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Goal

Produce a function nf(Γ, t, A) : Ctx×Term×Type⇀ Term so
that the following 3 conditions hold:

1. Γ ` t1 ≡ t2 : A =⇒ nf(Γ, t1, A) = nf(Γ, t2, A)

2. If Γ ` t : A then Γ ` t ≡ nf(Γ, t, A) : A

3. If Γ ` t : A then nf(Γ, t, A) is a normal form
– more on this shortly.



Why Bother?

Why bother to do this when it’s so much easier to not do things?

1. Lars told me to prove normalization for a type theory

2. Termination, canonicity, consistency are corollaries

3. Decidability of type-checking
This because of the conversion rule:

Γ ` A ≡ B Γ ` t : A

Γ ` t : B

4. Adequacy in logical frameworks depends on normalization

5. Completeness of focused proof strategies is equivalent

6. Coherence theorems are normalization theorems in disguise
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Why Normalization by Evaluation (NbE)?

Techniques for proving normalization abound, why NbE?

1. Scales to support many languages

• full dependent types
• proof-irrelevant types
• impredicative quantification
• sized types
• (conjectured) fitch-style guarded dependent type theory
• (conjectured) cubical type theory.

2. Amenable to formalization in a (stronger) type theory

3. Practical for implementation*

4. Principled semantic interpretation



What Semantic Interpretation?

It’s too much to discuss today, Jon & Bas have a paper though.
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Why Not X Instead?1

The most common alternatives to NbE are based on rewriting:

• Define some relation → (steps to) between terms

• a term is normal when it cannot be reduced further with →.

• Use logical relations/reducibility candidates to show that →
terminates for well-typed terms.

Not all equalities make sense as reduction rules!
These proofs are extremely brittle!

Entangles questions of reduction strategy!

1for X 6= NbE
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A Language

We need to specify the language that we’re going to normalize.



The Main Judgments

Our type theory is divided into various judgments:

Γ ` Γ is a valid context
Γ ` T In context Γ, T is a type

Γ ` t : T In context Γ, t has type T

Corresponding equality judgments: Γ ` t1 ≡ t2 : T .
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Explicit Substitutions

We use explicit substitutions, Γ ` σ : ∆, in our type theory:

Γ `
Γ ` · : () Γ ` 1 : Γ

Γ ` T
Γ.T ` ↑1 : Γ

Γ ` σ1 : ∆ ∆ ` σ2 : Ξ

Γ ` σ2 ◦ σ1 : Ξ

Γ ` σ : ∆ ∆ ` T Γ ` t : T{σ}
Γ ` σ.t : ∆.T

Crucial rule:
Γ ` t : T ∆ ` σ : Γ

∆ ` t{σ} : T{σ}



A Language

The rules for types and contexts:

() `
Γ ` Γ ` A

Γ.A `

Γ ` A Γ.A ` B
Γ ` A→ B

Γ `
Γ ` Unit

Γ `
Γ ` U

Γ ` A : U
Γ ` A



A Language

The rules for terms:

Γ `
Γ ` Unit : U Γ ` tt : Unit

Γ ` A : U Γ.A ` B : U
Γ ` A→ B : U

Γ ` A Γ.A ` t : B

Γ ` λt : A→ B

Γ ` t : A→ B Γ ` u : A

Γ ` t(u) : B{1.u}

Γ1.T.Γ2 ` |Γ2| = k

Γ1.T.Γ2 ` xk : T{↑k+1}



The Wrinkle

We need the conversion rule for any sort of type theory.

Γ ` t : A Γ ` A ≡ B
Γ ` t : B

Dependence means term equality matters for type equality.

Γ ` A ≡ B : U
Γ ` A ≡ B



The Wrinkle – The Main Equality Rules

Γ ` u : A Γ.A ` t : B

Γ ` (λt)(u) ≡ t{1.u} : B{1.u}

Γ ` t : A→ B

Γ ` λ(t{↑1}(x0)) ≡ t : A→ B

Γ ` t : Unit

Γ ` t ≡ tt : Unit



Neutral and Normal Forms

Let us isolate special terms which will be canonical for ≡.

