𝑚 Γ ⊢nf 𝑣 : 𝐵 [id.|𝑢 |]@𝑚

Γ ⊢nf (𝑢, 𝑣) : 𝐴 × 𝐵 @𝑚

Γ ⊢ne 𝑒 : 𝐴 × 𝐵 @𝑚

Γ ⊢ne pr1 (𝑒) : 𝐴@𝑚 Γ ⊢ne pr2 (𝑒) : 𝐵 [id.pr1 (|𝑒 |)]@𝑚

Γ.{𝜇} ⊢nf 𝑢 : 𝐴@𝑛

Γ ⊢nf mod𝜇 (𝑢) : ⟨𝜇 | 𝐴⟩@𝑚

Γ ⊢ne 𝑒 : ⟨𝜇 | 𝐴⟩@𝑚

Γ ⊢nf up(𝑒) : ⟨𝜇 | 𝐴⟩@𝑚

Γ.{𝜇} ⊢ne 𝑢 : ⟨𝜈 | 𝐴⟩@𝑛 Γ.(𝜇 | ⟨𝜈 | 𝐴⟩) ⊢nf 𝜏 @𝑚 Γ.(𝜇 ◦ 𝜈 | 𝐴) ⊢nf 𝑢 : 𝐵 [↑.mod𝜈 (v0)]@𝑚

Γ ⊢ne letmod(𝜇;𝜈 ;𝜏 ; 𝑒;𝑢) : 𝐵 [id.|𝑒 |]@𝑚

Γ ⊢ne 𝑒 : U @𝑚

Γ ⊢nf up(𝑒) : U @𝑚

Γ.{𝜇} ⊢nf 𝑢 : U @𝑚

Γ ⊢nf �⟨𝜇 | 𝑢⟩ : U @𝑚

Γ ⊢ne 𝑒 : U @𝑚 Γ ⊢ne 𝑓 : El(|𝑒 |)@𝑚

Γ ⊢nf up(𝑓) : El(|𝑒 |)@𝑚

Γ.{𝜇} ⊢ 𝐴 : U @𝑛 Γ ⊢ne 𝑒 : El(�⟨𝜇 | 𝐴⟩)@𝑚

Γ ⊢ne dec� (𝑒) : ⟨𝜇 | El(𝐴)⟩@𝑚

Γ ⊢nf 𝑢 : ⟨𝜇 | El(𝐴)⟩@𝑚

Γ ⊢nf dec� (𝑢) : El(�⟨𝜇 | 𝐴⟩)@𝑚

Figure 3. Definition of selected normals, neutrals, and normal types

Γ ⊢ ! : 1@𝑚 |!| = ! Γ.(𝜇 | 𝐴) ⊢ ↑ : Γ @𝑚 |↑| = ↑ Γ ⊢ id : Γ @𝑚 |id| = id

Γ0 ⊢ 𝑟 : Γ1 @𝑚 Γ1 ⊢ 𝑠 : Γ2 @𝑚

Γ0 ⊢ 𝑠 ◦ 𝑟 : Γ2 @𝑚 |𝑠 ◦ 𝑟 | = |𝑠 | ◦ |𝑟 |
Γ ⊢ 𝑟 : Δ@𝑚

Γ.{𝜇} ⊢ 𝑟 .{𝜇} : Δ.{𝜇}@𝑛 |𝑟 .{𝜇}| = |𝑟 |.{𝜇}

𝜇, 𝜈 : 𝑛 𝑚 𝛼 : 𝜈 𝜇

Γ.{𝜇} ⊢ {𝛼}Γ : Γ.{𝜈}@𝑛 |{𝛼}Γ | = {𝛼}Γ
Γ ⊢ 𝑟 : Δ@𝑚 Γ.{𝜇} ⊢ne v𝛼

𝑘
: 𝐴[|𝑟 |.{𝜇}]@𝑛

Γ ⊢ 𝑟 .v𝛼
𝑘

: Δ.(𝜇 | 𝐴)@𝑚 |𝑟 .v𝛼
𝑘
| = |𝑟 |.|v𝛼

𝑘
|

Figure 4. Complete definition of renamings

LICS ’22, August 2–5, 2022, Haifa, Israel Daniel Gratzer

A Definition of anMTT cosmos
Definition A.1 (Definition 18 [6]). An internal lifting struc-
ture 𝑠 : 𝑖 ⋔ 𝜏 between a pair of morphisms 𝑖 : 𝐴 𝐵 and
𝜏 : 𝑋 𝑌 is a section of canonical map 𝑋𝐵 𝑌𝐵 ×𝑌𝐴 𝑋𝐴.

Definition A.2. The 2-category Cat𝑔 consists of small cate-
gories, functors between them, and natural isomorphisms.

Definition A.3. The category of cosmoi V is the locally
full 2-subcategory of [M,Cat𝑔] spanned by pseudofunctors
𝐹 such that:
• For each𝑚 :M, 𝐹 (𝑚) is an LCCC
• For each 𝜇 : 𝑛 𝑚, 𝐹 (𝜇) is a right adjoint.

