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Modal Dependent Type Theory

Here, we treat the syntax of MLTTg, a modal dependent type theory with typed definitional equality
and a predicative hierarchy of universes.

1.1 The syntax of MLTT,

We represent the syntax of TT abstractly using De Bruijn indices and explicit substitutions [Dyb96;
Gral3]. By convention, we use a distinguished color for syntactic objects (as opposed to the semantic
objects that we will introduce in later chapters).

(contexts) T,A -|T.A|T.&
(types) AB,T = t|nat|U; |II(AB)|3(AB) | DA|Id(At,t)

(terms) st = Alvar, | A@t) | 1(2) | (¢, 2) | fst(t) | snd(2) | [t]a | [t]e |
refl(t) | J(C, t, t) | zero | succ(t) | natrec(A, t,t,t) | t[5]
(subst.) Y,90 s= id|d.t[S0d|p™ |-

We now turn to the typing rules for this calculus. We write I for the operation which removes all
locks from a context. We write I' g I'” to mean that I'’ is a version of I' with locks added.

I ctx IN="NE Inog I Ih + A type In+ A type Ioa I IR E
'l r() >a I roAl>ﬂr1A Foﬂbgl"lﬂ
r.&T cix [ ctx [ ctx
ra8Tcg.T.8 a8 reds,r.a

I ctx I ctx I'+T type
- ctx r.@ ctx I.T ctx
' T type
T ctx C.&+ T type T+Tytype  T.Ty+ Ty type
T+ U; type T + nat type I+ Q0T type T+ I(Ty, Ty) type T+ 2(Ty, Ty) type
'rT:U; '+ T type I'rty,t:T I'rd:A A+ T type
'+ T type I+ 1d(T, to, t1) type I'+ T[6] type

1
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[o.T.T; ctx &gl k=Ll [+ A type Il Avrt:B
I,.T.Iy F var : T[pF*] T+ A(t) : TI(A, B)
I'rt:1I(A B) F'ru:A I''A+ B type 'rA:U; r'A+B:U;
I+ t(u) : Blid.u] I'+T1I(A B) : U;
IF'rty: A I'"A+ B type T+t : Blid.to] T'rt:3(AB) I'+Atype
T F {to,t1) : (A, B) T Ffst(t): A
I'kt:3(AB) I'+ Atype I''AF B type 'rA:U; A+ B:U; I ctx
T + snd(t) : Blid.(fst(t))] T'+3(AB):U; I + zero : nat
I'rt:nat

I + succ(t) : nat

I'.nat A type [+ t,: nat I'+t, : Alid.zero] T.nat.A+ tg : A[p?.succ(var;)]
I' + natrec(A, ty, t,, ts) : Alid.t,]

T ctx I'rT:U; I'rto,t1: T I'+T type T'rt: T
I+ nat:U; T+ Id(T, to, t1) : U; T+ refl(t) : 1d(T, t, 1)

T+ T type TFugu:T L.T.T[p'].1d(T[p?], vary, varg)  C type

I.T + ty : C[id.varg.varg.refl(varg)] T+t 1d(T, ug, uq) rdrt:A
'k J(C, to, tl) : C[id.uo.ul.tl] T+ [t]ﬂ :OA
I+Atype T¥rt:DA r@rA:U; T ctx F-A:U;
Tr[t)gp:A F'roA:U; 'k U;: Ui I'rA:U; 4
F'rd:A Art:A I'+A=Btype F'rt:A
T+ t[6] : A[S] F'+t:B
I ctx A ctx ->a A I ctx I ctx I g I
T'r-:A rlFierz

AI—Ttype F'rd:A FI—tT[(S] Fol—ylzrl rll-}/zirz Iy ctx l"o'pl—ylzl"l
F'ré.t: AT r0|-)/20}/12FZ Fol—yl:rl.ﬂ

To.T4 ctx FO’ ctx I >a 1—~0/ k= ||F1|| a¢ I
L. Fpk:Ty

We omit most of the rules for definitional equality, which are standard, presenting only those which
pertain to the new type connectives. We have equipped both depenent function and dependent pair
types with the appropriate 7 rules. The rules the O connective are specified below.
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I+ T type Arid:T LkFy: Y LFy: LT type Trt:T Arid:T

A+ Tlid] =T type Io F Tlyzlly1] = Tlyz o 11l type Artlidl=¢:T
Fol—ylzrl rlF}/zlrz Lvt:T Fﬂl—A:Btype F.QI—A:B:Ui
Lo F tly2lly1] = tlyz © y1] : Tly2 o y1l I' + OA = OB type I'+0A=0B:U;
T@rty=1t:A I'+Atype T¥ri=t:0A “&rt:A
I'+[t]a =[]a:0A I'kltola =01l : A I'r[[tlale =1:A
C+t:0A TrHS:A A&+ Atype CHS:A A@rit:T
I'+[[tlela=1t:0A4 I'+ (BA)[5] = O(A[]) type '+ [t]alé] = [t[5]]a - (AT)[S]

TrFS:A A® v t:0T
[+ [tlg[d] = [t[S]]ap : T[S]

The rules for equality of substitution are largely standard, but presented in a more general way in
order to properly mediate the presence of &.

Fol—pl.varo:rl Fol—id:F1 r()l-)/lirl rlF)/zng FZF}/'D)ZF_J,
Fokpl.varozid:l"l r()l-}/30(}/20)/1):(}/30}/2)0)/1 1 I3
Fok)/lzl"l l"lkid:l"g I“Okidzl“l rll-)/zlrz rll-)/girz szy.t:l"g
Lridoy; =y : I IhFyoid=y:T; Lik(yoye=(yoye)(tlye]) : T
Lrp™: L Lryt:IT  Tirpl:D
LFp™=ptop: T} Lrplo(yt)=y: 0

1.2 Admissible rules

In this section, we prove a number of critical admissible rules which will be exploited throughout the
rest of this report. In what follows we use J to stand for any of the judgments of MLTTg.

Proposition 1.2.1 (Lock-variable exchange). Supposing that T.@ + T type holds if T;,.T.&.I1 + J then
L&TT+YJ.

Proof. Proven in Theorem 1.2.7.
Proposition 1.2.2 (Lock strengthening). IfT.&.1y + J thenT,.I + .
Proof. Proven in Theorem 1.2.4.
Proposition 1.2.3 (Presuppositions).
1 IfT + T type thenT ctx.
2. IfT+t:T thenT + T type.
3. IfTo + 6 : T} thenT; ctx.

4. If T+ Ty = Ty type thenT + T; type.
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5 IfTrty=1t:TthenT +t;:T.

6. IfT -8y =081 :AthenT + 6;: A
Proof. Proven in Theorem 1.2.16. O
Theorem 1.2.4 (Lock Strengthening).

1. IfT,.@.T; ctx thenT.Iy ctx.

2. IfT,.@.T, + T type then Ty + T type.

3. IfTy.&.T; Ty = Ty type thenTy.Iy + Ty = Ty type.

4 IfT, @I Ft:TthenTy.Iy+t:T.

5 IfT,@T Fty=t; : T thenTy.Iy Fty=t; : T.

6. fTy.BT F&:AthenTy.Iy 6 :A.

7. IfTo.@.T - 8 = 8 : A thenTp.Iy 8y = 6; : A.

Proof. These facts must be proved mutually as these judgments are all mutual. They are all proven by
induction on the derivation; for brevity, we present only a few representative cases involving locks.

1. IfT,.@.T; ctx then I},.I} ctx.

Case.
Fo.ﬂ.l"l ctx l"o.ﬂ.l“l FT type

I,.8.T,.T ctx

In this case, our induction hypothesis tells us that both I,.I7 ctx and I.I7 + T type hold.
Therefore, we may apply the same rule to conclude that I.I7.T ctx holds as required.

Case.
I,.8.I ctx

I,.8.T, .8 ctx
In this case, our induction hypothesis tells us that Iy.I7 ctx and we wish to show that
I,.I .@ ctx. However, this is immediate from our rules.

2. If T,.@.T + T type then T,.Th + T type.

Case.
Fo.ﬂ.rl FA type Fo.ﬂ.Fl A+ B type

r().ﬂ.rl F H(A, B) type

In this case, we have by induction hypothesis that Iy.I} + A type and I,.I7.A + B type. We
wish to show that I[.I + II(A, B) type. This, however, is again just rule.

3. If ro.ﬂ.rl FTy =T type then ILh.Ih+-Ty =T type.

Case.
Foﬂrln Ty =T type

Fo.ﬂ.rl FOT, = 0T type

We have, then, by induction hypothesis I,.I.@ + T, = T; type. We wish to show that
IL.IT + OTy = OT; type. This, again, immediately follows from our rule applied to our
induction hypothesis.
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4. Ifronrl tt: T then IpIhrt:T.

Case.
L,.&6LFTtype T.@0%rt:0T

L&LF[tle:T

By induction hypothesis, we have L% rt:0Tand [,.I F T type. We wish to show that
Iy.T1 + [t]g : T, but this is immediate from our rules.

5. Iffoﬂfl Fto=1t1:T then IhIhFty=1t;:T.

Case.
l"o.ﬂ.l"l Ft:0OA

Fo.ﬂ.Fl F [[t]‘\]ﬂ =t:0A

In this case, we have by induction hypothesis that Iy.I1 + ¢ : OA. We wish to show that
Io.I7 F [[t]apla = t : OA. We will do this by applying the same rule. However, our induction
hypotheses are precisely the premises we need, so this is immediate.

6. Ifronrl & : Athen Io.I7 + o :A.

Case.
Fo.ﬂ.Fl ctx I} ctx Fo.ﬂ.rl > I

r().ﬂ.rl Fid : I;

In this case we have by induction hypothesis that Iy.I; ctx holds. Since T;.@.I; >g I; holds
we must then have I},.I} >g I; and so we can apply same rule to conclude Iy.I7 + id : [, as
required.

Case.
L.&.T,.I7 ctx A ctx I.&8.T, ra A a¢n k=

Fo.ﬂ.rl + pk : Fo.ﬂ.rl

In this case we have by induction hypothesis that I.I;j.I} ctx holds. Since TO.Q.F()’ >a A holds
we must then have I,.I) >g A and so we can apply same rule to conclude Iy.I;.I; + pk: A
as required.

Case.
L&l cx TLa&nL®rs:A

LaL+-5:AG

In this case we have by induction hypothesis that I;.I3 ctx holds. Since L.8.0% = T,.0% we
then have I[,.I}¥ + § : A. We then obtain the desired conclusion by applying the same rule.

7. Ifr()ﬂrl + 5() = 51 : A then Ih.Ih + 5() = 51 AN
All cases follow immediately from our induction hypotheses. O

Lemma 1.2.5. IfT + J then “v9.

Proof. This follows by induction on the number of locks in I' and by applying Theorem 1.2.4 at each
step. O

Lemma 1.2.6.
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6.

7.

IfT,.&.T ctx thenT,.@.8.T; ctx.

IfT,. @11 + T type then T).@.8.T; + T type.

IfT,. &1+ Ty = T type thenT,.@.8.T) + Ty = T, type.
I, @ t:T thenT,. @@ T Ft:T.

Iy @Trty=1t : T thenly.B&T -ty =1 :T.
IfTy.@T -8 :AthenT, . @8I F6§: A

Ifl“o.ﬂ.l"l F 50 =6; : A then roﬂﬂrl F 50 =6 : A.

Proof. We proceed by mutual induction on the size of the input derivation. Every case of this follows
immediately by the induction hypothesis. ]

Theorem 1.2.7. Supposing that T,.@ + A type holds, the following facts are true.

1.

2.

6.

7.

IfTy.AB.T; ctx then T).@.A.T; ctx.

IfTy.ABT; + T type thenT).@.AT + T type.
IfT).ABT; + Ty = Ty type then T, @.ATy + Ty = T type.
IfT,, AT+ t:T thenT, @A Ft:T.

IfT,, AT Ftg=1t;:T then[). @A Fty =1t :T.
IfT,. ABT & : AthenTy . @AT +6: A

IfI‘OAﬁl“l F (So = 51 : A then roﬂArl F 50 = 51 AW

Proof. This proof mirrors the one of Theorem 1.2.4. It is done by simultaneous induction on all the
judgments.

1.

IfT,. AT ctx then I,.@. AT} ctx.

For this branch, there is only one case that does not follow by induction: namely when I} = -
and so we are considering I;.A.@ ctx. In this case, we have I cix and T + A type. We wish to
show that I;).@.A ctx. First, we have I,.@ ctx immediately. In order to show that I,.@.A ctx holds,
however, we must show that I,.@ + A type holds. This does not a-priori hold from what we have so
far, however, we assumed it in the statement of this theorem and so we may conclude T;,.@.A ctx.

. IfT,. AT + T type then T).@.AT; + T type.

Every single case of this part of the theorem is merely induction. To save time, therefore, I have
presented only one case.

Case.
FoAﬂFlﬂ T type

L. A8 +OT type

In this case, we have by induction hypothesis that T;,.@.A.I' .@ + T type. We wish to show
TIo.8.A.T7 + OT type. This follows immediately by application of rule.

If l"oAﬂl"l FTy =T type then FoﬂAl"l FTy =T type.

This part of the theorem is identical to the case for [).A.&.T; + T type.
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4. If r()Aﬂrl b t: T then FOQAH Ft:T.

Case.
LA, &rt:T

FOAQD F [t]a :aT

In this case, we have by induction hypothesis that I;.@.A.I; .@ + t : T. We wish to show that
I).8.AT; + [t]g : OT holds. This follows immediately from the rule for [-]g.

Case.
I AGL FTtype (T, AL rt:0T

LA +[tlp: T

In this case, we have by induction hypothesis that (T,.@AL)® + ¢t : 0T and [,.@.AT; +
T type. We wish to show that I,.@.A.T}  [t]g : T holds. This follows immediately from the
rule for [—]g.

5. If FoAﬂl"l Fitg=1: T then FoﬂArl Fitg=1: T.

Case.
roAﬂrl Ft:0OA

I.AGT; + [[tlala=1t:0OA

In this case we have by induction hypothesis that I).@.A.T} + t : OA. Therefore, by application
of our rules we have I).@.A.I + [[t]go]lg =t : OA

Case.
L AL @ri: A

[L.AGT + ([tlalae =t: A

We need to show I,.@.A.T; + [[t]gleg = ¢ : A; applying the same rule, it suffices to show that
(To.@.AT)¥ & ¢ t : A Observing that (I,.@.A.T)% = (I,.A.8.I)¥, we see that we can just
use our existing premise.

6. If l"oAﬂl"l + & : Athen l"oﬂAl"l FO:A.

Case.
I,.A&.I ctx A ctx I,b,A&T g A

Lrid: A

In this case we have I},.@.A.T; ctx and A ctx. It therefore suffices to show that I} @.A.} >g A.
However, this follows from the fact that T;.A.@.T; >a A holds. Therefore, we are done by
applying the rule for id.

7. If r()Aﬂrl + 50 = 51 : A then FOQAH F 50 = 51 : A
All cases here follow from the induction hypotheses. O

Lemma 1.2.8. IfT ctx andT¥ @+ J thenT @+ .

Proof. This follows by induction on I' and by applying Theorems 1.2.4 and 1.2.7 and Lemma 1.2.6 at each
step. O

In order to prove the remaining facts, we first need the following “lifting theorem” regarding
substitutions.
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Lemma 1.2.9. IfT + & : A then T + § : A%

Proof. We proceed by induction on the derivation of I' - § : A.

Case.

Case.

Case.

Case.

Case.

Case.

Iy ctx I7 ctx Ioa Iy
Io + id: Iy

It is simple to see by induction that if Tj >g I’ holds then I,® = I,¥. Since, by Lemma 1.2.5, we
have [, ctx we then have [,* r id : I} immediately by applying this rule.

I ctx A ctx - g A
I'r-:A

In this case, we have no induction hypothesis and our goal is to show that I + - : A¥. Simple
induction tells us that A = -. Therefore, we merely need to show I'™¥ - - : - and this follows from
immediately from our rule together with Lemma 1.2.5.

A+ T type F'ré:A T'rt:T[S]
Fro.t:AT

In this case, our induction hypothesis states that T + § : A¥ and we wish to show that T
5.t : A.T¥. First, we note that A.T% = A¥.T. Thus, we apply the rule for adjoining a term to a
substitution. We must show that the following hold:

» [+t T[S]
s T p A
» (A.T)¥ ctx (which is equivalent to A%.T ctx)

However, we have the first by assumption and Lemma 1.2.5, the next is our induction hypothesis
and the last follows again from Lemma 1.2.5 and our assumption that A.T ctx.

F0|—50:F1 F1|—51:F2
F0|—51050:F2

By induction hypothesis we have L%+ 8 : % and ;™ + §; : [L*. However, we then just apply
the composition rule again to obtain I,;® F &; o & : I, as required.

Loctx TL¥r6:T
Io k5:1’1.ﬂ

By induction hypothesis, we have that [p¥ + & : I} However, since I .@% = I} this immediately
gives us the desired conclusion when Lemma 1.2.5 is applied to I ctx.

I,.I; ctx A ctx k=Tl Ip ba A a¢D
L.y FpF:A

In this case, we have no induction hypothesis but we will show that I;.I,¥ + p* : A% by application
of the same rule. We have that @ ¢ I} and ||T}|| = k immediately. All we need to show is that
Lo.Ih¥ ctx and T[,¥ g A¥. The first follows from Lemma 1.2.5 and our assumption that I5.I ctx.
The second follows from the fact that we must have [;* = A¥ as I} bg A holds. ]
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Lemma 1.2.10. IfT + §y = &; : A then I =06 : A%

Proof. Proceeds by induction on the derivation and follows directly from Lemmas 1.2.5 and 1.2.9. O
Lemma 1.2.11. IfT + 6 : A@thenT¥ + § : A.

Proof. We proceed by induction onT + § : A.@. Only a few cases apply:

Case.
A ctx I.&ctx AvgT.@

Arid:T.&

In this case we wish to show A%  id : T but this is immediate by Lemma 1.2.5.

Case.
A ctx I8 ctx -pa .8

Ar-:T.8

In this case we wish to show A% + - : I'. However, it must be that - > T' by simple induction.
Therefore, we have our goal by applying the same rule and using Lemma 1.2.5.

Case.
F0|—50:F1 1"1!—51:1"23

Iy |-51 050:F2.ﬂ

In this case we wish to show [, + &; 0 8 : [;. We have ;¥ + &, : [ by induction hypothesis. By
Lemma 1.2.8 and I + & : I} we have [,¥ + & : I} Therefore, by the rule for composition we
have [;¥ F 8, 0 8 : I as required.

Case.
Iy ctx Fo“ FO: I

Iy F(S:I“l.ﬂ

In this case we wish to show Iy F § : I} but this is immediate by assumption.

Case.
Ip.I7 ctx k= ||F1|| I) ba FOI a ¢TI

L. Fpk: T8

In this case we wish to show to show I,.I}¥ pk : I 8. However, we have that [,.[}¥ ctx by
Lemma 1.2.5 and [;™ g I; by definition. Finally, IT || = |IT1|| so the goal is immediate. |

Lemma 1.2.12. Suppose A+ 5 : [,.@.T.I} andT,.T ..} ctx, then A+ § : T,.T.&.T}
Proof. We proceed by induction over the input derivation.

Subcase.
T ctx No.B.T.Aq ctx g Ao.B.T. A

I'r-: AonTAl

In this case we have a contradiction: - bg Ao.@.T.A; cannot hold.

Subcase.
Iy ctx AonTAl ctx Iv >a AonTAl

Io id : AoaTAl

We wish to show I + id : Ay.T.@.A;. We have Ay.T.@.A; ctx by assumption. Furthermore we
have A¢.@.T.A; >g A¢.T.8.A;. Therefore our goal follows immediately from the same rule and
the fact that — g — is transitive.
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Subcase.
A+ T type I'rd:A T'vrt:T[S]

I'td.t: AT

Now there are two cases to consider here, either A = A’.@ and we wish to prove T' + §.t : A’.T.@
or A = Ay.8.T".A; and we wish to prove T' + 5.t : Ag. T’ .@.A;.T.

Recall that we also have A’.T.@ ctx in the first case and Ao.T’.8.A;.T ctx in the second case.

In the first case, we observe that it suffices to show I' + §.¢ : A’.T. For this, we observe that we
have by assumption that A’.@ + T type and so A’ + T type must hold by Theorem 1.2.4. We have
that I ¢ : T[] from our assumption and Lemma 1.2.5. Finally, we must show I'¥ + § : A’ but
this follows from Lemma 1.2.11.

For the second case, we have by induction hypothesis T' + § : Ao.T’.@.A;. We also have that
Ao. T’ @.A; + T type from Ay.T'.@.A1.T ctx. Therefore, we may apply the same rule to obtain the
desired goal.

Subcase.
FOI—(ngfl F1|—51:F2

F0|—51050:F2

This is immediate by induction hypothesis.

Subcase.
Letx L¥r6:TY

Iy k5:1’1.ﬂ

This is immediate by induction hypothesis.

Subcase.
Io.I4 ctx AonTAl ctx Io oa AonTAl k= ||T1|| a ¢ 1

L. F pF: Ap.&.T.A

We wish to show Iy.I + pk : No.T.@.A;. We have by assumption that T;.I} ctx and Ao.T.@.A; ctx
hold. Furthermore, we know that Ag.8.T.A; >g A.T.@.A; holds by definition. The goal then
follows immediately from the same rule and the fact that — >g — is transitive. O

Lemma 1.2.13. Suppose A+ 5 : [,.@.8.1) and [,.@.T; ctx then A+ § : [,.&.T1}
Proof. This is immediate by induction on the input derivation from the fact that the =¥ is idempotent. O
Lemma 1.2.14. Suppose A+ § : T[y.I} and To.@.T; ctx, then A+ § : [).8.T;
Proof. This is immediate by induction on the input derivation and from Lemma 1.2.5. O
Lemma 1.2.15. IfT; + id : I, then the following facts hold.

1L IfTyctxandTy + 6 : T then Iy + 6 : In.

2. ForanyTU ifI.T ctx and . T+ J thenT7.T + J.
Proof. This proof proceeds by induction on the derivation of I + id : I5.

Case.
I ctx I; ctx INca I

rll-idirg
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1. This is just an application of Lemmas 1.2.12 to 1.2.14.
2. This is just an application of Theorems 1.2.4 and 1.2.7 and Lemma 1.2.6.

Case.
Loetx  L0%rid: Ty

Tl Fid : Fz'ﬂ

In this case we have by induction hypothesis that the following facts hold:

w IfT ctxand Th - 8 : [™ then Ty & : L.
» Forany I'if I,.I' v , I1.T ctx, and I,,.T ctx, then L%T+JY.

We wish to show the following:

= IfTy ctxand [y - 6 : Iy then Ty + 6 : I .@.
» For any I'if I, @' v J I,.T ctx, and I @. ctx, then}.T + 7.

For the first item, we observe that if I + & : [} then [,¥ r § : I’l"p from Lemma 1.2.9. Next, we
then have by our induction hypothesis that [, + § : I, since I,% ctx by Lemma 1.2.5. Next, from
straightforward application of our rules we have Iy + § : I,).@ as required.

For the second item, suppose that I;.@.T + J for some I'. We wish to show that I}.T + J. In
order to show this, we instantiate our induction hypothesis with @.I'. We then have I} &I + J. By
Lemma 1.2.8 and Theorem 1.2.4 we then have Iy.T + 7. O

Theorem 1.2.16.
1. IfT + T type thenT ctx.
2. IfTrt:T thenT + T type.
3. IfTy + 6 : I thenT; ctx.
4. IfT+ Ty =T, type thenT + T; type.
5 IfTrty=ty:TthenT +t;: T.
6. IfT' F6;=08,:AthenT +; : A

Proof. This theorem is largely standard except for the cases concerning substitutions and 0. We therefore
only show these cases.

1. T + T typethenT ctx.

Case.
&+ Atype

I' + OA type

In this case we have by induction hypothesis that I'.@ ctx. We wish to show that I' ctx
however this follows by induction on the derivation of '@ ctx.

2. fT+t:TthenT + T type.
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Case.
I+Atype TI¥rt:0A

rl—[t]‘\:A

In this case we have by assumption that I" - A type. Notice that this assumption is necessary
here because we only have by induction hypothesis that I + OA type. Since this could have
come from the universe rule, it is difficult to obtain I .@ + A type which would give us the
conclusion.

Case.
rart:A

I+ [t]g:0A

In this case we have by induction hypothesis that .&@ + A type. Therefore, by rule we have
the goal: T' + OA type.

