Principles of Dependent Type Theory

Carlo Angiuli
Indiana University
cangiuli@indiana.edu

Daniel Gratzer
Aarhus University
gratzer@cs.au.dk

(2024-04-05)
Robert Onderdonk Terwilliger Jr., Ph.D.
The Simpsons, Season 5 Episode 2, “Cape Feare.”
Acknowledgements

We thank Lars Birkedal for his comments and suggestions on drafts of these notes. We also thank the students who participated in Modern Dependent Types (CSCI-B619) at Indiana University and Modern Dependent Type Theory at Aarhus University in Spring 2024, for whom these notes were prepared, and Sam Tobin-Hochstadt for many insightful post-lecture conversations. A special thanks to Fred Fu, Artem Iurchenko, Pavel Kovalev, Mathias Adams Møller, Zixiu Su, Yafei Yang.
Contents

Acknowledgements iii

Contents iv

1 Introduction 1
1.1 Dependent types for functional programmers 2

2 Extensional type theory 14
2.1 The simply-typed lambda calculus 15
2.2 Towards the syntax of dependent type theory 22
2.3 The calculus of substitutions 25
2.4 Internalizing judgmental structure: \(\Pi, \Sigma, \text{Eq, Unit}\) 30
2.5 Inductive types: \(\text{Void, Bool, Nat}\) 41
2.6 Universes: \(U_0, U_1, U_2, \ldots\) 52

3 Metatheory and implementation 64
3.1 A judgmental reconstruction of proof assistants 65
3.2 Metatheory for type-checking 70
3.3 Metatheory for computing 77
3.4 Equality in extensional type theory is undecidable 81
3.5 A case study in elaboration: definitions 86

4 Intensional type theory 90
4.1 Programming with propositional equality 91
4.2 Intensional identity types 97
4.3 Limitations of the intensional identity type 103
4.4 An alternative approach: observational type theory 114

5 Univalent type theories 118
5.1 From classifying objects to univalence 118
5.2 Homotopy type theory 129
5.3 Cubes and figure shapes 140
5.4 Cubical type theory 140

A Martin-Löf type theory 142
Contents

Bibliography 151
Introduction

In these lecture notes, we aim to introduce the reader to a modern research perspective on the design of “full-spectrum” dependent type theories. At the end of this course, readers should be prepared to engage with contemporary research papers on dependent type theory, and to understand the motivations behind recent extensions of Martin-Löf’s dependent type theory [ML84b], including observational type theory [AMS07], homotopy type theory [UF13], and cubical type theory [CCHM18; Ang+21].

These lecture notes are in an early draft form and are missing many relevant citations. The authors welcome any feedback.

Dependent type theory (henceforth just type theory) often appears arcane to outside observers for a handful of reasons. First, as in the parable of the elephant, there are myriad perspectives on type theory. The language presented in these lecture notes, mutatis mutandis, can be accurately described as:

- the core language of assertions and proofs in proof assistants like Agda [Agda], Coq [Coq], Lean [MU21], and Nuprl [Con+85];
- a richly-typed functional programming language, as in Idris [Bra13] and Pie [FC18], as well as in the aforementioned proof assistants Agda and Lean [Chr23];
- an axiom system for reasoning synthetically in a number of mathematical settings, including locally cartesian closed 1-categories [Hof95b], homotopy types [Shu21], and Grothendieck ∞-topoi [Shu19];
- a structural [Tse17], constructive [ML82] foundation for mathematics as an alternative to ZFC set theory [Alt23].

A second difficulty is that it is quite complex to even define type theory in a precise fashion, for reasons we shall discuss in Section 2.2, and the relative merits of different styles of definition—and even which ones satisfactorily define any object whatsoever—have been the subject of great debate among experts over the years.

Finally, much of the literature on type theory is highly technical—involving either lengthy proofs by induction or advanced mathematical machinery—in order to account for its complex definition and applications. In these lecture notes we attempt to split the difference by presenting a mathematically-informed viewpoint on type theory while avoiding advanced mathematical prerequisites.
Goals of the course As researchers who work on designing new type theories, our goal in this course is to pose and begin to answer the following questions: What makes a good type theory, and why are there so many? We will focus on notions of equality in Martin-Löf type theory as a microcosm of this broader question, studying how extensional [ML82], intensional [ML75], observational [AMS07; SAG22; PT22], homotopy [UF13], and cubical type theories [CCHM18; Ang+21] have provided increasingly sophisticated answers to this deceptively simple question.

In this chapter In Section 1.1 we introduce and motivate the concepts of type and term dependency, definitional equality, and propositional equality through the lens of typed functional programming. Note that Chapter 2 is self-contained albeit lacking in motivation, so readers unfamiliar with functional programming can safely skip ahead.

Goals of the chapter By the end of this chapter, you will be able to:

- Give examples of full-spectrum dependency.
- Explain the role of definitional equality in type-checking, and how and why it differs from ordinary closed-term evaluation.
- Explain the role of propositional equality in type-checking.

1.1 Dependent types for functional programmers

The reader is forewarned that the following section assumes some familiarity with functional programming, unlike the remainder of the lecture notes.

Types in programming languages For the purposes of this course, one should regard a programming language’s (static) type system as its grammar, not as one of many potential static analyses that might be enabled or disabled.\(^1\) Indeed, just as a parser may reject as nonsense a program whose parentheses are mismatched, or an untyped language’s interpreter may reject as nonsense a program containing unbound identifiers, a type-checker may reject as nonsense the program 1 + "hi" on the grounds that—much like the previous two examples—there is no way to successfully evaluate it.

Concretely, a type system divides a language’s well-parenthesized, well-scoped expressions into a collection of sets: the expressions of type Nat are those that “clearly” compute natural numbers, such as literal natural numbers (0, 1, 120), arithmetic expressions (1 + 1),

\(^{1}\)The latter perspective is valid, but we wish to draw a sharp distinction between types qua (structural) grammar, and static analyses that may be non-local, non-structural, or non-substitutive in nature.
and fully-applied functions that return natural numbers (\texttt{fact 5}, \texttt{atoi "120"}). Similarly, the expressions of type \texttt{String} are those that clearly compute strings ("hi", \texttt{itoa 5}), and for any types \(A\) and \(B\), the expressions of type \(A \to B\) are those that clearly compute functions that, when passed an input of type \(A\), clearly compute an output of type \(B\).

What do we mean by “clearly”? One typically insists that type-checking be fully automated, much like parsing and identifier resolution. Given that determining the result of a program is in general undecidable, any automated type-checking process will necessarily compute a conservative underapproximation of the set of programs that compute (e.g.) natural numbers. (Likewise, languages may complain about unbound identifiers even in programs that can be evaluated without a runtime error!)

The goal of a type system is thus to rule out as many undesirable programs as possible without ruling out too many desirable ones, where both of these notions are subjective depending on which runtime errors one wants to rule out and which programming idioms one wants to support. Language designers engage in the neverending process of refining their type systems to rule out more errors and accept more correct code; full-spectrum dependent types can be seen as an extreme point in this design space.

1.1.1 Uniform dependency: length-indexed vectors

Every introduction to dependent types starts with the example of vectors, or lists with specified length. We start one step earlier by considering lists with a specified type of elements, a type which already exhibits a basic form of dependency.

\textbf{Parameterizing by types} One of the most basic data structures in functional programming languages is the \texttt{list}, which is either empty (written []) or consists of an element \(x\) adjoined to a list \(xs\) (written \(x :: xs\)). In typed languages, we typically require that a list’s elements all have the same type so that we know what operations they support.

The simplest way to record this information is to have a separate type of lists for each type of element: a \texttt{ListOfNats} is either empty or a \texttt{Nat} and a \texttt{ListOfNats}, a \texttt{ListOfStrings} is either empty or a \texttt{String} and a \texttt{ListOfStrings}, etc. This strategy clearly results in repetition at the level of the type system, but it also causes code duplication because operations that work uniformly for any type of elements (e.g., reversing a list) must be defined twice for the two apparently unrelated types \texttt{ListOfNats} and \texttt{ListOfStrings}.

In much the same way that functions—terms indexed by terms—promote code reuse by allowing programmers to write a series of operations once and perform them on many different inputs, we can solve both problems described above by allowing types and terms to be uniformly parameterized by types. Thus the types \texttt{ListOfNats} and \texttt{ListOfStrings} become two instances (\texttt{List Nat} and \texttt{List String}) of a single family of types \texttt{List}.

\footnote{For the time being, the reader should understand \(A : \text{Set}\) as notation meaning “\(A\) is a type.”}
data List (A : Set) : Set where
 [] : List A
 ∷ : A → List A → List A

and any operation that works for all element types A, such as returning the first (or all but first) element of a list, can be written as a family of operations:

 head : (A : Set) → List A → A
 head A [] = error "List must be non-empty."
 head A (x :: xs) = x

 tail : (A : Set) → List A → List A
 tail A [] = error "List must be non-empty."
 tail A (x :: xs) = xs

By partially applying head to its type argument, we see that head Nat has type List Nat → Nat and head String has type List String → String, and the expression 1 + (head Nat (1 :: [])) has type Nat whereas 1 + (head String ("hi" :: [])) is ill-typed because the second input to + has type String.

Parameterizing types by terms The perfectionist reader may find the List A type unsatisfactory because it does not prevent runtime errors caused by applying head and tail to the empty list []. We cannot simply augment our types to track which lists are empty, because 2 :: 1 :: [] and 1 :: [] are both nonempty but we can apply tail Nat twice to the former before encountering an error, but only once to the latter.

Instead, we parameterize the type of lists not only by their type of elements as before but also by their length—a term of type Nat—producing the following family of types:

 data Vec (A : Set) : Nat → Set where
 [] : Vec A 0
 ∷ : \{n : Nat\} → A → Vec A n → Vec A (suc n)

Types parameterized by terms are known as dependent types.

Now the types of concrete lists are more informative—(2 :: 1 :: []) : Vec Int 2 and (1 :: []) : Vec Int 1—but more importantly, we can give head and tail more informative types which rule out the runtime error of applying them to empty lists. We do so by revising their input type to Vec A (suc n) for some n : Nat, which is to say that the vector has length at least one, hence is nonempty:

Curly braces \{n : Nat\} indicate implicit arguments automatically inferred by the type-checker.
Dependent types for functional programmers

head : {A : Set} {n : Nat} → Vec A (suc n) → A
-- head [] is impossible
head (x :: xs) = x

tail : {A : Set} {n : Nat} → Vec A (suc n) → Vec A n
-- tail [] is impossible
tail (x :: xs) = xs

Consider now the operation that concatenates two vectors:

append : {A : Set} {n : Nat} {m : Nat} → Vec A n → Vec A m → Vec A (n + m)

Unlike our previous examples, the output type of this function is indexed not by a variable A or n, nor a constant Nat or 0, nor even a constructor suc –, but by an expression n + m. This introduces a further complication, namely that we would like this expression to be simplified as soon as n and m are known. For example, if we apply append to two vectors of length one (n = m = 1), then the result will be a vector of length two (n + m = 1 + 1 = 2), and we would like the type system to be aware of this fact in the sense of accepting as well-typed the expression head (tail (append l l')) for l and l' of type Vec Nat 1.

Because head (tail x) is only well-typed when x has type Vec A (suc (suc n)) for some n : Nat, this condition amounts to requiring that the expression append l l' not only has type Vec A ((suc 0) + (suc 0)) as implied by the type of append, but also type Vec A (suc (suc 0)) as implied by its runtime behavior. In short, we would like the two type expressions Vec A (1 + 1) and Vec A 2 to denote the same type by virtue of the fact that 1 + 1 and 2 denote the same value. In practice, we achieve this by allowing the type-checker to evaluate expressions in types during type-checking.

In fact, the length of a vector can be any expression whatsoever of type Nat. Consider filter, which takes a function A → Bool and a list and returns the sublist for which the function returns true. If the input list has length n, what is the length of the output?

filter : {A : Set} {n : Nat} → (A → Bool) → Vec A n → Vec A ?

After a moment’s thought we realize the length is not a function of n at all, but rather a recursive function of the input function and list:

filter : {A : Set} {n : Nat} → (f : A → Bool) → (l : Vec A n) → Vec A (filterLen f l)

filterLen : {A : Set} {n : Nat} → (A → Bool) → Vec A n → Nat
filterLen f [] = 0
filterLen f (x :: xs) = if f(x) then suc (filterLen f xs) else filterLen f xs
As before, once f and l are known the type of $\text{filter } f \! \! l : \text{Vec } A \, (\text{filterLen } f \! \! l)$ will simplify by evaluating $\text{filterLen } f \! \! l$, but as long as either remains a variable we cannot learn much by computation. Nevertheless, filterLen has many properties of interest: $\text{filterLen } f \! \! l$ is at most the length of l, $\text{filterLen } (\lambda x \to \text{false})$ l is always 0 regardless of l, etc. We will revisit this point in Section 1.1.3.

Remark 1.1.1. If we regard Nat and $+$ as a user-defined data type and recursive function, as type theorists are wont to do, then filter’s type using filterLen is entirely analogous to append’s type using $+$. We wish to emphasize that, whereas one could easily imagine arithmetic being a privileged component of the type system, filter demonstrates that type indices may need to contain arbitrary user-defined recursive functions.

Another approach? If our only goal was to eliminate runtime errors from head and tail, we might reasonably feel that dependent types have overcomplicated the situation—we needed to introduce a new function just to write the type of filter! And indeed there are simpler ways of keeping track of the length of lists, which we describe briefly here.

First let us observe that a lower bound on a list’s length is sufficient to guarantee it is nonempty and thus that an application of head or tail will succeed; this allows us to trade precision for simplicity by restricting type indices to be arithmetic expressions. Secondly, in the above examples we can perform type-checking and “length-checking” in two separate phases, where the first phase replaces every occurrence of $\text{Vec } A \, n$ with $\text{List } A$ before applying a standard non-dependent type-checking algorithm. This is possible because we can regard the dependency in $\text{Vec } A \, n$ as expressing a computable refinement—or subset—of the non-dependent type of lists, namely $\{ l : \text{List } A \mid \text{length } l = n \}$.

Combining these insights, we can by and large automate length-checking by recasting the type dependency of Vec in terms of arithmetic inequality constraints over an ML-style type system, and checking these constraints with SMT solvers and other external tools. At a very high level, this is the approach taken by systems such as Dependent ML [Xi07] and Liquid Haskell [Vaz+14]. Dependent ML, for instance, type-checks the usual definition of filter at the following type, without any auxiliary filterLen definition:

$$\text{filter} : \text{Vec } A \, m \to (\{ n : \text{Nat} \mid n \leq m \} \times \text{Vec } A \, n)$$

Refinement type systems like these have proven very useful in practice and continue to be actively developed, but we will not discuss them any further for the simple reason that, although they are a good solution to head/tail and many other examples, they cannot handle full-spectrum dependency as discussed below.
1.1.2 **Non-uniform dependency: computing arities**

Thus far, all our examples of (type- or term-) parameterized types are uniformly parameterized, in the sense that the functions $\text{List} : \text{Set} \to \text{Set}$ and $\text{Vec} A : \text{Nat} \to \text{Set}$ do not inspect their arguments; in contrast, ordinary term-level functions out of Nat such as $\text{fact} : \text{Nat} \to \text{Nat}$ can and usually do perform case-splits on their inputs. In particular, we have not yet considered any families of types in which the head, or top-level, type constructor (\to, Vec, Nat, etc.) differs between indices.

A type theory is said to have full-spectrum dependency if it permits the use of *non-uniformly term-indexed* families of types, such as the following Nat-indexed family:

\[
\text{nary} : \text{Set} \to \text{Nat} \to \text{Set}
\]

\[
\text{nary} A 0 = A
\]

\[
\text{nary} A (\text{suc} n) = A \to \text{nary} A n
\]

Although Vec Nat and nary Nat are both functions $\text{Nat} \to \text{Set}$, the latter’s head type constructor varies between indices: $\text{nary Nat} 0 = \text{Nat}$ but $\text{nary Nat} 1 = \text{Nat} \to \text{Nat}$.

Using nary to compute the type of n-ary functions, we can now define not only varadic functions but even higher-order functions taking varadic functions as input, such as apply which applies an n-ary function to a vector of length n:

\[
\text{apply} : \{A : \text{Set}\} \{n : \text{Nat}\} \to \text{nary} A n \to \text{Vec} A n \to A
\]

\[
\text{apply} x [] = x
\]

\[
\text{apply} f (x :: xs) = \text{apply} (f x) xs
\]

For $A = \text{Nat}$ and $n = 1$, apply applies a unary function $\text{Nat} \to \text{Nat}$ to the head element of a $\text{Vec Nat} 1$; for $A = \text{Nat}$ and $n = 3$, it applies a ternary function $\text{Nat} \to \text{Nat} \to \text{Nat} \to \text{Nat}$ to the elements of a $\text{Vec Nat} 3$:

\[
\text{apply suc} (1 :: []) : \text{Nat} \quad \text{-- evaluates to 2}
\]

\[
\text{apply } _+ _ (1 :: 2 :: []) : \text{Nat} \quad \text{-- evaluates to 3}
\]

\[
\text{apply} (\lambda x y z \to x + y + z) (1 :: 2 :: 3 :: []) : \text{Nat} \quad \text{-- evaluates to 6}
\]

Although apply is not the first time we have seen a function whose type involves a different recursive function—we saw this already with filter—this is our first example of a function that cannot be straightforwardly typed in an ML-style type system. Another way to put it is that $\text{nary} A n \to \text{Vec} A n \to A$ is not the refinement of an ML type because $\text{nary} A n$ is sometimes but not always a function type.

Remark 1.1.2. For the sake of completeness, it is also possible to consider *non-uniformly type-indexed* families of types, which go by a variety of names including non-parametric polymorphism, intensional type analysis, and typecase [HM95]. These often serve as...
optimized implementations of uniformly type-indexed families of types; a classic non-type-theoretic example is the C++ family of types \texttt{std::vector} for dynamically-sized arrays, whose \texttt{std::vector<bool>} instance may be compactly implemented using bitfields.

To understand the practical ramifications of non-uniform dependency, we will turn our attention to a more complex example: a basic implementation of \texttt{sprintf} in Agda (Figure 1.1). This function takes as input a \texttt{String} containing format specifiers such as \%u (indicating a \texttt{Nat}) or \%s (indicating a \texttt{String}), as well as additional arguments of the appropriate type for each format specifier present, and returns a \texttt{String} in which each format specifier has been replaced by the corresponding argument rendered as a \texttt{String}.

\begin{verbatim}
 sprintf "%s %u" "hi" 2 : String -- evaluates to "hi 2"
 sprintf "%s" : String → String
 sprintf "nat %u then int %d then char %c" : Nat → Int → Char → String
 sprintf "%u" 5 : String -- evaluates to "5"
 sprintf "%u%% of %s%c" 3 "GD" 'P' : String -- evaluates to "3% of GDP"
\end{verbatim}

Our implementation uses various types and functions imported from Agda’s standard library, notably \texttt{toList} : \texttt{String} → \texttt{List Char} which converts a string to a list of characters (length-one strings ’x’). It consists of four main components:

- a data type \texttt{Token} which enumerates all relevant components of the input \texttt{String}, namely format specifiers (such as \texttt{natTok} : \texttt{Token} for \%u and \texttt{strTok} : \texttt{Token} for \%s) and literal characters (char ’x’ : \texttt{Token});

- a function \texttt{lex} which tokenizes the input string, represented as a \texttt{List Char}, from left to right into a \texttt{List Token} for further processing;

- a function \texttt{args} which converts a \texttt{List Token} into a function type containing the additional arguments that \texttt{sprintf} must take; and

- the \texttt{sprintf} function itself.

