
Iron: Managing Obligations in Higher-Order
Concurrent Separation Logic

Aleš Bizjak1 Daniel Gratzer1

Robbert Krebbers2 Lars Birkedal1

1Aarhus University
2Delft University of Technology

January 17, 2019 POPL 2019

https://iris-project.org/iron/

0

https://iris-project.org/iron/

The Problem

Resources we use in programs impose obligations:
• Memory must be properly freed.
• File handles must be closed after use.
• Locks must be acquired and released properly.

1

Example

let ` = ref(None) in
fork {

(rec go () =

match !` with
| None ⇒ go ()

| Some(x)⇒ free(x); free(`)

end
end) ()

};
`← Some(ref(1))

2

Example

let ` = ref(None) in
fork {

(rec go () =

match !` with
| None ⇒ go ()

| Some(x)⇒ free(x); free(`)

end
end) ()

};
`← Some(ref(1))

Channel

2

Example

let ` = ref(None) in
fork {

(rec go () =

match !` with
| None ⇒ go ()

| Some(x)⇒ free(x); free(`)

end
end) ()

};
`← Some(ref(1))

Channel

Wait...

2

Example

let ` = ref(None) in
fork {

(rec go () =

match !` with
| None ⇒ go ()

| Some(x)⇒ free(x); free(`)

end
end) ()

};
`← Some(ref(1))

Channel

Wait...

Signal the
thread

2

Example

let ` = ref(None) in
fork {

(rec go () =

match !` with
| None ⇒ go ()

| Some(x)⇒ free(x); free(`)

end
end) ()

};
`← Some(ref(1))

Channel

Wait...

Signal the
thread

...then clean up

2

Wish list

We want a concurrent separation logic to prove these properties:
• Has thread-local reasoning
• Can express complex and modular specifications
• Handles complicated language features (especially fork)
• Is amenable to mechanization
• Can prove leak-freedom

Iris (a state of the art concurrent separation logic) gives us the first 4.

3

Wish list

We want a concurrent separation logic to prove these properties:
• Has thread-local reasoning
• Can express complex and modular specifications
• Handles complicated language features (especially fork)
• Is amenable to mechanization
• Can prove leak-freedom

Iris (a state of the art concurrent separation logic) gives us the first 4.

3

Our Contribution

Trackable resources: a general mechanism for managing obligations

and

Iron: a separation logic implementing it:
• Includes all proof techniques of Iris

(ghost state, impredicative invariants, updates, etc...)
• Supports all the language features of Iris
• Fully mechanized in Coq

4

Other Approaches: Iris

Iris and other affine logics gives us safety (and correctness):

Theorem
If {True} e {True} holds then e does not get stuck.

We wish to strengthen this to ensure leak-freedom.

5

Other Approaches: CSL

O’Hearn [2007] and Brookes [2007] ensured leak-freedom through linearity
for statically scoped concurrency:

Γ ` {Emp} ref(v) {`. ` 7→ v} Γ ` {` 7→ w} free(`) {Emp}

Γ ` {P1} e1 {Q1} Γ ` {P2} e2 {Q2}
Γ ` {P1 ∗ P2} e1 || e2 {Q1 ∗ Q2}

6

Other Approaches: CSL

O’Hearn [2007] and Brookes [2007] ensured leak-freedom through linearity
for statically scoped concurrency:

Γ ` {Emp} ref(v) {`. ` 7→ v} Γ ` {` 7→ w} free(`) {Emp}

Γ ` {P1} e1 {Q1} Γ ` {P2} e2 {Q2}
Γ ` {P1 ∗ P2} e1 || e2 {Q1 ∗ Q2}Our heap view

is empty

6

Other Approaches: CSL

O’Hearn [2007] and Brookes [2007] ensured leak-freedom through linearity
for statically scoped concurrency:

Γ ` {Emp} ref(v) {`. ` 7→ v} Γ ` {` 7→ w} free(`) {Emp}

Γ ` {P1} e1 {Q1} Γ ` {P2} e2 {Q2}
Γ ` {P1 ∗ P2} e1 || e2 {Q1 ∗ Q2}

Does not share
memory

Our heap view
is empty

6

Scoped Invariants

With only parallel composition scoped invariants are sufficient:

Γ, r : R ` {P} e {Q}
Γ ` {P ∗ R} resource r in e {Q ∗ R}

Scoped invariants are insufficient for the “unscoped concurrency”:

let ` = ref(1) in
resource r in

fork {with r do !`} ;

free(`)

7

Unscoped Invariants

With fork we need unscoped invariants:

{P ∗ R
N} e {v. Q}

{P ∗ R} e {v. Q}

• Invariants persist forever and can be duplicated freely.
• There is no deallocation rule; it must be encoded.