3. If I} + § : I, then I ctx.

Case.
I ctx A ctx -Da A

T'r-:A

In this case we have I" ctx and A ctx and we wish to show that I' ctx and A ctx. Immediate.

Case.
A ctxT F'rd:A T'+t:T[6]

F'+6.t:AT

In this case we have I' ctx by induction hypothesis and A.T ctx by assumption. We wish to
show that I ctx and A.T ctx. Immediate.

Case.
I’lk(Sl:I‘z r2F522r3

FlF(SgO(Serg

In this case we have I’ ctx by induction hypothesis and I ctx by assumption. We wish to
show that I' ctx and I3 ctx. Immediate.

Case.
I7 ctx l"l'p FO: I;

I |—5:F2.ﬂ

In this case we have I; ctx by induction hypothesis and I ctx by assumption. This is precisely
the goal however.

Case.
hetx Actx TivgA k= |5l ac¢l

LI - pk : A

In this case we have I'}.I}; ctx and A ctx by assumption.

4. T+ T, =T, typethen T + T; type.

Case.
T+S:A A&+ Atype

I'+ (OA)[6] = O(A[S]) type
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In this case we must show that I' - (DA)[J] type and T' + O(A[S]) type. The first one follows
immediately by application of rules since A + DA type follows directly from our assumptions.
For the second, first observe that T.@ + § : A.@ by application of rule and Lemma 1.2.5.
Therefore, T.@ + A[S] type and so T + O(A[5]) type

5. Ifl"ktlztzthhenFFti:T.

Case.
“art:A
Tr([[tlgl=t:A
In this case, we wish to show that T + t : Aand T + [[t]g]e : A. In order to do this, first
observe that by Lemma 1.2.8 we have I'.@ + ¢ : A. Therefore, by Theorem 1.2.4 there is a
proof that T' - ¢ : A. For the second goal, we apply the intro rule for [—]g so we must show
I v [t]g : OA. However, this follows from I'¥ @ + ¢ : A which is precisely our assumption.

Case.
ra@rAtype Trt:0A
T'r[[tlplg=t:0A4
In this case we wish to show that T + ¢t : DA and T + [[t]gp]g : OA. The first is immediate
by assumption. For the second, we must show that I' + [[t]g]g : DA. By application of

the introduction rules, it suffices to show that I'* + t : A. However, this follows from
Lemma 1.2.5 appliedto ' ¢ : A.

Case.
Tr6: A AGFrt:T

I'+ [t]alé] = [¢[5]]a : (AT)[S]
In this case, we wish to show that T + [¢]g[d] : (OT)[8] and T + [¢[d]]g : (TT)[S].
For the first one, we see by the application of the [—]g rule that A + [t]g : OT. Next, we have
by the explicit substitution rule that T  [t]g[d] : (OT)[J].
For the second goal, we note that we have by Lemma 1.2.5 that I + § : A. Therefore, we
have T.@+ § : A.@ immediately. We can then apply the explicit substitution rule to conclude
that T.@ + ¢ : T[§]. Next, we apply the rule for [-]g to get I + [t]g : O(T[5]). Finally, we
observe that by the conversion rule we then have I + [t]g : (OT)[J].

Case.
TrH6:A A+ t.OT

'+ [t]el6] = [t[5]]s - T(5]
In this case, we wish to show that T' + [t]o[5] : T[5] and T + [t[6]]ep : T[S].
For the first one, we see by the application of the [—]g rule that A + [t]g : T. Next, we have
by the explicit substitution rule that ' + [¢]gp[d] : T[S].
For the second goal, we note that we have by Lemma 1.2.9 that T  § : A¥. We can then
apply the explicit substitution rule to conclude the following: I ¢t : T[§]. Next, we apply
the rule for [—] g to get T F [t]gp : T[S].

6. Ifl“k51:52:Athean5,-:A.

Case.
F1|—51:F2 F2|—52:F3 F3|—53:F4
1 F830(5,061)=(d300,)08:1;
In this case we must show that I} + §30(8,06;) : Iy and I + (85 0 §,) o &; : I,. We have
by assumption that I} + §; : I, so both of these cases are immediate by the rule for
composition.
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Case.
F1|—5:F2 le—id:F3

Fll—id05=5:F3

In this case, we wish to show I} Fido d : I3 and I 6 : [5. We have by assumption that
Il Fd:; and I3 + id : T5. The first goal is immediate by the rule for composition. For the
second goal, we use Lemma 1.2.15 to conclude that I} + § : I5.

Case.
F]I-idirz F2k5:1“3

F1|-5oid=5:F3

In this case, we wish to show I} F d oid : I3 and I} + & : I5. We have by assumption that
I+ 6 :T5and I + id : I5. The first goal is immediate by the rule for composition. For the
second goal, we use Lemma 1.2.15 to conclude that I + § : I5.

Case.
F1|—51:F2 FzF(Sz.tlrg

7 F (62.t) 0 81 = (62 0 61).(t[61]) : T3
We have by assumption that T + §; : [, and I} + ;.1 : T3. We wish to show I F (8;,.t) 0 81 : I3

and I3 + (8, 0 81).(¢[81]) : Is. The first goal is immediate from our assumptions and the rule
for composition. We focus then on the second goal.

In order to show this, we proceed by induction on I}, + 8.t : I5.

Case.
F;T ctx I F 52 : r3, ILhrt: T[52]

I+ 52.1’ : F3’T

In this case, we wish to show the following:
I+ (52 o 51)(t[51]) : F3IT

First, observe that by the rule for composition we have I + 6, o §; : IJ. Next, by the
rule for explicit substitutions, we have I + ¢[&1] : T[d2][d1] and so by conversion,
I, + t[61] : T[J2 o 61]. Therefore, by the rule for extension: I + (d; o 61).(¢[61]) : I}.T
as required.
Case.
I, ctx L% St I

I r 52.1' : 1"3'3

In this case, we have by induction hypothesis that the following holds:
LY F (8, 068)).t[61] : Ty

Therefore, we have I; - (6, o 6;).£[61] : I .@ from application of our rules.

Case.
L Fp™T,

r1|_pn+1:pnopl:rz

In this case we have by assumption that I + p"*! : T, and we wish to show I + p"*! : T,
and I + p™ o p! : I;,. The first of these conclusions is immediate. For the second goal, we
proceed by induction on I} + p™*! : [,
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Case.
I).I) etx A ctx [/ >a A n+1=|1/| a¢r

I Fp™t: A

Note that here A = I5.
In this case, note that I" = Z.T for some Z of length n. We can therefore derive that
I/.I) + p!' :T/.Eand I].E + p" : A. By the rules for composition we have the desired
goal.
Case.
I ctx 0¥ ptl. T,

Lrp™h:T; &

In this case, we have by induction hypothesis that I} r p™ o p! : I,).&. We then have
I k p” o p' : I].@ by applying a rule.
Case.
Lrot:T, Trph:h
LiFplo(5t)=6:T;
In this case, we have by I} + 8.t : [, and Iy + p! : I3. We wish to show I + p! o (8.t) : T3 and

I + & : I5. The first goal is immediate from our assumptions. We merely need to show the
latter.

In order to show this, we will show by induction on the size of the derivation I; + p! : I3
thatif I + 5.t : Ir then I + & : I3.

We proceed by case on the derivation of Iy + 8.t : I5.

Subcase.
FZIT ctx I |—5:1“2' I FtT[(ﬂ

T, k6.t T).T

In this case, we have I + § : I;. We now need to show that I + ¢ : I3. In order to do
this, we will prove that I + id : T3 by induction on I}.T + p' : T5. The result will then
Lemma 1.2.15.

Subsubcase.

L,.T ctx Actx  T)paA
L,Trp':A
In this case, we observe that we are trying to show I'; + id : A but this is immediate
from the assumptions we have and the rule for id.

Subsubcase.
Doetx L¥Trp':Iy

I, Trp' : T8

In this case, we have % + id : I and so we have I; + id : T .& from our assumption
of I, ctx and the same rule.
Subcase.
Dctx T%¥r6t:T)
I+ o.t: len

In this case we have I @ + p! : T3 and we wish to show I + § : I3. Inversion on
the former tells us that it must be that Iy = I;.@ and that there is a strictly smaller
derivation I,* + p! : .

Therefore, it suffices to show I}\¥ F & : 1"3’ in order to establish our goal. We know that
0¥ 6.t Fz"p by Lemma 1.2.9. We then apply our induction hypothesis we our strictly
smaller derivation of % + p! : T/. o.




Computing in MLTT,

2.1 Semantic domain

We now define the semantic domains in which MLTTg programs compute. We diverge from the
standard presentation of normalization by evaluation in terms of partial applicative structures by
actively distinguishing between closure instantiation and the partial application operation. Colors are
used to distinguish between all the different domains; the color of an identifier is part of its lexical
meaning, making A, A distinct metavariables.

(values) Au = Te|A(f) | TI(A B) | zero | succ(v) | nat | {v1,v2) | Z(A, B)
0A | shut(v) | U; | Id(A, v1, v7) | refl(v)

(neutrals) e = varg | e.app(d) | e.fst | e.snd | e.open | e.natrec(A, v, f)
eJ(C, f, A v1,02)

(environments) p = -|puo

(closures) Af = tap

(normals) d = Ao

2.2 Semantic partial operations

Elements of the semantic domains are animated through partial operations, such as evaluation of terms,
application of values, etc. In this section, we define the graphs of these partial operations inductively.

[[t]]p =v
EVAL/VAR EVAL/SUCC
p(i) = EVAL/NAT EVAL/ZERO [[t]]p —u
[var;], = v [nat]], = nat [zero], = zero [succ(t)]l, = succ(u)
EVAL/NATREC EVAL/PI
[z], = v. [n], =n natrec(A<p, v,, s<Ip, n) = v [A], =A
[natrec(A, z,5, m)l, = 0 [TI(A. B)], = TI(A, B<p)
EVAL/APP EVAL/SIG
E;?L;iAM Atap) [s], =u [t1, =v app(u,v) = w [Al, = A
t = A(t<p
: [s()1, = w [2(A, B)], = %(A, B<p)
EVAL/FST EVAL/SND EVAL/BOX
[, =0 fst(v) = v [t],=v sndw)=ov,  EVAMUM [A], = A
[fst(®)], = 1 [snd(®)], = v» [VU:l, =U; [oA], = 0A

16
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EVAL/SHUT EVAL/OPEN
[[t]]p =0 [[t]]p =v open(v) = v’
[[t]all, = shut(v) [[tlaell, =2’

[r], =A [z, = vo [t:1l, = vi
[1d(T, to, t)1, = 1d(A, vo, v1)

[[tZ]]p =u .I(qu’ thpa u) =v

EVAL/ESUBST
61, =p  [tly=v
(611, = v
[[t]]p =v

DC t, )], = o

‘f[wl, e Wy = U‘

INST/CLO
|[t]]p.w1...wn =0

(t<ap)[wi, ... wp] =0

[refl(t)]], = refl(v)

[[5]][71 = ,02
; ; EVAL/EXT ;
EVAL/ID EVAL/EMP I 5]];)1 = Py [[t]]pl -0 EVAL/PROJ
[idl, = p -1, =" [5.t1,, = p2v " 1p.01c0n =P
EVAL/COMPOSE
|I51]]p1 = p2 [[52]]/)2 =pP3
[6; 0 51]];)1 = ps3
app(u,v) = w
APP/LAM APP/SHIFT
flol=w Blv] = B,
app(A(f),v) = w app(1"“ ¢, v) = 15 e.app(|* v)
IC f,v)=u
J/REFL J/saIFT
flol =u Cluy, up, T14AM1) ] = B
J(C, forefl(v)) = u 1(C, £, M4 mw) o) = 1B e J(C, £, A ur, us)
fst({v1,v2)) = vy fst(1=AB) o) = 14 e fst

B[1% e.fst] = B’

snd({vy, v2)) = v, snd(1*AP) ) = 18" ¢ snd

17
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‘natrec(A, Uz, fso11) = v‘

natrec(A, vz, fs,n) = v, fsln,vpl =0

natrec(4, v, f;, zero) = v, natrec(A, v, f, succ(n)) = v

Aln] = A

natrec(A, v, fi, 1" e) = 1" e.natrec(4, Uz, fs)

open(vy) = vy

open(shut(v)) = v open(1™¢) = 1% c.open

RB/FUN

B[var,] = B’
app(v, " vary) =b [P bl =t
[P 01, = A1)

RB/PAIR

fst(w)=1 snd(w)=r Bll]l=B"  [|*lM.=t [Frl.=t

[15AB 0, = (t, 1)

RB/REFL RB/SUCC
“«A u-ln =t RB/ZERO rlnat U-ln =t
[1A2022) refl(y)], = refl(t) [1™ zero], = zero [ succ(v)], = succ(t)
RB/SHUT RB/NAT/NE RB/ID/NE RB/NE
Qlﬂ(v) =7 H/A z),-ln =t |—e-|n =t Mn =t |—e-|n =t
[1% 01, = [t]a [P ely =0 [0 Bel, = 1B, =
RB/TP
[0l = A
”«Ui z}-In =A
RB/APP RB/FST RB/SND
[eln=s [dla=t  FO/VAR leln =t [ela =t
[e.app(d)], = s(¢) [vargl, = var,—(k+1) [e.fst], = fst(t) [e.snd], = snd(t)
RB/]
Clvary, var, i, varp,p] = Cg
[Cg];)fw = Clvary, var,, refl(n)] = C, flvary] =v [lC’ Vlpe1 = 1 [€]n =t

re'J(C’ f7 Aa Uy, uZ)-ln = J(C7 tls tZ)
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RB/OPEN
|-€-|n =t
[e.open], = [t]4
RB/NATREC
A[™tvarg] = A" AN, =A Alzero] = A [[Mula=2z
Alsucc(vary,)] = As fi[1™ var,, T4 varp,q] = vs [ 0glnez = s [e]n =m
[e.natrec(A, vy, f5)]n = natrec(A4, z, s, m)
[0]) =1t
RB/VAL/NE RB/PI
[la =1t Ro/NAT [AlY =A  B[M*var]=B"  [B1), =B
[T ely =t [nat], = nat [TI(A, B)], = TI(A, B)
RB/ID RB/SIG
A =T [fode=t  ["ol=t  [A=A  B[["var,]=B  [B1), =B
[1d(A, o1, 02)1, = 1d(T, 1, £2) [%(A, B)1y = 3(A, B)
RB/BOX
[ A];y —A RB/UNI
[0A], =0A [Uiln = U;
Reflecting contexts

Context length ||T'|| is the number of cells in the context, not including locks. A context is reflected as

follows:

y REFLECT/SNOC/VAR REFLECT/SNOC/LOCK
e T=p [T],=4 IT=p
IT.T = p. T4 varpy Ta=p

The full normalization algorithm
The full algorithm is then defined as follows:

T=p [Al,=A [tl,=v 4ol = ¢
nbef(t) = t'

Miscellaneous lemmas

Lemma 2.2.1. Suppose [M]|, = v, and p’ is an extension of the environment p such that |p’| — |p| = m.
Then also [M[p™]],» = v.

Proof. [M[p™]]l,, = v holds if [p™]l,, = p” and [M],» = v. Observe that [p™],, = p because
p’ = p.v1...0,. Next, we have by assumption [M]), = v we therefore may conclude [M[p™]],» = v as
required. O
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2.3 Determinism

At this point it is possible to prove determinism of the judgments by simple induction. In all situations
there should only be one applicable rule. This does not guarantee termination or that the algorithm is in
any way correct, but it justifies the abuse of notation we shall adopt from now on. Henceforth we will
write partial functions for several of the judgments. For instance, we fix the following notations:

= open(u) for the unique v such that open(u) = v when such a v exists;
= f[ov] for the unique u such that f[v] = u;

= fst(v) for the unique u such that fst(v) = u;

= snd(v) for the unique u such that snd(v) = u;

= app(vy, v1) for the unique u such that app(vy, v,) = u;

We will also write [[t]], for the unique result, v, of [t]], = v and likewise [§], = p” when [6], = p’.



Completeness of Normalization

The correctness of the normalization algorithm defined in Chapter 2 is split into two main parts:
completeness and soundness. Completeness is proved by constructing a model of MLTTg in partial
equivalence relations (PERs), and soundness is proved using a logical relations argument that glues the
PER model together with the syntax of MLTTg.

3.1 PER model

Neutrals and normals

The main lemma used to establish completeness is that every type specifies a PER which lies between
the PERs of neutrals and normals, which we define below.

Vo. 3t [ecln =t Aferln =t Vo, 3t [dolp =t A [di]n =t V. 3A. [A Y =AATA]Y = A
€()~€1EN€ d()NdlENf AONAIEE

PER:s for types

We construct a model of type theory in Kripke partial equivalence relations over an arbitrary non-empty
poset P; the main part of the construction is to develop a countable hierarchy of type universes, which we
do in a style which first appeared in in Allen [All87], and has been used in three successful formalization
efforts [AR14; WB18; SH18a].

The construction of the type hierarchy can be seen as an instance of induction-recursion’, but we
find it more clear to work concretely in terms of fixed-points on the complete lattice of subsets of the
product of values (types) and binary relations on values in our domain indexed over P. The indexing
allows us to model O in an interesting and nontrivial way. We begin by defining a few of the critical
domains for our construction:

Rel = P(P x Val x Val) (step-indexed relation)
SFam = P — Rel (indexed relations)
Fam = Val x Val — Rel (family of relations)
Sys = P(P x Val x Val x Rel) (type system)

Next, we define some notation for working with these domains:

7(n, Ag, A1, R) JR. 7 Ep Ag ~ A LR R(n, vy, v1)

TlZnAo"‘AllR T|:nA0~A1 niovy~v €R

Vm < n.Vug,v1. mik vy ~v; € R = 7 |5, Bo[vo] ~ Bi[v1] | S

T|:nR>>B0~BllS

1In fact, it was the first instance!

21
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Notation 3.1.1 (Fiber of a relation). For an indexed relation R € Rel, we will often write R,, for its fiber
{(uo, ul) | niuy~u; € R}

Definition 3.1.2 (Partial equivalence relation). An indexed relation R € Rel is called symmetric when
each fiber R, is a symmetric relation on Val x Val; likewise, it is called transitive when each fiber is
transitive. R is called a partial equivalence relation (PER) when it is both symmetric and transitive.

Definition 3.1.3 (Monotonicity). A relation R € Rel is called monotone iff whenever m < n, then
R, CR,,.

Definition 3.1.4 (Compatibility). A relation R € Rel is compatible for (Aj, A;) if the following two
properties hold:

1. Ifey ~ e, € Nethenn i 7 ¢y ~ 11 ¢, € R for all n.
2. Ifn ik vy ~v; € Rthen |[Y v, ~ [ v € Nf.

We shall say a relation R € Rel is compatible for types if the following two conditions hold:
1. Ifeg ~e; € Nethenn - TV ey ~ TVie; € Rforall nand i.

2. Ifnir vy ~v; € Rthenvy ~ v, € Ty.

Constructions on relations

We begin by separately developing some constructions on indexed binary relations; we define these for
arbitrary indexed relations and families of relations, rather than requiring beforehand that we have a
monotone PER.

[T1]] € Rel —» Fam — Rel

[Z] € Rel —» Fam — Rel

[o] € Rel — Rel

[1d] € Rel — Val — Val — Rel
[N] € Rel

These are defined as the least relations closed under the following rules:

S : Fam Vm < n. Yoy, v1. mik vy ~ vy € R = m - app(ug, vo) ~ app(u1, v1) € S(vy, V1)
nikuy ~u; € [II(R,S)

S:Fam  n fst(ug) ~ fst(u;) € R n - snd(u) ~ snd(uy) € S(fst(uy), fst(u:))
nikuy~u € [[2]](R, S)

Vm. m \ open(uy) ~ open(u;) € R mi-uy~vy €R mi-vy~v; €R mikuv, ~u €R
nikuy ~ u; € [Of(R) n Ik refl(vy) ~ refl(vy) € [Id](R, uo, u1)
ey ~ €1 € Ne
n i P@w00) o ldAL W) e (R, wo, uy) n I zero ~ zero € [N]
nikuy ~u; € [N] ep ~ e € Ne

n Ik succ(ug) ~ succ(ug) € [N] nik 1" e ~ 1™ € [N]
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Lemma 3.1.5. For any R € Rel and S € Fam, the relation [II]|(R, S) is monotone.

Proof. Suppose n I+ uy ~ u; € [II]I(R,S) and n” < n: we need to show that n’ I uy ~ u; € [II](R, S).
Fixing m < n” and v, v; which are in R at stage m, we have to observe that app(uo, v) and app(uy, v1)
are related at stage m in S(vy, v;). This is immediate from our assumption, because m < n’ < n.

O

Lemma 3.1.6. If R € Rel is monotone and each fiber S(vy,v1) of a family S € Fam is monotone for
nk vy ~ vy € R, then [Z](R, S) is monotone.

Proof. Suppose n IF uy ~ u; € [Z](R, S) and m < n: we need to show that m I+ uy ~ u; € [Z](R, S).

1. To see that m  fst(uy) ~ fst(u;) € R, observe that n I fst(uy) ~ fst(u;) € R and use the
monotonicity of S.

2. To see that m W fst(uy) ~ fst(u;) € S(fst(uo), fst(u;)), observe that n I fst(ug) ~ fst(u;) €
S(fst(u), fst(u;)) and use the monotonicity of S(fst(u), fst(u;)). |

Lemma 3.1.7. IfR € Rel is a PER, then [O]|(R) is a monotone PER.
Proof. [O](R) is clearly monotone, because its definition discards the index.

1. Symmetry. Suppose that n I uy ~ u; € [O](R); we need to see that n I u; ~ uy € [O](R), which
is to say that for all m, m I+ open(u;) ~ open(uy) € R. By symmetry of R, it suffices to show that
m I+ open(uo) ~ open(u;) € R, which we have already assumed.

2. Transitivity. Analogous to symmetry. |
Lemma 3.1.8. IfR € Rel is a monotone PER and vy, v, € Val, then [Id]|(R, vo, v1) is @ monotone PER.
Proof. [[Id]|(R, vy, v1) is clearly monotone as we have assumed that R is monotone.

1. Symmetry. There are two cases to consider here.

a) Suppose that n I+ refl(ug) ~ refl(u;) € [Id]|(R, vy, v1); we need to see that n I+ refl(u;) ~
refl(ug) € [Id](R, vy, v1), which is to say m +F vy ~ uy € R, m + u; ~ uy € R, and
miu ~v; €R.

We have by assumption m I vy ~ vy € R,m IF uyp ~ u; € R, and m I u; ~ v; € R so the
result is immediate from the symmetry of R.

b) Suppose instead that n I Tld(””’) ey ~ Tld(*’*’*) e; € [Id]|(R, vy, v1) and so ey ~ e; € Ne. We
wish to show that n I+ Tld(_’_’_) e ~ TId(_’_’_) ey € [Id](R, vo, v1) holds but this is immediate
as Ne is a PER.

2. Transitivity. Analogous to symmetry. |

Defining the type hierarchy

We begin by defining the individual closure of a type system o € Sys under each of the connectives
of our type theory, as well as under the neutral types. We present these definitions as inference rules.
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Each rule defines the closure of a type-system under a particular connective.

O'IZnAONAllR O'|:nR>>B0~B1lS O'IZnAONAllR O'|:nR>>B0~B1J,S
Pi[o] [=n TI(Ao, By) ~ TI(Ay, By) | [H](R, S) Sglol En 2(Ao, Bo) ~ Z(A1, By) | [Z](R, S)

R : SFam Vm. o |=m Ag ~ Ay | R(m) S ={(n,up,us) | n - ug ~u; € R(n)}
Box[o] Fn OAy ~ 0A; | [O](S)

G|=nA0~A1lR nikovy~uy €R nikFov; ~u; €R
Id[o] En Id(Ag, vy, v1) ~ Id(A1, ug, u1) | [Id](R, ug, u1)

ey ~ €1 € Ne R:{(m,TBOe(,,TBIel)|e()~el GN@}
Ne [=n 1% ¢ ~ 1% e L R Nat |=, nat ~ nat | [N]

Next, we define the hierarchy of universes by iterating the closure of a type system under connectives
up to the infinite ordinal w, letting @ range over N U {w}:

j<a
Univy |5, Uj ~U; | {(m, Ap, A1) | 75 Em Ao ~ At}

Types,[o] = Pi[o] v Sg[c] V Box[c] vV Id[o] V Nat V Univ, V Ne Tq = pio. Types [o]

The ultimate type system 7, has types at every level, including all universes U; of finite level.