Let us begin by convincing ourselves that our first example type-checks:

\begin{verbatim}
 sprintf "%s %u" "hi" 2 : String -- evaluates to "hi 2"
\end{verbatim}

Because \texttt{sprintf} : (\texttt{s : String}) → \texttt{printfType s}, the partial application \texttt{sprintf "%s %u"} has type \texttt{printfType "%s %u"}. By evaluation, the type-checker can see \texttt{printfType "%s %u"} = \texttt{args (strTok :: char ’ ’ :: natTok :: [])} = \texttt{String → Nat → String}. Thus \texttt{sprintf "%s %u" : String → Nat → String}, and the remainder of the expression type-checks easily.

Now let us consider the definition of \texttt{sprintf}, which uses a helper function \texttt{loop} : (\texttt{toks : List Token}) → \texttt{String} → \texttt{args toks} whose first argument stores the Tokens yet to
data Token : Set where
 char : Char → Token
 intTok : Token
 natTok : Token
 chrTok : Token
 strTok : Token

lex : List Char → List Token
lex [] = []
lex ('%' :: '%': cs) = char '%' :: lex cs
lex ('%' :: 'd': cs) = intTok :: lex cs
lex ('%' :: 'u': cs) = natTok :: lex cs
lex ('%' :: 'c': cs) = chrTok :: lex cs
lex ('%' :: 's': cs) = strTok :: lex cs
lex (c :: cs) = char c :: lex cs

args : List Token → Set
args [] = String
args (char _ :: toks) = args toks
args (intTok :: toks) = Int → args toks
args (natTok :: toks) = Nat → args toks
args (chrTok :: toks) = Char → args toks
args (strTok :: toks) = String → args toks

printfType : String → Set
printfType s = args (lex (toList s))

sprintf : (s : String) → printfType s
sprintf s = loop (lex (toList s)) "" where
loop : (toks : List Token) → String → args toks
loop [] acc = acc
loop (char c :: toks) acc = loop toks (acc ++ fromList (c :: []))
loop (intTok :: toks) acc = λi → loop toks (acc ++ showInt i)
loop (natTok :: toks) acc = λn → loop toks (acc ++ showNat n)
loop (chrTok :: toks) acc = λc → loop toks (acc ++ fromList (c :: []))
loop (strTok :: toks) acc = λs → loop toks (acc ++ s)

Figure 1.1: A basic Agda implementation of sprintf.
be processed, and whose second argument is the String accumulated from printing the already-processed Tokens. What is needed to type-check the definition of loop? We can examine a representative case in which the next Token is natTok:

$$\text{loop } (\text{natTok :: } \text{toks}) \ acc = \lambda n \rightarrow \text{loop } \text{toks} \ (acc ++ \text{showNat } n)$$

Note that \text{toks : List Token} and \text{acc : String} are (pattern) variables, and the right-hand side ought to have type \text{args (natTok :: toks)}. We can type-check the right-hand side—given that \text{++ : String \rightarrow String \rightarrow String} is string concatenation and \text{showNat : Nat \rightarrow String} prints a natural number—and observe that it has type \text{Nat \rightarrow args toks} by the type of loop.

Type-checking this clause thus requires us to reconcile the right-hand side’s expected type \text{args (natTok :: toks)} with its actual type \text{Nat \rightarrow args toks}. Although these type expressions are quite dissimilar—one is a function type and the other is not—the definition of \text{args} contains a promising clause:

$$\text{args (natTok :: toks)} = \text{Nat \rightarrow args toks}$$

As in our earlier example of \text{Vec } A \ (1+1) and \text{Vec } A \ 2 we would like the type expressions \text{args (natTok :: toks)} and \text{Nat \rightarrow args toks} to denote the same type, but unlike the equation \text{1 + 1 = 2}, here both sides contain a free variable \text{toks} so we cannot appeal to evaluation, which is a relation on closed terms (ones with no free variables).

One can nevertheless imagine some form of symbolic evaluation relation that extends evaluation to open terms and can equate these two expressions. In this particular case, this step of closed evaluation is syntactically indifferent to the value of \text{toks} and thus can be safely applied even when \text{toks} is a variable. (Likewise, to revisit an earlier example, the equation \text{filterLen } f \ [] = 0 should hold even for variable \text{f}.)

Thus we would like the type expressions \text{args (natTok :: toks)} and \text{Nat \rightarrow args toks} to denote the same type by virtue of the fact that they symbolically evaluate to the same symbolic value, and to facilitate this we must allow the type-checker to symbolically evaluate expressions in types during type-checking. The congruence relation on expressions so induced is known as definitional equality because it contains defining clauses like this one.

Remark 1.1.3. Semantically we can justify this equation by observing that for any closed instantiation toks of \text{toks}, \text{args (natTok :: toks)} and \text{Nat \rightarrow args toks} will evaluate to the same type expression—at least, once we have defined evaluation of type expressions—and thus this equation always holds at runtime. But just as (for reasons of decidability) the condition “when this expression is applied to a natural number it evaluates to a natural number” is a necessary but not sufficient condition for type-checking at \text{Nat \rightarrow Nat}, we do not want to take this semantic condition as the definition of definitional equality. It is however a necessary condition assuming that the type system is sound for the given evaluation semantics. (See Section 3.3.)
Definitional equality is the central concept in full-spectrum dependent type theory because it determines which types are equal and thus which terms have which types. In practice, it is typically defined as the congruence closure of the β-like reductions (also known as $\beta\delta\xi$-reductions) plus η-equivalence at some types; see Chapter 2 for details.

1.1.3 Proving type equations

Unfortunately, in light of Remark 1.1.3, there are many examples of type equations that are not direct consequences of ordinary or even symbolic evaluation. On occasion these equations are of such importance that researchers may attempt to make them definitional—that is, to include them in the definitional equality relation and adjust the type-checking algorithm accordingly [AMB13]. But such projects are often major research undertakings, and there are even examples of equations that can be definitional but are in practice best omitted due to efficiency or usability issues [Alt+01].

Let us turn once again to the example of filter from Section 1.1.2.

\[
\text{filter} : \{A : \text{Set}\} \{n : \text{Nat}\} \rightarrow (f : A \rightarrow \text{Bool}) \rightarrow (l : \text{Vec} A n) \rightarrow \text{Vec} A (\text{filterLen } f \ l)
\]

\[
\text{filterLen} : \{A : \text{Set}\} \{n : \text{Nat}\} \rightarrow (A \rightarrow \text{Bool}) \rightarrow \text{Vec} A n \rightarrow \text{Nat}
\]

\[\text{filterLen } f \ [\] = 0\]

\[\text{filterLen } f (x :: xs) = \text{if } f(x) \text{ then suc (filterLen } f \ xs) \text{ else filterLen } f \ xs\]

Suppose for the sake of argument that we want the operation of filtering an arbitrary vector by the constantly false predicate to return a $\text{Vec} A 0$:

\[
\text{filterAll} : \{A : \text{Set}\} \{n : \text{Nat}\} \rightarrow \text{Vec} A n \rightarrow \text{Vec} A 0
\]

\[\text{filterAll } l = \text{filter } (\lambda x \rightarrow \text{false}) \ l \quad -- \text{does not type-check}\]

The right-hand side above has type $\text{Vec} A (\text{filterLen } (\lambda x \rightarrow \text{false}) \ l)$ rather than $\text{Vec} A 0$ as desired, and in this case the expression $\text{filterLen } (\lambda x \rightarrow \text{false}) \ l$ cannot be simplified by (symbolic) evaluation because filterLen computes by recursion on l which is a variable. However, by induction on the possible instantiations of $l : \text{Vec} A n$, either:

- $l = [\]$, in which case $\text{filterLen } (\lambda x \rightarrow \text{false}) [\]$ is definitionally equal (in fact, evaluates) to 0; or
- $l = x :: xs$, in which case we have the definitional equalities

\[
\text{filterLen } (\lambda x \rightarrow \text{false}) \ (x :: xs)
\]

\[= \text{if } \text{false then suc (filterLen } (\lambda x \rightarrow \text{false}) \ xs) \text{ else filterLen } (\lambda x \rightarrow \text{false}) \ xs
\]

\[= \text{filterLen } (\lambda x \rightarrow \text{false}) \ xs\]
for any \(x \) and \(xs \). By the inductive hypothesis on \(xs \), \(\text{filterLen} \ (\lambda x \to \text{false}) \) \(xs \equiv 0 \) and thus \(\text{filterLen} \ (\lambda x \to \text{false}) \ (x :: xs) \equiv 0 \) as well.

By adding a type of *provable equations* \(a \equiv b \) to our language, we can compactly encode this inductive proof as a recursive function computing \(\text{filterLen} \ (\lambda x \to \text{false}) \) \(l \equiv 0 \):

\[
\begin{align*}
_\equiv & : \{ A : \text{Set} \} \to A \to A \to \text{Set} \\
\text{refl} & : \{ A : \text{Set} \} \ (x : A) \to x \equiv x \\
\text{lemma} & : \{ A : \text{Set} \} \ (n : \text{Nat}) \to (l : \text{Vec} \ A \ n) \to \text{filterLen} \ (\lambda l \to \text{false}) \ l \equiv 0 \\
\text{lemma} [] & = \text{refl} \\
\text{lemma} \ (x :: xs) & = \text{lemma} \ xs
\end{align*}
\]

The [] clause of lemma ought to have type \(\text{filterLen} \ (\lambda l \to \text{false}) \) [] \(\equiv 0 \), which is definitionally equal to the type \(0 \equiv 0 \) and thus \(\text{refl} \) type-checks. The \((x :: xs) \) clause must have type \(\text{filterLen} \ (\lambda l \to \text{false}) \ (x :: xs) \equiv 0 \), which is definitionally equal to \(\text{filterLen} \ (\lambda l \to \text{false}) \ xs \equiv 0 \), the expected type of the recursive call lemma \(xs \).

Now armed with a function lemma that constructs for any \(l : \text{Vec} \ A \ n \) a proof that \(\text{filterLen} \ (\lambda l \to \text{false}) \ l \equiv 0 \), we can justify *casting* from the type \(\text{Vec} \ A \ (\text{filterLen} \ (\lambda l \to \text{false}) \ l) \) to \(\text{Vec} \ A \ 0 \). The dependent casting operation that passes between provably equal indices of a dependent type (in this case \(\text{Vec} \ A : \text{Nat} \to \text{Set} \)) is typically called \(\text{subst} \):

\[
\begin{align*}
\text{subst} & : \{ A : \text{Set} \} \ (x \ y : A) \to (P : A \to \text{Set}) \to x \equiv y \to P(x) \to P(y) \\
\text{filterAll} & : \{ A : \text{Set} \} \ (n : \text{Nat}) \to \text{Vec} \ A \ n \to \text{Vec} \ A \ 0 \\
\text{filterAll} \ A \ l & = \text{subst} \ (\text{Vec} \ A) \ (\text{lemma} \ l) \ (\text{filter} \ (\lambda x \to \text{false}) \ l)
\end{align*}
\]

Remark 1.1.4. The \(\text{subst} \) operation above is a special case of a much stronger principle stating that the two types \(P(x) \) and \(P(y) \) are *isomorphic* whenever \(x \equiv y \); we can not only cast \(P(x) \to P(y) \) but also \(P(y) \to P(x) \) by symmetry of equality, and both round trips cancel. So although a proof \(x \equiv y \) does not make \(P(x) \) and \(P(y) \) definitionally equal, they are nevertheless equal in the sense of having the same elements up to isomorphism. ◊

Uses of \(\text{subst} \) are very common in dependent type theory; because dependently-typed functions can both require and ensure complex invariants, one must frequently prove that the output of some function is a valid input to another.⁴ Crucially, although \(\text{subst} \) is an “escape hatch” that compensates for the shortcomings of definitional equality, it cannot result in runtime errors—unlike explicit casts in most programming languages—because casting from \(P(x) \) to \(P(y) \) requires a machine-checked proof that \(x \equiv y \). We can ask

⁴A more realistic variant of our lemma might account for any predicate that returns false on all the elements of the given list, not just the constantly false predicate. Alternatively, one might prove that for any \(s : \text{String} \), the final return type of \(\text{sprintf} \ s \) is \(\text{String} \).
for such proofs because dependent type theory is not only a functional programming
language but also a higher-order intuitionistic logic that can express inductive proofs of
type equality, and as we saw with filterAll, its type-checker serves also as a proof-checker.

The dependent type \(x \equiv y \) is known as \textit{propositional equality}, and it is perhaps the
second most important concept in dependent type theory because it is the source of all
non-definitional type equations visible within the theory. There are many formulations of
propositional equality; they all implement \texttt{_/≡_/}, \texttt{refl}, and \texttt{subst} but differ in many other
respects, and each has unique benefits and drawbacks. We will discuss propositional
equality at length in Chapters 4 and 5.

To foreshadow the design space of propositional equality, consider that the \texttt{subst}
operator may itself be subject to various definitional equalities. If we apply filterAll to a
closed list \(ls \), then lemma \(ls \) will evaluate to \texttt{refl}, so filterAll \(ls \) is definitionally equal to
\texttt{subst (Vec A) refl (filter (λx → false) ls)}. At this point, filter \((λx \to \text{false}) \) \(ls \) already has
the desired type \(\text{Vec} A 0 \) because filterLen \((λx \to \text{false}) \) \(ls \) evaluates to 0, and thus the two
types involved in the cast are now definitionally equal. Ideally the \texttt{subst} term would now
disappear having completed its job, and indeed the corresponding definitional equality
\texttt{subst P refl x = x} does hold for many versions of propositional equality.

\textbf{Further reading}

Our four categories of dependency—types/terms depending on types/terms—are reminis-
cent of the \(\lambda \)-cube of generalized type systems in which one augments the simply-typed
\(\lambda \)-calculus (whose functions exhibit term-on-term dependency) with any combination of
the remaining three forms of dependency [Bar91]; adding all three yields the full-spectrum
dependent type theory known as the calculus of constructions [CH88]. However, the
technical details of this line of work differ significantly from our presentation in Chapter 2.

The remarkable fact that type theory is both a functional programming language and a
logic is known by many names including the \textit{Curry–Howard correspondence} and \textit{propositions
as types}. It is a very broad topic with many treatments; book-length expositions include
\textit{Proofs and Types} [GLT89] and \textit{PROGRAM = PROOF} [Mim20].

The code in this chapter is written in Agda syntax [Agda]. For more on dependently-
typed programming in Agda, see \textit{Verified Functional Programming in Agda} [Stu16]; for a
more engineering-oriented perspective on dependent types, see \textit{Type-Driven Development
with Idris} [Bra17]. The sprintf example in Section 1.1.2 is inspired by the paper \textit{Cayenne —
A Language with Dependent Types} [Aug99]. Conversely, to learn about using Agda as a
proof assistant for programming language theory, see \textit{Programming Language Foundations
in Agda} [WKS22].
In order to understand the subtle differences between modern dependent type theories, we must first study the formal definition of a dependent type theory as a mathematical object. We will then be prepared for Chapter 3, in which we study mathematical properties of type theory—and particularly of definitional and propositional equality—and their connection to computer implementations of type theory. In this chapter we therefore present the judgmental theory of Martin-Löf’s extensional type theory [ML82], one of the canonical variants of dependent type theory. We strongly suggest following the exposition rather than simply reading the rules, but the rules are collected for convenience in Appendix A (ignoring the rules marked with (ITT), which are present only in intensional type theory).

Given the time constraints of this course, we do not attempt to give a comprehensive account of the syntax of type theories, nor do we present any of the many alternative methods of defining type theory, some of which are more efficient (but more technical) than the one we present here. These questions lead to the fascinating and deep area of logical frameworks which we must regrettably leave for a different course.

In this chapter In Section 2.1 we recall the concepts of judgments and inference rules in the setting of the simply-typed lambda calculus. In Section 2.2 we consider how to adapt these methods to the dependent setting, and in Section 2.3 we develop these ideas into the basic judgmental structure of dependent type theory, in which substitution plays a key role. In Section 2.4 we extend the basic rules of type theory with rules governing dependent products, dependent sums, extensional equality, and unit types. We argue that these connectives can be understood as internalizations of judgmental structure, a perspective which provides a conceptual justification of these connectives’ rules. In Section 2.5 we define several inductive types—the empty type, booleans, and natural numbers—and explain how and why these types do not fit the pattern of the previous section. Finally, in Section 2.6 we discuss large elimination, which is implicit in our examples of full-spectrum dependency from Section 1.1, and its internalization via universe types.

Goals of the chapter By the end of this chapter, you will be able to:

- Define the core judgments of dependent type theory, and explain how and why they differ from the judgments of simple type theory.

- Explain the role of substitutions in the syntax of dependent type theory.

- Define and justify the rules of the core connectives of type theory.
2.1 The simply-typed lambda calculus

The theory of typed functional programming is built on extensions of a core language known as the simply-typed lambda calculus, which supports two types of data:

- functions of type $A \rightarrow B$ (for any types A, B): we write $\lambda x. b$ for the function that sends any input x of type A to an output b of type B, and write $f \ a$ for the application of a function f of type $A \rightarrow B$ to an input a of type A; and

- ordered pairs of type $A \times B$ (for any types A, B): we write (a, b) for the pair of a term a of type A with a term b of type B, and write $\text{fst}(p)$ and $\text{snd}(p)$ respectively for the first and second projections of a pair p of type $A \times B$.

It can also be seen as the implication–conjunction fragment of intuitionistic propositional logic, or as an axiom system for cartesian closed categories.

In this section we formally define the simply-typed lambda calculus as a collection of judgments presented by inference rules, in order to prepare ourselves for the analogous—but considerably more complex—definition of dependent type theory in the remainder of this chapter. Our goal is thus not to give a textbook account of the simply-typed lambda calculus but to draw the reader’s attention to issues that will arise in the dependent setting.

Readers familiar with the simply-typed lambda calculus should be aware that our definition does not reference the untyped lambda calculus (as discussed in Remark 2.1.2) and considers terms modulo $\beta\eta$-equivalence (Section 2.1.2).

2.1.1 Contexts, types, and terms

The simply-typed lambda calculus is made up of two sorts, or grammatical categories, namely types and terms. We present these sorts by two well-formedness judgments:

- the judgment $A \text{ type}$ stating that A is a well-formed type, and

- for any well-formed type A, the judgment $a : A$ stating that a is a well-formed term of that type.

By comprehension these judgments determine respectively the collection of well-formed types and, for every element of that collection, the collection of well-formed terms of that type. (From now on we will stop writing “well-formed” because we do not consider any other kind of types or terms; see Remark 2.1.2.)

Remark 2.1.1. A judgment is simply a proposition in our ambient mathematics, one which takes part in the definition of a logical theory; we use this terminology to distinguish such meta-propositions from the propositions of the logic that is being defined [ML87].
Similarly, a sort is a type in the ambient mathematics, as distinguished from the types of the theory being defined. We refer to the ambient mathematics (in which our definition is being carried out) as the *metatheory* and the logic being defined as the *object theory*.

In this course we will be relatively agnostic about our metatheory, which the reader can imagine as “ordinary mathematics.” However, one can often simplify matters by adopting a domain-specific metatheory (a *logical framework*) well-suited to defining languages/logics, as an additional level of indirection within the ambient metatheory.

Types

We can easily define the types as the expressions generated by the following context-free grammar:

\[
\text{Types} \quad A, B := \ b \mid A \times B \mid A \rightarrow B
\]

We say that the judgment \(A\ type\ (“A\ is\ a\ type”)\) holds when \(A\) is a type in the above sense. Note that in addition to function and product types we have included a base type \(b\); without \(b\) the grammar would have no terminal symbols and would thus be empty.

