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1 Modal Dependent Type Theory

Here, we treat the syntax of MLTTµ, a modal dependent type theory with typed de�nitional equality
and a predicative hierarchy of universes.

1.1 The syntax ofMLTTµ

We represent the syntax of TT abstractly using De Bruijn indices and explicit substitutions [Dyb96;
Gra13]. By convention, we use a distinguished color for syntactic objects (as opposed to the semantic
objects that we will introduce in later chapters).

(contexts) Γ,∆ F · | Γ.A | Γ.µ
(types) A,B,T F t | nat | Ui | Π(A,B) | Σ(A,B) | �A | Id(A, t, t)
(terms) s, t F A | varn | λ(t) | t(t) | 〈t, t〉 | fst(t) | snd(t) | [t]µ | [t]b |

refl(t) | J(C, t, t) | zero | succ(t) | natrec(A, t, t, t) | t[δ ]
(subst.) γ , δ F id | δ .t | δ ◦ δ | pn | ·

We now turn to the typing rules for this calculus. We write Γb for the operation which removes all
locks from a context. We write Γ Bµ Γ′ to mean that Γ′ is a version of Γ with locks added.

Γ0 Bµ Γ1

Γ ctx

Γ Bµ Γ

Γ0 Bµ Γ1 Γ1 Bµ Γ2

Γ0 Bµ Γ2

Γ0 ` A type Γ1 ` A type Γ0 Bµ Γ1

Γ0.A Bµ Γ1.A

Γ0 Bµ Γ1

Γ0.µ Bµ Γ1.µ

Γ.µ.T ctx

Γ.µ.T Bµ Γ.T .µ

Γ ctx

Γ Bµ Γ.µ

Γ ctx

Γ.µ.µ Bµ Γ.µ

Γ ctx

· ctx

Γ ctx

Γ.µ ctx

Γ ctx Γ ` T type

Γ.T ctx

Γ ` T type

Γ ctx

Γ ` Ui type Γ ` nat type

Γ.µ ` T type

Γ ` �T type

Γ ` T0 type Γ.T0 ` T1 type

Γ ` Π(T0,T1) type Γ ` Σ(T0,T1) type

Γ ` T : Ui

Γ ` T type

Γ ` T type Γ ` t0, t1 : T
Γ ` Id(T , t0, t1) type

Γ ` δ : ∆ ∆ ` T type

Γ ` T [δ ] type

Γ ` t : T

1
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Γ0.T .Γ1 ctx µ < Γ1 k = ‖Γ1‖

Γ0.T .Γ1 ` vark : T [pk+1]

Γ ` A type Γ.A ` t : B
Γ ` λ(t) : Π(A,B)

Γ ` t : Π(A,B) Γ ` u : A Γ.A ` B type

Γ ` t(u) : B[id.u]
Γ ` A : Ui Γ.A ` B : Ui

Γ ` Π(A,B) : Ui

Γ ` t0 : A Γ.A ` B type Γ ` t1 : B[id.t0]
Γ ` 〈t0, t1〉 : Σ(A,B)

Γ ` t : Σ(A,B) Γ ` A type

Γ ` fst(t) : A

Γ ` t : Σ(A,B) Γ ` A type Γ.A ` B type

Γ ` snd(t) : B[id.(fst(t))]
Γ ` A : Ui Γ.A ` B : Ui

Γ ` Σ(A,B) : Ui

Γ ctx

Γ ` zero : nat

Γ ` t : nat
Γ ` succ(t) : nat

Γ.nat ` A type Γ ` tn : nat Γ ` tz : A[id.zero] Γ.nat.A ` ts : A[p2.succ(var1)]

Γ ` natrec(A, tn, tz, ts ) : A[id.tn]

Γ ctx

Γ ` nat : Ui

Γ ` T : Ui Γ ` t0, t1 : T
Γ ` Id(T , t0, t1) : Ui

Γ ` T type Γ ` t : T
Γ ` refl(t) : Id(T , t, t)

Γ ` T type Γ ` u0,u1 : T Γ.T .T [p1].Id(T [p2], var1, var0) ` C type
Γ.T ` t0 : C[id.var0.var0.refl(var0)] Γ ` t1 : Id(T ,u0,u1)

Γ ` J(C, t0, t1) : C[id.u0.u1.t1]

Γ.µ ` t : A
Γ ` [t]µ : �A

Γ ` A type Γb ` t : �A
Γ ` [t]b : A

Γ.µ ` A : Ui

Γ ` �A : Ui

Γ ctx

Γ ` Ui : Ui+1

Γ ` A : Ui

Γ ` A : Ui+1

Γ ` δ : ∆ ∆ ` t : A
Γ ` t[δ ] : A[δ ]

Γ ` A = B type Γ ` t : A
Γ ` t : B

Γ ` δ : ∆

Γ ctx ∆ ctx · Bµ ∆

Γ ` · : ∆
Γ1 ctx Γ2 ctx Γ1 Bµ Γ2

Γ1 ` id : Γ2

∆ ` T type Γ ` δ : ∆ Γ ` t : T [δ ]
Γ ` δ .t : ∆.T

Γ0 ` γ1 : Γ1 Γ1 ` γ2 : Γ2

Γ0 ` γ2 ◦ γ1 : Γ2

Γ0 ctx Γ0
b ` γ1 : Γ1

Γ0 ` γ1 : Γ1.µ

Γ0.Γ1 ctx Γ′0 ctx Γ0 Bµ Γ′0 k = ‖Γ1‖ µ < Γ1

Γ0.Γ1 ` pk : Γ′0

We omit most of the rules for de�nitional equality, which are standard, presenting only those which
pertain to the new type connectives. We have equipped both depenent function and dependent pair
types with the appropriate η rules. �e rules the � connective are speci�ed below.
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Γ ` T type ∆ ` id : Γ
∆ ` T [id] = T type

Γ0 ` γ1 : Γ1 Γ1 ` γ2 : Γ2 Γ2 ` T type

Γ0 ` T [γ2][γ1] = T [γ2 ◦ γ1] type

Γ ` t : T ∆ ` id : Γ
∆ ` t[id] = t : T

Γ0 ` γ1 : Γ1 Γ1 ` γ2 : Γ2 Γ2 ` t : T
Γ0 ` t[γ2][γ1] = t[γ2 ◦ γ1] : T [γ2 ◦ γ1]

Γ.µ ` A = B type

Γ ` �A = �B type

Γ.µ ` A = B : Ui

Γ ` �A = �B : Ui

Γ.µ ` t0 = t1 : A
Γ ` [t0]µ = [t1]µ : �A

Γ ` A type Γb ` t0 = t1 : �A
Γ ` [t0]b = [t1]b : A

Γb.µ ` t : A
Γ ` [[t]µ]b = t : A

Γ ` t : �A
Γ ` [[t]b]µ = t : �A

Γ ` δ : ∆ ∆.µ ` A type

Γ ` (�A)[δ ] = �(A[δ ]) type

Γ ` δ : ∆ ∆.µ ` t : T
Γ ` [t]µ[δ ] = [t[δ ]]µ : (�T )[δ ]

Γ ` δ : ∆ ∆b ` t : �T
Γ ` [t]b[δ ] = [t[δ ]]b : T [δ ]

�e rules for equality of substitution are largely standard, but presented in a more general way in
order to properly mediate the presence of µ.

Γ0 ` p1.var0 : Γ1 Γ0 ` id : Γ1

Γ0 ` p1.var0 = id : Γ1

Γ0 ` γ1 : Γ1 Γ1 ` γ2 : Γ2 Γ2 ` γ3 : Γ3

Γ0 ` γ3 ◦ (γ2 ◦ γ1) = (γ3 ◦ γ2) ◦ γ1 : Γ3

Γ0 ` γ1 : Γ1 Γ1 ` id : Γ2

Γ0 ` id ◦ γ1 = γ1 : Γ2

Γ0 ` id : Γ1 Γ1 ` γ2 : Γ2

Γ0 ` γ2 ◦ id = γ2 : Γ2

Γ1 ` γ2 : Γ2 Γ2 ` γ .t : Γ3

Γ1 ` (γ .t) ◦ γ2 = (γ ◦ γ2).(t[γ2]) : Γ3

Γ0 ` pn+1 : Γ1

Γ0 ` pn+1 = pn ◦ p1 : Γ1

Γ0 ` γ .t : Γ1 Γ1 ` p1 : Γ2

Γ0 ` p1 ◦ (γ .t) = γ : Γ2

1.2 Admissible rules

In this section, we prove a number of critical admissible rules which will be exploited throughout the
rest of this report. In what follows we use J to stand for any of the judgments of MLTTµ.

Proposition 1.2.1 (Lock-variable exchange). Supposing that Γ.µ ` T type holds if Γ0.T .µ.Γ1 ` J then
Γ0.µ.T .Γ1 ` J .

Proof. Proven in �eorem 1.2.7. �

Proposition 1.2.2 (Lock strengthening). If Γ0.µ.Γ1 ` J then Γ0.Γ1 ` J .

Proof. Proven in �eorem 1.2.4. �

Proposition 1.2.3 (Presuppositions).

1. If Γ ` T type then Γ ctx.

2. If Γ ` t : T then Γ ` T type.

3. If Γ0 ` δ : Γ1 then Γi ctx.

4. If Γ ` T0 = T1 type then Γ ` Ti type.
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5. If Γ ` t0 = t1 : T then Γ ` ti : T .

6. If Γ ` δ0 = δ1 : ∆ then Γ ` δi : ∆.

Proof. Proven in �eorem 1.2.16. �

�eorem 1.2.4 (Lock Strengthening).

1. If Γ0.µ.Γ1 ctx then Γ0.Γ1 ctx.

2. If Γ0.µ.Γ1 ` T type then Γ0.Γ1 ` T type.

3. If Γ0.µ.Γ1 ` T0 = T1 type then Γ0.Γ1 ` T0 = T1 type.

4. If Γ0.µ.Γ1 ` t : T then Γ0.Γ1 ` t : T .

5. If Γ0.µ.Γ1 ` t0 = t1 : T then Γ0.Γ1 ` t0 = t1 : T .

6. If Γ0.µ.Γ1 ` δ : ∆ then Γ0.Γ1 ` δ : ∆.

7. If Γ0.µ.Γ1 ` δ0 = δ1 : ∆ then Γ0.Γ1 ` δ0 = δ1 : ∆.

Proof. �ese facts must be proved mutually as these judgments are all mutual. �ey are all proven by
induction on the derivation; for brevity, we present only a few representative cases involving locks.

1. If Γ0.µ.Γ1 ctx then Γ0.Γ1 ctx.

Case.
Γ0.µ.Γ1 ctx Γ0.µ.Γ1 ` T type

Γ0.µ.Γ1.T ctx

In this case, our induction hypothesis tells us that both Γ0.Γ1 ctx and Γ0.Γ1 ` T type hold.
�erefore, we may apply the same rule to conclude that Γ0.Γ1.T ctx holds as required.

Case.
Γ0.µ.Γ1 ctx

Γ0.µ.Γ1.µ ctx

In this case, our induction hypothesis tells us that Γ0.Γ1 ctx and we wish to show that
Γ0.Γ1.µ ctx. However, this is immediate from our rules.

2. If Γ0.µ.Γ1 ` T type then Γ0.Γ1 ` T type.

Case.
Γ0.µ.Γ1 ` A type Γ0.µ.Γ1.A ` B type

Γ0.µ.Γ1 ` Π(A,B) type

In this case, we have by induction hypothesis that Γ0.Γ1 ` A type and Γ0.Γ1.A ` B type. We
wish to show that Γ0.Γ1 ` Π(A,B) type. �is, however, is again just rule.

3. If Γ0.µ.Γ1 ` T0 = T1 type then Γ0.Γ1 ` T0 = T1 type.

Case.
Γ0.µ.Γ1.µ ` T0 = T1 type

Γ0.µ.Γ1 ` �T0 = �T1 type

We have, then, by induction hypothesis Γ0.Γ1.µ ` T0 = T1 type. We wish to show that
Γ0.Γ1 ` �T0 = �T1 type. �is, again, immediately follows from our rule applied to our
induction hypothesis.
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4. If Γ0.µ.Γ1 ` t : T then Γ0.Γ1 ` t : T .

Case.
Γ0.µ.Γ1 ` T type Γ0.µ.Γ1

b ` t : �T
Γ0.µ.Γ1 ` [t]b : T

By induction hypothesis, we have Γ0.Γ1
b ` t : �T and Γ0.Γ1 ` T type. We wish to show that

Γ0.Γ1 ` [t]b : T , but this is immediate from our rules.

5. If Γ0.µ.Γ1 ` t0 = t1 : T then Γ0.Γ1 ` t0 = t1 : T .

Case.
Γ0.µ.Γ1 ` t : �A

Γ0.µ.Γ1 ` [[t]b]µ = t : �A

In this case, we have by induction hypothesis that Γ0.Γ1 ` t : �A. We wish to show that
Γ0.Γ1 ` [[t]b]µ = t : �A. We will do this by applying the same rule. However, our induction
hypotheses are precisely the premises we need, so this is immediate.

6. If Γ0.µ.Γ1 ` δ : ∆ then Γ0.Γ1 ` δ : ∆.

Case.
Γ0.µ.Γ1 ctx Γ2 ctx Γ0.µ.Γ1 Bµ Γ2

Γ0.µ.Γ1 ` id : Γ2

In this case we have by induction hypothesis that Γ0.Γ1 ctx holds. Since Γ0.µ.Γ1 Bµ Γ2 holds
we must then have Γ0.Γ1 Bµ Γ2 and so we can apply same rule to conclude Γ0.Γ1 ` id : Γ2 as
required.

Case.
Γ0.µ.Γ

′
0 .Γ1 ctx ∆ ctx Γ0.µ.Γ

′
0 Bµ ∆ µ < Γ1 k = ‖Γ1‖

Γ0.µ.Γ1 ` pk : Γ0.µ.Γ1

In this case we have by induction hypothesis that Γ0.Γ
′
0 .Γ1 ctx holds. Since Γ0.µ.Γ

′
0 Bµ ∆ holds

we must then have Γ0.Γ
′
0 Bµ ∆ and so we can apply same rule to conclude Γ0.Γ

′
0 .Γ1 ` pk : ∆

as required.
Case.

Γ0.µ.Γ1 ctx Γ0.µ.Γ1
b ` δ : ∆

Γ0.µ.Γ1 ` δ : ∆.µ

In this case we have by induction hypothesis that Γ0.Γ1 ctx holds. Since Γ0.µ.Γ1
b = Γ0.Γ1

b we
then have Γ0.Γ1

b ` δ : ∆. We then obtain the desired conclusion by applying the same rule.

7. If Γ0.µ.Γ1 ` δ0 = δ1 : ∆ then Γ0.Γ1 ` δ0 = δ1 : ∆.
All cases follow immediately from our induction hypotheses. �

Lemma 1.2.5. If Γ ` J then Γb ` J .

Proof. �is follows by induction on the number of locks in Γ and by applying �eorem 1.2.4 at each
step. �

Lemma 1.2.6.
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1. If Γ0.µ.Γ1 ctx then Γ0.µ.µ.Γ1 ctx.

2. If Γ0.µ.Γ1 ` T type then Γ0.µ.µ.Γ1 ` T type.

3. If Γ0.µ.Γ1 ` T0 = T1 type then Γ0.µ.µ.Γ1 ` T0 = T1 type.

4. If Γ0.µ.Γ1 ` t : T then Γ0.µ.µ.Γ1 ` t : T .

5. If Γ0.µ.Γ1 ` t0 = t1 : T then Γ0.µ.µ.Γ1 ` t0 = t1 : T .

6. If Γ0.µ.Γ1 ` δ : ∆ then Γ0.µ.µ.Γ1 ` δ : ∆.

7. If Γ0.µ.Γ1 ` δ0 = δ1 : ∆ then Γ0.µ.µ.Γ1 ` δ0 = δ1 : ∆.

Proof. We proceed by mutual induction on the size of the input derivation. Every case of this follows
immediately by the induction hypothesis. �

�eorem 1.2.7. Supposing that Γ0.µ ` A type holds, the following facts are true.

1. If Γ0.A.µ.Γ1 ctx then Γ0.µ.A.Γ1 ctx.

2. If Γ0.A.µ.Γ1 ` T type then Γ0.µ.A.Γ1 ` T type.

3. If Γ0.A.µ.Γ1 ` T0 = T1 type then Γ0.µ.A.Γ1 ` T0 = T1 type.

4. If Γ0.A.µ.Γ1 ` t : T then Γ0.µ.A.Γ1 ` t : T .

5. If Γ0.A.µ.Γ1 ` t0 = t1 : T then Γ0.µ.A.Γ1 ` t0 = t1 : T .

6. If Γ0.A.µ.Γ1 ` δ : ∆ then Γ0.µ.A.Γ1 ` δ : ∆.

7. If Γ0.A.µ.Γ1 ` δ0 = δ1 : ∆ then Γ0.µ.A.Γ1 ` δ0 = δ1 : ∆.

Proof. �is proof mirrors the one of �eorem 1.2.4. It is done by simultaneous induction on all the
judgments.

1. If Γ0.A.µ.Γ1 ctx then Γ0.µ.A.Γ1 ctx.
For this branch, there is only one case that does not follow by induction: namely when Γ1 = ·
and so we are considering Γ0.A.µ ctx. In this case, we have Γ0 ctx and Γ0 ` A type. We wish to
show that Γ0.µ.A ctx. First, we have Γ0.µ ctx immediately. In order to show that Γ0.µ.A ctx holds,
however, we must show that Γ0.µ ` A type holds. �is does not a-priori hold from what we have so
far, however, we assumed it in the statement of this theorem and so we may conclude Γ0.µ.A ctx.

2. If Γ0.A.µ.Γ1 ` T type then Γ0.µ.A.Γ1 ` T type.
Every single case of this part of the theorem is merely induction. To save time, therefore, I have
presented only one case.

Case.
Γ0.A.µ.Γ1.µ ` T type

Γ0.A.µ.Γ1 ` �T type

In this case, we have by induction hypothesis that Γ0.µ.A.Γ1.µ ` T type. We wish to show
Γ0.µ.A.Γ1 ` �T type. �is follows immediately by application of rule.

3. If Γ0.A.µ.Γ1 ` T0 = T1 type then Γ0.µ.A.Γ1 ` T0 = T1 type.
�is part of the theorem is identical to the case for Γ0.A.µ.Γ1 ` T type.
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4. If Γ0.A.µ.Γ1 ` t : T then Γ0.µ.A.Γ1 ` t : T .

Case.
Γ0.A.µ.Γ1.µ ` t : T
Γ0.A.µ.Γ1 ` [t]µ : �T

In this case, we have by induction hypothesis that Γ0.µ.A.Γ1.µ ` t : T . We wish to show that
Γ0.µ.A.Γ1 ` [t]µ : �T holds. �is follows immediately from the rule for [−]µ.

Case.
Γ.A.µ.Γ1 ` T type (Γ0.A.µ.Γ1)

b ` t : �T
Γ0.A.µ.Γ1 ` [t]b : T

In this case, we have by induction hypothesis that (Γ0.µ.A.Γ1)
b ` t : �T and Γ0.µ.A.Γ1 `

T type. We wish to show that Γ0.µ.A.Γ1 ` [t]b : T holds. �is follows immediately from the
rule for [−]b.

5. If Γ0.A.µ.Γ1 ` t0 = t1 : T then Γ0.µ.A.Γ1 ` t0 = t1 : T .

Case.
Γ0.A.µ.Γ1 ` t : �A

Γ0.A.µ.Γ1 ` [[t]b]µ = t : �A

In this case we have by induction hypothesis that Γ0.µ.A.Γ1 ` t : �A. �erefore, by application
of our rules we have Γ0.µ.A.Γ1 ` [[t]b]µ = t : �A

Case.
(Γ0.A.µ.Γ1)

b.µ ` t : A
Γ0.A.µ.Γ1 ` [[t]µ]b = t : A

We need to show Γ0.µ.A.Γ1 ` [[t]µ]b = t : A; applying the same rule, it su�ces to show that
(Γ0.µ.A.Γ1)

b.µ ` t : A. Observing that (Γ0.µ.A.Γ1)
b = (Γ0.A.µ.Γ1)

b, we see that we can just
use our existing premise.

6. If Γ0.A.µ.Γ1 ` δ : ∆ then Γ0.µ.A.Γ1 ` δ : ∆.

Case.
Γ0.A.µ.Γ1 ctx ∆ ctx Γ0.A.µ.Γ1 Bµ ∆

Γ0 ` id : ∆

In this case we have Γ0.µ.A.Γ1 ctx and ∆ ctx. It therefore su�ces to show that Γ0.µ.A.Γ1 Bµ ∆.
However, this follows from the fact that Γ0.A.µ.Γ1 Bµ ∆ holds. �erefore, we are done by
applying the rule for id.

7. If Γ0.A.µ.Γ1 ` δ0 = δ1 : ∆ then Γ0.µ.A.Γ1 ` δ0 = δ1 : ∆.
All cases here follow from the induction hypotheses. �

Lemma 1.2.8. If Γ ctx and Γb.µ ` J then Γ.µ ` J .

Proof. �is follows by induction on Γ and by applying �eorems 1.2.4 and 1.2.7 and Lemma 1.2.6 at each
step. �

In order to prove the remaining facts, we �rst need the following “li�ing theorem” regarding
substitutions.
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Lemma 1.2.9. If Γ ` δ : ∆ then Γb ` δ : ∆b

Proof. We proceed by induction on the derivation of Γ ` δ : ∆.

Case.
Γ0 ctx Γ1 ctx Γ0 Bµ Γ1

Γ0 ` id : Γ1

It is simple to see by induction that if Γ0 Bµ Γ1 holds then Γ0
b = Γ1

b. Since, by Lemma 1.2.5, we
have Γ0

b ctx we then have Γ0
b ` id : Γ1

b immediately by applying this rule.

Case.
Γ ctx ∆ ctx · Bµ ∆

Γ ` · : ∆

In this case, we have no induction hypothesis and our goal is to show that Γb ` · : ∆b. Simple
induction tells us that ∆b = ·. �erefore, we merely need to show Γb ` · : · and this follows from
immediately from our rule together with Lemma 1.2.5.

Case.
∆ ` T type Γ ` δ : ∆ Γ ` t : T [δ ]

Γ ` δ .t : ∆.T

In this case, our induction hypothesis states that Γb ` δ : ∆b and we wish to show that Γb `
δ .t : ∆.Tb. First, we note that ∆.Tb = ∆b.T . �us, we apply the rule for adjoining a term to a
substitution. We must show that the following hold:

Γb ` t : T [δ ]
Γb ` t : ∆b

(∆.T )b ctx (which is equivalent to ∆b.T ctx)

However, we have the �rst by assumption and Lemma 1.2.5, the next is our induction hypothesis
and the last follows again from Lemma 1.2.5 and our assumption that ∆.T ctx.

Case.
Γ0 ` δ0 : Γ1 Γ1 ` δ1 : Γ2

Γ0 ` δ1 ◦ δ0 : Γ2

By induction hypothesis we have Γ0
b ` δ0 : Γ1

b and Γ1
b ` δ1 : Γ2

b. However, we then just apply
the composition rule again to obtain Γ0

b ` δ1 ◦ δ0 : Γ2
b as required.

Case.
Γ0 ctx Γ0

b ` δ : Γ1

Γ0 ` δ : Γ1.µ

By induction hypothesis, we have that Γ0
b ` δ : Γ1

b. However, since Γ1.µ
b = Γ1

b this immediately
gives us the desired conclusion when Lemma 1.2.5 is applied to Γ0 ctx.

Case.
Γ0.Γ1 ctx ∆ ctx k = ‖Γ1‖ Γ0 Bµ ∆ µ < Γ1

Γ0.Γ1 ` pk : ∆

In this case, we have no induction hypothesis but we will show that Γ0.Γ1
b ` pk : ∆b by application

of the same rule. We have that µ < Γ1
b and ‖Γ1‖ = k immediately. All we need to show is that

Γ0.Γ1
b ctx and Γ0

b Bµ ∆b. �e �rst follows from Lemma 1.2.5 and our assumption that Γ0.Γ1 ctx.
�e second follows from the fact that we must have Γ0

b = ∆b as Γ0 Bµ ∆ holds. �
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Lemma 1.2.10. If Γ ` δ0 = δ1 : ∆ then Γb ` δ0 = δ1 : ∆b

Proof. Proceeds by induction on the derivation and follows directly from Lemmas 1.2.5 and 1.2.9. �

Lemma 1.2.11. If Γ ` δ : ∆.µ then Γb ` δ : ∆.

Proof. We proceed by induction on Γ ` δ : ∆.µ. Only a few cases apply:

Case.
∆ ctx Γ.µ ctx ∆ Bµ Γ.µ

∆ ` id : Γ.µ

In this case we wish to show ∆b ` id : Γ but this is immediate by Lemma 1.2.5.

Case.
∆ ctx Γ.µ ctx · Bµ Γ.µ

∆ ` · : Γ.µ

In this case we wish to show ∆b ` · : Γ. However, it must be that · Bµ Γ by simple induction.
�erefore, we have our goal by applying the same rule and using Lemma 1.2.5.

Case.
Γ0 ` δ0 : Γ1 Γ1 ` δ1 : Γ2.µ

Γ0 ` δ1 ◦ δ0 : Γ2.µ

In this case we wish to show Γ0
b ` δ1 ◦ δ0 : Γ2. We have Γ1

b ` δ1 : Γ2 by induction hypothesis. By
Lemma 1.2.8 and Γ0 ` δ0 : Γ1 we have Γ0

b ` δ0 : Γ1
b. �erefore, by the rule for composition we

have Γ0
b ` δ1 ◦ δ0 : Γ2 as required.

Case.
Γ0 ctx Γ0

b ` δ : Γ1

Γ0 ` δ : Γ1.µ

In this case we wish to show Γ0
b ` δ : Γ1 but this is immediate by assumption.

Case.
Γ0.Γ1 ctx k = ‖Γ1‖ Γ0 Bµ Γ′0 µ < Γ1

Γ0.Γ1 ` pk : Γ′0 .µ

In this case we wish to show to show Γ0.Γ1
b ` pk : Γ′0 .µ. However, we have that Γ0.Γ1

b ctx by
Lemma 1.2.5 and Γ0

b Bµ Γ′0 by de�nition. Finally, ‖Γ1
b‖ = ‖Γ1‖ so the goal is immediate. �

Lemma 1.2.12. Suppose ∆ ` δ : Γ0.µ.T .Γ1 and Γ0.T .µ.Γ1 ctx, then ∆ ` δ : Γ0.T .µ.Γ1

Proof. We proceed by induction over the input derivation.

Subcase.
Γ ctx ∆0.µ.T .∆1 ctx · Bµ ∆0.µ.T .∆1

Γ ` · : ∆0.µ.T .∆1

In this case we have a contradiction: · Bµ ∆0.µ.T .∆1 cannot hold.

Subcase.
Γ0 ctx ∆0.µ.T .∆1 ctx Γ0 Bµ ∆0.µ.T .∆1

Γ0 ` id : ∆0.µ.T .∆1

We wish to show Γ0 ` id : ∆0.T .µ.∆1. We have ∆0.T .µ.∆1 ctx by assumption. Furthermore we
have ∆0.µ.T .∆1 Bµ ∆0.T .µ.∆1. �erefore our goal follows immediately from the same rule and
the fact that − Bµ − is transitive.
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Subcase.
∆ ` T type Γ ` δ : ∆ Γ ` t : T [δ ]

Γ ` δ .t : ∆.T

Now there are two cases to consider here, either ∆ = ∆′.µ and we wish to prove Γ ` δ .t : ∆′.T .µ
or ∆ = ∆0.µ.T

′.∆1 and we wish to prove Γ ` δ .t : ∆0.T
′.µ.∆1.T .

Recall that we also have ∆′.T .µ ctx in the �rst case and ∆0.T
′.µ.∆1.T ctx in the second case.

In the �rst case, we observe that it su�ces to show Γb ` δ .t : ∆′.T . For this, we observe that we
have by assumption that ∆′.µ ` T type and so ∆′ ` T type must hold by �eorem 1.2.4. We have
that Γb ` t : T [δ ] from our assumption and Lemma 1.2.5. Finally, we must show Γb ` δ : ∆′ but
this follows from Lemma 1.2.11.
For the second case, we have by induction hypothesis Γ ` δ : ∆0.T

′.µ.∆1. We also have that
∆0.T

′.µ.∆1 ` T type from ∆0.T
′.µ.∆1.T ctx. �erefore, we may apply the same rule to obtain the

desired goal.

Subcase.
Γ0 ` δ0 : Γ1 Γ1 ` δ1 : Γ2

Γ0 ` δ1 ◦ δ0 : Γ2

�is is immediate by induction hypothesis.

Subcase.
Γ0 ctx Γ0

b ` δ : Γ1

Γ0 ` δ : Γ1.µ

�is is immediate by induction hypothesis.

Subcase.
Γ0.Γ1 ctx ∆0.µ.T .∆1 ctx Γ0 Bµ ∆0.µ.T .∆1 k = ‖Γ1‖ µ < Γ1

Γ0.Γ1 ` pk : ∆0.µ.T .∆1

We wish to show Γ0.Γ1 ` pk : ∆0.T .µ.∆1. We have by assumption that Γ0.Γ1 ctx and ∆0.T .µ.∆1 ctx
hold. Furthermore, we know that ∆0.µ.T .∆1 Bµ ∆0.T .µ.∆1 holds by de�nition. �e goal then
follows immediately from the same rule and the fact that − Bµ − is transitive. �

Lemma 1.2.13. Suppose ∆ ` δ : Γ0.µ.µ.Γ1 and Γ0.µ.Γ1 ctx then ∆ ` δ : Γ0.µ.Γ1

Proof. �is is immediate by induction on the input derivation from the fact that the−b is idempotent. �

Lemma 1.2.14. Suppose ∆ ` δ : Γ0.Γ1 and Γ0.µ.Γ1 ctx, then ∆ ` δ : Γ0.µ.Γ1

Proof. �is is immediate by induction on the input derivation and from Lemma 1.2.5. �

Lemma 1.2.15. If Γ1 ` id : Γ2 then the following facts hold.

1. If Γ0 ctx and Γ0 ` δ : Γ1 then Γ0 ` δ : Γ2.

2. For any Γ if Γi .Γ ctx and Γ2.Γ ` J then Γ1.Γ ` J .

Proof. �is proof proceeds by induction on the derivation of Γ1 ` id : Γ2.

Case.
Γ1 ctx Γ2 ctx Γ1 Bµ Γ2

Γ1 ` id : Γ2
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1. �is is just an application of Lemmas 1.2.12 to 1.2.14.
2. �is is just an application of �eorems 1.2.4 and 1.2.7 and Lemma 1.2.6.