We can always put resources in an invariant and forget them – no linearity!

8

Unscoped Invariants

With fork we need unscoped invariants:

{P ∗ R
N} e {v. Q}

{P ∗ R} e {v. Q}

• Invariants persist forever and can be duplicated freely.
• There is no deallocation rule; it must be encoded.

We can always put resources in an invariant and forget them – no linearity!

8

Resolving This Tension

• Scoped tracks obligations but does not handle fork.
• Unscoped handles fork but does not track obligations.
• Invariants are complex to prove sound; we prefer not to modify them.

We will modify 7→ instead so that unscoped invariants are suitable.

9

Crucial Idea: Trackable Resources

We keep the affine logic so Iris’s implementation of invariants can be reused.

• Index ` 7→π v with π ∈ (0, 1]

• Add a new proposition eπ with π ∈ (0, 1]

π indicates how much of the heap we know about through the proposition.

10

Intuition for Fractions

If we own...
• ` 7→1 v then the only thing the heap contains is ` 7→ v.
• e1 the heap contains nothing at all.
• ` 7→π v and π < 1 the heap may contain other locations.
• `1 7→1/2 v and `2 7→1/2 w the heap contains just `1 and `2.

We can prove leak-freedom by owning e1.

11

Intuition for Fractions

If we own...
• ` 7→1 v then the only thing the heap contains is ` 7→ v.
• e1 the heap contains nothing at all.
• ` 7→π v and π < 1 the heap may contain other locations.
• `1 7→1/2 v and `2 7→1/2 w the heap contains just `1 and `2.

We can prove leak-freedom by owning e1.

11

Intuition for Fractions

If we own...
• ` 7→1 v then the only thing the heap contains is ` 7→ v.
• e1 the heap contains nothing at all.
• ` 7→π v and π < 1 the heap may contain other locations.
• `1 7→1/2 v and `2 7→1/2 w the heap contains just `1 and `2.

We can prove leak-freedom by owning e1.

11

Intuition for Fractions

If we own...
• ` 7→1 v then the only thing the heap contains is ` 7→ v.
• e1 the heap contains nothing at all.
• ` 7→π v and π < 1 the heap may contain other locations.
• `1 7→1/2 v and `2 7→1/2 w the heap contains just `1 and `2.

We can prove leak-freedom by owning e1.

11

Fractional Permissions?

What does ` 7→π v mean?
• With fractional permissions we own π of the location.
• With Iron we own π of the entire heap.

Crucial difference: we can write to ` 7→1/2 v in Iron but not in Boyland [2003].

12

Working with Fractions in Programs: The Heap

The program logic adapts to handle these fractions as follows:

{eπ} ref(v) {`. ` 7→π v} {` 7→π w} free(`) {eπ}

{` 7→π v} !` {w.w = v ∧ ` 7→π v} {` 7→π w} `← v {` 7→π v}

eπ1 ∗ eπ2 a` eπ1+π2 (` 7→π1 v) ∗ eπ2 a` ` 7→π1+π2 v

13

Working with Fractions in Programs: Concurrency
The standard rule for fork holds:

{P} e {True}
{P} fork {e} {v. v = ()}

This rule is insufficient if the forked-off thread outlives its parent:

fork {
let ` = ref(1) in
free(`)

};
1 + 1

14

Working with Fractions in Programs: Concurrency

We must also allow the forked-off thread to terminate with eπ:

{P} e {True}
{P} fork {e} {v. v = ()}

{P} e {eπ}
{P} fork {e} {v. v = () ∗ eπ}

15

Adequacy

Iron provides us with strong guarantees about programs:

Theorem
If {eπ} e {eπ}:

1. e does not get stuck
2. If (e, h) 7→∗ ([v, v0, ..., vn︸ ︷︷ ︸

thread results

], h′) then h = h′.