Equivalently, we could define the \(A\ type\) judgment by three *inference rules* corresponding to the three production rules in the grammar of types:

\[
\begin{align*}
\text{b type} & \quad \text{A type} \quad \text{B type} & \quad \text{A type} \quad \text{B type} \\
\hline
\text{A \times B\ type} & \quad \text{A \rightarrow B\ type}
\end{align*}
\]

Each inference rule has some number of premises (here, zero or two) above the line and a single conclusion below the line; by combining these rules into trees whose leaves all have no premises, we can produce *derivations* of judgments (here, the well-formedness of a type) at the root of the tree. The tree below is a proof that \((b \times b) \rightarrow b\) is a type:

\[
\begin{array}{c}
\text{b type} \\
\hline
\text{b type} \\
\hline
\text{(b \times b) \rightarrow b\ type}
\end{array}
\]

Terms

Terms are considerably more complex than types, so before attempting a formal definition we will briefly summarize our intentions. For the remainder of this section, fix a finite set \(I\). The well-formed terms are as follows:

- for any \(i \in I\), the base term \(c_i\) has type \(b\);
- pairing \((a, b)\) has type \(A \times B\) when \(a : A\) and \(b : B\);
- first projection \(\text{fst}(p)\) has type \(A\) when \(p : A \times B\);
• second projection \(\text{snd}(p) \) has type \(B \) when \(p : A \times B \);

• a function \(\lambda x.b \) has type \(A \rightarrow B \) when \(b : B \) where \(b \) can contain (in addition to the usual term formers) the variable term \(x : A \) standing for the function’s input; and

• a function application \(f \ a \) has type \(B \) when \(f : A \rightarrow B \) and \(a : A \).

The first difficulty we encounter is that unlike types, which are a single sort, there are infinitely many sorts of terms (one for each type) many of which refer to one another. A more significant issue is to make sense of the clause for functions: the body \(b \) of a function \(\lambda x. b \) is a term of type \(B \) according to our original grammar extended by a new constant \(x : A \) representing an indeterminate term of type \(A \). Because \(b \) can again be or contain a function \(\lambda y. c \), we must account for finitely many extensions \(x : A, y : B, \ldots \).

To account for these extensions we introduce an auxiliary sort of contexts, or lists of variables paired with types, representing local extensions of our theory by variable terms.

Contexts The judgment \(\vdash \Gamma \text{cx} \) (“\(\Gamma \) is a context”) expresses that \(\Gamma \) is a list of pairs of term variables with types. We write \(1 \) for the empty context and \(\Gamma \), \(x : A \) for the extension of \(\Gamma \) by a term variable \(x \) of type \(A \). As a context-free grammar, we might write:

\[
\begin{align*}
\text{Variables} & : x, y := x | y | z | \cdots \\
\text{Contexts} & : \Gamma := 1 | \Gamma, x : A
\end{align*}
\]

Equivalently, in inference rule notation:

\[
\begin{array}{c}
\frac{}{\vdash 1 \text{cx}} \\
\frac{\vdash \Gamma \text{cx}}{\vdash \Gamma, x : A \text{cx}}
\end{array}
\]

We will not spend time discussing variables or binding in these lecture notes because variables will, perhaps surprisingly, not be a part of our definition of dependent type theory. For the purposes of this section we will simply assume that there is an infinite set of variables \(x, y, z \ldots \), and that all the variables in any given context or term are distinct.

Terms revisited With contexts in hand we are now ready to define the term judgment, which we revise to be relative to a context \(\Gamma \). The judgment \(\Gamma \vdash a : A \) (“\(a \) has type \(A \) in context \(\Gamma \)”) is defined by the following inference rules:

\[
\begin{array}{c}
\frac{(x : A) \in \Gamma}{\Gamma \vdash x : A} \quad \frac{i \in I}{\Gamma \vdash c_i : b} \quad \frac{\Gamma \vdash a : A}{\Gamma \vdash \lambda x. b : A \rightarrow B} \\
\frac{}{\Gamma \vdash f \ a : B} \quad \frac{\Gamma \vdash p : A \times B}{\Gamma \vdash \text{snd}(p) : B} \quad \frac{\Gamma \vdash a : A}{\Gamma \vdash f \ a : B} \quad \frac{\Gamma \vdash b : B}{\Gamma \vdash (a, b) : A \times B}
\end{array}
\]

\[
\begin{array}{c}
\frac{\Gamma \vdash p : A \times B}{\Gamma \vdash \text{fst}(p) : A}
\end{array}
\]
The rules for c_i, pairing, projections, and application straightforwardly render our text into inference rule form, framed by a context Γ that is unchanged from premises to conclusion. The lambda rule explains how contexts are changed: the body of a lambda is typed in an extended context; and the variable rule explains how contexts are used: in context Γ, the variables of type A in Γ serve as additional terminal symbols of type A.

Rules such as pairing or lambda that describe how to create terms of a given type former are known as introduction rules, and rules describing how to use terms of a given type former, like projection and application, are known as elimination rules.

Remark 2.1.2. An alternative approach that is perhaps more familiar to programming languages researchers is to define a collection of preterms:

$$\text{Terms} \quad a, b ::= \quad c_i \mid x \mid (a, b) \mid \text{fst}(a) \mid \text{snd}(a) \mid \lambda x.a \mid a \cdot b$$

which includes ill-formed (typeless) terms like $\text{fst}(\lambda x.x)$ in addition to the well-formed (typed) ones captured by our grammar above, and the inference rules are regarded as carving out various subsets of well-formed terms [Har16]. In fact, one often gives computational meaning to all preterms (as an extension of the untyped lambda calculus) and then proves that the well-typed ones are in some sense computationally well-behaved.

This is not the approach we are taking here; to us the term expression $\text{fst}(\lambda x.x)$ does not exist any more than the type expression $\rightarrow \times \rightarrow$.\footnote{Perhaps one’s definition of context-free grammar carves out the grammatical expressions out of arbitrary strings over an alphabet, but this process occurs at a different level of abstraction. The reader should banish such thoughts along with their thoughts about terms with mismatched parentheses.} In fact, in light of Section 2.1.2, there will not even exist a “forgetful” map from our collections of terms to these preterms.

2.1.2 Equational rules

One shortcoming of our definition thus far is that our projections don’t actually project anything and our function applications don’t actually apply functions—there is no sense yet in which $\text{fst}((a, b)) : A$ or $(\lambda x.x) \; a : A$ “are” $a : A$. Rather than equip our terms with operational meaning, we will quotient our terms by equations that capture a notion of sameness including these examples. The reader can imagine this process as analogous to the presentation of algebras by generators and relations, in which our terms thus far are the generators of a “free algebra” of (well-formed but) uninterpreted expressions.

Our true motivation for this quotient is to anticipate the definitional equality of dependent type theory, but there are certainly intrinsic reasons as well, perhaps most notably that the quotiented terms of the simply-typed lambda calculus serve as an axiom system for reasoning about cartesian closed categories [Cro94, Chapter 4].
We quotient by the congruence relation generated by the following rules:

\[
\begin{align*}
\Gamma \vdash a : A & \quad \Gamma \vdash b : B \\
\Gamma \vdash \text{fst}((a, b)) = a : A & \quad \Gamma \vdash \text{snd}((a, b)) = b : B \\
\Gamma, x : A \vdash b : B & \quad \Gamma \vdash p : A \times B \\
\Gamma \vdash (\lambda x. b) a = b[a/x] : B & \quad \Gamma \vdash f : A \to B \\
\end{align*}
\]

The equations pertaining to elimination after introduction (projection from pairs and application of lambdas) are called \(\beta\)-equivalences; the equations pertaining to introduction after elimination (pairs of projections and lambdas of applications) are \(\eta\)-equivalences.

We emphasize that these equations are not \textit{a priori} directed, and are not restricted to the “top level” of terms; we genuinely take the quotient of the collection of terms at each type by these equations, automatically inducing equations such as \(\lambda x. x = \lambda x. \text{fst}((x, x))\).

The first two rules explain that projecting from a pair has the evident effect. The third rule states that every term of type \(A \times B\) can be written as a pair (of its projections), in effect transforming the introduction rule for products from merely a sufficient condition to a necessary one as well. Similarly, the fifth rule states that every \(f : A \to B\) can be written as a lambda (of its application).

The fourth rule explains that applying a lambda function \(\lambda x. b\) to an argument \(a\) is equal to the body \(b\) of that lambda with all occurrences of the placeholder variable \(x\) replaced by the term \(a\). However, this equation makes reference to a \textit{substitution} operation \(b[a/x]\) (“substitute \(a\) for \(x\) in \(b\)”) that we have not yet defined.

Substitution We can define substitution \(b[a/x]\) by structural recursion on \(b\):

\[
\begin{align*}
\text{c}_i[c/x] & := c_i \\
x[c/x] & := c \\
y[c/x] & := y & \text{(for } x \neq y) \\
(a, b)[c/x] & := (a[c/x], b[c/x]) \\
\text{fst}(p)[c/x] & := \text{fst}(p[c/x]) \\
\text{snd}(p)[c/x] & := \text{snd}(p[c/x]) \\
(\lambda y. b)[c/x] & := \lambda y. b[c/x] & \text{(for } x \neq y) \\
(f a)[c/x] & := f[c/x] a[c/x] \\
\end{align*}
\]

In the case of substituting into a lambda \((\lambda y. b)[c/x]\), we assume that the bound variable \(y\) introduced by the lambda is different from the variable \(x\) being substituted away. In practice they may coincide, in which case one must rename \(y\) (and all references to \(y\) in \(b\))
before applying this rule. In any case, we intend this substitution to be *capture-avoiding* in the sense of not inadvertently changing the referent of bound variables.

However, because we have quotiented our collection of terms by $\beta\eta$-equivalence, it is not obvious that substitution is well-defined as a function out of the collection of terms; in order to map out of the quotient, we must check that substitution behaves equally on equal terms. (It is also not obvious that substitution is a function into the collection of terms, in the sense of producing well-formed terms, as we will discuss shortly.)

Consider the equation $\text{fst}((a, b)) = a$. To see that substitution respects this equation, we can substitute into the left-hand side, yielding:

$$(\text{fst}((a, b))[c/x]) = \text{fst}((a, b)[c/x]) = \text{fst}((a[c/x], b[c/x]))$$

which is β-equivalent to $a[c/x]$, the result of substituting into the right-hand side. We can check the remaining equations in a similar fashion; the $x \neq y$ condition on substitution into lambdas is necessary for substitution to respect β-equivalence of functions.

2.1.3 Who type-checks the typing rules?

Our stated goal in Section 2.1.1 was to define a collection of well-formed types (written A type), and for each of these a collection of well-formed terms (written $a : A$). Have we succeeded? First of all, our definition of terms is now indexed by contexts Γ and written $\Gamma \vdash a : A$, to account for variables introduced by lambdas. This is no problem: we recover the original notion of (closed) term by considering the empty context Γ_0. Nor is there any issue defining the collections of types $\text{Ty} = \{A \mid A$ type$\}$ and contexts $\text{Cx} = \{\Gamma \mid \vdash \Gamma$ cx$\}$ as presented by the grammars or inference rules in Section 2.1.1.

It is less clear that the collections of terms are well-defined. We would like to say that the collection of terms of type A in context Γ, $\text{Tm}(\Gamma, A)$, is the set of a for which there exists a derivation of $\Gamma \vdash a : A$, modulo the relation $a \sim b \iff$ there exists a derivation of $\Gamma \vdash a = b : A$. Several questions arise immediately; for instance, is it the case that whenever $\Gamma \vdash a : A$ is derivable, Γ is a context and A is a type? If not, then we have some “junk” judgments that should not correspond to elements of some $\text{Tm}(\Gamma, A)$.

Lemma 2.1.3. If $\Gamma \vdash a : A$ then $\vdash \Gamma$ cx and A type.

To prove such a statement, one proceeds by induction on derivations of $\Gamma \vdash a : A$. If, say, the derivation ends as follows:

$$
\vdash p : A \times B \\
\Gamma \vdash \text{fst}(p) : A
$$
then the inductive hypothesis applied to the derivation of $\Gamma \vdash \rho : A \times B$ tells us that $\vdash \Gamma \, \text{cx}$ and $A \times B$ type. The former is exactly one of the two statements we are trying to prove. The other, A type, follows from an “inversion lemma” (proven by cases on the \semidown type judgment) that A type is not only a sufficient but also a necessary condition for $A \times B$ type.

Unfortunately our proof runs into an issue at the base cases, or at least it is not clear over what Γ the following rules range:

\[
\begin{array}{c}
(x : A) \in \Gamma \\
\hline
\Gamma \vdash x : A
\end{array}
\quad
\begin{array}{c}
i \in I \\
\hline
\Gamma \vdash c_i : b
\end{array}
\]

We must either add premises to these rules stating $\vdash \Gamma \, \text{cx}$, or else clarify that Γ always ranges only over contexts (which will be our strategy moving forward; see Notation 2.2.1).

Another question is the well-definedness of our quotient:

Lemma 2.1.4. If $\Gamma \vdash a = b : A$ then $\Gamma \vdash a : A$ and $\Gamma \vdash b : A$.

But because β-equivalence refers to substitution, proving this lemma requires:

Lemma 2.1.5 (Substitution). If $\Gamma, x : A \vdash b : B$ and $\Gamma \vdash a : A$ then $\Gamma \vdash b[a/x] : B$.

We already saw that we must check that substitution $b[a/x]$ respects equality of b, but we must also check that it produces well-formed terms, again by induction on b. Note that substitution changes a term’s context because it eliminates one of its free variables.

If we resume our attempt to prove Lemma 2.1.4, we will notice that substitution is not the only time that the context of a term changes; in the right-hand side of the η-rule of functions, f is in context $\Gamma, x : A$, whereas in the premise and left-hand side it is in Γ:

\[
\Gamma \vdash f : A \to B \\
\Gamma \vdash f = \lambda x. (f \, x) : A \to B
\]

And thus we need yet another lemma.

Lemma 2.1.6 (Weakening). If $\Gamma \vdash b : B$ and $\Gamma \vdash A$ type then $\Gamma, x : A \vdash b : B$.

We will not belabor the point any further; eventually one proves enough lemmas to conclude that we have a set of contexts Cx, a set of types Ty, and for every $\Gamma \in \text{Cx}$ and $A \in \text{Ty}$ a set of terms $\text{Tm}(\Gamma, A)$. The complexity of each result is proportional to the complexity of that sort’s definition: we define types outright, contexts by simple reference to types, and terms by more complex reference to both types and contexts. The judgments of dependent type theory are both more complex and more intertwined; rather than enduring proportionally more suffering, we will adopt a slightly different approach.

Finally, whereas all the metatheorems mentioned in this section serve only to establish that our definition is mathematically sensible, there are more genuinely interesting and
contentful metatheorems one might wish to prove, including canonicity, the statement
that (up to equality) the only closed terms of \(\mathbf{b} \) are of the form \(\mathbf{c}_i \) (i.e., \(\text{Tm}(1, \mathbf{b}) = \{ \mathbf{c}_i \}_{i \in I} \)),
and decidability of equality, the statement that for any \(\Gamma \vdash a : A \) and \(\Gamma \vdash b : A \) we can write
a program which determines whether or not \(\Gamma \vdash a = b : A \).

2.2 Towards the syntax of dependent type theory

The reader is forewarned that the rules in this section serve to bridge the gap between
Section 2.1 and our “official” rules for extensional type theory, which start in Section 2.3.

As we discussed in Section 1.1, the defining distinction between dependent and simple
type theory is that in the former, types can contain term expressions and even term
variables. Thus, whereas in Section 2.1 a simple context-free grammar sufficed to define
the collection of types and we needed a context-sensitive system of inference rules to
define the well-typed terms, in dependent type theory we will find that both the types and
terms are context-sensitive because they refer to one another.

Types and contexts When is the dependent function type \((x : A) \rightarrow B \) well-formed?
Certainly \(A \) and \(B \) must be well-formed types, but \(B \) is allowed to contain the term variable
\(x : A \) whereas \(A \) is not. In the case of \((n : \text{Nat}) \rightarrow \text{Vec String} \text{ (suc } n) \), the well-formedness
of the codomain depends on the fact that \(\text{suc } n \) is a well-formed term of type \(\text{Nat} \) (the
indexing type of \(\text{Vec String} \)), which in turn depends on the fact that \(n \) is known to be an
expression (in particular, a variable) of type \(\text{Nat} \).

Thus as with the “term judgment of Section 2.1, the type judgment of dependent type
theory must have access to the context of term variables, so we replace the \(A \) type judgment
(“\(A \) is a type”) of the simply-typed lambda calculus with a judgment \(\Gamma \vdash A \) type (“\(A \) is a
type in context \(\Gamma \)”). This innocuous change has many downstream implications, so we
will be fastidious about the context in which a type is well-formed.

The first consequence of this change is that contexts of term variables, which we
previously defined simply as lists of well-formed types, must now also take into account
in what context each type is well-formed. Informally we say that each type can depend on
all the variables before it in the context; formally, one might define the judgment \(\vdash \Gamma \) cx by
the following pair of rules:

\[
\begin{array}{c}
\vdash 1 \text{cx} \\
\vdash \Gamma \text{cx} \quad \Gamma \vdash A \text{type} \\
\end{array}
\quad \begin{array}{c}
\vdash \Gamma, x : A \text{cx} \\
\end{array}
\]

Notice that the rules defining the judgment \(\vdash \Gamma \) cx refer to the judgment \(\Gamma \vdash A \) type,
which in turn depends on our notion of context. This kind of mutual dependence will
continue to crop up throughout the rules of dependent type theory.
Notation 2.2.1 (Presuppositions). With a more complex notion of context, it is more important than ever for us to decide over what Γ the judgment $\Gamma \vdash A$ type ranges. We will say that the judgment $\Gamma \vdash A$ type is only well-formed when $\vdash \Gamma \text{cx}$ holds, as a matter of “meta-type discipline,” and similarly that the judgment $\Gamma \vdash a : A$ is only well-formed when $\Gamma \vdash A$ type (and thus also $\vdash \Gamma \text{cx}$).

One often says that $\vdash \Gamma \text{cx}$ is a presupposition of the judgment $\Gamma \vdash A$ type, and that the judgments $\vdash \Gamma \text{cx}$ and $\Gamma \vdash A$ type are presuppositions of $\Gamma \vdash a : A$. We will globally adopt the convention that whenever we assert the truth of some judgment in prose or as the premise of a rule, we also implicitly assert that its presuppositions hold. Dually, we will be careful to check that none of our rules have meta-ill-typed conclusions.

Now that we have added a term variable context to the type well-formedness judgment, we can explain when $(x : A) \rightarrow B$ is a type: it is a (well-formed) type in Γ when A is a type in Γ and B is a type in $\Gamma, x : A$, as follows.

$$\Gamma \vdash A \text{ type} \quad \Gamma, x : A \vdash B \text{ type} \quad \frac{}{\Gamma \vdash (x : A) \rightarrow B \text{ type}}$$

Rules like this describing how to create a type are known as formation rules, to parallel the terminology of introduction and elimination rules.

We can now sketch the formation rules for many of the types we encountered in Chapter 1. Dependent types like \(_ \equiv _\) and \(\text{Vec}\) are particularly interesting because they entangle the $\Gamma \vdash A$ type judgment with the term well-formedness judgment $\Gamma \vdash a : A$.

$$\vdash \Gamma \text{cx} \quad \Gamma \vdash A \text{ type} \quad \Gamma \vdash n : \text{Nat} \quad \frac{}{\Gamma \vdash \text{Vec} A n \text{ type}} \quad \Gamma \vdash a : A \quad \Gamma \vdash b : A \quad \frac{}{\Gamma \vdash a \equiv b \text{ type}}$$

Note that the convention of presuppositions outlined in Notation 2.2.1 means that the second and third rules have an implicit $\vdash \Gamma \text{cx}$ premise, and the third rule also has an implicit $\vdash \Gamma \text{cx}$ premise. To see that the conclusions of these rules are meta-well-typed, we must check that $\vdash \Gamma \text{cx}$ holds in each case; this is an explicit premise of the first rule and a presupposition of the premises of the second and third rules.