Note that we do not require that 𝐹 (𝜇) preserves the LCC of
𝐹 (𝑚). We write 𝐹 (𝜇)! for the left adjoint of 𝐹 (𝜇).
Definition A.4. An object 𝐹 : V is anMTT cosmos when
equipped with the following structure:

1. In 𝐹 (𝑚), there is a universe 𝜏𝑚 : T •𝑚 T𝑚 with a
choice of codes witnessing its closure under dependent
sums and products, identity types, and booleans e.g.∑

𝐴:T𝑚
∑

𝐵:𝜏𝑚 [𝐴]→T𝑚
∏

𝑎:𝜏𝑚 [𝐴] 𝜏𝑚 [𝐵(𝑎)]

∑
𝐴:T𝑚 𝜏𝑚 [𝐴] → T𝑚

T •𝑚

T𝑚

lam

Prod

2. For each 𝜇, there exists a chosen commuting square

𝐹 (𝜇) (T •𝑛)

𝐹 (𝜇) (T𝑛)

T •𝑚

T𝑚
Mod

(11)

3. For each 𝜇 : 𝑛 𝑚 and 𝜈 : 𝑜 𝑛, there is a chosen
lifting structure 𝐹 (𝜇) (𝑚) ⋔ 𝐹 (𝜇 ◦ 𝜈) (T𝑜) × 𝜏𝑚 , where
𝑚 : 𝐹 (𝜈) (T •𝑜) 𝐹 (𝜈) (T𝑜) ×T𝑛 T •𝑛 is the comparison
map induced by Diagram 11.

4. 𝜏𝑚 contains a subuniverse also closed under all these
connectives.

Definition A.5. A morphism between MTT-structured cos-
moi 𝛼 : 𝐹 𝐺 is a 2-natural transformation 𝛼 such that 𝛼𝑚
is an LCCC functor and preserves all connectives strictly.
Furthermore, we require that there is a natural isomorphism
𝛽𝜇 : 𝛼𝑛 ◦ 𝐹 (𝜇)! � 𝐺 (𝜇)! ◦ 𝛼𝑚 commuting with transposition.
Precisely, if 𝑎 : 𝑋 𝐹 (𝜇) (𝑌) : 𝐹 (𝑚) the transposition of
𝛼𝜇 ◦ 𝛼𝑚 (𝑎) is 𝛼𝑛 (𝑎) ◦ 𝛽−1

𝜇 .

B Proof of quasi-projectivity
We briefly describe the proof of Theorem 3.8.

Theorem 3.8. Fix an MTT cosmos 𝐺 and 𝜋 : 𝐺 S.

1. For Γ cx@𝑚, there exists JΓK : 𝐺 (𝑚) and a canonical
isomorphism 𝛼Γ : 𝜋 (JΓK) � y(Γ).

2. For every Γ ⊢ 𝐴@𝑚, there exists J𝐴K : JΓK T𝑚 such
that 𝜋 (J𝐴K) ◦ 𝛼Γ = ⌊𝐴⌋.

3. For every Γ ⊢ 𝑀 : 𝐴@𝑚, there exists J𝑀K : JΓK T •𝑚
lying over J𝐴K such that 𝜋 (J𝑀K) ◦ 𝛼Γ = ⌊𝑀⌋.

Here ⌊−⌋ is the isomorphism induced by the Yoneda lemma.

Remark 8. While we have proven this result at quite gener-
ally, we will apply it only in the special case where 𝜋 is a
2-natural transformation between strict 2-functors and re-
quired isomorphisms of left adjoints are likewise identities.
The reader may accordingly safely ignore these coherences
when reading the proof without consequence.

Proof. For clarity, we write El𝑚 , Ty𝑚 and Tm𝑚 instead of
𝜏𝑚 , T𝑚 , and T •𝑚 in the syntactic model, reserving the latter
exclusively for 𝐺 . We write J𝜇K for the functor sending Γ
to Γ.{𝜇}. We begin by replacing 𝐺 by an equivalent strict
2-functor so that 𝜋 becomes strictly 2-natural.
We construct a displayed model of MTT [23] which lies

over the syntactic model. Using the existing coherence result
for MTT, we only ensure that Γ.{𝜇}.{𝜈} and Γ.{𝜇 ◦ 𝜈} agree
up to pseudonatural isomorphism.
• A context in 𝑚 is a triple 𝑋 : 𝐺 (𝑚), Γ cx@𝑚, and
𝛼 : 𝜋 (𝑋) � y(Γ).
• A type in a context (𝑋, Γ, 𝛼) is a pair of 𝐴 : 𝑋 T𝑚
and Γ ⊢ 𝐴@𝑚 such that 𝜋 (𝐴) = ⌊𝐴⌋ ◦ 𝛼 .
• A term in a context (𝑋, Γ, 𝛼) of type (𝐴∗, 𝐴) is a pair
𝑀∗ : 𝑋 𝜏𝑚 [𝐴∗] and Γ ⊢ 𝑀 : 𝐴@𝑚 such that
𝜋 (𝑀∗) = ⌊𝑀⌋ ◦ 𝛼 .
• A substitution (𝑋, Γ, 𝛼) (𝑌,Δ, 𝛽) is a pair 𝑓 : 𝑋 𝑌

and Γ ⊢ 𝛿 : Δ@𝑚 satisfying 𝛽 ◦ 𝜋 (𝑓) = y(𝛿) ◦ 𝛼
Once this model is constructed, the result is a direct conse-
quence Theorem 3.3. The construction of contexts, substitu-
tions, terms, and types is relatively routine as 𝜋 is a 2-natural
transformation which preserves finite limits, and commutes
with all connectives. We show two representative cases.

