Iron: Managing Obligations in Higher-Order
Concurrent Separation Logic

Ale$ Bizjak! Daniel Gratzer'
Robbert Krebbers?® Lars Birkedal’

1 Aarhus University
2Delft University of Technology

January 17, 2019 POPL 2019

https://iris-project.org/iron/

https://iris-project.org/iron/

The Problem

Resources we use in programs impose obligations:
e Memory must be properly freed.
e File handles must be closed after use.
e Locks must be acquired and released properly.

Example

let ¢ = ref(None) in
fork {
(recgo () =
match !¢ with
| None = go()
| Some(x) = free(x); free(¥)
end
end) ()
b
¢ < Some(ref(1))

Example Channel
let ¢ = ref(None) in
fork {
(recgo () =
match !¢ with
| None =-go ()
| Some(x) = free(x); free(¥)
end
end) ()
b
¢ < Some(ref(1))

Example Channel

let ¢ = ref(None) in

fork {
(recgo () =
match !¢ with
Wait... | None =go ()
| Some(x) = free(x); free(¥)
end
end) ()
b

¢ < Some(ref(1))

Example Channel

let ¢ = ref(None) in

fork {
(recgo () =
match !¢ with
Wait... | None =go ()
| Some(x) = free(x); free(¥)
end
end) ()
b

¢ < Some(ref(1)) <—

Signal the
thread

Example Channel

let ¢ = ref(None) in

fork {
(rec go () =
match !¢ with
Wait... | None = go()
| Some(x) = free(x); free(¢) «—— ...then clean up
end
end) ()
¥
¢ <+ Some(ref(1)) <— Signal the

thread

Wish list

We want a concurrent separation logic to prove these properties:
e Has thread-local reasoning

Can express complex and modular specifications

Handles complicated language features (especially fork)

Is amenable to mechanization

Can prove leak-freedom

Wish list

We want a concurrent separation logic to prove these properties:
e Has thread-local reasoning

Can express complex and modular specifications

Handles complicated language features (especially fork)

Is amenable to mechanization

Can prove leak-freedom

Iris (a state of the art concurrent separation logic) gives us the first 4.

Our Contribution

Trackable resources: a general mechanism for managing obligations
and

Iron: a separation logic implementing it:

e Includes all proof techniques of Iris
(ghost state, impredicative invariants, updates, etc...)

e Supports all the language features of Iris
e Fully mechanized in Coq

Other Approaches: lIris

Iris and other affine logics gives us safety (and correctness):

Theorem
If { True} e { True} holds then e does not get stuck.

We wish to strengthen this to ensure leak-freedom.

Other Approaches: CSL

O’Hearn [2007] and Brookes [2007] ensured leak-freedom through linearity
for statically scoped concurrency:.

I' - {Emp}ref(v) {¢. { — v} I'F{(— w}free(¢) {Emp}

Fl—{Pl}el{Ql} F"{Pz}ez{Qz}
Fl_{P] >I<P2}€1 Hez{Ql *QZ}

Other Approaches: CSL

O’Hearn [2007] and Brookes [2007] ensured leak-freedom through linearity
for statically scoped concurrency:.

I' - {Emp}ref(v) {¢. { — v} I'F{(— w}free(¢) {Emp}
/ PE{Pte{0} TH{Pe{o)
Our heap view L {P *P}e || e{0 + 0>}

is empty

Other Approaches: CSL

O’Hearn [2007] and Brookes [2007] ensured leak-freedom through linearity
for statically scoped concurrency:.

I' - {Emp}ref(v) {¢. { — v} I'F{(— w}free(¢) {Emp}
/ PE{Pte{0} TH{Pe{o)
Our heap view L {P *P}e || e{0 + 0>}

is empty \

Does not share
memory

Scoped Invariants

With only parallel composition scoped invariants are sufficient:

I,r:RE{P}e{0O}
I'F {P=*R}resource rine{Q * R}

Scoped invariants are insufficient for the “unscoped concurrency”:

let ¢ = ref(1) in
resource rin

fork {with r do !/} ;
free(?)

Unscoped Invariants

With fork we need unscoped invariants:

{Per"}e(v.0)
{P«R}e{v. O}

e Invariants persist forever and can be duplicated freely.
e There is no deallocation rule; it must be encoded.

Unscoped Invariants

With fork we need unscoped invariants:

{Pelr"}ev.0)
{P«R}e{v. O}

e Invariants persist forever and can be duplicated freely.
e There is no deallocation rule; it must be encoded.

We can always put resources in an invariant and forget them — no linearity!

Resolving This Tension

e Scoped tracks obligations but does not handle fork.
e Unscoped handles fork but does not track obligations.
e Invariants are complex to prove sound; we prefer not to modify them.

We will modify — instead so that unscoped invariants are suitable.

Crucial Idea: Trackable Resources

We keep the affine logic so Iris’s implementation of invariants can be reused.

e Index ¢+, v with 7 € (0, 1]
e Add a new proposition ¢, with = € (0, 1]

m indicates how much of the heap we know about through the proposition.

