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Modalities are everywhere in programming and mathematics! Despite this, however, there are still significant

technical challenges in formulating a core dependent type theory with modalities. We present a dependent

type theoryMLTTµ supporting the connectives of standard Martin-Löf Type Theory as well as an S4-style

necessity operator. MLTTµ supports a smooth interaction between modal and dependent types and provides

a common basis for the use of modalities in programming and in synthetic mathematics. We design and

prove the soundness and completeness of a type checking algorithm for MLTTµ, using a novel extension

of normalization by evaluation. We have also implemented our algorithm in a prototype proof assistant for

MLTTµ, demonstrating the ease of applying our techniques.
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1 INTRODUCTION

Modalities have appeared as a powerful tool of abstraction in all corners of computer science and
mathematics. In distributed computing, shareable values are naturally organized into a comonad [Ep-
stein et al. 2011; Murphy 2008; Murphy et al. 2004]. In staged computation, each different stage for
computation can be structured as another comonad [Davies and Pfenning 1999]. A wide variety
of language-based security techniques are substantially based on modalities [Abadi et al. 1999].
In mathematics, modal type theory can be used to distill the situations of topological cohesion,
differentiability, etc. into their algebraic essence [Schreiber 2013; Schreiber and Shulman 2014],
promising new advances in the program initiated by Lawvere [1992]. Modal type theory also
plays a critical role in the construction of classifying fibrations in cubical models of Homotopy
Type Theory [Licata et al. 2018]. Similar ideas have been used with success in logical relations
models of type systems for higher-order programming languages and in higher-order concurrent
separation logics, where modalities, e.g., have been used to abstract guarded recursion [Birkedal
et al. 2011; Bizjak and Birkedal 2018; Krebbers et al. 2017]. By abstracting the details of distributed
computation, information flow, or topological spaces into a modal interface, we can program and
prove domain-specific facts without recourse to low-level features of the situation.
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Despite their ubiquity and obvious utility, modalities are notoriously difficult to incorporate into
sophisticated type systems. While there have been considerable advances in the integration of
modalities into simple type systems [Clouston 2018; Guatto 2018; Kavvos 2017; Licata et al. 2017;
Pfenning and Davies 2000], it has remained a significant challenge to scale from simple type theory
to “full-spectrumž dependent type theory in a way that preserves desirable syntactic properties
(closure under substitution, canonicity, normalization, decidability of type checking, etc.).

Progress has been made in extending the ideas of Pfenning and Davies [2000] to richer type
theories. For instance, in the context of logical frameworks, contextual modal type theory [Nanevski
et al. 2008; Pientka et al. 2019] has been studied as a generalization of the necessity modality which
allows for dependence on a specific set of local variables. Implementations of some dependent
variants of Pfenning and Davies [2000] have also been explored in modern proof assistants [The
Agda Development Team 2018]. Another recent advance is the development of Clocked Type
Theory [Bahr et al. 2017], which extends the work of Clouston [2018] and applies it to guarded
recursion.

We contributeMLTTµ, a core type theory which smoothly incorporates the comonadic necessity
modality from S4 into dependent type theory, while obtaining normalization and decidability
of type checking for a (minimally) annotated version of MLTTµ. This type theory can be used
simultaneously as a basis for next-generation programming languages and as a metalanguage for
synthetic mathematics. We also show that MLTTµ is immediately applicable by implementing our
type checking algorithm in a prototype proof assistant.

Why is implementing dependent type theory difficult? In any typed language, it is necessary to
decide when one type is equal to another. In a dependent type theory, however, a type may contain
an arbitrary piece of code. Deciding the equality of types then entails deciding the equality of terms,
a far more involved task. The equality of terms, moreover, should be as flexible as possible to ease
the burden of proof, but if it is too flexible, type checking will become undecidable.

One robust approach to deciding equality in dependent type theory is normalization by evaluation

(NbE) [Abel 2013; Berger and Schwichtenberg 1991; Martin-Löf 1975]. NbE is a type-directed
procedure for reducing terms to a canonical representative of their equivalence class, scaling up
to very sophisticated extensions of type theory [Abel 2009; Abel et al. 2009, 2017; Coquand 2018].
Coquand [1996] showed that NbE can also be used to implement an efficient bidirectional type
checker for dependent type theory which avoids the use of substitution or De Bruijn shifting
entirely during type checking.
We present a novel extension of NbE and semantic type checking to support modalities. This

provides the template for an efficient implementation of a proof assistant for modal dependent type
theory.

Why are modalities difficult to add to a type theory? In a type theory with robust syntactic
properties, each connective arises from the judgmental structure [Martin-Löf 1996]. In standard
programming languages or type theories there is simply no judgmental structure for a modality.
Indeed, ordinary type theory provides a framework only for connectives which are closed under
substitutions between local contexts ∆ → Γ; most modalities found in mathematics (and, in fact,
all non-trivial comonadic modalities) fail to be uniform in this sense. We then have to add a
new judgmental structure to our programming language without disrupting any of the existing
connectives Ð a delicate task.
For our modality, the new judgmental structure will enforce that a term in □A only depends

on variables which are themselves under the modality. A variety of judgmental frameworks have
been proposed to address this challenge. In particular, Pfenning and Davies [2000] and Clouston
[2018] have described calculi for the simply-typed case with good computational properties. For
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full Martin-Löf Type Theory, there are proposals such as Shulman [2018] (which roughly follows
Pfenning and Davies [2000]) and Clouston et al. [2018] (which extends Clouston [2018]). The
previous work has largely focused on the models of each particular type theory and comparatively
little time is spent on their syntax. Therefore, while experimental implementations for certain
modal dependent type theories have been proposed, there are few proofs of decidability of type
checking supporting them. The syntactic presentations of modal dependent type theories remains
an interesting question.

A modal type theory. Our new calculus, MLTTµ, isolates a particular modality and defines an
implementable syntax specialized to it. Specifically, MLTTµ targets an idempotent comonad which
is right adjoint to a monad. This situation may sound arcane, but in fact it is not overly strict and
arises in several existing calculi. For instance, the 2 modalities of Davies and Pfenning [1999], and
Clouston et al. [2015] as well as the ♭ modality of Shulman [2018] satisfy all the required properties;
intuitively, each of these modalities arise as a particular global sections functor and this class of
modalities always satisfies our requirements.
Our work extends Clouston et al. [2018] by constructing a simpler syntax and proving normal-

ization. Following the Fitch-style presentations of modal logic [Borghuis 1994; Martini and Masini
1996] and their recent adaptions [Clouston 2018], we extend contexts in MLTTµ with a locking
operation, Γ.µ; when a variable appears behind a lock, it becomes inaccessible. These locks enable
a simple characterization of □A by introduction and elimination rules: to construct a proof of □A,
we lock away the entire context and continue by constructing a proof of A. On the other hand,
whenever we are trying to prove A, we can delete all of the locks that occur in the context (written
Γ
b) and instead shift to proving □A. These two operations form the introduction and elimination

rules for □A:
tm/lock

Γ.µ ⊢ t : A

Γ ⊢ [t]µ : □A

tm/unlock

Γ
b ⊢ t : □A

Γ ⊢ [t]b : A

These two primitives suffice for deriving the operations of an S4 necessity modality. For instance,
extracting A from □A can be done with λx . [x]b : □A → A. A slightly more complex property is
(A → □B) → □(A → B), which can be proved by the following term: as well: λf . [λa. [f (a)]b]µ.
Many additional properties have been mechanically checked in our implementation, including the
constancy of natural numbers (nat → □nat).

In addition to being convenient to program with, the new connectives have a strong but decidable
equational theory. They admit both a β-rule, [[t]µ]b = t , and an η-rule, [[t]b]µ = t . Together they
ensure that the equational laws for comonads hold definitionally for the modality.

The most subtle point ofMLTTµ is the novel definition of substitutions and the rules associated
with them. MLTTµ is structured so that, except for the [−]b and [−]µ operators, locks are entirely
silent and substitutions commute with all modal operators. This simplified syntax is essential
to formulating a proper normalization algorithm, which is the linchpin of any type-checking
algorithm. Moreover,MLTTµ satisfies several admissible properties so that locks behave intuitively.
For instance, any term which type checks in a locked context will type check in an unlocked
context.

Contributions. In summary, we make the following contributions:

A detailed and well-behaved syntactic presentation of MLTTµ, a dependent type theory with
all standard connectives and a necessity modality.
An extension of normalization by evaluation to account for modalities as well as a proof that
NbE is sound and complete for MLTTµ.
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An extension of Coquand’s semantic type-checking algorithm to modal dependent type
theory as well as a proof of its soundness and completeness.
An implementation of MLTTµ which has been used to mechanize properties of the modality.

For reasons of space, the full proof of the correctness of normalization is given in the accom-
panying technical report. It includes the fullMLTTµ language, including an infinite hierarchy of
cumulative universes.

2 DECLARATIVE SYNTAX OF MLTTµ

We begin by presenting our type theory MLTTµ in declarative style, extending Martin-Löf’s type
theory (MLTT) with a necessity modality □A. Because it is better to walk before attempting to run,
we first restrict our attention to the coreMLTT language, and then proceed to its extension.

2.1 Introducing Dependent Type Theory

The coreMLTT language includes dependent functions and pairs, intensional identity types, and
natural numbers. It also includes an infinite hierarchy of universes, but for reasons of space, we
opted to omit cumulativity in this presentation, handling it in the accompanying technical report.
The syntax of MLTT and some of its rules are presented in Figure 1. MLTT has seven separate
forms of judgment:

Γ ctx “Γ is a contextž
Γ ⊢ A type “A is a type in context Γž
Γ ⊢ t : A “t is a term of type A in context Γž
Γ ⊢ δ : ∆ “δ is a substitution from Γ to ∆ž
Γ ⊢ A0 = A1 type “A0 and A1 are definitionally equal types in context Γž
Γ ⊢ t0 = t1 : A “t0 and t1 are definitionally equal terms of type A in context Γž
Γ ⊢ δ0 = δ1 : ∆ “δ0 and δ1 are definitionally equal substitutions from Γ to ∆ž

2.1.1 Explicit Substitutions. Formally, MLTT and MLTTµ are variants of Martin-Löf’s substitution
calculus [Granström 2013; Martin-Löf 1992]; rather than defining substitution as a meta-operation
on untyped pre-terms and then establishing the admissibility of a substitution principle, substitution
calculi add syntax and corresponding typing judgments for simultaneous substitutions Γ ⊢ δ : ∆.
Then, substitutions are enacted on terms not through a meta-operation, but rather through a new
constructor in the syntax: if Γ ⊢ t : A, then ∆ ⊢ t[δ ] : A[δ ].
Then, equational rules are added to the calculus which distribute substitutions through other

constructors, mirroring the clauses of the more familiar definition of substitution as a meta-
operation on pre-terms. At a high level, the different possibilities for presenting substitution are
not substantive, but the use of explicit substitutions is essential for proving the correctness of our
normalization algorithm.
Some researchers choose to prove that a calculus with traditional substitution is equivalent to

the more mathematically well-behaved version with explicit substitution, but we observe that this
is ultimately unnecessary: the use of explicit substitutions is totally transparent and undetectible
for a user of type theory, since substitutions never appear in user-code.