The action of a modality on a context. Given a triple
(𝑋, Γ, 𝛼) at mode 𝑛 and a modality 𝜇 : 𝑛 𝑚, we define the
‘locked’ context to be the following:

(𝐺 (𝜇)! (𝑋), Γ.{𝜇}, 𝛾 ◦ J𝜇K!𝛼 ◦ 𝛽)

Here 𝛽 : 𝜋 (𝐺 (𝜇)!𝑋) � J𝜇K!𝜋 (𝑋) and𝛾 : J𝜇K!y(Γ) � y(Γ.{𝜇})
are the canonical isomorphisms.

Modal types. Suppose we are given a context (𝑋, Γ, 𝛼)
and a type (𝐴∗, 𝐴) in the context (𝐺 (𝜇)! (𝜇) (𝑋), Γ.{𝜇}, 𝛾 ◦
J𝜇K∗ (𝛼) ◦ 𝛽𝜇). We form the modal type as

(Mod𝜇 (𝐴∗), ⟨𝜇 | 𝐴⟩)

It remains to check that these types are coherent i.e.:

𝜋 (Mod𝜇 (𝐴∗)) = ⌊⟨𝜇 | 𝐴⟩⌋ ◦ 𝛼

Normalization for Multimodal Type Theory LICS ’22, August 2–5, 2022, Haifa, Israel

By assumption, 𝜋 (𝐴∗) = ⌊𝐴⌋ ◦𝛾 ◦J𝜇K∗ (𝛼) ◦𝛽 . By our assump-
tion that 𝜋 satisfies Beck-Chevalley 𝜋 (𝐴∗) = �⌊𝐴⌋ ◦ 𝛾 ◦𝛼 . The
result follows from the fact that 𝜋 preservesMod𝜇 . □

C Internal definition of anMTT cosmos
We present the full sequence of constants which specify an
MTT cosmos internally.

Term and type sorts

Ty𝑚 : U
Tm𝑚 : Ty𝑚 → U

Dependent sums

Sig : (𝐴 : Ty𝑚) → Tm𝑚 (𝐴) → Ty𝑚 → Ty𝑚
𝛼Sig : (𝐴 : Ty𝑚) (𝐵 : Tm𝑚 (𝐴) → Ty𝑚)

→
[
Tm𝑚 (Sig(𝐴, 𝐵)) �

∑
𝑎:Tm𝑚 (𝐴) Tm𝑚 (𝐵(𝑎))

]
Dependent products

Prod : (𝐴 : Ty𝑚) (𝐵 : ⟨𝜇 | Tm𝑚 (𝐴)⟩ → Ty𝑚) → Ty𝑚
𝛼Prod : (𝐴 : Ty𝑚) (𝐵 : Tm𝑚 (𝐴) → Ty𝑚)

→
[
Tm𝑚 (Prod(𝐴, 𝐵)) �

∏
𝑎:Tm𝑚 (𝐴) Tm𝑚 (𝐵(𝑎))

]
Booleans

Bool : Ty𝑚
true, false : Tm𝑚 (Bool)
if : (𝐴 : Tm𝑚 (Bool) → Ty𝑚)
→ Tm𝑚 (𝐴(true)) → Tm𝑚 (𝐴(false))
→ (𝑏 : Tm𝑚 (Bool)) → Tm𝑚 (𝐴(𝑏))

_ : (𝐴 : Tm𝑚 (Bool) → Ty𝑚)
→ (𝑡 : Tm𝑚 (𝐴(true)))
→ (𝑓 : Tm𝑚 (𝐴(false)))
→ (if (𝐴, 𝑡, 𝑓 , true) = 𝑡) × (if (𝐴, 𝑡, 𝑓 , false) = 𝑓)

Identity types

Id : (𝐴 : Ty𝑚) (𝑎0, 𝑎1 : Tm𝑚 (𝐴)) → Ty𝑚
refl : (𝐴 : Ty𝑚) (𝑎 : Tm𝑚 (𝐴)) → Tm𝑚 (Id(𝐴, 𝑎, 𝑎))
J : (𝐴 : Ty𝑚)
(𝐵 : (𝑎0, 𝑎1 : Tm𝑚 (𝐴)) (𝑝 : Tm𝑚 (Id(𝐴, 𝑎0, 𝑎1))) → Ty𝑚)
→ ((𝑎 : Tm𝑚 (𝐴)) → Tm𝑚 (𝐵(𝑎, 𝑎, refl(𝑎))))
→ (𝑎0, 𝑎1 : Tm𝑚 (𝐴)) (𝑝 : Tm𝑚 (Id(𝐴, 𝑎0𝑎1)))
→ Tm𝑚 (𝐵(𝑎0, 𝑎1, 𝑝))

_ : (𝐴 : Ty𝑚)
(𝐵 : (𝑎0, 𝑎1 : Tm𝑚 (𝐴)) (𝑝 : Tm𝑚 (Id(𝐴, 𝑎0, 𝑎1))) → Ty𝑚)
→ (𝑏 : (𝑎 : Tm𝑚 (𝐴)) → Tm𝑚 (𝐵(𝑎, 𝑎, refl(𝑎))))