3.2 Properties of the PER model

For clarity, and because we shall so frequently make use of this fact in the following proofs, let us now
take a moment to state the universal property of .

Theorem 3.2.1 (Universal Property of a Least Fixed Point). If uF is the least fixed point of F : L — L
then for any x : L such that F(x) < x we must have uF < x.

Remark 3.2.2. If F(x) < x we shall call x a pre-fixed point of F.

Remark 3.2.3. In what follows we will use «, B, y, to denote either some natural number n or w. Recall
that 7,, is defined for all of these values and all the properties we wish to show must be proven for both
n and o.

Lemma 3.2.4 (Determinism). For any a, 7, is deterministic. That is, ift, |Fn A~ B | Rand 1y |5y A ~
Bl R, thenR=R’.

Proof. This proof proceeds by showing that the following o is pre-fixed point of Types ,[—]:

Tl EFn A~B|lR VYR.7aFEn A~B|R = R=FR

ckEnA~B|lR

Once this has been established, we then conclude that 7, < ¢ which in turn implies that 7, must be
deterministic. As usual, we exhibit only the cases pertaining to non-standard extensions of Martin-Lof

Type Theory.
Supposing that we have Types,[c] =, A ~ B | R, we wish to show that o |=, A ~ B | Rholds as
well. We proceed by case:
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Case.
Univ, =, U; ~U; | Rwherei < a and R = {(m, Ay, A1) | i |Em Ao ~ A1}

First, we need to show that 7, |=, U; ~ U; | R, but this follows immediately from our assumption,
which is one of the generators of the type system closure. Next, supposing that 7, |=, U; ~U; | S,
we need to verify that R = S. But by inverting the type system closure, we must have Univ, |=,
U; ~U; | S, from which we conclude R = S.

Case.
Vm. o |=m Ag ~ A1 | R(m) S =A{(n,up,ur) | n - uy ~uy € R(n)}

Box|o]| |=, OAg ~ OA; | [T](S)

Because o < 7,, we can see that Box[z,] |=, OA, ~ OA; | [O]|(S) and therefore 7, |=, OA, ~
0A; | [O](S). Fixing T € Rel such that 7, |=, OAy ~ OA; | T, we need to verify that T = [O]|(S).
By inverting the type system closure, we have Box[7,] |-, OA; ~ OB, | T; by definition, this
means that we have some family of relations R’ € Rel” where 74 |=m Ay ~ A; | R'(m) for each m,
and moreover T = [O]l({(n, uo, u1) | n + uy ~ u; € R'(n)}).

Therefore, it remains to see that R’ = R; but this is immediate from the fact that both are contained
in the type system o: unfolding, we have both 7, |=,, Ay ~ A; | R(m) and for all R” € Rel, if
Ty Fm Ao ~ A1 | R” then R(m) = R”. Therefore, to see that R’(m) = R(m), we choose R” = R'(m)
and use the fact that 7, |=,, Ag ~ A1 | R'(m). |

A number of properties of this type system must be established simultaneously because of interde-
pendency.

Lemma 3.2.5. For any a, the following properties hold.
1. Iftq Fn A~ B | Rthenty En B~ALR
2. IftgFnA~BlRandry = B~C | R thent, En A~C | R.
3 IftyFn A~BlRandm < n, thent, |=, A~ B | R.
4. Ifty l=n A~ B | R then R is a monotone PER.

Proof. We prove these statements by strong induction on . This induction on the level is necessary in

the case of Univ,. Here, for instance, in order to show that the relation on terms is monotone we need

to know that the relation on types is monotone for all i < @. Similarly with symmetry and transitivity.
Let us assume therefore that for any i < « the following facts hold:

1. Ifr; =, A~B| Rthent; |, B~A|R.

2. Ifr;=ph A~B|lRand 1 =, B~C | R thenrt; |-, A~C | R
3. frilFn A~B|Randm < n,thent; =, A~B|R.

4. If r; |, A ~ B | R then R is a monotone PER.

We note that the above makes (7; |=) — ~ —) a monotone PER.
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We now turn to showing that these facts hold for «, all of which must be established simultaneously.
This is done by showing the following o € Sys to be a pre-fixed point:

R is a monotone PER

Vm<nity, FmA~B|R

Ta Fn B~ALR

VC,S. 7 Fn B~C|S = 14 En A~C|ISAR=YS)
VC,S. 7 En C~AlS = 174 Fn C~B|SAR=YS)

ocEn A~B|R
Supposing that Types,[c] =, A ~ B | R, we must show that o |=, A ~ B | R. We proceed by case.

Case.
Univ, |=, U; ~U; | Rwherei < a and R = {(m, Ay, A1) | i |Em Ao ~ A1}

First, we observe that for any m < n, we also have Univ,, |=, U; ~ U; | R and thence 7, |5,
U; ~ U; | R. Symmetry is trivial, because we have the same type on both sides. We need to show
both directions of the generalized transitivity.

= Suppose that 7, |=, U; ~ C | S; we need to verify that R = S. By inversion, we must have
C = U; and moreover R = S.
= Suppose that 7, |=, C ~ U; | S; we need to verify that R = S. By inversion, we must have

C = U; and moreover R = S.

Finally, we must show that R is a monotone PER; by the definition of R above, it it suffices to
recall that (7; |=-) — ~ —) is a monotone PER.

Case.
O'|:nA0~A1lR O'|:nR>>B0~B1,LS

Pi[o] =, T1(Ag, By) ~ T1I(A1, By) | [IT](R, S)

Before establishing the main properties of the dependent function connective, we first observe
that for any m I+ ap ~ a; € R, the relations S(ay, a;), S(a;, a;) and S(a, ap) are equal fibers of S.
To achieve this, we execute a brutal power move described in Angiuli [Ang19]. Because R is a PER,
we can conclude the following:

0 Em Bolao] ~ Bilai] | S(ao, a1) (3.1)
0 [Fm Bolai] ~ Bilao] | S(a1, ao) (3.2)
0 [Fm Bolai] ~ Bilai] | S(ai, a1) (3.3)

Unfolding (3.1,3.2), we obtain the following symmetric instances:

o [=m Bilai] ~ Bolao] | S(ao, a1) (3:4)
o [=m Bilao] ~ Bolai] | S(a1, ao) (3.5)
Unfolding (3.3) we have the following generalized transitivities:
VC, T. 1, |=m/ Bl[al] ~C J, T = 1, |=m/ Bo[al] ~C J, T A S(Cll, 611) =T (36)
VC,T. 74 |Emy C ~Bola1] | T = 14 |Fm C ~ Bilai] | T AS(aj,a1) =T (3.7)

Instantiating (3.6) with (3.4) we obtain S(a;, a;) = S(ay, a;); instantiating (3.7) with (3.5) we further
obtain S(aq, a;) = S(ay, ap). Therefore, S(ag, a1) = S(ai, ap).
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1. [II]I(R, S) is a monotone PER. Monotonicity is given by 3.1.5; but we need to show that it is
symmetric and transitive.

a) Symmetry. Suppose that m I vy ~ v; € [II]|(R, S); we need to show that m  v; ~
vy € [II(R,S). Fixing m" < mand m’  ay ~ a; € R, we need to show that m”
app(u1, ag) ~ app(uo, a1) € S(ap, a;). We note by assumption that m” I+ a; ~ ap € R
and therefore m’ I+ app(u, ag) ~ app(uo, a1) € S(ay, ap). Therefore, it would suffice to
observe that S(ag, a1)n = S(ai1, ap)m, which we have above.

b) Transitivity. Suppose that m  uy ~ vy € [II](R,S) and m I+ u; ~ u, € [II(R, S); we
need to show that m IF uy ~ u, € [II](R, S). Fixing m’ < mand R + ay ~ a; € m’, we
need to show that m’ I app(uo, ap) ~ app(uz, a1) € S(ao, a;). We obtain the following
from our assumptions:

m’ v app(uo, ao) ~ app(u1, a;) € S(ag, a;) (3.8)
m’ I+ app(uo, a;) ~ app(u1, ag) € S(a1, ag) (3.9)
m’ + app(u1, ap) ~ app(uz, a1) € S(ag, a;) (3.10)

Using (3.9,3.10) and the fact that S is transitive, it suffices to observe that S(ay, a;) =
S(ay, ap), which we have already shown.

2. For allm < n, we have t, |=p, TI(Ag, Bo) ~ II(A1, By) | [IT](R, S). Fixing m < n, we need to
show two things.

a) Tq Fm Ao ~ A1 | R can be obtained from our assumption that o |=, Ay ~ A; | R.

b) To see that 7, |=;, R > By ~ B; | S holds, we fix m’ < mand m’ + ay ~ a; € R, and
need to verify that 7, |=, Bo[ag] ~ Bi[ai] | S(ao,a;). Instantiating our assumption
0 |En R> By ~ By | Swithm’ < m < n, we obtain ¢ |=,,v Bo[ao] ~ Bi[ai] | S(ao, a1),
whence 7, = Bolao] ~ Bi[ai1] | S(ao, a1).

3. 7 [Fn TI(Ay, By) ~ T1(Ag, Bo) | [II](R, S).

a) Ty Fm A1 ~ Ao | Ris obtained from our assumption that ¢ |=, Ay ~ A; | R.

b) To see that 7, |=,, R > By ~ By | S holds, we fix m < nandm v ay ~ a; € R,
needing to verify that 7, |=, Bi[ao] ~ Bolai1] | S(ap, a1). We have already seen that
S(ag, a1) = S(ay, ap), so it suffices to show that 7, |=,, Bi[ao] ~ Bolai] | S(ai, ap). But
this is one of the symmetric instances of our assumption ¢ =, R > By ~ B; | S,
considering m  a; ~ ay € R.

4. If ty Fn II(A1,By) ~ C | T, then 74 |=, I1(Ag, By) ~ C | T and moreover T = [II]|(R, S). By
inversion, we have C = TI(A,, B;) and T = [II](U, V) such that 7, |, A; ~ A, | U and
Tg |En U > By ~ By | V. We need to verify that 7, |=, I1(Ag, By) ~ T1(As, B2) | [TT](U, V).

a) To see that 7, =, Ay ~ A2 | U, we recall that our assumption o |=, Ay ~ A; | R
contains a generalized transitivity which, when instantiated with ¢, |=, A; ~ A, | U,
obtains both our goal 7, |=, Ay ~ A, | U and moreover R = U.

b) Now we have to show that r, |=, R> By ~ B, | V. Fixingm < nandm I ay ~ a; € R,
we need to verify that 7, =, Bolao] ~ Bzlai] | V(ao, a;). Instantiating one of our
hypotheses with m I+ a; ~ a; € R, we have:

Ta Fm Bilai] ~ Balai] | V(ay, al) (3.11)

By assumption, we obtain ¢ |=,, Bo[ao] ~ Bi[ai1] | S(a, a1), and using its generalized
transitivity at (3.11), we obtain 7, |=,, Bolao] ~ Bz[ai1] | V(a1, a1) such that V(ay, a;) =
S(ao, a). It remains only to see that V(ay, a;) = V(ao, a;), but we have already seen that
this is the case.
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Case.

Case.

5.

c) It remains only to observe that S = V; but we had both V(ay,a;) = V(ayp, a;) and
V(al’ al) = S(ao’ al)'

Iftg |Fn C ~TI(Ao, By) | T, then 7y |=p C ~ II(Ay, By) | T and moreover T = [II](R, S). This
is symmetric to the previous case.

O'|:nA0~A1,LR O'|:nR>>Bo~B1,LS
Sglal En 2(Ao, Bo) ~ Z(A1, By) L [Z](R, S)

We show only that [Z](R, S) is a monotone PER; the other properties are exactly as in the case
for Pi.

1.

Monotonicity. By Lemma 3.1.6 it suffices to show that both R and S are monotone, both of
which are obtained by assumption.

Symmetry. Suppose m I+ uy ~ u; € [Z](R, S); we need to show that m I u; ~ uy € [Z](R, S).

a) We obtain m I fst(u;) ~ fst(up) € R from m I fst(ug) ~ fst(u;) € R using our induction
hypothesis.

b) Next, we need to see that m I snd(u;) ~ snd(u) € S(fst(uy), fst(uy)). We obtain m I+
snd(u;) ~ snd(up) € S(fst(u), fst(u1)) from m i snd(u) ~ snd(u;) € S(fst(uo), fst(u1))
using our induction hypothesis, so it suffices to see observe that S(fst(u), fst(u;)) =
S(fst(uy), fst(u)), which we have already proved.

Transitivity. Suppose m I+ uy ~ u; € [Z[(R,S) and m I+ u; ~ uy € [Z](R, S); we need to
show that m I uy ~ uy € [Z](R, S).

a) We obtain m I+ fst(u) ~ fst(u,) € R using the transitivity of R, which we have assumed.

b) It remains to show that m I+ snd(uo) ~ snd(uy) € S(fst(uy), fst(u,)). By transitivity
of S, it suffices to show that S(fst(u), fst(u;)) = S(fst(uy), fst(uz)) = S(fst(uy), fst(uy)).
But we have already observed that this is entailed by m  fst(u) ~ fst(u;) € R and
m i fst(us) ~ ft(us) € R,

olFEnAy~A R nikovy~uy €R nikov, ~u €R
Id[o] =, Id(Ag, vg, v1) ~ Id(A1, ug, u1) | [Id](R, uo, u1)

. [1d(R, ug, u1) is a monotone PER. By Lemma 3.1.8.

Forn’ < n we have 1ty |=p 1d(Ag, v, v1) ~ Id(A1, ug, u1) | [Id](R, ug, u1). Observe that we
have ¢ |=, Ay ~ By | R and therefore 7, |=,» Ay ~ By | R along with n - uy ~ vy € R, and
n Ik u; ~ vy € R. Our goal is immediate as R must be monotone.

We have 7, |=,, Id(Ay, ug, 1) ~ Id(Ao, vo, v1) | [Id](R, ug, u1). Observe that we have o |=,
Ay ~ A1 | R and therefore we know that R is a monone PER as well as 7, =, A1 ~ Ao | R.
As noted above, we have n IF uy ~ vy € Rand n I u; ~ v; € R so the symmetry of R tells
usthatn + vy ~ uyp € Rand n I+ v; ~ u; € R. Again, because R is a monotone PER we
must have that [Id]|(R, uo, 1) = [Id]|(R, v, v1). Therefore, we have 7, |=, Id(A1, up, u;) ~
Id(A, vg, v1) | [Id](R, ug, u1) as required.

Ifty |=n 1d(Ay,up,u1) ~ C | T, then 1, |=p 1d(Ag,v0,v1) ~ C | T and moreover T =
[1dT(R, up, u1). By inversion, we have C = Id(Az, wy, w1) and T = [Id]|(S, wy, w;) for some
Ssuchthatt, =p A1 ~As [ S,nkuy ~wy € Sandn I+ u; ~ w; € S. Let us first observe
that by induction hypothesis that we have 7, |=4, A2 ~ S and S = R. Therefore, we may
conclude thatn - vy ~ wy € Rand n - v; ~ w; € Ras R = S and R is a monotone PER. This
also tells us that T = [[Id]|(R, uo, u).

Therefore, we have 7, |=, Id(Ag, vy, v1) ~ C | T as required.
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Case.

fty En C ~ 1d(Ag,v0,v1) | T, then 1y |En C ~ Id(Ay,up,u1) | T and moreover T =

[Md](R, ug, u;). Identical to the above.

Vm. o |Em Ao ~ A1 | R(m) S={(nup,uy) | nIruy ~u, €R(n)}
Box[o] | DA, ~ OA; | [T](S)

. [21(S) is a monotone PER. By Lemma 3.1.7.
. Forn’ < n we have 7, |= OAg ~ OA; | [T](S). Observe that we have ¢ |=,» A ~ B | R(n’),

and thence o |=,» A~ B | R(n’). Our goal is immediate.

. We have 1, |=, OA; ~ OA | [O](S). Observe that we have o |=,, Ag ~ A; | R(m) for all

m, and therefore also 7, |=, A1 ~ Ay | R(m), from which we conclude 7, |=, OA; ~ OAj |

([=][CYX

. Ifty = OA; ~C | T, thent, |=, OAg ~ C | T and moreover T = [O]|(S). By inversion, we

have C = 0A, and T = [@]({(n, uo, u1) | n + uy ~ u; € U(n)}) for some U € Rel®, such that
for all m, we have 7, =, A1 ~ Ay | U(m).

a) We need to show that 7, =, OA; ~ 0OA; | [O]({(n, up,u1) | n I+ ug ~ u; € U(n)}).
It suffices to show that for all m, we have 7, =, Ay ~ Ay | U(m). Because both
0 FEmA)~ A | Rim)and 7, |Em A1 ~ Ay | U(m), we have by generalized transitivity
both 7, |=m Ag ~ Ay | U(m) and U(m) = R(m) for all m.

b) We have already observed that U = R, so clearly T = [O]|(S).

fty En C~0OAy | T, thenty =, C ~ 0OA; | T and moreover T = [O](S). Identical to the

above.
O
Lemma 3.2.6. Ife, ~ ¢, € Ne then 1y |=y MWigy ~1Vieg foranyi < a.
Proof. We have Ne |=, TV ¢y ~ TVie,. |

Lemma 3.2.7 (Compatibility). Eacht, is compatible and valued in compatible PERs (recall Definition 3.1.4).
The partial equivalence relation given by t, |=, — ~ — is compatible for types and if t, |=m Ao ~ A1 | R
then R is compatible for (Ag, Ay).

Proof. We proceed by strong induction on «, and then show that the following o € Sys is a pre-fixed
point of each Types[-]:

Ay ~AL €Ty Ty Fm Ao~ A1 L R R is compatible

oFEmAs~Ai LR

Supposing that Types,[c] =, Ag ~ A1 | R, we establish o |=, Ag ~ A; | R by case.

Case.

Univy =, U; ~U; | Rwherei < a and R = {(m, Ao, A1) | 7i |Fm Ao ~ A1}

We only need to observe that R is compatible.

1. Suppose ¢; ~ ¢; € Ne; by Lemma 3.2.6 we have 7; |=, MWiey ~Vie,.
2. Suppose 7; = Ag ~ Aq; we observe that ViAy~ YA e Nf follows from Ay ~ A; € Ty,

which we obtain from our induction hypothesis at i < a.
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Case.

Case.

O'|:nA0~A1,LR O'|:nR>>B0~B1,LS
Pilo] =5 I1(Ag, By) ~ II(A1, By) | [TI]I(R, S)

1. First, we check that TI(A, By) ~ T1(A;, B;) € 7y. It suffices to check the following:
a) Ay ~ A; € Ty, which is obtained o |=, Ay ~ A; | R.
b) 7, |=n TI(Ay, By) ~ II(A4, By) follows from our induction hypotheses.
¢) Forall k, Bo[1% varg] ~ By[T varg] € 7. To see that this holds, we observe because

R is compatible with (4, A,), we have n I 7 var ~ T4 vary € R and therefore o |=,
Bo[T4 varg] ~ By[1 varg]; from this, we obtain By[1¢ vary] ~ B[ vark] € 7y.

2. Next, we check that [II](R, S) is compatible with (TI(Ay, By), II(A;, By)).

a) Suppose ¢, ~ ¢; € Ne; we need to show that n I T1(A0-B0) o~ TIALED o e [TT](R, S).
Fixing m < nand m + vy, ~ v; € R, we must verify that m I M(TH(AO’B°> €0, Vg) ~
app(T"A-B) ¢, 1)) € S(vg, v1), which reduces to showing m I 1502 ¢; app([ 40 vy) ~
1Bl e app(141 1) € S(vp, v1). By induction, the fiber S(vo, v;) is compatible with
(Bo[vo], B1[v1]), so it would suffice to know that ey.app(|0 vy) ~ er.app([ vy) € Ne.
This in turn follows from ¢, ~ ¢; € Ne (which we have assumed), and |0 v, ~ |41 v, €
Nf, which we obtain from the compatibility of R with (A, a;) and our assumption
niuvy~ v €R.

b) Suppose n I uy ~ u; € [II]|(R, S); we need to show that | (4050 gy ~ |THALBD 3y e NF.
It suffices to show that for all k, lBU[TAUV"“kJ app(uo, T4 vary) ~ | P [T41varg] app(uy, T4 vary) €
Nf. First, observe that this would follow if we could show that (1 vary, 141 vary) were
compatible with (Bo[14 varg], By[1" varg]); this we can obtain from n I T4 varg ~
141 vary € R, which follows from the compatiblity of R with (A, A;), and the fact that
vary ~ varg € Ne.

O'IZHAONAIJ,R O'lZnR>>BQ~B1lS
Sglo] En 2(Ao, Bo) ~ Z(A1, By) | [Z](R, S)

1. We observe that X(Ay, By) ~ (A1, B1) € 7y in the exact same way that we did for dependent
function types above.

2. Ty |=n 2(A0, By) ~ 2(A4, By) follows from our induction hypotheses.
3. We check that [X](R, S) is compatible with (X(Ay, By), 2(A1, B1)):

a) Suppose that ¢) ~ ¢; € Ne; we need to show that n I TZ(AO’BO) ey ~ TZ(A“BI) e; €
[Z1(R, S).
i. We have to check n I fst(1>(40-50) ¢} ~ fst(1>41-5) ¢,) € R, which is the same as
to say, n I 1% ¢;.fst ~ 141 ¢, fst € R. This follows from the compatibility of R with
(Ao, A1) and the fact that e;.fst ~ e;.fst € Ne.
ii. We check n I snd(1>“-50) o) ~ snd(1>A0-50) ¢,) € §(140 . fst, 141 ¢, .fst), which
is the same as to say:

n i+ TBO[TAU“”‘M] ep.snd ~ TBl[TAl‘”'fSt] e;.snd € S(TA° eo.fst, TAI e;.fst)

Observing that ¢;.snd ~ e;.snd € Ne, it would suffice to show that the fiber
S(14 e.fst, T4 e, .fst) is compatible with (Bo[1 eo.fst], B;[1 e;.fst]). This would
follow from our induction hypothesis, if we could show that n I 740 ¢.fst ~
141 ¢,.fst € R; this follows from the compatibility of R with (A, A;) and the fact
that ey.fst ~ ¢, .fst € Ne.
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b) Suppose that n I uy ~ u; € [Z](R, S); we need to show that |*A0-B0) 0 ~ | Z(ALBD e
Nf. This reduces to two subproblems:
i. First, we need to show that | fst(u) ~ |1 fst(u;) € Nf. By assumption, we have
n I+ fst(uy) ~ fst(u;) € R, and so our goal follows from the compatibility of R with
(Ao, Ap).

ii. Second, we need to show that | Polfst0)l snd(u) ~ | P10l snd(u;) € Nf. First,
observe that S(fst(u), fst(u;)) is compatible with (B [fst(u0)], Bi[fst(u;)]), following
from the fact that n I fst(uy) ~ fst(u;) € R. Therefore, our goal follows from our
assumption that n I snd(u) ~ snd(u;) € S(fst(uy), fst(uy)).

Case.
olFEnAy~A R nikovy~uy €R nikov, ~u €R
Id[o] =, Id(Ag, vg, v1) ~ Id(A1, ug, u1) | [Id](R, uo, u1)
1. We observe that Id(Ay, v, v1) ~ Id(Ay, ug, u;) € Ty follows from Ay ~ A; € Ty, |0 u; ~
149 u; € Nf, which are all obtained from the induction hypothesis.
2. Ty |=n Id(Ag, vg, v1) ~ Id(A1, U, u1) follows from the induction hypothesis.
3. Finally, we check that [Id]J(R, u, u1) is compatible with (Id(Ay, vy, v1), Id(A1, ug, u1)).
a) Suppose that ¢y ~ ¢; € Ne; we need to show that n I TId(AO’”(”Ul) ey ~ TId(A“”O’”l) e €
[d](R, 1o, u). This is immediate from the definition of [Id]J(R, uo, u;).
b) Suppose that n I vy ~ v; € [Id](R, uo, u1); we need to show that |4Ae20.21) 4 ~
@A, ¢ e Nf. We shall show this by cases on n I+ vy ~ v; € [Id]J(R, ug, u1).

i. For the first suppose that u; = refl(w;) such that n vy ~ wy € R, n I wy ~ wy € R,
and n F w; ~ u; € R. We wish to show that |'d(A0-20.01) ¢ |[d(Ant0 1) o) ¢ Nf
holds. By inspection on the definition of quotation we see that it is sufficient to
show that |9 wy ~ |1 w; € Nf. This, however, is immediate from our induction
hypothesis.

ii. For the second case we suppose that u; = Tld(_’_’_) e; such that ey ~ ¢; € Ne. We
see by inspection that it suffices to show ¢, ~ ¢; € Ne so this case is immediately
satisfied.