2.1.2 Binding and Names. Rather than explicit variable names x,y, z, the MLTT/MLTTµ calculi
represent variables using De Bruijn indices. A De Bruijn index is a natural number n, which points
“upwardž to its binder; for instance, the De Bruijn form of the constant function λx . λy. x is simply
λ(λ(var1)), whereas the De Bruijn form of the identity function λx . x is λ(var0). The major benefit of
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(contexts) Γ,∆ F · | Γ.A

(types) A,B F t | nat | Ui | Π(A,B) | Σ(A,B) | Id(A, t, t)

(terms) s, t F A | varn | λ(t) | t(t) | ⟨t, t⟩ | fst(t) | snd(t) |

refl(t) | J(C, t, t) | zero | succ(t) | natrec(A, t, t, t) | t[δ ]

(subst.) γ , δ F id | δ .t | δ ◦ δ | pk | ·

cx/emp

· ctx

cx/ext

Γ ctx Γ ⊢ A type

Γ.A ctx

tp/pi-sig

Γ ⊢ A type Γ.A ⊢ B type

Γ ⊢ Π(A,B) type Γ ⊢ Σ(A,B) type

tp/russell

Γ ⊢ A : Ui

Γ ⊢ A type

tp/esubst

Γ ⊢ δ : ∆ ∆ ⊢ A type

Γ ⊢ A[δ ] type

tm/var

Γ0.A.Γ1 ctx k = ∥Γ1∥

Γ0.A.Γ1 ⊢ vark : A[pk+1]

tm/lam

Γ ⊢ A type Γ.A ⊢ t : B

Γ ⊢ λ(t) : Π(A,B)

tm/pair

Γ ⊢ t0 : A Γ.A ⊢ B type Γ ⊢ t1 : B[id.t0]

Γ ⊢ ⟨t0, t1⟩ : Σ(A,B)

tm/snd

Γ ⊢ t : Σ(A,B) Γ ⊢ A type Γ.A ⊢ B type

Γ ⊢ snd(t) : B[id.fst(t)]

tm/esubst

Γ ⊢ δ : ∆ ∆ ⊢ t : A

Γ ⊢ t[δ ] : A[δ ]

tm/conv

Γ ⊢ A = B type Γ ⊢ t : A

Γ ⊢ t : B

sb/ext

∆ ⊢ A type Γ ⊢ δ : ∆ Γ ⊢ t : A[δ ]

Γ ⊢ δ .t : ∆.A

sb/weaken-1

Γ0.Γ1 ctx∥Γ1∥ = k

Γ0.Γ1 ⊢ p
k : Γ0

tmeq/pi

Γ ⊢ A type Γ ⊢ t : Π(A,B)

Γ ⊢ λ(t[p1](var0)) = t : Π(A,B)

tmeq/sig

Γ ⊢ A type Γ.A ⊢ B type Γ ⊢ t : Σ(A,B)

Γ ⊢ ⟨fst(t), snd(t)⟩ = t : Σ(A,B)

Fig. 1. Selected syntax and typing rules for MLTT; the extension to MLTTµ is presented in Figure 3.

De Bruijn indices, in both practical implementation and metatheory, is that they provide canonical
representatives of α-equivalence classes, eliminating the paperwork of renaming bound variables.
The main forms of substitution are weakening pn (which weakens the last n variables in the

context) and extension γ .t (which extends the substitution γ with the term t ). We additionally have
the identity substitution id (which does nothing), a terminal substitution · (which goes from any
context to the empty context), and the composition of two substitutions δ ◦ γ . As an example, the
substitution id.t substitutes the term t for the last variable in the context.

Notation 2.1 (Non-dependent function types). When using De Bruijn indices, weakening a variable
is explicit rather than silent. Using an explicit substitution, we can define a non-dependent function
type A → B in terms of the dependent function type Π(A,B[p1]).

Notation 2.2 (Named variables). In our examples, we will feel free to use a notation with explicit
names; likewise, our prototype implementation of MLTTµ uses standard named variables in its
surface language, resolving these to De Bruijn indices during an elaboration step between parsing
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and type checking. We will write λx . t , (x : A)→ B and (x : A) × B for the λ-abstraction, dependent
function and dependent pair types.

2.1.3 Definitional Equality. When are two terms of the same type definitionally equal to each
other?1 This is the fundamental decision for a designer of type theories, not least because adding
and removing equations can drastically alter the set of terms which can be typed. Because type-
theoretic languages are designed with ease of use in mind, it is generally desirable to include
as many equations as possible without disrupting important properties of the language (such as
decidability of type checking).

For example, if the equation 1+ 1 = 2 was not definitional and required explicit proof, the size of
proofs would quickly explode (and they would be nearly impossible to write!). On the other hand,
if this equation holds definitionally, any conversion steps involving this equation are elided from
the term; a consequence of this convenience is that the implementation of a type checker must
correctly discharge such equations.

The class of equations which hold definitionally varies widely between type theories; choosing an
appropriate notion of definitional equality is a matter of balancing trade-offs (simplicity, efficiency,
usability, mathematical meaning), and has an empirical component. InMLTTµ, we have included
η-rules for both dependent functions and dependent pairs, which express the equations λx . t(x) = t

(when x < t ) and ⟨fst(t), snd(t)⟩ = t .
Deciding definitional equality in the presence of η-laws is challenging. A naïve approach for

deciding definitional equality is to reduce each term as much as possible and then to compare for
syntactic equality. This obvious way to extend reduction to the η-laws is already unwieldy for
function types, and actually breaks down for product types, leading to a failure of confluence which
disrupts the transitivity of the resulting algorithmic notion of equivalence. It is currently an open
question whether reduction can be used to decide definitional equivalence for a version of type
theory with dependent function and pair types; rather than attempt to answer this question, we will
use a more streamlined reduction-free technique for deciding definitional equality: normalization
by evaluation.

2.1.4 Presuppositions and Admissible Rules. In the semantics of Martin-Löf’s type theory, a form
of judgment like Γ ⊢ A type is explained by first specifying what are the meaningful instances; for
instance 5 ⊢ A type is never meaningful. The conditions under which a judgment is meaningful are
referred to as its “presuppositionž [Martin-Löf 1996; Schroeder-Heister 1987]; we would say, for
instance, that Γ ⊢ A type presupposes Γ ctx.
On the other hand, when developing a syntax for type theory, it is often simplest to write the

rules in such a way that the presuppositions become closure conditions of the logic, or admissible
rules.

Theorem 2.3 (Presupposition).

(1) If Γ ⊢ A type then Γ ctx.

(2) If Γ ⊢ t : A then Γ ⊢ A type.

(3) If Γ0 ⊢ γ : Γ1 then Γi ctx.

(4) If Γ ⊢ A0 = A1 type then Γ ⊢ Ai type.

(5) If Γ ⊢ t0 = t1 : A then Γ ⊢ ti : A.
(6) If Γ ⊢ δ0 = δ1 : ∆ then Γ ⊢ δi : ∆.

Note that the above is not saying that we have a rule which concludes Γ ctx from Γ ⊢ A type; it
is an external statement about derivability in the formal system. To ensure that Theorem 2.3 holds,

1By definitional equality, we mean the equivalence relation which requires no proof; in many type theories, including

MLTTµ, an identity type Id(A,M , N ) is used to express equations which do require proof.
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we must add some auxiliary premises to the rules of the type theory such as the Γ0.A.Γ1 ctx premise
in tm/var or both of the type premises in tm/snd. From a normalization result, one can show that
many of these premises are ultimately unnecessary, but in order to stage the metatheory properly,
we must include them at first.

2.2 MLTTµ: A Modal Extension of MLTT

We want to extendMLTT with a necessity modality □A, which contains the elements of A which
don’t depend on any local variables; for this to make any sense, A must also be a type which
doesn’t depend on any local variables either. What do we mean by “local variablesž? We are being
intentionally vague at the moment, but an element t : □A should be allowed to depend on some
variable x : □B (a “global variablež), but not on some arbitrary x : B.

We also expect that □A should have the structure of a comonad: that is, we should be able
to exhibit elements extract : □A → A and dup : □A → □□A which satisfy the comonad laws.
Realizing all these goals in a way that preserves the crucial (and fragile!) syntactic properties
of dependent type theory is extremely subtle. One might first attempt to explain □ using an
introduction rule which simply forces the element to not use any variables which are not of the
form x : □A:

tm/lock/bad*

Γ ⊢ t : A

□Γ ⊢ lock(t) : □A

This attempt immediately fails to preserve the critical syntactic properties of MLTT (such as
substitution), but one could consider increasingly sophisticated versions of the idea which, for
instance, allowed assumptions like x : □A ×□B, etc. as in Prawitz’s [1967] notion of “essentially
modalž context. While any approach that restricts a context in the conclusion of a rule seems
doomed to failure in the context of dependent type theory (in which substitution plays a critical
role), there is a kernel of truth in the naïve rule which we intend to nurture.