→ (𝑎 : Tm𝑚 (𝐴)) → J(𝐴, 𝐵,𝑏, 𝑎, 𝑎, refl(𝑎)) = 𝑏 (𝑎)

Modal types

Mod𝜇 : (𝜇 | Ty𝑛) → Ty𝑚
m𝜇 : (𝜇 | 𝐴 : Ty𝑛) (𝜇 | Tm𝑛 (𝐴)) → Tm𝑚 (Mod𝜇 (𝐴))
letmod𝜇;𝜈 : (𝜈 ◦ 𝜇 | 𝐴 : Ty𝑛)
(𝐵 : (𝜇 | Tm𝑛 (Mod𝜇 (𝐴))) → Ty𝑜)(
𝑏 :

(
𝜈 ◦ 𝜇 | 𝑥 : Tm𝑛 (𝐴)

)
→ Tm𝑜

(
𝐵(m𝜇 (𝐴, 𝑥))

))
(𝜈 | 𝑎 : Tm𝑚 (Mod𝜇 (𝐴)))
→ Tm𝑜 (𝐵(𝑎))

_ : (𝜈 ◦ 𝜇 | 𝐴 : Ty𝑛)
(𝐵 : (𝜇 | Tm𝑛 (Mod𝜇 (𝐴))) → Ty𝑜)(
𝑏 :

(
𝜈 ◦ 𝜇 | 𝑥 : Tm𝑛 (𝐴)

)
→ Tm𝑜

(
𝐵(m𝜇 (𝐴, 𝑥))

))
(𝜈 ◦ 𝜇 | 𝑎 : Tm𝑛 (𝐴))
→ letmod𝜇;𝜈 (𝐴, 𝐵,𝑏,m𝜇 (𝐴, 𝑎)) = 𝑏 (𝑎)

Universe á la Tarski

Uni : Ty𝑚
El : Tm𝑚 (Uni) → Ty𝑚

Ŝig : (𝐴 : Tm𝑚 (Uni))
→ (Tm𝑚 (El(𝐴)) → Tm𝑚 (Uni)) → Tm𝑚 (Uni)�Prod : (𝐴 : Tm𝑚 (Uni))
→ (Tm𝑚 (El(𝐴)) → Ty𝑚) → Tm𝑚 (Uni)

B̂ool : Tm𝑚 (Uni)�Mod : (𝜇 | Tm𝑛 (Uni)) → Tm𝑚 (Uni)
decŜig : (𝐴 : Tm𝑚 (Uni)) (𝐵 : Tm𝑚 (El(𝐴)) → Tm𝑚 (Uni))

→ Tm𝑚 (El(Ŝig(𝐴, 𝐵,))) � Tm𝑚 (Sig(El(𝐴), El ◦ 𝐵))
dec�Prod : (𝐴 : Tm𝑚 (Uni)) (𝐵 : Tm𝑚 (El(𝐴)) → Tm𝑚 (Uni))

→ Tm𝑚 (El(�Prod(𝐴, 𝐵))) � Tm𝑚 (Prod(El(𝐴), El ◦ 𝐵))

decB̂ool : Tm𝑚 (El(B̂ool)) � Tm𝑚 (Bool)
dec�Mod : (𝜇 | 𝐴 : Tm𝑚 (Uni)) →

Tm𝑚 (El(�Mod(𝐴))) � Tm𝑚 (Mod𝜇 (El(𝐴)))

D Normal and neutral forms, internally
We present a representative selection of the internalization of
various normal and neutral forms. We require that all normal
and neutral forms become equal to their counterparts in the
syntactic internalMTT cosmos under the assumption 𝑧 : syn
but avoid repeatedly stating this.

Normal types

Prod : (𝐴 : NfTy𝑚) (𝐵 : V𝑚 (𝐴) → NfTy𝑚) → NfTy𝑚
Sum : (𝐴 : NfTy𝑚) (𝐵 : V𝑚 (𝐴) → NfTy𝑚) → NfTy𝑚

LICS ’22, August 2–5, 2022, Haifa, Israel Daniel Gratzer

Bool : NfTy𝑚
Mod𝜇 : ⟨𝜇 | NfTy𝑛⟩ → NfTy𝑚

Dependent products

lam : (𝐴 : #Ty𝑚) (𝐵 : #Tm𝑚 (𝐴) → #Ty𝑚)
→ ((𝑎 : V𝑚 (𝐴)) → Nf𝑚 (𝐵(𝑎)))
→ Nf𝑚 (Prod(𝐴, 𝐵))

app : (𝜇 | 𝐴 : #Ty𝑚) (𝐵 : #Tm𝑚 (𝐴) → #Ty𝑚)
→ Ne𝑚 (Prod(𝐴, 𝐵))
→ (𝑎 : Nf𝑚 (𝐴))
→ Ne𝑚 (𝐵(𝑎))

Booleans

up : Ne𝑚 (Bool) → Nf𝑚 (Bool)
tt,ff : Nf𝑚 (Bool)
if : (𝐴 : V𝑚 (Bool) → NfTy𝑚)
→ Nf𝑚 (𝐴(true))
→ Nf𝑚 (𝐴(false))
→ (𝑏 : Ne𝑚 (Bool)) → Ne𝑚 (𝐴(𝑏))