The formation rule for propositional equality $_ \equiv _\$ in particular is a major source of dependency because it singlehandedly allows arbitrary terms of arbitrary type to occur within types. In fact, this rule by itself causes the inference rules of all three judgments $\vdash \Gamma \text{cx}$, $\Gamma \vdash A$ type, and $\Gamma \vdash a : A$ to all depend on one another pairwise.

Exercise 2.1. Attempt to derive that $(n : \text{Nat}) \rightarrow \text{Vec String} (\text{suc } n)$ is a well-formed type in the empty context \(\mathbf{1}\), using the rules introduced in this section thus far. Several rules are missing; which judgments can you not yet derive?
The variable rule

Let us turn now to the term judgment \(\Gamma \vdash a : A \), and in particular the rule stating that term variables in the context are well-formed terms. For simplicity, imagine the special case where the last variable is the one under consideration:

\[
\Gamma, x : A \vdash x : A
\]

This rule needs considerable work, as neither of the conclusion’s presuppositions, \(\vdash (\Gamma, x : A) \) cx and \(\Gamma, x : A \vdash A \) type, currently hold. We can address the former by adding premises \(\vdash \Gamma \) cx and \(\Gamma \vdash A \) type to the rule, from which it follows that \(\vdash (\Gamma, x : A) \) cx.\(^2\) As for the latter, note that \(\Gamma \vdash A \) type does not actually imply \(\Gamma, x : A \vdash A \) type—this would require proving a weakening lemma (see Lemma 2.1.6) for types! (Conversely, if the rule has the premise \(\Gamma \vdash A \) type, then we cannot establish well-formedness of the context.)

There are several ways to proceed. One is to prove a weakening lemma, but given that the well-formedness of the variable rule requires weakening, it is necessary to prove all our well-formedness, weakening, and substitution lemmas by a rather heavy simultaneous induction. A second approach would be to add a silent weakening rule stating that \(\Gamma, x : A \vdash B \) type whenever \(\Gamma \vdash B \) type; however, this introduces ambiguity into our rules regarding the context(s) in which a type or term is well-formed.

We opt for a third option, which is to add explicit weakening rules asserting the existence of an operation sending types and terms in context \(\Gamma \) to types and terms in context \(\Gamma, x : A \), both written \(-[p]\). (This notation will become less mysterious later.)

\[
\Gamma \vdash B \text{ type} \quad \Gamma \vdash A \text{ type} \quad \Gamma \vdash b : B \quad \Gamma \vdash A \text{ type} \\
\hline
\Gamma, x : A \vdash B[p] \text{ type} \quad \Gamma, x : A \vdash b[p] : B[p]
\]

Note that the type weakening rule is needed to make sense of the term weakening rule.

We can now fix the variable rule we wrote above: using \(-[p]\) to weaken \(A \) by itself, we move \(A \) from context \(\Gamma \) to \(\Gamma, x : A \) as required in the conclusion of the rule.

\[
\vdash \Gamma \text{ cx} \quad \Gamma \vdash A \text{ type} \\
\hline
\Gamma, x : A \vdash x : A[p]
\]

To use variables that occur earlier in the context, we can apply weakening repeatedly until they are the last variable. Suppose that \(1 \vdash A \) type and \(x : A \vdash B \) type, and in the context \(x : A, y : B \) we want to use the variable \(x \). Ignoring the \(y : B \) in the context for a moment, we know that \(x : A \vdash x : A[p] \) by the last variable rule; thus by weakening we

\(^2\)Of course one could just directly add the premise \(\vdash (\Gamma, x : A) \) cx, but our short-term memory is robust enough to recall that our next task is to ensure that \(A \) is a type.
have \(x : A, y : B \vdash x[p] : A[p][p] \). In general, we can derive the following principle:

\[
\begin{array}{c}
\Gamma \vdash \text{A type} \\
\Gamma, x : A \vdash B_1 \text{ type} \\
\vdots \\
\Gamma, x : A, y_1 : B_1, \ldots \vdash B_n \text{ type}
\end{array}
\Rightarrow
\begin{array}{c}
\Gamma, x : A, y_1 : B_1, \ldots, y_n : B_n \vdash \underbrace{x[p] \ldots [p]}_{n \text{ times}} : \underbrace{A[p] \ldots [p]}_{n+1 \text{ times}}
\end{array}
\]

This approach to variables is elegant in that it breaks the standard variable rule into two simpler primitives: a rule for the last variable, and rules for type and term weakening. However, it introduces a redundancy in our notation, because the term \(x[p]^n \) encodes in two different ways the variable to which it refers: by the name \(x \) as well as positionally by the number of weakenings \(n \).

A happy accident of our presentation of the variable rule is thus that we can delete variable names altogether; in Section 2.3 we will present contexts simply as lists of types \(A, B, C \) with no variable names, and adopt a single notation for “the last variable in the context,” an encoding of the lambda calculus known as de Bruijn indexing [Bru72]. Conceptual elegance notwithstanding, this notation is very unfriendly to the reader in larger examples\(^3\) so we will continue to use named variables outside of the rules themselves; translating between the two notations is purely mechanical.

Remark 2.2.2. The first author wishes to mention another approach to maintaining readability, which is to continue using both named variables and explicit weakenings [Gra09]; this approach has the downside of requiring us to explain variable binding, but is simultaneously readable and precise about weakenings.

\footnote{\text{3}According to Conor McBride, “Bob Atkey once memorably described the capacity to put up with de Bruijn indices as a Cylon detector.” (https://mazzo.li/epilogue/index.html%3Fp=773.html)}

2.3 The calculus of substitutions

Weakening is one of two main operations in type theory that moves types and terms between contexts, the other being substitution of terms for variables. For the same reasons that we want to present weakening as an explicit type- and term-forming operation, we will also formulate substitution as an explicit operation subject to equations explicating how it computes on each construct of the theory.

However, rather than axiomatizing single substitutions and weakenings, we will axiomatize arbitrary compositions of substitutions and weakenings. In light of the fact that substitution shortens the context of a type/term and weakening lengthens it, these composite operations—called simultaneous substitutions (henceforth just substitutions)—can turn any context \(\Gamma \) into any other context \(\Delta \).
We thus add one final judgment to our presentation of type theory, $\Delta \vdash \gamma : \Gamma$ ("γ is a substitution from Δ to Γ"), corresponding to operations that send types/terms from context Γ to context Δ. (Not a typo; we will address the “backwards” notation later.)

Notation 2.3.1. Type theory has four basic judgments and three equality judgments:

1. $\vdash \Gamma \text{cx}$ asserts that Γ is a context.
2. $\Delta \vdash \gamma : \Gamma$, presupposing $\vdash \Delta \text{cx}$ and $\vdash \Gamma \text{cx}$, asserts that γ is a substitution from Δ to Γ.
3. $\Gamma \vdash A \text{type}$, presupposing $\vdash \Gamma \text{cx}$, asserts that A is a type in context Γ.
4. $\Gamma \vdash a : A$, presupposing $\vdash \Gamma \text{cx}$ and $\Gamma \vdash A \text{type}$, asserts that a is an element/term of type A in context Γ.

$2'$. $\Delta \vdash \gamma = \gamma' : \Gamma$, presupposing $\Delta \vdash \gamma : \Gamma$ and $\Delta \vdash \gamma' : \Gamma$, asserts that γ, γ' are equal substitutions from Δ to Γ.

$3'$. $\Gamma \vdash A = A' \text{type}$, presupposing $\Gamma \vdash A \text{type}$ and $\Gamma \vdash A' \text{type}$, asserts that A, A' are equal types in context Γ.

$4'$. $\Gamma \vdash a = a' : A$, presupposing $\Gamma \vdash a : A$ and $\Gamma \vdash a' : A$, asserts that a, a' are equal elements of type A in context Γ.

Notation 2.3.2. We write Cx for the set of contexts, $\text{Sb}(\Delta, \Gamma)$ for the set of substitutions from Δ to Γ, $\text{Ty}(\Gamma)$ for the set of types in context Γ, and $\text{Tm}(\Gamma, A)$ for the set of terms of type A in context Γ.

This presentation of dependent type theory is known as the substitution calculus [ML92; Tas93]. Perhaps unsurprisingly, we must discuss a considerable number of rules governing substitutions before presenting any concrete type and term formers; we devote this section to those rules, and cover the main connectives of type theory in Section 2.4.

Contexts The rules for contexts are as in Section 2.2, but without variable names:

$$
\begin{align*}
\vdash 1 \text{cx} & \quad \vdash \Gamma \text{cx} \quad \Gamma \vdash A \text{type} \\
\hline
& \quad \vdash \Gamma.A \text{cx}
\end{align*}
$$

Although there is no context equality judgment, note that two contexts can be equal without being syntactically identical. If $1 \vdash A = A' \text{type}$ then $1.A$ and $1.A'$ are equal contexts on the basis that, like all operations of the theory, context extension respects equality in both arguments. We have omitted the $\vdash \Gamma = \Gamma' \text{cx}$ judgment for the simple reason that there would be no rules governing it: the only reason why two contexts can be equal is that their types are pairwise equal.
Substitutions

The purpose of a substitution \(\Delta \vdash \gamma : \Gamma \) is to shift types and terms from context \(\Gamma \) to context \(\Delta \):

- \(\Delta \vdash \gamma : \Gamma \implies \Gamma \vdash A \text{ type} \implies \Delta \vdash A[\gamma] \text{ type} \)
- \(\Delta \vdash \gamma : \Gamma \implies \Gamma \vdash a : A \implies \Delta \vdash a[\gamma] : A[\gamma] \)

Unlike the substitution operation of Section 2.1, which was a function on terms defined by cases, these rules define two binary type- and term-forming operations that take a type (resp., term) and a substitution as input and produce a new type (resp., term). Note also that, despite sharing a notation, type and term substitution are two distinct operations.

The simplest interesting substitution is weakening, written \(p \text{.} \)

\[
\begin{align*}
\Gamma \vdash A \text{ type} & \implies \Gamma, A \vdash p : \Gamma \\
\end{align*}
\]

In concert with the substitution rules above we can recover the weakening rules from the previous section, e.g., if \(\Gamma \vdash B \text{ type} \) and \(\Gamma \vdash A \text{ type} \) then \(\Gamma, x : A \vdash B[p] \text{ type} \).

Because substitutions \(\Delta \vdash \gamma : \Gamma \) encode arbitrary compositions of context-shifting operations, we also have rules that close substitutions under nullary and binary composition:

\[
\begin{align*}
\vdash \Gamma \text{ cx} & \implies \Gamma \vdash \text{id} : \Gamma \\
\Gamma_2 \vdash \gamma_1 : \Gamma_1 & \quad \Gamma_1 \vdash \gamma_0 : \Gamma_0 \\
& \implies \Gamma_2 \vdash \gamma_0 \circ \gamma_1 : \Gamma_0
\end{align*}
\]

These operations are unital and associative as one might expect:

\[
\begin{align*}
\Delta \vdash \gamma : \Gamma & \implies \Delta \vdash \gamma \circ \text{id} = \text{id} \circ \gamma = \gamma : \Gamma \\
\Gamma_3 \vdash \gamma_2 : \Gamma_2 & \quad \Gamma_2 \vdash \gamma_1 : \Gamma_1 \\
& \quad \Gamma_1 \vdash \gamma_0 : \Gamma_0 \\
& \implies \Gamma_3 \vdash \gamma_0 \circ (\gamma_1 \circ \gamma_2) = (\gamma_0 \circ \gamma_1) \circ \gamma_2 : \Gamma_0
\end{align*}
\]

We can summarize the rules above by stating that there is a category whose objects are contexts and whose morphisms are substitutions.

We have already seen that substitutions shift the contexts of types and terms by \([-[\gamma]\); they also shift the context of other substitutions by precomposition. Later we will have occasion to discuss all three context-shifting functions between sorts that are induced by substitutions, as follows.

Notation 2.3.3. Given a substitution \(\Delta \vdash \gamma : \Gamma \), we write \(\gamma^* \) for the following functions:

- \(\xi \mapsto \xi \circ \gamma : \text{Sb}(\Gamma, \Xi) \to \text{Sb}(\Delta, \Xi) \),
- \(A \mapsto A[\gamma] : \text{Ty}(\Gamma) \to \text{Ty}(\Delta) \), and

\(^4\)This mysterious name can be explained by the fact that weakening corresponds semantically to a projection map; \(p \) can thus be pronounced as either "weakening" or "projection".

\[a \mapsto a[\gamma] : \text{Tm}(\Gamma, A) \rightarrow \text{Tm}(\Delta, A[\gamma]). \]

Composite substitutions introduce a possible redundancy into our rules: what is the difference between substituting by \(\gamma_0 \) and then by \(\gamma_1 \) versus substituting once by \(\gamma_0 \circ \gamma_1 \)? We add equations asserting that substituting by \(\text{id} \) is the identity and substituting by a composite is composition of substitutions:

\[
\begin{align*}
\Gamma \vdash A & \quad \text{type} \\
\Gamma \vdash A[\text{id}] & = A \quad \text{type} \\
\Gamma \vdash a & : A \\
\Gamma \vdash a[\text{id}] & = a : A
\end{align*}
\]

\[
\begin{align*}
\Gamma_2 \vdash \gamma_1 : \Gamma_1 \\
\Gamma_1 \vdash \gamma_0 : \Gamma_0 \\
\Gamma_0 \vdash A & \quad \text{type} \\
\Gamma_2 \vdash A[\gamma_0 \circ \gamma_1] & = A[\gamma_0][\gamma_1] \quad \text{type} \\
\Gamma_2 \vdash a[\gamma_0 \circ \gamma_1] & = a[\gamma_0][\gamma_1] : A[\gamma_0 \circ \gamma_1]
\end{align*}
\]

We can summarize the rules above by stating that the \(\gamma^* \) operations respect identity and composition of substitutions, or more compactly, that the collections of types and terms form presheaves \(\text{Ty}(\cdot) \) and \(\sum_{A : \text{Ty}(\cdot)} \text{Tm}(\cdot, A) \) on the category of contexts, with restriction maps given by substitution (a perspective which inspires the notation \(\gamma^* \)).

Before moving on, it is instructive to once again convince ourselves that the rules above are meta-well-typed. In particular, the conclusion of the second rule is only sensible if \(\Gamma \vdash a[\text{id}] : A \), but according to the rule for term substitution we only have \(\Gamma \vdash a[\text{id}] : A[\text{id}] \). To make sense of this rule we must refer to the previous rule equating the types \(A[\text{id}] \) and \(A \). A consequence of this type equation is that terms of type \(A[\text{id}] \) are equivalently terms of type \(A \), and thus \(\Gamma \vdash a[\text{id}] : A \) as required. This is a paradigmatic example of the deeply intertwined nature of the rules of dependent type theory; in particular, we cannot defer equations to the end of our construction the way we did in Section 2.1 because many rules are only sensible after imposing certain equations.

The variable rule revisited As in the previous section, the variable rule is restricted to the last entry in the context, which we (unambiguously) always name \(q \).

\[
\begin{align*}
\Gamma \vdash A & \quad \text{type} \\
\Gamma.A \vdash q : A[p]
\end{align*}
\]

Writing \(p^n \) for the \(n \)-fold composition of \(p \) with itself (with \(p^0 = \text{id} \)), the following rule is derivable from other rules (notated \(\Rightarrow \)) and thus not explicitly included in our system:

\[
\begin{align*}
\Gamma \vdash A & \quad \text{type} \\
\Gamma.A \vdash B_1 & \quad \text{type} \\
\ldots & \\
\Gamma.A.B_1 \ldots B_n & \quad \text{type} \\
\Gamma.A.B_1 \ldots B_n \vdash q[p^n] & : A[p^{n+1}]
\end{align*}
\]

\(^5\)In some presentations of type theory this principle is explicit and is known as the type conversion rule. For us it is a consequence of the judgments respecting equality, i.e., \(\text{Tm}(\Gamma, A[\text{id}]) = \text{Tm}(\Gamma, A) \) as sets.

\(^6\)This mysterious name is chosen to pair well with the name \(p \) that we gave weakening; \(q \) can thus be pronounced as either “variable” or “qariable”.

(2024-04-05)
Thus a variable in our system is a term of the form $q[p^n]$, where n is its de Bruijn index.

Terminal substitutions Our notation $\Delta \vdash \gamma : \Gamma$ for substitutions is no accident; it is indeed a good mental model to think of such substitutions as “terms of type Γ in context Δ.” To understand why, let us think back to propositional logic. A term $1.B \vdash c : C$ can be seen as a proof of C under the hypothesis B, i.e., a proof that $B \implies C$. Given a substitution $1.A \vdash b : 1.B$ we can obtain a term $1.A \vdash c[b] : C[b]$, or a proof that $A \implies C$. This suggests that substituting corresponds logically to a “cut,” and b to a proof that $A \implies B$.

Returning to the general case, contexts are lists of hypotheses, and a substitution $\Delta \vdash \gamma : \Gamma$ states that we can prove all the hypotheses of Γ using the hypotheses of Δ. Thus anything that is true under the hypotheses Γ is also true under the hypotheses Δ—hence the contravariance of the substitution operation.

More concretely, the idea is that a substitution $\Delta \vdash \gamma : 1.A_1 \ldots A_n$ is an n-tuple of terms a_1, \ldots, a_n of types A_1, \ldots, A_n, all in context Δ, and applying the substitution γ has the effect of substituting a_1 for the first variable, a_2 for the second variable, ... and a_n for the last variable. The final subtlety is that each type A_i is in general dependent on all the previous A_j for $j < i$, so the type of a_2 is not just A_2 but “$A_2[a_1/x_1]$,” so to speak, all the way through “$a_n : A_n[a_1/x_1, \ldots, a_{n-1}/x_{n-1}]$.”

If all of this sounds very complicated, well... at any rate, the remaining rules governing substitution define such n-tuples in two cases, 0 and $n + 1$. The nullary case is fairly simple: any substitution $\Gamma \vdash \delta : 1$ into the empty context (a length-zero list of types) is necessarily the empty tuple $\langle \rangle$, which we spell $!$.

$$\frac{\vdash \Gamma \text{ cx}}{\Gamma \vdash ! : 1} \quad \frac{\Gamma \vdash \delta : 1}{\Gamma \vdash ! = \delta : 1}$$

These rules state that 1 is a terminal object in the category of contexts, a perspective which inspires the notations 1 and $!$.

Substitution extension The other case concerns substitutions $\Delta \vdash - : \Gamma.A$ into a context extension. Recall that $\Gamma.A$ is an $(n + 1)$-tuple of types when Γ is an n-tuple of types, and suppose that $\Delta \vdash \gamma : \Gamma$, which is to say that γ is an n-tuple of terms (in context Δ) whose types are those in Γ. To extend this n-tuple to an $(n + 1)$-tuple of terms whose types are those in $\Gamma.A$, we simply adjoin one more term a in context Δ with type $A[\gamma]$, where this substitution plugs the n previously-given terms into the dependencies of A.

$$\frac{\Delta \vdash \gamma : \Gamma \quad \Gamma \vdash A \text{ type} \quad \Delta \vdash a : A[\gamma]}{\Delta \vdash \gamma.a : \Gamma.A}$$
The final three rules of our calculus are equations governing this substitution former:

\[
\frac{\Delta \vdash \gamma : \Gamma}{\Delta \vdash \gamma : \Gamma}
\]

\[
\frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash A \text{ type}}
\]

\[
\frac{\Delta \vdash a : A[\gamma]}{\Delta \vdash p \circ (\gamma.a) = \gamma : \Gamma}
\]

\[
\frac{\Gamma \vdash \gamma : \Gamma.A}{\Delta \vdash \gamma : \Gamma.A}
\]

\[
\frac{\Delta \vdash q[\gamma.a] = a : A[\gamma]}{\Delta \vdash q[\gamma.a] = a : A[\gamma]}
\]

Imagining for the moment that \(\Gamma = x_1 : A_1, \ldots, x_n : A_n\) and \(\gamma = [a_1/x_1, \ldots, a_n/x_n]\), the second rule states that \(x_n[a_1/x_1, \ldots, a_n/x_n] = a_n\), in other words, that substituting into the last variable \(x_n\) replaces that variable by the last term \(a_n\). The first rule states in essence that substituting into a type/term that does not mention (is weakened by) \(x_n\) is the same as dropping the last term \(a_n/x_n\) from the substitution, i.e., \([a_1/x_1, \ldots, a_{n-1}/x_{n-1}]\).