10

Intuition for Fractions

If we own...
e [+ v then the only thing the heap contains is ¢+ v.
¢; the heap contains nothing at all.

e /—.vandr < 1the heap may contain other locations.

e /=, vand{,), wthe heap contains just ¢, and /».

We can prove leak-freedom by owning e;.

11

Intuition for Fractions

If we own...
e [— v then the only thing the heap contains is ¢ + v.
¢; the heap contains nothing at all.

e /—.vandr < 1the heap may contain other locations.

e /=, vand{,), wthe heap contains just ¢, and /».

We can prove leak-freedom by owning e;.

11

Intuition for Fractions

If we own...
e [— v then the only thing the heap contains is ¢ + v.
¢; the heap contains nothing at all.

e /—,vandr < 1the heap may contain other locations.

e /=, vand{,), wthe heap contains just ¢, and /».

We can prove leak-freedom by owning e;.

11

Intuition for Fractions

If we own...
e [— v then the only thing the heap contains is ¢ + v.
¢; the heap contains nothing at all.

e /—,vandr < 1the heap may contain other locations.

e /=, vand{,), wthe heap contains just ¢, and /».

We can prove leak-freedom by owning e;.

11

Fractional Permissions?

What does ¢ —, v mean?
e With fractional permissions we own 7 of the location.
e With Iron we own 7 of the entire heap.

Crucial difference: we can write to ¢ —,, v in Iron but not in Boyland [2003].

12

Working with Fractions in Programs: The Heap

The program logic adapts to handle these fractions as follows:

{e }ref(w) {l. 0 —, v} {l —,w}free(l){e,}

{{ = viU{ww=vAl—, v} {{ =Wl —v{l—,v}

e * e, A e gy (Lr=m V) *en, A= Li—n v

13

Working with Fractions in Programs: Concurrency
The standard rule for fork holds:
{P}e{True}
{P}fork {e} {v.v =)}

This rule is insufficient if the forked-off thread outlives its parent:

fork {
let ¢ = ref(1) in
free(?)

b

141

14

Working with Fractions in Programs: Concurrency

We must also allow the forked-off thread to terminate with e:

{P}e{True} {P}e{e,}
{P}fork {e} {v.v= ()} {P}fork {e} {v.v={()*e,}

15

Adequacy

Iron provides us with strong guarantees about programs:

Theorem
If{e;}e{e,}:
1. e does not get stuck
2. If(e,h) =" ([v, vo,...,va |, W) thenh =H'.
——

thread results

16

Adequacy

I[ron provides us with strong guarantees about programs:
Theorem
If{e;}e{e,}:
1. e does not get stuck
2. If(e,h) =" ([v, vo,...,va |, W) thenh =H'.
H,—/
thread results

If we forget part of ¢, then we cannot apply our adequacy theorem;
the triple won’t hold!

16

Taking Stock

At this point, Iron is already useful!

17

Taking Stock

At this point, Iron is already useful!

But it isn’t easy; there’s boilerplate with fractions everywhere:

{(m +m=1) % (b =z, vi) * (b —=mp v2) * (b3 —=rp v3) }
free(ly); free(t,); free(ts)

{er}

17

The Lifted Logic

We can lift the operators of Bl to functions, [0, 1] — iProp

(P* Q)(n) £ 3my, M. m +m =7 AP(m) * Q)
SV 2T >0AL,
Emp(r) =7 =0

Other operations are lifted point-wise.

18

The Lifted Logic

We can lift the operators of Bl to functions, [0, 1] — iProp.

(P* Q)(n) £ 3my, M. m +m =7 AP(m) * Q)
SV 2T >0AL,
Emp(r) =7 =0

Other operations are lifted point-wise.

The lifted logic is really linear!

O v sl = vl =y

18

The Lifted Logic: New Rules

The lifted program logic mirrors standard linear separation logic:

{Emp} ref(v) {¢. L = v} {¢t = —}free(!) {Emp}
{t= v {wow =v A LS v} {{= -} +—v{{~=v}
{P}e{Emp}

{P} fork {e} {v.v=() AEmp}

19

The Lifted Logic: Invariants

e We developed a specialized form of invariants for lifted propositions.
e They require permission to open in order to support deallocation.
e They integrate well with the lifted logic but are limited.

20

The Lifted Logic: Invariants

e We developed a specialized form of invariants for lifted propositions.
e They require permission to open in order to support deallocation.
e They integrate well with the lifted logic but are limited.

Sometimes we still need the unlifted logic for the more general invariants.

(] || € £
let h = spawn(A_.e;) in
let V) = € in

let vi = join(h) in

(vi,)

20

Using Iron

We’ve used Iron to formalize a number of examples:
1. An implementation of ¢, || e,
2. Various examples of resource transfer
3. A lock-free queue

4. An asynchronous message system with cleanup

Aside from the first, all of these are proven in the lifted logic.

21

Conclusions

Trackable resources: a general mechanism for managing obligations
and

Iron: a separation logic implementing it:

¢ Includes all proof techniques of Iris
(ghost state, impredicative invariants, updates, etc...)

e Supports all the language features of Iris
e Fully mechanized in Coq

https://iris—-project.org/iron/

22

https://iris-project.org/iron/