Case.
Γ1 ctx Γ1

b ` id : Γ′2
Γ1 ` id : Γ′2 .µ

In this case we have by induction hypothesis that the following facts hold:

If Γ0 ctx and Γ0 ` δ : Γ1
b then Γ0 ` δ : Γ′2 .

For any Γ if Γ′2 .Γ ` J , Γ1.Γ ctx, and Γ′2 .Γ ctx, then Γ1
b.Γ ` J .

We wish to show the following:

If Γ0 ctx and Γ0 ` δ : Γ1 then Γ0 ` δ : Γ′2 .µ.
For any Γ if Γ′2 .µ.Γ ` J Γ1.Γ ctx, and Γ′2 .µ.Γ ctx, then Γ1.Γ ` J .

For the �rst item, we observe that if Γ0 ` δ : Γ1 then Γ0
b ` δ : Γ′1b from Lemma 1.2.9. Next, we

then have by our induction hypothesis that Γ0
b ` δ : Γ′2 since Γ0

b ctx by Lemma 1.2.5. Next, from
straightforward application of our rules we have Γ0 ` δ : Γ′2 .µ as required.

For the second item, suppose that Γ′2 .µ.Γ ` J for some Γ. We wish to show that Γ1.Γ ` J . In
order to show this, we instantiate our induction hypothesis with µ.Γ. We then have Γ1

b.µ.Γ ` J . By
Lemma 1.2.8 and �eorem 1.2.4 we then have Γ1.Γ ` J . �

�eorem 1.2.16.

1. If Γ ` T type then Γ ctx.

2. If Γ ` t : T then Γ ` T type.

3. If Γ1 ` δ : Γ2 then Γi ctx.

4. If Γ ` T1 = T2 type then Γ ` Ti type.

5. If Γ ` t1 = t2 : T then Γ ` ti : T .

6. If Γ ` δ1 = δ2 : ∆ then Γ ` δi : ∆.

Proof. �is theorem is largely standard except for the cases concerning substitutions and �. We therefore
only show these cases.

1. If Γ ` T type then Γ ctx.

Case.
Γ.µ ` A type

Γ ` �A type

In this case we have by induction hypothesis that Γ.µ ctx. We wish to show that Γ ctx
however this follows by induction on the derivation of Γ.µ ctx.

2. If Γ ` t : T then Γ ` T type.
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Case.
Γ ` A type Γb ` t : �A

Γ ` [t]b : A

In this case we have by assumption that Γ ` A type. Notice that this assumption is necessary
here because we only have by induction hypothesis that Γb ` �A type. Since this could have
come from the universe rule, it is di�cult to obtain Γb.µ ` A type which would give us the
conclusion.

Case.
Γ.µ ` t : A
Γ ` [t]µ : �A

In this case we have by induction hypothesis that Γ.µ ` A type. �erefore, by rule we have
the goal: Γ ` �A type.

3. If Γ1 ` δ : Γ2 then Γi ctx.

Case.
Γ ctx ∆ ctx · Bµ ∆

Γ ` · : ∆

In this case we have Γ ctx and ∆ ctx and we wish to show that Γ ctx and ∆ ctx. Immediate.
Case.

∆ ctxT Γ ` δ : ∆ Γ ` t : T [δ ]
Γ ` δ .t : ∆.T

In this case we have Γ ctx by induction hypothesis and ∆.T ctx by assumption. We wish to
show that Γ ctx and ∆.T ctx. Immediate.

Case.
Γ1 ` δ1 : Γ2 Γ2 ` δ2 : Γ3

Γ1 ` δ2 ◦ δ1 : Γ3

In this case we have Γ1 ctx by induction hypothesis and Γ3 ctx by assumption. We wish to
show that Γ1 ctx and Γ3 ctx. Immediate.

Case.
Γ1 ctx Γ1

b ` δ : Γ2

Γ1 ` δ : Γ2.µ

In this case we have Γ2 ctx by induction hypothesis and Γ1 ctx by assumption. �is is precisely
the goal however.

Case.
Γ1.Γ2 ctx ∆ ctx Γ1 Bµ ∆ k = ‖Γ2‖ µ < Γ2

Γ1.Γ2 ` pk : ∆

In this case we have Γ1.Γ2 ctx and ∆ ctx by assumption.

4. If Γ ` T1 = T2 type then Γ ` Ti type.

Case.
Γ ` δ : ∆ ∆.µ ` A type

Γ ` (�A)[δ ] = �(A[δ ]) type
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In this case we must show that Γ ` (�A)[δ ] type and Γ ` �(A[δ ]) type. �e �rst one follows
immediately by application of rules since ∆ ` �A type follows directly from our assumptions.
For the second, �rst observe that Γ.µ ` δ : ∆.µ by application of rule and Lemma 1.2.5.
�erefore, Γ.µ ` A[δ ] type and so Γ ` �(A[δ ]) type

5. If Γ ` t1 = t2 : T then Γ ` ti : T .

Case.
Γb.µ ` t : A

Γ ` [[t]µ]b = t : A
In this case, we wish to show that Γ ` t : A and Γ ` [[t]µ]b : A. In order to do this, �rst
observe that by Lemma 1.2.8 we have Γ.µ ` t : A. �erefore, by �eorem 1.2.4 there is a
proof that Γ ` t : A. For the second goal, we apply the intro rule for [−]b so we must show
Γb ` [t]µ : �A. However, this follows from Γb.µ ` t : A which is precisely our assumption.

Case.
Γ.µ ` A type Γ ` t : �A

Γ ` [[t]b]µ = t : �A
In this case we wish to show that Γ ` t : �A and Γ ` [[t]b]µ : �A. �e �rst is immediate
by assumption. For the second, we must show that Γ ` [[t]b]µ : �A. By application of
the introduction rules, it su�ces to show that Γb ` t : A. However, this follows from
Lemma 1.2.5 applied to Γ ` t : A.

Case.
Γ ` δ : ∆ ∆.µ ` t : T

Γ ` [t]µ[δ ] = [t[δ ]]µ : (�T )[δ ]
In this case, we wish to show that Γ ` [t]µ[δ ] : (�T )[δ ] and Γ ` [t[δ ]]µ : (�T )[δ ].
For the �rst one, we see by the application of the [−]µ rule that ∆ ` [t]µ : �T . Next, we have
by the explicit substitution rule that Γ ` [t]µ[δ ] : (�T )[δ ].
For the second goal, we note that we have by Lemma 1.2.5 that Γb ` δ : ∆. �erefore, we
have Γ.µ ` δ : ∆.µ immediately. We can then apply the explicit substitution rule to conclude
that Γ.µ ` t : T [δ ]. Next, we apply the rule for [−]µ to get Γ ` [t]µ : �(T [δ ]). Finally, we
observe that by the conversion rule we then have Γ ` [t]µ : (�T )[δ ].

Case.
Γ ` δ : ∆ ∆b ` t : �T
Γ ` [t]b[δ ] = [t[δ ]]b : T [δ ]

In this case, we wish to show that Γ ` [t]b[δ ] : T [δ ] and Γ ` [t[δ ]]b : T [δ ].
For the �rst one, we see by the application of the [−]b rule that ∆ ` [t]b : T . Next, we have
by the explicit substitution rule that Γ ` [t]b[δ ] : T [δ ].
For the second goal, we note that we have by Lemma 1.2.9 that Γb ` δ : ∆b. We can then
apply the explicit substitution rule to conclude the following: Γb ` t : T [δ ]. Next, we apply
the rule for [−]b to get Γ ` [t]b : T [δ ].

6. If Γ ` δ1 = δ2 : ∆ then Γ ` δi : ∆.

Case.
Γ1 ` δ1 : Γ2 Γ2 ` δ2 : Γ3 Γ3 ` δ3 : Γ4

Γ1 ` δ3 ◦ (δ2 ◦ δ1) = (δ3 ◦ δ2) ◦ δ1 : Γ4

In this case we must show that Γ1 ` δ3 ◦ (δ2 ◦ δ1) : Γ4 and Γ1 ` (δ3 ◦ δ2) ◦ δ1 : Γ4. We have
by assumption that Γi ` δi : Γi+1, so both of these cases are immediate by the rule for
composition.
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Case.
Γ1 ` δ : Γ2 Γ2 ` id : Γ3

Γ1 ` id ◦ δ = δ : Γ3

In this case, we wish to show Γ1 ` id ◦ δ : Γ3 and Γ1 ` δ : Γ3. We have by assumption that
Γ1 ` δ : Γ2 and Γ2 ` id : Γ3. �e �rst goal is immediate by the rule for composition. For the
second goal, we use Lemma 1.2.15 to conclude that Γ1 ` δ : Γ3.

Case.
Γ1 ` id : Γ2 Γ2 ` δ : Γ3

Γ1 ` δ ◦ id = δ : Γ3

In this case, we wish to show Γ1 ` δ ◦ id : Γ3 and Γ1 ` δ : Γ3. We have by assumption that
Γ2 ` δ : Γ3 and Γ1 ` id : Γ2. �e �rst goal is immediate by the rule for composition. For the
second goal, we use Lemma 1.2.15 to conclude that Γ1 ` δ : Γ3.

Case.
Γ1 ` δ1 : Γ2 Γ2 ` δ2.t : Γ3

Γ1 ` (δ2.t) ◦ δ1 = (δ2 ◦ δ1).(t[δ1]) : Γ3

We have by assumption that Γ1 ` δ1 : Γ2 and Γ2 ` δ2.t : Γ3. We wish to show Γ1 ` (δ2.t) ◦ δ1 : Γ3
and Γ1 ` (δ2 ◦ δ1).(t[δ1]) : Γ3. �e �rst goal is immediate from our assumptions and the rule
for composition. We focus then on the second goal.
In order to show this, we proceed by induction on Γ2 ` δ2.t : Γ3.
Case.

Γ′3 .T ctx Γ2 ` δ2 : Γ′3 Γ2 ` t : T [δ2]

Γ2 ` δ2.t : Γ′3 .T

In this case, we wish to show the following:

Γ1 ` (δ2 ◦ δ1).(t[δ1]) : Γ′3 .T

First, observe that by the rule for composition we have Γ1 ` δ2 ◦ δ1 : Γ′3 . Next, by the
rule for explicit substitutions, we have Γ2 ` t[δ1] : T [δ2][δ1] and so by conversion,
Γ2 ` t[δ1] : T [δ2 ◦ δ1]. �erefore, by the rule for extension: Γ1 ` (δ2 ◦ δ1).(t[δ1]) : Γ′3 .T
as required.

Case.
Γ2 ctx Γ2

b ` δ2.t : Γ′3
Γ2 ` δ2.t : Γ′3 .µ

In this case, we have by induction hypothesis that the following holds:

Γ2
b ` (δ2 ◦ δ1).t[δ1] : Γ′3

�erefore, we have Γ2 ` (δ2 ◦ δ1).t[δ1] : Γ′3 .µ from application of our rules.
Case.

Γ1 ` pn+1 : Γ2

Γ1 ` pn+1 = pn ◦ p1 : Γ2

In this case we have by assumption that Γ1 ` pn+1 : Γ2 and we wish to show Γ1 ` pn+1 : Γ2
and Γ1 ` pn ◦ p1 : Γ2. �e �rst of these conclusions is immediate. For the second goal, we
proceed by induction on Γ1 ` pn+1 : Γ2.
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Case.
Γ′1 .Γ

′′
1 ctx ∆ ctx Γ′1 Bµ ∆ n + 1 = ‖Γ′′1 ‖ µ < Γ′′1

Γ′1 .Γ
′′
1 ` p

n+1 : ∆
Note that here ∆ = Γ2.
In this case, note that Γ′′1 = Ξ.T for some Ξ of length n. We can therefore derive that
Γ′1 .Γ

′′
1 ` p

1 : Γ′1 .Ξ and Γ′1 .Ξ ` p
n : ∆. By the rules for composition we have the desired

goal.
Case.

Γ1 ctx Γ1
b ` pn+1 : Γ′2

Γ1 ` pn+1 : Γ′2 .µ
In this case, we have by induction hypothesis that Γ1

b ` pn ◦ p1 : Γ′2 .µ. We then have
Γ1 ` pn ◦ p1 : Γ′2 .µ by applying a rule.

Case.
Γ1 ` δ .t : Γ2 Γ2 ` p1 : Γ3

Γ1 ` p1 ◦ (δ .t) = δ : Γ3

In this case, we have by Γ1 ` δ .t : Γ2 and Γ2 ` p1 : Γ3. We wish to show Γ1 ` p1 ◦ (δ .t) : Γ3 and
Γ1 ` δ : Γ3. �e �rst goal is immediate from our assumptions. We merely need to show the
la�er.
In order to show this, we will show by induction on the size of the derivation Γ2 ` p1 : Γ3
that if Γ1 ` δ .t : Γ2 then Γ1 ` δ : Γ3.
We proceed by case on the derivation of Γ1 ` δ .t : Γ2.
Subcase.

Γ′2 .T ctx Γ1 ` δ : Γ′2 Γ1 ` t : T [δ ]
Γ1 ` δ .t : Γ′2 .T

In this case, we have Γ1 ` δ : Γ′2 . We now need to show that Γ1 ` δ : Γ3. In order to do
this, we will prove that Γ′2 ` id : Γ3 by induction on Γ′2 .T ` p

1 : Γ3. �e result will then
Lemma 1.2.15.
Subsubcase.

Γ′2 .T ctx ∆ ctx Γ′2 Bµ ∆

Γ′2 .T ` p
1 : ∆

In this case, we observe that we are trying to show Γ′2 ` id : ∆ but this is immediate
from the assumptions we have and the rule for id.

Subsubcase.
Γ2 ctx Γ′2

b.T ` p1 : Γ′3
Γ′2 .T ` p

1 : Γ′3 .µ
In this case, we have Γ2

b ` id : Γ′3 and so we have Γ2 ` id : Γ′3 .µ from our assumption
of Γ2 ctx and the same rule.

Subcase.
Γ1 ctx Γ1

b ` δ .t : Γ′2
Γ1 ` δ .t : Γ′2 .µ

In this case we have Γ′2 .µ ` p1 : Γ3 and we wish to show Γ1 ` δ : Γ3. Inversion on
the former tells us that it must be that Γ3 = Γ′3 .µ and that there is a strictly smaller
derivation Γ2

b ` p1 : Γ′3 .
�erefore, it su�ces to show Γ1

b ` δ : Γ′3 in order to establish our goal. We know that
Γ1

b ` δ .t : Γ′2b by Lemma 1.2.9. We then apply our induction hypothesis we our strictly
smaller derivation of Γ2

b ` p1 : Γ′3 . �.



2 Computing in MLTTµ

2.1 Semantic domain

We now de�ne the semantic domains in which MLTTµ programs compute. We diverge from the
standard presentation of normalization by evaluation in terms of partial applicative structures by
actively distinguishing between closure instantiation and the partial application operation. Colors are
used to distinguish between all the di�erent domains; the color of an identi�er is part of its lexical
meaning, making A,A distinct metavariables.

(values) A,u F ↑A e | λ(f ) | Π(A,B) | zero | succ(v) | nat | 〈v1,v2〉 | Σ(A,B)
�A | shut(v) | Ui | Id(A,v1,v2) | re�(v)

(neutrals) e F vark | e .app(d) | e .fst | e .snd | e .open | e .natrec(A,v, f )
e .J(C, f ,A,v1,v2)

(environments) ρ F · | ρ.v
(closures) A, f F tCρ
(normals) d F ↓Av

2.2 Semantic partial operations

Elements of the semantic domains are animated through partial operations, such as evaluation of terms,
application of values, etc. In this section, we de�ne the graphs of these partial operations inductively.

ntoρ = v

eval/var
ρ(i) = v

nvarioρ = v
eval/nat

nnatoρ = nat

eval/zero

nzerooρ = zero

eval/succ
ntoρ = u

nsucc(t)oρ = succ(u)

eval/natrec
nzoρ = vz nnoρ = n natrec(ACρ,vz, sCρ,n) = v

nnatrec(A, z, s,n)oρ = v

eval/pi
nAoρ = A

nΠ(A,B)oρ = Π(A,BCρ)

eval/lam
nλ(t)oρ = λ(tCρ)

eval/app
nsoρ = u ntoρ = v app(u,v) = w

ns(t)oρ = w

eval/sig
nAoρ = A

nΣ(A,B)oρ = Σ(A,BCρ)

eval/fst
ntoρ = v fst(v) = v1

nfst(t)oρ = v1

eval/snd
ntoρ = v snd(v) = v2

nsnd(t)oρ = v2

eval/uni

nUioρ = Ui

eval/box
nAoρ = A

n�Aoρ = �A

16
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eval/shut
ntoρ = v

n[t]µoρ = shut(v)

eval/open
ntoρ = v open(v) = v ′

n[t]boρ = v ′

eval/esubst
nδoρ = ρ ′ ntoρ′ = v

nt[δ ]oρ = v

nToρ = A nt0oρ = v0 ntioρ = vi
nId(T , t0, t1)oρ = Id(A,v0,v1)

ntoρ = v
nrefl(t)oρ = re�(v)

nt2oρ = u J(CCρ, t1Cρ,u) = v

nJ(C, t1, t2)oρ = v

f [w1, ...,wn] = v

inst/clo
ntoρ .w1 ...wn = v

(tCρ)[w1, ...,wn] = v

nδoρ1 = ρ2

eval/id

nidoρ = ρ
eval/emp

n·oρ = ·

eval/ext
nδoρ1 = ρ2 ntoρ1 = v

nδ .toρ1 = ρ2.v

eval/proj

npnoρ .v1 ...vn = ρ

eval/compose
nδ1oρ1 = ρ2 nδ2oρ2 = ρ3

nδ2 ◦ δ1oρ1 = ρ3

app(u,v) = w

app/lam
f [v] = w

app(λ(f ),v) = w

app/shift
B[v] = Bv

app(↑Π(A,B) e,v) = ↑Bv e .app(↓Av)

J(C, f ,v) = u

J/refl
f [v] = u

J(C, f , re�(v)) = u

J/shift
C[u1,u2, ↑

Id(A,u1,u2) e] = B

J(C, f , ↑Id(A,u1,u2) e) = ↑B e .J(C, f ,A,u1,u2)

fst(v) = v1

fst(〈v1,v2〉) = v1 fst(↑Σ(A,B) e) = ↑A e .fst

snd(v) = v2

snd(〈v1,v2〉) = v2

B[↑A e .fst] = B′

snd(↑Σ(A,B) e) = ↑B
′

e .snd
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natrec(A,vz, fs ,n) = v

natrec(A,vz, fs , zero) = vz

natrec(A,vz, fs ,n) = vp fs [n,vp ] = v

natrec(A,vz, fs , succ(n)) = v

A[n] = A′

natrec(A,vz, fs , ↑nat e) = ↑A
′

e .natrec(A,vz, fs )

open(v1) = v2

open(shut(v)) = v open(↑�A e) = ↑A e .open

dden = t

rb/fun
B[varn] = B′

app(v, ↑A varn) = b d↓B
′

ben+1 = t

d↓Π(A,B)ven = λ(t)

rb/pair
fst(v) = l snd(v) = r B[l] = B′ d↓A len = t1 d↓B

′

ren = t2

d↓Σ(A,B)ven = (t1, t2)

rb/refl
d↓A uen = t

d↓Id(A,v1,v2) re�(u)en = refl(t)

rb/zero

d↓nat zeroen = zero

rb/succ
d↓natven = t

d↓nat succ(v)en = succ(t)

rb/shut
open(v) = v ′ d↓Av ′en = t

d↓�Aven = [t]µ

rb/nat/ne
deen = t

d↓nat ↑B een = t

rb/id/ne
deen = t

d↓Id(A,u0,u1) ↑B een = t

rb/ne
deen = t

d↓↑
Ce ′ ↑B een = t

rb/tp
dve

ty
n = A

d↓Ui ven = A

deen = t

rb/app
deen = s dden = t

de .app(d)en = s(t)

rb/var

dvark en = varn−(k+1)

rb/fst
deen = t

de .fsten = fst(t)

rb/snd
deen = t

de .snden = snd(t)

rb/J
C[varn, varn+1, varn+2] = Cд
dCдe

ty
n+3 = C C[varn, varn, re�(n)] = Cr f [varn] = v d↓Cr ven+1 = t1 deen = t2

de .J(C, f ,A,u1,u2)en = J(C, t1, t2)
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rb/open
deen = t

de .openen = [t]b

rb/natrec
A[↑nat varn] = A′ dA′e

ty
n+1 = A A[zero] = Az d↓Az vzen = z

A[succ(varn)] = As fs [↑
nat varn, ↑A

′

varn+1] = vs d↓As vs en+2 = s deen =m

de .natrec(A,vz, fs )en = natrec(A, z, s,m)

dve
ty
n = t

rb/val/ne
deen = t

d↑A ee
ty
n = t

rb/nat

dnatetyn = nat

rb/pi
dAe

ty
n = A B[↑A varn] = B′ dB′e

ty
n+1 = B

dΠ(A,B)etyn = Π(A,B)

rb/id
dAe

ty
n = T d↓Av1en = t1 d↓Av2en = t2

dId(A,v1,v2)e
ty
n = Id(T , t1, t2)

rb/sig
dAe

ty
n = A B[↑A varn] = B′ dB′e

ty
n+1 = B

dΣ(A,B)etyn = Σ(A,B)

rb/box
dAe

ty
n = A

d�Ae
ty
n = �A

rb/uni

dUi en = Ui

Reflecting contexts

Context length ‖Γ‖ is the number of cells in the context, not including locks. A context is re�ected as
follows:

↑Γ = ρ

reflect/emp
↑· = ·

reflect/snoc/var
↑Γ = ρ nToρ = A

↑Γ.T = ρ.↑A var‖Γ ‖

reflect/snoc/lock
↑Γ = ρ

↑Γ.µ = ρ

The full normalization algorithm

�e full algorithm is then de�ned as follows:

↑Γ = ρ nAoρ = A ntoρ = v d↓Ave‖Γ ‖ = t ′

nbeAΓ (t) = t ′

Miscellaneous lemmas

Lemma 2.2.1. Suppose nMoρ = v , and ρ ′ is an extension of the environment ρ such that |ρ ′ | − |ρ | =m.
�en also nM[pm]oρ′ = v .
Proof. nM[pm]oρ′ = v holds if npmoρ′ = ρ ′′ and nMoρ′′ = v . Observe that npmoρ′ = ρ because
ρ ′ = ρ .v1...vm . Next, we have by assumption nMoρ = v we therefore may conclude nM[pm]oρ′ = v as
required. �
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2.3 Determinism

At this point it is possible to prove determinism of the judgments by simple induction. In all situations
there should only be one applicable rule. �is does not guarantee termination or that the algorithm is in
any way correct, but it justi�es the abuse of notation we shall adopt from now on. Henceforth we will
write partial functions for several of the judgments. For instance, we �x the following notations:

open(u) for the unique v such that open(u) = v when such a v exists;

f [v] for the unique u such that f [v] = u;

fst(v) for the unique u such that fst(v) = u;

snd(v) for the unique u such that snd(v) = u;

app(v0,v1) for the unique u such that app(v1,v2) = u;

We will also write ntoρ for the unique result, v , of ntoρ = v and likewise nδoρ = ρ ′ when nδoρ = ρ ′.



3 Completeness of Normalization

�e correctness of the normalization algorithm de�ned in Chapter 2 is split into two main parts:
completeness and soundness. Completeness is proved by constructing a model of MLTTµ in partial
equivalence relations (PERs), and soundness is proved using a logical relations argument that glues the
PER model together with the syntax of MLTTµ.

3.1 PER model

Neutrals and normals

�e main lemma used to establish completeness is that every type speci�es a PER which lies between
the PERs of neutrals and normals, which we de�ne below.

∀n. ∃t . de0en = t ∧ de1en = t

e0 ∼ e1 ∈ Ne

∀n. ∃t . dd0en = t ∧ dd1en = t

d0 ∼ d1 ∈ Nf

∀n. ∃A. dA0e
ty
n = A ∧ dA1e

ty
n = A

A0 ∼ A1 ∈ Ty

PERs for types

We construct a model of type theory in Kripke partial equivalence relations over an arbitrary non-empty
poset P; the main part of the construction is to develop a countable hierarchy of type universes, which we
do in a style which �rst appeared in in Allen [All87], and has been used in three successful formalization
e�orts [AR14; WB18; SH18a].

�e construction of the type hierarchy can be seen as an instance of induction-recursion1, but we
�nd it more clear to work concretely in terms of �xed-points on the complete la�ice of subsets of the
product of values (types) and binary relations on values in our domain indexed over P. �e indexing
allows us to model � in an interesting and nontrivial way. We begin by de�ning a few of the critical
domains for our construction:

Rel = P(P × Val × Val) (step-indexed relation)
SFam = P→ Rel (indexed relations)
Fam = Val × Val→ Rel (family of relations)
Sys = P(P × Val × Val × Rel) (type system)

Next, we de�ne some notation for working with these domains:

τ (n,A0,A1,R)

τ |=n A0 ∼ A1 ↓ R
=======================

∃R. τ |=n A0 ∼ A1 ↓ R

τ |=n A0 ∼ A1
============================

R(n,v0,v1)

n 
 v0 ∼ v1 ∈ R
====================

∀m ≤ n. ∀v0,v1.m 
 v0 ∼ v1 ∈ R =⇒ τ |=m B0[v0] ∼ B1[v1] ↓ S

τ |=n R � B0 ∼ B1 ↓ S
======================================================================================

1In fact, it was the �rst instance!

21
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Notation 3.1.1 (Fiber of a relation). For an indexed relation R ∈ Rel, we will o�en write Rn for its �ber
{(u0,u1) | n 
 u0 ∼ u1 ∈ R}.

De�nition 3.1.2 (Partial equivalence relation). An indexed relation R ∈ Rel is called symmetric when
each �ber Rn is a symmetric relation on Val × Val; likewise, it is called transitive when each �ber is
transitive. R is called a partial equivalence relation (PER) when it is both symmetric and transitive.

De�nition 3.1.3 (Monotonicity). A relation R ∈ Rel is called monotone i� whenever m ≤ n, then
Rn ⊆ Rm .

De�nition 3.1.4 (Compatibility). A relation R ∈ Rel is compatible for (A0,A1) if the following two
properties hold:

1. If e0 ∼ e1 ∈ Ne then n 
 ↑A0 e0 ∼ ↑
A1 e1 ∈ R for all n.

2. If n 
 v0 ∼ v1 ∈ R then ↓A0 v0 ∼ ↓
A1 v1 ∈ Nf .

We shall say a relation R ∈ Rel is compatible for types if the following two conditions hold:

1. If e0 ∼ e1 ∈ Ne then n 
 ↑Ui e0 ∼ ↑
Ui e1 ∈ R for all n and i .

2. If n 
 v0 ∼ v1 ∈ R then v0 ∼ v1 ∈ Ty.

Constructions on relations

We begin by separately developing some constructions on indexed binary relations; we de�ne these for
arbitrary indexed relations and families of relations, rather than requiring beforehand that we have a
monotone PER.

nΠo ∈ Rel→ Fam→ Rel
nΣo ∈ Rel→ Fam→ Rel
n�o ∈ Rel→ Rel
nIdo ∈ Rel→ Val→ Val→ Rel
nNo ∈ Rel

�ese are de�ned as the least relations closed under the following rules:

S : Fam ∀m ≤ n. ∀v0,v1.m 
 v0 ∼ v1 ∈ R =⇒ m 
 app(u0,v0) ∼ app(u1,v1) ∈ S(v0,v1)

n 
 u0 ∼ u1 ∈ nΠo(R, S)

S : Fam n 
 fst(u0) ∼ fst(u1) ∈ R n 
 snd(u0) ∼ snd(u1) ∈ S(fst(u0), fst(u1))

n 
 u0 ∼ u1 ∈ nΣo(R, S)

∀m.m 
 open(u0) ∼ open(u1) ∈ R

n 
 u0 ∼ u1 ∈ n�o(R)
m 
 u0 ∼ v0 ∈ R m 
 v0 ∼ v1 ∈ R m 
 v1 ∼ u1 ∈ R

n 
 re�(v0) ∼ re�(v1) ∈ nIdo(R,u0,u1)

e0 ∼ e1 ∈ Ne

n 
 ↑Id(A0,v0,v1) e0 ∼ ↑
Id(A1,w0,w1) e1 ∈ nIdo(R,u0,u1) n 
 zero ∼ zero ∈ nNo

n 
 u0 ∼ u1 ∈ nNo
n 
 succ(u0) ∼ succ(u1) ∈ nNo

e0 ∼ e1 ∈ Ne

n 
 ↑nat e0 ∼ ↑
nat e1 ∈ nNo
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Lemma 3.1.5. For any R ∈ Rel and S ∈ Fam, the relation nΠo(R, S) is monotone.

Proof. Suppose n 
 u0 ∼ u1 ∈ nΠo(R, S) and n′ ≤ n: we need to show that n′ 
 u0 ∼ u1 ∈ nΠo(R, S).
Fixingm ≤ n′ and v0,v1 which are in R at stagem, we have to observe that app(u0,v0) and app(u1,v1)
are related at stagem in S(v0,v1). �is is immediate from our assumption, becausem ≤ n′ ≤ n.

�

Lemma 3.1.6. If R ∈ Rel is monotone and each �ber S(v0,v1) of a family S ∈ Fam is monotone for
n 
 v0 ∼ v1 ∈ R, then nΣo(R, S) is monotone.

Proof. Suppose n 
 u0 ∼ u1 ∈ nΣo(R, S) andm ≤ n: we need to show thatm 
 u0 ∼ u1 ∈ nΣo(R, S).
1. To see that m 
 fst(u0) ∼ fst(u1) ∈ R, observe that n 
 fst(u0) ∼ fst(u1) ∈ R and use the

monotonicity of S .

2. To see that m 
 fst(u0) ∼ fst(u1) ∈ S(fst(u0), fst(u1)), observe that n 
 fst(u0) ∼ fst(u1) ∈
S(fst(u0), fst(u1)) and use the monotonicity of S(fst(u0), fst(u1)). �

Lemma 3.1.7. If R ∈ Rel is a PER, then n�o(R) is a monotone PER.

Proof. n�o(R) is clearly monotone, because its de�nition discards the index.

1. Symmetry. Suppose that n 
 u0 ∼ u1 ∈ n�o(R); we need to see that n 
 u1 ∼ u0 ∈ n�o(R), which
is to say that for allm,m 
 open(u1) ∼ open(u0) ∈ R. By symmetry of R, it su�ces to show that
m 
 open(u0) ∼ open(u1) ∈ R, which we have already assumed.

2. Transitivity. Analogous to symmetry. �

Lemma 3.1.8. If R ∈ Rel is a monotone PER and v0,v1 ∈ Val, then nIdo(R,v0,v1) is a monotone PER.