Necessity: the view from the left. While the conclusion of tm/lock/bad* attempts to strangle the
left-hand side of the turnstile into submission, we adapt the Fitch-style approach [Clouston 2018]
which achieves the same end for arbitrary Γ, by adjusting the context in the premise instead. This
is achieved by extending our type theory with a new kind of assumption which records that we
may not use the local assumptions of Γ, written Γ.µ. Then, the variable rule is restricted so that it
cannot see anything in the context to the left of a lock:

Γ0.A.Γ1 ctx ∥Γ1∥ = k µ < Γ1

Γ0.A.Γ1 ⊢ vark : A[pk+1]

In our formulation, the locks do not count when determining the length of a context; so ∥Γ∥ = ∥Γ.µ∥.
Using this new form of context, the force of □A can be made conditional: “Assuming we restrict

access to local variables, thenwe have an element ofAž; this is captured by the following introduction
rule:

tm/lock

Γ.µ ⊢ t : A

Γ ⊢ [t]µ : □A

The tm/lock rule imposes no conditions on the shape that Γ must take; rather than being forced
to search through the context to remove local variables, we now have the ability to tag them as
inaccessible by hiding them behind a lock. This is crucial for obtaining a syntax which respects
substitution.
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107:8 Daniel Gratzer, Jonathan Sterling, and Lars Birkedal

Semantically, the appropriate elimination rule would simply invert tm/lock; since, however, we
insist on closing MLTTµ under substitutions, we must not restrict the context in a conclusion of a
rule in that way. A syntactically appropriate presentation would (equivalently) remove locks in the
premise rather than adding them in the conclusion. Writing Γ

b for a version of the context Γ with
all locks removed, we add the following elimination rule:

tm/unlock

Γ
b ⊢ t : □A Γ ⊢ A type

Γ ⊢ [t]b : A

In Clouston et al. [2018], a similar elimination rule was presented. In that type theory, however,
[−]b was required to remove precisely one lock, while inMLTTµ we delete an arbitrary number.
This difference means that in MLTTµ, □A behaves as a comonad instead of merely being equipped
with the (<*>) operation of applicative functors [McBride and Paterson 2008].

2.3 Programming in MLTTµ

Before getting deep into technical details (see Section 2.4), we explore some examples of program-
ming in MLTTµ to get a feel for the language. To start with, we will exhibit the comonad structure
of □A, fixing Γ.µ ⊢ A type:

extractA : □A → A

extractA ≜ λx . [x]b

dupA : □A → □□A

dupA ≜ λx . [[[x]b]µ]µ

How do these operations work? For extractA, we are given x : □A and wish to construct A. At this
point, the only applicable move is use the elimination rule for □A, namely [x]b. Notice that, while
tm/unlock removes all the locks from the context, there were no locks to remove; this operation is
only definable because we have made “deleting no locksž a valid use of [−]b.
When constructing the dupA operation, we start by applying as many introduction rules as

possible, leaving λx . [[?]µ]µ. We need to construct some term of type A in a context with x : □A
behind two locks. At this point we cannot access x directly and we cannot apply any further
introduction rules, so we must use tm/unlock to clear away the locks. After this, we must construct
□A, not just A, but we are free now to use the assumption x : □A. Just as extractA relies on being
able to delete no locks, dupA is only possible to implement because tm/unlock is able to delete
multiple locks.

In addition to being a comonad, □A satisfies Axiom K from modal logic (the (<*>) operation of
an applicative functor [McBride and Paterson 2008]):

⊛A,B : □(A → B) → □A → □B

⊛A,B ≜ λf . λx . [[f ]b([x]b)]µ

Dependent types: boxing the universe. In fact, rather than working schematically with types
Γ.µ ⊢ A type, we can define the operations above in greater generality using type-theoretic
universes Ui underneath the modality:

extract : (A : □Ui ) →□[A]b → [A]b

extract ≜ λA. λx . [x]b

dup : (A : □Ui ) →□[A]b → □□[A]b

dup ≜ λA. λx . [[[x]b]µ]µ

⊛ : (A : □Ui ) → (B : □Ui ) →□([A]b → [B]b) → □[A]b → □[B]b

⊛ = λA. λB. λf . λx . [[f ]b([x]b)]µ
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In the above, we used the elimination form to obtain types (elements of the universes) from
modal assumptions of type□Ui . The unity between the treatment of modal types and their elements
is one of the main advantages of the calculus we present here.

Equational theory. What equations hold for terms that use the necessity modality? Many modern
type theories include both β-rules (eliminating an introduction form is an identity) and η-rules
(every element is equal to an introduction form):

tm/unlock-lock

Γ
b.µ ⊢ t : A

Γ ⊢ [[t]µ]b = t : A

tm/lock-unlock

Γ ⊢ t : □A

Γ ⊢ t = [[t]b]µ : □A

The tm/unlock-lock and tm/lock-unlock rules are in fact sufficient to establish the comonad
laws for □A. For instance, to verify the law that extract□A(dupA(t)) = t : □A, we calculate:

extract□A(dupA(t)) = (λx . [x]b)((λx . [[[x]b]µ]µ)(t))

= [(λx . [[[x]b]µ]µ)(t)]b

= [[[[t]b]µ]µ]b

= [[t]b]µ

= t

Remark 2.4. One subtlety in the equations for □A is that the premise of tm/lock-unlock is more
restrictive than it appears at first. It is not always valid to η-reduce a term, e.g., [[t]b]µ to t . In order
for this reduction to be well-typed, the term t must be well-typed under all the locks in the ambient
context, i.e., t only relies on [−]b to remove the single lock introduced by [−]µ. For instance, in
the definition of dupA, there seems to be an η-contractible expression, but the contracted term
dupA = λx . [x]µ would be ill-typed.
This side-condition is the reason why it is simpler to decide definitional equality for MLTTµ

using NbE than using rewriting. It is always valid to η-expand a term, and so the normalization
procedure can be relatively simple-minded for □A. On the other hand, any rewriting system which
seeks to η-reduce terms must carefully maintain the invariant that it never apply an η-reduction
leading to an ill-typed term.

For a final example, we will demonstrate that natural numbers are a constant type, that is, that
there is a function nat → □nat. Since A → □A is not generally inhabited, we must rely on the
particulars of nat:

connat : nat → □nat

connat ≜ λn. natrec(_. □nat, [zero]µ, _,p. [succ([p]b)]µ,n)

This function proceeds by recursion on the argument. We cannot construct [n]µ, but if we
know that n is zero, we can construct [zero]µ. For the inductive case, if we know that n is of the
form succ(n′), and that connat(n

′) = p, we can construct the successor of p as a constant term:
[succ([p]b)]µ. While the notation for the recursor on natural numbers is compact in the calculus,
in the implementation we use a more traditional notation. The machine-checkable version of connat
is presented in Figure 2.
A final summary of the changes fromMLTT to MLTTµ is presented in Figure 3.
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let con : nat → [box nat] =

fun n →

rec n at _ → [box nat] with

| zero → [lock zero]

| suc _, p → [lock suc [unlock p]]

Fig. 2. The code of connat in our experimental implementation of MLTTµ.

(contexts) Γ,∆ F · · · | Γ.µ

(types) A,B F · · · | □A

(terms) s, t F · · · | [t]µ | [t]b

cx/lock

Γ ctx

Γ.µ ctx

tp/box

Γ.µ ⊢ A type

Γ ⊢ □A type

tm/box

Γ.µ ⊢ A : Ui

Γ ⊢ □A : Ui

tm/lock

Γ.µ ⊢ t : A

Γ ⊢ [t]µ : □A

tm/unlock

Γ
b ⊢ t : □A Γ ⊢ A type

Γ ⊢ [t]b : A

tm/unlock-lock

Γ
b.µ ⊢ t : A

Γ ⊢ [[t]µ]b = t : A

tm/lock-unlock

Γ ⊢ t : □A

Γ ⊢ t = [[t]b]µ : □A

tp/box-subst

Γ ⊢ δ : ∆ ∆.µ ⊢ A type

Γ ⊢ (□A)[δ ] = □(A[δ ]) type

tm/lock-subst

Γ ⊢ δ : ∆ ∆.µ ⊢ t : T

Γ ⊢ [t]µ[δ ] = [t[δ ]]µ : (□T )[δ ]

tm/unlock-subst

Γ ⊢ δ : ∆ ∆
b ⊢ t : □T

Γ ⊢ [t]b[δ ] = [t[δ ]]b : T [δ ]

Fig. 3. Selected new rules of MLTTµ.

2.4 Sweating the Details: Admissibilities and Substitutions

In order to validate the admissibilities which we required in Section 2.1.4, we must impose some
additional closure conditions having to do with locks. Our first admissible rule expresses the
intuition that having a lock in the context only makes it harder to prove something, never easier:

Theorem 2.5 (Lock Strengthening). Letting J range over any judgment, if Γ0.µ.Γ1 ⊢ J , then

Γ0.Γ1 ⊢ J .

A related principle is that a judgment which holds with a lock in one position should also hold if
the lock is moved leftward in the context; note that this principle only makes sense if Theorem 2.5
holds.

Theorem 2.6 (Lock-variable exchange). Suppose that Γ0.µ ⊢ A type holds. If Γ0.A.µ.Γ1 ⊢ J

then Γ0.µ.A.Γ1 ⊢ J .

Finally, we have an admissible rule which allows locks to be duplicated (or contracted, depending
on perspective). The admissiblity of this rule ensures that the concrete number of locks in front of
a variable is not significant, beyond whether it is non-zero; when programming inMLTTµ the only
question that matters is whether a variable is behind any locks at all.

Theorem 2.7 (Lock contraction). If Γ0.µ.Γ1 ⊢ J then Γ0.µ.µ.Γ1 ⊢ J .

Corollary 2.8. If ∆ ⊢ γ : Γ then ∆
b ⊢ γ : Γb.
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Satisfying these admissibilities is crucial for proving Theorem 2.3 and, in particular, justifying
tp/box-subst, tm/lock-subst, and tm/unlock-subst. Imagine, for instance, that Corollary 2.8 failed
to hold; then when we attempt to show that tm/unlock-subst satisfied Theorem 2.3, we would
have to deduce that Γb ⊢ t[δ ] : A[δ ] from only ∆

b ⊢ t : A and Γ ⊢ δ : ∆, which is unlikely to
work. Moreover, without rules like tm/lock-subst, we would lose the ability to push the explicit
substitutions to the leaves of a term, a crucial property for normalization.