Case.

Ym. o |=m Ag ~ Ay | R(m) S=A{(n,up,u;) | n - uy ~ u; € R(n)}
Box[o] [ DA, ~ OA; | [T](S)

1. We observe that 0A, ~ 0OA; € 7y follows from A, ~ A; € Ty, which is obtained from the
induction hypothesis.

2. Ty |=n OAy ~ OA; follows from the induction hypothesis.
3. Finally, we check that [O]|(S) is compatible with (0A, OA;).

a) Suppose that ¢, ~ ¢, € Ne; we need to show that n - 774 ¢y ~ 1741 ¢, € [O]|(S). Un-
folding definitions, this means that for all m, we need to show that m I open(T54 ¢,) ~
open(T°% ¢,) € R(m), which is the same as to say m I T ¢j.open ~ T41 ¢;.0pen €
R(m). By the induction hypothesis, we know that each R(m) is compatible with (A, A;),
so it suffices to observe that ¢g.open ~ ¢;.0pen € Ne.

b) Suppose that n I v, ~ v; € [O](S); we need to show that |4 v, ~ [P41 0, € Nf.
It suffices to verify that |“° open(v,) ~ | open(v;) € Nf. Because each R(n) is
compatible with (A, A;), we just need to show that n I open(vy) ~ open(v;) € R(n).
But this follows from our assumption that n - vy, ~ v; € [O](S).
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Case.
Nat |=, nat ~ nat | [N]

We only need to show that [N] is compatible with (nat, nat).

1. Suppose that ¢ ~ ¢; € Ne; it is immediate that n - 7" ¢, ~ 1" ¢; € [N] for all n.

2. Suppose that n IF vy ~ v; € nat; we need to show that |"*' v, ~ |"* v, € Nf. We proceed
by induction on n IF vy ~ v; € nat.

a) Trivially, we have |" zero ~ |"* zero € Nf.
b) Assuming |™'u, ~ |"u; € Nf, we observe that |"* succ(ug) ~ |"* succ(u;) € Nf.
c) Finally, assuming ¢, ~ ¢; € Ne we verify that |"# 17t ¢, ~ |matqnaty e Nf,

Lemma 3.2.8. 7(_) is cumulative.

Proof. In order to show this, first recall that p : (L — L) — L, the least fixed-point operator, is a
monotone function. In order to show that if i < « then 7; < 7,, therefore, it suffices to show that
Types;[c] < Types,[c] for all . Examination of the definition of Types; and Types, shows us that we
merely need to show Univ; < Univ, as the rest of the definition is identical.

Suppose that Univ; |=, A ~ B | R, we wish to show Univ, |=, A ~ B | R. Inversion on our premise
tells us that we must have some j < i such that U; = A = B. We must also have that m - vy ~ v; € Rif
and only if 7; |=,, vy ~ vy. Since i < & we then have that j < « and so Univ, =, A ~ B | R holds as

required. O

3.3 Completeness

In order to prove the fundamental theorem for this logical relation, we must first define a notion of
closing substitution. This is somewhat subtle because of the richer notion of context, the indexing, and
the dependency.

nikpy=p:T nik vy =v;:Alpo;pi] dn.mwr py=p;:T

niF-=-:- ni po.vy = p1.v;: LA nikpy=p @

[[A]]P():AO [[‘A]]p1 =A; Tow |:n A()NAllR nikovy~v €R

nivy=v;:Alp;pol

Lemma 3.3.1. Foralln andT,n+ — = — : T is a PER on environments.

Proof. Immediate by induction on I' with Lemma 3.2.5. O
Lemma 3.3.2. ForT', — + — = — : T is monotone.

Proof. Immediate by induction on I' with Lemma 3.2.5. O

Lemma 3.3.3. Ifn - py = p; : [ then there is some m < n such thatm \ py = p; : ™.
Proof. This follows by induction on I' using Lemma 3.3.2. O
Lemma 3.34. IfTya Iy andn v po = p; : Iy thenn v py = p; : IY.

Proof. This follows by induction on I}, >g I'y. We show the non-congruence cases.
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Case.

Case.

Case.

I'oal.@

In this case, suppose we have n I py = p; : I. We wish to show n I py = p; : T.&. It suffices to
find an m such that m + py = p; : I but picking m = n gives this immediately.

ragdc,ra

In this case, suppose we have n I+ py = p; : [.@8.8. We wish to shown I py = p; : T.&. It
suffices to find an m such that m I+ p; = p; : I. This is immediate, however, by inverting upon

nikpy=p :r.a8&

rars .78

In this case, suppose we have n I py.vy = pi.v; : [.&.T. We wish to show n Ir py = p; : T.T.@.
It suffices to find an o such that o I+ py.vy = p;.v; : I.T. By inversiononn I+ py = p; : T.&.T
we know that there is some m such that m + py = p; : T and that n I+ vy = vy : T [py; p2]. By
Lemma 3.3.2 we then have that min(m, n)  pg.vy = p1.v : [.T. Choosing 0 = min(m, n) gives
the desired conclusion. O

Theorem 3.3.5 (Completeness). The following 6 statements hold.

1.

IfT v Atype andn - py = py : T then there exists Ay, A; such that [A],, = Ay and [A],, = A, and
Tw |=n Ay ~ As.

IfT v t:Aandn W py = py : T then there exists Ay, Ay and vy, vy such that [A]l,, = A;, [t],, = vi,
and there is an R such that t,, |=, Ao ~A; | Randn + vy ~ v; € R.

IfT+6:Aandn py = p; : T then there exists p, p| such that [6],, = p; andn - pj = p| : A

IfT + Ay = Ay type andn + py = p; : T then there exists Ay, A1 such that [A;]l,, = A; and
Tw |=n Ay ~ Ay

IfT vty =t : Aandn v py = p; : I then there exists Ay, A; and vy, v; such that [A],, = A;,
[:]l,, = vi, and there is an R such that 7., |Fn Ao ~ A1 | Randn - vy ~ v; € R.

IfT + 8 = 6, : Aandn v py = p; : T then there exists p(, p| such that [6;],, = p; and
nikpy=p;:A

Proof. Completeness is obtained by mutual induction on the derivations; we illustrate the cases of
substance. Since all the unary cases are identical to the congruence cases we have elided these.

Case.

rar Ay = A type
I' - OAy = OA; type

Suppose that n I- pg = p; : T'; we need to show that for some C; we have [0A4;],, = C; and some
Rsuchthatz, =, Co ~C; | R.

By our induction hypothesis, for all stages m, we have some A’ , S, such that [4;],, = A!, and
T [Em A% ~ AL | S,,. By the determinacy of evaluation, we can that A’, do not vary in m, so
we are justified in calling them A;. Using the determinacy of the type system and the constructive
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Case.

Case.

Case.

axiom of unique choice, we furthermore obtain in fact a family of relations S € Rel® from the
individual relations S,,.

Inspecting the definition of the evaluation relation, we are free to choose C; = OA;, choosing a
suitable R as follows:
R = [Ol({(m, vo, v1) | m Ik vy ~ v1 € S(m)})

It remains to show that z,, |5, OAy ~ OA; | R; using the closure of the type system under the Box
operator, we just need to see that 7, |=,y Ay ~ A; | S(m’) for all stages m’. But this is already
contained in the induction hypothesis.

ABFrAtype TFrS:A
I'+ (OA)[S] = OA[S] type

Suppose that n I~ py = p; : T'; we need to show that for some B; we have [(DA)[6]],, = B; and
some R such that 7, =, By ~ B; | R.

By our induction hypothesis, we have that there are some o; such that [6],, = o; and n - 0y =
o1 : A. We may use these new environments to instantiate our other induction hypothesis. This
tells us that for all stages m we have some A}, such that [A]l;, = A}, and 7, [Fm A}, ~ By, | Sm
for some S,,,. By determinacy of evaluation we know that all A} s do not vary in m, so we will
henceforth write them as A;. Likewise, by determinacy we obtain a relation S € Rel® from S,,,.

We observe that by calculation [(OA)[6]],, = OA;, leading us to chose B; = 0OA;. Finally, observe
that because 7, is closed under Box we have 7, |=, OA; ~ OA; | T where we have defined T as
follows:

T =[O0, v, v1) | Ym. m - vy ~ v1 € S(m)})

PI
T'r Ao = Al type FAO F BO = Bl type

I' + TI(Ag, Bo) = I1(A1, By) type

Fix n Ik pg = p; : T. We need to show that [II(A;, B;)]l,, = F; for some F; such that z,, |=, Fy ~ Fi.
Unpacking our first induction hypothesis, we have [[A;]],, = A; such that 7, =, Ag ~ A; | R for
some R. We choose F; = TI(A;, B;<p;); to verity 7, |=, Fy ~ F;, we will show that Pi[z,,] =, Fy ~
F;.

1. We have already seen that 7, =, Ag ~ A; | R.

2. To exhibit 7, =, R > By<pg ~ B1<p;, we fix m < nand m + ay ~ a; € R, to verify that
To [Fm Bo<polao] ~ Bi<pi[ai] | S(ao, a;) for some S € Fam.

a) First, we observe that m I+ pg.ay = p1.a; : T.Afrom m v ay = a; : A [po; p1], which
follows from m I+ ay ~ a; € R, 7, |Fm Ao ~ A1 | R (by Lemma 3.2.5), and m I+ py = p; :
I' (by Lemma 3.3.2).

b) Therefore, by instantiating our second induction hypothesis, there exists some S, 4,)
such that 7, Fm [Bollp.a, ~ [Billp.a1 | Seay,a,), which is the same as 7, |
Bo<polao] ~ Bi<pilai] | S(ay,a,)- By the determinacy of the type system, this actually
defines a family S € Fam.

'+ A :A1!Uj
'+ Ay =A; type
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Case.

Case.

Case.

Case.

Fixing n = py = p; : I', we need to show that [A;],, = A; and 7, |5, Ay ~ A; for some A;. By
the induction hypothesis, we already have [A;],, = A; and [U;],, = U; with 7, |z, Uy ~ U; | S
for some S and moreover n - Ay ~ A; € S. By inversion, we observe that U; = U; and
S = (i F(-) — ~ —). Therefore, we have 7; |=, Ay ~ A;, and we obtain 7, |5, Ay ~ A; from
Lemma 3.2.8.

= Fl.A.Fz ||F2|| =m ﬂ ¢ rg

[+ var, =vary, : A[p™]

Fixing n I+ py = p; : T, we need to show that [A[p™]]l,, = A; for some A; such that 7, =, Ay ~
A; | R for some R, and moreover, that [[var,,],, = v; for some v; such that n I vy ~ v; € R.
Setting v; = p;(m), we invert our assumption n I py = p; : I to obtain n I+ pj.vy = pj.v; : [1.A
for some p], whence again by inversion, we have A; and R with the desired property (using
Lemma 2.2.1).

SHUT
rar th=1t:A

I'r[tla=[nla:0A

Fixing n = py = p; : T, we need to show that [0A],, = C; and [[t;]all,, = v; such that
Ty IEn Co ~Cy L Rand n I+ vy ~ v; € R for some R.

Observing that we have m I py = p; : I'.@ for all m, we obtain by determinacy a family S € Rel”
and values A;, w; such that 7, | A ~ Ay | S(m) and [A]l,, = A; and [[#;],, = w; and
m i wy ~ wy € S(m).

Moreover, by the definition of the evaluation relation, we are constrained to choose C; = OA; and
v; = shut(w;). By the closure of the type system under Box, we see that R is likewise constrained,

and it remains only to show that for all m, we have m I open(shut(wy)) ~ open(shut(w;)) € S(m).
But open(shut(w;)) = w;, so we are already done.

OPEN
™rity=1t :0A

IFlole =[tle:A

Fixing n = po = p; : I', we need to show that [A]l,, = A; and [[[t;]g]l,, = vi for some A;, v; such
that 7, |=, Ao ~ A1 | Rn Ik vy ~ v; € R for some R.

Observe that must exist some m such that m I py = p; : T¥. Then, by the induction hypothesis
we have [0A],, = OA; and some R such that 7, =, OA) ~ OA; | R. Moreover, [[t;],, = v; for
some v; such that m + vy ~ v; € R.

Now, by inversion we must have that Box[z,,] |=, OA¢ ~ OA; | R and therefore Box[7,,] =,
0OAy ~ OA; | R. This tells us that there is some S(m’) such that 7, |=, Ay ~ A; | S(m’) for
every m’ and, moreover, that m’ I open(vy) ~ open(v;) € S(m’). Further inversion tells us that
[All,, = A;. Therefore, setting m’ = n, we obtain the desired conclusion.

art:A
TH[[tlaln =t:A

Fixing n I+ py = p; : ', we need to show that [A]l,, = A; and [t]],, = v; and [[[[t]a]&]l,, = vo for
some A;, v; such that 7, =, Ag ~A; | Rand n I vy ~ v; € R for some R.
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Case.

Case.

Case.

First, we observe that n I py = p; : I'¥.@ using Lemma 3.3.3. Therefore, we may use our
induction hypothesis to conclude that [A],, = A; and [[¢],, = v; and for some A;, v; such that
Ty Fn Ao ~ Ayl Rand n Ik vy ~ v; € R. Finally , we observe by calculation [[[t]g]la]l,, = 1.

'rt:0A
T'r[[tlplg=t:0A

Fixing n I+ po = p; : ', we need to show that [OA],, = C; and [t],, = v; and [[[t]@]lall,, = vo
for some C;, v; such that 7, |=, Co ~C; | Rand n I vy ~ v; € R some R.

We use our induction hypothesis to conclude that [0A],, = C; and [[t],, = w; and for some
C;,w; such that 7, |=, Co ~ C; | Rand n I wy ~ w; € R. We therefore set v; = wy, but still need
to obtain an appropriate v.

We observe by inversion that C; = OA; where [[A],, = A;. By inversion again, we obtain
Box[7,] |En OAg ~ OA; | Rand R = [O]({(n, uo, u1) | n F ug ~ u; € S(n)}) for some S € Rel”
such that 7, |=,, Ao ~ A1 | S(m) for all m. What remains is the following:

1. We need to see that [[[[t]g]all 5, = vo for some vy. First, we observe that [[[t]go]l,, = open(w;)
and m I open(wy) ~ open(w;) € S(m) for all m. Therefore, we set vy = shut(open(wy)).

2. Next, we need to see that n I vy ~ v; € R; fixing m, this means to show that m I open(v,) ~
open(v;) € S(m). Calculating, we have open(v,) = open(shut(open(wy))) = open(wy); but
we have already observed that m I open(w) ~ open(w;) € S(m).

FI—Atype F.Al-t():tllB
I'+ Ato) = A(t1) : II(A, B)

Fixing n I+ po = p; : T, we need to show that [II(A, B)],, = C; and some C; such that 7,, |=, Cy ~
C; | Rand n - A(tg<pg) ~ A(t1<1p1) € R for some R. First, we observe that because T' + A type, we
have [[A]l,, = A; such that 7, |=, Ay ~ A; | S for some S. Hence we set C; = II(A;, B<p;), since
[TI(A, B)]l,, = I1(A;, B<p;). What remains is to show the following:

1. Pi[z,] |=n TI(A¢, B<py) ~ TI(A1, B<p;) | R for some R. For this, it suffices to show that
Ty Fn S > B<py ~ B<p; | T for some family T, but this follows from our second induction
hypothesis. We have resolved R = [II](S, T).

2. n Ik Mto<po) ~ A(t1<pr) € [I](S, T). Fixing m + ug ~ u; € S for some m < n, we need
to show that m I app(A(to<ipo), up) ~ app(A(t1<p1), us) € S(up, uy). Observing that m
po-to = p1.up : I'.A, we use our second induction hypothesis to conclude that [[#;],, ., = v;
for some v; such that m I+ vy ~ vy € S(ug, uy).

r'_ﬁ):fl:H(A’B) F'rap=a;: A
I'+ folag) = fi(ay) : Blid.ao]

Fixing n = po = p; : I', we need to show that [B[id.ao]]l,, = C; and [[fi(a;)]l,, = v; for some C;, v;
such that 7, =, Co ~ C; | Rand n + vy ~ v; € R for some R.

Using our second induction hypothesis, we observe that [A]l,, = A; and [a;],, = a; for some
Aja;,and 7, | Ao ~ Ay | Swithn F gy ~ a; € S. Consequently, we further observe
that [II(A, B)]|,, = I1(A;, B<p;), and from our first induction hypothesis, we can conclude that
T [Fn TI(Ag, B<pg) ~ T1(Ay, B<py). By inversion, we have Pi[z,,]| |=, TI(Ay, B<po) ~ I1(A1, B<py),
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Case.

Case.

Case.

from which we obtain 7,, =, S > B<ipy ~ B<p; | T for some family T such thatn v fy ~ f €
[IT(S, 7).

By instantiating our type family assumption just obtained above with n I a; ~ a; € S, we
therefore obtain some D; such that B<ip;[a;] = D; and 7,, |=, Dy ~ D1 | T(ay, a;). Instantiating
with n - ay ~ ag € S, we further obtain E; such that B<ip;[ay] = E; and 7,, |=, E¢ ~ E1 | T(ao, ao).
Setting Cy = Dy and C; = E;, what remains is the following:

1. To see that 7, |=, Dy ~ E;, we recall that D; = E, and T(ao, a1) = T(ao, ag). Therefore, we
set R = T(ao, a).

2. Because n I+ fy ~ fi € [II]|(S, T), we obtain [ fi(a;)]l,, = v; where v; = app(f;, a;), such that
niovy~ov €R.

l'Arf:B F'ra:A
I'+ (A(f))a) = flid.a] : Blid.a]

Fixing n &+ po = p; : I', we need to show that [B[id.a]]l,, = C; and [(A(f))(a)],, = vy and
[ flid.a]ll,, = v; for some C;,v; such that 7, =, Cy ~ C; | Rand n IF vy ~ v; € R for some
R. From our induction hypothesis, we obtain [A]l,, = A; such that 7, |z, Ag ~ A; | S and
lall,, =aiandntag ~a; €8S.

Next, we observe that n I py.ap = pj.a; : I'.A by definition; combining this with our second
induction hypothesis, we conclude that [B],, ., = B; such that 7, |=, By ~ B; | T and
[f1p..a, =riand n i ro ~ ry € T(ag, ar).

By calculation, we see that [id.a],, = p;.a;, so we are free to choose C; = B; and R = T(ay, a;). We
merely need to show that [(A(f))(a)],, = vo and [ f[id.a]],, = v; for some v;; but by calculation
we have [(A(f))(a)]l,, = ro and [ f[id.a]],, = 1.

T+ f:II(A B)
I+ A(f[p'l(varo)) = f : TI(A, B)

Fixing n I py = p; : T, we need to show that [TI(A, B)]|,, = C; and [A(f[p'](varo))],, = vo and
[f1, = v for some C;,v; such that 7, F, Co ~ C; | Rand n F vy ~ v; € R for some R. By
inverting our induction hypothesis, we obtain [II(A, B)]|,, = TI(A;, B<p;) and [[A],, = A; for
some A; such thatz,, =, Ay ~ A1 | Sand 7, |=, S > B<py ~ B<ip; | T for some S, T; and
moreover, [f],, = fi such that n i foy ~ f1 € [II]|(S, T). We therefore set C; = Il(A;, B<p;) and
R = [II](S, T); we need to show that n i A((f[p*](vare))<pe) ~ fi € [II](S, T). Fixing m < n
and m I+ ay ~ a; € S, we need to see that m I app(A((f[p*](vare))<po), ag) ~ app(fi,ai) €
T(ao, a1). First, we observe that [ f[p'](varo)]l5,.a, = app(fo, a0) because we already have [f],, =
fo; therefore app(A((f[p'](var))<ipo), as) = app(fo, ao). So it would suffice to verify that m I
app(fo, ao) ~ app(f1, ai) € T(ao, a1), which we obtain from the fact that n I+ fo ~ f; € [IT]I(S, T).

'rlh=L:A A+ B type T'v+ry=r:B[id.[]
[+ (lo, ro) = (l1, 1) : 2(A, B)

Fixing n = py = p; : T, we need to show that [X(A, B)],, = C; and [{lp,ro)],, = vo and
[<lo, 7015, = v1 for some C;, v; such that 7, |, Cy ~ C; | Rand n - vy ~ v; € R for some R.

First, we observe by induction hypothesis from the first premise that there is some R, such
that [A]l,, = A; and 7, Fn Ag ~ A; | Ro. Furthermore, our induction hypothesis tells us that
[li1,, =i such thatn i I; ~ [, € Ry.
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The induction hypothesis for our seocnd premise to conclude that there is some R; such that
To [Fn Ro > B<py ~ B<p; | Ry. Furthermore, we have that [[r;],, = r; and n i rg ~ r; € Ri(lo, [1)
from the third induction hypothesis.
We now choose C; = %(A;, B<ip;) and R = [Z](Ry, R;). The remaining goal, that n  (ly, ry) ~
(i, r1) € R is immediate by calculation and our assumptions.
Case.
T'kt:3(A B)
T+ (fst(t),snd(t)) =t : 3(A, B)
Fixingn I+ pg = p; : ', we need to show that [X(A, B)]| ,, = C; and [[t]l,, = vo and [{fst(t), snd(¢))],,, =
v; for some C;, v; such that 7, |=, Co ~C; | Rand n I vy ~ v; € R for some R.

First, we observe by induction hypothesis from the first premise that there is some R such that
[2(A,B)]l,, = D; and 7, |=n Do ~ D1 | Ro. By inversion, we see that [2(A, B)],, = 2(A;, B<p;).
Therefore, we have that R = [2](Ry, R;) for some Ry such that 7, |=, Ay ~ A; | Ry and
T [Fn B<po > B<p; ~ R;. Finally, we must have [[t],, = v; such that n - vy ~ v; € R.

We observe by definition that this last fact tells us that n  fst(vy) ~ fst(v;) € Ry and n I
snd(vy) ~ snd(vy) € Ry(fst(vo), fst(v:)).

We choose C; = D;. We have immediately that z,, |=, Cy ~ C; | R. It suffices to show that there
is some w; such that [[¢]|,, = wo and [{fst(t), snd(¢))] ,, = w; such that n - wy ~ w; € R. For this,

we set wy = vy and w; = (fst(vy), snd(v;)). The latter is defined by assumption. We have that
n - wy ~ wi € R holds by calculation.

Case.
F'rl:A I''A+ B type T+ r: Blid.[]

I'+snd({l,r)) =r: B[id.[]

In this case fix n Ik py = p; : I'. We wish to show that [B[id.[]],, = C; such that 7, |=, Cy ~
C1 | R for some R. Furthermore, we must show that [{/,r)],, = vy and [[r]l,, = v; such that
nik vy~ v €R.

First, we observe by induction hypothesis that there is some Ry such that [A],, = A;Ry and
[l,, = li such that n I [y ~ I; € Ry. We also have by induction hypothesis that 7,, =, Ry >
B<Ip() ~ B<1p1 lRl

We have that [[B[id.l]]],, = D; such that 7., =, Dy ~ D1 | Ry(lo, [;). We also have that [r],, = r;
such that n v ry ~ r; € Ry(ly, [1). Since we have snd({lo, ry)) = ry we have the desired conclusion
by setting C,’ = D,’ and R = Rl(lo, ll)

Case.
'rA=B:U;
r F A = B : Ui+1
This is immediate from Lemma 3.2.8.
Case.
IF&=6:A
'k 50 = (31 A

In this case, fix some n I+ py = p; : I'. We wish to show that [§;]l,, = p! suchthatn I p) = p| : A.&.

First, we observe that there is some m such that m I p, = p; : I using Lemma 3.3.3. We may
then use our induction hypothesis to conclude that [[§;],, = p; such that m  p; = p] : A. By
definition, we then have n  p; = p] : A.@ as required.
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Lemma 3.3.6. IfT ctx then there is some p such that [T = p thenn - p =p:T.
Proof. This is immediate by induction on I' using Lemma 3.2.7. O
Corollary 3.3.7. IfT vty =1t : T then n_beg(t,-) =t’ for somet’.

Proof. If T' + ty = t; : T then there is some p such that [T’ = pandn + p = p : T by Lemma 3.3.6.
We therefore may apply Theorem 3.3.5 to conclude that there is some A such that [T], = A and
To Fn A~ Al R. We also have that [[#;]], = v; such that n IF vy ~ v; € R.