Proof. nIdo(R,v0,v1) is clearly monotone as we have assumed that R is monotone.

1. Symmetry. �ere are two cases to consider here.

a) Suppose that n 
 re�(u0) ∼ re�(u1) ∈ nIdo(R,v0,v1); we need to see that n 
 re�(u1) ∼
re�(u0) ∈ nIdo(R,v0,v1), which is to say m 
 v0 ∼ u0 ∈ R, m 
 u1 ∼ u0 ∈ R, and
m 
 u1 ∼ v1 ∈ R.
We have by assumption m 
 v0 ∼ u0 ∈ R, m 
 u0 ∼ u1 ∈ R, and m 
 u1 ∼ v1 ∈ R so the
result is immediate from the symmetry of R.

b) Suppose instead that n 
 ↑Id(−,−,−) e0 ∼ ↑
Id(−,−,−) e1 ∈ nIdo(R,v0,v1) and so e0 ∼ e1 ∈ Ne . We

wish to show that n 
 ↑Id(−,−,−) e1 ∼ ↑
Id(−,−,−) e0 ∈ nIdo(R,v0,v1) holds but this is immediate

as Ne is a PER.

2. Transitivity. Analogous to symmetry. �

Defining the type hierarchy

We begin by de�ning the individual closure of a type system σ ∈ Sys under each of the connectives
of our type theory, as well as under the neutral types. We present these de�nitions as inference rules.
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Each rule de�nes the closure of a type-system under a particular connective.

σ |=n A0 ∼ A1 ↓ R σ |=n R � B0 ∼ B1 ↓ S

Pi[σ ] |=n Π(A0,B0) ∼ Π(A1,B1) ↓ nΠo(R, S)
σ |=n A0 ∼ A1 ↓ R σ |=n R � B0 ∼ B1 ↓ S

Sg[σ ] |=n Σ(A0,B0) ∼ Σ(A1,B1) ↓ nΣo(R, S)

R : SFam ∀m. σ |=m A0 ∼ A1 ↓ R(m) S = {(n,u0,u1) | n 
 u0 ∼ u1 ∈ R(n)}

Box[σ ] |=n �A0 ∼ �A1 ↓ n�o(S)

σ |=n A0 ∼ A1 ↓ R n 
 v0 ∼ u0 ∈ R n 
 v1 ∼ u1 ∈ R

Id[σ ] |=n Id(A0,v0,v1) ∼ Id(A1,u0,u1) ↓ nIdo(R,u0,u1)

e0 ∼ e1 ∈ Ne R = {(m, ↑B0 e0, ↑
B1 e1) | e0 ∼ e1 ∈ Ne}

Ne |=n ↑A0 e0 ∼ ↑
A1 e1 ↓ R Nat |=n nat ∼ nat ↓ nNo

Next, we de�ne the hierarchy of universes by iterating the closure of a type system under connectives
up to the in�nite ordinal ω, le�ing α range over N ∪ {ω}:

j < α

Univα |=n Uj ∼ Uj ↓ {(m,A0,A1) | τj |=m A0 ∼ A1}

Typesα [σ ] = Pi[σ ] ∨ Sg[σ ] ∨ Box[σ ] ∨ Id[σ ] ∨ Nat ∨ Univα ∨ Ne τα = µσ . Typesα [σ ]

�e ultimate type system τω has types at every level, including all universes Ui of �nite level.

3.2 Properties of the PER model

For clarity, and because we shall so frequently make use of this fact in the following proofs, let us now
take a moment to state the universal property of µ.

�eorem 3.2.1 (Universal Property of a Least Fixed Point). If µF is the least �xed point of F : L → L
then for any x : L such that F (x) ≤ x we must have µF ≤ x .

Remark 3.2.2. If F (x) ≤ x we shall call x a pre-�xed point of F .

Remark 3.2.3. In what follows we will use α , β , γ , to denote either some natural number n or ω. Recall
that τα is de�ned for all of these values and all the properties we wish to show must be proven for both
n and ω.

Lemma 3.2.4 (Determinism). For any α , τα is deterministic. �at is, if τα |=n A ∼ B ↓ R and τα |=n A ∼
B ↓ R′, then R = R′.

Proof. �is proof proceeds by showing that the following σ is pre-�xed point of Typesα [−]:

τα |=n A ∼ B ↓ R ∀R′. τα |=n A ∼ B ↓ R′ =⇒ R = R′

σ |=n A ∼ B ↓ R
===========================================================================

Once this has been established, we then conclude that τα ≤ σ which in turn implies that τα must be
deterministic. As usual, we exhibit only the cases pertaining to non-standard extensions of Martin-Löf
Type �eory.

Supposing that we have Typesα [σ ] |=n A ∼ B ↓ R, we wish to show that σ |=n A ∼ B ↓ R holds as
well. We proceed by case:
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Case.
Univα |=n Ui ∼ Ui ↓ R where i < α and R = {(m,A0,A1) | τi |=m A0 ∼ A1}

First, we need to show that τα |=n Ui ∼ Ui ↓ R, but this follows immediately from our assumption,
which is one of the generators of the type system closure. Next, supposing that τα |=n Ui ∼ Ui ↓ S ,
we need to verify that R = S . But by inverting the type system closure, we must have Univα |=n
Ui ∼ Ui ↓ S , from which we conclude R = S .

Case.
∀m. σ |=m A0 ∼ A1 ↓ R(m) S = {(n,u0,u1) | n 
 u0 ∼ u1 ∈ R(n)}

Box[σ ] |=n �A0 ∼ �A1 ↓ n�o(S)
Because σ ≤ τα , we can see that Box[τα ] |=n �A0 ∼ �A1 ↓ n�o(S) and therefore τα |=n �A0 ∼
�A1 ↓ n�o(S). Fixing T ∈ Rel such that τα |=n �A0 ∼ �A1 ↓ T , we need to verify that T = n�o(S).
By inverting the type system closure, we have Box[τα ] |=n �A0 ∼ �B0 ↓ T ; by de�nition, this
means that we have some family of relations R′ ∈ RelP where τα |=m A0 ∼ A1 ↓ R

′(m) for eachm,
and moreover T = n�o({(n,u0,u1) | n 
 u0 ∼ u1 ∈ R

′(n)}).
�erefore, it remains to see that R′ = R; but this is immediate from the fact that both are contained
in the type system σ : unfolding, we have both τα |=m A0 ∼ A1 ↓ R(m) and for all R′′ ∈ Rel, if
τα |=m A0 ∼ A1 ↓ R

′′ then R(m) = R′′. �erefore, to see that R′(m) = R(m), we choose R′′ = R′(m)
and use the fact that τα |=m A0 ∼ A1 ↓ R

′(m). �

A number of properties of this type system must be established simultaneously because of interde-
pendency.

Lemma 3.2.5. For any α , the following properties hold.

1. If τα |=n A ∼ B ↓ R then τα |=n B ∼ A ↓ R.

2. If τα |=n A ∼ B ↓ R and τα |=n B ∼ C ↓ R, then τα |=n A ∼ C ↓ R.

3. If τα |=n A ∼ B ↓ R andm ≤ n, then τα |=m A ∼ B ↓ R.

4. If τα |=n A ∼ B ↓ R then R is a monotone PER.

Proof. We prove these statements by strong induction on α . �is induction on the level is necessary in
the case of Univα . Here, for instance, in order to show that the relation on terms is monotone we need
to know that the relation on types is monotone for all i < α . Similarly with symmetry and transitivity.

Let us assume therefore that for any i < α the following facts hold:

1. If τi |=n A ∼ B ↓ R then τi |=n B ∼ A ↓ R.

2. If τi |=n A ∼ B ↓ R and τi |=n B ∼ C ↓ R, then τi |=n A ∼ C ↓ R.

3. If τi |=n A ∼ B ↓ R andm ≤ n, then τi |=m A ∼ B ↓ R.

4. If τi |=n A ∼ B ↓ R then R is a monotone PER.

We note that the above makes (τi |=(−) − ∼ −) a monotone PER.
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We now turn to showing that these facts hold for α , all of which must be established simultaneously.
�is is done by showing the following σ ∈ Sys to be a pre-�xed point:

R is a monotone PER
∀m ≤ n. τα |=m A ∼ B ↓ R
τα |=n B ∼ A ↓ R
∀C, S . τα |=n B ∼ C ↓ S =⇒ τα |=n A ∼ C ↓ S ∧ (R = S)
∀C, S . τα |=n C ∼ A ↓ S =⇒ τα |=n C ∼ B ↓ S ∧ (R = S)

σ |=n A ∼ B ↓ R
==========================================================================

Supposing that Typesα [σ ] |=n A ∼ B ↓ R, we must show that σ |=n A ∼ B ↓ R. We proceed by case.

Case.
Univα |=n Ui ∼ Ui ↓ R where i < α and R = {(m,A0,A1) | τi |=m A0 ∼ A1}

First, we observe that for any m ≤ n, we also have Univα |=m Ui ∼ Ui ↓ R and thence τα |=m
Ui ∼ Ui ↓ R. Symmetry is trivial, because we have the same type on both sides. We need to show
both directions of the generalized transitivity.

Suppose that τα |=n Ui ∼ C ↓ S ; we need to verify that R = S . By inversion, we must have
C = Ui and moreover R = S .
Suppose that τα |=n C ∼ Ui ↓ S ; we need to verify that R = S . By inversion, we must have
C = Ui and moreover R = S .

Finally, we must show that R is a monotone PER; by the de�nition of R above, it it su�ces to
recall that (τi |=(−) − ∼ −) is a monotone PER.

Case.
σ |=n A0 ∼ A1 ↓ R σ |=n R � B0 ∼ B1 ↓ S

Pi[σ ] |=n Π(A0,B0) ∼ Π(A1,B1) ↓ nΠo(R, S)
Before establishing the main properties of the dependent function connective, we �rst observe
that for any m 
 a0 ∼ a1 ∈ R, the relations S(a0,a1), S(a1,a1) and S(a1,a0) are equal �bers of S .
To achieve this, we execute a brutal power move described in Angiuli [Ang19]. Because R is a PER,
we can conclude the following:

σ |=m′ B0[a0] ∼ B1[a1] ↓ S(a0,a1) (3.1)
σ |=m′ B0[a1] ∼ B1[a0] ↓ S(a1,a0) (3.2)
σ |=m′ B0[a1] ∼ B1[a1] ↓ S(a1,a1) (3.3)

Unfolding (3.1,3.2), we obtain the following symmetric instances:

τα |=m′ B1[a1] ∼ B0[a0] ↓ S(a0,a1) (3.4)
τα |=m′ B1[a0] ∼ B0[a1] ↓ S(a1,a0) (3.5)

Unfolding (3.3) we have the following generalized transitivities:

∀C,T . τα |=m′ B1[a1] ∼ C ↓ T =⇒ τα |=m′ B0[a1] ∼ C ↓ T ∧ S(a1,a1) = T (3.6)
∀C,T . τα |=m′ C ∼ B0[a1] ↓ T =⇒ τα |=m′ C ∼ B1[a1] ↓ T ∧ S(a1,a1) = T (3.7)

Instantiating (3.6) with (3.4) we obtain S(a1,a1) = S(a0,a1); instantiating (3.7) with (3.5) we further
obtain S(a1,a1) = S(a1,a0). �erefore, S(a0,a1) = S(a1,a0).
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1. nΠo(R, S) is a monotone PER. Monotonicity is given by 3.1.5; but we need to show that it is
symmetric and transitive.

a) Symmetry. Suppose that m 
 v0 ∼ v1 ∈ nΠo(R, S); we need to show that m 
 v1 ∼
v0 ∈ nΠo(R, S). Fixing m′ ≤ m and m′ 
 a0 ∼ a1 ∈ R, we need to show that m′ 

app(u1,a0) ∼ app(u0,a1) ∈ S(a0,a1). We note by assumption that m′ 
 a1 ∼ a0 ∈ R
and therefore m′ 
 app(u1,a0) ∼ app(u0,a1) ∈ S(a1,a0). �erefore, it would su�ce to
observe that S(a0,a1)m′ = S(a1,a0)m′ , which we have above.

b) Transitivity. Suppose that m 
 u0 ∼ u1 ∈ nΠo(R, S) and m 
 u1 ∼ u2 ∈ nΠo(R, S); we
need to show that m 
 u0 ∼ u2 ∈ nΠo(R, S). Fixing m′ ≤ m and R 
 a0 ∼ a1 ∈ m

′, we
need to show that m′ 
 app(u0,a0) ∼ app(u2,a1) ∈ S(a0,a1). We obtain the following
from our assumptions:

m′ 
 app(u0,a0) ∼ app(u1,a1) ∈ S(a0,a1) (3.8)
m′ 
 app(u0,a1) ∼ app(u1,a0) ∈ S(a1,a0) (3.9)
m′ 
 app(u1,a0) ∼ app(u2,a1) ∈ S(a0,a1) (3.10)

Using (3.9,3.10) and the fact that S is transitive, it su�ces to observe that S(a0,a1) =
S(a1,a0), which we have already shown.

2. For allm ≤ n, we have τα |=m Π(A0,B0) ∼ Π(A1,B1) ↓ nΠo(R, S). Fixingm ≤ n, we need to
show two things.

a) τα |=m A0 ∼ A1 ↓ R can be obtained from our assumption that σ |=n A0 ∼ A1 ↓ R.
b) To see that τα |=m R � B0 ∼ B1 ↓ S holds, we �x m′ ≤ m and m′ 
 a0 ∼ a1 ∈ R, and

need to verify that τα |=m′ B0[a0] ∼ B1[a1] ↓ S(a0,a1). Instantiating our assumption
σ |=n R � B0 ∼ B1 ↓ S with m′ ≤ m ≤ n, we obtain σ |=m′ B0[a0] ∼ B1[a1] ↓ S(a0,a1),
whence τα |=m′ B0[a0] ∼ B1[a1] ↓ S(a0,a1).

3. τα |=n Π(A1,B1) ∼ Π(A0,B0) ↓ nΠo(R, S).
a) τα |=m A1 ∼ A0 ↓ R is obtained from our assumption that σ |=n A0 ∼ A1 ↓ R.
b) To see that τα |=m R � B1 ∼ B0 ↓ S holds, we �x m ≤ n and m 
 a0 ∼ a1 ∈ R,

needing to verify that τα |=m B1[a0] ∼ B0[a1] ↓ S(a0,a1). We have already seen that
S(a0,a1) = S(a1,a0), so it su�ces to show that τα |=m B1[a0] ∼ B0[a1] ↓ S(a1,a0). But
this is one of the symmetric instances of our assumption σ |=n R � B0 ∼ B1 ↓ S ,
consideringm 
 a1 ∼ a0 ∈ R.

4. If τα |=n Π(A1,B1) ∼ C ↓ T , then τα |=n Π(A0,B0) ∼ C ↓ T and moreover T = nΠo(R, S). By
inversion, we have C = Π(A2,B2) and T = nΠo(U ,V ) such that τα |=n A1 ∼ A2 ↓ U and
τα |=n U � B1 ∼ B2 ↓ V . We need to verify that τα |=n Π(A0,B0) ∼ Π(A2,B2) ↓ nΠo(U ,V ).

a) To see that τα |=n A0 ∼ A2 ↓ U , we recall that our assumption σ |=n A0 ∼ A1 ↓ R
contains a generalized transitivity which, when instantiated with τα |=n A1 ∼ A2 ↓ U ,
obtains both our goal τα |=n A0 ∼ A2 ↓ U and moreover R = U .

b) Now we have to show that τα |=n R � B0 ∼ B2 ↓ V . Fixingm ≤ n andm 
 a0 ∼ a1 ∈ R,
we need to verify that τα |=m B0[a0] ∼ B2[a1] ↓ V (a0,a1). Instantiating one of our
hypotheses withm 
 a1 ∼ a1 ∈ R, we have:

τα |=m B1[a1] ∼ B2[a1] ↓ V (a1,a1) (3.11)

By assumption, we obtain σ |=m B0[a0] ∼ B1[a1] ↓ S(a0,a1), and using its generalized
transitivity at (3.11), we obtain τα |=m B0[a0] ∼ B2[a1] ↓ V (a1,a1) such that V (a1,a1) =
S(a0,a1). It remains only to see thatV (a1,a1) = V (a0,a1), but we have already seen that
this is the case.
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c) It remains only to observe that S = V ; but we had both V (a1,a1) = V (a0,a1) and
V (a1,a1) = S(a0,a1).

5. If τα |=n C ∼ Π(A0,B0) ↓ T , then τα |=n C ∼ Π(A1,B1) ↓ T and moreover T = nΠo(R, S). �is
is symmetric to the previous case.

Case.
σ |=n A0 ∼ A1 ↓ R σ |=n R � B0 ∼ B1 ↓ S

Sg[σ ] |=n Σ(A0,B0) ∼ Σ(A1,B1) ↓ nΣo(R, S)
We show only that nΣo(R, S) is a monotone PER; the other properties are exactly as in the case
for Pi.

1. Monotonicity. By Lemma 3.1.6 it su�ces to show that both R and S are monotone, both of
which are obtained by assumption.

2. Symmetry. Suppose m 
 u0 ∼ u1 ∈ nΣo(R, S); we need to show that m 
 u1 ∼ u0 ∈ nΣo(R, S).
a) We obtain m 
 fst(u1) ∼ fst(u0) ∈ R from m 
 fst(u0) ∼ fst(u1) ∈ R using our induction

hypothesis.
b) Next, we need to see that m 
 snd(u1) ∼ snd(u0) ∈ S(fst(u1), fst(u0)). We obtain m 


snd(u1) ∼ snd(u0) ∈ S(fst(u0), fst(u1)) from m 
 snd(u0) ∼ snd(u1) ∈ S(fst(u0), fst(u1))
using our induction hypothesis, so it su�ces to see observe that S(fst(u0), fst(u1)) =
S(fst(u1), fst(u0)), which we have already proved.

3. Transitivity. Suppose m 
 u0 ∼ u1 ∈ nΣo(R, S) and m 
 u1 ∼ u2 ∈ nΣo(R, S); we need to
show thatm 
 u0 ∼ u2 ∈ nΣo(R, S).

a) We obtainm 
 fst(u0) ∼ fst(u2) ∈ R using the transitivity of R, which we have assumed.
b) It remains to show that m 
 snd(u0) ∼ snd(u2) ∈ S(fst(u0), fst(u2)). By transitivity

of S , it su�ces to show that S(fst(u0), fst(u1)) = S(fst(u1), fst(u2)) = S(fst(u0), fst(u2)).
But we have already observed that this is entailed by m 
 fst(u0) ∼ fst(u1) ∈ R and
m 
 fst(u1) ∼ fst(u2) ∈ R.

Case.
σ |=n A0 ∼ A1 ↓ R n 
 v0 ∼ u0 ∈ R n 
 v1 ∼ u1 ∈ R

Id[σ ] |=n Id(A0,v0,v1) ∼ Id(A1,u0,u1) ↓ nIdo(R,u0,u1)

1. nIdo(R,u0,u1) is a monotone PER. By Lemma 3.1.8.
2. For n′ ≤ n we have τα |=n′ Id(A0,v0,v1) ∼ Id(A1,u0,u1) ↓ nIdo(R,u0,u1). Observe that we

have σ |=n A0 ∼ B0 ↓ R and therefore τα |=n′ A0 ∼ B0 ↓ R along with n 
 u0 ∼ v0 ∈ R, and
n 
 u1 ∼ v1 ∈ R. Our goal is immediate as R must be monotone.

3. We have τα |=n Id(A1,u0,u1) ∼ Id(A0,v0,v1) ↓ nIdo(R,u0,u1). Observe that we have σ |=n
A0 ∼ A1 ↓ R and therefore we know that R is a monone PER as well as τα |=n A1 ∼ A0 ↓ R.
As noted above, we have n 
 u0 ∼ v0 ∈ R and n 
 u1 ∼ v1 ∈ R so the symmetry of R tells
us that n 
 v0 ∼ u0 ∈ R and n 
 v1 ∼ u1 ∈ R. Again, because R is a monotone PER we
must have that nIdo(R,u0,u1) = nIdo(R,v0,v1). �erefore, we have τα |=n Id(A1,u0,u1) ∼
Id(A0,v0,v1) ↓ nIdo(R,u0,u1) as required.

4. If τα |=n Id(A1,u0,u1) ∼ C ↓ T , then τα |=n Id(A0,v0,v1) ∼ C ↓ T and moreover T =
nIdo(R,u0,u1). By inversion, we have C = Id(A2,w0,w1) and T = nIdo(S,w0,w1) for some
S such that τα |=n A1 ∼ A2 ↓ S , n 
 u0 ∼ w0 ∈ S and n 
 u1 ∼ w1 ∈ S . Let us �rst observe
that by induction hypothesis that we have τα |=A0 A2 ∼ S and S = R. �erefore, we may
conclude that n 
 v0 ∼ w0 ∈ R and n 
 v1 ∼ w1 ∈ R as R = S and R is a monotone PER. �is
also tells us that T = nIdo(R,u0,u1).
�erefore, we have τα |=n Id(A0,v0,v1) ∼ C ↓ T as required.
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5. If τα |=n C ∼ Id(A0,v0,v1) ↓ T , then τα |=n C ∼ Id(A1,u0,u1) ↓ T and moreover T =
nIdo(R,u0,u1). Identical to the above.

Case.
∀m. σ |=m A0 ∼ A1 ↓ R(m) S = {(n,u0,u1) | n 
 u0 ∼ u1 ∈ R(n)}

Box[σ ] |=n �A0 ∼ �A1 ↓ n�o(S)
1. n�o(S) is a monotone PER. By Lemma 3.1.7.
2. For n′ ≤ n we have τα |=n′ �A0 ∼ �A1 ↓ n�o(S). Observe that we have σ |=n′ A ∼ B ↓ R(n′),

and thence σ |=n′ A ∼ B ↓ R(n′). Our goal is immediate.
3. We have τα |=n �A1 ∼ �A0 ↓ n�o(S). Observe that we have σ |=m A0 ∼ A1 ↓ R(m) for all

m, and therefore also τα |=m A1 ∼ A0 ↓ R(m), from which we conclude τα |=n �A1 ∼ �A0 ↓
n�o(S).

4. If τα |=n �A1 ∼ C ↓ T , then τα |=n �A0 ∼ C ↓ T and moreover T = n�o(S). By inversion, we
have C = �A2 and T = n�o({(n,u0,u1) | n 
 u0 ∼ u1 ∈ U (n)}) for some U ∈ RelP, such that
for allm, we have τα |=m A1 ∼ A2 ↓ U (m).

a) We need to show that τα |=n �A0 ∼ �A2 ↓ n�o({(n,u0,u1) | n 
 u0 ∼ u1 ∈ U (n)}).
It su�ces to show that for all m, we have τα |=n A0 ∼ A2 ↓ U (m). Because both
σ |=m A0 ∼ A1 ↓ R(m) and τα |=m A1 ∼ A2 ↓ U (m), we have by generalized transitivity
both τα |=m A0 ∼ A2 ↓ U (m) and U (m) = R(m) for allm.

b) We have already observed that U = R, so clearly T = n�o(S).
5. If τα |=n C ∼ �A0 ↓ T , then τα |=n C ∼ �A1 ↓ T and moreover T = n�o(S). Identical to the

above.

�

Lemma 3.2.6. If e0 ∼ e1 ∈ Ne then τα |=n ↑Ui e0 ∼ ↑
Ui e1 for any i < α .

Proof. We have Ne |=n ↑Ui e0 ∼ ↑
Ui e1. �

Lemma 3.2.7 (Compatibility). Each τα is compatible and valued in compatible PERs (recall De�nition 3.1.4).
�e partial equivalence relation given by τα |=m − ∼ − is compatible for types and if τα |=m A0 ∼ A1 ↓ R
then R is compatible for (A0,A1).

Proof. We proceed by strong induction on α , and then show that the following σ ∈ Sys is a pre-�xed
point of each Typesα [−]:

A0 ∼ A1 ∈ Ty τα |=m A0 ∼ A1 ↓ R R is compatible

σ |=m A0 ∼ A1 ↓ R
============================================================================

Supposing that Typesα [σ ] |=n A0 ∼ A1 ↓ R, we establish σ |=n A0 ∼ A1 ↓ R by case.

Case.
Univα |=n Ui ∼ Ui ↓ R where i < α and R = {(m,A0,A1) | τi |=m A0 ∼ A1}

We only need to observe that R is compatible.

1. Suppose e0 ∼ e1 ∈ Ne; by Lemma 3.2.6 we have τi |=n ↑Ui e0 ∼ ↑
Ui e1.

2. Suppose τi |=n A0 ∼ A1; we observe that ↓Ui A0 ∼ ↓
Ui A1 ∈ Nf follows from A0 ∼ A1 ∈ Ty,

which we obtain from our induction hypothesis at i < α .
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Case.
σ |=n A0 ∼ A1 ↓ R σ |=n R � B0 ∼ B1 ↓ S

Pi[σ ] |=n Π(A0,B0) ∼ Π(A1,B1) ↓ nΠo(R, S)
1. First, we check that Π(A0,B0) ∼ Π(A1,B1) ∈ Ty. It su�ces to check the following:

a) A0 ∼ A1 ∈ Ty, which is obtained σ |=n A0 ∼ A1 ↓ R.
b) τα |=n Π(A0,B0) ∼ Π(A1,B1) follows from our induction hypotheses.
c) For all k , B0[↑

A0 vark ] ∼ B1[↑
A1 vark ] ∈ Ty. To see that this holds, we observe because

R is compatible with (A0,A1), we have n 
 ↑A0 vark ∼ ↑A1 vark ∈ R and therefore σ |=n
B0[↑

A0 vark ] ∼ B1[↑
A1 vark ]; from this, we obtain B0[↑

A0 vark ] ∼ B1[↑
A1 vark ] ∈ Ty.

2. Next, we check that nΠo(R, S) is compatible with (Π(A0,B0),Π(A1,B1)).
a) Suppose e0 ∼ e1 ∈ Ne; we need to show that n 
 ↑Π(A0,B0) e0 ∼ ↑

Π(A1,B1) e1 ∈ nΠo(R, S).
Fixing m ≤ n and m 
 v0 ∼ v1 ∈ R, we must verify that m 
 app(↑Π(A0,B0) e0,v0) ∼
app(↑Π(A1,B1) e1,v1) ∈ S(v0,v1), which reduces to showingm 
 ↑B0[v0] e0.app(↓A0 v0) ∼
↑B1[v1] e1.app(↓A1 v1) ∈ S(v0,v1). By induction, the �ber S(v0,v1) is compatible with
(B0[v0],B1[v1]), so it would su�ce to know that e0.app(↓A0 v0) ∼ e1.app(↓A1 v0) ∈ Ne .
�is in turn follows from e0 ∼ e1 ∈ Ne (which we have assumed), and ↓A0 v0 ∼ ↓

A1 v1 ∈
Nf , which we obtain from the compatibility of R with (A0,a1) and our assumption
n 
 v0 ∼ v1 ∈ R.

b) Suppose n 
 u0 ∼ u1 ∈ nΠo(R, S); we need to show that ↓Π(A0,B0)u0 ∼ ↓
Π(A1,B1)u1 ∈ Nf .

It su�ces to show that for allk , ↓B0[↑A0vark ] app(u0, ↑
A0 vark ) ∼ ↓B1[↑A1vark ] app(u1, ↑

A1 vark ) ∈
Nf . First, observe that this would follow if we could show that S(↑A0 vark , ↑A1 vark )were
compatible with (B0[↑

A0 vark ],B1[↑
A1 vark ]); this we can obtain from n 
 ↑A0 vark ∼

↑A1 vark ∈ R, which follows from the compatiblity of R with (A0,A1), and the fact that
vark ∼ vark ∈ Ne .

Case.
σ |=n A0 ∼ A1 ↓ R σ |=n R � B0 ∼ B1 ↓ S

Sg[σ ] |=n Σ(A0,B0) ∼ Σ(A1,B1) ↓ nΣo(R, S)
1. We observe that Σ(A0,B0) ∼ Σ(A1,B1) ∈ Ty in the exact same way that we did for dependent

function types above.
2. τα |=n Σ(A0,B0) ∼ Σ(A1,B1) follows from our induction hypotheses.
3. We check that nΣo(R, S) is compatible with (Σ(A0,B0),Σ(A1,B1)):

a) Suppose that e0 ∼ e1 ∈ Ne; we need to show that n 
 ↑Σ(A0,B0) e0 ∼ ↑
Σ(A1,B1) e1 ∈

nΣo(R, S).
i. We have to check n 
 fst(↑Σ(A0,B0) e0) ∼ fst(↑Σ(A1,B1) e1) ∈ R, which is the same as

to say, n 
 ↑A0 e0.fst ∼ ↑A1 e1.fst ∈ R. �is follows from the compatibility of R with
(A0,A1) and the fact that e0.fst ∼ e1.fst ∈ Ne .

ii. We check n 
 snd(↑Σ(A0,B0) e0) ∼ snd(↑Σ(A0,B0) e1) ∈ S(↑
A0 e0.fst, ↑A1 e1.fst), which

is the same as to say:

n 
 ↑B0[↑A0e0 .fst] e0.snd ∼ ↑B1[↑A1e1 .fst] e1.snd ∈ S(↑A0 e0.fst, ↑A1 e1.fst)

Observing that e0.snd ∼ e1.snd ∈ Ne , it would su�ce to show that the �ber
S(↑A0 e0.fst, ↑A1 e1.fst) is compatible with (B0[↑

A0 e0.fst],B1[↑
A1 e1.fst]). �is would

follow from our induction hypothesis, if we could show that n 
 ↑A0 e0.fst ∼
↑A1 e1.fst ∈ R; this follows from the compatibility of R with (A0,A1) and the fact
that e0.fst ∼ e1.fst ∈ Ne .
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b) Suppose that n 
 u0 ∼ u1 ∈ nΣo(R, S); we need to show that ↓Σ(A0,B0)u0 ∼ ↓
Σ(A1,B1)u1 ∈

Nf . �is reduces to two subproblems:
i. First, we need to show that ↓A0 fst(u0) ∼ ↓

A1 fst(u1) ∈ Nf . By assumption, we have
n 
 fst(u0) ∼ fst(u1) ∈ R, and so our goal follows from the compatibility of R with
(A0,A1).

ii. Second, we need to show that ↓B0[fst(u0)] snd(u0) ∼ ↓
B1[fst(u1)] snd(u1) ∈ Nf . First,

observe that S(fst(u0), fst(u1)) is compatible with (B0[fst(u0)],B1[fst(u1)]), following
from the fact that n 
 fst(u0) ∼ fst(u1) ∈ R. �erefore, our goal follows from our
assumption that n 
 snd(u0) ∼ snd(u1) ∈ S(fst(u0), fst(u1)).