Satisfying all of these admissibilities, moreover, requires changes to some of the standard rules of
type theory. It ought to be the case that because Γ.µ.nat ⊢ id : Γ.µ.nat holds, if Theorem 2.5 is true
then there is a derivation of Γ.nat ⊢ id : Γ.µ.nat. Such a derivation does not exist, however, with the
existing rule id from MLTT; a similar problem arises for weakenings pk . To resolve our difficulties,
we must generalize the rules for id and pk in order to allow locks to be silently introduced in an
appropriate way.
We introduce an auxiliary judgment Γ �µ ∆ relating two contexts if Γ arises from ∆ through

lock strengthenings, contractions, or exchanges; with this in hand, we can define stronger rules for
id and pk :

sb/id

∆ �µ Γ

∆ ⊢ id : Γ

sb/weaken

Γ0.Γ1 ctx Γ0 �µ Γ
′
0 k = ∥Γ1∥ µ < Γ1

Γ0.Γ1 ⊢ p
k : Γ′0

This maneuver trivializes the proofs of Theorems 2.5 to 2.7 for id and pn but it does not disrupt
the rest of the system. The necessity of these technical changes was only apparent after several
failed attempts to prove the correctness of the naïve rules; while these changes are small, they
are essential for formulating a syntactic account of any modality enjoying admissibilities like
Theorems 2.5 to 2.7. Type theorists know from experience that when it comes to syntax, nothing is
“obviousž.

3 NORMALIZATION BY EVALUATION FOR MLTTµ

Normalization by evaluation (NbE) is a reduction-free technique for obtaining normal forms, or
canonical representatives of equivalence classes Ð inducing an algorithm to decide definitional
equivalence and thence typing.2 Like many modern type theories, MLTTµ has both β-rules and
η-rules for the dependent function and dependent pair types. On top of this, MLTTµ adds the β-
and η-rules for □A. These η-rules force one to consider a type-sensitive notion of normal form,
singling out the terms which contain no β-redexes and are maximally η-expanded.

Before explaining the algorithm, we will specify it. In particular, we will have a partial operation

nbe
tp

Γ
(A) which gives the normal form of the type A in context Γ; and a partial operation nbeA

Γ
(t)

which gives the normal form of the term t at type A in context Γ. Next, we state a completeness

theorem which, in essence, says that these partial operations are total functions on definitional
equivalenceśclasses of well-formed types and terms:

Theorem 3.1 (Completeness).

(1) If Γ ⊢ A0 = A1 type, then there is exactly one termA such that nbe
tp

Γ
(A0) = A and nbe

tp

Γ
(A1) = A.

(2) If Γ ⊢ t0 = t1 : A, then there is exactly one term t such that nbeA
Γ
(t0) = t and nbeA

Γ
(t1) = t .

2In contrast to properties like strong normalization (SN) with respect to an abstract rewriting system, NbE is compatible with

an intrinsic view of typed terms quotiented by definitional equivalence. The normalization result is therefore a structure on

the type theory itself, equipping each definitional equivalence class with a canonical representative. SN, on the contrary, is

a property of a rewriting system on the pre-terms of the type theory: every reduction chain in the system terminates. While

SN enables crucial lemmas when proving confluence and other properties of a rewriting system, we do not require SN here

because MLTTµ does not define equality based on reduction.
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Syntax Tm ✭
⊇

NfTm ✭
⊇

NeTm ✭
var(−)

Index

Semantics NfVal

⌈−⌉

✯

NeVal

⌈−⌉

✯

✭
var(−)

Var

✯

✰

Val

↓A(−)

✯

J−
K

✮ ✭

↑
A (−

)

Fig. 4. A bird’s eye view of the syntactic and semantic domains involved in NbE, inspired by Abel [2013].

Theorem 3.1 is a basic well-definedness property for the normalization algorithm, but it is
surprisingly involved to prove. The essence of the correctness of normalization lies in the soundness
theorem below:

Theorem 3.2 (Soundness).

(1) If Γ ⊢ A type, then Γ ⊢ A = nbe
tp

Γ
(A) type.

(2) If Γ ⊢ t : A, then Γ ⊢ t = nbeA
Γ
(t) : A.

The proofs of the two preceeding theorems are carried out in painstaking detail in our accompa-
nying technical report, and treated at a high level here in Sections 5 and 6.

3.1 Warming Up to Defunctionalized NbE

In the literature, many distinct approaches are described as normalization by evaluation, but in
the final analysis they can all be brought back to a single fundamental idea: evaluate syntax into a
computational domain, and then quote normal forms back from it. In our presentation of NbE, one
works with a variety of domains, summarized schematically in Figure 4.

At a high level, we have domains of values, normal values and neutral values; terms t can be
evaluated to values, JtK. A neutral value e is a variable or some kind of elimination form that is
stuck on a variable, and is reflected into the values together with its type by the operation ↑A e .
A value v can be reified into a normal value together with its type by the operation ↓Av . Finally,
both neutral values e and normal values d can be quoted into neutral and normal terms ⌈e⌉ and ⌈d⌉

respectively. Then, one obtains the normal form of a closed term t : A by first evaluating, and then

reifying, and then quoting: roughly, the normal form of t is ⌈↓JAK JtK⌉. To normalize an open term,
we must consider environments, but for now we are content to convey only the main intuitions.

Representing variables. We have presented the high-level interface to NbE, but there are a number
of options available for instantiating it concretely. For instance, the domain of semantic variables
Var could be instantiated with an inexhaustible set of names, or with De Bruijn indices (matching
the syntax); following Abel [2013], we choose to use De Bruijn levels in the semantic domain. De
Bruijn levels are like indices except that they count from the opposite side of the context; the reason
for this somewhat peculiar choice is that it enables normalization and type checking algorithms
which never execute a De Bruijn lifting, a critical optimization to enable tractable type checking.
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Defunctionalizing NbE. Classical versions of NbE (such as Abel et al. [2007]) often conflate
reification /reflection with quotation/evaluation, resulting in the collapse of several of the domains
in Figure 4; in these algorithms, the reification operation must eagerly perform η-expansion. The
main semantic domain in classical NbE treats binding in a “higher-orderž way and therefore must
be obtained from a mixed-variance fixed point in some algebraically complete category [Freyd
1991] (such as the category of Scott domains). Implementations of NbE then combined several steps
of the algorithm into single operations: J−Kρ would contain the code implementing ↓A − and ⌈−⌉k
would include ↑A −. By requiring a higher-order representation of binders, moreover, it became
impossible to formalize the algorithm in a straightforward way in a proof assistant, where such
negative occurrences are forbidden.

This view of NbE was refined by Coquand to distinguish reification/reflection from quotation/e-
valuation, as in Abel et al. [2009]. A final refinement, presented in Abel [2013], involves replacing the
higher-order interpretation of binders with syntactic closures, and defunctionalizing the reification
and reflection operators. This step unravels enough knots that the use of domain theory can be
abandoned, obtaining ordinary sets of values, normal values and neutral values. When we say that
reification/reflection are “defunctionalizedž we mean that they are no longer partial operations
which perform η-expansion, but instead are inert constructors; the η-expansion is then distributed
lazily across the rest of the algorithm in a straightfoward way, and is forced only during quotation.

3.2 The Semantic Domains

The complete specification of the semantic domains for MLTTµ is given informally below:

(values) A,u F ↑A e | Π(A, F ) | Σ(A,B) | Id(A,u,v) | □A | Ui | nat

λ(f ) | ⟨u,v⟩ | refl(v) | lock(v) | zero | succ(v)

(neutrals) e F vark | e .app(d) | e .fst | e .snd | e .unlock | e .natrec(F ,v, f )

e .J(F , f ,A,v1,v2)

(environments) ρ F · | ρ .v

(closures) F , f F t�ρ

(normals) d F ↓Av

The values contain constructors for each introduction form, as well as the reflection (suspended
η-expansion) ↑A e of a neutral e of type A; a sequence of values forms an environment. Binders are
represented using a syntactic closure t�ρ, where ρ provides a value for each free variable in the
term t except the variables the abstraction itself binds. A neutral is a variable possibly followed
by a spine of stuck elimination forms; finally, a normal value is just a value together with its type
annotation (see Section 3.1). It is worth noting that we do not need the semantic domains to be
closed under any substitution or renaming principle. The only new parts of our semantic domain
are □−, lock(−) and −.unlock, which interpret □−, [−]µ and [−]b respectively.

3.3 Evaluation: From Syntax to Semantics

A term t with n free variables is evaluated with respect to a semantic environment ρ of length
n, written JtKρ when it is defined. We present a selection of the clauses for the partial evaluation
operation in Figure 5, and describe in more detail a few illustrative cases below.

Evaluating functions. To warm up, we consider the case for evaluating the introduction and
elimination forms of the dependent function type. Given an environment ρ, we evaluate the λ-
abstraction λ(t) by constructing a closure and wrapping it in the semantic λ-abstraction, λ(t�ρ).
Evaluating the syntactic application s(t) is more subtle: first we evaluate the function term s with
respect to ρ, and then we must proceed by case on the result:
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J−K− : Term × Env⇀ Val

eval/var

JvariKρ = ρ(i)
eval/esubst

Jt[δ ]Kρ = JtKJδKρ

eval/pi

JΠ(A,B)Kρ = Π(JAKρ ,B�ρ)
eval/lam

Jλ(t)Kρ = λ(t�ρ)

eval/app

Js(t)Kρ = app(JsKρ , JtKρ )
eval/pair

J⟨s, t⟩Kρ = ⟨JsKρ , JtKρ ⟩
eval/fst

Jfst(t)Kρ = fst(JtKρ )

eval/snd

Jsnd(t)Kρ = snd(JtKρ )
eval/box

J□AKρ = □JAKρ
eval/lock

J[t]µKρ = lock(JtKρ )
eval/unlock

J[t]bKρ = unlock(JtKρ )

−[−] : Clos × Env⇀ Val J−K− : Sub × Env⇀ Env

inst/clo

(t�ρ)[w1, . . . ,wn] = JtKρ .w1 ...wn

eval/ext

Jδ .tKρ = JδKρ .JtKρ

app(−,−) : Val × Val⇀ Val fst(−) : Val⇀ Val unlock(−) : Val⇀ Val

app/lam

app(λ(f ),v) = f [v]

app/reflect

app(↑Π(A,F ) e,v) = ↑F [v] e .app(↓Av)

fst/pair

fst(⟨v0,v1⟩) = v0

fst/reflect

fst(↑Σ(A,F ) e) = ↑A e .fst

unlock/lock

unlock(lock(v)) = v

unlock/reflect

unlock(↑□A e) = ↑A e .unlock

Fig. 5. Selected rules of evaluation.