Identity types

up : (𝐴 : #Ty𝑚) (𝑎0, 𝑎1 : #Tm𝑚 (𝐴))
→ Ne𝑚 (Id(𝐴, 𝑎0, 𝑎1))
→ Nf𝑚 (Id(𝐴, 𝑎0, 𝑎1))

refl : (𝐴 : #𝑧Ty𝑚 (𝑧)) (𝑎 : #𝑧Tm𝑚 (𝑧,𝐴(𝑧))) → Nf𝑚 (Id(𝐴, 𝑎, 𝑎))
J : (𝐴 : #Ty𝑚)
(𝐵 : (𝑎0, 𝑎1 : V𝑚 (𝐴)) (𝑝 : V𝑚 (Id(𝐴, 𝑎0, 𝑎1))) → NfTy𝑚) →
((𝑎 : V𝑚 (𝐴)) → Nf𝑚 (𝐵(𝑎, 𝑎, refl(𝑎))))
→ (𝑎0, 𝑎1 : #𝑧Tm𝑚 (𝐴)) (𝑝 : Ne𝑚 (Id(𝐴, 𝑎0, 𝑎1)))
→ Ne𝑚 (𝐵(𝑎0, 𝑎1, 𝜂 (𝑝)))

Modal types

up : (𝜇 | 𝐴 : Ty𝑛) → Ne𝑚 (Mod𝜇 (𝐴)) → Nf𝑚 (Mod𝜇 (𝐴))
mod𝜇 : (𝜇 | 𝐴 : #Ty𝑛) (𝜇 | Nf𝑛 (𝐴)) → Nf𝑚 (𝜆𝑧. Mod𝜇 (𝑧,𝐴(𝑧)))
letmod𝜇;𝜈 : (𝜈 ◦ 𝜇 | 𝐴 : #Ty𝑛)
→ (𝐵 : (𝜈 | 𝑎 : V𝑚 (Mod𝜇 (𝐴))) → NfTy𝑜)
→ ((𝜈 ◦ 𝜇 | 𝑎 : V𝑛 (𝐴)) → Nf𝑜 (𝐵(m𝜇 (𝑎))))
→ (𝜈 | 𝑎 : Ne𝑚 (Mod𝜇 (𝐴))) → Ne𝑜 (𝐵(𝑎))

Universe á la Tarski

Uni : NfTy𝑚 El : Nf𝑚 (Uni) → NfTy𝑚
up : Ne𝑚 (Uni) → Nf𝑚 (Uni)�Mod𝜇 : (𝜇 | Nf𝑛 (Uni)) → Nf𝑚 (Uni)
dec��Mod𝜇

: (𝜇 | 𝐴 : Nf𝑛 (Uni))

→ Nf𝑚 (Mod𝜇 (𝐴)) → Nf𝑚 (El(�Mod(𝐴)))
dec��Mod𝜇

: (𝜇 | 𝐴 : Nf𝑛 (Uni))

→ Ne𝑚 (El(�Mod(𝐴))) → Ne𝑚 (Mod𝜇 (𝐴))

E Normalization structures
We present the normalization structures missing from Sec-
tion 5.2.

Lemma E.1. (Ty∗𝑚, Tm∗𝑚) is closed under dependent sums.

Proof. Fixing 𝐴 : Ty∗𝑚 and 𝐵 : Tm∗𝑚 (𝐴) → Ty∗𝑚 . We must
construct the following pair of constants:

Sig∗ (𝐴, 𝐵) : Ty∗𝑚
𝛼Sig∗ : Tm𝑚 (Sig∗ (𝐴, 𝐵)) �

∑
𝑎:Tm∗𝑚 (𝐴) Tm

∗
𝑚 (𝐵(𝑎))

Such that they lie over Sig and 𝛼Sig respectively.
We begin by applying realignment to the following:(∑

𝑎:𝐴.pred 𝐵(𝑎).pred, 𝛼Sig(𝑧)
)

This produces Ψ : U1 and 𝛼Sig∗ : Ψ �
∑

𝑎:𝐴.pred 𝐵(𝑎).pred
such that under the assumption 𝑧 : syn the following holds:
• Ψ = Sig(𝑧,𝐴, 𝐵)
• 𝛼Sig∗ = 𝛼Sig (𝑧).

We now define Sig∗ (𝐴, 𝐵) as follows:
Sig∗ (𝐴, 𝐵).code = Sum(code𝐴, 𝜆𝑣 . 𝐵.code(↑𝐴𝑣))
Sig∗ (𝐴, 𝐵).pred = Ψ

Sig∗ (𝐴, 𝐵).reflect =
𝜆𝑒. 𝛼−1

Sig∗ ⟨↑𝐴 (proj0 (𝑒)), ↑𝐵 (↑𝐴 (proj0 (𝑒))) (proj1 (𝑒))⟩
Sig∗ (𝐴, 𝐵).reify = 𝜆𝑝. pair(↓𝐴 (𝛼Sig∗𝑝.0), ↓𝐵 (𝛼Sig∗𝑝.0) (𝛼Sig∗𝑝.1))

The fact that ↓ and ↑ lie over the identity follows directly
from the 𝛽 and 𝜂 laws of dependent sums in MTT. We show
the calculations for ↑. Fix 𝑧 : syn:

↑Sig∗ (𝐴,𝐵) (𝑒) = 𝛼−1
Sig∗ ⟨↑𝐴 (proj0 (𝑒)), ↑𝐵 (↑𝐴 (proj0 (𝑒))) (proj1 (𝑒))⟩

= 𝛼−1
Sig⟨proj0 (𝑒), proj1 (𝑒)⟩

= 𝛼−1
Sig⟨𝛼Sig(𝐴,𝐵) (𝑒)0, 𝛼Sig(𝐴,𝐵) (𝑒)1⟩

= 𝑒

The fact that Sig∗ (𝐴, 𝐵).code and Sig∗ (𝐴, 𝐵).pred lie over
Sig(𝐴, 𝐵) and Tm𝑚 (𝑧, Sig(𝑧,𝐴, 𝐵)) follows from their defini-
tion and realignment. □

Lemma E.2. (Ty∗𝑚, Tm∗𝑚) is closed under booleans.

Proof. We must implement the following constants:

Bool∗ : {Ty∗𝑚 | 𝑧 : syn ↦→ Bool(𝑧)}
true∗ : {Tm∗𝑚 (Bool) | 𝑧 : syn ↦→ true}
false∗ : {Tm∗𝑚 (Bool) | 𝑧 : syn ↦→ false}
if∗ : (𝐴 : Tm∗𝑚 (Bool(𝑧)) → Ty∗𝑚)
→ Tm∗𝑚 (𝐴(true∗))

Normalization for Multimodal Type Theory LICS ’22, August 2–5, 2022, Haifa, Israel

→ Tm∗𝑚 (𝐴(false∗))
→ (𝑏 : Tm∗𝑚 (Bool∗))
→ {Tm∗𝑚 (𝐴(𝑏)) | 𝑧 : syn ↦→ if (𝐴, 𝑡, 𝑓 , 𝑏)}

_ : (𝐴 : Tm∗𝑚 (Bool∗) → Ty∗𝑚)
→ (𝑡 : Tm∗𝑚 (𝐴(true∗)))
→ (𝑓 : Tm∗𝑚 (𝐴(false∗)))
→ (if∗ (𝐴, 𝑡, 𝑓 , true∗) = 𝑡) × (if∗ (𝐴, 𝑡, 𝑓 , false∗) = 𝑓)

First, we define Φ by realignment:

record Φ : {U1 | 𝑧 : syn ↦→ Tm𝑚 (𝑧,Bool)} where
tm : Nf𝑚 (Bool)

prf :

(∑
𝑒 :Ne𝑚 (Bool) tm = up(𝑒)

+∑𝑏:2 tm = rec2 (𝑏;tt;ff))

)
We may now define Bool∗:

Bool∗ .code = Bool

Bool∗ .pred = Φ

Bool∗ .reflect = 𝜆𝑒.⟨up(𝑒), 𝜂 (𝜄1 (𝑒,★))⟩
Bool∗ .reify = 𝜆𝑏. 𝑏.tm

It remains to define the introduction and elimination forms.

true∗ = ⟨tt, 𝜂 (𝜄2 (0,★))⟩
false∗ = ⟨ff, 𝜂 (𝜄2 (1,★))⟩

The elimination form is defined by constructing a map
out of 𝑋 , as in Lemma 5.6:

if∗ (𝐴, 𝑡0, 𝑡1, 𝑏 = ⟨tm, prf⟩) =
if (𝑧,𝑇𝑚, 𝑡0, 𝑡1, 𝑠) prf = 𝜄1 (𝑧)
↓𝐴(𝑏) if (𝜆𝑣. 𝐴(↑𝑣).code, ↓𝑡0, ↓𝑡1, 𝑒) prf = 𝜄2 (𝜄1 (𝑒, _))
𝑡𝑖 prf = 𝜄2 (𝜄2 (𝑖, _)) □

Lemma E.3. (Ty∗𝑚, Tm∗𝑚) is closed under intensional identity
types.

Proof. We must implement the following constants:

Id∗ : (𝐴 : Ty∗𝑚) (𝑎0, 𝑎1 : Tm∗𝑚 (𝐴))
→ {Ty∗𝑚 | 𝑧 : syn ↦→ Id(𝑧,𝐴, 𝑎0, 𝑎1)}

refl∗ : (𝐴 : Ty∗𝑚) (𝑎 : Tm∗𝑚 (𝐴))
→ {Tm∗𝑚 (Id(𝐴, 𝑎, 𝑎)) | 𝑧 : syn ↦→ refl(𝑧,𝐴, 𝑎)}

J∗ : (𝐴 : Ty∗𝑚)
→ (𝐵 : (𝑎0, 𝑎1 : Tm∗𝑚 (𝐴)) → Tm∗𝑚 (Id∗ (𝐴, 𝑎0, 𝑎1)) → Ty∗𝑚)
→ (𝑏 : (𝑎 : Tm∗𝑚 (𝐴)) → Tm∗𝑚 (𝐵(𝑎, 𝑎, refl(𝑎))))
→ (𝑎0, 𝑎1 : Tm∗𝑚 (𝐴)) (𝑝 : Tm∗𝑚 (Id∗ (𝐴, 𝑎0, 𝑎1)))
→ {Tm∗𝑚 (𝐵(𝑎0, 𝑎1, 𝑝)) | 𝑧 : syn ↦→ J(𝑧, 𝐵, 𝑏, 𝑝)}