Case.
σ |=n A0 ∼ A1 ↓ R n 
 v0 ∼ u0 ∈ R n 
 v1 ∼ u1 ∈ R

Id[σ ] |=n Id(A0,v0,v1) ∼ Id(A1,u0,u1) ↓ nIdo(R,u0,u1)

1. We observe that Id(A0,v0,v1) ∼ Id(A1,u0,u1) ∈ Ty follows from A0 ∼ A1 ∈ Ty, ↓A0 ui ∼
↓A0 ui ∈ Nf , which are all obtained from the induction hypothesis.

2. τα |=n Id(A0,v0,v1) ∼ Id(A1,u0,u1) follows from the induction hypothesis.
3. Finally, we check that nIdo(R,u0,u1) is compatible with (Id(A0,v0,v1), Id(A1,u0,u1)).

a) Suppose that e0 ∼ e1 ∈ Ne; we need to show that n 
 ↑Id(A0,v0,v1) e0 ∼ ↑
Id(A1,u0,u1) e1 ∈

nIdo(R,u0,u1). �is is immediate from the de�nition of nIdo(R,u0,u1).
b) Suppose that n 
 v0 ∼ v1 ∈ nIdo(R,u0,u1); we need to show that ↓Id(A0,v0,v1)v0 ∼
↓Id(A1,u0,u1)v1 ∈ Nf . We shall show this by cases on n 
 v0 ∼ v1 ∈ nIdo(R,u0,u1).

i. For the �rst suppose that ui = re�(wi ) such that n 
 u0 ∼ w0 ∈ R, n 
 w0 ∼ w1 ∈ R,
and n 
 w1 ∼ u1 ∈ R. We wish to show that ↓Id(A0,v0,v1)v0 ∼ ↓

Id(A1,u0,u1)v1 ∈ Nf
holds. By inspection on the de�nition of quotation we see that it is su�cient to
show that ↓A0 w0 ∼ ↓

A1 w1 ∈ Nf . �is, however, is immediate from our induction
hypothesis.

ii. For the second case we suppose that ui = ↑Id(−,−,−) ei such that e0 ∼ e1 ∈ Ne . We
see by inspection that it su�ces to show e0 ∼ e1 ∈ Ne so this case is immediately
satis�ed.

Case.
∀m. σ |=m A0 ∼ A1 ↓ R(m) S = {(n,u0,u1) | n 
 u0 ∼ u1 ∈ R(n)}

Box[σ ] |=n �A0 ∼ �A1 ↓ n�o(S)
1. We observe that �A0 ∼ �A1 ∈ Ty follows from A0 ∼ A1 ∈ Ty, which is obtained from the

induction hypothesis.
2. τα |=n �A0 ∼ �A1 follows from the induction hypothesis.
3. Finally, we check that n�o(S) is compatible with (�A0,�A1).

a) Suppose that e0 ∼ e1 ∈ Ne; we need to show that n 
 ↑�A0 e0 ∼ ↑
�A1 e1 ∈ n�o(S). Un-

folding de�nitions, this means that for allm, we need to show thatm 
 open(↑�A0 e0) ∼
open(↑�A1 e1) ∈ R(m), which is the same as to say m 
 ↑A0 e0.open ∼ ↑A1 e1.open ∈
R(m). By the induction hypothesis, we know that each R(m) is compatible with (A0,A1),
so it su�ces to observe that e0.open ∼ e1.open ∈ Ne .

b) Suppose that n 
 v0 ∼ v1 ∈ n�o(S); we need to show that ↓�A0 v0 ∼ ↓
�A1 v1 ∈ Nf .

It su�ces to verify that ↓A0 open(v0) ∼ ↓
A1 open(v1) ∈ Nf . Because each R(n) is

compatible with (A0,A1), we just need to show that n 
 open(v0) ∼ open(v1) ∈ R(n).
But this follows from our assumption that n 
 v0 ∼ v1 ∈ n�o(S).
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Case.
Nat |=n nat ∼ nat ↓ nNo

We only need to show that nNo is compatible with (nat, nat).

1. Suppose that e0 ∼ e1 ∈ Ne; it is immediate that n 
 ↑nat e0 ∼ ↑
nat e1 ∈ nNo for all n.

2. Suppose that n 
 v0 ∼ v1 ∈ nat; we need to show that ↓natv0 ∼ ↓
natv1 ∈ Nf . We proceed

by induction on n 
 v0 ∼ v1 ∈ nat.

a) Trivially, we have ↓nat zero ∼ ↓nat zero ∈ Nf .
b) Assuming ↓natu0 ∼ ↓

natu1 ∈ Nf , we observe that ↓nat succ(u0) ∼ ↓
nat succ(u1) ∈ Nf .

c) Finally, assuming e0 ∼ e1 ∈ Ne we verify that ↓nat ↑nat e0 ∼ ↓
nat ↑nat e1 ∈ Nf .

�

Lemma 3.2.8. τ(−) is cumulative.

Proof. In order to show this, �rst recall that µ : (L → L) → L, the least �xed-point operator, is a
monotone function. In order to show that if i ≤ α then τi ≤ τα , therefore, it su�ces to show that
Typesi [σ ] ≤ Typesα [σ ] for all σ . Examination of the de�nition of Typesi and Typesα shows us that we
merely need to show Univi ≤ Univα as the rest of the de�nition is identical.

Suppose that Univi |=n A ∼ B ↓ R, we wish to show Univα |=n A ∼ B ↓ R. Inversion on our premise
tells us that we must have some j < i such that Uj = A = B. We must also have that m 
 v0 ∼ v1 ∈ R if
and only if τj |=m v0 ∼ v0. Since i ≤ α we then have that j ≤ α and so Univα |=n A ∼ B ↓ R holds as
required. �

3.3 Completeness

In order to prove the fundamental theorem for this logical relation, we must �rst de�ne a notion of
closing substitution. �is is somewhat subtle because of the richer notion of context, the indexing, and
the dependency.

n 
 · = · : ·
n 
 ρ0 = ρ1 : Γ n 
 v0 = v1 : A [ρ0; ρ1]

n 
 ρ0.v0 = ρ1.v1 : Γ.A
∃m.m 
 ρ0 = ρ1 : Γ
n 
 ρ0 = ρ1 : Γ.µ

nAoρ0 = A0 nAoρ1 = A1 τω |=n A0 ∼ A1 ↓ R n 
 v0 ∼ v1 ∈ R

n 
 v0 = v1 : A [ρ1; ρ2]

Lemma 3.3.1. For all n and Γ, n 
 − = − : Γ is a PER on environments.

Proof. Immediate by induction on Γ with Lemma 3.2.5. �

Lemma 3.3.2. For Γ, − 
 − = − : Γ is monotone.

Proof. Immediate by induction on Γ with Lemma 3.2.5. �

Lemma 3.3.3. If n 
 ρ0 = ρ1 : Γ then there is somem ≤ n such thatm 
 ρ0 = ρ1 : Γb.

Proof. �is follows by induction on Γ using Lemma 3.3.2. �

Lemma 3.3.4. If Γ0 Bµ Γ1 and n 
 ρ0 = ρ1 : Γ0 then n 
 ρ0 = ρ1 : Γ1.

Proof. �is follows by induction on Γ0 Bµ Γ1. We show the non-congruence cases.
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Case.

Γ Bµ Γ.µ

In this case, suppose we have n 
 ρ0 = ρ1 : Γ. We wish to show n 
 ρ0 = ρ1 : Γ.µ. It su�ces to
�nd anm such thatm 
 ρ0 = ρ1 : Γ but pickingm = n gives this immediately.

Case.

Γ.µ.µ Bµ Γ.µ

In this case, suppose we have n 
 ρ0 = ρ1 : Γ.µ.µ. We wish to show n 
 ρ0 = ρ1 : Γ.µ. It
su�ces to �nd an m such that m 
 ρ0 = ρ1 : Γ. �is is immediate, however, by inverting upon
n 
 ρ0 = ρ1 : Γ.µ.µ.

Case.

Γ.µ.T Bµ Γ.T .µ

In this case, suppose we have n 
 ρ0.v0 = ρ1.v1 : Γ.µ.T . We wish to show n 
 ρ0 = ρ1 : Γ.T .µ.
It su�ces to �nd an o such that o 
 ρ0.v0 = ρ1.v1 : Γ.T . By inversion on n 
 ρ0 = ρ1 : Γ.µ.T
we know that there is some m such that m 
 ρ0 = ρ1 : Γ and that n 
 v0 = v1 : T [ρ1; ρ2]. By
Lemma 3.3.2 we then have that min(m,n) 
 ρ0.v0 = ρ1.v0 : Γ.T . Choosing o = min(m,n) gives
the desired conclusion. �

�eorem 3.3.5 (Completeness). �e following 6 statements hold.

1. If Γ ` A type and n 
 ρ0 = ρ1 : Γ then there exists A0,A1 such that nAoρ0 = A0 and nAoρ1 = A1 and
τω |=n A0 ∼ A1.

2. If Γ ` t : A and n 
 ρ0 = ρ1 : Γ then there exists A0,A1 and v0,v1 such that nAoρi = Ai , ntoρi = vi ,
and there is an R such that τω |=n A0 ∼ A1 ↓ R and n 
 v0 ∼ v1 ∈ R.

3. If Γ ` δ : ∆ and n 
 ρ0 = ρ1 : Γ then there exists ρ ′0, ρ
′
1 such that nδoρi = ρ ′i and n 
 ρ ′0 = ρ ′1 : ∆

4. If Γ ` A0 = A1 type and n 
 ρ0 = ρ1 : Γ then there exists A0,A1 such that nAioρi = Ai and
τω |=n A0 ∼ A1.

5. If Γ ` t0 = t1 : A and n 
 ρ0 = ρ1 : Γ then there exists A0,A1 and v0,v1 such that nAoρi = Ai ,
ntioρi = vi , and there is an R such that τω |=n A0 ∼ A1 ↓ R and n 
 v0 ∼ v1 ∈ R.

6. If Γ ` δ0 = δ1 : ∆ and n 
 ρ0 = ρ1 : Γ then there exists ρ ′0, ρ
′
1 such that nδioρi = ρ ′i and

n 
 ρ ′0 = ρ
′
1 : ∆

Proof. Completeness is obtained by mutual induction on the derivations; we illustrate the cases of
substance. Since all the unary cases are identical to the congruence cases we have elided these.

Case.
Γ.µ ` A0 = A1 type

Γ ` �A0 = �A1 type

Suppose that n 
 ρ0 = ρ1 : Γ; we need to show that for some Ci we have n�Aioρi = Ci and some
R such that τω |=n C0 ∼ C1 ↓ R.
By our induction hypothesis, for all stagesm, we have some Ai

m, Sm such that nAioρi = Ai
m and

τω |=m A0
m ∼ Ai

m ↓ Sm . By the determinacy of evaluation, we can that Ai
m do not vary in m, so

we are justi�ed in calling them Ai . Using the determinacy of the type system and the constructive
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axiom of unique choice, we furthermore obtain in fact a family of relations S ∈ RelP from the
individual relations Sm .
Inspecting the de�nition of the evaluation relation, we are free to choose Ci = �Ai , choosing a
suitable R as follows:

R = n�o({(m,v0,v1) | m 
 v0 ∼ v1 ∈ S(m)})

It remains to show that τω |=n �A0 ∼ �A1 ↓ R; using the closure of the type system under the Box
operator, we just need to see that τω |=m′ A0 ∼ A1 ↓ S(m

′) for all stages m′. But this is already
contained in the induction hypothesis.

Case.
∆.µ ` A type Γ ` δ : ∆
Γ ` (�A)[δ ] = �A[δ ] type

Suppose that n 
 ρ0 = ρ1 : Γ; we need to show that for some Bi we have n(�A)[δ ]oρi = Bi and
some R such that τω |=n B0 ∼ B1 ↓ R.
By our induction hypothesis, we have that there are some σi such that nδoρi = σi and n 
 σ0 =
σ1 : ∆. We may use these new environments to instantiate our other induction hypothesis. �is
tells us that for all stagesm we have some Ai

m such that nAoσi = Ai
m and τω |=m A0

m ∼ B1
m ↓ Sm

for some Sm . By determinacy of evaluation we know that all Ai
ms do not vary in m, so we will

henceforth write them as Ai . Likewise, by determinacy we obtain a relation S ∈ RelP from Sm .
We observe that by calculation n(�A)[δ ]oρi = �Ai , leading us to chose Bi = �Ai . Finally, observe
that because τω is closed under Box we have τω |=n �A0 ∼ �A1 ↓ T where we have de�ned T as
follows:

T = n�o({( ,v0,v1) | ∀m.m 
 v0 ∼ v1 ∈ S(m)})

Case. pi
Γ ` A0 = A1 type Γ.A0 ` B0 = B1 type

Γ ` Π(A0,B0) = Π(A1,B1) type

Fix n 
 ρ0 = ρ1 : Γ. We need to show that nΠ(Ai ,Bi )oρi = Fi for some Fi such that τω |=n F0 ∼ F1.
Unpacking our �rst induction hypothesis, we have nAioρi = Ai such that τω |=n A0 ∼ A1 ↓ R for
some R. We choose Fi = Π(Ai ,BiCρi ); to verify τω |=n F0 ∼ F1, we will show that Pi[τω ] |=n F0 ∼
F1.

1. We have already seen that τω |=n A0 ∼ A1 ↓ R.
2. To exhibit τω |=n R � B0Cρ0 ∼ B1Cρ1, we �x m ≤ n and m 
 a0 ∼ a1 ∈ R, to verify that
τω |=m B0Cρ0[a0] ∼ B1Cρ1[a1] ↓ S(a0,a1) for some S ∈ Fam.

a) First, we observe that m 
 ρ0.a0 = ρ1.a1 : Γ.A from m 
 a0 = a1 : A [ρ0; ρ1], which
follows fromm 
 a0 ∼ a1 ∈ R, τω |=m A0 ∼ A1 ↓ R (by Lemma 3.2.5), andm 
 ρ0 = ρ1 :
Γ (by Lemma 3.3.2).

b) �erefore, by instantiating our second induction hypothesis, there exists some S(a0,a1)

such that τω |=m nB0oρ0 .a0 ∼ nB1oρ1 .a1 ↓ S(a0,a1), which is the same as τω |=m
B0Cρ0[a0] ∼ B1Cρ1[a1] ↓ S(a0,a1). By the determinacy of the type system, this actually
de�nes a family S ∈ Fam.

Case.
Γ ` A0 = A1 : Uj

Γ ` A0 = A1 type
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Fixing n 
 ρ0 = ρ1 : Γ, we need to show that nAioρi = Ai and τω |=n A0 ∼ A1 for some Ai . By
the induction hypothesis, we already have nAioρi = Ai and nUjoρi = Ui with τω |=n U0 ∼ U1 ↓ S
for some S and moreover n 
 A0 ∼ A1 ∈ S . By inversion, we observe that Ui = Uj and
S = (τi |=(−) − ∼ −). �erefore, we have τi |=n A0 ∼ A1, and we obtain τω |=n A0 ∼ A1 from
Lemma 3.2.8.

Case.
Γ = Γ1.A.Γ2 ‖Γ2‖ =m µ < Γ2

Γ ` varm = varm : A[pm]

Fixing n 
 ρ0 = ρ1 : Γ, we need to show that nA[pm]oρi = Ai for some Ai such that τω |=n A0 ∼
A1 ↓ R for some R, and moreover, that nvarmoρi = vi for some vi such that n 
 v0 ∼ v1 ∈ R.
Se�ing vi = ρi (m), we invert our assumption n 
 ρ0 = ρ1 : Γ to obtain n 
 ρ ′0.v0 = ρ

′
1.v1 : Γ1.A

for some ρ ′i , whence again by inversion, we have Ai and R with the desired property (using
Lemma 2.2.1).

Case. shut
Γ.µ ` t0 = t1 : A

Γ ` [t0]µ = [t1]µ : �A

Fixing n 
 ρ0 = ρ1 : Γ, we need to show that n�Aoρi = Ci and n[ti ]µoρi = vi such that
τω |=n C0 ∼ C1 ↓ R and n 
 v0 ∼ v1 ∈ R for some R.
Observing that we havem 
 ρ0 = ρ1 : Γ.µ for all m, we obtain by determinacy a family S ∈ RelP

and values Ai ,wi such that τω |=m A0 ∼ A1 ↓ S(m) and nAoρi = Ai and ntioρi = wi and
m 
 w0 ∼ w1 ∈ S(m).
Moreover, by the de�nition of the evaluation relation, we are constrained to chooseCi = �Ai and
vi = shut(wi ). By the closure of the type system under Box, we see that R is likewise constrained,
and it remains only to show that for allm, we havem 
 open(shut(w0)) ∼ open(shut(w1)) ∈ S(m).
But open(shut(wi )) = wi , so we are already done.

Case. open
Γb ` t0 = t1 : �A

Γ ` [t0]b = [t1]b : A

Fixing n 
 ρ0 = ρ1 : Γ, we need to show that nAoρi = Ai and n[ti ]boρi = vi for some Ai ,vi such
that τω |=n A0 ∼ A1 ↓ R n 
 v0 ∼ v1 ∈ R for some R.
Observe that must exist somem such thatm 
 ρ0 = ρ1 : Γb. �en, by the induction hypothesis
we have n�Aoρi = �Ai and some R such that τω |=m �A0 ∼ �A1 ↓ R. Moreover, ntioρi = vi for
some vi such thatm 
 v0 ∼ v1 ∈ R.
Now, by inversion we must have that Box[τω ] |=m �A0 ∼ �A1 ↓ R and therefore Box[τω ] |=n
�A0 ∼ �A1 ↓ R. �is tells us that there is some S(m′) such that τω |=m′ A0 ∼ A1 ↓ S(m

′) for
everym′ and, moreover, thatm′ 
 open(v0) ∼ open(v1) ∈ S(m

′). Further inversion tells us that
nAoρi = Ai . �erefore, se�ingm′ = n, we obtain the desired conclusion.

Case.
Γb.µ ` t : A

Γ ` [[t]µ]b = t : A

Fixing n 
 ρ0 = ρ1 : Γ, we need to show that nAoρi = Ai and ntoρ1 = v1 and n[[t]µ]boρ0 = v0 for
some Ai ,vi such that τω |=n A0 ∼ A1 ↓ R and n 
 v0 ∼ v1 ∈ R for some R.
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First, we observe that n 
 ρ0 = ρ1 : Γb.µ using Lemma 3.3.3. �erefore, we may use our
induction hypothesis to conclude that nAoρi = Ai and ntoρi = vi and for some Ai ,vi such that
τω |=n A0 ∼ A1 ↓ R and n 
 v0 ∼ v1 ∈ R. Finally , we observe by calculation n[[t]µ]boρ1 = v1.

Case.
Γ ` t : �A

Γ ` [[t]b]µ = t : �A

Fixing n 
 ρ0 = ρ1 : Γ, we need to show that n�Aoρi = Ci and ntoρ1 = v1 and n[[t]b]µoρ0 = v0
for some Ci ,vi such that τω |=n C0 ∼ C1 ↓ R and n 
 v0 ∼ v1 ∈ R some R.
We use our induction hypothesis to conclude that n�Aoρi = Ci and ntoρi = wi and for some
Ci ,wi such that τω |=n C0 ∼ C1 ↓ R and n 
 w0 ∼ w1 ∈ R. We therefore set v1 = w1, but still need
to obtain an appropriate v0.
We observe by inversion that Ci = �Ai where nAoρi = Ai . By inversion again, we obtain
Box[τω ] |=n �A0 ∼ �A1 ↓ R and R = n�o({(n,u0,u1) | n 
 u0 ∼ u1 ∈ S(n)}) for some S ∈ RelP

such that τω |=m A0 ∼ A1 ↓ S(m) for allm. What remains is the following:

1. We need to see that n[[t]b]µoρ0 = v0 for somev0. First, we observe that n[t]boρi = open(wi )

andm 
 open(w0) ∼ open(w1) ∈ S(m) for allm. �erefore, we set v0 = shut(open(w0)).
2. Next, we need to see that n 
 v0 ∼ v1 ∈ R; �xingm, this means to show thatm 
 open(v0) ∼

open(v1) ∈ S(m). Calculating, we have open(v0) = open(shut(open(w0))) = open(w0); but
we have already observed thatm 
 open(w0) ∼ open(w1) ∈ S(m).

Case.
Γ ` A type Γ.A ` t0 = t1 : B

Γ ` λ(t0) = λ(t1) : Π(A,B)

Fixing n 
 ρ0 = ρ1 : Γ, we need to show that nΠ(A,B)oρi = Ci and some Ci such that τω |=n C0 ∼
C1 ↓ R and n 
 λ(t0Cρ0) ∼ λ(t1Cρ1) ∈ R for some R. First, we observe that because Γ ` A type, we
have nAoρi = Ai such that τω |=n A0 ∼ A1 ↓ S for some S . Hence we set Ci = Π(Ai ,BCρi ), since
nΠ(A,B)oρi = Π(Ai ,BCρi ). What remains is to show the following:

1. Pi[τω ] |=n Π(A0,BCρ0) ∼ Π(A1,BCρ1) ↓ R for some R. For this, it su�ces to show that
τω |=n S � BCρ0 ∼ BCρ1 ↓ T for some familyT , but this follows from our second induction
hypothesis. We have resolved R = nΠo(S,T ).

2. n 
 λ(t0Cρ0) ∼ λ(t1Cρ1) ∈ nΠo(S,T ). Fixing m 
 u0 ∼ u1 ∈ S for some m ≤ n, we need
to show that m 
 app(λ(t0Cρ0),u0) ∼ app(λ(t1Cρ1),u1) ∈ S(u0,u1). Observing that m 

ρ0.u0 = ρ1.u1 : Γ.A, we use our second induction hypothesis to conclude that ntioρi .ui = vi
for some vi such thatm 
 v0 ∼ v1 ∈ S(u0,u1).

Case.
Γ ` f0 = f1 : Π(A,B) Γ ` a0 = a1 : A

Γ ` f0(a0) = f1(a1) : B[id.a0]

Fixing n 
 ρ0 = ρ1 : Γ, we need to show that nB[id.a0]oρi = Ci and nfi (ai )oρi = vi for someCi ,vi
such that τω |=n C0 ∼ C1 ↓ R and n 
 v0 ∼ v1 ∈ R for some R.
Using our second induction hypothesis, we observe that nAoρi = Ai and naioρi = ai for some
Ai ,ai , and τω |=n A0 ∼ A1 ↓ S with n 
 a0 ∼ a1 ∈ S . Consequently, we further observe
that nΠ(A,B)oρi = Π(Ai ,BCρi ), and from our �rst induction hypothesis, we can conclude that
τω |=n Π(A0,BCρ0) ∼ Π(A1,BCρ1). By inversion, we have Pi[τω ] |=n Π(A0,BCρ0) ∼ Π(A1,BCρ1),
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from which we obtain τω |=n S � BCρ0 ∼ BCρ1 ↓ T for some family T such that n 
 f0 ∼ f1 ∈
nΠo(S,T ).
By instantiating our type family assumption just obtained above with n 
 a0 ∼ a1 ∈ S , we
therefore obtain some Di such that BCρi [ai ] = Di and τω |=n D0 ∼ D1 ↓ T (a0,a1). Instantiating
with n 
 a0 ∼ a0 ∈ S , we further obtain Ei such that BCρi [a0] = Ei and τω |=n E0 ∼ E1 ↓ T (a0,a0).
Se�ing C0 = D0 and C1 = E1, what remains is the following:

1. To see that τω |=n D0 ∼ E1, we recall that D1 = E0 and T (a0,a1) = T (a0,a0). �erefore, we
set R = T (a0,a1).

2. Because n 
 f0 ∼ f1 ∈ nΠo(S,T ), we obtain nfi (ai )oρi = vi where vi = app(fi ,ai ), such that
n 
 v0 ∼ v1 ∈ R.

Case.
Γ.A ` f : B Γ ` a : A

Γ ` (λ(f ))(a) = f [id.a] : B[id.a]

Fixing n 
 ρ0 = ρ1 : Γ, we need to show that nB[id.a]oρi = Ci and n(λ(f ))(a)oρ0 = v0 and
nf [id.a]oρ1 = v1 for some Ci ,vi such that τω |=n C0 ∼ C1 ↓ R and n 
 v0 ∼ v1 ∈ R for some
R. From our induction hypothesis, we obtain nAoρi = Ai such that τω |=n A0 ∼ A1 ↓ S and
naoρi = ai and n 
 a0 ∼ a1 ∈ S .
Next, we observe that n 
 ρ0.a0 = ρ1.a1 : Γ.A by de�nition; combining this with our second
induction hypothesis, we conclude that nBoρi .ai = Bi such that τω |=n B0 ∼ B1 ↓ T and
nf oρi .ai = ri and n 
 r0 ∼ r1 ∈ T (a0,a1).
By calculation, we see that nid.aoρi = ρi .ai , so we are free to chooseCi = Bi and R = T (a0,a1). We
merely need to show that n(λ(f ))(a)oρ0 = v0 and nf [id.a]oρ1 = v1 for some vi ; but by calculation
we have n(λ(f ))(a)oρ0 = r0 and nf [id.a]oρ1 = r1.

Case.
Γ ` f : Π(A,B)

Γ ` λ(f [p1](var0)) = f : Π(A,B)

Fixing n 
 ρ0 = ρ1 : Γ, we need to show that nΠ(A,B)oρi = Ci and nλ(f [p1](var0))oρ0 = v0 and
nf oρ1 = v1 for some Ci ,vi such that τω |=n C0 ∼ C1 ↓ R and n 
 v0 ∼ v1 ∈ R for some R. By
inverting our induction hypothesis, we obtain nΠ(A,B)oρi = Π(Ai ,BCρi ) and nAoρi = Ai for
some Ai such that τω |=n A0 ∼ A1 ↓ S and τω |=n S � BCρ0 ∼ BCρ1 ↓ T for some S,T ; and
moreover, nf oρi = fi such that n 
 f0 ∼ f1 ∈ nΠo(S,T ). We therefore set Ci = Π(Ai ,BCρi ) and
R = nΠo(S,T ); we need to show that n 
 λ((f [p1](var0))Cρ0) ∼ f1 ∈ nΠo(S,T ). Fixing m ≤ n
and m 
 a0 ∼ a1 ∈ S , we need to see that m 
 app(λ((f [p1](var0))Cρ0),a0) ∼ app(f1,a1) ∈
T (a0,a1). First, we observe that nf [p1](var0)oρ0 .a0 = app(f0,a0) because we already have nf oρ0 =

f0; therefore app(λ((f [p1](var0))Cρ0),a0) = app(f0,a0). So it would su�ce to verify that m 

app(f0,a0) ∼ app(f1,a1) ∈ T (a0,a1), which we obtain from the fact that n 
 f0 ∼ f1 ∈ nΠo(S,T ).

Case.
Γ ` l0 = l1 : A Γ.A ` B type Γ ` r0 = r1 : B[id.l0]

Γ ` 〈l0, r0〉 = 〈l1, r1〉 : Σ(A,B)

Fixing n 
 ρ0 = ρ1 : Γ, we need to show that nΣ(A,B)oρi = Ci and n〈l0, r0〉oρ0 = v0 and
n〈l0, r0〉oρ1 = v1 for some Ci ,vi such that τω |=n C0 ∼ C1 ↓ R and n 
 v0 ∼ v1 ∈ R for some R.
First, we observe by induction hypothesis from the �rst premise that there is some R0 such
that nAoρi = Ai and τω |=n A0 ∼ A1 ↓ R0. Furthermore, our induction hypothesis tells us that
nlioρi = li such that n 
 l1 ∼ l2 ∈ R0.
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�e induction hypothesis for our seocnd premise to conclude that there is some R1 such that
τω |=n R0 � BCρ0 ∼ BCρ1 ↓ R1. Furthermore, we have that nrioρi = ri and n 
 r0 ∼ r1 ∈ R1(l0, l1)
from the third induction hypothesis.
We now choose Ci = Σ(Ai ,BCρi ) and R = nΣo(R0,R1). �e remaining goal, that n 
 〈l0, r0〉 ∼
〈l1, r1〉 ∈ R is immediate by calculation and our assumptions.

Case.
Γ ` t : Σ(A,B)

Γ ` 〈fst(t), snd(t)〉 = t : Σ(A,B)

Fixingn 
 ρ0 = ρ1 : Γ, we need to show that nΣ(A,B)oρi = Ci and ntoρ0 = v0 and n〈fst(t), snd(t)〉oρ1 =

v1 for some Ci ,vi such that τω |=n C0 ∼ C1 ↓ R and n 
 v0 ∼ v1 ∈ R for some R.
First, we observe by induction hypothesis from the �rst premise that there is some R such that
nΣ(A,B)oρi = Di and τω |=n D0 ∼ D1 ↓ R0. By inversion, we see that nΣ(A,B)oρi = Σ(Ai ,BCρi ).
�erefore, we have that R = nΣo(R0,R1) for some R0 such that τω |=n A0 ∼ A1 ↓ R0 and
τω |=n BCρ0 � BCρ1 ∼ R1. Finally, we must have ntoρi = vi such that n 
 v0 ∼ v1 ∈ R.
We observe by de�nition that this last fact tells us that n 
 fst(v0) ∼ fst(v1) ∈ R0 and n 

snd(v0) ∼ snd(v1) ∈ R1(fst(v0), fst(v1)).
We choose Ci = Di . We have immediately that τω |=n C0 ∼ C1 ↓ R. It su�ces to show that there
is some wi such that ntoρ0 = w0 and n〈fst(t), snd(t)〉oρ1 = w1 such that n 
 w0 ∼ w1 ∈ R. For this,
we set w0 = v0 and w1 = 〈fst(v0), snd(v1)〉. �e la�er is de�ned by assumption. We have that
n 
 w0 ∼ w1 ∈ R holds by calculation.

Case.
Γ ` l : A Γ.A ` B type Γ ` r : B[id.l]

Γ ` snd(〈l, r 〉) = r : B[id.l]

In this case �x n 
 ρ0 = ρ1 : Γ. We wish to show that nB[id.l]oρi = Ci such that τω |=n C0 ∼
C1 ↓ R for some R. Furthermore, we must show that n〈l, r 〉oρ0 = v0 and nroρ0 = v1 such that
n 
 v0 ∼ v1 ∈ R.
First, we observe by induction hypothesis that there is some R0 such that nAoρi = AiR0 and
nloρi = li such that n 
 l0 ∼ l1 ∈ R0. We also have by induction hypothesis that τω |=n R0 �
BCρ0 ∼ BCρ1 ↓ R1.
We have that nB[id.l]oρi = Di such that τω |=n D0 ∼ D1 ↓ R1(l0, l1). We also have that nroρi = ri
such that n 
 r0 ∼ r1 ∈ R1(l0, l1). Since we have snd(〈l0, r0〉) = r0 we have the desired conclusion
by se�ing Ci = Di and R = R1(l0, l1).