(1) If the result is a semantic λ-abstraction λ(s ′�ρ ′), we discard ρ and evaluate s ′ in the environ-
ment ρ ′ extended by the value of t , returning Js ′Kρ′ .JtKρ .

(2) On the other hand, it is possible that JsKρ is the reflection of a neutral function, ↑Π(A,B�ρ′) e .

In this case, we extend the spine by a neutral application frame, e .app(↓A JtKρ ). To reflect this
neutral application, we obtain its type by instantiating the closure B�ρ ′, finally returning

↑
JBKρ′ .JtKρ e .app(↓A JtKρ ).

To simplify the procedure above, we factor evaluation into several other partial operations which
“enactž each elimination form (app(−,−), fst(−), unlock(−), etc.), enabling us to evaluate s(t) as
simply app(JsKρ , JtKρ ). We also factor out the instantiation of a closure F [v].

Evaluating the modality. Evaluation for the introduction and elimination forms of the modality
is even simpler; the value of [t]µ with respect to ρ is just lock(JtKρ ); and the value of [t]b is

unlock(JtKρ ), where unlock(lock(v)) = v and unlock(↑□A e) = ↑A e .unlock.

3.4 Quotation: From Semantics to Syntax

Quotation is where the “real workž happens in the defunctionalized version of NbE. We will have

three quotation operations, each parameterized by the length of the context: ⌈A⌉
ty
n quotes a semantic

type value A to a term, ⌈d⌉n quotes a normal value d to a term, and ⌈e⌉n quotes a neutral value
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qo/var

⌈vark ⌉n = varn−(k+1)

qo/reflect

⌈↓↑
Ce ′ ↑A e⌉n = ⌈e⌉n

qo/ty

⌈↓Ui v⌉n = ⌈v⌉
ty
n

qo/pi-tp

⌈Π(A, F )⌉
ty
n = Π(⌈A⌉

ty
n , ⌈F [↑

A varn]⌉
ty
n+1)

qo/pi-el

⌈↓Π(A,F )v⌉n = λ(⌈↓F [↑
Avarn ] app(v, ↑A varn)⌉n+1)

qo/app

⌈e .app(d)⌉n = (⌈e⌉n)(⌈d⌉n)

qo/sg-el

⌈↓Σ(A,B)v⌉n = ⟨⌈↓A fst(v)⌉n, ⌈↓
B[fst(v)] snd(v)⌉n⟩

qo/fst

⌈e .fst⌉n = fst(⌈e⌉n)

qo/box-tp

⌈□A⌉
ty
n = □⌈A⌉

ty
n

qo/box-el

⌈↓□Av⌉n = [⌈↓A unlock(v)⌉n]µ

qo/open

⌈e .unlock⌉n = [⌈e⌉n]b

Fig. 6. Selected rules of quotation.

e to a term. We present a fragment of the quotation algorithm in Figure 6. It is simple to see by
inspection that the image of each quotation function is precisely the β-short/η-long normal forms.
The quotation algorithm for elements of types that have η-laws (such as dependent function,

dependent pair and modal types) implements η-expansion by treating the provided value as a black
box. For instance, to quote a value v of type □A, one does not inspect v but instead unlocks it,
quotes the result in A, and wraps it in the syntactic introduction form for the modality, returning
[⌈↓A unlock(v)⌉n]µ. Function and pair types work in an analogous way: first, you apply the semantic
elimination operation, then quote, and then wrap in the syntactic introduction form.
A subtle case is the quotation of a semantic variable vark in a context of length n. Here, k is a

De Bruijn level, but in the syntax we use De Bruijn indices; therefore, we must split the difference
using a bit of arithmetic, returning varn−(k+1).

3.5 Normalization by Evaluation

Given a Γ ⊢ A type and Γ ⊢ t : A, what are the normal forms of A and t? We are now nearly
equipped to define the normalization operations for types and terms; all that remains is to define
an operation to reflect a syntactic context Γ to into a semantic environment, written ↑Γ:

reflect/emp

↑· = ·

reflect/snoc

↑Γ.A = ↑Γ.↑JAK↑Γ var∥Γ ∥

The reflected context is nothing more than a sequence of semantic variables. Now, we can define
normalization for types and for their terms using context reflection, evaluation, reification and
quotation:

nbe
tp

Γ
(A) = ⌈JAK↑Γ⌉

ty

∥Γ ∥
nbeA

Γ
(t) = ⌈↓JAK↑Γ JtK↑Γ⌉∥Γ ∥

We defer the correctness of this algorithm to Sections 5 and 6.

4 SEMANTIC TYPE CHECKING

Using our normalization result, it is now possible to define an algorithm to type check a suitably
annotated version of MLTTµ. It is unlikely that the terms of MLTTµ as presented in Section 2 have

decidable type checking, but by passing to a version of the calculus MLTT
⇆

µ
which annotates

β-redexes with a type, we do obtain a total algorithm; moreover, we will see that MLTTµ and
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MLTT
⇆

µ
coincide on their β-normal fragments. Then, using our normalization theorem, we will

show in Section 7 that MLTT
⇆

µ
is adequate in a technical sense.

The simplest way to type check dependent types involves splitting the algorithm into two stages:
type checking and type synthesis. A type checking problem is to determine whether a term has
a given type in a given context, whereas a type synthesis problem is to infer a type for a term in
a given context. The resulting mutually recursive algorithm is called bidirectional type checking,
invented by Coquand in 1996 and “broken inž by Pierce and Turner in 2000.

4.1 Bidirectional Syntax

The bidirectional type checking algorithm works best when the terms being checked are split into
two syntactic categories, depending on whether they support checking or synthesis; we give the

grammar ofMLTT
⇆

µ
below:

(checking) A,M,N F R | Π(A,B) | Σ(A,B) | Id(A,M,M) | □A | nat | Ui

λ(M) | ⟨M,N ⟩ | refl(M) | [M]µ | zero | succ(M)

(synthesis) R, S F (M : A) | varn | R(M) | fst(R) | snd(R) | J(C,M,R) | [R]b |

natrec(C,R,M,N )

Note that we do not include explicit substitutions; as with our semantic domains, we do not

in fact require any substitution closure properties at all for the syntax of MLTT
⇆

µ
. A term M of

MLTT
⇆

µ
can be trivially erased to a termM◦ in MLTTµ; the only interesting case is (M : A)◦ = M◦.

Following Coquand [1996], we define the bidirectional type checking algorithm relative not to
syntactic contexts Γ and syntactic types A, but rather with respect to a semantic kind of context Ξ
(defined below) and semantic type values A. This yields a much more efficient algorithm than usual,
avoiding the need for expensive De Bruijn liftings; but the algorithm can be lifted to syntactic types
and contexts using evaluation and reflection.

4.2 Semantic Contexts

Semantic contexts Ξ are annotated versions of environments ρ, storing type information and locks:

(semantic contexts) Ξ F · | Ξ.µ | Ξ.↓Av

WewriteΞ.A to abbreviate the extension of a semantic contextwith a new variable,Ξ.↓A ↑A var∥Ξ∥ ,
where we write ∥Ξ∥ to mean the length of Ξ (ignoring locks). As was the case for syntactic contexts,
we can define an operation which deletes all locks from a semantic context Ξ, written Ξ

b. These se-
mantic contexts have an evident projection to semantic environments which ignores locks and drops
the type annotation on normals, which we write as |Ξ|. Syntactic contexts Γ can be transformed
into semantic contexts ↓↑Γ easily. We set ↓↑· = · and ↓↑(Γ.µ) = (↓↑Γ).µ and ↓↑(Γ.A) = (↓↑Γ).JAK↑Γ .

4.3 Checking and Synthesis

We will define three mutually recursive algorithmic judgments for bidirectional terms relative to
semantic contexts and types:

(1) The judgment Ξ ⊢ A ⇐ type checks that A is a type in semantic context Ξ.

(2) The judgment Ξ ⊢ M ⇐ A checks thatM is a term of type A in semantic context Ξ.

(3) The judgment Ξ ⊢ R ⇒ A synthesizes the semantic type A of the term R in context Ξ. It is
important to note that A is an output of this judgment and not an input.
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sem-synth/var

Ξ(k) = ↓Av

Ξ ⊢ vark ⇒ A

sem-check/synth

Ξ ⊢ R ⇒ A ⌈A⌉
ty

∥Ξ∥
= ⌈B⌉

ty

∥Ξ∥

Ξ ⊢ R ⇐ B

sem-check-tp/synth

Ξ ⊢ R ⇒ Ui

Ξ ⊢ R ⇐ type

sem-synth/check

Ξ ⊢ A ⇐ type JA◦K |Ξ | = AΞ Ξ ⊢ t ⇐ AΞ

Ξ ⊢ (t : A) ⇒ AΞ

sem-check-tp/pi

Ξ ⊢ A ⇐ type Ξ.JA◦K |Ξ | ⊢ B ⇐ type

Ξ ⊢ Π(A,B) ⇐ type

sem-check/pi

Ξ ⊢ A ⇐ Ui Ξ.JA◦K |Ξ | ⊢ B ⇐ Ui

Ξ ⊢ Π(A,B) ⇐ Ui

sem-check/lam

Ξ.A ⊢ M ⇐ F [↑A var∥Ξ∥]

Ξ ⊢ λ(M) ⇐ Π(A, F )

sem-synth/app

Ξ ⊢ R ⇒ Π(A, F ) Ξ ⊢ M ⇐ A

Ξ ⊢ R(M) ⇒ F [JM◦K |Ξ |]

sem-check-tp/sg

Ξ ⊢ A ⇐ type Ξ.JA◦K |Ξ | ⊢ B ⇐ type

Ξ ⊢ Σ(A,B) ⇐ type

sem-check/sg

Ξ ⊢ A ⇐ Ui Ξ.JA◦K |Ξ | ⊢ B ⇐ Ui

Ξ ⊢ Σ(A,B) ⇐ Ui

sem-check/pair

Ξ ⊢ M ⇐ A Ξ ⊢ N ⇐ F [JM◦K |Ξ |]

Ξ ⊢ ⟨M,N ⟩ ⇐ Σ(A, F )

sem-synth/fst

Ξ ⊢ R ⇒ Σ(A, F )

Ξ ⊢ fst(R) ⇒ A

sem-synth/snd

Ξ ⊢ R ⇒ Σ(A, F )

Ξ ⊢ snd(R) ⇒ F [fst(JR◦K |Ξ |)]

sem-check-tp/box

Ξ.µ ⊢ A ⇐ type

Ξ ⊢ □A ⇐ type

sem-check/box

Ξ.µ ⊢ A ⇐ Ui

Ξ ⊢ □A ⇐ Ui

sem-check/lock

Ξ.µ ⊢ M ⇐ A

Ξ ⊢ [M]µ ⇐ □A

sem-synth/unlock

Ξ
b ⊢ R ⇒ □A

Ξ ⊢ [R]b ⇒ A

Fig. 7. Selected semantic type checking rules. Note that Ξ(k) = ↓A v is undefined if ↓A v appears behind a

lock in Ξ.