Now, by Lemma 3.2.7 we have that R is compatible and so 1Avy~ 140 € Nf. Therefore, there is a
particular ¢’ such that [ v;]jr = t’. By definition, we then have that @; (t;) = t’ asrequired. O



Soundness of Normalization

4.1 A well-ordering on semantic types

In Section 4.2, we will define a logical relation between syntax and semantics, proceeding by induction
on the type at which we are comparing things; unfortunately, the induction is not structural, so we need
to define an ordering on semantic types such that, for instance, a dependent function type is strictly
greater than all instantiations of its codomain.

We define the order o |=, A < B on semantic types as the least relation closed under the following
rules:

ol=n A<B ockEn A<B olFn A<B
0lFn A< OB 0 Fn A< X(B,C) o En A<TII(B,C)

oclFnB~B|R m<n mia~a€cR 0 FEm A< Cla]

o l=n A < %(B,C)

olEnB~BJlR m<n mika~a€R 0 Em A< Cla] oclFn A<B

o En A<II(B,C) o |En A <1d(B, vy, v1)

Lemma 4.1.1. Ift, |=p41 A < B thent, |=, A < B.
Proof. By induction. O
Theorem 4.1.2. Ift, |=, A ~ A, then there is no infinite descending chain in « |=, — < — starting with A.

Proof. This is done by showing that the following o € Sys is a pre-fixed point of Types,,:

Tq En Ao~ A1 LR there is no infinite chain starting from Ay with 7, |5, — < -

o Fn Ao~ A LR

We show only the non-trivial cases. Suppose that Types,[c] =, Ay ~ A; | R holds; we wish to show
that o |:n A() ~ A1 lR

Case.
G|=nA0~A1lS 0|=nS>>B0~B1lT
Pi[o] |=n [1(Ao, By) ~ T1(Ay, By) | [IT]I(S, T)

We now wish to show that ¢ |=, TI(Ag, By) ~ II(A1,By) | [II]I(S,T). We note that 7, |=,
T1(Ay, Bo) ~ II(A1, By) | [TT]I(S, T) by unfolding the definition of ¢ in our two assumptions. We
merely need to show that there is no infinite chain starting from IT(A,, By).

Suppose such a chain exists: (C;);eny With 7, |=, Ciy1 < C; and Cy = TI(Ay, By). There are two
possible first links in such a chain; we proceed by case.

40
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1. Types, |=n Ci < Ay. In this case, we would then have that there is an infinite descending
chain starting with Ay. This contradicts o |=, Ag ~ A; | S.

2. There is some m < nand m I vy ~ v; € S and Types,, |=, C; < By[v]. First, we observe
that in this case o |=,;, Bo[vg] ~ Bi[v1]. Next, by Lemma 4.1.1 we observe that (C;);en is
an infinite descending chain for 7, |=,, — < — as well. Therefore, if such a chain exists
then it is an infinite descending chain for 7, |=, — < — starting with By[v,]. However, this
contradicts with our assumption that o |=p, Bo[vo] ~ Bi[v1].

Case.
Ym.oEm A~B
Box[o] |z, DA ~OB | R

We now wish to show that o |=, DA ~ OB | R.

Let us first observe that 7, |=, OA ~ OB | Rholds as ¢ < 7,.

Next, we wish to show that there is no infinite descending chain starting from OA. Suppose

that such a chain exists: (C;);en with 7, |=, Ciy1 < C; and Cp = OA. We observe that since

Tq |Fn C1 < OA it must be that 7, |=, C; < A. Therefore, (C;);> and A is an infinite descending

chain starting with A. This contradicts ¢ |=,, A ~ B. O
Corollary 4.1.3. The ordering t, = — < — & 3m. 14 |=m — < — is well-founded on semantic types
at stage 0.
Proof. This follows from Lemma 4.1.1 as well as the fact that N is well-founded. O

We note that this well-ordering of semantic types is also used implicitly by Coq’s termination checker
in Wieczorek and Biernacki [WB18]; we have explained it explicitly in order to make the mathematical
content clear in the absence of a formalization.

4.2 The logical relation for soundness

In order to prove soundness we use a logical relation. Essentially we tie together a syntactic value with
its counterpart in the model and show that a value related to a term quotes to that term. We then prove
the “fundamental theorem” which in this case proves that a term is related to its evaluation. This part is
complicated by the necessity of including a Kripke world again so that this logical relation is fibered
over the product of contexts and n.

We define the relation '+, t : A® v €, Aand I' +, A ® A type, by mutual induction. The first
relation states that a syntactic term is related to a value at some semantic type where the logical relation
has been constructed for the first « universes. The second states that a syntactic type is related to a
semantic type but again only considering the first « universes. In order to make this definition work,
we must ensure that these relations are monotone with respect to a, n, and I'. On contexts, we define an
order r : I' < I” when I is a weakening of I'". Weakenings, r, are a special case of substitutions where
we restrict the extension rule to only allow the adjoining of variables and remove - and p’. This means
that weakenings may extend the identity substitution by variables and are closed under composition.

We will then prove a property akin to compatibility: suppose that Vn. T’ +, A ® A type,, then:

1. (Vn.T+,t: A® v €4 A) then [|4 v]yr| = t' for some t"and '+t = 1" : A.

2. Iflelyry=t'andT+t=1t:AthenT +, t : A® "¢ €, A.
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The induction used to define logical relations is complicated so we take a moment now to explicitly state
what is going on. We simultaneously define — +, —: — ® — €, Aand — +, — ® A type, for all @, A,
and n such that 7, |=, A ~ A. The ordering on the triple («, A, n) is given as follows:

IB <a Ta |:min(m,n) B<A
(B, B,m) < (a, A, n) (a, B,m) < (a, A, n)

This is not quite a lexicographical ordering, because the type systems are constrained to be equal in
the second clause. However, it is clearly stricter than the lexicographical ordering of two well-founded
orderings and so is itself well-founded. The crucial move here is that (assuming that types are valid at
all the appropriate worlds) we can move to a semantically smaller type and mostly ignore the index.

Logical relation on types Presupposing 7, |=, C ~ C, we define T +-,, C ® C type,, to hold just when
one of the following cases applies:

» '+, C ® nat type, if T + C = nat type.

'+, C®II(A, B) type,, if:
- T'+ C =TI(A, B) type for some A, B;
- T+, A® Atype,;
—ifn" <nandr:T" <T,thenI’+, t:A[lr] ® a €, Aimplies I\, B[r.t] ® Bla] type,,.

I't, C® X(A, B) type,, if:
- I'+ C = 3(A, B) type for some A, B;
- T, A® Atype,;
—ifn’ <nandr:I" <T,thenI’"t, t:A[r] ® a €, Aimplies I+, B[r.t] ® Bla] type,,.

I+, C®IA(A, vy, v1) type,, if:
- '+ C = 1d(A, to, t1) type for some A, to, t1;
- T, A® Atype,;
- THyt ZA®Z),' €q Aforice {0,1}

'+, C® DA type,, if:

— T'+ C = OA type for some A;
- forallm, @+, A® Atype,.

'k, C® 1T etype, if, when r : T” < T, there exists C" such that [e¢]jp = C" and I + C[r] =
C’ type.

[+, C®Ujtype, ifj < @andT + C = U; type.
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Logical relation on terms Presupposing 7, |z, C ~ C | R, we defineT' +, t : C ® v €, C to hold just
when one of the following cases is applicable:

s T+,t:C® o€, natif:

- nkov~vé€ER;

— I' + C = nat type;

one of the following three cases is applicable:

1. v =zeroand T + t = zero : C;
2. v =succ(v’), T+t =succ(t’):C,and T +, t' : C ® v’ €, nat;
3. v="T candifr: I’ <T then [e]jr) =t"and " + t[r] = ¢’ : nat.

s T H,t:C® o€, TI(A B) if:

nrFov~veRandT +t:C;

I' + C = TI(A, B) type for some A, B;

I't, A® Atype,;

ifn” <nandr:T" <TthenI’ +yp t' : Al[r] ® a €, Aimplies I’ v, t[r](¢') : B[r.t'] ®
app(v, a) €, Blal.

s H,t:C® o€, X(A B)if:

nrFov~veRandT +t:C;

I' + C = 3(A, B) type for some A, B;

ifn” <nandr:T" <T,thenT’'r, t': Alr] ® a €, Aimplies " +,, B[r.t"] ® Bla] type,;
[ by fst(t) : A® fst(v) €, A;

'+, snd(¢) : Blid.(fst(t))] ® snd(v) €, Bl[fst(v)].

s H,t:C® v ey Id(A, vg, vy) if:

nktv~veRandT +it:C;

I'+C =1d(A, ty, t1) type for some A, to, t1;
'+, A® Atype,;
Tttt A®v; €, Afori € {0,1};

one of the following cases applies:
« v =1 eand whenr :I" < T, then [e]r = t' such that I + t[r] = t' : C[r].
+ Tkt =refl(t'): Cand v = refl(v”) for some t’, v’ such thatT' + ¢’ = ¢; : A.

s T, t:C®ove€, OAIf:

-ntrtv~veRandT+1t:C
- I' - C = OA type for some A
- forallm, T.@+,, [t]p: A® open(v) €, A

s T+, t:C® 1T e € T e if, whenr : I < T, then [e,]yp = ¢’ and [e;]jr| = C’ such that
I+ C[r] =C" typeand I'" + t[r] = t' : C[r].

s, t:C®oe€, U;if:
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-i<a;

- nkov~vé€ER;

IF'rt:CandT + C = U; type;
- T'rpt ® o type,.
We observe that the above is well-defined using Lemma 4.2.1 below.
Lemma4.2.1. IfT+,t:T®v e, Athenty |Fhb A~B|lRandntv ~v€R.

Proof. This follows from the fact that each clause of T+, t : T ® v €, Arequiresn - v ~ v € R. ]

4.3 Properties of the logical relation

In this section we prove a number of properties of our logical relation we shall use later in proving
soundness (Section 4.4).

Lemma 4.3.1. Ifm < n and 7, |=, A ~ A then the following two facts hold.

1L Tr, T ® Atype, impliesm rr T ® A type,,

2Trpt: T®ve, Aimpliesmirt:T®v e, A
Proof. This proof is immediate by inspection. O
Lemma 4.3.2. If 7, =, A ~ A then the following two facts hold.

L r:T"<TandT+, T® Atype, impliesI” +,, T[r] ® Atype,

2r:I"<TandT rp,t: T® v €y AimpliesT’ by, t[r] : T[r] ® v €4 A
Proof. This proof is immediate by the composition of weakenings. O
Lemma 4.3.3. Ifty |Fn A~ AandT v, T ® Atype, thenT + T type.

Proof. We proceed by induction on (e, A, n) using the ordering used in the definition of the logical
relation. Suppose that this property holds for all (8, B, m) < («, A, n); we proceed by case on A. Since
we have 7, =, A ~ A many cases may be immediately eliminated. The remaining cases are described
below.

Case.
(Ao, A1)

In this case by inversion T +, T ® II(Ay, A;) type, we must have that the following holds:
» '+ T =T1I(Tp, T1) type for some Ty and T}
= T+, T) ® A type,,
wifn’ <nandr:TI" <TthenI’t, t:To[r] ® a €, A implies I'' +y Ti[r.t] ® A;[a] type,

Therefore, we have that there exists Ty and Ty such that T' + T = I1(Tj, T;) type. By Theorem 1.2.16
we must have that I' + T type as required.

Case.
(Ao, A1)

This case is identical to the case for IT(Ag, A;).
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Case.
U;

In this case by inversionon T +, T ® U; type, we haveI' + T = U; type and so I + T type by
Theorem 1.2.16.

Case.
oA’

In this case by inversion T’ , T ® DA’ type, we must have that there is some T’ such that
I' - T = 0T’ type. Therefore, I + T type by Theorem 1.2.16.

Case.
Id(A/, Vo, Ul)

Identical to the previous case.

Case.

Identical to the previous case.

Case.
nat

Identical to the previous case. O
Lemma4.34. Ift, Fn A~AandT vyt : T®v e, AthenT k1t :T.

Proof. This follows by case on A. Every clause of '+, t : T ® v €, Aincludes T + ¢ : T or that there
exists some t" such that T' + ¢t =’ : T so this is immediate using Theorem 1.2.16. O

Lemma 4.3.5. Ift, |=, A~ B | R then the following two facts hold:
1. T+, T® Atype, thenT +, T ® B type,
2T, t: T®ove, AthenT +,t: T® v €, B
3 ntov;~vy€RandT v+, t: T® v, €, AthenT +p,t: T ® vy €, A.
Proof. We proceed by induction on « and we will show the following to be a pre-fixed point:

Tq Fn A~B|R VI,LIm<n. (T'tp T ® Atype, & T+, T ® Btype,)
Ve, T, T,om<n. Trpt: T®vE, A e Tty t: T®v €, B)
VmSn,t,T,mII—UO~UlER.(FI—mt:T®UO Eq Ay &= Fl—mt:T®vl eaAo))

clEn A~B|R

In order to do this, we suppose that Types,[c] =, A ~ B | R. We wish to show ¢ |=, A ~ B | R; we
proceed by cases.

Case.
o EnA)~Ai LR o [=n Ry > Bo[vg] ~ Bi[v1] | Ry

Pi[o] [=p T1(Ao, By) ~ TI(Ay, By) | [TT]|(Ro, Ry)

We set R = [II]|(Ro, R1). We to show o |=, T1(Ag, By) ~ II(A1, B1) | R wish to For this, we must
show 4 things.
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1. o |:n H(Ao,Bo) ~ H(Al,Bl) lR
This is immediate as we can construct Pi[z,] £, ITI(Ag, Bg) ~ II(A1,B;) | R from our
assumptions.

2. Forall T,T,and m < nwe have T +,, T ® II(Ao, By) type, iff T +,, T ® I1(Ay, By) type,,.
We assume I' +p,, T ® TI(A, By) type,. We wish to show I' +-, T ® II(A;, B;) type,,. First,
we note that T +,, T ® II(A, By) type, is equivalent:

s '+ T =T1I(Tp, T1) type for some Ty and T}

s Tk Ty ® A type,,

s Ilfm’ <mandr:T" < TthenT’ by t: To[r] ® a €, A implies I v,y Ti[r.t] ®

Bola] type,

The definition of I' +,, T ® II(A;, By) type, is almost identical. First, we note that " +
T = II(Tp, T1) type must hold for some Ty and T; so it suffices to show the second half of
I+, T®II(A, By) type,. We have T +,, Ty ® A; type, immediately from o |=, A) ~ A;
and our assumption of T Fp,, Ty ® A, type,,.
We assume we have that m’ < mandr : I <Tand I’k t: To[r] ® v €, A;. Now in this
case we note that o |=, Ay ~ A; | Ry tells us that we may conclude T’ +,, t : To[r] ® v €,
Ay. Therefore, we have the following:

I by Ti[r.t] ® Bo[v] type,

We observe that from Lemma 4.2.1 to conclude that m’ + v ~ v € Ry. Therefore, we have
o En Bo[v] ~ Bi[v]. Now, from this we have I'" +, T;[r.t] ® B;[v] type, as required.
The proof that ' +, T ® II(A;, B) type,, implies ' +-, T ® II(Ao, By) type, holds mutatis
mutandis.

3. Forall T,t,T,and m < nthenT +,, t : T® v €4 I1(Ag, By) iff T+, t : T ® v €, II(A4, By).
Suppose we have some T, t, I, and m < n. We will show only thatT +,, t : T ® v €,
I1(Ap, By) implies T +,, t : T ® v €, II(Ay, By). First, we observe that ' +,, t : T ® v €,
TI(Ay, By) holds if and only if the following conditions hold.

s mro~veRandT +t:T;

s '+ T =T1I(Tp, T1) type for some Ty, Ty;

s [ hy T ®A0 type,;

wifm <mandr : T/ < TthenT’ by t' : To[r] ® a €, Ay implies I’ +,y t[r](t') :

Ty[r.t'] ® app(v, @) €4 Bolal.

We wish to show I' b, t: T ® v €, I1(Ay, By) which is defined in a similar way. First, we
observe that there must be some T; such that T + T = II(T,, Ty) type, T vt : T,mIFv ~v € R
and I+, Ty ® A; type, from our assumption. Therefore, we merely need to show the
following last item in order to establish our goal. Suppose that m’ < mand r : T” < T such
that I kpy t' : Ty[r] ® a €, A;. We wish to show I +py t[r](t) : Ti[r.t’] ® app(v, a) €4
Bi[a].
We may now use o |=, Ay ~ A; to conclude that T +,, t" : To[r] ® a €, Ay. Therefore, we
may conclude the following:

I’ b tlP1(E) : Tolr.t] ® app(o, a) €4 Bolal

However, from IV +,y t’ : Ti[r] ® a €, A, we must have that m’ + a ~ a € Ry from
Lemma 4.2.1 and so ¢ |=py Bola] ~ Bi[a]. Finally, we may use this to conclude the goal:

I b tr](t) : Th[r.t] ® app(v, a) €4 Bilal



CHAPTER 4. SOUNDNESS OF NORMALIZATION 47

Case.

4. fmirvy~vi€eRandm <nthenT +p, t : T® vy €4 Agifand only if T+, £ : T ® v €4

As.
We will show on the forward direction. Suppose we have ' +,, t : T ® v, €, Ag. We
wish to show ' +,, t : T ® v; €, A holds. First, by inversiononT +,, ¢t : T ® vy €, A
we observe that there must be some Ty and T; such that ' + T = II(Ty, Ty) type, T + t : T,
Ity To ®Ap type, andm’ < mand r : I < T such thatI” +,, t': Tp ® w €, Aj we have
the following:

I by t[r](¢)) : Ta[r.t'] ® app(vi, w) €4 Bo[w]

Now in order to show our goal it suffices to show that have all m’ < mand r : T < T if
I bt/ : Ty ® w €4 Ay then we have the following:

T b t[r](t) : Ti[r.t'] ® app(vs, w) €4 Bo[w]

Now, we must have that m’"  w ~ w € Ry by Lemma 4.2.1. Therefore, we have m I
app(v1, w) ~ app(vq, w) € Ry(w, w). Furthermore, we have o |=p,y Bo[w] ~ Bi[w] | Ri(w, w).
By unfolding the definition of ¢ then, it is apparent that our goal follows from our assumption
of I’ by t[r](t’) : Ty[r.t'] ® app(vi, w) €4 Bo[w].

oFnAy~Ai LRy 0 [Fn Ry > Bo[vo] ~ Bi[v1] | Ry
Sglo] Fn 2(Ao, Bo) ~ Z(A1, B1) | [Z1(Ro, R1)

We set R = [[Z]|(Ro, R;). We to show o |=, X(Ag, By) ~ X(A1, B1) | R. For this, we must show 4
things.

1. 74 |En 2(Ag, Bo) ~ 2(A1, B1) | R.

This is immediate as we can construct Pi[z,] ., X(Ao, Bo) ~ %(A1,B;) | R from our
assumptions.

. Forall T,T,and m < n we have I -,, T ® Z(A, By) type, iff ' +,, T ® X(A;, By) type,,.

This case is identical to the corresponding case for I(—, —).

. ForallT,t,T,and m < nthenT t,, t : T® v €4 X(Ag, By) iff Tk, t : T ® v €4 X(A1, By).

Suppose we have some T, t, I', and m < n. We will show only thatT +,, t : T ® v €,
Y(Ag, By) implies T +p, t : T ® v €, X(Ay, By). First, we observe that T +,, t : T ® v €,
>(Ag, By) is defined as follows:
smro~veRandT +t:T;
= '+ T = 3(Ty, T1) type for some Ty, Tt;
wifm’ <mandr: T’ <T,thenT’ k' : To[r] ® a €, Ag implies I’ kpy Ty[r.t’'] ®
Bola] type,;
[ b fst(t) : Ty ® fst(v) €4 Ag;
[ ko snd(t) : Ty[id.(fst(¢))] ® snd(v) €, By[fst(v)].
We wish to show I' b, t : T ® v €, X(Ay, B,). First, we observe that T; and T; such that
I'+T=%3(Ty, Ty) type, T+t :T,and m I v ~ v € R. We wish to show that the following
three facts hold:
a) ifm" <mandr:T" <T,thenT’ kpy t' : Ty[r] ® a €, A; implies I +,, Ty[r.t'] ®
Bi[a] type,;
b) T by, fst(t) : Ty ® fst(v) €, Ay
¢) T by osnd(t) : Ty[id.(fst(¢))] ® snd(v) €, B [fst(v)].
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Case.

. ForallT,T,andm < nwehaveT r, T ® Id(Ay, vo, v1) type, iffT Fp, T ® Id(Ay, ug, u;) type

The first fact is precisely our induction hypothesis. For the second, we note that since
0 |=m Ao ~ Ay we have the first fact from T+, fst(t) : Ty ® fst(v) €, A;. For the second,
we observe that m - v ~ v € Ry and so ¢ |=p, By[fst(v)] ~ B1[fst(v)] holds. The second fact
follows from this.

. Ifm<nmirou ~v, € RthenT b, £ : T ® vy €4 (Ao, Bo) iff T by t: T ® vy €4

% (Ao, By).
We will show on the forward direction. We wish to show I' +,,, t : T ® v; €, X(Ao, Bo).
Now, inversion on the assumption tells the following:

mnlkovg~vg € RandT +¢: T

= '+ T = 3(Ty, T1) type for some Ty, T1;

wifm’" <mandr:T" <T,thenT’ r,y t': To[r] ® a €, Ay implies I’ +p,y Ty[r.t'] ®
BO[a] typea;
T Fm fSt(t) : T() ® @(Uo) [SP% A();
I' b snd(t) : Tr[id.(fst(1))] ® snd(vo) €4 Bolfst(v)].
In order to show the goal then it suffices to show the following facts (the rest are identical
to our assumptions)

LT fSt(t) : T() ®@(01) €y Ao;

@ Ty snd(t) : Ty[id(fst(1))] ® snd(vy) €, Bolfst(v)].
First, we observe that m I fst(vy) ~ fst(v;) € Ry since n I vy ~ v; € R and R is monotone
by Lemma 3.2.5.

Next, since o =, Ag ~ A1 | Ry (again using monotonicity) we have the first fact from our
assumption that T+, fst(¢) : Ty ® fst(vy) €, Ao.

The second fact is more difficult: we have m I snd(vy) ~ snd(v;) € R;(fst(vy), fst(v;)) and
0 |=m Bolvo] ~ Bi[v1] | Ri(fst(vy), fst(v)). Therefore, we may conclude the following:

I by snd(2) : Ti[id.(fst(£))] ® snd(v1) €4 Bolfst(wvo)]

By induction hypothesis it suffices to show 7, |=,, Bo[fst(vg)] ~ Bo[fst(v;)]. However, we
know that 7, |=,, Bo[fst(v;)] ~ Bi[fst(v;)] by assumption and so Lemma 3.2.5 gives the
desired conclusion.

olEnAy~A R nikvy~uy €R niov; ~u €R
Id[O’] |:n Id(Ao, Uo,vl) ~ Id(Al,M(),Ml) l [[ld]](R, U, Lll)

We wish to show o =, Id(Ao, vo, v1) ~ Id(Ay, ug, u1) | [Id]|(R, uo, u1). This requires showing three

1. 74 Fp 1d(Ag, vo, v1) ~ Id(Aq, ug, uq) | [Id](R, wo, u1)

In this case we observe that we have ¢ |5, Ag ~ A1 | R, nk vg ~ uy € R,and n
v1 ~ u; € R. From the first fact we have 7, |=, Ay ~ A; | R and so by closure we have
Ty [=n 1d(Ag, vo, v1) ~ Id(A1, ug, u1) | [IAI(R, ug, u1).

o
Suppose that we have m < nand T +,, T ® Id(Ay, vy, v1) type,. By inversion we then have
that T + T = Id(T’, ty, ;) type such that T +,, T" ® A, type, and T +,, t; : T" ® v; €4 A
fori € {0,1}.