Case.
Γ ` A = B : Ui

Γ ` A = B : Ui+1

�is is immediate from Lemma 3.2.8.

Case.
Γb ` δ0 = δ1 : ∆
Γ ` δ0 = δ1 : ∆.µ

In this case, �x somen 
 ρ0 = ρ1 : Γ. We wish to show that nδioρi = ρ ′i such thatn 
 ρ ′0 = ρ ′1 : ∆.µ.
First, we observe that there is some m such that m 
 ρ0 = ρ1 : Γb using Lemma 3.3.3. We may
then use our induction hypothesis to conclude that nδioρi = ρ ′i such that m 
 ρ ′0 = ρ ′1 : ∆. By
de�nition, we then have n 
 ρ ′0 = ρ ′1 : ∆.µ as required.
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�

Lemma 3.3.6. If Γ ctx then there is some ρ such that ↑Γ = ρ then n 
 ρ = ρ : Γ.

Proof. �is is immediate by induction on Γ using Lemma 3.2.7. �

Corollary 3.3.7. If Γ ` t0 = t1 : T then nbeTΓ (ti ) = t ′ for some t ′.

Proof. If Γ ` t0 = t1 : T then there is some ρ such that ↑Γ = ρ and n 
 ρ = ρ : Γ by Lemma 3.3.6.
We therefore may apply �eorem 3.3.5 to conclude that there is some A such that nToρ = A and
τω |=n A ∼ A ↓ R. We also have that ntioρ = vi such that n 
 v0 ∼ v1 ∈ R.

Now, by Lemma 3.2.7 we have that R is compatible and so ↓Av0 ∼ ↓
Av1 ∈ Nf . �erefore, there is a

particular t ′ such that d↓Avi e‖Γ ‖ = t ′. By de�nition, we then have that nbeTΓ (ti ) = t ′ as required. �



4 Soundness of Normalization

4.1 A well-ordering on semantic types

In Section 4.2, we will de�ne a logical relation between syntax and semantics, proceeding by induction
on the type at which we are comparing things; unfortunately, the induction is not structural, so we need
to de�ne an ordering on semantic types such that, for instance, a dependent function type is strictly
greater than all instantiations of its codomain.

We de�ne the order σ |=n A < B on semantic types as the least relation closed under the following
rules:

σ |=n A ≤ B

σ |=n A < �B

σ |=n A ≤ B

σ |=n A < Σ(B,C)

σ |=n A ≤ B

σ |=n A < Π(B,C)

σ |=n B ∼ B ↓ R m ≤ n m 
 a ∼ a ∈ R σ |=m A ≤ C[a]

σ |=n A < Σ(B,C)

σ |=n B ∼ B ↓ R m ≤ n m 
 a ∼ a ∈ R σ |=m A ≤ C[a]

σ |=n A < Π(B,C)

σ |=n A ≤ B

σ |=n A < Id(B,v0,v1)

Lemma 4.1.1. If τα |=n+1 A < B then τα |=n A < B.

Proof. By induction. �

�eorem 4.1.2. If τα |=n A ∼ A, then there is no in�nite descending chain in α |=n − < − starting with A.

Proof. �is is done by showing that the following σ ∈ Sys is a pre-�xed point of Typesα :

τα |=n A0 ∼ A1 ↓ R there is no in�nite chain starting from A0 with τα |=n − < −

σ |=n A0 ∼ A1 ↓ R
================================================================================================================

We show only the non-trivial cases. Suppose that Typesα [σ ] |=n A0 ∼ A1 ↓ R holds; we wish to show
that σ |=n A0 ∼ A1 ↓ R.

Case.
σ |=n A0 ∼ A1 ↓ S σ |=n S � B0 ∼ B1 ↓ T

Pi[σ ] |=n Π(A0,B0) ∼ Π(A1,B1) ↓ nΠo(S,T )
We now wish to show that σ |=n Π(A0,B0) ∼ Π(A1,B1) ↓ nΠo(S,T ). We note that τα |=n
Π(A0,B0) ∼ Π(A1,B1) ↓ nΠo(S,T ) by unfolding the de�nition of σ in our two assumptions. We
merely need to show that there is no in�nite chain starting from Π(A0,B0).
Suppose such a chain exists: (Ci )i ∈N with τα |=n Ci+1 < Ci and C0 = Π(A0,B0). �ere are two
possible �rst links in such a chain; we proceed by case.

40
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1. Typesα |=n C1 ≤ A0. In this case, we would then have that there is an in�nite descending
chain starting with A0. �is contradicts σ |=n A0 ∼ A1 ↓ S .

2. �ere is some m ≤ n and m 
 v0 ∼ v1 ∈ S and Typesα |=m C1 ≤ B0[v0]. First, we observe
that in this case σ |=m B0[v0] ∼ B1[v1]. Next, by Lemma 4.1.1 we observe that (Ci )i ∈N is
an in�nite descending chain for τα |=m − < − as well. �erefore, if such a chain exists
then it is an in�nite descending chain for τα |=m − < − starting with B0[v0]. However, this
contradicts with our assumption that σ |=m B0[v0] ∼ B1[v1].

Case.
∀m. σ |=m A ∼ B

Box[σ ] |=n �A ∼ �B ↓ R

We now wish to show that σ |=n �A ∼ �B ↓ R.
Let us �rst observe that τα |=n �A ∼ �B ↓ R holds as σ ≤ τα .
Next, we wish to show that there is no in�nite descending chain starting from �A. Suppose
that such a chain exists: (Ci )i ∈N with τα |=n Ci+1 < Ci and C0 = �A. We observe that since
τα |=n C1 < �A it must be that τα |=n C1 ≤ A. �erefore, (Ci )i>0 and A is an in�nite descending
chain starting with A. �is contradicts σ |=m A ∼ B. �

Corollary 4.1.3. �e ordering τα |= − < − ⇐⇒ ∃m. τα |=m − < − is well-founded on semantic types
at stage 0.

Proof. �is follows from Lemma 4.1.1 as well as the fact that N is well-founded. �

We note that this well-ordering of semantic types is also used implicitly by Coq’s termination checker
in Wieczorek and Biernacki [WB18]; we have explained it explicitly in order to make the mathematical
content clear in the absence of a formalization.

4.2 The logical relation for soundness

In order to prove soundness we use a logical relation. Essentially we tie together a syntactic value with
its counterpart in the model and show that a value related to a term quotes to that term. We then prove
the “fundamental theorem” which in this case proves that a term is related to its evaluation. �is part is
complicated by the necessity of including a Kripke world again so that this logical relation is �bered
over the product of contexts and n.

We de�ne the relation Γ `n t : A R v ∈α A and Γ `n A R A typeα by mutual induction. �e �rst
relation states that a syntactic term is related to a value at some semantic type where the logical relation
has been constructed for the �rst α universes. �e second states that a syntactic type is related to a
semantic type but again only considering the �rst α universes. In order to make this de�nition work,
we must ensure that these relations are monotone with respect to α , n, and Γ. On contexts, we de�ne an
order r : Γ ≤ Γ′ when Γ is a weakening of Γ′. Weakenings, r , are a special case of substitutions where
we restrict the extension rule to only allow the adjoining of variables and remove · and pi . �is means
that weakenings may extend the identity substitution by variables and are closed under composition.

We will then prove a property akin to compatibility: suppose that ∀n. Γ `n A R A typeα then:

1. (∀n. Γ `n t : A R v ∈α A) then d↓Ave‖Γ ‖ = t ′ for some t ′ and Γ ` t = t ′ : A.

2. If dee‖Γ ‖ = t ′ and Γ ` t = t ′ : A then Γ `n t : A R ↑A e ∈α A.
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�e induction used to de�ne logical relations is complicated so we take a moment now to explicitly state
what is going on. We simultaneously de�ne − `n − : − R − ∈α A and − `n − R A typeα for all α , A,
and n such that τα |=n A ∼ A. �e ordering on the triple (α,A,n) is given as follows:

β < α

(β,B,m) < (α,A,n)

τα |=min(m,n) B < A

(α,B,m) < (α,A,n)

�is is not quite a lexicographical ordering, because the type systems are constrained to be equal in
the second clause. However, it is clearly stricter than the lexicographical ordering of two well-founded
orderings and so is itself well-founded. �e crucial move here is that (assuming that types are valid at
all the appropriate worlds) we can move to a semantically smaller type and mostly ignore the index.

Logical relation on types Presupposing τα |=n C ∼ C , we de�ne Γ `n C R C typeα to hold just when
one of the following cases applies:

Γ `n C R nat typeα if Γ ` C = nat type.

Γ `n C R Π(A,B) typeα if:

– Γ ` C = Π(A,B) type for some A,B;
– Γ `n A R A typeα ;
– if n′ ≤ n and r : Γ′ ≤ Γ, then Γ′ `n′ t : A[r ] R a ∈α A implies Γ′ `n′ B[r .t] R B[a] typeα .

Γ `n C R Σ(A,B) typeα if:

– Γ ` C = Σ(A,B) type for some A,B;
– Γ `n A R A typeα ;
– if n′ ≤ n and r : Γ′ ≤ Γ, then Γ′ `n′ t : A[r ] R a ∈α A implies Γ′ `n′ B[r .t] R B[a] typeα .

Γ `n C R Id(A,v0,v1) typeα if:

– Γ ` C = Id(A, t0, t1) type for some A, t0, t1;
– Γ `n A R A typeα ;
– Γ `n ti : A R vi ∈α A for i ∈ {0, 1}.

Γ `n C R �A typeα if:

– Γ ` C = �A type for some A;
– for allm, Γ.µ `m A R A typeα .

Γ `n C R ↑− e typeα if, when r : Γ′ ≤ Γ, there exists C ′ such that dee‖Γ′ ‖ = C ′ and Γ′ ` C[r ] =
C ′ type.

Γ `n C R Uj typeα if j < α and Γ ` C = Uj type.
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Logical relation on terms Presupposing τα |=n C ∼ C ↓ R, we de�ne Γ `n t : C R v ∈α C to hold just
when one of the following cases is applicable:

Γ `n t : C R v ∈α nat if:

– n 
 v ∼ v ∈ R;
– Γ ` C = nat type;
– one of the following three cases is applicable:

1. v = zero and Γ ` t = zero : C;
2. v = succ(v ′), Γ ` t = succ(t ′) : C , and Γ `n t ′ : C R v ′ ∈α nat;
3. v = ↑− e and if r : Γ′ ≤ Γ then dee‖Γ′ ‖ = t ′ and Γ′ ` t[r ] = t ′ : nat.

Γ `n t : C R v ∈α Π(A,B) if:

– n 
 v ∼ v ∈ R and Γ ` t : C;
– Γ ` C = Π(A,B) type for some A,B;
– Γ `n A R A typeα ;
– if n′ ≤ n and r : Γ′ ≤ Γ then Γ′ `n′ t

′ : A[r ] R a ∈α A implies Γ′ `n′ t[r ](t
′) : B[r .t ′] R

app(v,a) ∈α B[a].

Γ `n t : C R v ∈α Σ(A,B) if:

– n 
 v ∼ v ∈ R and Γ ` t : C;
– Γ ` C = Σ(A,B) type for some A,B;
– if n′ ≤ n and r : Γ′ ≤ Γ, then Γ′ `n′ t

′ : A[r ] R a ∈α A implies Γ′ `n′ B[r .t ′] R B[a] typeα ;
– Γ `n fst(t) : A R fst(v) ∈α A;
– Γ `n snd(t) : B[id.(fst(t))] R snd(v) ∈α B[fst(v)].

Γ `n t : C R v ∈α Id(A,v0,v1) if:

– n 
 v ∼ v ∈ R and Γ ` t : C;
– Γ ` C = Id(A, t0, t1) type for some A, t0, t1;
– Γ `n A R A typeα ;
– Γ `n ti : A R vi ∈α A for i ∈ {0, 1};
– one of the following cases applies:

∗ v = ↑− e and when r : Γ′ ≤ Γ, then dee‖Γ′ ‖ = t ′ such that Γ′ ` t[r ] = t ′ : C[r ].
∗ Γ ` t = refl(t ′) : C and v = re�(v ′) for some t ′,v ′ such that Γ ` t ′ = ti : A.

Γ `n t : C R v ∈α �A if:

– n 
 v ∼ v ∈ R and Γ ` t : C;
– Γ ` C = �A type for some A
– for allm, Γ.µ `m [t]b : A R open(v) ∈α A

Γ `n t : C R ↑− e1 ∈α ↑
− e2 if, when r : Γ′ ≤ Γ, then de1e‖Γ′ ‖ = t ′ and de2e‖Γ′ ‖ = C ′ such that

Γ′ ` C[r ] = C ′ type and Γ′ ` t[r ] = t ′ : C[r ].

Γ `n t : C R v ∈α Ui if:
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– i < α ;
– n 
 v ∼ v ∈ R;
– Γ ` t : C and Γ ` C = Ui type;
– Γ `n t R v typei .

We observe that the above is well-de�ned using Lemma 4.2.1 below.

Lemma 4.2.1. If Γ `n t : T R v ∈α A then τα |=n A ∼ B ↓ R and n 
 v ∼ v ∈ R.

Proof. �is follows from the fact that each clause of Γ `n t : T R v ∈α A requires n 
 v ∼ v ∈ R. �

4.3 Properties of the logical relation

In this section we prove a number of properties of our logical relation we shall use later in proving
soundness (Section 4.4).

Lemma 4.3.1. Ifm ≤ n and τα |=n A ∼ A then the following two facts hold.

1. Γ `n T R A typeα impliesm `Γ T R A typeα

2. Γ `n t : T R v ∈α A impliesm `Γ t : T R v ∈α A

Proof. �is proof is immediate by inspection. �

Lemma 4.3.2. If τα |=n A ∼ A then the following two facts hold.

1. r : Γ′ ≤ Γ and Γ `n T R A typeα implies Γ′ `m T [r ] R A typeα

2. r : Γ′ ≤ Γ and Γ `n t : T R v ∈α A implies Γ′ `m t[r ] : T [r ] R v ∈α A

Proof. �is proof is immediate by the composition of weakenings. �

Lemma 4.3.3. If τα |=n A ∼ A and Γ `n T R A typeα then Γ ` T type.

Proof. We proceed by induction on (α,A,n) using the ordering used in the de�nition of the logical
relation. Suppose that this property holds for all (β,B,m) < (α,A,n); we proceed by case on A. Since
we have τα |=n A ∼ A many cases may be immediately eliminated. �e remaining cases are described
below.

Case.
Π(A0,A1)

In this case by inversion Γ `n T R Π(A0,A1) typeα we must have that the following holds:

Γ ` T = Π(T0,T1) type for some T0 and T1

Γ `n T0 R A0 typeα
if n′ ≤ n and r : Γ′ ≤ Γ then Γ′ `n′ t : T0[r ] R a ∈α A0 implies Γ′ `n′ T1[r .t] R A1[a] typeα

�erefore, we have that there exists T0 and T1 such that Γ ` T = Π(T0,T1) type. By �eorem 1.2.16
we must have that Γ ` T type as required.

Case.
Σ(A0,A1)

�is case is identical to the case for Π(A0,A1).
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Case.
Ui

In this case by inversion on Γ `n T R Ui typeα we have Γ ` T = Ui type and so Γ ` T type by
�eorem 1.2.16.

Case.
�A′

In this case by inversion Γ `n T R �A′ typeα we must have that there is some T ′ such that
Γ ` T = �T ′ type. �erefore, Γ ` T type by �eorem 1.2.16.

Case.
Id(A′,v0,v1)

Identical to the previous case.

Case.
↑ e

Identical to the previous case.

Case.
nat

Identical to the previous case. �

Lemma 4.3.4. If τα |=n A ∼ A and Γ `n t : T R v ∈α A then Γ ` t : T .

Proof. �is follows by case on A. Every clause of Γ `n t : T R v ∈α A includes Γ ` t : T or that there
exists some t ′ such that Γ ` t = t ′ : T so this is immediate using �eorem 1.2.16. �

Lemma 4.3.5. If τα |=n A ∼ B ↓ R then the following two facts hold:

1. Γ `n T R A typeα then Γ `n T R B typeα

2. Γ `n t : T R v ∈α A then Γ `n t : T R v ∈α B

3. n 
 v1 ∼ v2 ∈ R and Γ `n t : T R v1 ∈α A then Γ `n t : T R v2 ∈α A.

Proof. We proceed by induction on α and we will show the following to be a pre-�xed point:

τα |=n A ∼ B ↓ R ∀T , Γ,m ≤ n. (Γ `m T R A typeα ⇐⇒ Γ `m T R B typeα )
(∀t,T , Γ,v,m ≤ n. (Γ `m t : T R v ∈α A ⇐⇒ Γ `m t : T R v ∈α B)
∀m ≤ n, t,T ,m 
 v0 ∼ v1 ∈ R. (Γ `m t : T R v0 ∈α A0 ⇐⇒ Γ `m t : T R v1 ∈α A0))

σ |=n A ∼ B ↓ R
================================================================================================================

In order to do this, we suppose that Typesα [σ ] |=n A ∼ B ↓ R. We wish to show σ |=n A ∼ B ↓ R; we
proceed by cases.

Case.
σ |=n A0 ∼ A1 ↓ R0 σ |=n R0 � B0[v0] ∼ B1[v1] ↓ R1

Pi[σ ] |=n Π(A0,B0) ∼ Π(A1,B1) ↓ nΠo(R0,R1)

We set R = nΠo(R0,R1). We to show σ |=n Π(A0,B0) ∼ Π(A1,B1) ↓ R wish to For this, we must
show 4 things.
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1. σ |=n Π(A0,B0) ∼ Π(A1,B1) ↓ R.
�is is immediate as we can construct Pi[τα ] |=n Π(A0,B0) ∼ Π(A1,B1) ↓ R from our
assumptions.

2. For all T , Γ, andm ≤ n we have Γ `m T R Π(A0,B0) typeα i� Γ `m T R Π(A1,B1) typeα .
We assume Γ `m T R Π(A0,B0) typeα . We wish to show Γ `n T R Π(A1,B1) typeα . First,
we note that Γ `m T R Π(A0,B0) typeα is equivalent:

Γ ` T = Π(T0,T1) type for some T0 and T1

Γ `m T0 R A0 typeα
If m′ ≤ m and r : Γ′ ≤ Γ then Γ′ `m′ t : T0[r ] R a ∈α A0 implies Γ′ `n′ T1[r .t] R

B0[a] typeα
�e de�nition of Γ `m T R Π(A1,B1) typeα is almost identical. First, we note that Γ `
T = Π(T0,T1) type must hold for some T0 and T1 so it su�ces to show the second half of
Γ `m T R Π(A1,B1) typeα . We have Γ `m T0 R A1 typeα immediately from σ |=n A0 ∼ A1
and our assumption of Γ `m T0 R A0 typeα .
We assume we have thatm′ ≤ m and r : Γ′ ≤ Γ and Γ′ `m′ t : T0[r ] R v ∈α A1. Now in this
case we note that σ |=n A0 ∼ A1 ↓ R0 tells us that we may conclude Γ′ `m′ t : T0[r ] R v ∈α
A0. �erefore, we have the following:

Γ′ `m′ T1[r .t] R B0[v] typeα

We observe that from Lemma 4.2.1 to conclude that m′ 
 v ∼ v ∈ R0. �erefore, we have
σ |=m′ B0[v] ∼ B1[v]. Now, from this we have Γ′ `n′ T1[r .t] R B1[v] typeα as required.
�e proof that Γ `n T R Π(A1,B1) typeα implies Γ `n T R Π(A0,B0) typeα holds mutatis
mutandis.

3. For all T , t , Γ, andm ≤ n then Γ `m t : T R v ∈α Π(A0,B0) i� Γ `m t : T R v ∈α Π(A1,B1).
Suppose we have some T , t , Γ, and m ≤ n. We will show only that Γ `m t : T R v ∈α
Π(A0,B0) implies Γ `m t : T R v ∈α Π(A1,B1). First, we observe that Γ `m t : T R v ∈α
Π(A0,B0) holds if and only if the following conditions hold.

m 
 v ∼ v ∈ R and Γ ` t : T ;
Γ ` T = Π(T0,T1) type for some T0,T1;
Γ `m T0 R A0 typeα ;
if m′ ≤ m and r : Γ′ ≤ Γ then Γ′ `m′ t

′ : T0[r ] R a ∈α A0 implies Γ′ `m′ t[r ](t
′) :

T1[r .t
′] R app(v,a) ∈α B0[a].

We wish to show Γ `m t : T R v ∈α Π(A1,B1) which is de�ned in a similar way. First, we
observe that there must be someTi such that Γ ` T = Π(T0,T1) type, Γ ` t : T ,m 
 v ∼ v ∈ R
and Γ `m T0 R A1 typeα from our assumption. �erefore, we merely need to show the
following last item in order to establish our goal. Suppose thatm′ ≤ m and r : Γ′ ≤ Γ such
that Γ′ `m′ t ′ : T0[r ] R a ∈α A1. We wish to show Γ′ `m′ t[r ](t

′) : T1[r .t
′] R app(v,a) ∈α

B1[a].
We may now use σ |=n A0 ∼ A1 to conclude that Γ′ `m′ t ′ : T0[r ] R a ∈α A0. �erefore, we
may conclude the following:

Γ′ `m′ t[r ](t
′) : T1[r .t] R app(v,a) ∈α B0[a]

However, from Γ′ `m′ t
′ : T1[r ] R a ∈α A1 we must have that m′ 
 a ∼ a ∈ R0 from

Lemma 4.2.1 and so σ |=m′ B0[a] ∼ B1[a]. Finally, we may use this to conclude the goal:

Γ′ `n′ t[r ](t
′) : T1[r .t] R app(v,a) ∈α B1[a]
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4. Ifm 
 v0 ∼ v1 ∈ R andm ≤ n then Γ `m t : T R v0 ∈α A0 if and only if Γ `m t : T R v0 ∈α
A0.
We will show on the forward direction. Suppose we have Γ `m t : T R v0 ∈α A0. We
wish to show Γ `m t : T R v1 ∈α A0 holds. First, by inversion on Γ `m t : T R v0 ∈α A
we observe that there must be some T0 and T1 such that Γ ` T = Π(T0,T1) type, Γ ` t : T ,
Γ `m T0 R A0 typeα andm′ ≤ m and r : Γ′ ≤ Γ such that Γ′ `m′ t ′ : T0 R w ∈α A0 we have
the following:

Γ′ `m′ t[r ](t
′) : T1[r .t

′] R app(v1,w) ∈α B0[w]

Now in order to show our goal it su�ces to show that have all m′ ≤ m and r : Γ′ ≤ Γ if
Γ′ `m′ t

′ : T0 R w ∈α A0 then we have the following:

Γ′ `m′ t[r ](t
′) : T1[r .t

′] R app(v2,w) ∈α B0[w]

Now, we must have that m′ 
 w ∼ w ∈ R0 by Lemma 4.2.1. �erefore, we have m 

app(v1,w) ∼ app(v2,w) ∈ R1(w,w). Furthermore, we have σ |=m′ B0[w] ∼ B1[w] ↓ R1(w,w).
By unfolding the de�nition of σ then, it is apparent that our goal follows from our assumption
of Γ′ `m′ t[r ](t ′) : T1[r .t

′] R app(v1,w) ∈α B0[w].

Case.
σ |=n A0 ∼ A1 ↓ R0 σ |=n R0 � B0[v0] ∼ B1[v1] ↓ R1

Sg[σ ] |=n Σ(A0,B0) ∼ Σ(A1,B1) ↓ nΣo(R0,R1)

We set R = nΣo(R0,R1). We to show σ |=n Σ(A0,B0) ∼ Σ(A1,B1) ↓ R. For this, we must show 4
things.

1. τα |=n Σ(A0,B0) ∼ Σ(A1,B1) ↓ R.
�is is immediate as we can construct Pi[τα ] |=n Σ(A0,B0) ∼ Σ(A1,B1) ↓ R from our
assumptions.

2. For all T , Γ, andm ≤ n we have Γ `m T R Σ(A0,B0) typeα i� Γ `m T R Σ(A1,B1) typeα .
�is case is identical to the corresponding case for Π(−,−).

3. For all T , t , Γ, andm ≤ n then Γ `m t : T R v ∈α Σ(A0,B0) i� Γ `m t : T R v ∈α Σ(A1,B1).
Suppose we have some T , t , Γ, and m ≤ n. We will show only that Γ `m t : T R v ∈α
Σ(A0,B0) implies Γ `m t : T R v ∈α Σ(A1,B1). First, we observe that Γ `m t : T R v ∈α
Σ(A0,B0) is de�ned as follows:

m 
 v ∼ v ∈ R and Γ ` t : T ;
Γ ` T = Σ(T0,T1) type for some T0,T1;
if m′ ≤ m and r : Γ′ ≤ Γ, then Γ′ `m′ t

′ : T0[r ] R a ∈α A0 implies Γ′ `m′ T1[r .t
′] R

B0[a] typeα ;
Γ `m fst(t) : T0 R fst(v) ∈α A0;
Γ `m snd(t) : T1[id.(fst(t))] R snd(v) ∈α B0[fst(v)].

We wish to show Γ `m t : T R v ∈α Σ(A1,B1). First, we observe that T0 and T1 such that
Γ ` T = Σ(T0,T1) type, Γ ` t : T , and m 
 v ∼ v ∈ R. We wish to show that the following
three facts hold:

a) if m′ ≤ m and r : Γ′ ≤ Γ, then Γ′ `m′ t
′ : T0[r ] R a ∈α A1 implies Γ′ `m′ T1[r .t

′] R

B1[a] typeα ;
b) Γ `m fst(t) : T0 R fst(v) ∈α A1;
c) Γ `m snd(t) : T1[id.(fst(t))] R snd(v) ∈α B1[fst(v)].
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�e �rst fact is precisely our induction hypothesis. For the second, we note that since
σ |=m A0 ∼ A1 we have the �rst fact from Γ `m fst(t) : T0 R fst(v) ∈α A1. For the second,
we observe that m 
 v ∼ v ∈ R1 and so σ |=m B0[fst(v)] ∼ B1[fst(v)] holds. �e second fact
follows from this.

4. If m ≤ n, m 
 v0 ∼ v1 ∈ R then Γ `m t : T R v0 ∈α Σ(A0,B0) i� Γ `m t : T R v1 ∈α
Σ(A0,B0).
We will show on the forward direction. We wish to show Γ `m t : T R v1 ∈α Σ(A0,B0).
Now, inversion on the assumption tells the following:

n 
 v0 ∼ v0 ∈ R and Γ ` t : T ;
Γ ` T = Σ(T0,T1) type for some T0,T1;
if m′ ≤ m and r : Γ′ ≤ Γ, then Γ′ `m′ t

′ : T0[r ] R a ∈α A0 implies Γ′ `m′ T1[r .t
′] R

B0[a] typeα ;
Γ `m fst(t) : T0 R fst(v0) ∈α A0;
Γ `m snd(t) : T1[id.(fst(t))] R snd(v0) ∈α B0[fst(v)].

In order to show the goal then it su�ces to show the following facts (the rest are identical
to our assumptions)

Γ `m fst(t) : T0 R fst(v1) ∈α A0;
Γ `m snd(t) : T1[id.(fst(t))] R snd(v1) ∈α B0[fst(v)].

First, we observe that m 
 fst(v0) ∼ fst(v1) ∈ R0 since n 
 v0 ∼ v1 ∈ R and R is monotone
by Lemma 3.2.5.
Next, since σ |=m A0 ∼ A1 ↓ R1 (again using monotonicity) we have the �rst fact from our
assumption that Γ `m fst(t) : T0 R fst(v0) ∈α A0.
�e second fact is more di�cult: we havem 
 snd(v0) ∼ snd(v1) ∈ R1(fst(v0), fst(v1)) and
σ |=m B0[v0] ∼ B1[v1] ↓ R1(fst(v0), fst(v1)). �erefore, we may conclude the following:

Γ `m snd(t) : T1[id.(fst(t))] R snd(v1) ∈α B0[fst(v0)]

By induction hypothesis it su�ces to show τα |=m B0[fst(v0)] ∼ B0[fst(v1)]. However, we
know that τα |=m B0[fst(v1)] ∼ B1[fst(v1)] by assumption and so Lemma 3.2.5 gives the
desired conclusion.

Case.
σ |=n A0 ∼ A1 ↓ R n 
 v0 ∼ u0 ∈ R n 
 v1 ∼ u1 ∈ R

Id[σ ] |=n Id(A0,v0,v1) ∼ Id(A1,u0,u1) ↓ nIdo(R,u0,u1)

We wish to show σ |=n Id(A0,v0,v1) ∼ Id(A1,u0,u1) ↓ nIdo(R,u0,u1). �is requires showing three
facts.

1. τα |=n Id(A0,v0,v1) ∼ Id(A1,u0,u1) ↓ nIdo(R,u0,u1)
In this case we observe that we have σ |=n A0 ∼ A1 ↓ R, n 
 v0 ∼ u0 ∈ R, and n 

v1 ∼ u1 ∈ R. From the �rst fact we have τα |=n A0 ∼ A1 ↓ R and so by closure we have
τα |=n Id(A0,v0,v1) ∼ Id(A1,u0,u1) ↓ nIdo(R,u0,u1).

2. For allT , Γ, andm ≤ n we have Γ `m T R Id(A0,v0,v1) typeα i� Γ `m T R Id(A1,u0,u1) typeα .
Suppose that we havem ≤ n and Γ `m T R Id(A0,v0,v1) typeα . By inversion we then have
that Γ ` T = Id(T ′, t0, t1) type such that Γ `m T ′ R A0 typeα and Γ `m ti : T ′ R vi ∈α A0
for i ∈ {0, 1}.
We have Γ `m T ′ R A1 typeα as σ |=n A0 ∼ A1 ↓ R. Next, we use this fact again to
conclude that Γ `m ti : T ′ R ui ∈α A1 for i ∈ {0, 1}. �erefore, we have by de�nition that
Γ `m Id(T ′, t0, t1) R Id(A1,u0,u1) typeα
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3. For all T , t , Γ, and m ≤ n then Γ `m t : T R v ∈α Id(A0,v0,v1) i� Γ `m t : T R v ∈α
Id(A1,u0,u1).
We will show only the forward direction, so suppose that Γ `m t : T R v ∈α Id(A0,v0,v1).
We wish to show Γ `m t : T R v ∈α Id(A1,u0,u1). First, we observe by inversion on
Γ `m t : T R v ∈α Id(A0,v0,v1) to conclude the following:

m 
 v ∼ v ∈ nIdo(R,u0,u1) and Γ ` t : T ;
Γ ` T = Id(T ′, t0, t1) type for some T ′, t0, t1;
Γ `m T ′ R A0 typeα ;
Γ `m ti : T ′ R vi ∈α A0 for i ∈ {0, 1};
one of the following cases applies:
– v = ↑− e and when r : Γ′ ≤ Γ, then dee‖Γ′ ‖ = t ′ such that Γ′ ` t[r ] = t ′ : T [r ].
– Γ ` t = refl(t ′) : T and v = re�(v ′) for some t ′,v ′ such that Γ ` t ′ = ti : T ′.