Finally, the third rule states that every substitution \(\gamma\) into the context \(\Gamma.A\) is of the form \(\gamma_0.a\), where \(a\) is determined by the behavior of \(\gamma\) on the last variable, and \(\gamma_0\) is determined by the behavior of \(\gamma\) on the first \(n\) variables. (See Exercise 2.5.)

All of these rules in this section determine a category (of contexts and substitutions) with extra structure, known collectively as a category with families [Dyb96]. We will refer to any system that extends this collection of rules as a Martin-Löf type theory.

Exercise 2.2. Show that substitutions \(\Gamma \vdash \gamma : \Gamma.A\) satisfying \(p \circ \gamma = \text{id}\) are in bijection with terms \(\Gamma \vdash a : A\).

Exercise 2.3. Show that \((\gamma.a) \circ \delta = (\gamma \circ \delta).a[\delta]\).

Exercise 2.4. Given \(\Delta \vdash \gamma : \Gamma\) and \(\Gamma \vdash A \text{ type}\), construct a substitution that we will name \(\gamma.A\), satisfying \(\Delta.A[\gamma] \vdash \gamma.A : \Gamma.A\).

Exercise 2.5. Suppose that \(\Gamma \vdash A \text{ type}\) and \(\vdash \Delta \text{ cx}\). Show that substitutions \(\Delta \vdash \gamma : \Gamma.A\) are in bijection with pairs of a substitution \(\Delta \vdash \gamma_0 : \Gamma\) and a term \(\Delta \vdash a : A[\gamma_0]\).

2.4 Internalizing judgmental structure: \(\Pi, \Sigma, \text{Eq, Unit}\)

With the basic structure of dependent type theory finally out of the way, we are prepared to define standard type and term formers, starting with the best-behaved connectives: dependent products, dependent sums, extensional equality, and the unit type. Unlike inductive types (Section 2.5), each of these connectives can be described concisely as internalizing judgmental structure of some kind.
2.4.1 Dependent products

We start with dependent function types, also known as dependent products or \(\Pi \)-types. The formation rule is as in Section 2.2, but without variable names:

\[
\Gamma \vdash A \text{ type} \\
\Gamma.A \vdash B \text{ type}
\]

\(\Gamma \vdash \Pi(A, B) \text{ type} \)

Remark 2.4.1. The \(\Pi \) notation and terminology is inspired by this type corresponding semantically to a set-indexed product of sets \(\prod_{a \in A} B_a \). Indexed products generalize ordinary products in the sense that \(\prod_{a \in \{1,2\}} B_a \equiv B_1 \times B_2 \).

Remarkably, the substitution calculus ensures that these rules are almost indistinguishable from the introduction and elimination rules of simple function types in Section 2.1, with some minor additional bookkeeping to move types to the appropriate contexts:

\[
\Gamma \vdash A \text{ type} \\
\Gamma.A \vdash \lambda(b) : \Pi(A, B)
\]

\(\Gamma \vdash \text{app}(f, a) : B[id.a] \)

There continue to be a few notational shifts: \(\lambda s \) no longer come with variable names, and we write \(\text{app}(f, a) \) rather than \(f(a) \) just to emphasize that function application is a term constructor. The reader should convince themselves that in the final rule, \(\Gamma \vdash B[id.a] \text{ type} \); this substitutes \(a \) for the last variable in \(B \), leaving the rest of the context unchanged.

Next we must specify equations not only on the introduction and elimination forms, but on the type former itself. There are two groups of equations we must impose; the first group explains how substitutions act on all three of these operations:

\[
\Delta \vdash \gamma : \Gamma \\
\Gamma \vdash A \text{ type} \\
\Gamma.A \vdash b : B
\]

\(\Delta \vdash \Pi(A, B)[\gamma] = \Pi(A[\gamma], B[\gamma.A]) \text{ type} \)

\(\Delta \vdash \lambda(b)[\gamma] = \lambda(b[\gamma.A]) : \Pi(A, B)[\gamma] \)

\[
\Delta \vdash \gamma : \Gamma \\
\Gamma \vdash a : A \\
\Gamma.A \vdash B \text{ type}
\]

\(\Delta \vdash f : \Pi(A, B) \)

\(\Delta \vdash \text{app}(f, a)[\gamma] = \text{app}(f[\gamma], a[\gamma]) : B[\gamma.a[\gamma]] \)

Roughly speaking, these three rules state that substitutions commute past each type and term former, but \(B \) and \(b \) are well-formed in a larger context \((\Gamma.A) \) than the surrounding term \((\Gamma) \), requiring us to “shift” the substitution so that it leaves the bound variable of type \(A \) unchanged while continuing to act on all the free variables in \(\Gamma \). (The “shifted” substitution \(\gamma.A \) in these rules is the derived form defined in Exercise 2.4.)

Once again we should pause and convince ourselves that these rules are meta-well-typed. Echoing the phenomenon we saw in Section 2.3 with \(\Gamma \vdash a[id] : A \), we need to

\footnote{We have switched our notation from \((x : A) \rightarrow B \) because it is awkward without named variables.}
use the substitution rule for $\Pi(A, B)[\gamma]$ to see that the right-hand side of the substitution rules for $\lambda(b)[\gamma]$ and $\text{app}(f, a)[\gamma]$ are well-typed.

Exercise 2.6. Check that the substitution rule for $\text{app}(f, a)[\gamma]$ is meta-well-typed; in particular, show that both $\text{app}(f, a)[\gamma]$ and $\text{app}(f[\gamma], a[\gamma])$ have the type $B[\gamma.a[\gamma]]$.

This pattern will continue: every time we introduce a new type or term former θ, we will add an equation $\theta(a_1, \ldots, a_n)[\gamma] = \theta(a_1[\gamma_1], \ldots, a_n[\gamma_n])$ stating that substitutions push past θ, adjusted as necessary in each argument. These rules are quite mechanical and can even be automatically derived in some frameworks, but they are at the heart of type theory itself. From a logical perspective, they ensure that quantifier instantiation is uniform. From a mathematical perspective, as we will see in Section 2.4.2, they assert the naturality of type-theoretic constructions. And from an implementation perspective, these rules can be assembled into a substitution algorithm, ensuring that substitutions can be computed automatically by proof assistants.

Remark 2.4.2. The difference between this approach to substitution and the one outlined in Section 2.1 is one of derivability vs admissibility. In the simply-typed setting, the fact that all terms enjoy substitution is not part of the system but rather must be proven (and even constructed in the first place) by induction over the structure of terms, and so adding new constructs to the theory may cause substitution to fail.

In the substitution calculus, we assert that all types and terms enjoy substitution as basic rules of the theory, and later add equations specifying how substitution computes; thus any extension of the theory is guaranteed to enjoy substitution. Because substitution is a crucial aspect of dependent type theory, we find this latter approach more ergonomic.

The second group of equations is the β- and η-rules introduced in Section 2.1, completing our presentation of dependent product types.

\[
\begin{align*}
\Gamma \vdash a : A & \quad \Gamma.A \vdash b : B & \quad \Gamma \vdash A \text{ type} & \quad \Gamma.A \vdash B \text{ type} & \quad \Gamma \vdash f : \Pi(A, B) \\
\Gamma \vdash \text{app}(\lambda(b), a) & = b[\text{id}.a] : B[\text{id}.a] & \quad \Gamma \vdash f = \lambda(\text{app}(f[\text{p}], q)) : \Pi(A, B)
\end{align*}
\]

Exercise 2.7. Carefully explain why the η-rule above is meta-well-typed, in particular why $\lambda(\text{app}(f[\text{p}], q))$ has the right type. Explicitly point out all the other rules and equations (e.g., Π-introduction, Π-elimination, weakening) to which you refer.

Exercise 2.8. Show that using Π-types we can define a non-dependent function type whose formation rule states that if $\Gamma \vdash A$ type and $\Gamma \vdash B$ type then $\Gamma \vdash A \rightarrow B$ type. Then define the introduction and elimination rules from Section 2.1 for this encoding, and check that the β- and η-rules from Section 2.1 hold. (Hint: it is incorrect to define $A \rightarrow B := \Pi(A, B)$.)

Exercise 2.9. As discussed in Section 2.3, two contexts that are not syntactically identical may nevertheless be equal. Give an example.
2.4.2 Dependent products internalize hypothetical judgments

With one type constructor, two term constructors, and five equations, it is natural to wonder whether we have written “enough” or “the correct” rules to specify \(\Pi \)-types. One may also wonder whether there is an easier way. We now introduce a methodology for making sense of this collection of rules, and show how we can use this methodology to more efficiently define the later connectives. In short, we will view connectives as internalizations of judgmental structure, and in particular as an internalization of the hypothetical judgment \(\Gamma \vdash - : \Pi(A, B) \) in particular as an internalization of the hypothetical judgment \(\Gamma.A \vdash - : B \).

Remark 2.4.3. In these notes we limit ourselves to a semi-informal discussion of this perspective, which can be made fully precise with the language of category theory. For instance, using the framework of natural models, Awodey [Awo18] shows that the rules above exactly capture that \(\Pi \)-types classify the hypothetical judgment in a precise sense.

Analyzing context extension

To warm up, let us begin by recalling Exercise 2.5, which establishes the following bijection of sets for every \(\Delta, \Gamma, \) and \(A \):

\[
\{ \gamma \mid \Delta \vdash \gamma : \Gamma.A \} \cong \{(y_0, a) \mid \Delta \vdash y_0 : \Gamma \land \Delta \vdash a : A[y_0]\}
\]

Using Notation 2.3.2 we equivalently write:

\[
i_{\Delta, \Gamma, A} : Sb(\Delta, \Gamma.A) \cong \sum_{\gamma \in Sb(\Delta, \Gamma)} Tm(\Delta, A[\gamma])
\]

where \(\sum_{a \in A} B_a \) is our notation for the set-indexed coproduct of sets \(\coprod_{a \in A} B_a \).

As stated, the bijections \(i_{\Delta, \Gamma, A} \) and \(i_{\Delta', \Gamma', A'} \) may be totally unrelated, but it turns out that this collection of bijections is actually natural (or “parametric”) in \(\Delta \) in the sense that the behavior of \(i_{\Delta_0, \Gamma, A} \) and \(i_{\Delta_1, \Gamma, A} \) are correlated when we have a substitution from \(\Delta_0 \) to \(\Delta_1 \).

Because these bijections have different types, to make this idea precise we must find a way to relate their differing domains \(Sb(\Delta_0, \Gamma.A) \) and \(Sb(\Delta_1, \Gamma.A) \) with one another, as well as their codomains \(\sum_{\gamma \in Sb(\Delta_0, \Gamma)} Tm(\Delta_0, A[y]) \) and \(\sum_{\gamma \in Sb(\Delta_1, \Gamma)} Tm(\Delta_1, A[y]) \).

We have already seen the former in Notation 2.3.3: every substitution \(\Delta_0 \vdash \delta : \Delta_1 \) induces a function \(\delta^* : Sb(\Delta_1, \Gamma.A) \to Sb(\Delta_0, \Gamma.A) \). We leave the latter as an exercise:

Exercise 2.10. Given \(\Delta_0 \vdash \delta : \Delta_1 \), use \(\delta^* \) (Notation 2.3.3) to define the following function:

\[
\sum_{\delta^* \cdot \gamma \in Sb(\Delta_1, \Gamma)} Tm(\Delta_1, A[\gamma]) \to \sum_{\gamma \in Sb(\Delta_0, \Gamma)} Tm(\Delta_0, A[\gamma])
\]

Proof. Define \((\sum_{\delta^* \cdot \gamma}) (\gamma, a) = (\delta^* \cdot \gamma, \delta^* \cdot a) = (\gamma \circ \delta, a[\delta]) \).
a substitution \(\Delta_1 \vdash \gamma : \Gamma.A \) into an element of \(\sum_{\gamma \in \text{Sb}(\Delta_0, \Gamma)} \text{Tm}(\Delta_0, A[\gamma]) \), depicted by the “right then down” and “down then right” paths in the diagram below:

\[
\begin{array}{ccc}
\text{Sb}(\Delta_1, \Gamma.A) & \xrightarrow{t_{\Delta_1, \Gamma.A}} & \sum_{\gamma \in \text{Sb}(\Delta_1, \Gamma)} \text{Tm}(\Delta_1, A[\gamma]) \\
\delta^* & \downarrow & \downarrow \Sigma_{\delta^*} \delta^* \\
\text{Sb}(\Delta_0, \Gamma.A) & \xrightarrow{t_{\Delta_0, \Gamma.A}} & \sum_{\gamma \in \text{Sb}(\Delta_0, \Gamma)} \text{Tm}(\Delta_0, A[\gamma])
\end{array}
\]

Going “right then down” we obtain

\[
\gamma \mapsto t_{\Delta_1, \Gamma.A}(\gamma) \quad \downarrow \quad (\Sigma_{\delta^*} \delta^*)(t_{\Delta_1, \Gamma.A}(\gamma))
\]

and going “down then right” we obtain \(\gamma \mapsto \gamma \circ \delta \mapsto t_{\Delta_0, \Gamma.A}(\gamma \circ \delta) \).

We say that the family of isomorphisms \(\Delta \mapsto t_{\Delta, \Gamma.A} \) is natural when these two paths always yield the same result, i.e., when \((\Sigma_{\delta^*} \delta^*)(t_{\Delta_1, \Gamma.A}(\gamma)) = t_{\Delta_0, \Gamma.A}(\gamma \circ \delta) \) for every \(\Delta_0 \vdash \delta : \Delta_1 \) and \(\gamma \). In other words, \(t_{\Delta_0, \Gamma.A} \) and \(t_{\Delta_1, \Gamma.A} \) “do the same thing” as soon as you correct the mismatch in their types by pre- and post-composing the appropriate maps.

Exercise 2.11. Prove that \(t \) is natural, i.e., that the following maps are equal:

\[
\Sigma_{\delta^*} \delta^* \circ t_{\Delta_1, \Gamma.A} = t_{\Delta_0, \Gamma.A} \circ \delta^* : \text{Sb}(\Delta_1, \Gamma.A) \to \sum_{\gamma \in \text{Sb}(\Delta_0, \Gamma)} \text{Tm}(\Delta_0, A[\gamma])
\]

Proof. Suppose \(\gamma \in \text{Sb}(\Delta_1, \Gamma.A) \). Unfolding the solutions to Exercises 2.5 and 2.10,

\[
(\Sigma_{\delta^*} \delta^*)(t_{\Delta_1, \Gamma.A}(\gamma)) = (\Sigma_{\delta^*} \delta^*)(p \circ \gamma, q[\gamma]) = ((p \circ \gamma) \circ \delta, q[\gamma][\delta])
\]

\[
t_{\Delta_0, \Gamma.A}(\delta^*(\gamma)) = t_{\Delta_0, \Gamma.A}(\gamma \circ \delta) = (p \circ (\gamma \circ \delta), q[\gamma \circ \delta])
\]

which are equal by the functoriality of substitution. \(\square \)

The terminology of “natural” comes from category theory, where \(t_{-, \Gamma.A} \) is known as a natural isomorphism, but we will prove and use naturality conditions without referring to the general concept. One useful consequence of naturality is the following:

Exercise 2.12. Without unfolding the definition of \(t \), show that the naturality of \(t \) and the fact that \(t_{\Delta, \Gamma.A} \) and \(t_{\Delta, \Gamma.A}^{-1} \) are inverses together imply that \(t^{-1} \) is natural, i.e., that

\[
t_{\Delta_0, \Gamma.A}^{-1} \circ \Sigma_{\delta^*} \delta^* = \delta^* \circ t_{\Delta_1, \Gamma.A}^{-1} : \sum_{\gamma \in \text{Sb}(\Delta_1, \Gamma)} \text{Tm}(\Delta_1, A[\gamma]) \to \text{Sb}(\Delta_0, \Gamma.A)
\]
Proof. Apply $\iota_{\Delta_0, \Gamma, A}^{-1} \circ - \circ \iota_{\Delta_1, \Gamma, A}^{-1}$ to both sides of the naturality equation for ι and cancel:

$$\begin{align*}
\iota_{\Delta_0, \Gamma, A}^{-1} \circ \delta^* \circ \iota_{\Delta_1, \Gamma, A} \circ \iota_{\Delta_1, \Gamma, A}^{-1} &= \iota_{\Delta_0, \Gamma, A}^{-1} \circ \iota_{\Delta_0, \Gamma, A} \circ \delta^* \circ \iota_{\Delta_1, \Gamma, A}^{-1} \\
\iota_{\Delta_0, \Gamma, A}^{-1} \circ \delta^* &= \delta^* \circ \iota_{\Delta_1, \Gamma, A}^{-1}
\end{align*}$$

\square

Exercise 2.13. For categorically-minded readers: argue that ι is a natural isomorphism in the standard sense, by rephrasing Exercises 2.10 and 2.11 in terms of categories and functors.

Rather than defining context extension by the collection of rules in Section 2.3 and then characterizing it in terms of ι after the fact, we can actually define it directly as “a context $\Gamma.A$ for which $\text{Sb}(\cdot, \Gamma.A)$ is naturally isomorphic to $\sum_{\gamma \in \text{Sb}(\cdot, \Gamma)} \text{Tm}(\cdot, A[\gamma])$, ” which unfolds to all of the relevant rules.

In addition to its brevity, the true advantage of such characterizations is that they are less likely to “miss” some important aspect of the definition. Zooming out, this definition states that substitutions into $\Gamma.A$ are dependent pairs of a substitution γ into Γ and a term in $A[\gamma]$, which is exactly the informal description we started with in Section 2.3.

With that in mind, our program for justifying the rules of type theory is as follows:

Slogan 2.4.4. A connective in type theory is given by (1) a natural type-forming operation and (2) a natural isomorphism relating that type’s terms to judgmentally-determined structure.

We must unfortunately remain vague here about the meaning of “judgmentally-determined structure,” but it refers to sets constructed from the sorts $\text{Sb}(\Delta, \Gamma), \text{Ty}(\Gamma)$, and $\text{Tm}(\Gamma, A)$ using natural operations such as dependent products and dependent sums—operations that are implicit in the meaning of inference rules. To make this more precise requires a formal treatment of the algebra of judgments via logical frameworks.

In addition, although this slogan will make quick work of the remainder of Section 2.4, we will need to revise it in Sections 2.5 and 2.6.

Π-types The rules in Section 2.4.1 precisely capture the existence of an operation

$$\Pi_\Gamma : (\sum_{A \in \text{Ty}(\Gamma)} \text{Ty}(\Gamma.A)) \to \text{Ty}(\Gamma)$$

natural in Γ (that is, one which commutes with substitution) along with the following family of isomorphisms also natural in Γ:

$$\iota_{\Gamma, A, B} : \text{Tm}(\Gamma, \Pi(A, B)) \cong \text{Tm}(\Gamma.A, B)$$

The first point expresses the formation rule and $\Pi(A, B)[\gamma] = \Pi(A[\gamma], B[\gamma.A])$. We focus on the second point, which characterizes the remaining rules in Section 2.4.1.