_ : (𝐴 : Ty∗𝑚)
→ (𝐵 : (𝑎0, 𝑎1 : Tm∗𝑚 (𝐴)) → Tm∗𝑚 (Id∗ (𝐴, 𝑎0, 𝑎1)) → Ty∗𝑚)
→ (𝑏 : (𝑎 : Tm∗𝑚 (𝐴)) → Tm∗𝑚 (𝐵(𝑎, 𝑎, refl(𝑎))))

→ (𝑎 : Tm∗𝑚 (𝐴)) → J∗ (𝐴, 𝐵,𝑏, refl∗ (𝑎)) = 𝑏 (𝑎)
Fix 𝐴 : Ty∗𝑚 and 𝑎0, 𝑎1 : Tm∗𝑚 (𝐴). Just as with the normal-

ization structure for booleans, we begin by defining Φ by
realignment:

record Φ : {U1 | 𝑧 : syn ↦→ Tm𝑚 (𝑧, Id(𝐴, 𝑎0, 𝑎1))} where
tm : Nf𝑚 (Id(𝐴, 𝑎0, 𝑎1))

prf :

(∑
𝑒 :Ne𝑚 (Id(𝐴,𝑎0,𝑎1)) tm = up(𝑒)

+∑𝑎:𝐴.pred tm = refl(↓𝐴𝑎)

)
We now define Id∗:

Id∗ (𝐴, 𝑎0, 𝑎1).code = Idcode𝐴 (↑𝐴𝑎0, ↑𝐴𝑎1)
Id∗ (𝐴, 𝑎0, 𝑎1).pred = Φ

Id∗ (𝐴, 𝑎0, 𝑎1).reflect = 𝜆𝑒.⟨up(𝑒), 𝜂 (𝜄1 (𝑒,★))⟩
Id∗ (𝐴, 𝑎0, 𝑎1).reify = 𝜆𝑝. 𝑝.tm

We define reflexivity by refl∗ = ⟨refl, 𝜂 (𝜄2 (★,★))⟩. Finally,
as is now routine, the elimination principle is defined using
the induction principle for 𝑋 .

J∗ (𝐵,𝑏, 𝑎0, 𝑎1, 𝑝 = ⟨tm, prf⟩) =
J(𝑧, 𝐵, 𝑏, 𝑎0, 𝑎1, 𝑝) prf = 𝜄1 (𝑧)
↓J(𝜆𝑙, 𝑟, 𝑝.𝐵(↑𝑙, ↑𝑟, ↑𝑝).code, 𝜆𝑎.↓𝑏 (↑𝑎), 𝑒) prf = 𝜄2 (𝜄1 (𝑒, _))
𝑏 (𝑎0) 𝑞 = 𝜄2 (𝜄2 (_, _)) □

Lemma E.4. (Ty∗𝑚, Tm∗𝑚) is closed under universes.

Proof. We show only that the following constants exist as
their closure under various connectives is straightforward.

Uni∗ : {Ty∗𝑚 | 𝑧 : syn ↦→ Uni}
El∗ : (𝐴 : Tm∗𝑚 (Uni∗)) → {Ty∗𝑚 | 𝑧 : syn ↦→ El(𝐴)}

At this point we take advantage of the fact that pred is an
element of U1; in particular, we use the fact that is a universe
U0 small enough to fit inside U1.

We may then define Ψ by realigning the following element
of U1 along the evident isomorphism to Tm∗𝑚 (𝑧,Uni(𝑧)):

record Ψ : {U1 | 𝑧 : syn ↦→ Tm∗𝑚 (𝑧,Uni)} where
code : Nf𝑚 (Uni)
pred : {U0 | 𝑧 : syn ↦→ Tm𝑚 (𝑧, El(code))}
reflect : {Ne𝑚 (El(code)) → pred | 𝑧 : syn ↦→ id}
reify : {pred→ Nf𝑚 (El(code)) | 𝑧 : syn ↦→ id}

With Ψ in hand, we may define Uni∗:

Uni∗ .code = Uni

Uni∗ .pred = Ψ

Uni∗ .reflect = 𝜆𝑒. ⟨up(𝑒);Ne𝑚 ; id; 𝜆𝑒. up(𝑒)⟩
Uni∗ .reify = 𝜆𝐴. 𝐴.code

The definition of El∗ is essentially cumulativity:

El∗ (⟨code; pred; reify; reflect⟩) =
⟨El(code); pred; reify; reflect⟩ □

LICS ’22, August 2–5, 2022, Haifa, Israel Daniel Gratzer

F Crisp identity induction principles
The addition of crisp identity induction requires two changes
to primitive constants added to MSTC by Section 5.1 com-
pared to Appendix E: one altering both the definition of
cosmoi and the other the definition of neutral forms.
J𝜇 : (𝜇 | 𝐴 : Ty𝑛)
(𝐵 : (𝜇 | 𝑎0, 𝑎1 : Tm𝑛 (𝐴)) (𝜇 | 𝑝 : Tm𝑛 (Id(𝐴, 𝑎0, 𝑎1))) → Ty𝑚)
→ ((𝜇 | 𝑎 : Tm𝑛 (𝐴)) → Tm𝑚 (𝐵(𝑎, 𝑎, refl(𝑎))))
→ (𝜇 | 𝑎0, 𝑎1 : Tm𝑛 (𝐴)) (𝜇 | 𝑝 : Tm𝑛 (Id(𝐴, 𝑎0, 𝑎1)))
→ Tm𝑚 (𝐵(𝑎0, 𝑎1, 𝑝))