Now, in order to establish Γ `m t : T R v ∈α Id(A1,u0,u1) we must show then that Γ `m ti :
T ′ R vi ∈α A0 for i ∈ {0, 1} but this holds using our assumption that σ |=m A0 ∼ A1.

4. if m ≤ n and m 
 w0 ∼ w1 ∈ nIdo(R,u0,u1) then Γ `m t : T R w0 ∈α Id(A0,v0,v1) i�
Γ `m t : T R w1 ∈α Id(A0,v0,v1)
We will show only the forward direction. Suppose thatm ≤ n,m 
 w0 ∼ w1 ∈ nIdo(R,u0,u1),
and Γ `m t : T R w0 ∈α Id(A0,v0,v1). We wish to show Γ `m t : T R w1 ∈α Id(A0,v0,v1).
We proceed by inversion on Γ `m t : T R w0 ∈α Id(A0,v0,v1) to conclude the following
facts must hold:

m 
 w0 ∼ w0 ∈ nIdo(R,u0,u1) and Γ ` t : T ;
Γ ` T = Id(T ′, t0, t1) type for some T ′, t0, t1;
Γ `m T ′ R A0 typeα ;
Γ `m ti : T ′ R vi ∈α A0 for i ∈ {0, 1};
one of the following cases applies:
– w0 = ↑

− e and when r : Γ′ ≤ Γ, then dee‖Γ′ ‖ = t ′ such that Γ′ ` t[r ] = t ′ : T [r ].
– Γ ` t = refl(t ′) : T and w0 = re�(v ′) for some t ′,v ′ such that Γ ` t ′ = ti : T ′.

In order to obtain the desired conclusion, therefore, we merely must show that one of the
following facts is true

v = ↑− e and when r : Γ′ ≤ Γ, then dee‖Γ′ ‖ = t ′ such that Γ′ ` t[r ] = t ′ : T [r ].
Γ ` t = refl(t ′) : T and w1 = re�(v ′) for some t ′,v ′ such that Γ ` t ′ = ti : T ′.

However, this follows by case onm 
 w0 ∼ w1 ∈ nIdo(R,u0,u1) and our assumptions.

Case.
∀m. σ |=n A0 ∼ A1 ↓ S(m) 
 v0 ∼ v1 ∈ R ⇐⇒ ∀n. n 
 A0 ∼ A1 ∈ S(n)

Box[σ ] |=n �A0 ∼ �A1 ↓ R

We wish to show σ |=n �A0 ∼ �A1 ↓ R. �is requires us to show three facts.

1. τα |=n �A0 ∼ �A1 ↓ R
In this case, we observe that for all m we have σ |=m A0 ∼ A1 ↓ S(m) so τα |=m A0 ∼ A1 ↓
S(m). �erefore τα |=n �A0 ∼ �A1 ↓ R.

2. For all T , Γ, andm ≤ n we have Γ `m T R �A0 typeα i� Γ `m T R �A1 typeα .
In this case, we will only show the forwards direction. Suppose Γ `m T R �A0 typeα holds.
We wish to show Γ `m T R �A1 typeα . Recall that Γ `m T R �C typeα holds if and only if
there is some T ′ such that Γ ` T = �T ′ type and for allm, Γ.µ `m T ′ R C typeα .
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By our assumption, we then have some T ′ such that Γ ` T = �T ′ type. We merely need
to show that for all m, Γ.µ `m T ′ R A1 typeα . However, since by assumption we have
Γ.µ `m T ′ R A0 typeα this follows from the fact that σ |=m A0 ∼ A1.

3. For all T , t , Γ, andm ≤ n then Γ `m t : T R v ∈α �A0 i� Γ `m t : T R v ∈α �A1.
For this, we will again show only one direction. Suppose that Γ `m t : T R v ∈α �A0. �en
we may expand this de�nition to see that it is equivalent to the following conditions:

Γ ` T = �T ′ type for some T ′

Γ ` t : T andm 
 v ∼ v ∈ R

for allm, Γ.µ `m [t]b : T ′ R open(v) ∈α A0

�erefore, we have some T ′ such that Γ ` T = �T ′ type and Γ ` t : T and m 
 v ∼ v ∈ R.
We therefore merely need to show for any m′ that Γ.µ `m′ [t]b : T ′ R open(v) ∈α A1.
However, since σ |=m′ A0 ∼ A1 and so this follows from Γ.µ `m [t]b : T ′ R open(v) ∈α A0.

4. for any m ≤ n if m 
 v0 ∼ v1 ∈ R then Γ `m t : T R v0 ∈α �A0 if and only if Γ `m t : T R

v1 ∈α �A0.
For this, we will show only the forward implication. Suppose we have Γ `m t : T R v0 ∈α
�A0. By inversion on this fact we have that there is some T ′ such that Γ ` T = �T ′ type and
Γ ` t : T . Furthermore, we have for allm′ that Γ.µ `m′ [t]b : T ′ R open(v1) ∈α A0.
We wish to show Γ `m t : T R v1 ∈α �A0. Using the above, it su�ces to show for allm′ that
Γ.µ `m′ [t]b : T ′ R open(v1) ∈α A0. However, we havem′ 
 open(v0) ∼ open(v2) ∈ S(m

′)

and σ |=m′ A0 ∼ A1 ↓ S(m
′). �erefore we have the desired conclusion from the de�nition

of σ .

Case.
e0 ∼ e1 ∈ Ne n 
 ↑− e ′0 ∼ ↑

− e ′1 ∈ R ⇐⇒ e ′0 ∼ e
′
1 ∈ Ne

Ne[σ ] |=n ↑− e0 ∼ ↑
− e1 ↓ R

We wish to show σ |=n ↑
− e0 ∼ ↑

− e1 ↓ R. In order to do this we �rst observe that τα |=n ↑− e0 ∼
↑− e1 ↓ R. Furthermore, we have that for any m ≤ n that Γ `m T R ↑− e0 typeα is equivalent to
the following:

∀r : Γ′ ≤ Γ. ∃T ′. de1e‖Γ′ ‖ = T
′ ∧ Γ′ ` T [r ] = T ′ type

However, e0 ∼ e1 ∈ Ne and so Γ `m T R ↑− e0 typeα ⇐⇒ Γ `m T R ↑− e1 typeα .
Moreover, Γ `m t : T R v ∈α ↑

− e0 if r : Γ′ ≤ Γ, then de1e‖Γ′ ‖ = t ′ and de2e‖Γ′ ‖ = T ′ such that
Γ′ ` T [r ] = T ′ type and Γ′ ` t[r ] = t ′ : T [r ]. However, since e1 ∼ e2 ∈ Ne we have that this is
precisely equivalent to Γ `m t : T R v ∈α ↑

− e2 and we’re done.
Finally, if n 
 v0 ∼ v1 ∈ R then we have that vi = ↑− e ′i and e0 ∼ e1 ∈ Ne . �erefore, Γ `m t : T R

↑− e ′0 ∈α ↑
− e0 if and only if Γ `m t : T R ↑− e ′1 ∈α ↑

− e0 by calculation.

Case.
i < α

Univα |=n Ui ∼ Ui ↓ {(m,A0,A1) | τj |=m A0 ∼ A1}

Since in this case both sides of the equality are identical all of the conditions are trivial except the
last. �e last follows by computation.

Case.

Nat[σ ] |=n nat ∼ nat ↓ nNo
Since in this case both sides of the equality are identical all of the conditions are trivial. �
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Lemma 4.3.6. If τω |=τα n ∼ A ↓ A and Γ ` T1 = T2 type then the following two facts hold:

1. Γ `n T1 R A typeα then Γ `n T2 R A typeα .

2. Γ `n t : T1 R v ∈α A then Γ `n t : T2 R v ∈α A.

Proof. In this case we may observe this by simply case on A (induction is not necessary). In each case
the result follows from transitivity of = on types and the conversion rule. �

Lemma 4.3.7. If τα |=n A ∼ A, Γ ` t1 = t2 : T and Γ `n t1 : T R v ∈α A then Γ `n t2 : T R v ∈α A.

Proof. In this case we do need some induction. We proceed by showing that the following is a least
pre-�xed point:

τα |=n A0 ∼ A1 ↓ R
∀m ≤ n,v, Γ, t1, t2,T . Γ ` t1 = t2 : T =⇒ (Γ `m t1 : T R v ∈α A0 ⇐⇒ Γ `m t2 : T R v ∈α A0)

σ |=n A0 ∼ A1 ↓ R
==============================================================================================================================

Suppose that we have Typesα [σ ] |=n A0 ∼ A1 ↓ R. We wish to show σ |=n A0 ∼ A1 ↓ R.

Case.
σ |=n A0 ∼ A1 ↓ R0 σ |=n R0 � B0 ∼ B1 ↓ R1 R = nΠo(R0,R1)

Pi[σ ] |=n Π(A0,B0) ∼ Π(A1,B1) ↓ R

We wish to show σ |=n Π(A0,B0) ∼ Π(A1,B1) ↓ R. �is involves showing two facts:

1. τα |=n Π(A0,B0) ∼ Π(A1,B1)
�is is immediate from the fact that σ ≤ τα .

2. for all m ≤ n, v , Γ, t1, t2, T if Γ ` t1 = t2 : T then Γ `m t1 : T R v ∈α Π(A0,B0) i�
Γ `m t2 : T R v ∈α Π(A0,B0).
We will show that Γ `m t1 : T R v ∈α Π(A0,B0) implies Γ `m t2 : T R v ∈α Π(A1,B1).
We may unfold Γ `m t1 : T R v ∈α Π(A0,B0) to see that it is equivalent to the following
conditions:

n 
 v ∼ v ∈ R and Γ ` t1 : T ;
Γ ` T = Π(T0,T1) type for some T0,T1;
Γ `n T0 R A0 typeα ;
if m′ ≤ n and r : Γ′ ≤ Γ then Γ′ `m′ t

′ : T0[r ] R a ∈α A0 implies Γ′ `m′ t[r ](t
′) :

T1[r .t
′] R app(v,a) ∈α B0[a].

�e �rst conditions are identical, therefore, it su�ces to show for all m′ ≤ m and r : Γ′ ≤ Γ
if Γ′ `m′ t ′ : T1[r ] R a ∈α A1 then the following:

Γ′ `m′ t1[r ](t
′) : T2[r .t

′] R app(v,a) ∈α A2[a]

We must havem′ 
 a ∼ a ∈ R and so σ |=m′ B0[a] ∼ B1[a] ↓ R1(a,a). �en, we may conclude
from congruence that Γ′ ` t1[r ](t ′) = t2[r ](t

′) : T1[r .t
′] and so we have the goal:

Γ′ `n′ t2[r ](t
′) : T1[r .t

′] R app(v,a) ∈α B1[a]

Case.
σ |=n A0 ∼ A1 ↓ R0 σ |=n R0 � B0 ∼ B1 ↓ R1 R = nΣo(R0,R1)

Sg[σ ] |=n Σ(A0,B0) ∼ Σ(A1,B1) ↓ R

We wish to show σ |=n Σ(A0,B0) ∼ Σ(A1,B1) ↓ R. �is involves showing two facts:
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1. τα |=n Σ(A0,B0) ∼ Σ(A1,B1) ↓ R
�is is identical to the reasoning in the Pi case.

2. for all m ≤ n, v , Γ, t1, t2, T if Γ ` t1 = t2 : T then Γ `m t1 : T R v ∈α Σ(A0,B0) i�
Γ `m t2 : T R v ∈α Σ(A0,B0).
We will show that Γ `m t1 : T R v ∈α Σ(A0,B0) implies Γ `m t2 : T R v ∈α Σ(A0,B0).
We may unfold Γ `m t1 : T R v ∈α Σ(A0,B0) to see that it is equivalent to the following
conditions:

n 
 v ∼ v ∈ R and Γ ` t : T ;
Γ ` T = Σ(T0,T1) type for some T0,T1;
if m′ ≤ m and r : Γ′ ≤ Γ, then Γ′ `m′ t

′ : T0[r ] R a ∈α A0 implies Γ′ `m′ T1[r .t
′] R

B0[a] typeα ;
Γ `n fst(t) : T0 R fst(v) ∈α A0;
Γ `n snd(t) : T1[id.(fst(t))] R snd(v) ∈α B0[fst(v)].

So there exists some T0, T1 such that Γ ` T = Σ(T0,T1) type and m 
 v ∼ v ∈ R. In order to
show Γ `m t2 : T R v ∈α Σ(A0,B0) we merely need the following facts:

Γ `m fst(t2) : T0 R fst(v) ∈α A0

Γ `m snd(t2) : T1[id.(fst(t2))] R snd(v) ∈α B0[fst(v)]

We quickly note that Γ ` fst(t1) = fst(t2) : T0 and Γ ` snd(t1) = snd(t2) : T1[id.(fst(t1))] by
congruence. We also have Γ ` T1[id.(fst(t1))] = T1[id.(fst(t2))] type. We use the la�er fact
with Lemma 4.3.6 to conclude Γ `m snd(t1) : T1[id.(fst(t2))] R snd(v) ∈α B0[fst(v)]. We
already have by assumption that Γ `n fst(t) : T0 R fst(v) ∈α A0.
�e conclusion then follows from σ |=m A0 ∼ A1 and σ |=m B0[fst(v)] ∼ B1[fst(v)].

Case.

∀m. σ |=m A0 ∼ A1 ↓ S(m) R 
 v0 ∼ v1 ∈ n ⇐⇒ ∀m. S(m) 
 open(v0) ∼ open(v1) ∈m

Box[σ ] |=n �A0 ∼ �A1 ↓ R

We wish to show σ |=n �A0 ∼ �A1 ↓ R.
First we observe that from σ |=n A0 ∼ A1 ↓ S(m) we may conclude τα |=n A0 ∼ A1 ↓ S(m) and so
τα |=n �A0 ∼ �A1 ↓ R holds.
Second, we wish to show that if m ≤ n and Γ `m t1 : T R v ∈α �A0 such that Γ ` t1 = t2 typeT
that Γ `m t2 : T R v ∈α �A1 holds. We unfold Γ `m t1 : T R v ∈α �A0:

n 
 v ∼ v ∈ R and Γ ` t : T ;
Γ ` T = �T ′ type for some T ′

for allm, Γ.µ `m [t]b : T ′ R open(v) ∈α �A0

We wish to show Γ.µ `m t2 : T R v ∈α �A0. First, from our assumption we have some T ′

such that Γ ` T = �T ′ type and Γ ` t1 : T as well as m 
 v ∼ v ∈ R. We therefore just
need to show that for all m′ that Γ.µ `m′ [t2]b : T ′ R open(v) ∈α A0 holds. First, we observe
that we have σ |=m′ A0 ∼ A1 ↓ S(m) by assumption. Furthermore, by congruence we have
Γ.µ ` [t1]b = [t2]b : T ′. �erefore, since Γ.µ `n′ [t1]b : T ′ R open(v) ∈α A0 we’re done.

Case.
e0 ∼ e1 ∈ Ne R = {(m, ↑B0 e0, ↑

B1 e1) | e0 ∼ e1 ∈ Ne}

Ne |=n ↑A0 e0 ∼ ↑
A1 e1 ↓ R

Immediate by transitivity of = on terms.



CHAPTER 4. SOUNDNESS OF NORMALIZATION 53

Case.
j < α

Univα |=n Uj ∼ Uj ↓ {(m,A0,A1) | τj |=m A0 ∼ A1}

Immediate by Lemma 4.3.6.

Case.
σ |=n A0 ∼ A1 ↓ R n 
 v0 ∼ u0 ∈ R n 
 v1 ∼ u1 ∈ R

Id[σ ] |=n Id(A0,v0,v1) ∼ Id(A1,u0,u1) ↓ nIdo(R,u0,u1)

Immediate by transitivity of = on terms.

Case.

Nat |=n nat ∼ nat ↓ nNo
Immediate by transitivity of = on terms. �

Lemma 4.3.8. If β ≤ α and τβ |=n A ∼ A then the following holds:

1. If Γ `n T R A typeβ if and only if Γ `n T R A typeα .

2. If Γ `n t : T R v ∈β A if and only if Γ `n t : T R v ∈α A.

Proof. In order to do this we show that the following is a pre-�xed point of Typesβ :

τβ |=A0 A1 ∼ R (∀m ≤ n, Γ,T . Γ `m T R A typeβ ⇐⇒ Γ `m T R A typeα )
(∀m ≤ n, Γ,v, t,T . Γ `m t : T R v ∈β A ⇐⇒ Γ `n t : T R v ∈α A)

σ |=A0 A1 ∼ R
=========================================================================================================

All cases are straightforward except the case for Univβ . �erefore we only show this case.

Case.
j < β

Univβ |=n Uj ∼ Uj ↓ {(m,A0,A1) | τj |=m A0 ∼ A1}

In this case we have some j < β and so j < α . We set R = {(m,A0,A1) | τj |=m A0 ∼ A1}.
We observe that τβ |=n Uj ∼ Uj ↓ R as τβ is closed under Univβ .
Next, observe that Γ `m T R Uj typeα if and only if Γ ` T = Uj type. However, we also have that
Γ `m T R Uj typeβ holds if and only if Γ ` T = Uj type holds.
Moreover, if we have some m ≤ n, Γ, t , T , and v such that Γ `m t : T R v ∈β Uj then that the
following conditions hold:

n 
 v ∼ v ∈ R;
Γ ` t : T and Γ ` T = Ui type;
Γ `n t R v typei .

�ese, however, is precisely equivalent the de�nition of Γ `m t : T R v ∈α Uj as α ≥ β . �

Lemma 4.3.9. If Γ `n t : T R v ∈α A then Γ `n T R A typeα .

Proof. In order to show this we proceed by induction on (α,A,n). We proceed by case on Γ `n t :
T R v ∈α A. All cases are trivial, however, as we have added all appropriate extra premises to
Γ `n t : T R v ∈α A to ensure that this fact holds. �
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We now prove the “compatibility” lemma telling us how what it means for a term and value to be
connected by this logical relation. �is is the equivalent of Lemma 3.2.7.

Lemma 4.3.10 (Compatibility with quotation). If Γ ` T type and for all r : Γ′ ≤ Γ if we have some T ′

such that dee‖Γ′ ‖ = T ′ and Γ′ ` T [r ] = T ′ type then Γ `n T R ↑− e typeα .

Proof. Suppose that we have Γ ` T type such that for all r : Γ′ ≤ Γ and dee‖Γ′ ‖ = T ′ and Γ′ ` T [r ] =
T ′ type. We wish to show Γ `n T R ↑− e typeα but this is immediate by de�nition. �

Lemma 4.3.11 (Compatibility with quotation). �e following three facts hold for any n, α , and A such
that τα |=n A ∼ A.

1. If Γ `n T R A typeα then for all r : Γ′ ≤ Γ, there is some T ′ such that dAety
‖Γ′ ‖
= T ′ and

Γ′ ` T [r ] = T ′ type.

2. If Γ `n t : T R v ∈α A then for all r : Γ′ ≤ Γ we have d↓Ave‖Γ′ ‖ = t ′ and Γ′ ` t[r ] = t ′ : T [r ].

3. If Γ `n T R A typeα and Γ ` t : T and if for some e we have for all r : Γ′ ≤ Γ we have dee‖Γ′ ‖ = t ′

such that Γ′ ` t[r ] = t ′ : T [r ] then Γ `n t : T R ↑A e ∈α A.

Proof. We start by induction on α . We then prove these facts by together by showing σ |=n A0 ∼ A1 ↓ R
is a pre-�xed point. Let σ |=n A0 ∼ A1 ↓ R hold if and only if the following conditions hold:

τα |=n A0 ∼ A1 ↓ R;

For allm ≤ n and Γ `m T R A typeα there exists T ′ such that dAety
‖Γ ‖
= T ′ and Γ ` T = T ′ type;

For allm ≤ n and Γ `m t : T R v ∈α A there exists t ′ such that d↓Ave‖Γ ‖ = t ′ and Γ′ ` t = t ′ : T ;

For all m ≤ n, Γ `m T R A typeα , Γ ` t : T , and if for all r : Γ′ ≤ Γ we have dee‖Γ′ ‖ = t ′ and
Γ′ ` t[r ] = t ′ : T [r ] then Γ `m t : T R ↑A e ∈α A.

Suppose that Typesα [σ ] |=n A0 ∼ A1 ↓ R. We wish to show σ |=n A0 ∼ A1 ↓ R.

Case.
σ |=n A0 ∼ A1 ↓ R0 σ |=n R0 � B0 ∼ B1 ↓ R1 R = nΠo(R0,R1)

Pi[σ ] |=n Π(A0,B0) ∼ Π(A1,B1) ↓ R

We wish to show σ |=n Π(A0,B0) ∼ Π(A1,B1) ↓ R. We observe that σ ≤ τα and so we have
Pi[τα ] |=n Π(A0,B0) ∼ Π(A1,B1) ↓ R. From the de�nition of τα we then have τα |=n Π(A0,B0) ∼
Π(A1,B1) ↓ R. �erefore, we must show three more facts:

Subgoal.

For any m ≤ n, Γ, T , if Γ `m T R A typeα then there is some T ′ such that
dΠ(A0,B0)e

ty
‖Γ ‖
= T ′ and Γ ` T = T ′ type.

Suppose we have m ≤ n, Γ, T , Γ `m T R Π(A0,B0) typeα . We wish to show that there is
some T ′ such that dΠ(A0,B0)e

ty
‖Γ ‖
= T ′ and Γ ` T = T ′ type.

First, we observe by inversion that there is some T0 and T1 such that Γ ` T = Π(T0,T1) type.
Furthermore, we must have Γ `m T0 R A0 typeα . Finally, for any m′ ≤ m and r : Γ′ ≤ Γ we
have that if Γ′ `m′ t : T0[r ] R v ∈α A0 then Γ′ `m′ T1[r .t] R B0[v] typeα .
First, σ |=m A0 ∼ A0 tells us that there exists some T ′0 such that dA0e

ty
‖Γ ‖
= T ′0 and Γ ` T0 =

T ′0 type.
Next, again by σ |=m A0 ∼ A0 we deduce that in the context Γ.T1 that the following holds:

Γ.T0 `m var0 : T0[p1] R ↑A0 var‖Γ ‖ ∈α A0
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We also observe that there is an r , p1, such that r : Γ.T0 ≤ Γ. �erefore, we may use our
induction hypothesis to conclude the following:

Γ.T0 `m T1[r .var0] R B0[↑
A0 var‖Γ ‖] typeα

Moreover, since we have m 
 ↑A0 var‖Γ ‖ ∼ ↑A0 var‖Γ ‖ ∈ R0 we therefore we have a relation:

σ |=m B0[↑
A0 var‖Γ ‖] ∼ B1[↑

A0 var‖Γ ‖] ↓ R2(↑
A0 var‖Γ ‖, ↑A0 var‖Γ ‖)

�en, by de�nition of σ we have that there is some T ′1 such that dB0[↑
A0 var‖Γ ‖]e

ty
‖Γ.T0 ‖

= T ′1
and Γ.T0 ` T1[r .var0] = T ′1 type. We know that Γ.T0 ` r .var0 = id : Γ.T0 as r = p1 and so
Γ.T0 ` T1 = T

′
1 type by transitivity.

However, by inspection on the de�nition of quotation this tells us that dΠ(A0,B0)e
ty
‖Γ ‖
=

Π(T ′0,T
′
1 ) and Γ ` Π(T0,T1) = Π(T ′0,T

′
1 ) type by congruence.

Subgoal.

For any m ≤ n, Γ, t , T , v , if Γ `m t : T R v ∈α Π(A0,B0) then we have
d↓Π(A0,B0)ve‖Γ ‖ = t ′ and Γ ` t = t ′ : T .

Suppose we havem ≤ n, Γ, t , T , and v such that Γ `m t : T R v ∈α Π(A0,B0).
We wish to show d↓Π(A0,B0)ve‖Γ ‖ = t ′ and Γ ` t = t ′ : T .
First, we invert upon Γ `m t : T R v ∈α A to determine that there must be some T0 and T1
such that Γ ` T = Π(T0,T1) type, Γ ` t : T , andm 
 v ∼ v ∈ R. We have Γ `m T0 R A0 typeα .
We also have that for any m′ ≤ m and r : Γ′ ≤ Γ that if Γ′ `m′ t ′ : T0[r ] R a ∈α A0 then
Γ′ `m′ t[r ](t

′) : T1[r .t
′] R app(v,a) ∈α B0[a].

Now, from our assumption that Γ `m T0 R A0 typeα and monotonicity, we have that
Γ.T0 `m T0[p1] R A0 typeα . We may then use σ |=m A0 ∼ A0 to conclude that Γ.T0 `m var0 :
T0[p1] R ↑A0 var‖Γ ‖ ∈α A0.
We may use this fact to conclude the following:

Γ.T0 `m t[p1](var0) : T1[p1.var0] R app(v, ↑A0 var‖Γ ‖) ∈α B0[↑
A0 var‖Γ ‖]

By closure under = we may simplify this:

Γ.T0 `m t[p1](var0) : T2 R app(v, ↑A0 var‖Γ ‖) ∈α B0[↑
A0 var‖Γ ‖]

Now, we know that m 
 ↑A0 var‖Γ ‖ ∼ ↑A0 var‖Γ ‖ ∈ R0 either from Lemma 3.2.7 or from
Lemma 4.2.1. We then have σ |=m B0[↑

A0 var‖Γ ‖] ∼ B0[↑
A0 var‖Γ ‖] and so we may conclude

that there is some t ′ such that the following two conditions hold:

d↓B0[↑A0var‖Γ‖ ] app(v, ↑A0 var‖Γ ‖)e‖Γ ‖+1 = t ′

Γ.T0 ` t[p1](var0) = t ′ : T1

But, we then have that d↓Π(A0,B0)ve‖Γ ‖ = λt ′ and Γ ` t = λt ′ : Π(T0,T1) by eta and
congruence.

Subgoal.

For anym ≤ n, Γ, t , T , if Γ `m T R Π(A0,B0) typeα , Γ ` t : T , and if for some e
we have for all r : Γ′ ≤ Γ we have dee‖Γ′ ‖ = t ′ such that Γ′ ` t[r ] = t ′ : T [r ] then
Γ `m t : T R ↑A e ∈α Π(A0,B0).
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Suppose we have m ≤ n, Γ, t , T , and e such Γ `m T R Π(A0,B0) typeα and if for some e we
have for all r : Γ′ ≤ Γ we have dee‖Γ′ ‖ = t ′ such that Γ′ ` t[r ] = t ′ : T [r ].
We wish to show that Γ `m t : T R ↑Π(A0,B0) e ∈α Π(A0,B0).
First, we invert on Γ `m T R A typeα to conclude that there is some Γ ` Π(T0,T1) = T type
such that Γ `m T0 R A0 typeα . We must have that if m′ ≤ m and r : Γ′ ≤ Γ such that
Γ′ `m′ t

′ : T0[r ] R v ∈α A0 then we have Γ′ `m′ T1[r .t
′] R B0[v] typeα .

We wish to show Γ `m t : T R ↑Π(A0,B0) e ∈α A.
We merely need to show that if we have some m′ ≤ m and r : Γ′ ≤ Γ such that Γ′ `m′ t ′ :
T0[r ] R a ∈α A0 then the following holds:

Γ′ `m′ t[r ](t
′) : T1[r .t

′] R app(↑A0 e,a) ∈α B0[a]

Observe that app(↑Π(A0,B0) e,a) = ↑B0[a] e .app(↓A0 a) and B0[a] is de�ned from our assump-
tion of σ |=m′ R0 � B0 ∼ B0 holds and since m 
 a ∼ a ∈ R0 by Lemma 4.2.1. Since
e .app(↓A0 a) is a neutral so we will apply our induction hypothesis.
First, we have that for all r ′ : Γ′′ ≤ Γ′ that d↓A1 ae‖Γ′ ‖ = ta for some ta such that Γ′′ ` t ′[r ′] =
ta : T0[r ◦ r

′] from our induction hypothesis.
Now, we had by assumption that r ′ : Γ′′ ≤ Γ′ dee‖Γ′ ‖ = tf for some tf such that Γ′′ `
t[r ◦ r ′] = ta : T0[r ◦ r

′]. We have made use the functoriality of explicit substitutions here
along with the transitivity of de�nitional equality.
Now �nally, this tells us that for any r ′ : Γ′′ ≤ Γ′ that de .app(↓A0 a)e‖Γ′ ‖ = tt such that
Γ′′ ` t[r ](t ′)[r ′] = tt : T1[(r .t

′) ◦ r ′]. We may then use the fact that σ |=m′ B0[a] ∼ B1[a] to
conclude that Γ′ `m′ t : T R ↑Π(A0,B0) e ∈α Π(A0,B0) as required.

Case.
σ |=n A0 ∼ A1 ↓ R0 σ |=n R0 � B0 ∼ B1 ↓ R1 R = nΣo(R0,R1)

Sg[σ ] |=n Σ(A0,B0) ∼ Σ(A1,B1) ↓ R

We wish to show σ |=n Σ(A0,B0) ∼ Σ(A1,B1) ↓ R. We observe that σ ≤ τα and so we have
Sg[σ ] |=n Σ(A0,B0) ∼ Σ(A1,B1) ↓ R. By de�nition of τα we have τα |=n Σ(A0,B0) ∼ Σ(A1,B1) ↓ R.
�erefore, we must show three more facts:

Subgoal.

For anym ≤ n, Γ, T , if Γ `m T R Σ(A0,B0) typeα then there is some T ′ such that
dAe

ty
‖Γ ‖
= T ′ and Γ ` T = T ′ type.

Identical to case for Π(−,−).
Subgoal.

For any m ≤ n, Γ, t , T , v , if Γ `m T R Σ(A0,B0) typeα and Γ `m t : T R v ∈α
Σ(A0,B0) then we have d↓Σ(A0,B0)ve‖Γ ‖ = t ′ and Γ ` t = t ′ : T .