1. Neutral terms: variables or normals stuck on variables.

2. Normal forms: terms in β-normal and η-long forms.

Γ ` xn : A

Γ `neu xn : A

Γ `neu e : A→ B Γ `nf v : A

Γ `neu e(v) : B{1.v}

Γ `
Γ `nf tt : Unit Γ `nf Unit : U

Γ ` A Γ.A `nf t : B

Γ `nf λt : A→ B

Γ `nf A : U Γ.A `nf B : U
Γ `nf A→ B : U

Γ `neu e : U
Γ `nf e : U
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Normalization by Evaluation

Now we have a goal, construct Γ `nf nf(Γ, t, A) : A given Γ ` t : A.



Normalization by Evaluation – Historical Context

Original idea:
normalize programs using the ambient semantic universe.

Latent in Martin-Löf’s original proofs of the decidability of typing.



Normalization by Evaluation – Historical Context

Next found in implementation of Minlog:

eval : (Term t)→ t

quote : t→ (Term t)

normalize = quote . eval

Done in Scheme for the simply-typed lambda calculus at first,
adapted to other settings.



Normalization by Evaluation – Historical Context

To adapt to a proof people opted for domains instead of a PL

D ∼= (D → D)⊕ (N ∪ V)⊥

Then define the following:

eval : Term→ D quote : D ⇀ Term



Normalization by Evaluation – Historical Context

These historical approaches are imperfect:

• Intrinsic typing proved intractable for impredicativity or
dependent types.

• Using domains adds unnecessary complexity and is far removed
from implementations.

• The direct “reflect to the metatheory” approach does not scale
to extrensic typing.

Many presentations now use a different semantic model: syntax.
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A Syntactic Semantic Domain

Construct a syntax in which all expressions are canonical.

Divided between neutrals, normals, values, closures.



A Syntactic Semantic Domain – Neutrals

Neutral elements represent computations which are stuck on some
variable.

e ::= x` | app(e, ↓A v)

N.B. The argument to app(e,−) must be fully evaluated and
annotated.



A Syntactic Semantic Domain – Closures

What happens when we go under a binder?

We choose to suspend evaluation and record the current state with
a closure.

f ::= t{ρ}

ρ is the environment we’re interpreting t. This removes the need for
domains, is called defunctionalization.
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A Syntactic Semantic Domain – Values

It’s difficult to isolate η-long forms for dependent type theory.
We settle for isolating β-normal forms for now.

v,A ::= λ. f | tt | Unit | Uni | ΠA. F

Need to include neutrals with type information to allow
η-expansions later.
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A Syntactic Semantic Domain

v,A ::= λ. f | tt | Unit | Uni | ΠA1. F | ↑A e
f, F ::= t{ρ}
e ::= x` | app(e, v)
n ::= ↓A v
ρ ::= · | ρ.v



Paying the Piper – Typing Information

The usage of ↓A v and ↑A e seems very arbitrary. Why do we need
typing information?

• We need type information to know whether η-expansion is
necessary now that we have neutrals of all types.
In the domain-theoretic or intrinsic formulation this was baked
in as we disallowed such neutrals.

• Coquand proposed adding ↓A v to mark a value that should be
η-expanded at type A during quotation.

• Quotation proceeds by casing on this type.
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The Algorithm

Now that we have defined our sorts of terms, we can define the
algorithm.

1. Evaluate a term to a value in some environment

ρ |= t ⇓ v

2. Quote a normal form back to a term in a context of length c.

c  n ⇑ t

3. Inject/reflect a term context into an environment.

↑Γ ρ



The Algorithm

nf(Γ, t, T ) = t′ ⇐⇒
↑Γ ρ ∧
(ρ |= t ⇓ v) ∧ (ρ |= T ⇓ A) ∧
|Γ|  ↓A v ⇑ t′

The relational presentation is ideal for a constructive setting.



The Algorithm – Defining Evaluation

The evaluation judgment is defined by inspection on t.