J𝜇 : (𝜇 | 𝐴 : #Ty𝑛)
(𝐵 : (𝜇 | 𝑎0, 𝑎1 : V𝑛 (𝐴)) (𝜇 | 𝑝 : V𝑚 (Id(𝐴, 𝑎0, 𝑎1))) → NfTy𝑚)
→ ((𝜇 | 𝑎 : V𝑛 (𝐴)) → Nf𝑚 (𝐵(𝑎, 𝑎, refl(𝑎))))
→ (𝜇 | 𝑎0, 𝑎1 : #𝑧Tm𝑛 (𝑧,𝐴(𝑧))) (𝜇 | 𝑝 : Ne𝑛 (Id(𝐴, 𝑎0, 𝑎1)))
→ Ne𝑚 (𝐵(𝑎0, 𝑎1, 𝜂 (𝑝)))
It only remains to define J∗𝜇 analogous to Lemma E.3:

Lemma F.1. (Ty∗𝑚, Tm∗𝑚) is supports crisp identity induction.

Proof. This argument is similar to Lemma 5.6, as the induc-
tion principle for modal types is always ‘crisp’ in MTT.
We must implement the following constant.

J∗𝜇 : (𝜇 | 𝐴 : Ty∗𝑛)
(𝐵 : (𝜇 | 𝑎0, 𝑎1 : Tm∗𝑛 (𝐴)) (𝜇 | 𝑝 : 𝑇𝑚 ∗ 𝑛(Id∗ (𝐴, 𝑎0, 𝑎1))) → Ty∗𝑚)
→ (𝑏 : (𝜇 | 𝑎 : Tm∗𝑛 (𝐴)) → Tm∗𝑚 (𝐵(𝑎, 𝑎, refl∗ (𝑎))))
→ (𝜇 | 𝑎0, 𝑎1 : Tm∗𝑛 (𝐴)) (𝜇 | 𝑝 : Tm∗𝑛 (Id(𝐴, 𝑎0, 𝑎1))) →
→ {Tm∗𝑚 (𝐵(𝑎0, 𝑎1, 𝑝)) | 𝑧 : syn ↦→ J𝜇 (𝐴, 𝐵,𝑏, 𝑝)}
Let us fix 𝐴, 𝐵, 𝑏, 𝑎0, 𝑎1, and 𝑝 with the types described

above. Recalling the definition of predId∗ (𝐴, 𝑎0, 𝑎1) from
Lemma E.3, we can commute ⟨𝜇 | −⟩ past the dependent
sum, closed modalities, equality types, and coproducts to
decompose 𝑝 into a pair of the following:

(𝜇 | tm : Nf𝑛 (Id(𝐴, 𝑎0, 𝑎1)))

prf :

[∑
𝑒 :⟨𝜇 |Ne𝑛 (Id(𝐴,𝑎0,𝑎1)) ⟩ up ⊛ 𝑒 = mod𝜇 (𝑚)
+mod𝜇 (𝑚) = mod𝜇 (refl(𝑎0))

]
We then define J∗𝜇 (𝐵,𝑏, 𝑎0, 𝑎1, 𝑝) by analyzing prf:
J(𝑧, 𝐵, 𝑏, 𝑎0, 𝑎1, 𝑝) prf = 𝜄1 (𝑧)
↓J(𝜆𝑎0, 𝑎1, 𝑝. 𝐵(↑𝑎0, ↑𝑎1, ↑𝑝).code, 𝜆𝑎. ↓𝑏 (↑𝑎), 𝑒) 𝑞 = 𝜄2 (𝜄1 (𝑒, _))
𝑏 (𝑎0) 𝑞 = 𝜄2 (𝜄2 (_)) □

	Abstract
	1 Introduction
	1.1 Multimodal type theory
	1.2 Normalization for type theories
	1.3 Contributions

	2 A primer on MTT
	2.1 Mode-local connectives in MTT
	2.2 Modalities in MTT
	2.3 Normal and neutral forms in MTT

	3 Models and cosmoi
	3.1 Natural models of MTT
	3.2 MTT cosmoi
	3.3 Presheaf cosmoi

	4 Multimodal synthetic Tait computability
	4.1 Synthetic Tait computability
	4.2 Gluing together cosmoi

	5 The normalization cosmos
	5.1 Prerequisites for the normalization cosmos
	5.2 The MTT cosmos

	6 Normalization
	6.1 The normalization function
	6.2 Corollaries of normalization

	7 Crisp identity induction principles
	8 Related work
	9 Conclusions and future work
	Acknowledgments
	References
	A Definition of an MTT cosmos
	B Proof of quasi-projectivity
	C Internal definition of an MTT cosmos
	D Normal and neutral forms, internally
	E Normalization structures
	F Crisp identity induction principles