We have T +,, T’ ® A, type, as 0 =, Ay ~ A; | R. Next, we use this fact again to
conclude that T +p, t; : T” ® u; €4 A, for i € {0, 1}. Therefore, we have by definition that
T b 1d(T7, o, 1) ® Id(Ay, ug, uy) type,,
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3. ForallT,t,T,and m < nthenT +,, t : T ® v €, Id(Ag,vp,v1) iff T +py t : T ® v €,
Id(Ala Uy, ul)'
We will show only the forward direction, so suppose that '+, t : T ® v €, Id(Ay, vy, v1).
We wish to show I' v, t : T ® v €, Id(Aj, ug,u;). First, we observe by inversion on
TCrmt:T®v ey d(Ap, vg, v1) to conclude the following:
mmikov~ove€[ld](R, uy,u;)and T + ¢t : T;
s I'FT =1d(T’, ty, t1) type for some T, ty, ty;
s Tk, TV ® A type,;
s T+ tiZT’®’Ui GO,A()fOI'iE {0,1};
= one of the following cases applies:
- v="1 eandwhenr: I’ <T, then [e]r = t'such that T’ + t[r] = t": T[r].
- Trt=refl(t’): T and v = refl(v’) for some t’,v" such that T + ¢’ =¢; : T'.
Now, in order to establish T+, t : T ® v €, Id(Ay, ug, ;) we must show then thatT +,, t; :
T’ ® v; €4 A for i € {0, 1} but this holds using our assumption that o |=,, Ay ~ A;.
4. if m < nandm +r wy ~ w; € [Id](R,up,u1) thenT +,, ¢t : T ® wy €, Id(Ag, vy, v7) iff
Thyt:T® w €4 Id(Ag, vo, v1)
We will show only the forward direction. Suppose that m < n, m I wy ~ wy € [Id]I(R, uo, u1),
and Tk, t: T ® wy €4 Id(Ao, vg, v1). We wish to show 'k, t: T ® wy €4 Id(Ag, vo, v1).
We proceed by inversionon T +,, t : T ® wy €, Id(Ay, vo, v1) to conclude the following
facts must hold:
= mi-wy~wy € [Id](R, up, u1) and T+t : T;
s T+ T =1d(T’, ty, t1) type for some T, ty, ty;
s Thp TV ® A type,;
skt T ®o; €4 A fori € {0,1};
= one of the following cases applies:
- wy =71 eand whenr : I’ <T, then [e]jr =t such that T + t[r] = ¢": T[r].
— T+t =refl(t'): T and wy = refl(v’) for some t’, v’ suchthatT' + ¢ =t; : T'.
In order to obtain the desired conclusion, therefore, we merely must show that one of the
following facts is true
» v =1 eand whenr :T” <T, then [e]r = t' such that T + t[r] = ¢": T[r].
w T+t =refl(t’) : T and w; = refl(v”) for some t’,0" suchthat T + ¢t/ =¢; : T'.
However, this follows by case on m I wy ~ wy € [Id]J(R, uo, u1) and our assumptions.
Case.
Vm. o |En Ay ~ Ay | S(m) _Fvy~v €ER & Vn.nk Ay~ A, € S(n)
BOX[O’] |:n |:|A0 ~ E]Al lR

We wish to show ¢ |=, OAy ~ OA; | R. This requires us to show three facts.

1. 74 |En OAg ~ OA; | R
In this case, we observe that for all m we have o |5, Ag ~ A1 | S(m) so 14 |Em Ao ~ A1 ]
S(m). Therefore 7, =, OAg ~ OA; | R.

2. Forall T,T,and m < nwe have I +,, T ® OA, type, iff T +,, T ® OA; type,.
In this case, we will only show the forwards direction. Suppose I' +-,,, T ® 0OA, type, holds.
We wish to show I' +,, T ® OA; type,. Recall thatT' +,, T ® OC type,, holds if and only if
there is some T’ such that T + T = 0T’ type and for all m, T @+, T’ ® C type,.



CHAPTER 4. SOUNDNESS OF NORMALIZATION 50

Case.

Case.

Case.

By our assumption, we then have some T’ such that I' + T = OT” type. We merely need
to show that for all m, .@ r,, T" ® A; type,. However, since by assumption we have
rar, T ® A, type,, this follows from the fact that o |=,, Ay ~ A;.

3. ForallT,t,T,and m < nthenT +,, t : T® v €, OA)iff T k,,, t : T ® v €, TA;.
For this, we will again show only one direction. Suppose that T +,, t : T ® v €, OA(. Then
we may expand this definition to see that it is equivalent to the following conditions:

= '+ T =0T’ type for some T’
sT+t:Tandmirv~veR
» forallm, T.@+,, [t]g: T’ ® open(v) €, Ay

Therefore, we have some T’ such that T + T = 0T’ typeand T+t : Tand m - v ~ v € R.
We therefore merely need to show for any m’ that T.@ +,, [t]g : T' ® open(v) €, A;.
However, since ¢ |=p,y Ay ~ A; and so this follows from I'.@ F, [t]g : T’ ® open(v) €, A,.

4. foranym < nifmwr vy ~v; € RthenT v, t : T ® vy €, OAg if and only if T+, ¢ : T ®
V1 €4 OAy.
For this, we will show only the forward implication. Suppose we have I' b, t : T ® v €,
OA,. By inversion on this fact we have that there is some T’ such thatI' + T = 0T’ type and
[ + ¢ : T. Furthermore, we have for all m’ that T.@ F,, [t]g : T’ ® open(v;) €, A.
We wish to show T+, t : T ® v; €, OA,. Using the above, it suffices to show for all m’ that
F.@+, [tle: T’ ® open(v;) €, Aj. However, we have m’ I open(v) ~ open(v;) € S(m’)
and o = Ao ~ A1 | S(m’). Therefore we have the desired conclusion from the definition
of 0.

eg ~e; € Ne nikl e/~1¢e €R & ¢, ~e; € Ne
Ne[o] Fn T7eo~1 e LR
We wish to show o |=, T7 ey ~ 17 e; | R. In order to do this we first observe that 7, |=, T~ ¢y ~

17 e; | R. Furthermore, we have that for any m < nthatT' +,, T ® 1~ ¢ type,, is equivalent to
the following:

Vr:T" <T.3T". ey =T AT v T[r] = T’ type
However, ¢) ~ ¢; € NeandsoI'+,, T ® 1" ¢ type, &= T F,, T ® T ¢; type,,.

Moreover, T by, t : T ® v €, 17 ¢ if r : T” < T, then [e; ) = t" and [e,]r| = T’ such that
I+ T[r] =T typeand I'" + t[r] = t’ : T[r]. However, since ¢; ~ ¢, € Ne we have that this is
precisely equivalentto T +p, t : T ® v €, 1~ ¢, and we're done.

Finally, if n F vy ~ v; € R then we have that v; = T~ ¢/ and ¢, ~ ¢; € Ne. Therefore,I' +-,, t : T ®
17 e} €q 1" epifand only if Ty t : T® 17 €] €4 17 ¢ by calculation.

i<a

Univ, =, U; ~U; | {(m, Ao, A1) | 77 |Em Ao ~ At}

Since in this case both sides of the equality are identical all of the conditions are trivial except the
last. The last follows by computation.

Nat[o] |=, nat ~ nat | [N]|

Since in this case both sides of the equality are identical all of the conditions are trivial. O
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Lemma 4.3.6. If7, |z, n ~A | AandT + T; = T, type then the following two facts hold:
1 Tr, Ty ® Atype, thenT +, T, ® Atype,.
2Tt I ®ve, AthenT +pt: T, ® v €, A

Proof. In this case we may observe this by simply case on A (induction is not necessary). In each case
the result follows from transitivity of = on types and the conversion rule. O

Lemma4.3.7. Ift, Fn A~ATrti=t:TandT k1 : T®v €y AthenT byt : T ® v €4 A

Proof. In this case we do need some induction. We proceed by showing that the following is a least
pre-fixed point:

Ta [Fn Ao~ A1 L R

Vm<no, Tt b, T.TrHH=t:T = Tkt :T®veEg Ay & Thrpty: T®vE, A

O.|:nA0~A1~LR

Suppose that we have Types [o] =, Ay ~ A; | R. We wish to show o |=, Ag ~ A1 | R.

Case.
o Fn Ao~ A1l Ro 0 FnRy> By~ By | Ry R = [TI]|(Ro, R1)

Pi[o] |=n I1(Ao, By) ~ I1(A1, By) | R
We wish to show ¢ |=, I1(A, By) ~ II(Ay, B;) | R. This involves showing two facts:

1. 74 Fn II(Ag, By) ~ II(Ay, By)
This is immediate from the fact that o < 7,.

2. forallm < m, o, T, b1, t, THT vty =t : TthenT +p, 17 : T ® v €, II(Ag, By) iff

Tk ty: T ® U Ey H(Ao, B())
We will show thatT v, t; : T ® v €, II(Ag, By) implies T +,, t; : T ® v €, TI(Ay, By).
We may unfold T v, t; : T ® v €, I1(Ay, By) to see that it is equivalent to the following
conditions:

snkrv~veERandT + 1t : T;

= '+ T =T1I(Tp, T1) type for some Ty, Ty;

wifm <nandr :T" < Tthenl’ +, t': To[r] ® a €, A, implies Ik, t[r](t’) :

Ti[r.t’"] ® app(v, a) €4 Bolal.

The first conditions are identical, therefore, it suffices to show forallm’ < mandr : I’ <T
if T/ bpy t': Ti[r] ® a €, A then the following:

I by t1[r]() : To[r.t'] ® app(v, a) €4 As]a]

We must have m’ - a ~ a € Rand so ¢ |=, Byla] ~ Bi[a] | Ri(a, a). Then, we may conclude
from congruence that I + t;[r](t’) = t2[r](t’) : T1[r.t’] and so we have the goal:

I’ b to[r](t)) : Ty[r.t"] ® app(v, a) €4 Bila]

Case.
o EnA)~Ai LR 0 |En Ry> By ~ By | Ry R = [Z]I(Ro, R1)
Sglo] =n 2(Ag, Bo) ~ 2(A1,B1) L R

We wish to show o |=, (Ao, By) ~ (A1, B1) | R. This involves showing two facts:
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Case.

Case.

L. 7 [Fn 2(Ao, Bo) ~ 2(A1, B1) L R
This is identical to the reasoning in the Pi case.
2. forallm < n, o, T, t;,t, TifT vty =t : TthenT +,, t; : T ® v €, X(Ag, By) iff

Thpty: T® v €y X(Ag, By).
We will show that T +,, t; : T ® v €, (A, By) implies T +p, £, : T ® v €, (A, Bo).
We may unfold I +,, t; : T ® v €, %(Ay, By) to see that it is equivalent to the following
conditions:

snkv~veRandT+1t:T;

» '+ T = 3(Ty, T1) type for some Ty, Ty;

wifm’" <mandr:T" <T,thenT’ t,y t': To[r] ® a €, A implies I’ +p,y Ty[r.t'] ®

Bola] type,;

n Ty fst(t) : Ty ® fst(v) €4 Ag;

= [+, snd(t) : Ti[id.(fst(¢))] ® snd(v) €, Bo[fst(v)].
So there exists some Ty, T such thatT' + T = 3(Ty, T1) typeand m I- v ~ v € R. In order to
show I' by, £ : T ® v €4 %(Ay, By) we merely need the following facts:

n Ty fst(ty) : Ty ® fst(v) €, A

» T by snd(t2) : Ti[id.(fst(t2))] ® snd(v) €, Bylfst(v)]
We quickly note that T + fst(t;) = fst(tz) : To and ' + snd(t;) = snd(t,) : Ti[id.(fst(t1))] by
congruence. We also have I' + Ti[id.(fst(t;))] = Ti[id.(fst(t;))] type. We use the latter fact
with Lemma 4.3.6 to conclude T +,, snd(t;) : Ti[id.(fst(¢;))] ® snd(v) €, Bo[fst(v)]. We
already have by assumption that I' +,, fst(t) : Ty ® fst(v) €, Ao.
The conclusion then follows from o |=,, Ay ~ A; and o |=,, Bo[fst(v)] ~ B;[fst(v)].

Vm. o |Em Ao ~ A1 | S(m) RiFvy~v €n < VYm. S(m) I+ open(v,) ~ open(v,) € m
Box[o] |5, OA; ~0OA; | R

We wish to show ¢ |=, OA) ~ OA; | R.

First we observe that from o |=, Ay ~ A; | S(m) we may conclude 7, |=, Ay ~ A; | S(m) and so
Ty |Fn OAg ~ OA; | R holds.

Second, we wish to show thatif m < nandT v, t; : T ® v €, OAj such that T + t; = t, typeT
thatT +,, t, : T ® v €, OA; holds. We unfoldT +,, t; : T ® v €, OAy:
snirv~veERandT +t:T;
» '+ T =0T’ type for some T’
» forallm, T.@+,, [tle: T’ ® open(v) €, OA,
We wish to show @ +,, t; : T ® v €, OA. First, from our assumption we have some T’
suchthat '+ T = OT’ typeand T + t; : T as wellasm F v ~ v € R. We therefore just
need to show that for all m’ that T.@ ,,; [t2] : T” ® open(v) €, A, holds. First, we observe

that we have o |=,» Ay ~ A; | S(m) by assumption. Furthermore, by congruence we have
T.@+ [t ] = [t2]e : T'. Therefore, since T.@ +,; [t1]g : T’ ® open(v) €, A, we're done.

eo ~ e € Ne R = {(m, TBO 60,TB1 e1) | eg ~ e € Ne}
Ne |=, T eg ~ 1% ¢ | R

Immediate by transitivity of = on terms.
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Case.
j<a

Univy =, Uj ~U; | {(m, Ap, A1) | 7j Em Ao ~ A1}

Immediate by Lemma 4.3.6.

Case.
oclFEnAy~A R nikvy~uy €R niov; ~u; €R

Id[O’] |:n Id(Ao, Vo, Ul) ~ Id(Al, U, M]) l [[ld]](R, Uy, Lll)

Immediate by transitivity of = on terms.

Case.

Nat |=, nat ~ nat | [N]

Immediate by transitivity of = on terms. m]
Lemma 4.3.8. If f < a and 15 |5, A ~ A then the following holds:
1 IfT+, T ® Atypeg if and only if T b, T ® Atype,,.
2. IfTr,t:T®ovegAifandonlyif T, t:T® v €, A.

Proof. In order to do this we show that the following is a pre-fixed point of Types:

78 |4, A1 ~ R (Vm <nI,T.T+, T® Atypeg & T+, T ® Atype,)
(Vm<nL,ot,T.Trpt : T®vEFA & T, t:T®v €, A)

o |=A0 A1 ~ R
All cases are straightforward except the case for Univg. Therefore we only show this case.
Case.
J<p
Ul’liVﬁ |=n Uj ~ Uj l {(m,A(),Al) | Tj |:m A() ~ Al}

In this case we have some j < fand so j < a. We set R = {(m, Ay, A1) | Tj |Em Ao ~ A1}
We observe that 75 |=, U; ~ U; | Ras 15 is closed under Univy.

Next, observe that I' +-,,, T ® Uj type,, if and only if T + T = U; type. However, we also have that
I'tm T ® Uj typeg holds if and only if T' + T = U; type holds.

Moreover, if we have some m < n,I',t,T,and v suchthatT +,, t : T ® v € U; then that the
following conditions hold:

mnkov~v€ER;
s rt:TandT +T = U; type;
» T'H, t ® 0 type;.
These, however, is precisely equivalent the definition of I',, t : T ® v €, Uj as a > p. O

Lemma 4.3.9. IfT+,t:T® v €, AthenT +, T ® Atype,.

Proof. In order to show this we proceed by induction on (a, A, n). We proceed by case on T +, ¢ :
T ® v €, A All cases are trivial, however, as we have added all appropriate extra premises to
I't,t:T® v €, Ato ensure that this fact holds. ]
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We now prove the “compatibility” lemma telling us how what it means for a term and value to be
connected by this logical relation. This is the equivalent of Lemma 3.2.7.

Lemma 4.3.10 (Compatibility with quotation). IfT + T type and for allr : T’ < T if we have some T’
such that [y =T’ andT’ v T[r] = T’ type thenT +, T ® T~ ¢ type,,.

Proof. Suppose that we have I' T type such that for all ¥ : I’ < I"and [e]yry = T" and I + T[r] =
T’ type. We wish to show I' -, T ® 1~ e type,, but this is immediate by definition. O

Lemma 4.3.11 (Compatibility with quotation). The following three facts hold for any n, o, and A such
thatty |En A ~ A

1 IfT v, T ® A type, then for allr : T" < T, there is some T" such that fA]T&,“ = T’ and
I+ T[r] = T type.
2. IfT+,t:T® v €, Athen forallr : T’ < T we have [|* ol =t andT’ + t[r] =t : T[r].

3. IfT +p T ® Atype, andT vt : T and if for some e we have for allr : T’ < T we have [¢]r = t’
such thatT' v t[r] =t' : T[r] thenT ko t : T ® 1% ¢ €, A.

Proof. We start by induction on «. We then prove these facts by together by showing o |=, Ag ~ A; | R
is a pre-fixed point. Let ¢ |=, Ay ~ A; | R hold if and only if the following conditions hold:

= T, |:nA0~A1~LR;

» Forallm <nandT +, T ® Atype, there exists T such that |'A'|T|’1'_|| =T andT + T =T type;

wm Forallm <nandT+,, t: T ® v €, A there exists t’ such that [|* oljry =t andI" -t = t": T;

» Forallm <n, T+, T® Atype,, T+t :T,andifforall » : T < T we have [e]jp = t" and
I"+t[r]=t" :T[r]thenT kp, t : T® T4 €, A.

Suppose that Types,[o] |=n Ay ~ A; | R. We wish to show o =, Ag ~ A; | R.

Case.
oEnAs~Ai LRy 0 |En Ry > By ~ By | Ry R = [[TI][(Ro, R1)

Pl[a] |:n H(A()’ BO) ~ H(Al’ Bl) \L R
We wish to show o |=, TI(Ag, Bg) ~ II(A;, B;) | R. We observe that 0 < 7, and so we have

Pi[z,] = T1(Ag, By) ~ II(A4, By) | R. From the definition of 7, we then have 7, |=, II(Ag, By) ~
TI(Ay, B1) | R. Therefore, we must show three more facts:

Subgoal.
Foranym < n, I, T, if T +, T ® A type, then there is some T’ such that
[H(AO,BO)]ltlyr” =T andT +T =T type.
Suppose we have m < n, I, T, T +,, T ® II(Ay, By) type,. We wish to show that there is
some T’ such that [TI(A,, Bo)]iyr” =T andT+ T =T type.
First, we observe by inversion that there is some Ty and T; such that T' + T = II(T,, T) type.
Furthermore, we must have I +-,,, Ty ® A type,. Finally, forany m’ < mandr: " <T we
have that if T+, t : To[r] ® v €4 Ag then T’ kpy Ti[r.t] ® By[v] type,,.
First, o |5, Ay ~ Ay tells us that there exists some T such that [Ao-lh);” =T,andT + Ty =
T, type.
Next, again by o |=, Ay ~ Ay we deduce that in the context I'.T; that the following holds:

[.Ty b varg : To[p'] ® 140 varr| €a Ao
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We also observe that there is an r, pl, such that r : T.T; < T. Therefore, we may use our
induction hypothesis to conclude the following:

I'.Ty by Ti[r.varg] ® BO[TA0 var|r|] type,
Moreover, since we have m I T4 varr| ~ 140 var|r|| € Ry we therefore we have a relation:
o Em Bol1 varyry] ~ Bi[1% varypy] | Ro(T varpy, 1 varr))

Then, by definition of o we have that there is some T} such that [B, [0 Var||F||ﬂ|t|yr.T0|| =T/
and I'Ty + Ty[r.varg] = T] type. We know that I'.'Ty + r.varg = id : Ty as r = p! and so
[Ty + Ty = T, type by transitivity.

However, by inspection on the definition of quotation this tells us that [TI(A, B)]
I(Ty, T)) and T + I1(Ty, Ty) = II(T;, T{) type by congruence.

Subgoal.

ty _
el =

Foranym < n, T, ¢, T, 0, if T bpy t : T ® v €, II(Ag, By) then we have
“,H(AO’BO) U]”r” =t andT+t=1t":T.
Suppose we have m < n, T, t, T, and v such that T v, ¢ : T ® v €, I1(Ay, By).
We wish to show [|(4o-5o) vljry=t'and’'+t=1":T.
First, we invert upon T +,, t : T ® v €, A to determine that there must be some Ty and T;
suchthatT' v T =II(Ty, Ty) type, T+t : T,and m - v ~ v € R. We have T +-,, Ty ® A, type,,.
We also have that for any m’ < mand r : I” < T that if I” +,y t' : Ty[r] ® a €, A, then
I by t[r](t) : Ta[r.t'] ® app(v, a) €4 Bolal.
Now, from our assumption that ' +,, T, ® A, type, and monotonicity, we have that
[.Ty b To[p'] ® Aj type,. We may then use o |=p,, Ay ~ Aj to conclude that . Ty +, var :
To[pl] ® TAO var|r| €a Ap.

We may use this fact to conclude the following:
Ty b t[pl](varo) : Tl[pl.varo] ® app(v, TA“ varr|) €a BO[TA“ varry ]
By closure under = we may simplify this:
.To b t[p'](varg) : T, ® app(v, 1 var|r)) €q Bo[T™ var ]

Now, we know that m I T4 varr| ~ 140 var|r| € Ry either from Lemma 3.2.7 or from
Lemma 4.2.1. We then have o |5, Bo[1 var)r] ~ Bo[1* var|r] and so we may conclude
that there is some ¢’ such that the following two conditions hold:

A var ’
(LBl app(o, 14 varye) lyrjer = ¢
Ty + t[pl](varo) =t T;

But, we then have that [|"(4o-50) olyry = At"and I' + t = At' : II(Tp, Th) by eta and
congruence.

Subgoal.

Foranym < n, T, t, T, ifT vy, T ® II(Ag, By) type,, I + t : T, and if for some ¢
we have for allr : T' < T we have [e]r = t" such thatT" v t[r] = t’ : T[r] then
Trmt:T® e e, II(Ag, By).



CHAPTER 4. SOUNDNESS OF NORMALIZATION 56

Case.

Suppose we have m < n,T',t, T, and e such T Fp,, T ® II(A,, By) type, and if for some ¢ we
have for all  : T” < T we have [e] = t" such that T + t[r] = ¢" : T[r].

We wish to show thatT +,, t : T ® TH(AO’BO) e €4 II(Ap, Bp).

First, we invert on I’ +,, T ® A type,, to conclude that there is some I' F II(Ty, T;) = T type
such that T' +,, Tp ® A, type,. We must have that if m’" < mand r : I" < T such that
I bt/ To[r] ® v €4 Ag then we have I Fpy Ti[r.t"] ® By[v] type,,.

We wish to show Iy, t: T ® TP ¢ e, A,

We merely need to show that if we have some m’ < mandr : IV < T such thatT’ +,, t’:
To[r] ® a €, Ay then the following holds:

T b tr]() s Ti[r '] ® QQQ(TAO e,a) €4 Byla]

Observe that app(T'40-50) ¢, g) = 15olal ¢ app(| 4 @) and By[a] is defined from our assump-
tion of o |=, Ry > By ~ B holds and since m - a ~ a € Ry by Lemma 4.2.1. Since
e.app(l”° a) is a neutral so we will apply our induction hypothesis.

First, we have that for all 7" : T”” < I that [ [ al|r = tq for some t, such that T + t'[r'] =
tq : To[r o '] from our induction hypothesis.

Now, we had by assumption that r’ : I < T [e]jr = tr for some tf such that I'” +
tlr or’] =t, : To[r o r’]. We have made use the functoriality of explicit substitutions here
along with the transitivity of definitional equality.

Now finally, this tells us that for any r’ : I”” < I”” that [e.app(|*° @)]jr| = t: such that
T v t[r](t)[r'] = t; : Ty[(r.t") o r’]. We may then use the fact that o |=, By[a] ~ Bi[a] to
conclude that I ,,y t : T ® 14050 ¢ e, TI(A,, By) as required.

o Fn Ao~ AL L Ry 0 [Fn Ry > By ~ B1 | Ry R = [Z](Ro, Ry1)
Sglo] Fn 2(Ao, By) ~ 2(A1, B1) L R
We wish to show o |=, X(Ag, By) ~ (A1, B1) | R. We observe that ¢ < 7, and so we have

Sglo] I=n Z(Ag, By) ~ 2(A4, B1) | R. By definition of 7, we have 7, |=, X(A¢, Bo) ~ 2(A1,B1) | R.

Therefore, we must show three more facts:

Subgoal.

Foranym < n, T, T, ifT +,, T ® X(Ay, By) type, then there is some T such that
rA]ltlyr” =T andT+T =T type.