ρ.v |= x0 ⇓ v ρ |= tt ⇓ tt ρ |= Unit ⇓ Unit

ρ |= U ⇓ Uni ρ |= λt ⇓ λ. t{ρ}
ρ |= T1 ⇓ A

ρ |= T1 → T2 ⇓ ΠA. T2{ρ}

What about the only construct in our language that computes?
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The Algorithm – Defining Evaluation

Application uses an auxiliary relation: v1 @ v2  v.

ρ.a |= t ⇓ v
λ. t{ρ}@ a v

ρ.a |= T ⇓ B
↑ΠA. T{ρ} e@ a ↑B app(e, ↓A a)

ρ |= t ⇓ v1 ρ |= u ⇓ v2 v1 @ v2  v

ρ |= t(u) ⇓ v

Rule of thumb:
each eliminator gets an auxiliary judgment to either perform

β-reduction or construct a new neutral.



The Algorithm – Defining Evaluation

We use a judgment so that syntactic substitutions produce new
semantic environments.

ρ |= 1 ⇓ ρ ρ.v |= ↑1 ⇓ ρ
ρ1 |= σ1 ⇓ ρ2 ρ2 |= σ2 ⇓ ρ3

ρ1 |= σ2 ◦ σ1 ⇓ ρ3

ρ1 |= σ ⇓ ρ2 ρ2 |= t ⇓ v
ρ1 |= σ.t ⇓ ρ2.v

Using this, we can interpret t{σ}:

ρ |= σ ⇓ ρ′ ρ′ |= t ⇓ v
ρ |= t{σ} ⇓ v
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The Algorithm – Defining Quotation

In order to define c  n ⇑ t we need to define two other forms of
quotation:

• c  v ⇑ T – quotation of semantic types.

• c  e ⇑ t – quotation of neutrals.



The Algorithm – Defining Quotation

Quotation for normals proceeds by casing on the type.

v @ ↑A xc  b ρ.xc |= T ⇓ B c+ 1  ↓B b ⇑ t
c  ↓ΠA. T{ρ} v ⇑ λt

c  ↓Unit v ⇑ tt

c  ↓Uni Unit ⇑ Unit

c  ↓Uni A ⇑ T1 ρ.xc |= T ⇓ B c+ 1  ↓Uni B ⇑ T2

c  ↓Uni ΠA. T{ρ} ⇑ T1 → T2

c  e ⇑ t
c  ↓− ↑− e ⇑ t



The Algorithm – Defining Quotation

Quotation for neutrals proceeds by casing on the neutral itself.

c  x` ⇑ x0{↑c−(`+1)}
c  e ⇑ t1 c  n ⇑ t2
c  app(e, n) ⇑ t1(t2)

Quotation for types likewise proceed by casing on the type.

c  Unit ⇑ Unit c  Uni ⇑ U

c  A ⇑ T1 ρ.xc |= T ⇓ B c+ 1  B ⇑ T2

c  ΠA. T{ρ} ⇑ T1 → T2

c  e ⇑ t
c  ↑− e ⇑ t
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Final Step

1. Evaluate a term to a value in some environment

2. Quote a normal form back to a term in a context of length c.

3. Inject/reflect a term context into an environment.

↑() ·
↑Γ ρ ρ |= T ⇓ A
↑Γ.T  ρ.↑A x|Γ|
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Why is This Correct?

Now we have to prove some stuff.

1. Γ ` t1 ≡ t2 : A =⇒ nf(Γ, t1, A) = nf(Γ, t2, A)

2. If Γ ` t : A then Γ ` t ≡ nf(Γ, t, A) : A

3. If Γ ` t : A then nf(Γ, t, A) is a normal form

Can now prove this by induction!
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Completeness

Γ ` t1 ≡ t2 : A =⇒ nf(Γ, t1, A) = nf(Γ, t2, A)

Proof intuition: build a PER model!

• Each type A is associated with a PER of values: JAK = R.