For this, suppose we havem ≤ n, Γ, t ,T , and v . If we have Γ `m t : T R v ∈α Σ(A0,B0) then
we wish to show d↓Σ(A0,B0)ve‖Γ ‖ = t ′ and Γ ` t = t ′ : T .
First, we perform inversion on Γ `m t : T R v ∈α Σ(A0,B0). �is tells us that the following
facts hold:

m 
 v ∼ v ∈ R and Γ ` t : T ;
Γ ` T = Σ(T0,T1) type for some T0,T1;
if m′ ≤ m and r : Γ′ ≤ Γ, then Γ′ `m′ t

′ : T0[r ] R a ∈α A0 implies Γ′ `m′ T1[r .t
′] R

B0[a] typeα ;
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Γ `m fst(t) : T0 R fst(v) ∈α A0;
Γ `m snd(t) : T1[id.(fst(t))] R snd(v) ∈α B0[fst(v)].

Now, we have σ |=n A0 ∼ A0 and so d↓A0 fst(v)e‖Γ ‖ = tf such that Γ ` fst(t) = tf : T0.
Furthermore, since m 
 fst(v) ∼ fst(v) ∈ R0 we must have σ |=m B0[fst(v)] ∼ B0[fst(v)].
�erefore, we may conclude that d↓B0[fst(v)] snd(v)e‖Γ ‖ = ts such that Γ ` snd(t) = ts :
T1[id.(fst(t))].
Now from these two facts, we have d↓Σ(A0,B0)ve‖Γ ‖ = (tf , ts ) and so Γ ` t = (tf , ts ) : T by
congruence and eta.

Subgoal.

For anym ≤ n, Γ, t , T , if Γ ` t : T and Γ `m T R Σ(A0,B0) typeα and if for some e
we have for all r : Γ′ ≤ Γ we have dee‖Γ′ ‖ = t ′ such that Γ′ ` t[r ] = t ′ : T [r ] then
Γ `m t : T R ↑Σ(A0,B0) e ∈α Σ(A0,B0).

Suppose we have some m ≤ n, Γ, Γ ` t : T and that Γ `m T R Σ(A0,B0) typeα . Suppose
further that there is some e such that for all r : Γ′ ≤ Γ we have dee‖Γ′ ‖ = t ′ and Γ′ ` t[r ] =
t ′ : T [r ]. We wish to show that Γ `m t : T R ↑Σ(A0,B0) e ∈α Σ(A0,B0).
First, we observe by inversion that that we must have Γ ` T = Σ(T0,T1) type such that
Γ `m T0 R A0 typeα and for all Γ `m t1 : T0 R vf ∈α A0 we also have Γ `m T1[id.t1] R

B0[vf ] typeα .
Now, in order to show Γ `m t : T R ↑Σ(A0,B0) e ∈α Σ(A0,B0) it su�ces to show the following
two facts:

Γ `m fst(t) : T0 R fst(↑Σ(A0,B0) e) ∈α A0

Γ `m snd(t) : T1[id.(fst(t))] R snd(↑Σ(A0,B0) e) ∈α B0[fst(↑Σ(A0,B0) e)]

We show the �rst by observing that fst(↑Σ(A0,B0) e) = ↑A0 e .fst so it su�ces to show that for
any r : Γ′ ≤ Γ we have de .fste‖Γ′ ‖ = t ′ and Γ′ ` (fst(t))[r ] = t ′ : T0[r ]. �is conclusion is
immediate by the de�nition of quotation and our assumption that this holds for t and e .
We then have that Γ `m T1[id.(fst(t))] R B0[↑

A0 e .fst] typeα . �erefore, B0[↑
A0 e .fst] termi-

nates and so snd(↑Σ(A0,B0) e) = ↑B0[↑A0e .fst] e .
In order to show the second part, then, it su�ces to show r : Γ′ ≤ Γ we have de .snde‖Γ′ ‖ = t ′

and Γ′ ` snd(t)[r ] = t ′ : T2[(id.(fst(t))) ◦ r ].
�is is similar to the case for the �rst projection: it follows from the de�nition of quotation
and our assumption that this holds for t and e .

Case.
∀m. σ |=m A0 ∼ A1 ↓ S(m) R = n�o(S)

Box[σ ] |=n �A0 ∼ �A1 ↓ R

We wish to show σ |=n �A0 ∼ �A1 ↓ R. We observe that σ ≤ τα and so we have Box[σ ] |=n
�A0 ∼ �A1 ↓ R. �erefore, we may conclude τα |=n �A0 ∼ �A1 ↓ R. �erefore, we must show
three more facts:

Subgoal.

For any m ≤ n, Γ, T , if Γ `m T R �A0 typeα then there is some T ′ such that
d�A0e

ty
‖Γ ‖
= T ′ and Γ ` T = T ′ type.

Suppose we have m ≤ n, Γ, T and Γ `m T R �A0 typeα . We wish to show that we have
some T ′ such that d�A0e

ty
‖Γ ‖
= T ′ and Γ ` T = T ′ type.
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First, we invert upon on Γ `m T R �A0 typeα , we then must have that Γ ` T = �T ′ type
and for all m, we have Γ.µ `m T ′ R A0 typeα . Since σ |=m A0 ∼ A1 we may then use the
la�er fact to conclude that dA0e

ty
‖Γ ‖
= S such that Γ ` T ′ = S type. By de�nition, we must

have d�A0e
ty
‖Γ ‖
= �S . Finally, Γ ` T = �S type by transitivity and congruence.

Subgoal.

For anym ≤ n, Γ, t , T , v , if Γ `m t : T R v ∈α �A0 then we have d↓Ave‖Γ ‖ = t ′ and
Γ ` t = t ′ : T .

For this, suppose we have m ≤ n, Γ, t , T , v such that Γ `m t : T R v ∈α �A0. We wish to
show that the following holds: d↓�A0 ve‖Γ ‖ = t ′ and Γ ` t = t ′ : T .
We �rst perform inversion on Γ `m t : T R v ∈α �A0. We then have the following facts:

m 
 v ∼ v ∈ R and Γ ` t : T ;
Γ ` T = �T ′ type for some T ′

for allm, Γ.µ `m [t]b : T ′ R open(v) ∈α A0

We have σ |=m A0 ∼ A0 by assumption, so from Γ.µ `m [t]b : T ′ R open(v) ∈α A0 we may
conclude that there is some t ′ such that d↓A0 open(v)e

‖Γ.µ‖ = t ′ such that Γ.µ ` [t]b = t ′ :
T ′. By de�nition of quotation then, we have that d↓�Ave‖Γ ‖ = [t ′]µ and by congruence we
have Γ ` [[t]b]µ = [t

′]µ : �T ′.
Subgoal.

For any m ≤ n, Γ, t , T , if Γ ` t : T and Γ `m T R �A0 typeα and if for some e
we have for all r : Γ′ ≤ Γ we have dee‖Γ′ ‖ = t ′ such that Γ′ ` t[r ] = t ′ : T [r ] then
Γ `m t : T R ↑�A0 e ∈α �A0.

Suppose we havem ≤ n, Γ, t , T such that Γ ` t : T and Γ `m T R �A0 typeα . Furthermore,
suppose we have e we have for all r : Γ′ ≤ Γ we have dee‖Γ′ ‖ = t ′ such that Γ′ ` t[r ] = t ′ :
T [r ]. We wish to show Γ `m t : T R ↑�A0 e ∈α A.
We start by performing inversion on Γ `m T R A typeα . �is tells us that there is some T ′
such that Γ ` T = �T ′ type and for allm′ we have Γ.µ `m′ T

′ R A′ typeα .
We also observe that for any r : Γ′ ≤ Γ.µ we have r : Γ′b ≤ Γ by Lemma 1.2.11. �erefore,
we have de .opene‖Γ′ ‖ = [t ′]b where dee

‖Γ′b ‖ = t ′ such that Γ′ ` ([t]b)[r ] = t ′ : T ′[r ] from
our assumption about quotation.
Next, observe that e .open is a neutral. From our prior assumptions then we have that
Γ.µ `m′ [t]b : T ′ R ↑A0 e .open ∈α A0. �is is su�cient to give us the goal.

Case.
R = {(m, ↑B0 e0, ↑

B1 e1) | e0 ∼ e1 ∈ Ne}

Ne |=n ↑− e0 ∼ ↑
− e1 ↓ R

We must show σ |=n ↑
− e0 ∼ ↑

− e1 ↓ R. We therefore immediately have τα |=n ↑− e0 ∼ ↑
− e1 ↓ R.

We just need to show three facts then.

Subgoal.

For any m ≤ n, Γ, T , if Γ `m T R ↑− e0 typeα then there is some T ′ such that
d↑− e0e

ty
‖Γ ‖
= T ′ and Γ ` T = T ′ type.

Suppose we havem ≤ n, Γ,T and Γ `m T R ↑− e0 typeα . We wish to show that we have some
T ′ such that d↑− e0e

ty
‖Γ ‖
= T ′ and Γ ` T = T ′ type. By inversion on Γ `m T R ↑− e0 typeα we

have that de0e‖Γ ‖ = T
′ and Γ ` T [id] = T ′ type completing the proof.

Subgoal.
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For anym ≤ n, Γ, t , T , v , if Γ `m t : T R v ∈α ↑
− e0 then we have d↓↑

−e0 ve‖Γ ‖ = t ′

and Γ ` t = t ′ : T .
For this, suppose we have m ≤ n, Γ, t , T , v such that Γ `m t : T R v ∈α ↑

− e0. We wish to
show that the following holds: d↓↑−e0 ve‖Γ ‖ = t ′ and Γ ` t = t ′ : T .
In this case, we have by inversion that v = ↑− e such that dee‖Γ ‖ = t ′ such that Γ ` t[id] =
t ′ : T [id]. Our goal follows from transitivity and conversion.

Subgoal.

For any m ≤ n, Γ, t , T , if Γ ` t : T and Γ `m T R ↑− e0 typeα and if for some e
we have for all r : Γ′ ≤ Γ we have dee‖Γ′ ‖ = t ′ such that Γ′ ` t[r ] = t ′ : T [r ] then
Γ `m t : T R ↑↑

−e0 e ∈α A.

Suppose we havem ≤ n, Γ, t , T such that Γ ` t : T and Γ `m T R ↑− e0 typeα . Furthermore,
suppose we have e we have for all r : Γ′ ≤ Γ we have dee‖Γ′ ‖ = t ′ such that Γ′ ` t[r ] = t ′ :
T [r ]. We wish to show Γ `m t : T R ↑↑

−e0 e ∈α A. �is is immediate by de�nition.

Case.

Nat |=n nat ∼ nat ↓ nNo
We have immediately that τα |=n nat ∼ nat ↓ nNo. We must show the next three facts.

Subgoal.

For any m ≤ n, Γ, T , if Γ `m T R nat typeα then there is some T ′ such that
dnatety

‖Γ ‖
= T ′ and Γ ` T = nat type.

Since nat and the fact that we have by inversion on Γ `m T R nat typeα that Γ ` T = nat type
and so the goal follows by computation.

Subgoal.

For anym ≤ n, Γ, t , T , v , if Γ `m t : T R v ∈α nat then we have d↓natve‖Γ ‖ = t ′

and Γ ` t = t ′ : T .
For this, suppose we have m ≤ n, Γ, t , T , v such that Γ `m t : T R v ∈α nat. We wish to
show that the following holds: d↓natve‖Γ ‖ = t ′ and Γ ` t = t ′ : T .
We observe that Γ `m t : T R v ∈α nat is inductive so we proceed by induction. We must
prove three cases.

1. In the �rst case we have Γ ` T = nat type, Γ ` t = zero : nat, and v = zero. �erefore,
our goal is immediate by computation.

2. In the second case we have Γ ` T = nat type, Γ ` t = succ(t ′) : nat, and v = succ(v ′)
such that Γ `m t ′ : T R v ′ ∈α nat. Our induction hypothesis tells us that there is
some s such that d↓natv ′e‖Γ ‖ = s such that Γ ` t ′ = s : nat. �us, by congruence and
computation we’re done.

3. In the �nal case we have Γ ` T = nat type, v = ↑nat e such that dee‖Γ ‖ = t ′ and
Γ ` t = t ′ : nat. �is is exactly the goal however.

Subgoal.

For anym ≤ n, Γ, t , T , if Γ ` t : T and Γ `m T R nat typeα and if for some e we
have for all r : Γ′ ≤ Γ we have dee‖Γ′ ‖ = t ′ such that Γ′ ` t[r ] = t ′ : T [r ] then
Γ `m t : T R ↑nat e ∈α A.

Immediate by de�nition of Γ `m t : T R ↑nat e ∈α nat
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Case.
σ |=n A0 ∼ A1 ↓ R n 
 v0 ∼ u0 ∈ R n 
 v1 ∼ u1 ∈ R

Id[σ ] |=n Id(A0,v0,v1) ∼ Id(A1,u0,u1) ↓ nIdo(R,u0,u1)

We immediately have τα |=n Id(A0,v0,v1) ∼ Id(A1,u0,u1) ↓ nIdo(R,u0,u1). We must show the
next three facts.

Subgoal.

For anym ≤ n, Γ,T , if Γ `m T R Id(A0,v0,v1) typeα then there is someT ′ such that
dId(A0,v0,v1)e

ty
‖Γ ‖
= T ′ and Γ ` T = T ′ type.

We have by inversion on Γ `m T R Id(A0,v0,v1) typeα that Γ ` T = Id(T ′, t0, t1) type such
that Γ `m T ′ R A0 typeα and Γ `m ti : T ′ R vi ∈α A0. We observe that from our assumption
of σ |=n A0 ∼ A1 ↓ R that there must be someT ′0 such that dA0e

ty
‖Γ ‖
= T ′ and Γ ` T ′ = T ′0 type.

Furthermore, we must have that d↓A0 vi e‖Γ ‖ = t ′i such that Γ ` ti = t ′i : T ′, again from
σ |=n A0 ∼ A1 ↓ R. �erefore, we have dId(A0,v0,v1)e

ty
‖Γ ‖
= Id(T ′, t ′0, t

′
1). Finally, by

congruence we then have Γ ` T = Id(T ′, t ′0, t
′
1) type.

Subgoal.

For any m ≤ n, Γ, t , T , v , if Γ `m t : T R v ∈α Id(A0,v0,v1) then we have
d↓Id(A0,v0,v1)ve‖Γ ‖ = t ′ and Γ ` t = t ′ : T .

For this, suppose we have m ≤ n, Γ, t , T , v such that Γ `m t : T R v ∈α Id(A0,v0,v1). We
wish to show that the following holds: d↓Id(A0,v0,v1)ve‖Γ ‖ = t ′ and Γ ` t = t ′ : T .
We proceed by inversion on Γ `m t : T R v ∈α Id(A0,v0,v1). We therefore conclude that
m 
 v ∼ v ∈ nIdo(R,u0,u1), Γ ` t : T , Γ ` T = Id(T ′, t0, t1) type, Γ `m T ′ R A0 typeα , and
Γ `m ti : T ′ R vi ∈α A0. We also have that one of the following two facts is true:

v = ↑− e and when r : Γ′ ≤ Γ, then dee‖Γ′ ‖ = t ′ such that Γ′ ` t[r ] = t ′ : T [r ].
Γ ` t = refl(t ′) : T and v = re�(v ′) for some t ′,v ′ such that Γ ` t ′ = ti : T ′.

We proceed by cases on which fact holds. If v = ↑− e and when r : Γ′ ≤ Γ, then dee‖Γ′ ‖ = t ′

such that Γ′ ` t[r ] = t ′ : T [r ] then we have the desired conclusion immediately by picking
r = id.
Instead, suppose that Γ ` t = refl(t ′) : T and v = re�(v ′) for some t ′,v ′ such that Γ ` t ′ =
ti : T ′. In this case we havem 
 v ′ ∼ v0 ∈ R asm 
 re�(v ′) ∼ re�(v ′) ∈ nIdo(R,u0,u1) and
n 
 u0 ∼ v0 ∈ R. We may therefore conclude thatm `Γ t0 : T ′ R v ′ ∈α A0 from Lemma 4.3.5.
By induction hypothesis, then, we have that there is some tq such that d↓A0 v ′e‖Γ ‖ = tq and
Γ ` t0 = tq : T ′. �erefore, by transitivity of equality we have Γ ` t ′ = tq : T ′. Finally, since
d↓Id(A0,v0,v1) re�(v ′)e‖Γ ‖ = refl(tq) by de�nition we are done by congruence.

Subgoal.

For anym ≤ n, Γ, t ,T , if Γ ` t : T and Γ `m T R Id(A0,v0,v1) typeα and if for some
e we have for all r : Γ′ ≤ Γ we have dee‖Γ′ ‖ = t ′ such that Γ′ ` t[r ] = t ′ : T [r ] then
Γ `m t : T R ↑Id(A0,v0,v1) e ∈α Id(A0,v0,v1).

�is is follows immediately from the de�nition of Γ `m t : T R ↑Id(A0,v0,v1) e ∈α Id(A0,v0,v1).

Case.
j < α R = {(m,A0,A1) | τj |=m A0 ∼ A1}

Univα |=n Uj ∼ Uj ↓ R

We have immediately that τα |=n Uj ∼ Uj ↓ R. We must show the next three facts.

Subgoal.
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For any m ≤ n, Γ, T , if Γ `m T R Uj typeα then there is some T ′ such that
dUj e

ty
‖Γ ‖
= T ′ and Γ ` T = T ′ type.

We have by inversion on Γ `m T R Uj typeα that Γ ` T = Uj type and so the goal follows
by computation.

Subgoal.

For anym ≤ n, Γ, t , T , v , if Γ `m t : T R v ∈α Uj then we have d↓Uj ve‖Γ ‖ = t ′ and
Γ ` t = t ′ : T .

For this, suppose we havem ≤ n, Γ, t ,T , v such that Γ `m t : T R v ∈α Uj . We wish to show
that the following holds: d↓Uj ve‖Γ ‖ = t ′ and Γ ` t = t ′ : T .
By inversion, we have Γ ` t : T , Γ ` T = Uj type, m 
 v ∼ v ∈ R, and Γ `m t R v typej .
However, our induction hypothesis (recall that we had proceeded by induction on α and
j < α ) applied to the last fact gives us the goal immediately.

Subgoal.

For anym ≤ n, Γ, t , T , if Γ ` t : T and Γ `m T R Uj typeα and if for some e we
have for all r : Γ′ ≤ Γ we have dee‖Γ′ ‖ = t ′ such that Γ′ ` t[r ] = t ′ : T [r ] then
Γ `m t : T R ↑Uj e ∈α Uj .

�is is Lemma 4.3.10 a�er unfolding Γ `m t : T R ↑Uj e ∈α Uj . �

Corollary 4.3.12. If Γ `n T0 R A typeα and Γ `n T1 R A typeα then Γ ` T0 = T1 type.

Proof. From Lemma 4.3.11 we have that dAety
‖Γ ‖
= T ′ such that Γ ` T0 = T

′ type and Γ ` T1 = T
′ type.

�erefore, the conclusion follows from transitivity. �

4.4 Soundness

Lemma 4.4.1. Any substitution Γ ` δ : ∆.A is de�nitionally equal to a substitution of the form δ ′.t .

Proof. We observe that Γ ` id ◦ δ = δ : ∆.A and thus Γ ` (p1.var0) ◦ δ = δ : ∆.A. Finally, this gives us
the goal:

Γ ` (p1 ◦ δ ).var0[δ ] = δ : ∆.A �

Lemma 4.4.2. If Γ ctx then Γ ` id : Γb.µ

Proof. Immediate by the li�ing rule. �

Before stating soundness recall that by completeness (�eorem 3.3.5) if Γ ` T type andn 
 ρ1 = ρ2 : Γ
then τω |=n nToρ1 ∼ nToρ2 .

We must also extend our logical relation to substitutions now. �is de�nes a relation ∆ `n δ : Γ R ρ.
�is relation is de�ned by induction on Γ. We shall say that ∆ `n δ : Γ R ρ holds when one of the
following cases apply:

∆ `n δ : · R · if ∆ ` δ : ·.

∆ `n δ : Γ.T R ρ .v if:

– ∆ ` δ = δ ′.t : Γ.T for some δ ′, t ;
– τω |=n nToρ ∼ nToρ ;
– ∆ `n t : T [δ ′] R v ∈ω nToρ ;
– ∆ `n δ

′ : Γ R ρ
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∆ `n δ : Γ.µ R ρ if ∆ ctx and there exists somem such that ∆b `m δ : Γ R ρ.

We now prove some facts about this de�nition.

Lemma 4.4.3. ∆ `n δ : Γ R ρ is monotone in both n and ∆ (the la�er with respect to weakenings).

Proof. �is is a corollary of Lemma 4.3.1. �

Lemma 4.4.4. If ∆ `n δ : Γ R ρ then ∆ ctx.

Proof. Follows immediately by case on Γ. �

Lemma 4.4.5. If ∆ `n δ1 : Γ R ρ and ∆ ` δ1 = δ2 : Γ then ∆ `n δ2 : Γ R ρ.

Proof. Follows immediately from the transitivity of = and by induction on Γ. �

Lemma 4.4.6. If ∆ `n δ : Γ R ρ then there exists anm ≤ n such that ∆b `m δ : Γb R ρ.

Proof. �is follows by induction on Γ.

Case.
Γ = ·

In this case we must show ∆b `m δ : · R ρ and so ∆ ` δ : · and ρ = ·. �e conclusion follows by
Lemma 1.2.5.

Case.
Γ = Γ′.T

In this case we must show ∆b `m δ : Γ′b.T R ρ. We start by observing that ∆ ` δ = δ ′.t : Γ′.T
such that τω |=n nToρ ∼ nToρ , ∆ `n t : T [δ ′] R v ∈ω nToρ and ∆ `n δ ′ : Γ′ R ρ. By
induction hypothesis we have that there is somem ≤ n such that ∆b `m δ ′ : Γ′b R ρ. We have
∆b `m t : T [δ ′] R v ∈ω nToρ by Lemmas 4.3.1 and 4.3.2. We have τω |=m nToρ ∼ nToρ by
Lemma 3.2.5. Finally, we have ∆b ` δ = δ ′.t : Γ′b.T from Lemma 1.2.10.

Case.
Γ = Γ′.µ

In this case we must show ∆b `m δ : Γ′b R ρ. We start by observing that there is somem such
that ∆b `m δ : Γ′ R ρ and ∆ ctx. By Lemma 4.4.3 we may assume that m ≤ n. Next, by induction
hypothesis we have ∆b `m δ : Γ′b R ρ as required. We have ∆b ctx from Lemma 1.2.5. �

We can now de�ne an auxiliary predicate which we will use to prove soundness:

Γ �n T type ,

∀m ≤ n. ∆ `m γ : Γ R ρ =⇒ ∆ `m T [γ ] R nToρ typeω
Γ �n t : T ,
∀m ≤ n. ∆ `m γ : Γ R ρ =⇒ ∆ `m t[γ ] : T [γ ] R ntoρ ∈ω nToρ

Γ �n δ : ∆ ,
∀m ≤ n. Γ′ `m γ : Γ R ρ =⇒ Γ′ `m δ ◦ γ : ∆ R nδoρ

�eorem 4.4.7 (Soundness). �e following facts hold:

1. If Γ ` T type then Γ �n T type for any n.

2. If Γ ` t : T then Γ �n t : T for any n.
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3. If Γ ` δ : ∆ then Γ �n δ : ∆ for any n.

Proof. We prove these facts by mutual induction on the input derivation.

1. If Γ ` T type then Γ �n T type for any n.

Case.
Γ ctx

Γ ` Ui type

In this case we have no induction hypothesis and we wish to show Γ �n Ui type for all n.
In order to show this, suppose we have m ≤ n, ∆ `m δ : Γ R ρ. We must show ∆ `m
Ui [δ ] R nUioρ typeω . First, we observe that nUioρ = Ui by de�nition independent of ρ.
�erefore, in order to show ∆ `m Ui [δ ] R nUioρ typeω we merely need to show that i < ω
and ∆ ` Ui [δ ] = Ui type. Both are immediate.

Case.
Γ ctx

Γ ` nat type

In this case we have no induction hypothesis and we wish to show Γ �n nat type for all n.
In order to show this, suppose we have m ≤ n, ∆ `m δ : Γ R ρ. We must show ∆ `m
nat[δ ] R nnatoρ typeω . First, we observe that nnatoρ = nat.
�erefore, in order to show ∆ `m nat[δ ] R nat typeω we merely need to show ∆ ` nat[δ ] =
nat type. Both are immediate.

Case.
Γ.µ ` T type

Γ ` �T type

For this, we have by induction hypothesis that Γ.µ �n T type for all n. We wish to show
Γ �n �T type for all n. Suppose we have some arbitrary n and suppose that we have some
m ≤ n and ∆ `m δ : Γ R ρ. We must show ∆ `m (�T )[δ ] R n�Toρ typeω .
We have ∆ ctx from Lemma 4.4.4. �erefore, ∆b ` id : ∆ from Lemma 1.2.5. Next, we use
Lemma 4.4.3 with ∆ `m δ : Γ R ρ to conclude that ∆b `m δ ◦ id : Γ R ρ. By Lemma 4.4.5 we
then have ∆b `m δ : Γ R ρ. Finally, by de�nition we may conclude that ∆.µ `m′ δ : Γ.µ R ρ
for allm′.
We may then instantiate our induction hypothesis with this fact to conclude that for allm′
we have ∆.µ `m′ T [δ ] R nToρ typeω .
Next, we have by de�nition that n�Toρ = �nToρ . Again by de�nition we have that ∆ `m
(�T )[δ ] R �nToρ typeω holds if and only if there is some T ′ such that ∆ ` (�T )[δ ] =
�T ′ type and such that for all m′ we have ∆.µ `m′ T

′ R nToρ typeω . For this, we pick
T ′ = T [δ ]. We have ∆ ` (�T )[δ ] = �T ′ type and the next goal follows from our instantiated
induction hypothesis.

Case.
Γ ` T type Γ ` ti : T
Γ ` Id(T , t0, t1) type

First, we have by induction hypothesis that Γ �n T type and Γ �n ti : T . We wish to show
Γ �n Id(T , t0, t1) type.
we suppose we have some m ≤ n, ∆ ` δ : Γ such that ∆ `m δ : Γ R ρ, we wish to show
∆ `m (Id(T , t0, t1))[δ ] R nId(T , t0, t1)oρ typeω .
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First, we observe that we have∆ `m T [δ ] R nToρ typeω , ∆ `m t0[δ ] : T [δ ] R nt0oρ ∈ω nToρ ,
and ∆ `m t1[δ ] : T [δ ] R nt1oρ ∈ω nToρ .
We observe next that in order to prove our goal that it su�ces to show the following:

∆ `m Id(T [δ ], t0[δ ], t1[δ ]) R Id(nToρ , nt0oρ , nt1oρ ) typeω
�erefore, we must show the following facts:

Γ ` Id(T [δ ], t0[δ ], t1[δ ]) = Id(T ′, t ′0, t
′
1) type for some T ′, t ′0, t ′1;

Γ `n T
′ R nToρ typeα ;

Γ `n t ′i : T ′ R ntioρ ∈α nToρ for i ∈ {0, 1}.
�e �rst of these follow by re�exivity and the remaining two follow our induction hypothesis.

Case.
Γ ` T1 type Γ.T1 ` T2 type

Γ ` Π(T1,T2) type

First, we have by induction hypothesis that Γ �n T1 type and Γ.T1 �n T2 type. We wish to
show Γ �n Π(T1,T2) type. �erefore, we suppose we have somem ≤ n, ∆ ` δ : Γ such that
∆ `m δ : Γ R ρ, we wish to show ∆ `m Π(T1,T2)[δ ] R nΠ(T1,T2)oρ typeω .
First, we observe that the following holds:

∆ ` Π(T1,T2)[δ ] = Π(T1[δ ],T2[(δ ◦ p1).var0]) type

�erefore, by Lemma 4.3.6 it su�ces to show∆ `m Π(T1[δ ],T2[(δ ◦ p1).var0]) R nΠ(T1,T2)oρ typeω .
By calculation, we have nΠ(T1,T2)oρ = Π(nT1oρ ,T2Cρ).
Now we may unfold this de�nition and see that we must show the following:

∆ `m T ′1 R nT1oρ typeω
ifm′ ≤ m and r : ∆′ ≤ ∆ such that ∆′ `m′ t : T ′1 [r ] R a ∈ω nT1oρ then ∆′ `m′ T

′
2 [r .t] R

nT2oρ .a typeω
For some T ′i such that ∆ ` Π(T1[δ ],T2[(δ ◦ p1).var0]) = Π(T ′1,T

′
2 ) type. Now such a T ′i is

straightforward.
Next, we have ∆ `m T1[δ ] R nT1oρ typeω from our induction hypothesis and the fact that
∆ `m δ : Γ R ρ.
�erefore, suppose we have some m′ ≤ m and r : ∆′ ≤ ∆ along with ∆′ `m′ t : T1[δ ][r ] R

a ∈ω nT1oρ . We wish to show this:

∆′ `m′ T2[(δ ◦ r ).t] R nT2oρ .a typeω

In this, we have simpli�ed the goal using the following fact:

∆′ ` ((δ ◦ p1).var0) ◦ (r .t) = (δ ◦ r ).t : ∆

In order to show this, we will use our induction hypothesis: Γ.T1 �n T2 type. It will su�ce
to show ∆′ `m′ (δ ◦ r ).t : Γ.T1 R ρ.a. In order to show this we must show ∆′ `m′ t :
T1[δ ◦ r ] R a ∈ω nT1oρ and ∆′ `m′ δ ◦ r : Γ R ρ. �e �rst follows from our assumption
of ∆ `m t : T1[δ ] R a ∈ω nT1oρ and Lemmas 4.3.1 and 4.3.2. �e second follows from
∆ `m δ : Γ R ρ and Lemma 4.4.3.

Case.
Γ ` T1 type Γ.T1 ` T2 type

Γ ` Σ(T1,T2) type

�is case is identical to the previous case.
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Case.
Γ ` T : Ui

Γ ` T type

In this case we have Γ �n T : Ui and we wish to show Γ �n T type. Suppose we have some
m ≤ n and ∆ ` δ : Γ and ∆ `m δ : Γ R ρ, we wish to show ∆ `m T [δ ] R nToρ typeω .
We observe that from our induction hypothesis we then have the following:

∆ `m T [δ ] : Ui R nToρ ∈ω Ui

By inversion then, we have ∆ `m T [δ ] R nToρ typei . Since i < ω we have the desired
conclusion from Lemma 4.3.8.

Case.
Γ ` δ : ∆ ∆ ` T type

Γ ` T [δ ] type

In this case we have ∆ �n T type and Γ �n δ : ∆ by induction hypothesis and wish to show
m ` Γ typeT [δ ]. Suppose we have some m ≤ n and ∆′ ` δ ′ : Γ and ∆′ `m δ ′ : Γ R ρ, we
wish to show ∆′ `m T [δ ◦ δ ′] R nToρ typeω .
First, we observe that ∆′ ` δ ◦ δ ′ : ∆. Furthermore, from ∆′ �n δ : Γ we have that
∆′ `m δ ◦ δ ′ : Γ R nδoρ . We may then instantiate our other induction hypothesis with
this to conclude that ∆′ `m T [δ ◦ δ ′] R nTonδoρ typeω holds. By de�nition, we have
nTonδoρ = nT [δ ]oρ concluding this case.