For each type constructor, such as Π(A,B), we need a clause to check both Ξ ⊢ Π(A,B) ⇐ type and
Ξ ⊢ Π(A,B) ⇐ Ui . It is possible to factor these into the same routine, but we keep them separate
for the sake of simplicity.

These judgments are rendered in our implementation as OCaml functions of the following types
respectively:

val check_tp : sem_ctx → term → bool

val check : sem_ctx → term → value → bool

val synth : sem_ctx → term → value option

A selection of clauses from the type checking algorithm is presented in Figure 7, but we will step
through some examples to cultivate intuition.

Example 4.1 (sem-check-tp/pi). Suppose we are trying to check that Π(A,B) is a type in context Ξ;
first, we check must check that A is a type at Ξ, and then we must do something about B, which
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should be a type in an extended context. To extend the context Ξ, we must obtain the value of A;
erasing A to anMLTTµ-term A◦, we can evaluate it with respect to the environment determined by
Ξ; we therefore check that B is a type in the context Ξ.JA◦K |Ξ | . This case can be implemented in

OCaml as follows:3

let check_tp ctx ty =

match ty with

| Pi (dom, cod) →

check_tp ctx dom && begin

let vdom = eval (proj_env ctx) (erase dom) in

check_tp (ext_ctx ctx vdom) cod

end

(* ... *)

5 THE COMPLETENESS OF NORMALIZATION BY EVALUATION

Prior to certifying the type-checking algorithm, we must prove the normalization algorithm correct.
The first and easiest correctness condition for a normalization algorithm is completeness; roughly,
a normalization algorithm is called complete when any two equal terms are taken to exactly the
same normal form. We recall the full statement of completeness below:

(1) If Γ ⊢ A0 = A1 type then there is exactly one termA such that nbe
tp

Γ
(A0) = A and nbe

tp

Γ
(A1) =

A.
(2) If Γ ⊢ t0 = t1 : A then there is exactly one term t such that nbeA

Γ
(t0) = t and nbeA

Γ
(t1) = t .

The completeness of normalization for dependent type theory can be proved using a semantic
model in which every type is interpreted as a partial equivalence relation (PER) on semantic values.
A partial equivalence relation is a binary relation which is both symmetric and transitive, but
not necessarily reflexive; equivalently, one can consider equivalence relations on subsets of the
collection of values.

To understand why this works, we must first construct the two fundamental partial equivalence
relations on which everything will hinge, namely the PER of neutral values Ne and the PER of
(defunctionalized) normal values Nf . These relations distinguish the pairs of neutral values (resp.
normal values) which are quoted to the exact same piece of syntax. For instance, two neutrals e0, e1
are related in Ne exactly when we have ⌈e0⌉n = ⌈e1⌉n for all de Bruijn levels n.

We then require a critical closure condition, that every type A’s PER RA embeds all of Ne , and is
embedded in Nf ; we call this closure condition saturation:

RA

Ne
↓A ↑A (−)

✮

↑
A (−

)
✮

Nf

↓ A
(−)

✮

(1)

Completeness is obtained immediately from (a) the interpretation of the syntax of MLTTµ into
the PER model (equal terms get evaluated to equal elements of the PER), and (b) the fact that every
PER in the model is saturated (equal elements in the PER will be quoted to the exact same piece of
syntax).

3Our actual code is more abstracted than this; we present an elementary version here for intuition.
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Scaling PERs to modalities. In ordinary PER models of type theory, each type is given meaning
through a partial equivalence relation of its elements. While such an approach could be used to
develop the syntactic metatheory of MLTTµ (canonicity, normalization, decidability), the proof
would not support the extension ofMLTTµ with any type A for which A → □A is refuted. Because
such non-constant types are the raison d’être for modal extensions of type theory, we develop a
modular proof of normalization using Kripke PERs over an arbitrary non-empty partial order P,
enabling extension by non-constant types. The use of Kripke PERs mirrors the semantic situation
for modal type theory, in which categories of presheaves play a central role.

A P-PER is a family R of partial equivalence relations indexed in p : P which is monotone in the
sense that if (u0,u1) ∈ Rp and q ≤ p, then (u0,u1) ∈ Rq . Borrowing notation from Kripke forcing,
we write p ⊩ u0 ∼ u1 ∈ R for (u0,u1) ∈ Rp .

Scaling PERs to dependent type theory. The idea of constructing a PERmodel to prove completeness
is simple enough in concept, but to scale the construction to dependent type theory with universes
is quite involved. Because types can be computed from terms, we can’t define the partial equivalence
relations for types “by induction on the type structurež, which is the way that relational models are
usually defined for simpler programming languages. One needs to specify when two types are equal
simultaneously with when two values are equal; this style of definition is “inductive-recursivež,
and can be constructed concretely in ordinary mathematical foundations using a fixed point on the
complete lattice of relations [Allen 1987; Angiuli 2019].

Kripke type systems. Writing Val for the set of values u, we define the set Rel of indexed relations
to be the powerset of P×Val×Val. In order to simultaneously interpret typehood and type equality
with type membership and member equality, we will work with an indexed notion of type system;
a type system is a relation τ ⊆ P × Val × Val × Rel. Writing τ |=p A ∼ B ↓ R for (p,A,B,R) ∈ τ , we
mean that at stage p, the type system τ regards A,B as equal types with relational interpretation R.
We will write τ |=p A ∼ B for the existential quantification ∃R. τ |=p A ∼ B ↓ R.

At this stage in the construction, we do not place any constraints on indexed relations or type
systems: later, after performing a somewhat involved fixed point construction to obtain a cumulative
hierachy τα for α ∈ N ∪ {ω} of type systems which model all of MLTTµ, we prove by induction
that our type systems have the following properties:

(1) Each τα forms the graph of a partial function P × Val × Val⇀ Rel.
(2) Each relation

{

(p,A,B) | τα |=p A ∼ B
}

is a saturated P-PER.
(3) Whenever τα |=p A ∼ B ↓ R, the relation R is a saturated P-PER.

The type system hierarchy. The type systems τα will explain what types are equal at level α , and
what their elements are; the first infinite type system τω contains all the types, including every
finite universe Ui . Each type system τα is constructed using an inductive definition which closes
under all the connectives and base types ofMLTTµ; a fragment of this definition is presented in
Figure 8. Of particular note is the clause for the necessity modality:

∀q. τα |=q A0 ∼ A1 ↓ R(q)

τα |=p □A0 ∼ □A1 ↓
{

(q,u0,u1) | q ⊩ unlock(u0) ∼ unlock(u1) ∈ R(q)
}

This clause says that two instances of the necessity modality□A0,□A1 are equal at stage p when
the types A0,A1 are equal at all stages q; the P-PER assigned to the modality likewise quantifies
over all stages, and implicitly implements the η-rule of the modality by way of unlock(−). This
universal quantification over stages reflects the concrete interpretation of the necessity modality in
semantic models, such as the topos of trees [Birkedal et al. 2011; Clouston et al. 2015].
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τα |=p nat ∼ nat ↓ JNK

(j < α)

τα |=p Uj ∼ Uj ↓
{

(q,A0,A1) | τj |=q A0 ∼ A1

}

τα |=p A0 ∼ A1 ↓ R τα |=q R ≫ B0 ∼ B1 ↓ S

τα |=p Π(A0,B0) ∼ Π(A1,B1) ↓ JΠK(R, S)

∀q. τα |=q A0 ∼ A1 ↓ R(q)

τα |=p □A0 ∼ □A1 ↓
{

(q,u0,u1) | q ⊩ unlock(u0) ∼ unlock(u1) ∈ R(q)
}

∀q ≤ p.∀(q ⊩ u0 ∼ u1 ∈ R). τ |=q B0[u0] ∼ B1[u1] ↓ S(u0,u1)

τ |=p R ≫ B0 ∼ B1 ↓ S
===============================================================================

p ⊩ zero ∼ zero ∈ JNK

p ⊩ u0 ∼ u1 ∈ JNK

p ⊩ succ(u0) ∼ succ(u1) ∈ JNK

e0 ∼ e1 ∈ Ne

p ⊩ ↑nat e0 ∼ ↑nat e1 ∈ JNK

∀q ≤ p.∀(q ⊩ v0 ∼ v1 ∈ R).q ⊩ app(u0,v0) ∼ app(u1,v1) ∈ S(v0,v1)

p ⊩ u0 ∼ u1 ∈ JΠK(R, S)

Fig. 8. A fragment of the inductive definition of the type system hierarchy τα .

Interpreting the judgments of MLTTµ. The validity of each formal judgment Γ ⊢ J is interpreted
as a statement Γ ⊨ J about the ultimate type system τω . Hypothetical judgments are intepreted
by quantifying over equal semantic environments p ⊩ ρ0 = ρ1 : Γ (a relation which we omit for
reasons of space). The validity conditions for the judgments of MLTTµ is specified below:

(1) Γ ⊨ A0 = A1 type holds when for all p : P and p ⊩ ρ0 = ρ1 : Γ, we have τω |=p JA0Kρ0 ∼

JA1Kρ1 .
(2) Γ ⊨ t0 = t1 : A holds when for all p : P and p ⊩ ρ0 = ρ1 : Γ, we have both τω |=p JA0Kρ0 ∼

JA1Kρ1 ↓ R and p ⊩ Jt0Kρ0 ∼ Jt1Kρ1 ∈ R for some R.
(3) Γ ⊨ δ0 = δ1 : ∆ holds when for all p : P and p ⊩ ρ0 = ρ1 : Γ, we have p ⊩ Jδ0Kρ0 = Jδ1Kρ1 : ∆
(4) Γ ⊨ A type holds iff Γ ⊨ A = A type.
(5) Γ ⊨ t : A holds iff Γ ⊨ t = t : A.
(6) Γ ⊨ δ : ∆ holds iff Γ ⊨ δ = δ : ∆.