• Each PER satisfies the neutral-normal yoga



Completeness – Neutral-normal yoga

Fix two distinguished PERs:

Nf = {(n1, n2) | ∀m. ∃t. m  n1 ⇑ t ∧m  n2 ⇑ t}
Ne = {(e1, e2) | ∀m. ∃t. m  e1 ⇑ t ∧m  e2 ⇑ t}

For each R = JAK we require that R is sandwiched between these
two PERs.

{(↑A e1, ↑A e2) | (e1, e2) ∈ Ne}
⊆ R ⊆

{(v1, v2) | (↓A v1, ↓A v2) ∈ Nf}



Completeness – The fundamental lemma

We can define a notion of related environments ρ1 = ρ2 ∈ JΓK.

1. If Γ ` t1 ≡ t2 : T then for all ρ1 = ρ2 ∈ JΓK the following
holds.

• ρ1 |= t1 ⇓ v1
• ρ2 |= t2 ⇓ v2
• ρ1 |= T ⇓ A
• JAK = R
• (v1, v2) ∈ R

2. If Γ ` T1 ≡ T2 then for all ρ1 = ρ2 ∈ JΓK the following holds.

• ρ1 |= T1 ⇓ A1

• ρ2 |= T2 ⇓ A2

• JA1K = JA2K = R
• ∀m. ∃T . m  A1 ⇑ T ∧m  A2 ⇑ T



Completeness – explicit substitutions

Without explicit substitutions, the fundamental lemma is doomed:
no β rules will hold!

Let us suppose that ρ |= u ⇓ va:

ρ |= (λt)(u) ⇓ v ⇐⇒
(λ. t{ρ}) @ va  v ⇐⇒

ρ.va |= t ⇓ v ⇐⇒
(ρ |= 1.u ⇓ ρ.va) ∧ (ρ.va |= t ⇓ v) ⇐⇒

ρ |= t{1.u} ⇓ v

With implicit substitutions this last step fails!
I learned this Saturday afternoon. Whoops.
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Completeness

the fundamental lemma + neutral-normal yoga = completeness



Soundness

To prove if Γ ` t : A then Γ ` t ≡ nf(Γ, t, A) : A we construct a
logical relation!



Soundness – the logical relation

We define some relation Γ |= t : T r v ∈ A.

Γ |= t : T r v ∈ A =⇒ ∃t′.
(
|Γ|  ↓A v ⇑ t′

)
∧
(
Γ ` t ≡ t′ : T

)



Soundness – the logical relation

We define some relation Γ |= t : T r v ∈ A.

Γ |= t : T r v ∈ A =⇒ ∃t′.
(
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)
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Soundness – the fundamental lemma

We can extend the logical relation to substitutions: Γ |= σ : Γr ρ.

• If Γ ` t : T

• for any σ and ρ such that ∆ |= σ : Γr ρ

• for any v and A such that ρ |= t ⇓ v and ρ |= T ⇓ A

• ∆ |= t{σ} : T{σ}r v ∈ A

If this holds then Γ ` t : T implies Γ ` t ≡ nf(Γ, t, T ) : T
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Dependent Types Complicates Things

• Defining the PER model for completeness requires either
induction-recursion or Allen-style spines.

• The logical-relation is well-founded only with respect to an
ordering on semantic types.

• All type constructions must be done relationally to account for
universes.
e.g., JAK must be JA = BK

Happy to discuss these issues offline.
Thanks.



Dependent Types Complicates Things

• Defining the PER model for completeness requires either
induction-recursion or Allen-style spines.

• The logical-relation is well-founded only with respect to an
ordering on semantic types.

• All type constructions must be done relationally to account for
universes.
e.g., JAK must be JA = BK

Happy to discuss these issues offline.

Thanks.



Dependent Types Complicates Things

• Defining the PER model for completeness requires either
induction-recursion or Allen-style spines.

• The logical-relation is well-founded only with respect to an
ordering on semantic types.

• All type constructions must be done relationally to account for
universes.
e.g., JAK must be JA = BK

Happy to discuss these issues offline.
Thanks.