If we forget part of eπ then we cannot apply our adequacy theorem;
the triple won’t hold!

16

Adequacy

Iron provides us with strong guarantees about programs:

Theorem
If {eπ} e {eπ}:

1. e does not get stuck
2. If (e, h) 7→∗ ([v, v0, ..., vn︸ ︷︷ ︸

thread results

], h′) then h = h′.

If we forget part of eπ then we cannot apply our adequacy theorem;
the triple won’t hold!

16

Taking Stock

At this point, Iron is already useful!

But it isn’t easy; there’s boilerplate with fractions everywhere:

{(π1 + π2 = 1) ∗ (`1 7→π1 v1) ∗ (`2 7→π2/2 v2) ∗ (`3 7→π2/2 v3)}
free(`1); free(`2); free(`3)

{e1}

17

Taking Stock

At this point, Iron is already useful!

But it isn’t easy; there’s boilerplate with fractions everywhere:

{(π1 + π2 = 1) ∗ (`1 7→π1 v1) ∗ (`2 7→π2/2 v2) ∗ (`3 7→π2/2 v3)}
free(`1); free(`2); free(`3)

{e1}

17

The Lifted Logic
We can lift the operators of BI to functions, [0, 1]→ iProp.

(P ∗ Q)(π) , ∃π1, π2. π1 + π2 = π ∧ P(π1) ∗ Q(π2)

(`̂7→ v)(π) , π > 0 ∧ ` 7→π v

Emp(π) , π = 0

Other operations are lifted point-wise.

The lifted logic is really linear!

`1 ̂7→ v1 ∗ `2 ̂7→ v2 6` `1 ̂7→ v1

18

The Lifted Logic
We can lift the operators of BI to functions, [0, 1]→ iProp.

(P ∗ Q)(π) , ∃π1, π2. π1 + π2 = π ∧ P(π1) ∗ Q(π2)

(`̂7→ v)(π) , π > 0 ∧ ` 7→π v

Emp(π) , π = 0

Other operations are lifted point-wise.

The lifted logic is really linear!

`1 ̂7→ v1 ∗ `2 ̂7→ v2 6` `1 ̂7→ v1

18

The Lifted Logic: New Rules

The lifted program logic mirrors standard linear separation logic:

{Emp} ref(v) {`. `̂7→ v} {`̂7→ −} free(`) {Emp}

{`̂7→ v} !` {w.w = v ∧ `̂7→ v} {`̂7→ −} `← v {`̂7→ v}

{P} e {Emp}
{P} fork {e} {v. v = () ∧ Emp}

19

The Lifted Logic: Invariants
• We developed a specialized form of invariants for lifted propositions.
• They require permission to open in order to support deallocation.
• They integrate well with the lifted logic but are limited.

Sometimes we still need the unlifted logic for the more general invariants.

e1 || e2 ,

let h = spawn(λ . e1) in
let v2 = e2 in
let v1 = join(h) in
(v1, v2)

20

The Lifted Logic: Invariants
• We developed a specialized form of invariants for lifted propositions.
• They require permission to open in order to support deallocation.
• They integrate well with the lifted logic but are limited.

Sometimes we still need the unlifted logic for the more general invariants.

e1 || e2 ,

let h = spawn(λ . e1) in
let v2 = e2 in
let v1 = join(h) in
(v1, v2)

20

Using Iron

We’ve used Iron to formalize a number of examples:
1. An implementation of e1 || e2

2. Various examples of resource transfer
3. A lock-free queue
4. An asynchronous message system with cleanup

Aside from the first, all of these are proven in the lifted logic.

21

Conclusions

Trackable resources: a general mechanism for managing obligations

and

Iron: a separation logic implementing it:
• Includes all proof techniques of Iris

(ghost state, impredicative invariants, updates, etc...)
• Supports all the language features of Iris
• Fully mechanized in Coq

https://iris-project.org/iron/

22

https://iris-project.org/iron/