The reverse map $\iota_{\Gamma, A, B}^{-1} : \text{Tm}(\Gamma.A, B) \to \text{Tm}(\Gamma, \Pi(A, B))$ is the introduction rule, which sends terms $\Gamma.A \vdash b : B$ to $\lambda(b)$. The forward map is slightly more involved, but we can
guess that it should correspond to elimination. In fact it is *application to a fresh variable*, or a combination of weakening and application—given \(\Gamma \vdash f : \Pi(A, B) \), we weaken to \(\Gamma . A \vdash f[p] : \Pi(A, B)[p] \) and then apply to \(q \), obtaining \(\Gamma . A \vdash \text{app}(f[p], q) : B \).

To complete this natural isomorphism we must check that it is an isomorphism, and that it is natural. We begin with the isomorphism: for all \(\vdash \Gamma \text{x} \), \(\Gamma \vdash A \) type, and \(\Gamma . A \vdash B \) type,

\[
\begin{align*}
i_{\Gamma, A, B}(i_{\Gamma, A, B}^{-1}(f)) &= f \\
i_{\Gamma, A, B}^{-1}(i_{\Gamma, A, B}(b)) &= b
\end{align*}
\]

Unfolding definitions, we see that this isomorphism boils down essentially to \(\beta \) and \(\eta \).

\[
\begin{align*}
i_{\Gamma, A, B}^{-1}(i_{\Gamma, A, B}(f)) &= \lambda(\text{app}(f[p], q)) \\
&= f & \text{by the } \eta \text{ rule} \\
i_{\Gamma, A, B}(i_{\Gamma, A, B}^{-1}(b)) &= \text{app}(\lambda(b)[p], q) \\
&= \text{app}(\lambda(b[p . A[p]]), q) & \lambda(\cdot) \text{ commutes with substitution} \\
&= b[p . A[p] \circ \text{id}.q] & \text{by the } \beta \text{ rule} \\
&= b[p . q] & \text{by Exercise 2.14 below} \\
&= b[\text{id}] \\
&= b
\end{align*}
\]

Exercise 2.14. Using the definition of \(p . A[p] \) from Exercise 2.4, prove the substitution equality needed to complete the equational reasoning above.

As for the naturality of the isomorphisms \(i \), as before we must first explain how to relate the types of \(i_{\Gamma, A, B} \) and \(i_{\Delta, A[y], B[y] . A} \) given a substitution \(\Delta \vdash \gamma : \Gamma \). In this case, the comparison functions are the following:

\[
\begin{align*}
\gamma^* : \text{Tm}(\Gamma, \Pi(A, B)) &\rightarrow \text{Tm}(\Delta, \Pi(A[y], B[y].A)) \\
\gamma . A^* : \text{Tm}(\Gamma . A, B) &\rightarrow \text{Tm}(\Delta . A[y], B[y].A)
\end{align*}
\]

Naturality therefore states that “right then down” and “down then right” are equal in the following diagram. (By the reader’s argument in Exercise 2.12, naturality of \(i \)
automatically implies the naturality of i^{-1}.)

\[
\begin{array}{ccc}
\text{Tm}(\Gamma, \Pi(A,B)) & \xrightarrow{i_{\Gamma,A,B}} & \text{Tm}(\Gamma.A, B) \\
\downarrow y^* & & \downarrow y.A^* \\
\text{Tm}(\Delta, \Pi(A[y], B[y.A])) & \xrightarrow{i_{\Delta,A[y],B[y.A]}} & \text{Tm}(\Delta.A[y], B[y.A])
\end{array}
\]

Fixing $\Gamma \vdash f : \Pi(A, B)$, we show $i_{\Gamma,A,B}(f)[y.A] = i_{\Delta,A[y],B[y.A]}(f[y])$ by computing:

\[
i_{\Gamma,A,B}(f)[y.A] \\
= \text{app}(f[p], q)[y.A] \\
= \text{app}(f[p][y.A], q[y.A]) \quad \text{app}(−, −) \text{ commutes with substitution} \\
= \text{app}(f[p \circ y.A], q) \\
= \text{app}(f[y \circ p], q) \\
i_{\Delta,A[y],B[y.A]}(f[y]) \\
= \text{app}(f[y][p], q) \\
= \text{app}(f[y \circ p], q)
\]

Thus all of the rules of Π-types can be summed up by a natural operation Π_{Γ} (formation and its substitution law) along with a natural isomorphism $i_{\Gamma,A,B} : \text{Tm}(\Gamma, \Pi(A,B)) \cong \text{Tm}(\Gamma.A, B)$ where i^{-1} and i are introduction and elimination, the round-trips are β and η, and naturality is the remaining substitution laws.

An alternative eliminator
There is a strange asymmetry in the two maps i and i^{-1} underlying our natural isomorphism: the latter is literally the introduction rule, but the former combines elimination with weakening and the variable rule. It turns out that there is an equivalent formulation of Π-elimination more faithful to our current perspective:

\[
\Gamma \vdash f : \Pi(A,B) \\
\Gamma.A \vdash \lambda^{-1}(f) : B
\]

Such a presentation replaces the current $\text{app}(−, −)$, β, and η rules with the above rule along with new versions of β and η stating simply that $\lambda(\lambda^{-1}(f)) = f$ and $\lambda^{-1}(\lambda(b)) = b$ respectively. We recover ordinary function application via $\text{app}(f, a) := \lambda^{-1}(f)[\text{id}.a]$.

Although in practice our original formulation of function application is much more useful than anti-λ, the latter is more semantically natural. A variant of this argument is
discussed by Gratzer et al. [Gra+22], because in the context of modal type theories one often encounters elimination forms akin to $\lambda^{-1}(-)$ and it can be far from obvious what the corresponding $\text{app}(-,-)$ operation would be.

Exercise 2.15. Verify the claim that $\lambda^{-1}(-)$ and its β and η rules do in fact imply our original elimination, β, and η rules.

2.4.3 Dependent sums

We now present dependent pair types, also known as dependent sums or Σ-types. In a reversal of our discussion of Π-types, we will begin by defining dependent sums as an internalization of judgmental structure before unfolding this into inference rules.

The Σ type former behaves just like the Π type former: a natural family of types indexed by pairs of a type A and an A-indexed family of types B,

$$\Sigma \Gamma: (\sum_{A \in \text{Ty}(\Gamma)} \text{Ty}(\Gamma.A)) \rightarrow \text{Ty}(\Gamma)$$

or in inference rule notation,

$$\Gamma \vdash A \text{ type} \quad \Gamma.A \vdash B \text{ type} \quad \Delta \vdash \gamma : \Gamma \quad \Gamma \vdash A \text{ type} \quad \Gamma.A \vdash B \text{ type}$$

$$\Gamma \vdash \Sigma(A,B) \text{ type} \quad \Delta \vdash \Sigma(A,B)[\gamma] = \Sigma(A[\gamma],B[\gamma.A]) \text{ type}$$

(Recall that we write $\sum_{A \in \text{Ty}(\Gamma)} \text{Ty}(\Gamma.A)$ for the indexed coproduct $\bigsqcup_{A \in \text{Ty}(\Gamma)} \text{Ty}(\Gamma.A)$.)

Where Σ-types and Π-types differ is in their elements. Whereas $\Gamma \vdash \Pi(A,B)$ type internalizes terms with a free variable $\Gamma.A \vdash b : B$, the type $\Gamma \vdash \Sigma(A,B)$ type internalizes pairs of terms $\Gamma \vdash a : A$ and $\Gamma \vdash b : B[\text{id}.a]$, naturally in Γ:

$$\iota_{\Gamma,A,B} : \text{Tm}(\Gamma,\Sigma(A,B)) \equiv \sum_{a \in \text{Tm}(\Gamma,A)} \text{Tm}(\Gamma,B[\text{id}.a])$$

Remarkably, the above line completes our definition of dependent sum types, but in the interest of the reader we will proceed to unfold this natural isomorphism into inference rules in three stages. First, we will unfold the maps $\iota_{\Gamma,A,B}$ and $\iota_{\Gamma,A,B}^{-1}$ into three term formers; second, we will unfold the two round-trip equations into a pair of equational rules; and finally, we will unfold the naturality condition into three more equational rules.

Remark 2.4.5. There is an unfortunate terminological collision between simple types and dependent types: although Π-types seem to generalize simple functions, they are called dependent products, and although Σ-types seem to generalize simple products because their elements are pairs, they are called dependent sums.

The reason is twofold: first, the elements of indexed coproducts (known to programmers as “tagged unions”) are actually pairs (“pairs of a tag bit with data”), whereas the elements of indexed products (“n-ary pairs”) are actually functions (sending n to the n-th projection). Secondly, both concepts generalize simple finite products: the product $B_1 \times B_2$ is both an indexed product $\prod_{a \in \{1,2\}} B_a$ and an indexed coproduct of a constant family $\sum_{a \in B_1} B_2$. ◦
To unpack the natural isomorphism, we note first that the forward direction $t_{\Gamma,A,B} : \text{Tm}(\Gamma, \Sigma(A, B)) \to \sum_{a \in \text{Tm}(\Gamma, A)} \text{Tm}(\Gamma, B[\text{id}.a])$ sends terms $\Gamma \vdash p : \Sigma(A, B)$ to (meta-)pairs of terms, so we can unfold this map into a pair of term formers with the same premises:

$$
\begin{array}{c}
\Gamma \vdash A \text{ type} \\
\Gamma. A \vdash B \text{ type} \\
\Gamma \vdash p : \Sigma(A, B)
\end{array}
\quad\quad
\begin{array}{c}
\Gamma \vdash \text{fst}(p) : A \\
\Gamma \vdash \text{snd}(p) : B[\text{id}.\text{fst}(p)]
\end{array}
$$

The map $t^{-1}_{\Gamma,A,B} : \sum_{a \in \text{Tm}(\Gamma, A)} \text{Tm}(\Gamma, B[\text{id}.a]) \to \text{Tm}(\Gamma, \Sigma(A, B))$ sends a pair of terms to a single term of type $\Sigma(A, B)$, so we unfold it into one term former with two term premises:

$$
\begin{array}{c}
\Gamma \vdash a : A \\
\Gamma. A \vdash B \text{ type} \\
\Gamma \vdash b : B[\text{id}.a]
\end{array}
\quad\quad
\begin{array}{c}
\Gamma \vdash \text{pair}(a, b) : \Sigma(A, B)
\end{array}
$$

Unlike in our judgmental analysis of dependent products, the standard introduction and elimination forms of dependent sums correspond exactly to the maps t^{-1} and t, so the two round-trip equations are exactly the standard β and η principles:

$$
\begin{array}{c}
\Gamma \vdash a : A \\
\Gamma. A \vdash B \text{ type} \\
\Gamma \vdash b : B[\text{id}.a]
\end{array}
\quad\quad
\begin{array}{c}
\Gamma \vdash \text{fst}(\text{pair}(a, b)) = a : A \\
\Gamma \vdash \text{snd}(\text{pair}(a, b)) = b : B[\text{id}.a]
\end{array}
$$

$$
\begin{array}{c}
\Gamma \vdash A \text{ type} \\
\Gamma. A \vdash B \text{ type} \\
\Gamma \vdash p : \Sigma(A, B)
\end{array}
\quad\quad
\begin{array}{c}
\Gamma \vdash p = \text{pair}(\text{fst}(p), \text{snd}(p)) : \Sigma(A, B)
\end{array}
$$

It remains to unpack the naturality of t, which as we have seen previously, encodes the fact that the term formers commute with substitution. The reader may be surprised to learn, however, that the substitution rule for $\text{pair}(_ , _)$ actually implies the substitution rules for $\text{fst}(_)$ and $\text{snd}(_)$ in the presence of β and η. (Categorically, this is the fact that naturality of t^{-1} implies naturality of t, as we saw in Exercise 2.12.) Given the rule

$$
\Delta \vdash \gamma : \Gamma \\
\Delta \vdash a : A \\
\Delta \vdash A \supset B \text{ type} \\
\Delta \vdash b : B[\text{id}.a]
$$

fix a substitution $\Delta \vdash \gamma : \Gamma$ and a term $\Gamma \vdash p : \Sigma(A, B)$. Then

$$
\begin{array}{c}
fst(p)[\gamma] \\
= \text{fst}(\text{pair}(\text{fst}(p)[\gamma], \text{snd}(p)[\gamma])) \\
= \text{fst}(\text{pair}(\text{fst}(p), \text{snd}(p))[\gamma]) \\
= \text{fst}(p[\gamma])
\end{array}
$$

by the β rule

by the above rule

by the η rule
and the calculation for \(\text{snd}(\text{-}) \) is identical. Nevertheless it is typical to include substitution rules for all three term formers: there is nothing wrong with equating terms that are already equal, and even in type theory, discretion can be the better part of valor.

Exercise 2.16. Check that the substitution rule for pair above is meta-well-typed, in particular the second component \(b[\gamma] \). (Hint: use Exercise 2.3.)

Exercise 2.17. Show that the substitution rule for \(\lambda^{-1}(\text{-}) \) follows from the substitution rule for \(\lambda(\text{-}) \) and the equations \(\lambda(\lambda^{-1}(f)) = f \) and \(\lambda^{-1}(\lambda(b)) = b \).

2.4.4 Extensional equality

We now turn to the simplest form of propositional equality, known as **extensional equality** or **Eq-types**. As their name suggests, Eq-types internalize the term equality judgment. They are defined as follows, naturally in \(\Gamma \):

\[
\text{Eq}_\Gamma : \left(\sum_{A \in \text{Ty}} (\Gamma, A) \times \text{Tm}(\Gamma, A) \right) \rightarrow \text{Ty}(\Gamma) \\
\iota_{\Gamma, A, a, b} : \text{Tm}(\Gamma, \text{Eq}(A, a, b)) \cong \{ \star \mid a = b \}
\]

In other words, \(\text{Eq}(A, a, b) \) is a type when \(\Gamma \vdash a : A \) and \(\Gamma \vdash b : A \), and has a unique inhabitant exactly when the judgment \(\Gamma \vdash a = b : A \) holds (otherwise it is empty). The inference rules for extensional equality are as follows:

\[
\begin{array}{c}
\Gamma \vdash a, b : A \\
\hline
\Gamma \vdash \text{Eq}(A, a, b) \text{ type}
\end{array}
\quad
\begin{array}{c}
\Delta \vdash y : \Gamma \\
\Delta \vdash \text{Eq}(A, a, b)[y] = \text{Eq}(A[y], a[y], b[y]) \text{ type}
\end{array}
\quad
\begin{array}{c}
\Gamma \vdash a, b : A \\
\hline
\Gamma \vdash \text{refl} : \text{Eq}(A, a, a)
\end{array}
\quad
\begin{array}{c}
\Gamma \vdash a, b : A \\
\Delta \vdash p : \text{Eq}(A, a, b)
\end{array}
\quad
\begin{array}{c}
\Gamma \vdash a = b : A \\
\hline
\Gamma \vdash p = \text{refl} : \text{Eq}(A, a, b)
\end{array}
\]

The penultimate rule is known as **equality reflection**, and it is somewhat unusual because it concludes an arbitrary term equality judgment from the existence of a term. This rule is quite strong in light of the facts that (1) judgmentally equal terms can be silently exchanged at any location in any judgment, (2) the equality proof \(\Gamma \vdash p : \text{Eq}(A, a, b) \) is not recorded in those exchanges, and (3) \(p \) could even be a variable, e.g., in context \(\Gamma, \text{Eq}(A, a, b) \).

Type theories with an extensional equality type are called **extensional**. The consequences of equality reflection will be the primary motivation behind the latter half of these lecture notes, but for now we simply note that these rules are a very natural axiomatization of an equality type as the internalization of equality.
Exercise 2.18. Explain how these inference rules correspond to our Eq_Γ and $\iota_{\Gamma,A,a,b}$ definition.

Exercise 2.19. Where are the substitution rules for term formers? (Hint: there are two equivalent answers, in terms of either the natural isomorphism or the inference rules.)

2.4.5 The unit type

We conclude our tour of the best-behaved connectives of type theory with the simplest connective of all: the unit type.

$$\text{Unit}_\Gamma \in \text{Ty}(\Gamma)$$

$$\iota_\Gamma : \text{Tm}(\Gamma, \text{Unit}) \cong \{\ast\}$$

This unfolds to the following rules:

$$\frac{\vdash \Gamma \text{cx}}{\Gamma \vdash \text{Unit type}}$$

$$\frac{\Delta \vdash \gamma : \Gamma}{\Delta \vdash \text{Unit}[\gamma] = \text{Unit type}}$$

$$\frac{\vdash \Gamma \text{cx}}{\Gamma \vdash \text{tt} : \text{Unit}}$$

$$\frac{\Gamma \vdash a : \text{Unit}}{\Gamma \vdash a = \text{tt} : \text{Unit}}$$

Exercise 2.20. Where is the elimination principle? Where are the substitution rules for term formers? (Hint: what would these say in terms of the natural isomorphism?)

2.5 Inductive types: Void, Bool, Nat

We now turn our attention to inductive types, data types with induction principles. Unlike the type formers in Section 2.4, which are typically “hard coded” into type theories, inductive types are usually specified by users as extensions to the theory via inductive schemas [Dyb94; CP90a] (essentially, data type declarations), or in theoretical contexts, encoded as well-founded trees known as W-types [ML82; ML84b]. These schemas can be extended ad infinitum to account for increasingly complex forms of inductive definition, including indexed induction [Dyb94], mutual induction, induction-recursion [Dyb00], induction-induction [NFS12], quotient induction-induction [KKA19], and so forth.

For simplicity we restrict our attention to three examples—the empty type, booleans, and natural numbers—that illustrate the basic issues that arise when specifying inductive types in type theory. Unfortunately, we will immediately need to refine Slogan 2.4.4.

This is an oversimplification: in practice, Σ and Unit are usually obtained as special cases of dependent record types [Pol02], n-ary Σ-types with named projections.
2.5.1 The empty type

We begin with the empty type \(\texttt{Void} \), a “type with no elements.” Logically, this type corresponds to the false proposition, so there should be no way to construct an element of \(\texttt{Void} \) (a proof of false) except by deriving a contradiction from local hypotheses. The type former is straightforward: naturally in \(\Gamma \), a constant \(\texttt{Void}_\Gamma \in \text{Ty}(\Gamma) \), or

\[
\begin{align*}
\Gamma & \vdash \texttt{Void type} \\
\Delta & \vdash \gamma : \Gamma \\
\Delta & \vdash \texttt{Void}[\gamma] = \texttt{Void type}
\end{align*}
\]

As for the elements of \(\texttt{Void} \), an obvious guess is to say that the elements of the empty type at each context are the empty set, i.e., naturally in \(\Gamma \),

\[
t_\Gamma : \text{Tm}(\Gamma, \texttt{Void}) \cong \emptyset
\]

This cannot be right, however, because \(\texttt{Void} \) does have elements in some contexts—the variable rule alone forces \(q \in \text{Tm}(\Gamma, \texttt{Void}, \texttt{Void}) \), and other type formers can populate \(\texttt{Void} \) even further, e.g., \(\text{app}(q, \texttt{tt}) \in \text{Tm}(\Gamma, \texttt{Π(Unit, Void), Void}) \).

Interlude: mapping in, mapping out To see how to proceed, let us take a brief sojourn into set theory. There are several ways to define the product \(A \times B \) of two sets, for example by constructing it as the set of ordered pairs \(\{(a, b) \mid a \in A \land b \in B\} \) or even more explicitly as the set \(\left\{\{\{a\}\}, \{a, b\}\right\} \mid a \in A \land b \in B\} \). However, in addition to these explicit constructions, it is also possible to characterize the set \(A \times B \) up to isomorphism, as the set such that every function \(X \to A \times B \) is determined by a pair of functions \(X \to A \) and \(X \to B \) and vice versa.