The fundamental theorem of the PER model is to show that τω is closed under all the rules of
MLTTµ in the sense of Theorem 5.1 below.

Theorem 5.1 (Fundamental Theorem). If Γ ⊢ J , then Γ ⊨ J .

Proof. By induction on the derivation of Γ ⊢ J . □

Remark 5.2. Explicit substitutions play an important role in the proof of Theorem 5.1; without
them, this model would refute many β-equalities!4 Consider the β-rule for functions (λ(t0))(t1) =
t0[id.t1]. In our type theory with explicit substitutions, in the environment ρ both of these will

4The authors would like to acknowledge that Abel explained this point in 2013, but that they unwisely chose to ignore it in

a first attempt at this proof.
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compute to Jt0Kρ .Jt1Kρ . In particular, in evaluating t0[id.t1], we first use the explicit substitution to

modify the environment: Jid.t1Kρ = ρ.Jt1Kρ .
In contrast, if substitution were a meta-operation, we would only have that the right-hand

side of the equation computes as t ′0, where t
′
0 is the result of substituting t ′1 for var0 in t0. In a

defunctionalized NbE algorithm, these will not evaluate to the same result.Wemay see the difference
if there are any closures in the results of the evaluations: in the left-hand side the substitution
will not have taken place under any closures, but in the right-hand side the substitution will have
propagated through.

Completeness of normalization for definitional equality is a corollary of the fundamental theorem
of the PER model, using the fact that τω is valued in saturated P-PERs. We can show for any Γ ctx,
p ⊩ ↑Γ = ↑Γ : Γ. Therefore, if we are have Γ ⊢ t0 = t1 : A, we then must have p ⊩ Jt0K↑Γ ∼ Jt1K↑Γ ∈

JAK↑Γ by the fundamental theorem. Finally, the saturation of JAKρ then tells us that the quotations

of Jt0K↑Γ, Jt1K↑Γ are identical, whereby nbeA
Γ
(t0) = nbeA

Γ
(t1).

6 THE SOUNDNESS OF NORMALIZATION BY EVALUATION

Through completeness, we have shown that the normalization algorithm lifts to a total function on
definitional equivalenceśclasses ofMLTTµ terms; but even the constant function which returns
the same “normal formž for all terms would have this property. We additionally need to see that
normalization is faithful, or sound:

(1) If Γ ⊢ A type and nbe
tp

Γ
(A) = A′ then Γ ⊢ A = A′ type.

(2) If Γ ⊢ t : A and nbeA
Γ
(t) = t ′ then Γ ⊢ t = t ′ : A.

The soundness of normalization for definitional equality, like completeness, cannot be proved
naïvely by induction on derivations. Instead, it is necessary to employ a further model construction
which glues the syntax ofMLTTµ together with its computational model; this is a cross-language
Kripke logical relation between syntax and semantics, indexed in the category of syntactic contexts
and weakenings. The fundamental judgments of the logical relations model are the following:

(1) Γ ⊢p A R A′ typeα relates a syntactic type Γ ⊢ A type in universe level α to the semantic
type value A′ at stage p.

(2) Γ ⊢p t : A R v ∈α A′ relates a syntactic term Γ ⊢ t : A to the semantic value v in the type
value A′ in universe level α at stage p.

(3) Γ ⊢p δ : ∆ R ρ relates a syntactic substitution Γ ⊢ δ : ∆ to a semantic environment ρ at stage
p.

Saturation condition. The definition of these logical relations is somewhat technical (see Figure 9),
but the main objective is to ensure that they all exhibit the following saturation conditions (from
which soundness will follow):

(1) If Γ ⊢p A R A′ typeα , then for any weakening substitution ∆ ⊢ γ : Γ, we have the equation

∆ ⊢ A[γ ] = ⌈A′⌉
ty

∥∆∥
type.

(2) If Γ ⊢p t : A R v ∈α A′, then for any weakening substitution ∆ ⊢ γ : Γ, we have the equation

∆ ⊢ t[γ ] = ⌈↓A
′
v⌉∥∆∥ : A[γ ]

(3) If Γ ⊢p A R A′ typeα and Γ ⊢ t : A and for all weakening substitutions ∆ ⊢ γ : Γ we have

∆ ⊢ t[γ ] = ⌈e⌉∥∆∥ : T [γ ], then Γ ⊢p t : A R ↑A
′
e ∈α A′.

(4) We furthermore require that the identity substitution is related to the reflection of its context,
Γ ⊢p id : Γ R ↑Γ.

The fundamental theorem. After defining the logical relations and showing that they are saturated,
we show that they interpret the rules ofMLTTµ in a suitable way:
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(1) If Γ ⊢ A type, then for all p : P and ∆ ⊢p γ : Γ R ρ, we have ∆ ⊢p A[γ ] R JAKρ typeω .
(2) If Γ ⊢ t : A, then for all p : P and ∆ ⊢p γ : Γ R ρ, we have ∆ ⊢p t[γ ] : A[γ ] R JtKρ ∈ω JAKρ .

The soundness of normalization follows immediately from the fundamental theorem of the logical
relations model, using the fact that every logical relation is saturated: if Γ ⊢ A type, then (picking
arbitrary p : P) we have Γ ⊢p A R JAK↑Γ typeω (using the identity weakening); by saturation, we

furthermore have Γ ⊢ A = ⌈JAK↑Γ⌉
ty

∥Γ ∥
type, and by definition we have nbe

tp

Γ
(A) = ⌈JAK↑Γ⌉

ty

∥Γ ∥

Constructing the logical relations. We can explicitly construct a hierarchy of Kripke logical
relations which has the properties described in the preceeding paragraphs, but it is somewhat
subtle. We need to define Γ ⊢p A R A′ typeα by induction on the value A′, but the induction is
not obviously structural. For instance, we intend that Γ ⊢p C R Π(A,B) typeα shall hold iff the
following hold:

ś Γ ⊢ C = Π(A′,B′) type for some A′,B′;
ś Γ ⊢p A′ R A typeα ;
ś if q ≤ p and ∆ ⊢ γ : Γ is a weakening, then ∆ ⊢q t : A′[γ ] R v ∈α A implies ∆ ⊢q B′[r .t] R

B[v] typeα .

The problem lies in the final clause above: the closure instantiation B[v] is not structurally smaller
than the semantic typeΠ(A,B). To resolve this problem, we define a well-ordering on semantic types
σ |=p A < B relative to a Kripke type system σ and stage p : P, in which (for instance) a dependent
function is strictly larger than all well-typed instantiations of its closure; then, the definition of the
logical relations can proceed by well-founded induction. This well-founded ordering is latent in
Wieczorek and Biernacki [2018]. We exhibit a fragment of this definition in Figure 9.

Remark 6.1. The logical relation for soundness is by far the subtlest portion of the normalization
proof, and one particularly slippery detail is the injectivity of type-constructors. During the course
of the proof of the fundamental lemma for this logical relation, it is not known whether Γ ⊢

Σ(A0,B0) = Σ(A1,B1) type implies that Γ ⊢ A0 = A1 type and Γ.A0 ⊢ B0 = B1 type (indeed, this is
commonly proved as a corollary of normalization). This fact, however, seems needed during the
proof of the fundamental lemma. This particular Gordian knot is cut through the extra premises
placed on elimination rules in the declarative syntax (for instance, the requirement of Γ.A ⊢ B type

in tm/snd). These premises give us a sufficiently strong induction hypothesis to push the proof
through, and their redundancy can then be observed after the fact.

7 THE CORRECTNESS OF SEMANTIC TYPE-CHECKING

We wish to show that our semantic type-checking algorithm is equivalent to the declarative system
for which we have proven NbE sound and complete. It is not immediately clear how to formulate
this statement, however, because the semantic type-checking algorithm operates on terms of

MLTT
⇆

µ
, not MLTTµ. Instead, we prove an adequacy theorem for MLTT

⇆

µ
: every typeable term in

the declarative system is equal (in the declarative system) to a term which is well-formed in the
bidirectional syntax and appropriately typed by our algorithm.

Theorem 7.1 (Adeqacy: soundness). If Γ ⊢ A type and ↓↑Γ ⊢ M ⇐ JAK↑Γ , then Γ ⊢ M◦ : A.

A crucial difficulty in showing that semantic type-checking is complete as well as sound is the
conversion rule. In the declarative system any type could be replaced with an equal one during
the process of type-checking but the semantic type-checking algorithm is far more rigid. The
type-checking algorithm, however, is stable under the PER equality defined in Section 5.

Lemma 7.2. If τω |=p A ∼ B and Ξ ⊢ M ⇐ A, then Ξ ⊢ M ⇐ B.
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Γ ⊢p C R Π(A,B) typeα if:
– Γ ⊢ C = Π(A′,B′) type for some A′,B′;
– Γ ⊢p A′ R A typeα ;
– if q ≤ p and ∆ ⊢ γ : Γ is a weakening, then ∆ ⊢q t : A′[γ ] R v ∈α A implies ∆ ⊢q B′[r .t] R

B[v] typeα .
Γ ⊢p C R □A typeα if:
– Γ ⊢ C = □A′ type for some A′;
– for all q, Γ.µ ⊢q A′ R A typeα .

Γ ⊢p C R ↑A e typeα if, when ∆ ⊢ γ : Γ is a weakening, then ∆ ⊢ C[γ ] = ⌈e⌉∥∆∥ type.
Γ ⊢p C R Uj typeα if j < α and Γ ⊢ C = Uj type.

Γ ⊢p t : C R v ∈α Π(A,B) if:
– p ⊩ v ∼ v ∈ R and Γ ⊢ t : C;
– Γ ⊢ C = Π(A′,B′) type for some A′,B′;
– Γ ⊢p A′ R A typeα ;
– if q ≤ n and ∆ ⊢ γ : Γ is a weakening, then ∆ ⊢q s : A′[γ ] R u ∈α A implies ∆ ⊢q t[γ ](s) :
B′[γ .s] R app(v,u) ∈α B[u].