2. If Γ ` t : T then Γ �n t : T for any n.

Case.
Γ1.T .Γ2 ctx µ < Γ2 k = ‖Γ2‖

Γ1.T .Γ2 ` vark : T [pk ]

In this case we have no induction hypothesis. We wish to show Γ1.T .Γ2 �n vark : T [pk ].
Suppose we have m ≤ n, ∆ ` δ : Γ1.T .Γ2, and ∆ `m δ : Γ1.T .Γ2 R ρ. We wish to show the
following:

∆ `m vark [δ ] : T [pk ◦ δ ] R nvarkoρ ∈ω nT [pk ]oρ
We observe that since µ < Γ2 we have by inversion on ∆ `m δ : Γ1.T .Γ2 R ρ that ρ =
ρ ′.v1....vk and ∆ ` δ = δ ′.t1.....tk : Γ1.T .Γ2 such that ∆ `m δ ′ : Γ1 R ρ ′ and ∆ `m t1 :
T [δ ′] R v1 ∈ω nToρ′ .
Next we observe that nvarkoρ = ρ(k) = v1 and ∆ ` vark [δ ] = t1 : T [δ ′]. We note that
∆ ` pk ◦ δ = δ ′ : Γ1 and so we may turn the la�er fact into ∆ ` vark [δ ] = t1 : T [pk ◦ δ ].
From this equality of substitutions we also have ∆ `m t1 : T [pk ◦ δ ] R v1 ∈ω nToρ′
by Lemma 4.3.6. By calculation we also have that nToρ′ = nT [pk ]oρ and so we have
∆ `m t1 : T [pk ◦ δ ] R v1 ∈ω nT [pk ]oρ .
Finally, we are done by Lemma 4.3.7 and ∆ ` vark [δ ] = t1 : T [pk ◦ δ ].

Case.
Γ ` T0 type Γ.T0 ` t : T1

Γ ` λ(t) : Π(T0,T1)

In this case, we have Γ �n T0 type and Γ.T0 �n t : T1 by induction hypothesis. We wish to
show Γ �n λ(t) : Π(T0,T1).
Suppose we have somem ≤ n, ∆ `m δ : Γ R ρ. We must show the following:

∆ `m λ(t)[δ ] : (Π(T0,T1))[δ ] R nλtoρ ∈ω nΠ(T0,T1)oρ
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First, we observe by calculation that nλ(t)oρ = λ(tCρ) and nΠ(T0,T1)oρ = Π(nT0oρ ,T1Cρ).
Next, we will use the following two de�nitional equalities.

∆ ` Π(T0,T1)[δ ] = Π(T0[δ ],T1[δ ◦ p1.var0]) type

∆ ` (λ(t))[δ ] = λ(t[δ ◦ p1.var0]) : Π(T0,T1)[δ ]

We may then simplify our goal by Lemmas 4.3.6 and 4.3.7 to the following:

∆ `m λ(t[δ ◦ p1.var0]) : Π(T0[δ ],T1[δ ◦ p1.var0]) R λ(tCρ) ∈ω Π(nT0oρ ,T1Cρ)

In order to show this, we unfold the de�nition. It su�ces to show that two facts hold:
Subgoal.

∆ `m T0[δ ] R nT0oρ typeω

�is follows from our induction hypothesis. We instantiate Γ �n T0 type with m ≤ n
and ∆ `m δ : Γ R ρ and the conclusion is immediate.

Subgoal.

For allm′ ≤ m and r : ∆′ ≤ ∆ if ∆′ `m′ t ′ : T0[δ ◦ r ] R v ∈ω nT0oρ then we have the
following:

∆′ `m′ (λ(t[δ ◦ p1.var0]))[r ](t
′) : T1[δ ◦ p1.var0][r .t

′] R app(λ(tCρ),v) ∈ω T1Cρ[v]

First, we use Lemmas 4.3.6 and 4.3.7 again to simplify our goal to the following:

∆′ `m′ t[(δ ◦ r ).t
′] : T1[(δ ◦ r ).t

′] R ntoρ .v ∈ω nT1oρ .v
In order to show this we will use our second induction hypothesis. We pickm′ ≤ n by
transitivity. If we can show that ∆′ `m′ (δ ◦ r ).t ′ : Γ.T0 R ρ .v we are done. We observe
from the de�nition that since ∆′ `m′ t

′ : T0[δ ◦ r ] R v ∈ω nT0oρ holds by assumption
we merely need to show ∆′ `m′ δ ◦ r : Γ R ρ. Next, by Lemma 4.4.3 it su�ces to show
∆ `m δ : Γ R ρ but this is immediate by assumption.

Case.
Γ ` T0 type Γ.T0 ` T1 type Γ ` t0 : Π(T0,T1) Γ ` t1 : T0

Γ ` t0(t1) : T1[id.t1]

We have by induction hypothesis that Γ �n T0 type, Γ.T0 �n T1 type, Γ �n t0 : Π(T0,T1) and
Γ �n t1 : T0. We wish to show Γ �n t0(t1) : T1[id.t0]. We set T = Π(T0,T1).
Suppose we have somem ≤ n, ∆ `m δ : Γ R ρ. We must show the following:

∆ `m t0(t1)[δ ] : T1[(id.t1) ◦ δ ] R app(nt0oρ , nt1oρ ) ∈ω nT1oρ .nt1oρ

We instantiate our induction hypotheses withm, δ , and ρ. We then have ∆ `m t0 : T [δ ] R

nt0oρ ∈ω nToρ and ∆ `m t1 : T0[δ ] R nt1oρ ∈ω nT0oρ .
By inversion on the �rst of these facts we must then have that there is some T ′0 and T ′1 such
that ∆ `m T ′0 R nT0oρ typeω and such that for all ∆ `m t ′ : T ′0 R v ∈ω nT0oρ we have
∆ `m t0(t

′) : T ′1 [id.t ′] R app(nt0oρ ,v) ∈ω nT1oρ .v
Now, we observe that by Corollary 4.3.12 we must have ∆ ` T0[δ ] = T

′
0 type. �erefore, from

our second induction hypothesis and the second fact we have obtained from inversion, we
may conclude the following:

∆ `m t0(t1) : T ′1 [id.t1] R nt0(t1)oρ ∈ω nT1oρ .nt1oρ
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In order to obtain the desired conclusion, therefore, we must show that ∆ ` T1[δ .t1] =
T ′1 [id.t1] type holds. �is follows form Corollary 4.3.12 and our induction hypothesis of
Γ.T0 �n T1 type. From the la�er we have ∆ `m T1[id.t1] R nT1oρ .nt1oρ typeω . From our earlier
conclusion and Lemma 4.3.9 we may have ∆ `m T ′1 [id.t1] R nT1oρ .nt1oρ typeω . �erefore,
we have the desired equality of types by Corollary 4.3.12.

Case.
Γ ` A : Ui Γ.A ` B : Ui

Γ ` Π(A,B) : Ui

Identical to the case for Γ ` Π(A,B) type.
Case.

Γ ` t0 : T0 Γ.T0 ` T1 type Γ ` t1 : T1[id.t0]

Γ ` 〈t0, t1〉 : Σ(T0,T1)

In this case, by induction hypothesis we have Γ �n t0 : T0, Γ.T0 �n T1 type, and Γ �n t1 :
T1[id.t0]. We wish to show Γ �n 〈t0, t1〉 : Σ(T0,T1).
Suppose we have somem ≤ n, ∆ `m δ : Γ R ρ. We must show the following:

∆ `n 〈t0, t1〉[δ ] : (Σ(T0,T1))[δ ] R n〈t0, t1〉oρ ∈ω nΣ(T0,T1)oρ
First, we observe that nΣ(T0,T1)oρ = Σ(nT0oρ , nT1oρ ). �erefore, we must show that that
∆ ` (Σ(T0,T1))[δ ] = Σ(T ′0,T

′
1 ) type, ∆ ` 〈t0, t1〉[δ ] : Σ(T ′0,T ′1 ), and the following three facts:

a) ∀m′ ≤ m, r : ∆′ ≤ ∆. ∆′ `m′ t
′ : T ′0 [r ] R a ∈ω nT0oρ =⇒ ∆′ `m′ T

′
1 [r .t

′] R

T1Cρ[a] typeω
b) ∆ `m t0[δ ] : T ′0 R fst(n〈t0, t1〉oρ ) ∈ω nT0oρ
c) ∆ `m t1[δ ] : T ′1 [id.t0[δ ]] R snd(n〈t0, t1〉oρ ) ∈ω T1Cρ[fst(n〈t0, t1〉oρ )]

We have simpli�ed these goals without further comment by Lemma 4.3.7 to save space.
We choose T ′0 = T0[δ ] and T ′1 = T1[(δ ◦ p1).var0]. �is immediately gives us ∆ ` 〈t0, t1〉[δ ] :
Σ(T ′0,T

′
1 ) so we merely need to show the above three facts.

�e �rst fact then follows from our induction hypothesis of Γ.T0 �n T1 type. For the
second, we observe by that fst(n〈t0, t1〉oρ ) = nt0oρ and so this goal is precisely our induction
hypothesis of Γ �n t0 : T0. For the third, we observe that snd(n〈t0, t1〉oρ ) = nt1oρ . �is
simpli�es our goal to the following (again using Lemma 4.3.7):

∆ `m t1[δ ] : T1[δ .t0[δ ]] R nt1oρ ∈ω nT1oρ .nt0oρ

�is is again handled by our induction hypothesis.
Case.

Γ ` T0 type Γ ` t : Σ(T0,T1)

Γ ` fst(t) : T0

In this case we have by induction hypothesis that Γ �n T0 type and Γ �n t : Σ(T0,T1). We
wish to show Γ �n fst(t) : T0.
Suppose we havem ≤ n and ∆ `m δ : Γ R ρ. We wish to show the following:

∆ `m (fst(t))[δ ] : T0[δ ] R fst(ntoρ ) ∈ω nT0oρ
We start by instantiating our induction hypothesis of Γ �n t : Σ(T0,T1). �is tells us that the
following holds:

∆ `m t[δ ] : Σ(T0,T1)[δ ] R ntoρ ∈ω nΣ(T0,T1)oρ
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�erefore, we have ∆ ` Σ(T0,T1)[δ ] = Σ(T ′0,T
′
1 ) type such that, in particular, ∆ `m fst(t[δ ]) :

T ′0 R fst(ntoρ ) ∈ω nT0oρ . Now we may use Corollary 4.3.12 with Γ �n T0 type to conclude
that ∆ ` T0[δ ] = T

′
0 type. Finally, by Lemmas 4.3.6 and 4.3.7 we then have the desired goal:

∆ `m (fst(t))[δ ] : T0[δ ] R fst(ntoρ ) ∈ω nT0oρ
Case.

Γ ` T0 type Γ.T0 ` T1 type Γ ` t : Σ(T0,T1)

Γ ` snd(t) : T1[id.(fst(t))]

In this case we have by induction hypothesis that Γ �n T0 type, Γ.T0 �n T1 type and
Γ �n t : Σ(T0,T1). We wish to show Γ �n fst(t) : T0.
Suppose we havem ≤ n and ∆ `m δ : Γ R ρ. We wish to show the following:

∆ `m (snd(t))[δ ] : T1[δ .fst(t[δ ])] R snd(ntoρ ) ∈ω nT1oρ .nfst(t )oρ
We start by instantiating our induction hypothesis of Γ �n t : Σ(T0,T1). �is tells us that the
following holds:

∆ `m t[δ ] : (Σ(T0,T1))[δ ] R ntoρ ∈ω nΣ(T0,T1)oρ
Inversion on this tells us that there is some ∆ ` (Σ(T0,T1))[δ ] = Σ(T ′0,T

′
1 ) type such that the

following holds:

∆ `m fst((t[δ ])) : T ′0 R fst(ntoρ ) ∈ω nT0oρ
∆ `m snd((t[δ ])) : T ′1 [id.fst((t[δ ]))] R snd(ntoρ ) ∈ω nT1oρ .fst(ntoρ )

From the �rst fact, Corollary 4.3.12 and our induction hypothesis that Γ �n T0 type we may
conclude that ∆ ` T0[δ ] = T

′
0 type holds. We then have from the second fact, Corollary 4.3.12,

and our induction hypothesis that Γ.T0 �n T1 type that the following equality is true:

∆ ` T1[δ .(fst(t[δ ]))] = T ′1 [id.(fst(t[δ ]))] type

�erefore, we may conclude from Lemmas 4.3.6 and 4.3.7 that our desired goal holds.
Case.

Γ ` A : Ui Γ.A ` B : Ui

Γ ` Σ(A,B) : Ui

Identical to the case for Γ ` Σ(A,B) type.
Case.

Γ ctx

Γ ` zero : nat
In this case we wish to show that Γ �n zero : nat holds. Suppose that we have m ≤ n and
∆ `m δ : Γ R ρ. We must show that ∆ `m zero[δ ] : nat[δ ] R zero ∈ω nat. In order to show
this it su�ces to show ∆ `m zero : nat R zero ∈ω nat and this is immediate by de�nition.

Case.
Γ ` t : nat

Γ ` succ(t) : nat
In this case we wish to show that Γ �n succ(t) : nat holds and we have by induction
hypothesis that Γ �n t : nat. Suppose that we have m ≤ n and ∆ `m δ : Γ R ρ. We must
show ∆ `m succ(t)[δ ] : nat[δ ] R succ(ntoρ ) ∈ω nat.
First, observe by our induction hypothesis that we have ∆ `m t[δ ] : nat R ntoρ ∈ω nat.
�erefore, the goal follows by de�nition.
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Case.

Γ.nat ` T type Γ ` t0 : nat Γ ` t1 : T [id.zero] Γ.nat.T ` t2 : T [p2.succ(var1)]

Γ ` natrec(T , t0, t1, t2) : T [id.t1]

In this case we have by induction hypothesis that Γ.nat �n T type, Γ �n t0 : nat, Γ �n t1 :
T [id.zero], and Γ.nat.T �n t2 : T [p2.succ(var1)]. We wish to show that Γ �n natrec(T , t0, t1, t2) :
T [id.t0] holds.
For this, suppose we have somem ≤ n and ∆ `m δ : Γ R ρ. We �rst observe that we have
∆ `m t0[δ ] : nat R nt0oρ ∈ω nat. �is relation is inductively de�ned so we proceed by
induction. �ere are 3 subcases to consider:
Subcase. ∆ ` t0[δ ] = zero : nat and nt0oρ = zero.

In this case we wish to show that the following holds:

∆ `m natrec(T , t0, t1, t2)[δ ] : T [id.t0][δ ] R nnatrec(T , t0, t1, t2)oρ ∈ω nT [id.t0]oρ
We can reduce this as natrec(−,−,−,−) reduces at zero. It su�ces to show the following
instead:

∆ `m t1[δ ] : T [id.zero][δ ] R nt1oρ ∈ω nT [id.zero]oρ
However, this follows precisely from our induction hypothesis that Γ �n t1 : T [id.zero].

Subcase. ∆ ` t0[δ ] = succ(t ′0) : nat, nt0oρ = succ(v) and ∆ `m t ′0 : nat R v ∈ω ρ.
In this case we wish to show that the following holds (a�er some simpli�cations):

∆ `m t2[δ .t0[δ ].rec(...)] : T [δ .succ(t ′0)] R nt2oρ .v .natrec(TCρ ,nt1oρ ,t2Cρ ,v) ∈ω nT [id.t0]oρ
We have by induction hypothesis that the following holds:

∆ `m rec(...) : T [δ .t ′0] R natrec(TCρ, nt1oρ , t2Cρ,v) ∈ω nToρ .v
�erefore, the goal holds from our induction hypothesis of Γ.nat.T �n t2 : T [p2.succ(var1)].

Subcase. We have nt0oρ = ↑nat e and for all r : ∆′ ≤ ∆ we have dee‖∆′ ‖ = t ′ and ∆′ `
t0[r ◦ δ ] = t ′ : nat.
In this case we wish to show

∆ `m natrec(T , t0, t1, t2)[δ ] : T [δ .t0[δ ]] R e .natrec(TCρ, nt1oρ , t2Cρ) ∈ω nToρ .↑nate

In this case we use Lemma 4.3.11. Speci�cally, we must show that for all r : ∆′ ≤ ∆ that
de .natrec(TCρ, nt1oρ , t2Cρ)e‖∆′ ‖ = t ′ such that the following holds:

∆′ ` natrec(T , t0, t1, t2)[r ◦ δ ] = t ′ : T [r ◦ δ .t0[δ ]]

�is follows from our assumption about e as well as our induction hypothesis of Γ �n
t0 : nat, Γ �n t1 : T [id.zero], and Γ.nat.T �n t2 : T [p2.succ(var1)].

Case.
Γ ctx

Γ ` nat : Ui

Identical to the case for Γ ` nat type.

Γ ` T : Ui Γ ` ti : T
Γ ` Id(T , t0, t1) : Ui

Identical to the case for Γ ` Id(T , t0, t1) type.
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Case.
Γ ` T type Γ ` t : T
Γ ` refl(t) : Id(T , t, t)

Suppose that Γ �n T type and Γ �n t : T , we wish to show Γ �n refl(t) : Id(T , t, t).
For this, suppose we havem ≤ n and ∆ `m δ : Γ R ρ. We wish to show the following:

∆ `m refl(t)[δ ] : (Id(T , t, t))[δ ] R nrefl(t)oρ ∈ω nId(T , t, t)oρ
We �rst observe that we can simplify this goal to the following:

∆ `m refl(t[δ ]) : Id(T [δ ], t[δ ], t[δ ]) R re�(ntoρ ) ∈ω Id(nToρ , ntoρ , ntoρ )
By unfolding the de�nition of the logical relation at Id(nToρ , ntoρ , ntoρ ), we must show the
following:

∆ `n T [δ ] R nToρ typeα
∆ `n t[δ ] : T [δ ] R ntoρ ∈α nToρ

Both of these follow from our induction hypothesis.
Case.

Γ ` T type Γ ` u1,u2 : T Γ.T .T [p1].Id(T [p2], var1, var0) ` C type
Γ.T ` t1 : C[id.var0.var0.refl(var0)] Γ ` t2 : Id(T ,u1,u2)

Γ ` J(C, t1, t2) : C[id.u1.u2.t2]

In this case we have from our induction hypothesis that Γ �n T type, Γ �n u1,u2 : T ,
Γ.T .T [p1].Id(T [p2], var1, var0) �n C type, Γ.T �n t1 : C[id.var0.var0.refl(var0)], and Γ �n t2 :
Id(T ,u1,u2).
We wish to show Γ �n J(C, t1, t2) : C[id.u1.u2.t2].
First, assume that we havem ≤ n and ∆ `m δ : Γ R ρ. We wish to show the following:

∆ `m J(C, t1, t2)[δ ] : C[δ .u1[δ ].u2[δ ].t2[δ ]] R nJ(C, t1, t2)oρ ∈ω nCoρ .nu1oρ .nu2oρ .nt2oρ

In order to show this, we observe that by induction hypothesis we have ∆ `m t2[δ ] :
Id(T ,u1,u2)[δ ] R nt2oρ ∈ω nId(T ,u1,u2)oρ . By inversion on this fact we have that one of
the following two cases applies:

nt2oρ = ↑− e and when r : ∆′ ≤ ∆, then dee‖∆′ ‖ = t ′ such that ∆′ ` t2[δ ][r ] = t ′ : T [δ ][r ].
∆ ` t2[δ ] = refl(t ′) : Id(T ,u1,u2)[δ ] and nt2oρ = re�(v ′) for some t ′,v ′ such that
∆ ` t ′ = ui [δ ] : T [δ ].

We proceed by cases on this. In the �rst case we have that nt2oρ = ↑− e . We also observe
from our induction hypothesis that the following equality holds:

nJ(C, t1, t2)oρ = ↑nCoρ .nu1oρ .nu2oρ .nt2oρ e .J(CCρ, t1Cρ, nToρ , nu1oρ , nu2oρ )
In order to show our goal then, it su�ces to show that for all r : ∆′ ≤ ∆ that there is some t ′
such that

de .J(CCρ, t1Cρ, nToρ , nu1oρ , nu2oρ )e‖∆′ ‖ = t ′

Moreover, we must have the following equality:

∆′ ` J(C, t1, t2)[r ◦ δ ] = t ′ : C[id.u1.u2.t2][r ◦ δ ]

However, this holds using our induction hypothesis and the assumption that for all r : ∆′ ≤ ∆,
then dee‖∆′ ‖ = t ′′ such that ∆′ ` t2[δ ][r ] = t ′′ : T [δ ][r ]
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For the second case, we have that nt2oρ = re�(v ′) and ∆ ` t2[δ ] = refl(t ′) : Id(T ,u1,u2)[δ ].
In this case, we may simplify our goal to the following:

∆ `m t1[δ .t
′] : C[δ .u1[δ ].u2[δ ].t2[δ ]] R nt1oρ .v ′ ∈ω nCoρ .nu1oρ .nu2oρ .nt2oρ

In this case we wish to apply our induction hypothesis for t1:

Γ.T �n t1 : C[id.var0.var0.refl(var0)]

�is allows us to conclude the following:

∆ `m t1[δ .t
′] : C[δ .t ′.t ′.refl(t ′)] R nt1oρ .v ′ ∈ω nCoρ .v ′.v ′.re�(v ′)

Now, we may use Lemma 4.3.6 to simplify this to the following:

∆ `m t1[δ .t
′] : C[δ .u1[δ ].u2[δ ].t2[δ ]] R nt1oρ .v ′ ∈ω nCoρ .v ′.v ′.re�(v ′)

Finally, we have Γ.T .T [p1].Id(T [p2], var1, var0) ` C type. We use �eorem 3.3.5 together
with the following pair of environments:

m 
 ρ.v ′.v ′.re�(v ′) = ρ.nu1oρ .nu2oρ .nt2oρ : Γ.T .T [p1].Id(T [p2], var1, var0)

�is tells us that τω |=m nCoρ .v ′.v ′.re�(v ′) ∼ nCoρ .nu1oρ .nu2oρ .nt2oρ . Our goal then follows
from Lemma 4.3.5.

Case.
Γ.µ ` t : T
Γ ` [t]µ : �T

We have by induction hypothesis in this case that Γ.µ �n t : T . We wish to show Γ �n [t]µ :
�T . For this, suppose we havem ≤ n and ∆ `m δ : Γ R ρ. We wish to show the following:

∆ `m [t]µ[δ ] : (�T )[δ ] R n[t]µoρ ∈ω n�Toρ
We can calculate to reduce this to the following:

∆ `m [t[δ ]]µ : �T [δ ] R shut(ntoρ ) ∈ω �nToρ
Now in order to show this it su�ces to show for allm′,

∆.µ `m′ [[t[δ ]]µ]b : T [δ ] R open(shut(ntoρ )) ∈ω nToρ
By calculation this simpli�es to the following ∆.µ `m′ t[δ ] : T [δ ] R ntoρ ∈ω nToρ . In order
to show this, �rst we observe that ∆b `m δ : Γ R ρ from Lemmas 4.4.3 and 4.4.5. �erefore,
∆.µ `m′ δ : Γ.µ R ρ by de�nition. Finally, instantiating our induction hypothesis with this
gives us our goal.

Case.
Γ ` A type Γb ` t : �T

Γ ` [t]b : T

We have by induction hypothesis in this case that Γ �n T type and Γ.µ �n t : T . We wish
to show Γ �n [t]µ : �T . For this, suppose we have m ≤ n and ∆ `m δ : Γ R ρ. We wish to
show the following:

∆ `m [t]b[δ ] : (�T )[δ ] R n[t]boρ ∈ω n�Toρ
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We observe by Lemma 4.4.6 that ∆b `m δ : Γb R ρ. We therefore may instantiate our
induction hypothesis to conclude the following:

∆b.µ `m [t[δ ]]b : T ′ R open(ntoρ ) ∈ω nToρ
Where ∆b ` �(T [δ ]) = �T ′ type. Now, by Lemmas 4.3.2 and 4.4.2 we have that this gives us
the following:

∆ `m [t[δ ]]b : T ′ R open(ntoρ ) ∈ω nToρ
Now, from Corollary 4.3.12, our induction hypothesis, and calculation this gives us the goal:

∆ `m [t]b[δ ] : T [δ ] R n[t]boρ ∈ω nToρ
Case.

Γ.µ ` A : Ui

Γ ` �A : Ui

Identical to the case for Γ ` �A type.
Case.

Γ ctx

Γ ` Ui : Ui+1

Identical to the case for Γ ` Ui type.
Case.

Γ ` A : Ui

Γ ` A : Ui+1

Identical to the case for Γ ` Ui type.
Case.

Γ ` δ : ∆ ∆ ` t : A
Γ ` t[δ ] : A[δ ]

�is case mirrors the case for Γ ` T [δ ] type.
Case.

Γ ` A = B type Γ ` t : A
Γ ` t : B

Immediate from Lemma 4.3.6.

3. If Γ ` δ : ∆ then Γ �n δ : ∆ for any n.

Case.
Γ ctx

Γ ` · : ·

For this, suppose we havem ≤ n and ∆ `m δ : Γ R ρ. We wish to show ∆ `m · ◦ δ : Γ R n·oρ .
By calculation n·oρ = ·. �e goal then follows by applying a rule.

Case.
Γ1 ctx Γ2 ctx Γ1 Bµ Γ2

Γ1 ` id : Γ2

For this, suppose we have m ≤ n and ∆ `m δ : Γ1 R ρ. We wish to show ∆ `m id ◦ δ :
Γ2 R nidoρ . By calculation, this is equivalent to ∆ `m iddelta : Γ2 R ρ. �is is a result of
Lemma 4.3.2.
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Case.
∆ ` T type Γ ` δ : ∆ Γ ` t : T [δ ]

Γ ` δ .t : ∆.T
In this case, we have by induction hypothesis that ∆ �n T type, Γ �n δ : ∆, and Γ �n t : T [δ ].
We wish to show Γ �n δ .t : ∆.T .
For this, suppose we havem ≤ n and ∆′ `m δ ′ : Γ R ρ. We wish to show the following:

∆′ `m (δ .t) ◦ δ
′ : ∆.T R nδoρ .ntoρ

By calculation, it su�ces to show the following:

∆′ `m (δ ◦ δ
′).t[δ ′] : ∆.T R nδoρ .ntoρ

In order to do this, we merely need to show ∆′ `m δ ◦ δ ′ : ∆ R nδoρ , τω |=n nToρ ∼ nToρ ,
and ∆′ `m t[δ ′] : T [δ ◦ δ ′] R ntoρ ∈ω nT [δ ]oρ . �e second is a result of �eorem 3.3.5 and
the remaining two are immediate from our induction hypothesis.

Case.
Γ1 ` δ1 : Γ2 Γ2 ` δ2 : Γ3

Γ1 ` δ2 ◦ δ1 : Γ3

In this case, we have by induction hypothesis that Γ1 �n δ1 : Γ2, and Γ2 �n δ2 : Γ3. We wish to
show Γ1 �n δ2 ◦ δ1 : Γ3.
We assume we havem ≤ n and Γ0 `m δ ′ : Γ1 R ρ. We then have Γ0 `m δ1 ◦ δ

′ : Γ2 R nδ1oρ .
We then have the following:

Γ0 `m (δ2 ◦ δ1) ◦ δ
′ : Γ3 R nδ2onδ1oρ

Calculation tells us that nδ2onδ1oρ = nδ2 ◦ δ1oρ �nishing this case.
Case.

Γ1 ctx Γ1
b ` δ : Γ2

Γ1 ` δ : Γ2.µ

In this case, we have by induction hypothesis that Γ1
b �n δ : Γ2 and we wish to show

Γ1 �n δ : Γ2.µ.
We assume we have m ≤ n and Γ0 `m δ ′ : Γ1 R ρ. We then have that there is some m′

such that Γ0
b `m′ δ

′ : Γ1
b R ρ by Lemma 4.4.6. We then have Γ0

b `m′ δ ◦ δ
′ : Γ2 R nδoρ .

�erefore, by de�nition we have Γ0 `m′ δ ◦ δ
′ : Γ2.µ R nδoρ as required.

Case.
Γ1.Γ2 ctx Γ′1 ctx Γ1 Bµ Γ′1 k = ‖Γ2‖ µ < Γ2

Γ1.Γ2 ` pk : Γ′1
Suppose we have m ≤ n and ∆ `m δ : Γ1.Γ2 R ρ. We wish to show ∆ `m pk ◦ δ : Γ′1 R ρ.
�is follows by Lemma 4.4.3. �

Lemma 4.4.8. If Γ ctx and ↑Γ = ρ then Γ `n id : Γ R ρ.

Proof. We proceed by induction on Γ ctx.

Case.

· ctx

In this case we must show that · `n id : · R ·. �is is immediate as · ` id : ·.
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Case.
Γ ctx

Γ.µ ctx

In this case we have by induction hypothesis that Γ `n id : Γ R ρ where ↑Γ = ρ. We therefore
must show that Γ.µ `n id : Γ.µ R ρ. We have by Lemma 4.4.3 that Γb `n id : Γ R ρ holds and so
we have the desired conclusion by de�nition.

Case.
Γ ctx Γ ` T type

Γ.T ctx

In this case we have by induction hypothesis that Γ `n id : Γ R ρ where ↑Γ = ρ. We therefore must
show that Γ.T `n id : Γ.T R ρ.var‖Γ ‖ . First, we observe that it su�ces to show Γ.T `n p1.var0 :
Γ.T R ρ.var‖Γ ‖ . Now, from Γ ` T type we may conclude that Γ.T �n var0 : T [p1]. �erefore, we
have some A such that τω |=n A ∼ A ↓ R, nToρ = A, and Γ.T `n var0 : T [p1] R ↑A var‖Γ ‖ ∈ω A.
Next, we observe that by Lemma 4.4.3 that Γ.T `n p1 : Γ R ρ holds and so we have the desired
conclusion by de�nition.

�

Corollary 4.4.9. If Γ ` t : T and nbeTΓ (t) = t ′ then Γ ` t = t ′ : T .

Proof. From �eorem 4.4.7 we have that Γ �n t : T . �erefore, by Lemma 4.4.8 we have that Γ `n t :
T R ntoρ ∈ω nToρ where ↑Γ = ρ. From Lemma 4.3.11, then, we have that d↓nT oρ ntoρe‖Γ ‖ = t ′ such
that Γ ` t = t ′ : T . �is gives the desired goal. �
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