Similarly, we can characterize one-element sets \(1 \) as those sets for which there is exactly one function \(X \to 1 \) for all sets \(X \). In fact, both of these characterizations are set-theoretical analogues of Slogan 2.4.4, where \(X \) plays the role of the context \(\Gamma \).

After some thought, we realize that the analogous characterization of the zero-element (empty) set \(0 \) is significantly more awkward: there is exactly one function \(X \to 0 \) when \(X \) is itself empty, and no functions \(X \to 0 \) when \(X \) is non-empty. As it turns out, in this case it is more elegant to consider the functions out of \(0 \) rather than the functions into it: a zero-element set \(0 \) has exactly one function \(0 \to X \) for all sets \(X \).

Exercise 2.21. Suppose that \(Z \) is a set such that for all sets \(X \) there is exactly one function \(Z \to X \). Show that \(Z \) is isomorphic to the empty set.

Void revisited Recall from Section 2.3 that terms correspond to “dependent functions from \(\Gamma \) to \(A \).” In Section 2.4 we considered only type formers \(T \) that are easily characterized
in terms of the maps into that type former from an arbitrary context Γ: in each case we defined maps/terms $\text{Tm}(\Gamma, T)$ as naturally isomorphic to the data of T’s introduction rule.

To characterize the maps out of Void into an arbitrary type A, we cannot leave the context fully unconstrained; instead, we must characterize the maps/terms $\text{Tm}(\Gamma, \text{Void}, A)$ for all $\vdash \Gamma \text{cx}$ and $\Gamma \vdash A$ type, recalling that—by the rules for Π-types—these are equivalently the dependent functions out of Void in context Γ, i.e., $\Gamma \vdash f : \Pi(\text{Void}, A)$.

Advanced Remark 2.5.1. Writing C for the category of contexts and substitutions, terms $\text{Tm}(\Gamma, A)$ are indeed “dependent morphisms” from Γ to A; more precisely, by Exercise 2.2, they are ordinary morphisms $\Gamma \to \Gamma.A$ in the slice category C/Γ. Thus, for right adjoint type operations G—those in Section 2.4—it is easy to describe $\text{Tm}(\Gamma, G(A))$ directly.

For left adjoint type operations F, the situation is more fraught. Type theory is fundamentally “right-biased” because its judgments concern maps from arbitrary contexts into fixed types, but not vice versa. Thus to discuss dependent morphisms $F(X) \to A$ we must speak about elements of $\text{Tm}(\Gamma, F(X), A)$, quantifying not only over the ambient context/slice Γ but also the type A into which we are mapping.

Confusingly, we encountered no issues defining Σ-types, despite dependent sum being the left adjoint to pullback. This is because Σ is also the right adjoint to the functor $C \to C^{\rightarrow}$ sending $A \mapsto \text{id}_A$, and it is the latter perspective that we axiomatize. The left adjoint axiomatization makes an appearance in some systems—particularly in the context of programming languages with existential types—phrased as let $(a, b) = p$ in x. ⋄

Putting all these ideas together, we will define Void as the type for which, naturally in Γ, there is exactly one dependent function from Void to A for any dependent type A:

$$\rho_{\Gamma,A} : \text{Tm}(\Gamma, \text{Void}, A) \cong \{\star\}$$

To sum up the difference between the incorrect definition $\text{Tm}(\Gamma, \text{Void}) \cong \emptyset$ and the correct one above, the former states that $\text{Tm}(\Gamma, \text{Void})$ is the smallest set (in the sense of mapping into all other sets), whereas the latter states that in any context, Void is the smallest type. More poetically, at the level of judgments we can see that Void is not always empty, but at the level of types, every type “believes” that Void is empty.

Unwinding $\rho_{\Gamma,A}$ into inference rules, we obtain:

$$\Gamma \vdash \text{Void} \vdash A \text{ type} \quad \vdash \Gamma \text{cx} \quad \vdash \Gamma \text{Void} \vdash a : A \quad \quad \vdash \Gamma \text{cx} \quad \vdash \text{Void} \vdash \text{absurd'} : A \quad \equiv \quad \vdash \Gamma \text{Void} \vdash \text{absurd'} = a : A$$

We have marked these rules with \triangle to indicate that they are provisional: in practice, as we previously discussed for $\lambda^{-1}(-)$, it is awkward to use rules whose conclusions constrain the shape of their context. But just as with $\text{app}(-, -)$, it is more standard to present an
equivalent axiomatization \(\text{absurd}(b) \) := \(\text{absurd'}[\text{id}.b] \) that “builds in a cut”:

\[
\begin{align*}
\Gamma &\vdash b : \text{Void} \quad \Gamma.\text{Void} \vdash A \text{ type} \quad \quad \\
\Gamma &\vdash \text{absurd}(b) : A[\text{id}.b] \\
\Delta &\vdash \gamma : \Gamma \\
\Gamma &\vdash b : \text{Void} \\
\Gamma.\text{Void} &\vdash A \text{ type} \\
\Delta &\vdash \text{absurd}(b)[\gamma] = \text{absurd}(b[\gamma]) : A[\gamma.b[\gamma]] \\
\Gamma &\vdash b : \text{Void} \\
\Gamma.\text{Void} &\vdash a : A \\
\Gamma &\vdash \text{absurd}(b) = a[\text{id}.b] : A[\text{id}.b] \\
\end{align*}
\]

The term \(\text{absurd}(-) \) is known as the induction principle for \(\text{Void} \), in the sense that it allows users to prove a theorem for all terms of type \(\text{Void} \) by proving that it holds for each constructor of \(\text{Void} \), of which there are none.

In light of our definition of \(\text{Void} \), we update Slogan 2.4.4 as follows:

Slogan 2.5.2. A connective in type theory is given by (1) a natural type-forming operation \(\Upsilon \) and (2) one of the following:

1. a natural isomorphism relating \(\text{Tm}(\Gamma, \Upsilon) \) to judgmentally-determined structure, or
2. for all \(\Gamma.\Upsilon \vdash A \text{ type} \), a natural isomorphism relating \(\text{Tm}(\Gamma.\Upsilon, A) \) to judgmentally-determined structure.

The final rule for \(\text{absurd}(-) \), the \(\eta \) principle, implies a very strong equality principle for terms in an inconsistent context (Exercise 2.25) which we derive in the following sequence of exercises. For this reason, and because this rule is derivable in the presence of extensional equality (Section 2.5.4), we consider it provisional for the time being.

Exercise 2.22. Show that if \(\Gamma \vdash b_0, b_1 : \text{Void} \) then \(\Gamma \vdash b_0 = b_1 : \text{Void} \).

Exercise 2.23. Fixing \(\Delta \vdash \gamma : \Gamma \), prove that there is at most one substitution \(\Delta \vdash \bar{\gamma} : \Gamma.\text{Void} \) satisfying \(p \circ \bar{\gamma} = \gamma \).

Exercise 2.24. Let \(\Gamma.\text{Void} \vdash A \text{ type and } \Gamma \vdash a : A[\text{id}.b] \). Show that \(\Gamma.\text{Void} \vdash A[\text{id}.b \circ p] = A \text{ type, and therefore that } \Gamma.\text{Void} \vdash a[p] : A \).

Exercise 2.25. Derive the following rule, using the previous exercise as well as the \(\eta \) rule.

\[
\begin{array}{c}
\Gamma \vdash b : \text{Void} \\
\Gamma.\text{Void} \vdash A \text{ type} \\
\Gamma \vdash a : A[\text{id}.b]
\end{array} \Rightarrow \\
\begin{array}{c}
\Gamma \vdash a = \text{absurd}(b) : A[\text{id}.b]
\end{array}
\]

Exercise 2.26. We have included the rule \(\Delta \vdash \text{absurd}(b)[\gamma] = \text{absurd}(b[\gamma]) : A[\gamma.b[\gamma]] \) but it is in fact derivable using the \(\eta \) rule. Prove this.
2.5.2 Booleans

We turn now to the booleans Bool, a “type with two elements.” Once again the type former is straightforward: $\text{Bool}_\Gamma \in \text{Ty}(\Gamma)$ naturally in Γ, or

\[
\begin{array}{c}
\Gamma \vdash \text{Bool} \quad \text{type} \\
\Delta \vdash \gamma : \Gamma \\
\Delta \vdash \text{Bool}[\gamma] = \text{Bool} \quad \text{type}
\end{array}
\]

It is also clear that we want two constructors of Bool, true and false, natural in Γ:

\[
\begin{array}{c}
\Gamma \vdash \text{true} : \text{Bool} \\
\Delta \vdash \gamma : \Gamma \\
\Delta \vdash \text{true} = \text{true}[\gamma] : \text{Bool}
\end{array}
\quad
\begin{array}{c}
\Gamma \vdash \text{false} : \text{Bool} \\
\Delta \vdash \gamma : \Gamma \\
\Delta \vdash \text{false} = \text{false}[\gamma] : \text{Bool}
\end{array}
\]

Keeping Slogan 2.5.2 in mind, there are two possible ways for us to complete our axiomatization of Bool. As with Void it is tempting but incorrect to define $\iota : \text{Tm}(\Gamma, \text{Bool}) \cong \{\ast, \ast\}$; although the natural transformation ι^{-1} is equivalent to our rules for true and false, ι does not account for variables of type Bool or other indeterminate booleans that arise in non-empty contexts.\(^9\) Thus we must instead characterize maps out of Bool by giving a family of sets naturally isomorphic to $\text{Tm}(\Gamma.\text{Bool}, A)$.

So, what should terms $\Gamma.\text{Bool} \vdash a : A$ be? By substitution, such a term clearly determines a pair of terms $\Gamma \vdash a[\text{id.true}] : A[\text{id.true}]$ and $\Gamma \vdash a[\text{id.false}] : A[\text{id.false}]$. Conversely, if true and false are the “only” booleans, then such a pair of terms should uniquely determine elements of $\text{Tm}(\Gamma.\text{Bool}, A)$ in the sense that to map out of Bool, it suffices to explain what to do on true and on false.

To formalize this idea, let us write $((\text{id.true})^*, (\text{id.false})^*)$ for the function which sends $a \in \text{Tm}(\Gamma.\text{Bool}, A)$ to the pair $(a[\text{id.true}], a[\text{id.false}])$. We complete our specification of Bool by asking for this map to be a natural isomorphism; thus, naturally in Γ, we have:

\[
\text{Bool}_\Gamma \in \text{Ty}(\Gamma)
\]

\[
\text{true}_\Gamma, \text{false}_\Gamma \in \text{Tm}(\Gamma, \text{Bool})
\]

\[
((\text{id.true})^*, (\text{id.false})^*) : \text{Tm}(\Gamma.\text{Bool}, A) \cong \text{Tm}(\Gamma, A[\text{id.true}]) \times \text{Tm}(\Gamma, A[\text{id.false}])
\]

This definition is remarkable in several ways. For the first time we are asking not only for the existence of some natural isomorphism, but for a particular map to be a natural isomorphism; and because this map is defined in terms of true and false, these must be asserted prior to the natural isomorphism itself. We update our slogan accordingly:

\(^9\)Even if variables $x : \text{Bool}$ stand for one of true or false, x itself must be an indeterminate boolean equal to neither constructor; otherwise the identity $\lambda x : \text{Bool} \to \text{Bool}$ would be a constant function.
Slogan 2.5.3. A connective in type theory is given by (1) a natural type-forming operation Υ and (2) one of the following:

2.1. a natural isomorphism relating $\text{Tm}(\Gamma, \Upsilon)$ to judgmentally-determined structure, or

2.2. a collection of natural term constructors for Υ which, for all $\Gamma.\Upsilon \vdash A$ type, determine a natural isomorphism relating $\text{Tm}(\Gamma.\Upsilon, A)$ to judgmentally-determined structure.

In the case of Void we simply had no term constructors to specify, and because there is at most one (natural) isomorphism between anything and $\{\star\}$, it was unnecessary for us to specify the underlying map. In general, however, we emphasize that it is essential to specify the map; this is what ensures that when we define a function “by cases” on true and false, applying it to true or false recovers the specified case and not something else. On the other hand, because we have specified the underlying map, it being an isomorphism is a property rather than additional structure: there is at most one possible inverse.

Zooming out, however, our definition of Bool has a similar effect to our definition of Void from Section 2.5.1: $\text{Tm}(\Gamma, \text{Bool})$ is not the set $\{\text{true}, \text{false}\}$ at the level of judgments, but every type “believes” that it is. This is the role of type-theoretic induction principles.

Advanced Remark 2.5.4. From the categorical perspective, option 2.2 in Slogan 2.5.3 asserts that the inclusion map of Υ’s constructors into Υ’s terms is left orthogonal to all types. Maps which are left orthogonal to a class of objects and whose codomain belongs to that class are known as fibrant replacements; in this sense, we have defined $\text{Tm}(-, \text{Void})$ and $\text{Tm}(-, \text{Bool})$ as fibrant replacements of the constantly zero- and two-element presheaves. This perspective is crucial to early work in homotopy type theory [AW09] and the formulation of the intensional identity type in natural models [Awo18].

It remains to unfold our natural isomorphism into inference rules. We do not need any additional rules for the forward map, which is substitution by id.true and id.false. As the reader may have already guessed, the backward map is essentially\(^{10}\) dependent if:

\[
\frac{\Gamma.\text{Bool} \vdash A \text{ type} \quad \Gamma \vdash a_t : A[\text{id.true}] \quad \Gamma \vdash a_f : A[\text{id.false}] \quad \Gamma \vdash b : \text{Bool}}{\Gamma \vdash \text{if}(a_t, a_f, b) : A[\text{id.b}]}
\]

\[
\frac{\Delta \vdash y : \Gamma \quad \Gamma.\text{Bool} \vdash A \text{ type} \quad \Gamma \vdash a_t : A[\text{id.true}] \quad \Gamma \vdash a_f : A[\text{id.false}] \quad \Gamma \vdash b : \text{Bool}}{\Delta \vdash \text{if}(a_t, a_f, b)[y] = \text{if}(a_t[y], a_f[y], b[y]) : A[y.b[y]]}
\]

\(^{10}\)The inverse directly lands in $\Gamma.\text{Bool}$ and not Γ, but as with absurd' (Section 2.5.1) we adopt a more standard presentation in which all conclusions have a generic context; see Exercise 2.27.
The fact that if is an inverse to ((id.true)*, (id.false)*) expresses the β and η laws:

\[\begin{align*}
\Gamma &\vdash \text{bool} \vdash A \type \quad \Gamma &\vdash a_t : A[\text{id.true}] \\
\Gamma &\vdash \text{if}(a_t, a_f, \text{true}) = a_t : A[\text{id.true}] \\
\Gamma &\vdash \text{if}(a_t, a_f, \text{false}) = a_f : A[\text{id.false}] \\
\Gamma &\vdash \text{if}(\text{id.true}, a, b) = \text{id.true} : A[\text{id.true}] \\
\Gamma &\vdash \text{if}(\text{id.false}, a, b) = \text{id.false} : A[\text{id.false}] \\
\end{align*} \]

The β laws—the first two equations—are perhaps more familiar than the η law, which effectively asserts that any two terms dependent on bool are equal if (and only if) they are equal on true and false. (The η rule is sometimes decomposed into a “local expansion” and a collection of “commuting conversions.”) Although semantically justified, it is typical to omit judgmental η laws for all inductive types because they are not syntax-directed and thus challenging to implement, and because they are derivable in the presence of extensional equality (Section 2.5.4).

Exercise 2.27. Give rules axiomatizing the boolean analogue of absurd', and prove that these rules are interderivable with our rules for if \((a_t, a_f, b)\).

2.5.3 Natural numbers

Our final example of an inductive type is the type of natural numbers Nat, the “least type closed under zero : Nat and suc(−) : Nat → Nat.” The natural numbers more or less fit the same pattern as Void and Bool, but the recursive nature of suc(−) complicates the situation significantly. The formation and introduction rules remain straightforward:

\[\begin{align*}
\Gamma &\vdash \text{nat} \vdash \text{type} \\
\Gamma &\vdash \text{zero} : \text{Nat} \\
\Gamma &\vdash \text{suc}(n) : \text{Nat} \\
\Delta &\vdash \gamma : \Gamma \\
\Delta &\vdash \text{nat}\left[\gamma\right] = \text{Nat} \type \\
\Gamma &\vdash \text{zero} : \text{Nat} \\
\Delta &\vdash \gamma : \Gamma \\
\Gamma &\vdash n : \text{Nat} \\
\Delta &\vdash \text{suc}(n) : \text{Nat} \\
\end{align*} \]

Following the pattern we established with Bool, we might ask for maps out of Nat to be determined by their behavior on zero and suc(−), i.e., for the two substitutions

\[\begin{align*}
(id.zero)^* : \text{tm}(\Gamma.\text{Nat}, A) &\rightarrow \text{tm}(\Gamma, A[id.zero]) \\
(p.suc(q))^* : \text{tm}(\Gamma.\text{Nat}, A) &\rightarrow \text{tm}(\Gamma.\text{Nat}, A[p.suc(q)]) \\
\end{align*} \]
to determine, for every $\Gamma.\text{Nat} \vdash A$ type, a natural isomorphism

\[
((\text{id}.\text{zero}), (p.\text{suc}(q))) : \\
\text{Tm}(\Gamma.\text{Nat}, A) \cong \text{Tm}(\Gamma, A[\text{id}.\text{zero}]) \times \text{Tm}(\Gamma.\text{Nat}, A[p.\text{suc}(q)])
\]

This turns out to not be the correct definition, but first, note that the first substitution moves us from $\Gamma.\text{Nat}$ to Γ (analogously to Bool) whereas the second substitution moves us from $\Gamma.\text{Nat}$ also to $\Gamma.\text{Nat}$; this is because the $\text{suc}(-)$ constructor has type "$\text{Nat} \to \text{Nat}$," so the condition of "being determined by one's behavior on $\text{suc}(n) : \text{Nat}$" is properly stated relative to a variable $n : \text{Nat}$. Put more simply, if the argument of $\text{suc}(-)$ was of type X rather than Nat, then the latter substitution would be $\Gamma.X \vdash p.\text{suc}(q) : \Gamma.\text{Nat}$.

But given that $\text{suc}(-)$ is recursive—taking Nat to Nat—we now for the first time are defining a judgment by a natural isomorphism whose right-hand side also has the very same judgment we are trying to define, namely $\text{Tm}(\Gamma.\text{Nat}, \ldots)$, i.e., terms in context $\Gamma.\text{Nat}$. This natural isomorphism is therefore not so much a definition of its left-hand side as it is an equation that the left-hand side must satisfy—in principle, this equation may have many different solutions for $\text{Tm}(\Gamma.\text{Nat}, A)$, or no solutions at all.

Interlude: initial algebras

This equation asserts in essence that the natural numbers are a set N satisfying the isomorphism $N \cong \{\star\} + N$,\(^{11}\) where the reverse map equips N with a choice of “implementations” of $\text{zero} \in N$ and $\text{suc}(-) : N \to N$. The set of natural numbers \mathbb{N} with $\text{zero} := 0$ and $\text{suc}(n) := n + 1$ are a solution, but there are infinitely many other solutions as well, such as $\mathbb{N} + \{\infty\}$ with $\text{zero} := 0$, $\text{suc}(n) := n + 1$, and $\text{suc}(\infty) := \infty$.

Nevertheless one might imagine that $(\mathbb{N}, 0, -+1)$ is a distinguished solution in some way, and indeed it is the “least” set N with a point $z \in N$ and endofunction $s : N \to N$—here we are dropping the requirement of (z, s) being an isomorphism—in the sense that for any (N, z, s) there is a unique function $f : \mathbb{N} \to N$ with $f(0) = z$ and $f(n + 1) = s(f(n))$. Such triples (N, z, s) are known as algebras for the signature $N \mapsto 1 + N$, structure-preserving functions between algebras are known as algebra homomorphisms, and algebras with the above minimality property are initial algebras.