Γ ⊢p t : C R v ∈α □A if:
– p ⊩ v ∼ v ∈ R and Γ ⊢ t : C;
– Γ ⊢ C = □A′ type for some A′;
– for all q, Γ.µ ⊢q [t]b : A′ R unlock(v) ∈α A

Γ ⊢p t : C R ↑A0 e0 ∈α ↑A1 e1 if, when ∆ ⊢ γ : Γ is a weakening, then ∆ ⊢ C[γ ] = ⌈e1⌉∥∆∥ type

and ∆ ⊢ t[γ ] = ⌈e0⌉∥∆∥ : C[γ ].
Γ ⊢p t : C R v ∈α Ui if:
– i < α ;
– p ⊩ v ∼ v ∈ R;
– Γ ⊢ t : C and Γ ⊢ C = Ui type;
– Γ ⊢p t R v typei .

Fig. 9. A fragment of the definition of the logical relations for types and terms.

This lemma in turn ensures that the semantic type-checking algorithm is complete for the
conversion rule of the declarative syntax; by completeness, if Γ ⊢ A = B type holds then τω |=p
JAK↑Γ ∼ JBK↑Γ . But Lemma 7.2 then tells us that if Ξ ⊢ M ⇐ JAK↑Γ , then Ξ ⊢ M ⇐ JBK↑Γ , precisely
as the conversion rule would require.

Stability relies on the fact that the semantic type-checking algorithm inspects only the outermost
constructor of the value when checking a term against a type ś no equal semantic types have
different head constructors so it is safe to inspect these.
It is now possible to prove the completeness of the type-checking algorithm.

Theorem 7.3 (Adeqacy: completeness). If Γ ⊢ A type and Γ ⊢ t : A, then there exists a

bidirectional termM such that Γ ⊢ M◦
= t : A and ↓↑Γ ⊢ M ⇐ JAK↑Γ .

Proof. By soundness and completeness of normalization, we have Γ ⊢ t = nbeA
Γ
(t) : A; but

the declarative terms and the checkable terms coincide for normal forms, so we simply choose

M ≜ nbeA
Γ
(t). □
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8 RELATED WORK

Many previous variants of modal simply-type calculi have been presented. One notable such
calculus is Pfenning and Davies [2000], which structures the judgments differently than MLTTµ. In
Pfenning and Davies, contexts are split into true and necessary hypotheses.

Cohesive type theory. The dual context approach is used in, for instance, Shulman’s [2018] cohesive
type theory, another proposed modal dependent type theory. Cohesive type theory has focused
on providing a type theory for abstract spaces [Lawvere 1992, 2007] using a chain of interacting
modalities: S ⊣ ♭ ⊣ ♯. Indeed, cohesive type theory has been successfully used on paper to prove
Brouwer’s fixed point theorem [Shulman 2018] within type theory and without recourse to low-level
manipulations of topological spaces.

There is, however, enormous syntactic complexity that results from the non-trivial interactions
of multiple modalities. In particular, the ♭ modality (which corresponds to □) uses an open-scope

or positive eliminator. This prevents cohesive type theory from adding all of the equations of the
♭ modality without introducing commuting conversions,5 which render decision procedures for
definitional equality intractable. There is ongoing work to study syntactic properties of systems like
cohesive type theory with multiple modalities; so far, however, this work has focused on restricted,
simply-typed instances [Licata et al. 2017].

Agda-flat and crisp type theory. Separately, crisp type theory (a fragment of cohesive type theory
which contains only the ♭ modality) has been implemented experimentally in a fork of Agda [The
Agda Development Team 2018]. Crisp type theory is close to our own type theory, supporting a
single S4-style comonadic modality. UnlikeMLTTµ, crisp type theory, like cohesive type theory,
uses an positive eliminator for its modality, and so it fails to satisfy several definitional equations
that MLTTµ enjoys. Additionally, while there is an experimental implementation of crisp type
theory, there has not been work on proving any metatheoretic properties of the system, and, in
particular, there is no proof of correctness for the implementation.

Contextual modal type theory. Another dual-context modal type theory is contextual modal type
theory (CMTT) [Boespflug and Pientka 2011; Brottveit Bock and Schürmann 2015; Nanevski et al.
2008; Pientka et al. 2019]. CMTT has been studied in the context of logical frameworks, type theories
specifically designed to study other type theories. Contextual modalities allow a type theory to
internally specify that a term depends on a designated set of local variables. This generalizes the
necessity modality, where a term can depend on either any local variables or none. CMTT provides
an ideal setting for reasoning about higher-order abstract syntax, which demands the ability to
manipulate open terms as first-class objects.

Generalizing previous work on extending logical frameworks with contextual modalities, Pientka
et al. [2019] have developed a version of full Martin-Löf Type Theory equipped with a contextual
modality ranging over the contexts and types of a substrate logical framework. This work promises
to bridge the gap between the convenience of LF-style mechanized metatheory [Harper and Licata
2007] and the generality available in modern proof assistants such as Agda [Norell 2007] and
Coq [Coq Development Team 2016], a long-standing goal within the community.
Visible on the horizon is a type theory which collapses the distinction between object and

meta, thereby obtaining the ability to nest the contextual modality multiple times. The modality
considered in this paper would then arise as a special case.

5In some (homotopy-theoretic) models of cohesive type theory, one expects these commuting conversions to hold only up

to a path. They do, however, hold strictly in 1-categorical models.
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Guarded recursion. Recent investigations of modal dependent type theory have focused on
guarded recursion [Bahr et al. 2017; Birkedal et al. 2016; Bizjak et al. 2016; Bizjak and Mùgelberg
2015; Mannaa and Mùgelberg 2018]. While the semantics of guarded recursion is relatively well-
understood, the syntax presents certain difficulties pertaining to the admissibility of substitution.
Early work in this area has resolved this problem using delayed substitutions, whose complicated
equational theory obstructs the development of the syntactic metatheory, including normalization
and decidability of type-checking.
Clocked Type Theory [Bahr et al. 2017; Mannaa and Mùgelberg 2018] pioneered the use of

Fitch-style syntax for modalities in a dependently typed setting, generalizing the work of Clouston
[2018] from simple types and avoiding the use of delayed substitutions. In light of the improved
syntax, Bahr et al. [2017] have been able to equip Clocked Type Theory with an operational
semantics (a significant advance over prior work) and proved that it enjoys strong normalization.
The sophistication of Clocked Type Theory’s modal apparatus seemingly necessitates rules which
invert a substitution, presenting certain challenges in passing from a strong normalization result to
an algorithm for checking types.

Dependent right adjoints. Expanding of the ideas of Clocked Type Theory, Clouston et al. [2018]
abstracted the particulars of guarded recursion into a general discipline for dependently typed
modalities, generalizing the Fitch-style calculus [Clouston 2018] to a full dependent type theory.
MLTTµ strengthens the syntactic properties of the modality in loc. cit. and, additionally, sim-

plifies the rules of the type theory. As a result of these simplifications, our type theory validates
the appropriate admissible rules and supports normalization. This was crucial for producing an
implementation.

9 FUTURE WORK AND CONCLUSIONS

We have contributed MLTTµ, a core calculus for a dependently typed programming language
with a necessity modality, together with a sound and complete type checking algorithm based on
normalization by evaluation. To demonstrate that the MLTTµ approach is ready for real-world
applications, we have implemented a prototype proof assistant based on the calculus and algorithms
which we have proved correct here. The core of the implementation is just 500 lines of code and
transcribes the rules almost directly.

Categorical semantics. In this paper we have focused on syntactic properties (e.g., normalization
and the decidability of type-checking) and so we have not given much consideration to the categor-
ical semantics ofMLTTµ. In the future, we hope to specialize the semantics described in Clouston
et al. [2018] to our modality. Unlike loc. cit. we will require stronger conditions on our dependent
right adjoint. For instance, we will certainly need to require that it is an idempotent comonad. In
addition, we will require the left adjoint to form a monad. With these modifications, we believe
that the theory of Clouston et al. can be used to describe the categorical models of MLTTµ.

Extending to multiple modalities. A significant challenge for the future is the extension ofMLTTµ

with more than one modality; different modalities have different effects on the proper design of
substitution principles and structural rules, and these effects are not a priori local. Negotiating
the emergent interactions between different modalities in a dependently typed setting is a critical
area of future research that we hope to pursue; in the much more restricted simply typed setting,
progress has been made by Licata et al. [2017] to this end. This line of work is important for
incorporating existing modal type theories into our framework; multiple interacting modalities are
crucial, for instance, in guarded type theory.
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Semantic normalization. Normalization by evaluation, which we have presented in a highly
syntactic way, corresponds to an instance of the categorical gluing technique [Altenkirch et al.
1995; Coquand 2018; Fiore 2002; Streicher 1998]. In semantic proofs of normalization, one glues a
category of Kripke predicates along the nerve induced by a subcategory of substitutions which
normal forms are closed under.
Instead of proving that a concretely-given normalization algorithm is correct through a PER

model and logical relations (see Sections 5 and 6), these semantic proofs employ a single model
and, using the initiality of syntax, induce a normalization algorithm abstractly. There has already
been considerable work in Clouston et al. [2018] on the structure of models of modal dependent
type theory, so we conjecture that the proof of normalization for MLTTµ could be streamlined
by adapting categorical gluing to our situation. It remains to be seen, however, what changes are
required to the syntactic presentation of MLTTµ in order to connect the abstract (algebra) with the
concrete (implementation).

Applications in mathematics. A current goal within the scientific community is to maximize
the amount of mathematics which can be formalized synthetically inside type theory [Shulman
2018; Univalent Foundations Program 2013], avoiding low-level analytic details. A recent success
story involving the necessity modality in dependent type theory can be found in the internal

construction of classifying objects for fibrations in models of homotopy type theory based on a
“tiny intervalž [Angiuli et al. 2019; Licata et al. 2018]. This construction uses a right adjoint to the

path space functor (−)I in a critical way, but this functor cannot be internalized. Using the necessity
modality of MLTTµ, it is easy to axiomatize this adjunction and use it to construct the classifying
fibration. Licata et al. [2018] have presented a formalization in agda-flat, and we conjecture that it
should be possible to formalize the same inMLTTµ. We hope that such a formalization may benefit
from the additional definitional equalities enabled by our treatment of the modality.
More generally, the necessity modality ofMLTTµ enables the type-theoretic axiomatization of

global operations (such as comonadic modalities) which are not closed under substitution. This
technique makes it possible to formalize a great deal of mathematics inside type theory, and the
implementability ofMLTTµ promises the benefits of machine-checking for these formalizations.
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