Identical to case for IT(—, —).
Subgoal.
Foranym < n, T, t, T, v, ifT bp, T ® X(A¢, By) type, andT bt : T ® v €,
¥(Ao, By) then we have [|>Ao-Bo) vljry=t' andT' +t=1":T.
For this, suppose we have m < n, T, t, T,and v. f we have T' -, t : T ® v €, %(Ay, By) then
we wish to show [|*(40-50) oljry =t'andT -t =1¢":T.
First, we perform inversion on T +p, ¢ : T ® v €, %(Ay, By). This tells us that the following
facts hold:
smrov~v€E€Randl+t:T;
s '+ T = 3(Ty, T1) type for some Ty, Ty;
wifm’" <mandr:T" <T,thenT’ t,y t': To[r] ® a €, A implies I’ +p,y Ty[r.t'] ®
BO[a] typea;
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Case.

w Tk fst(t) : Ty ® fst(v) €, Ao;

n T kp, snd(t) : Ty[id.(fst(2))] ® snd(v) €, By[fst(v)].
Now, we have ¢ |=, Ay ~ Ay and so [ fst(v)1r) = tr such that I' - fst(t) = 17 : To.
Furthermore, since m I fst(v) ~ fst(v) € Ry we must have ¢ |=,, Bo[fst(v)] ~ Bo[fst(v)].
Therefore, we may conclude that [|Polfst(®)] snd(v)]r| = ts such that I' + snd(t) = t; :
Ti[id.(fst(2))].
Now from these two facts, we have [|>40-50) ] ity = (tr.ts) and soT' v t = (tf,t5) : T by
congruence and eta.

Subgoal.

Foranym <n, T, t,T,ifT'+t:T andT +,, T ® (Ao, By) type, and if for some e
we have for allr : T' < T we have [e]r| = t" such thatT’ v t[r] = t’ : T[r] then
Thpt:T® 7205 e e, 3(A, By).
Suppose we have somem < n,I',T' ¢t : T and that T +,, T ® X(A,, By) type,. Suppose
further that there is some e such that for all 7 : T” < T we have [e]p =t and " + t[r] =
t’ : T[r]. We wish to show that T F,, t : T ® 7>A0-B0) ¢ e, 3(Ao, By).
First, we observe by inversion that that we must have I' + T = X(Tp, T;) type such that
I b To ® Ag type, and for all T kp, £ : Ty ® vp €4 Ay we also have I F, Ti[id.t;] ®
Bo[vr] type,,.
Now, in order to show ' +,,, t : T ® TZ(AU’BU) e €4 %(Ay, By) it suffices to show the following
two facts:

T b, fst(t) : Ty ® fst(17A0 50 ) e, Ay
T b snd(t) : Ty[id.(fst(£))] ® snd(1774P) ¢) €, Bo[fst(174F) )]

We show the first by observing that fst(1>(40-50) ¢) = 140 ¢ fst so it suffices to show that for
any r : I'" < T we have [e.fst]pr = t" and I + (fst(¢))[r] = t' : Ty[r]. This conclusion is
immediate by the definition of quotation and our assumption that this holds for ¢ and e.
We then have that T +,, Ty[id.(fst(¢))] ® Bo[T4 e.fst] type,. Therefore, By[T e.fst] termi-
nates and so snd(]>(40-B0) ¢) = PBolT70e.fstl

In order to show the second part, then, it suffices to show r : I'" < T' we have [e.snd ]| =t/
and I'” + snd(t)[r] = t’ : To[(id.(fst(2))) o r].

This is similar to the case for the first projection: it follows from the definition of quotation
and our assumption that this holds for ¢ and e.

Vm.o |Em Ao~ A1 L S(m)  R=[o](S)
Box[o] |F, OA) ~OA; | R

We wish to show o |=, 0OAg ~ OA; | R. We observe that o < 7, and so we have Box[o] |=,
OAy ~ OA; | R. Therefore, we may conclude 7, |=, OAy ~ OA; | R. Therefore, we must show
three more facts:

Subgoal.

Foranym < n, I, T, ifT +, T ® DA, type, then there is some T’ such that

rqu]hyr” =T andT +T =T type.
Suppose we have m < n,I', T and T +,, T ® OA, type,. We wish to show that we have

some T’ such that |'|:|A()'||t|>1'.|| =T andT + T =T type.



CHAPTER 4. SOUNDNESS OF NORMALIZATION 58

Case.

First, we invert upon on T ,, T ® OA, type,, we then must have that T + T = 0T’ type
and for all m, we have T.@ +,, T’ ® A, type,. Since o |=,, Ay ~ A; we may then use the
latter fact to conclude that |'A0'||t|)1'_|| = SsuchthatT + T’ = S type. By definition, we must

have |'DA0'||t|’;” = 0S. Finally, T + T = OS type by transitivity and congruence.

Subgoal.

Foranym < n,T,t,T,0,ifT by t : T ® v €, OA, then we have 4 vlr) = t" and
F'rt=t":T.
For this, suppose we have m < n, I, t, T, v such thatT +,, t : T ® v €, OA,. We wish to
show that the following holds: [|%4 vljry=t'and’'+t=1t":T.
We first perform inversion on T +,, t : T ® v €, OA,. We then have the following facts:

smiro~veERandT+1t:T;

» '+ T =0T’ type for some T’

» forallm, T.@+,, [t]gp: T’ ® open(v) €, Ay
We have o [, Ay ~ Ag by assumption, so from @+, [t]g : T’ ® open(v) €, Ay we may
conclude that there is some ¢’ such that [ | M(vﬂurﬂn =t suchthatT.@+ [t]gp=1t":
T’. By definition of quotation then, we have that [ |74
have I' + [[t]p]la = [t']a : OT".

v]r) = [t']a and by congruence we

Subgoal.

Foranym < n,I,t,T,ifT vt : T andT +,, T ® OA, type, and if for some e
we have for allr : T' < T we have [e]r| = t" such thatT’" v t[r] = t’ : T[r] then
Th,t:T® T e e, OA,.
Suppose we have m < n,I',t, T suchthatT + ¢ : T and T +,, T ® OA, type,. Furthermore,
suppose we have ¢ we have for all ¥ : I” < T' we have [e]r| = ¢’ such that I + t[r] = ¢ :
T[r]. We wish to show T Fp, t : T ® T ¢ €, A.
We start by performing inversion onT +,, T ® A type,. This tells us that there is some T’
such that ' + T = OT" type and for all m’ we have T.@ +,, T’ ® A’ type,.
We also observe that for any r : T” < I'.&@ we have r : I"® < T’ by Lemma 1.2.11. Therefore,
we have [e.open]|r | = [t']4 Where [¢] e = t’ such that T + ([t]g)[r] = t' : T'[r] from
our assumption about quotation.
Next, observe that e.open is a neutral. From our prior assumptions then we have that
T8+, [tle: T’ ® 7% c.open €, A,. This is sufficient to give us the goal.

R={(m 1% ¢, 1% ¢)) | ey ~ e, € Ne}
Nel=p, T eo~T e lR

We must show o |=, 17 ¢y ~ 77 e; | R. We therefore immediately have z, =, T7 ey ~T7¢; | R.
We just need to show three facts then.

Subgoal.

Foranym < n, T, T, ifT v, T ® 17 ¢, type, then there is some T’ such that

1~ eo'||t|>1'.” =T andT +T =T’ type.

Suppose we havem < n,I', TandT +,, T ® 1~ ¢, type,,. We wish to show that we have some
T’ such that [T~ e()]fﬁ’,” =T andT + T =T’ type. By inversiononT +,, T ® T~ ¢, type, we
have that [e;]jr) = T"and T' + T[id] = T’ type completing the proof.

Subgoal.
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Foranym < n,T,t, T, v, if T by t : T ® v €4 1™ €y then we have [lT_““ oliry = t’
andTrt=1t":T.
For this, suppose we have m < n, T, t, T,vsuchthatT +,, t : T ® v €, 1~ ¢. We wish to
show that the following holds: [|T ¢ vljry=t'andT'+t=1":T.

In this case, we have by inversion that v = T~ ¢ such that [e¢]r| = ¢’ such that ' +- t[id] =
t’ : T[id]. Our goal follows from transitivity and conversion.

Subgoal.

Foranym < n, T, t,T,ifT' vt :T andT v, T ® T~ ¢, type, and if for some e
we have for allr : T' < T we have [e]r| = t" such thatT" v t[r] = t’ : T[r] then
Thpt:T®T e e, A

Suppose we have m < n,TI',t,TsuchthatT'+¢t:TandT' +, T ® 1" ¢, type,. Furthermore,
suppose we have ¢ we have for all r : I” < T we have [e]r| = t" such that I + t[r] =t :
T[r]. We wish to show Tk, t : T ® 11 “ ¢ €, A. This is immediate by definition.

Case.

Nat |=, nat ~ nat | [N]
We have immediately that 7, |=, nat ~ nat | [N]. We must show the next three facts.

Subgoal.

Foranym < n, I, T, ifT v, T ® nat type, then there is some T’ such that

[nat] Itl);ll =T andT + T = nat type.

Since nat and the fact that we have by inversiononT +,, T ® nat type, thatI' - T = nat type
and so the goal follows by computation.

Subgoal.

Foranym < n,T,t,T,v, if T by t : T ® v €, nat then we have [|™ vl =t
andT+t=1t":T.

For this, suppose we have m < n, I, t, T, v such that T +,, t : T ® v €, nat. We wish to

show that the following holds: [|"™ 0]ry =t and '+t =1":T.

We observe that T +,, t : T ® v €, nat is inductive so we proceed by induction. We must

prove three cases.

1. In the first case we have I' + T = nat type, I' - t = zero : nat, and v = zero. Therefore,

our goal is immediate by computation.

2. In the second case we have I' + T = nat type, I'  t = succ(t’) : nat, and v = succ(v”)
such that T +,, t' : T ® v’ €, nat. Our induction hypothesis tells us that there is
some s such that [|™" o"]jr = s such that I' + t’ = s : nat. Thus, by congruence and
computation we’re done.

3. In the final case we have I' + T = nat type, v = 1™ ¢ such that [e]yr; = ¢’ and
I+t =t’: nat. This is exactly the goal however.

Subgoal.

Foranym < n, T, t,T,ifT +t:T andT rp T ® nat type, and if for some e we
have for allr : T < T we have [¢]r = t’ such that T’ v t[r] = t' : T[r] then
Thmt:T® ™ e ey A

Immediate by definition of T -, ¢ : T ® 1" ¢ €, nat
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Case.
GlZnAONAll,R nikovy~u) €R nkov ~u €R

Id[o] =, Id(A, vo, v1) ~ Id(Ay, ug, u1) | [IdI(R, uo, uy)

We immediately have 7, |=, Id(Aq, vo, v1) ~ Id(Ay, up, u1) | [Id]I(R, uo, u1). We must show the
next three facts.

Subgoal.

Foranym < n, T, T, ifT +p, T ® Id(Ay, vo, v1) type, then there is some T’ such that
[Td(Ay, vo, Ul)-lltl);ll =T andT + T =T type.
We have by inversion on I +,, T ® Id(Ay, vy, v1) type, that T + T = Id(T", ty, t;) type such
thatT' +,, T" ® A type, and T+, t; : T" ® v; €4 Ag. We observe that from our assumption
of o = Ag ~ A | Rthat there must be some T such that [Ao]ltl’;” =T andT + T" = T} type.
Furthermore, we must have that [ vilyry = t; such that T' + t; = ¢/ : T’, again from
o |=n Ay ~ A1 | R. Therefore, we have [1d(Ag, vy, vl)]ﬁ’;” = 1d(T",t;,t]). Finally, by
congruence we then have I' + T = Id(T’, t, t;) type.
Subgoal.

Foranym < n, T, t, T, 0, ifT +pp t : T ® v €, Id(Ag, vy, v;) then we have

rlld(A“’vo’vl) Z)-|||r|| =t andT+t=1t":T.
For this, suppose we have m < n, T, t,T,vsuchthatT +, t : T ® v €, [d(Ag, vy, v;1). We
wish to show that the following holds: [|'d(40-20-21) 3] iy =t andT+t=1¢":T.
We proceed by inversiononT +,, t : T ® v €, Id(Ao, vy, v1). We therefore conclude that
mirov~v e [ldJ(Rup,u), T+t :T,T+T=I1d(T" to,t,) type, T kp, T ® A, type,, and
Trmti: T ®o; €4 Ag. We also have that one of the following two facts is true:

» v =1 eand whenr :T” <T, then [e]r = t' such thatT" + t[r] = ¢": T[r].
s T+t =refl(t’): T and v = refl(v’) for some t’,v" suchthat T+ ¢’ =¢; : T'.
We proceed by cases on which fact holds. If v = 1~ ¢ and when r : T” < T, then [e]r =t/
such thatI'" + t[r] = t' : T[r] then we have the desired conclusion immediately by picking
r=id.
Instead, suppose that ' + ¢t = refl(¢’) : T and v = refl(v’) for some t’,v” such that T + ¢’ =
t; : T’. In this case we have m I+ v’ ~ vy € Ras m I refl(v”) ~ refl(v”) € [Id]|(R, up, u1) and
ni uy ~ vy € R. We may therefore conclude that m +r ty : T" ® 0" €, Ap from Lemma 4.3.5.
By induction hypothesis, then, we have that there is some #4 such that [ | v"]r = ¢, and
'+ ty = tq : T'. Therefore, by transitivity of equality we have I' - ¢’ = t, : T”. Finally, since
[[1d(40,0.21) ref](v')] ir) = refl(tq) by definition we are done by congruence.
Subgoal.

Foranym < n,I,t,T,ifT vt : T andT rp, T ® Id(Ay, vy, v1) type, and if for some

e we have for allr : T’ < T we have [e¢]r = t" such thatT’ + t[r] = t’ : T[r] then

Tk t: T ® T9A020.00 0 e Td(Ay, vo, 01).

This is follows immediately from the definition of T +,,, t : T ® TId(A(”UO’Ul) e €4 Id(Ay, vg, v1).

Case.
j<a R={(m,A0,A1)|Tj =m Ao ~ A}

Univ, |=, Uj ~U; | R

We have immediately that 7, |=, U; ~ U; | R. We must show the next three facts.

Subgoal.
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Foranym < n, I, T, ifT +, T ® U, type, then there is some T" such that
rUj]hyr” =T andT+T =T type.
We have by inversiononT +,, T ® U; type, that T + T = U; type and so the goal follows
by computation.

Subgoal.
Foranym < n,T,t,T,v, if Tk t : T ® v €, U; then we have Y vljr) = t’ and
F'rt=t":T.
For this, suppose we have m < n,T',t, T,vsuchthatT +,, t : T ® v €, U;. We wish to show
that the following holds: [|% v]jry = ¢ and T+t =1t": T.

By inversion, we have I' + t : T,T + T = Uj type, m r v ~ v € R,and I by, t ® © type;.
However, our induction hypothesis (recall that we had proceeded by induction on « and
J < @) applied to the last fact gives us the goal immediately.

Subgoal.
Foranym < n,T,t,T,ifT' vt : T andT +p,, T ® Uj type, and if for some e we
have for allr : T < T we have [¢]r = t" such that T’ v t[r] = t' : T[r] then
Thmt:T® e e, Uj
This is Lemma 4.3.10 after unfolding T+, t : T ® 1Y% ¢ €, U;. ]

Corollary 4.3.12. IfT +, Ty ® Atype, andT +, T ® Atype, thenT + Ty = T; type.

Proof. From Lemma 4.3.11 we have that [A'||t|¥|| =T suchthatT + Tp = T" typeand T + Ty = T’ type.

Therefore, the conclusion follows from transitivity. O

4.4 Soundness

Lemma 4.4.1. Any substitutionT + § : A.A is definitionally equal to a substitution of the form §’.t.

Proof. We observe that T +ido§ = & : A.Aand thus T + (p'.varg) o § = § : A.A. Finally, this gives us
the goal:
Tr(p'od)var[d]=65:A.A |

Lemma 4.4.2. IfT ctx thenT v id : T¥.@
Proof. Immediate by the lifting rule. O

Before stating soundness recall that by completeness (Theorem 3.3.5)if T' + T typeandn I- p; = p, : I’
then 7, =, [T1,, ~ [T1,,-

We must also extend our logical relation to substitutions now. This defines a relation A +, § : T ® p.
This relation is defined by induction on I'. We shall say that A +,, § : T ® p holds when one of the
following cases apply:

s AR, -®-ifAFS: -
s A, 6 :T.T® poif:

- Ar8=56".t:T.T for some &', t;

To En [[T]]p ~ [T]]/ﬁ
Abnt T[] ® v €y [T],:
A+, 6 :T®p
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Av, 5 :T.&® pif A ctx and there exists some m such that A¥ +,, § : T ® p.

We now prove some facts about this definition.

Lemma 4.4.3. A+, § : T ® p is monotone in both n and A (the latter with respect to weakenings).

Proof. This is a corollary of Lemma 4.3.1. O

Lemma4.4.4. IfA+, § : T ® p then A ctx.

Proof. Follows immediately by case on T O

Lemma4.4.5. IfAv+, 6 : T® pand A+ 6, =68, : T thenAvr, 5, : T ® p.

Proof. Follows immediately from the transitivity of = and by induction on I'. O

Lemma 4.4.6. If A+, & : T ® p then there exists an m < n such that A% r,, § : T% ® p.

Proof. This follows by induction on I'.

Case.

Case.

Case.

Ir=-

In this case we must show A% +,, § : - ® pandso A+ § : - and p = -. The conclusion follows by
Lemma 1.2.5.

r=r.7

In this case we must show A% +,, § : T"*.T ® p. We start by observing that A + § = §.t : I".T
such that 7, =, [T], ~ [Tl,, A +n t : T[0'] ® v €, [T], and A +, 6" : T” ® p. By
induction hypothesis we have that there is some m < n such that A% +,, §" : T"¥ ® p. We have
A% vt T[6] ® v e, [T], by Lemmas 4.3.1 and 4.3.2. We have 7, |=,» [T], ~ [T], by
Lemma 3.2.5. Finally, we have A% + § = §’.t : T".T from Lemma 1.2.10.

r=r'.a

In this case we must show A% +,, § : T’® ® p. We start by observing that there is some m such
that A +,,  : T’ ® p and A ctx. By Lemma 4.4.3 we may assume that m < n. Next, by induction
hypothesis we have A% ,, § : T"® ® p as required. We have A¥ ctx from Lemma 1.2.5. ]

We can now define an auxiliary predicate which we will use to prove soundness:

I'E, T type =
Vm<nAvryny:T®)p = Ar, Tyl ® [T], type,,
Fe,t:T=
Vm<n Avrymy:T®)p = Arp tly]: Tyl ® [t], €, [T,
e, 6:AZ
Vm<n T bpy:T®p = I+, oy : A®[6],

Theorem 4.4.7 (Soundness). The following facts hold:

1

2.

IfT + T type thenT k, T type for any n.

IfT v t:T thenT &, t : T for any n.
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3. IfT+6:AthenT k, & : A foranyn.
Proof. We prove these facts by mutual induction on the input derivation.
1. T + T typethenT k, T type for any n.

Case.
T ctx

I'+ U; type
In this case we have no induction hypothesis and we wish to show I £,, U; type for all n.
In order to show this, suppose we have m < n, A+, § : I ® p. We must show A +p,
Ui[8] ® [[U;]l, type,,. First, we observe that [U;]l, = U; by definition independent of p.
Therefore, in order to show A +,, U;[6] ® [U;], type,, we merely need to show that i < w
and A + U;[8] = U; type. Both are immediate.

Case.
T ctx

I' + nat type

In this case we have no induction hypothesis and we wish to show I' k, nat type for all n.

In order to show this, suppose we have m < n, A +,, § : I ® p. We must show A +,,

nat[6] ® [[nat]|, type,,. First, we observe that [nat]], = nat.
Therefore, in order to show A ,, nat[§] ® nat type,, we merely need to show A + nat[5] =
nat type. Both are immediate.

Case.
C.&FT type

I' - OT type

For this, we have by induction hypothesis that I'.@ £, T type for all n. We wish to show
I' £, OT type for all n. Suppose we have some arbitrary n and suppose that we have some
m<nand A Fp, §: T ® p. We must show A Fp,, (OT)[6] ® [OT], type,,.

We have A ctx from Lemma 4.4.4. Therefore, A% F id : A from Lemma 1.2.5. Next, we use
Lemma 4.4.3 with A F,,, § : T ® p to conclude that A% ,,, § o id : T ® p. By Lemma 4.4.5 we
then have A% +,, § : T ® p. Finally, by definition we may conclude that A.@F,, 6 : T.&® p
for all m’.

We may then instantiate our induction hypothesis with this fact to conclude that for all m’
we have A.@+,, T[5] ® [T], type,,.

Next, we have by definition that [OT], = O[T],. Again by definition we have that A +,,
(@D)[6] ® o T], type, holds if and only if there is some T’ such that A + (OT)[5] =
0T’ type and such that for all m’ we have A.@ +,y T" ® [T], type,. For this, we pick
T’ = T[5]. We have A + (OT)[6] = OT’ type and the next goal follows from our instantiated
induction hypothesis.

Case.
I'+T type 'rt;: T

T+ I1d(T, ty, t1) type
First, we have by induction hypothesis that ' k,, T type and T £, t; : T. We wish to show
T'E, ld(T, to, tl) type.

we suppose we have some m < n, A+ § : T such that A +,, 6 : T ® p, we wish to show
A b (1d(T, to, 01))[6] ® [I(T, to, 11)]l, type,,.
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First, we observe that we have A +p, T[6] ® [T], type,,, A+ to[S] : T[6] ® [[to]l, €0 [T1,,
and A b, 18] : T[6] ® [t1], €0 [T1,-

We observe next that in order to prove our goal that it suffices to show the following:

A b (T[], [5], 11[61) ® IA([T T, [t0]lp, [1111,) type,,

Therefore, we must show the following facts:
» T+ Id(T[6], to[6], t1[S8]) = Id(T", t;, t]) type for some T”, t;, t;;
» T, T"®[T], type,;
s Drpt): T ® [[ti]l, €q [T], fori € {0,1}.
The first of these follow by reflexivity and the remaining two follow our induction hypothesis.

Case.
I'+T; type I'Ty + T, type

['+ 11Ty, T2) type

First, we have by induction hypothesis that I' &, T; type and I'.T; k, T, type. We wish to
show Tk, II(T3, T;) type. Therefore, we suppose we have some m < n, A + § : T such that
Atrp §:T ® p, we wish to show A +p, II(Ty, T,)[6] ® [TI(T3, T2)], type,,.

First, we observe that the following holds:
A+ T(Ty, T5)[8] = IT1[8]. To[(8 © p").varo]) type

Therefore, by Lemma 4.3.6 it suffices to show A +,, II(T1[8], T2[(6 o p').varo]) ® [II(Ty, T2)] , type,,.
By calculation, we have [II(Ty, T)] , = II([T1] ,, T><p).
Now we may unfold this definition and see that we must show the following:

* At T) ® [T1], type,,

wifm" <mandr: A <Asuchthat A"+ t: T/[r] ® a €, [T1], then A" +py T)[r.t] ®

[[TZ]]p.u typew

For some T/ such that A + II(Ty[8], T2[(6 o p').varo]) = II(T{,T;)) type. Now such a T/ is
straightforward.
Next, we have A +p,, T1[6] ® [T1], type,, from our induction hypothesis and the fact that
Ay 6:T® p.
Therefore, suppose we have some m’ < mand r : A’ < A along with A" v, t : T;[5][r] ®
a €, [T1]l,- We wish to show this:

A, e TZ[(5 ° r)-t] ® [[T2]]p.a typew
In this, we have simplified the goal using the following fact:
AN v ((§oph)varg)o(rt)y=(Sor)t:A

In order to show this, we will use our induction hypothesis: I'.T; £, T, type. It will suffice
to show A’ v,y (6or).t : I.T; ® p.a. In order to show this we must show A’ +, t :
Ti[or] ®a €, [T1], and A" +yy o7 : T ® p. The first follows from our assumption
of A by t 2 T1[6] ® a €, [T1]], and Lemmas 4.3.1 and 4.3.2. The second follows from
Avrpm 6 :T ® pand Lemma 4.4.3.

Case.
T'rT type I'Ti+ Tz type

T+ 3(Ty, Ty) type

This case is identical to the previous case.
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Case.
I'-T:U;

' T type

In this case we have I' £, T : U; and we wish to show I £, T type. Suppose we have some
m<nandAré:Tand Arp §:T ® p, we wish to show A+, T[5] ® [T], type,,.

We observe that from our induction hypothesis we then have the following:
A Fm T[é] : U; ® [[T]]p €, U;
By inversion then, we have A +,, T[6] ® [T], type;. Since i < w we have the desired

conclusion from Lemma 4.3.8.

Case.
F'ré:A A+ T type

I+ T[6] type

In this case we have A £, T type and I £, § : A by induction hypothesis and wish to show
m + I typeT[5]. Suppose we have some m < nand A’ + " : Tand A" +,, §' : T ® p, we
wish to show A"k, T[§ 0 8] ® [T], type,,.

First, we observe that A’ + §0 ¢’ : A. Furthermore, from A’ &, § : T we have that
AN by 506" : T ® [J],. We may then instantiate our other induction hypothesis with
this to conclude that A’ +,, T[§0§'] ® [T1gsy, type, holds. By definition, we have
[TTysy, = [T[611, concluding this case.

2. fT+t:TthenT k, t: T for any n.

Case.
LT cx @eh k=Tl

I.T.I, + varg : T[pk]

In this case we have no induction hypothesis. We wish to show Iy.T.I, k£, varg : T[p*].
Suppose we have m < n, A+ 6 : I1.T.I;, and A +p, 6 : I1.T.I; ® p. We wish to show the
following:

A by varg[8] : T[p* 0 8] ® [vark]l, €, [TIp 11,
We observe that since @ ¢ I we have by inversion on A +,, § : I).T.I, ® p that p =
plop...opand A F § = 8 tyty : T1.T.Ip suchthat A by, 6" : T} ® p and A vy, 8 :
T[] ® v €, [T],.
Next we observe that [vari], = p(k) = vy and A + varg[d] = t; : T[8’]. We note that
A+ p¥ o8 =8":T; and so we may turn the latter fact into A + varg[§] = t; : T[p* o §].
From this equality of substitutions we also have A F,, #; : T[pF o8] ® v, €, [T] Py
by Lemma 4.3.6. By calculation we also have that [T], = [Tp*11 » and so we have
Avpty: T[pF 0 5] ® vy €, [[T[pk]]]p.
Finally, we are done by Lemma 4.3.7 and A r vari[8] = t; : T[p* o §].

Case.
Tk To type FTO Ftc Tl

Ik A(t) : H(T(), Tl)

In this case, we have I' £, Ty type and I'.Tj £, t : T by induction hypothesis. We wish to
show I' Fn A(t) : H(T(), Tl)

Suppose we have some m < n, A+, § : I ® p. We must show the following:

A b AD[8] = IX(To, T)[8] ® [[At]], €0 [T1(To, T,
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First, we observe by calculation that [A(t)], = A(t<p) and [II(To, T1)]l, = II([To]l,, T1<ip).
Next, we will use the following two definitional equalities.

A+ II(Ty, T1)[8] = TI(To[5], T1[6 o p'.varo]) type
A+ (A1))[S8] = At[S o p*.vare]) : I(Ty, T1)[5]

We may then simplify our goal by Lemmas 4.3.6 and 4.3.7 to the following:
A b A(t[S 0 pt.varg]) : TI(To[S], T8 o pt.varg]) ® A(t<p) €, I([To]l,,, Tr<p)

In order to show this, we unfold the definition. It suffices to show that two facts hold:
Subgoal.
A Fm T0[5] ® [TO]]p typew
This follows from our induction hypothesis. We instantiate I' £, Ty type with m < n
and A +,, § : T ® p and the conclusion is immediate.
Subgoal.

Forallm’ <mandr: A" < Aif A bpy t' : Ty[§ o r] ® v €, [To]], then we have the
following:

A by (A(E[8 0 p*varg))[r](t") : Ti[8 o p.varo][r.t'] ® app(A(t<ip), v) €, Ti<p[v]
First, we use Lemmas 4.3.6 and 4.3.7 again to simplify our goal to the following:
N by t[(§or).t']: Ti[(§ o).t T® [[t]p.0 €0 [Tillp.0

In order to show this we will use our second induction hypothesis. We pick m’ < n by
transitivity. If we can show that A’ +, (§ o r).t’ : T.Ty ® p.v we are done. We observe
from the definition that since A"+, t' : Ty[6 o r] ® v €, [To]l, holds by assumption
we merely need to show A’ +,, § or : T ® p. Next, by Lemma 4.4.3 it suffices to show
A b 6 : T ® p but this is immediate by assumption.

'+ Ty type I'To + T type I'kty: H(Tg, Tl) I'rt: Ty
T Fto(ty) : Ty[id.t]

We have by induction hypothesis that I i, Ty type, I'.Ty £, T; type, ' kp, to : II(Ty, T7) and
T &yt 2 Ty. We wish to show Tk, to(ty) : Ti[id.ty]. We set T = II(To, Ty).

Suppose we have some m < n, A+, § : I ® p. We must show the following:

At to(t1)[0] : Ta[(id.t1) 0 6] ® app([to]lp, [t:1,) €0 [T1ll, 1111,

We instantiate our induction hypotheses with m, §, and p. We then have A v+, ty : T[6] ®
[[tO]]p €w [[T]]p and A by, ty 2 T[] ® |It1]]p €w [[TO]]p-

By inversion on the first of these facts we must then have that there is some T, and T, such
that A +,, Ty ® [To], type, and such that for all A +,, t' : T) ® v €, [To]], we have
Ak to(t7)  T{[id.t'] ® app([[to]l o, ) €0 [T11lp.0

Now, we observe that by Corollary 4.3.12 we must have A + To[6] = T type. Therefore, from
our second induction hypothesis and the second fact we have obtained from inversion, we
may conclude the following:

Atrm tO(tl) : T{[id-tl] ® [[tO(tl)]]p €w [[Tl]]p.[[tl]]p
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In order to obtain the desired conclusion, therefore, we must show that A + Ti[8.t;] =
T/[id.t;] type holds. This follows form Corollary 4.3.12 and our induction hypothesis of
[.Ty £, Ty type. From the latter we have A +,, T1[id.t;] ® [[Tl]]p.[[t]]]p type,,. From our earlier
conclusion and Lemma 4.3.9 we may have A +n, T/[id.t;] ® [T1], [, type,. Therefore,
we have the desired equality of types by Corollary 4.3.12.

Case.
I'rA:U; I'A+B:U;

T+ II(A, B) : U;
Identical to the case for T' + TI(A, B) type.

Case.
I'rty: Ty I'Ty+Th type I'-t: Tl[id.to]

T+ (to, t1) = 2(To, Tr)

In this case, by induction hypothesis we have I' &, t, : Ty, [.To E, Ty type, and T E, t; :
Ti[id.ty]. We wish to show T k,, {to, t1) : 2(Tp, T1).

Suppose we have some m < n, A+, § : I ® p. We must show the following:
A by (o, 1) [8] : C(To, T)S] ® [[{to, t1) ], €0 [2(To, T,

First, we observe that [%(To, T1)]l, = Z([Toll,» [T1],)- Therefore, we must show that that
A+ (3(To, Th))[6] = (T3, T)) type, A + (to, t1)[6] : Z(T;j, T{), and the following three facts:
a) Vm' < myr : A S AN byt T[] ®a €, [T, = A by T][rt'] ®
Ti<pla] type,
b) At to[6]: Ty ® fst([[to, t1)],) €0 [Toll,
) Abm t1[6]: T][id.1to[6]] ® snd([(t0, t1) 1) €0 Tr<plst([(to, t1)1,)]
We have simplified these goals without further comment by Lemma 4.3.7 to save space.
We choose Tj = Ty[§] and T = T;[(6 o p').varg]. This immediately gives us A + (to, t;)[5] :
%(Ty, T]) so we merely need to show the above three facts.

The first fact then follows from our induction hypothesis of I'.'T; k, T; type. For the
second, we observe by that fst([{to, t1)],) = [to]l, and so this goal is precisely our induction
hypothesis of T' ¥, #, : Ty. For the third, we observe that snd([{t, t:)],) = [t:],. This
simplifies our goal to the following (again using Lemma 4.3.7):

A b t1[6] : Th[6.50[0]] ® 1], €0 (721, 1201,

This is again handled by our induction hypothesis.

Case.
T'v Ty type I'rt: Z(To, Tl)

I'r fSt(t) : Ty

In this case we have by induction hypothesis that T k£, Ty type and T k,, t : 3(Tp, T1). We
wish to show I k,, fst(t) : To.

Suppose we have m < nand A +,, § : I’ ® p. We wish to show the following:
A by (fst(0))[0] : To[5] ® fst([[2]],) €0 [Toll»

We start by instantiating our induction hypothesis of T £, t : X(Tj, T1). This tells us that the
following holds:

A b t[8] : Z(To, T[S] ® [[t]l, €0 [Z(To, T,



CHAPTER 4. SOUNDNESS OF NORMALIZATION 68

Therefore, we have A + X(To, T1)[6] = 2(T;,, T{) type such that, in particular, A +p, fst(¢[4]) :
T, ® fst([t],) €, [Toll,- Now we may use Corollary 4.3.12 with T £, T, type to conclude
that A + Ty[8] = T type. Finally, by Lemmas 4.3.6 and 4.3.7 we then have the desired goal:

A by (fst(0))[6] : To[5] ® fst([[t]],) €o [Toll

Case.
I'+ Ty type I.Ty + Ty type Trt:2(To, Th)
I+ snd(¢) : Ti[id.(fst(¢))]

In this case we have by induction hypothesis that I' £, Ty type, I'.Ty £, T; type and
T &yt 2X(Ty, T1). We wish to show Tk, fst(t) : To.
Suppose we have m < nand A +,, § : I ® p. We wish to show the following:

A b (snd(£)[8] : Ta[8.fst([6])] ® snd([t]l,) €w (T2l fest(e,

We start by instantiating our induction hypothesis of T £, ¢ : X(Tj, T1). This tells us that the
following holds:

A b t[8]  (3(To, TO)S] ® [t1l, €0 [2(To, TV,
Inversion on this tells us that there is some A + (2(Ty, T7))[] = 2(T,, T]) type such that the
following holds:
Ak fst((t[0])) : Ty ® fst([1],) €0 [Toll,
A b snd((¢[8])) : Ty [id fst((¢[6]))] ® snd([t]l,) €0 [T1]l, stiren,)
From the first fact, Corollary 4.3.12 and our induction hypothesis that I" £, T, type we may

conclude that A + Ty[S] = T type holds. We then have from the second fact, Corollary 4.3.12,
and our induction hypothesis that I'.T; &, T; type that the following equality is true:

A b TL[8.(fst(t[8]))] = T/[id.(fst(t[8]))] type

Therefore, we may conclude from Lemmas 4.3.6 and 4.3.7 that our desired goal holds.

Case.
I'rA:U; I'A+B:U;

T+ 3(AB): U;
Identical to the case for I' + 3(A, B) type.

Case.
T ctx

I + zero : nat

In this case we wish to show that I k,, zero : nat holds. Suppose that we have m < n and
Avrp 6 :T ® p. We must show that A +,, zero[5] : nat[§] ® zero €, nat. In order to show
this it suffices to show A F,, zero : nat ® zero €, nat and this is immediate by definition.

Case.
I'kt:nat

I + succ(t) : nat

In this case we wish to show that I' £, succ(t) : nat holds and we have by induction
hypothesis that T k,, t : nat. Suppose that we have m < nand A+, § : T ® p. We must
show A +p, succ(t)[d] : nat[5] ® succ([[t],) €, nat.

First, observe by our induction hypothesis that we have A +,, t[5] : nat ® [t], €, nat.
Therefore, the goal follows by definition.
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Case.

I.nat + T type T+t : nat T+t : T[id.zero] T.nat.T r t; : T[p®.succ(var)]
I + natrec(T, ty, t1, t2) : T[id.t1]

In this case we have by induction hypothesis that I'.nat k,, T type, T F, tp : nat, Tk, #; :
T[id.zero],and T'.nat.T &, t, : T[p?.succ(var;)]. We wish to show that T &, natrec(T, to, t1, t;) :
T[id.ty] holds.

For this, suppose we have some m < nand A +,, § : I ® p. We first observe that we have
A Fm t[8] : nat ® [[t]l, €, nat. This relation is inductively defined so we proceed by
induction. There are 3 subcases to consider:

Subcase. A+ ty[6] = zero : nat and [[#], = zero.
In this case we wish to show that the following holds:

A, natrec(T, to, ty, t2)[S] = T[id.2][6] ® [natrec(T, to, t1, t2)]l, €0 [T[id.2o]1l,

We can reduce this as natrec(—, —, —, —) reduces at zero. It suffices to show the following
instead:

A b t1[8] : T[id.zero][5] ® [t1], €. [Tlid.zero]]l,
However, this follows precisely from our induction hypothesis that I' £, #; : T[id.zero].

Subcase. A+ ty[S8] = succ(ty) : nat, [[to]], = succ(v) and A Fp, t] : nat ® v €, p.
In this case we wish to show that the following holds (after some simplifications):

A Fm t2[5-t0[5]-rec(---)] : T[5-Succ(t6)] ® IItZ]]p.v.natrec(T<1p,[[tl]],,,t2<1p,v) €w [[T[id-to]]]p

We have by induction hypothesis that the following holds:
A by rec(...) : T[6.t5] ® natrec(T<ip, [t:],, t2<p, v) € [T],.»

Therefore, the goal holds from our induction hypothesis of T.nat.T &, t, : T[p?.succ(vary)].

Subcase. We have [[t], = 1™ ¢ and for all r : A’ < A we have [¢]ja = t’ and A’ +
to[r o 6] = t’ : nat.
In this case we wish to show

A b natrec(T, to, 1, t2)[6] : T[8.10[5]] ® e.natrec(T<ip, [t1]15, t2<p) € [T, pate

In this case we use Lemma 4.3.11. Specifically, we must show that for all r : A” < A that
[e.natrec(T<p, [t1] 5, t2<9p)1jjar) = t’ such that the following holds:

A’ v natrec(T, to, t1, t2)[r o 8] = t" : T[r o 8.t0[5]]
This follows from our assumption about e as well as our induction hypothesis of T k,

to : nat, Tk, t; : T[id.zero], and T.nat.T &, t, : T[p®.succ(var;)].

Case.
T ctx

I'+ nat: U;
Identical to the case for I' - nat type.

F'rT:U; F'rt;: T
'k |C|(T, to, tl) : Ul‘
Identical to the case for T' + I1d(T, o, t;) type.
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Case.
I'+T type F'rt:T

T+ refl(?) : 1d(T, t, t)
Suppose that T £, T type and T &, t : T, we wish to show T &, refl(¢) : 1d(T, t, t).
For this, suppose we have m < nand A +,,, § : T ® p. We wish to show the following:

A by refl(8)[8] : (Id(T, £, 1))[8] ® [[refl(t)]], €. [1A(T, 2, )],
We first observe that we can simplify this goal to the following:

A b refl(t[S]) : 1d(T[6], t[6], t[6]) ® refl([t]],) € 1A TT,, [£1,, [£11,)

By unfolding the definition of the logical relation at Id([T] ,, [[t],, [[£] ,), we must show the
following:

= A+, T[6]® [T], type,,

= Ab, t[0]: T[O]® [[t], €x [T],
Both of these follow from our induction hypothesis.

Case.
TrTtype Trupuy:T  T.T.T[p'].1d(T[p?], vary, varo) + C type

I'.T + t; : C[id.varg.varg.refl(varg)] T vty (T, ug, uz)
T+ J(C, tq, tz) : C[id.ul.l/lz.tz]

In this case we have from our induction hypothesis that I' £, T type, I £, uj,uy : T,
[.T.T[p'].1d(T[p?], vary, vary) £, C type, I.T k, t; : C[id.varg.varq.refl(varg)],and T E, t; :
(T, uq, uy).

We wish to show I' k,, J(C, t1, t2) : Clid.uy.uy.t5].

First, assume that we have m <nand A +,, § : T ® p. We wish to show the following:

Ak J(C 1, 12)[8] = Cl6.u1[6].u2[6].2[81] ® [J(C, 11, 1)1l €00 [CTp s, e, M2,

In order to show this, we observe that by induction hypothesis we have A +,, t,[d] :
Id(T, u1, u2)[5] ® [[t2], €0 [I1d(T, u1,uz)],. By inversion on this fact we have that one of
the following two cases applies:
» [t2], =T eandwhenr : A" < A, then [e]ja/ = t" suchthat A" + t,[5][r] = t" : T[5][r].
= A+ 1[6] = refl(t’) : 1d(T, uy, uz)[5] and 2], = refl(v’) for some t’, 2" such that
A vt =u[d] : T[S].
We proceed by cases on this. In the first case we have that [[;]], = T~ e. We also observe
from our induction hypothesis that the following equality holds:

W(C, t1, 1)1, = TLV vl o bzbo ¢ J(Cap, ty<ap, [T1 5 L1211 s [421,)

In order to show our goal then, it suffices to show that for all 7 : A” < A that there is some t’
such that

[e.J(C<p, ti<ip, [T]p, [urll s [uzl o) oy = ¢

Moreover, we must have the following equality:
A v )(C ty, ta)[rob] =t : Clid.uy.uz.tz][r o 8]

However, this holds using our induction hypothesis and the assumption that forall7 : A’ < A,
then [e]a = t” such that A" + t,[6][r] = " : T[5][r]
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For the second case, we have that [t;]], = refl(v”) and A + ,[5] = refl(t") : 1d(T, uy, up)[6].
In this case, we may simplify our goal to the following:

A b 0[8.] : Cl8.w1[8].u2[ 8] 1 [6]] ® [t1]lp.0r €0 [Cp a2, 1221,
In this case we wish to apply our induction hypothesis for ¢;:
I'.T &, t; : C[id.varg.varg.refl(varg)]
This allows us to conclude the following:
Avbp t1[8.87]: C[6.t" .t refl(t)] ® [t:1] 5.0 €0 [Cllp.or o refier)
Now, we may use Lemma 4.3.6 to simplify this to the following:

Atbrp t1[5~t/] : C[5u1[5]u2[5]t2[5]] ® [[tl]]p.v’ €w [[C]]p.v’.v/.reﬂ(v/)

Finally, we have I'.T.T[p!].Id(T[p?], vary, varg) + C type. We use Theorem 3.3.5 together
with the following pair of environments:

mik p.o' o' refl(v’) = p.u]l, [u2ll, - [2:1, : L.T.T[p'].1d(T[p?], vary, var)
This tells us that 7, Fm [Cll, 0.0 refi(or) ~ [[C]]p.[[m]],).[[uz]]p.[[tz]]p- Our goal then follows
from Lemma 4.3.5.

Case.
rar::T

T+ [tlg: 0T
We have by induction hypothesis in this case that T.@ &, t : T. We wish to show T k,, [t]g :
OT. For this, suppose we have m < nand A +,, § : T ® p. We wish to show the following:

A b [t]al6]: (@D)[8] ® [[t]al, €o [OT1,
We can calculate to reduce this to the following:

A b [t[6]]@ : OT[8] ® shut([t],) €, O[T,
Now in order to show this it suffices to show for all m’,

A8y [[t[0]]ale : T[6] ® open(shut([t],)) €, [T,

By calculation this simplifies to the following A.@ +,y t[6] : T[8] ® [t], €. [T],. In order
to show this, first we observe that A%¥ +,,, § : T ® p from Lemmas 4.4.3 and 4.4.5. Therefore,
A&+, §:T.8® p by definition. Finally, instantiating our induction hypothesis with this
gives us our goal.

Case.
T-Atype I9rt:aT

Tr(tlg:T

We have by induction hypothesis in this case that T &, T type and T.@ k, t : T. We wish
to show I' &, [t]g : OT. For this, suppose we have m < nand A +,, § : T ® p. We wish to
show the following:

A b [t][8]: (@D ® [[t]a]l, €0 [OTT,
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We observe by Lemma 4.4.6 that A¥ +,, § : T ® p. We therefore may instantiate our
induction hypothesis to conclude the following:

A% &ty [t[8]]a : T ® open([[t],) €, [T1,

Where A% + O(T[8]) = OT’ type. Now, by Lemmas 4.3.2 and 4.4.2 we have that this gives us
the following:

At [t[6]le : T ® open([[t],) €0 [T1,

Now, from Corollary 4.3.12, our induction hypothesis, and calculation this gives us the goal:

Ak [tl0]: TIS] ® [[[te]l, €0 [T,

Case.
Tr@rA: U;
I'roA:U;
Identical to the case for I' - DA type.
Case.
I ctx
I'rU;:U;y
Identical to the case for I' - U; type.
Case.
I'rA:U;
I'rA: Uiy

Identical to the case for T' + U; type.

Case.
'rd: A Art:A

T+ t[5] : A[S]

This case mirrors the case for T + T[5] type.

Case.
I'- A= B type 'rt:A

IT'rt:B
Immediate from Lemma 4.3.6.
3. T+ 6 : AthenT K, § : A for any n.
Case.
T ctx
F'r-:-

For this, suppose we havem < nand A +,, 6 : T ® p. We wishtoshow Ak, - 06 : T ® [-],,.
By calculation [-]|, = -. The goal then follows by applying a rule.

Case.
I ctx I; ctx I g I

I“ll—id:l"g

For this, suppose we have m < nand A +,, § : I} ® p. We wish to show A +p, idod :
I, ® [[id],. By calculation, this is equivalent to A +p, iddelta : I; ® p. This is a result of
Lemma 4.3.2.
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Case.
AFT type I'ré:A T'vrt:T[]

I'td.t: AT

In this case, we have by induction hypothesis that A £, T type, Tk, § : A,and T &, ¢ : T[S].
We wish to show I' k,, 8.t : A.T.

For this, suppose we have m < nand A’ +,, 8’ : T ® p. We wish to show the following:
N bp (6.8)08 - AT® [[8],.1t1,
By calculation, it suffices to show the following:
AN by (808).t[6"]: AT ® [6],.1t1,

In order to do this, we merely need to show A’ +, § 08" : A® [8],, 70 I=n [T1, ~ [T1,,
and A’ by, t[8'] : T[S 0 6"l ® [[t]l, € [T[5]]l,. The second is a result of Theorem 3.3.5 and
the remaining two are immediate from our induction hypothesis.

Case.
F1|—51:F2 F2|—52:F3

1"1|—52051:F3

In this case, we have by induction hypothesis that I £, §; : I, and I} £, &2 : I5. We wish to
show I E,, 83 0 6; : I3.

We assume we have m < nand I ky, 6" : I} ® p. We then have Iy +p, 61 06" : I ® [[61],.
We then have the following:

Lobm (5200) 08 :® [[52]][[51]],,

Calculation tells us that [62]js,7, = [62 © 81], finishing this case.

Case.
Tictx T0%+6:0

I I—5:FZ.Q

In this case, we have by induction hypothesis that ;¥ E, 6 : I, and we wish to show
I, §: 1.8

We assume we have m < nand I +p, 6 : I} ® p. We then have that there is some m’
such that [y¥ F,, 8’ : [}* ® p by Lemma 4.4.6. We then have [;¥ +,y § 08" : I, ® [o1,-
Therefore, by definition we have Iy +,,y § 0 6" : [,.@ ® [[§] » as required.

Case.
I.I, ctx I ctx Iy oa I k=L a¢7T,

LG FpF: Ty

Suppose we have m < nand A +p, § : I.I; ® p. We wish to show A +,, pF o : I/ ® p.
This follows by Lemma 4.4.3. ]

Lemma 4.4.8. IfT ctx and [T = p thenT v, id : T ® p.
Proof. We proceed by induction on I ctx.
Case.

- clx

In this case we must show that - ,, id : - ® -. This is immediate as -  id : -.
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Case.

Case.

T ctx
r.&@ctx

In this case we have by induction hypothesis that T +, id : T ® p where T = p. We therefore
must show that T.@+, id : T.@ ® p. We have by Lemma 4.4.3 that I ,, id : T ® p holds and so
we have the desired conclusion by definition.

I ctx I'+T type
T ctx

In this case we have by induction hypothesis thatT +, id : I ® p where [T = p. We therefore must
show that I.T +, id : I.T ® p.varr|. First, we observe that it suffices to show I'.T +, pl.varg :
I.T ® p.var|r|. Now, from I + T type we may conclude that I'.T &, varg : T[p']. Therefore, we
have some A such that 7, Fp, A~ AR, [T], = A and I'.T v, var : T[p'l ® 1 var|r| €o A

Next, we observe that by Lemma 4.4.3 that .T +, p' : T ® p holds and so we have the desired
conclusion by definition.

Corollary 4.4.9. IfT +t: T andnbe (t) =’ thenT vt =1": T,

Proof. From Theorem 4.4.7 we have that I" &, t : T. Therefore, by Lemma 4.4.8 we have thatT" +, ¢ :
T ® [t], €» [T, where IT = p. From Lemma 4.3.11, then, we have that [T, [z1,Tyr) = t’' such
that ' + ¢t = ¢’ : T. This gives the desired goal. O
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