The above definitions extend straightforwardly to dependent algebras and homomorphisms: given an ordinary algebra (N, z, s), a displayed algebra over (N, z, s) is a triple of an N-indexed family of sets $\{\tilde{N}_n\}_{n \in N}$, an element $\tilde{z} \in \tilde{N}_z$, and a function $\tilde{s} : (n : N) \to \tilde{N}_n \to \tilde{N}_{s(n)}$ [KKA19]. Given any displayed algebra $(\tilde{N}, \tilde{z}, \tilde{s})$ over the natural number algebra $(\mathbb{N}, 0, -+1)$, there is once again a unique function $f : (n : \mathbb{N}) \to \tilde{N}_n$ with $f(0) = \tilde{z}$ and $f(n + 1) = \tilde{s}(n, f(n))$. The reader is likely familiar with the special case of displayed algebras over \mathbb{N} valued in propositions rather than sets:

\[
\forall P : \mathbb{N} \to \textbf{Prop}. \ P(0) \implies (\forall n. P(n) \implies P(n + 1)) \implies \forall n. P(n)
\]

\(^{11}\)Why? In algebraic notation and ignoring dependency, the equation states that $A^{\Gamma \times N} \cong A^\Gamma \times A^{\Gamma \times N}$, which simplifies to $(\Gamma \times N) \cong \Gamma + (\Gamma \times N)$ and thus $N \cong \Gamma + 1$.
Advanced Remark 2.5.5. The data of a displayed algebra over \((N, z, s)\) is equivalent to the data of an algebra homomorphism into \((N, z, s)\), where the forward direction of this equivalence sends the family \(\{N_n\}_{n \in \mathbb{N}}\) to the first projection \((\sum_{n \in \mathbb{N}} N_n) \rightarrow N\). A displayed algebra over the natural number algebra is thus a homomorphism \(\tilde{N} \rightarrow \mathbb{N}\); the initiality of \(\mathbb{N}\) implies this map has a unique section homomorphism, which unfolds to the dependent universal property stated above.

Natural numbers revisited Coming back to our specification of \(\text{Nat}\), our formation and introduction rules axiomatize an algebra \((\text{Nat}, \text{zero}, \text{suc}(\cdot))\) for the signature \(N \mapsto 1 + N\), but our proposed \(\text{Bool}\)-style natural isomorphism does not imply that this algebra is initial. The solution is to simply axiomatize that any displayed algebra over \((\text{Nat}, \text{zero}, \text{suc}(\cdot))\) admits a unique displayed algebra homomorphism from \((\text{Nat}, \text{zero}, \text{suc}(\cdot))\).

Unwinding definitions, we ask that naturally in \(\Gamma\), and for any \(A \in \text{Ty}(\Gamma.\text{Nat})\), \(a_z \in \text{Tm}(\Gamma, A[\text{id.zero}])\), and \(a_s \in \text{Tm}(\Gamma.\text{Nat}.A[\text{p}^2.\text{suc}(q[p])])\), we have an isomorphism:

\[
\rho_{\Gamma,A,a_z,a_s} : \{a \in \text{Tm}(\Gamma.\text{Nat}, A) \mid a_z = a[\text{id.zero}] \land a_s[p.q.a] = a[p.\text{suc}(q)]\} \cong \{\star\}
\]

The type of \(a_s\) is easier to understand with named variables: it is a term of type \(A(\text{suc}(n))\) in context \(\Gamma, n : \text{Nat}, a : A(n)\).

Remark 2.5.6. This is the third time we have defined a connective in terms of a natural isomorphism with \(\{\star\}\). In Section 2.4.5, we used such an isomorphism to assert that \(\text{Unit}\) has a unique element in every context; in Section 2.5.1, we asserted dually that every dependent type over \(\text{Void}\) admits a unique dependent function from \(\text{Void}\). The present definition is analogous to the latter, but restricted to algebras: every displayed algebra over \(\text{Nat}\) admits a unique displayed algebra homomorphism from \(\text{Nat}\).

Advanced Remark 2.5.7. In light of Remark 2.5.4 and Remark 2.5.6, we have defined \(\text{Nat}\) as the fibrant replacement of the initial object in the category of \((1+\cdot)\)-algebras.

In rule form, the reverse direction of the natural isomorphism states that any displayed algebra \((A, a_z, a_s)\) over \(\text{Nat}\) gives rise to a map out of \(\text{Nat}\),

\[
\Gamma \vdash n : \text{Nat} \\
\Gamma.\text{Nat} \vdash A \text{ type} \\
\Gamma \vdash a_z : A[\text{id.zero}] \\
\Gamma.\text{Nat}.A \vdash a_s : A[\text{p}^2.\text{suc}(q[p])] \\
\Gamma \vdash \text{rec}(a_z, a_s, n) : A[\text{id}.n]
\]

which commutes with substitution,

\[
\Delta \vdash \gamma : \Gamma \\
\Gamma.\text{Nat} \vdash A \text{ type} \\
\Gamma \vdash a_z : A[\text{id.zero}] \\
\Gamma.\text{Nat}.A \vdash a_s : A[\text{p}^2.\text{suc}(q[p])] \\
\Delta \vdash \text{rec}(a_z, a_s, n)[\gamma] = \text{rec}(a_z[\gamma], a_s[\gamma.\text{Nat}.A], n[\gamma]) : A[\gamma.n[\gamma]]
\]
and is a displayed algebra homomorphism, i.e., sends \(\text{zero} \) to \(a_z \) and \(\text{suc}(n) \) to \(a_s(n, \text{rec}(n)) \):

\[
\begin{align*}
\Gamma \vdash A \text{ type} & & \Gamma \vdash a_z : A[\text{id.zero}] \quad \Gamma.\text{Nat} \vdash a_s : A[p^2.\text{suc}(q[p])] \\
\Gamma \vdash \text{rec}(a_z, a_s, \text{zero}) = a_z : A[\text{id.zero}] \\
\Gamma \vdash n : \text{Nat} \\
\Gamma \vdash a_z : A[\text{id.zero}] & & \Gamma.\text{Nat} \vdash a_s : A[p^2.\text{suc}(q[p])] \\
\Gamma \vdash \text{rec}(a_z, a_s, \text{suc}(n)) = a_s[\text{id.n.rec}(a_z, a_s, n)] : A[\text{id.suc}(n)]
\end{align*}
\]

Finally, the \(\eta \) rule of \(\text{Nat} \), which is again typically omitted, expresses that there is exactly one displayed algebra homomorphism from \(\text{Nat} \) to \((A, a_z, a_s)\): if \(\Gamma.\text{Nat} \vdash a : A \) is a term that sends \(\text{zero} \) to \(a_z \) and \(\text{suc}(n) \) to \(a_s(n, a[\text{id.n}]) \), then it is equal to \(\text{rec}(a_z, a_s, q) \).

\[
\begin{align*}
\Gamma.\text{Nat} \vdash A \text{ type} & & \Gamma.\text{Nat} \vdash a : A & & \Gamma \vdash n : \text{Nat} \\
\Gamma \vdash a_z : A[\text{id.zero}] & & \Gamma \vdash a_z = a[\text{id.zero}] : A[\text{id.zero}] \\
\Gamma.\text{Nat} \vdash a_s : A[p^2.\text{suc}(q[p])] & & \Gamma.\text{Nat} \vdash a_s[p,q,a] = a[p.\text{suc}(q)] : A[p.\text{suc}(q)] \\
\Gamma \vdash \text{rec}(a_z, a_s, n) = a[\text{id.n}] : A[\text{id.n}]
\end{align*}
\]

Exercise 2.28. Rewrite the first \(\text{rec} \) rule using named variables instead of \(p \) and \(q \), and convince yourself that it expresses a form of natural number induction.

Exercise 2.29. Define addition for \(\text{Nat} \) in terms of \(\text{rec} \). We strongly recommend solving Exercise 2.28 prior to this exercise in order to use standard named syntax.

Inductive types are initial algebras Our definition of \(\text{Nat} \) is more similar to our definitions of \(\text{Void} \) and \(\text{Bool} \) than it may first appear. In fact, all three types are initial algebras for different signatures, although the absence of recursive constructors in \(\text{Void} \) and \(\text{Bool} \) allowed us to sidestep this machinery. The empty type \(\text{Void} \) is the initial algebra for the signature \(X \mapsto 0 \): a (displayed) \(0 \)-algebra is just a (dependent) type with no additional data, so initiality asserts that any \(\Gamma.\text{Void} \vdash A \text{ type} \) admits a unique displayed algebra homomorphism—a dependent function with no additional conditions—from \(\text{Void} \).

Likewise, \((\text{Bool}, \text{true}, \text{false}) \) is the initial algebra for the signature \(X \mapsto 1 + 1 \). A displayed \((1 + 1) \)-algebra over \(\text{Bool} \) is a type \(\Gamma.\text{Bool} \vdash A \text{ type} \) equipped with two terms \(\Gamma \vdash a_t : A[\text{id.true}] \) and \(\Gamma \vdash a_f : A[\text{id.false}] \); initiality states that for any such displayed algebra there is a unique displayed algebra homomorphism \((\text{Bool}, \text{true}, \text{false}) \mapsto (A, a_t, a_f) \):

\[
\rho_{\Gamma, A, a_t, a_f} : \{a \in \text{TM}(\Gamma.\text{Bool}, A) \mid a_t = a[\text{id.true}] \land a_f = a[\text{id.false}]\} \equiv \{\ast\}
\]

We refrain from restating Slogan 2.5.3 in terms of initial algebras, because the general theory of displayed algebras and homomorphisms for a given signature is too significant a detour for these notes; we hope that the reader is convinced that a general pattern exists.
Exercise 2.30. In Section 2.5.2, our definition of Bool roughly asserted a natural isomorphism between \(a \in \text{Term}(\Gamma, \text{Bool}, A) \) and pairs of substituted terms \((a[\text{id.true}], a[\text{id.false}])\). Prove that this definition is equivalent to the \(\rho_{\Gamma,A,a,a_f} \) characterization above.

2.5.4 Unicity via extensional equality

In this section we have defined the inductive types Void, Bool, and Nat by equipping them with constructors and asserting that dependent maps out of them are judgmentally uniquely determined by where they send those constructors. That is, a choice of where to send the constructors determines a map via elimination, and any two maps out of an inductive type are judgmentally equal if they agree on the constructors.

This unicity condition is incredibly strong. First of all, it implies the substitution rule for eliminators, because e.g. if \((a_t, a_f, q)[\gamma.\text{Bool}]\) and \((a_t[\gamma], a_f[\gamma], q)\) agree on true and false (see Exercise 2.26). More alarmingly, in the case of Void, it states that all terms in contexts containing Void are equal to one another (see Exercise 2.25).

It turns out that these unicity principles—the \(\eta\) rules of inductive types—are derivable from the other rules of inductive types in the presence of equality reflection (Section 2.4.4), the other suspiciously strong rule of extensional type theory. For instance:

Theorem 2.5.8. The following rule (\(\eta\) for Void) can be derived from the other rules for Void in conjunction with the rules for Eq.

\[
\frac{\Gamma \vdash b : \text{Void} \quad \Gamma.\text{Void} \vdash a : A}{\Gamma \vdash \text{absurd}(b) = a[\text{id.b}] : A[\text{id.b}] \; \equiv, \Rightarrow}
\]

Proof. Suppose \(\Gamma \vdash b : \text{Void}\) and \(\Gamma.\text{Void} \vdash a : A\). By equality reflection (Section 2.4.4), it suffices to exhibit an element of \(\text{Eq}(A[\text{id.b}], \text{absurd}(b), a[\text{id.b}])\), which we obtain easily by Void elimination:

\[
\Gamma \vdash \text{absurd}(b) : \text{Eq}(A, \text{absurd}(b), a[\text{id.b}]) \quad \Box
\]

In Chapter 3 we will see that all of these suspicious rules are problematic from an implementation perspective, leading us to replace extensional type theory with intensional type theory (Chapter 4), which differs formally in only two ways: it replaces Eq-types with a different equality type that does not admit equality reflection, and it deletes the \(\eta\) rules from Void, Bool, and Nat.

However, in light of the fact that the latter rules are derivable from the former, we—as is conventional—simply omit the \(\eta\) rules for inductive types from the official specification of extensional type theory. (These rules were all marked as provisional \(\equiv\).) Note that this does not apply to the \(\eta\) rules for \(\Pi, \Sigma, \text{Eq},\) or Unit, which remain in both type theories.
Semantically, deleting these η rules relaxes the unique existence to simply existence. An algebra which admits a (possibly non-unique) algebra homomorphism to any other algebra is known as weakly initial, rather than initial. Rather than asking for the collection of algebra homomorphisms to be naturally isomorphic to {★}, we simply ask for the map from algebra homomorphisms to {★} to admit a natural section (right inverse).

Advanced Remark 2.5.9. Recalling Remark 2.5.4, Theorem 2.5.8 corresponds to the fact that a class of morphisms \(\mathcal{L} \) which is weakly orthogonal to \(\mathcal{R} \) is actually orthogonal to \(\mathcal{R} \) when the latter is closed under relative diagonals (\(X \to Y \in \mathcal{R} \) implies \(X \to X \times_Y X \in \mathcal{R} \)).

Exercise 2.31. Prove that the η rule for \(\text{Bool} \) can be derived from the other rules for \(\text{Bool} \) in conjunction with the rules for \(\text{Eq} \), by mirroring the proof of Theorem 2.5.8.

2.6 Universes: \(U_0, U_1, U_2, \ldots \)

We are nearly finished with our definition of extensional type theory, but what’s missing is significant: our theory is still not full-spectrum dependent (in the sense of Section 1.1.2)! That is, we have still not introduced the ability to define a family of types whose head type constructor differs at different indices, such as a \(\text{Bool} \)-indexed family of types which sends \(\text{true} \) to \(\text{Nat} \) and \(\text{false} \) to \(\text{Unit} \). A more subtle but fatal flaw with our current theory is that—despite all the logical connectives at our disposal—we cannot prove that \(\text{true} \) and \(\text{false} \) are different, i.e., we cannot exhibit a term \(1 \vdash p : \Pi(\text{Eq}(\text{Bool}, \text{true}, \text{false}), \text{Void}) \).

It turns out that addressing the former will solve the latter en passant, so in this section we will discuss two approaches for defining dependent types by case analysis. In Section 2.6.1 we introduce large elimination, which equips inductive types with a second elimination principle targeting type-valued algebras (which send each constructor to a type), in addition to their usual elimination principle targeting algebras valued in a single dependent type (which send each constructor to a term of that type).

Unfortunately we will see that large elimination has some serious limitations, so it will not be an official part of our definition of extensional type theory. Instead, in Section 2.6.2, we introduce type universes, connectives which internalize the judgment \(\Gamma \vdash A \) type modulo “size issues.” By internalizing types as terms of a universe type, universes reduce the problem of computing types by case analysis to the problem of computing terms by case analysis, which we solved in Section 2.5. That said, universes are a deep and complex topic that will bring us one step closer to our discussion of homotopy type theory in Chapter 5.

2.6.1 Large elimination

In Section 2.5 we introduced elimination principles for inductive types (like \(\text{Bool} \)), which allow us to define dependent functions out of an inductive type \(f : \Pi(\text{Bool}, A) \) by cases
on that type’s constructors. A direct but uncommon way of achieving full-spectrum dependency is to equip each inductive type with a second elimination principle, *large elimination*, which allows us to define dependent families of types by cases.\(^{12}\)

In the case of \(\text{Bool}\), large elimination is characterized by the following rules:

\[
\begin{array}{c}
\Gamma \vdash A_t \text{ type} \quad \Gamma \vdash A_f \text{ type} \quad \Gamma \vdash b : \text{Bool} \\
\Gamma \vdash \text{If}(A_t, A_f, b) \text{ type}
\end{array}
\]

\[
\begin{array}{c}
\Delta \vdash \gamma : \Gamma \\
\Gamma \vdash A_t \text{ type} \quad \Gamma \vdash A_f \text{ type} \quad \Gamma \vdash b : \text{Bool} \\
\Delta \vdash \text{If}(A_t, A_f, b)[\gamma] = \text{If}(A_t[\gamma], A_f[\gamma], b[\gamma]) \text{ type}
\end{array}
\]

\[
\begin{array}{c}
\Gamma \vdash A_t \text{ type} \quad \Gamma \vdash A_f \text{ type} \\
\Gamma \vdash \text{If}(A_t, A_f, \text{true}) = A_t \text{ type} \quad \Gamma \vdash \text{If}(A_t, A_f, \text{false}) = A_f \text{ type}
\end{array}
\]

If we compare these to the rules of ordinary (“small”) elimination,

\[
\begin{array}{c}
\Gamma.\text{Bool} \vdash A \text{ type} \\
\Gamma \vdash a_t : A[\text{id.true}] \\
\Gamma \vdash a_f : A[\text{id.false}] \\
\Gamma \vdash b : \text{Bool}
\end{array}
\]

\[
\begin{array}{c}
\Gamma \vdash \text{id}(a_t, a_f, b) : A[\text{id.b}] \\
\Gamma.\text{Bool} \vdash A \text{ type} \\
\Gamma \vdash a_t : A[\text{id.true}] \\
\Gamma \vdash a_f : A[\text{id.false}] \\
\Gamma \vdash \text{id}(a_t, a_f, \text{true}) = a_t : A[\text{id.true}] \\
\Gamma \vdash \text{id}(a_t, a_f, \text{false}) = a_f : A[\text{id.false}]
\end{array}
\]

we see that the large eliminator \text{If} is exactly analogous to the small eliminator \text{id} “specialized to \(A := \text{type}\).” Note that this statement is nonsense because the judgment “\text{type}” is not a type, but the intuition is useful and will be formalized momentarily. (Indeed, for this reason we cannot formally obtain \text{If} as a special case of \text{id}.) Continuing on with the metaphor, the rule for \text{If} is simpler than the rule for \text{id} because it has a fixed codomain “\text{type}” which is moreover not dependent on \text{Bool}: it makes no sense to ask for “\(\Gamma \vdash A_t \text{ type}[\text{id.true}]\)”.

It is even more standard to omit the \(\eta\) rule for large elimination than for small elimination (which is itself typically omitted), but such a rule would state that dependent types indexed by \text{Bool} are uniquely determined by their values on \text{true} and \text{false}:

\[
\begin{array}{c}
\Gamma.\text{Bool} \vdash A \text{ type} \\
\Gamma \vdash b : \text{Bool}
\end{array}
\]

\[
\Gamma \vdash A[\text{id.b}] = \text{If}(A[\text{id.true}], A[\text{id.false}], b) \text{ type}
\]

If we include the \(\eta\) rule, then the rules for \text{If} would express that instantiating a \text{Bool}-indexed type at \text{true} and \text{false}, i.e. \(((\text{id.true})^*, (\text{id.false})^*)\), has a natural inverse:

\[
(((\text{id.true})^*, (\text{id.false})^*): \text{Ty}(\Gamma.\text{Bool}) \equiv \text{Ty}(\Gamma) \times \text{Ty}(\Gamma)
\]

\(^{12}\)Large elimination maps \text{Bool} into the collection of all types, which is "large" (in the sense of being "the proper class of all sets") rather than the collection of terms of a single type, which is "small" ("a set").
Universes: \(U_0, U_1, U_2, \ldots \)

Again, compare this to our original formulation of small elimination for \(\text{Bool} \):

\[
((\text{id.} \text{true}), (\text{id.} \text{false})): \text{Tm}(\Gamma. \text{Bool}, A) \cong \text{Tm}(\Gamma, A[\text{id.} \text{true}]) \times \text{Tm}(\Gamma, A[\text{id.} \text{false}])
\]

When we elide \(\eta \), large elimination instead states that this map has a section (a right inverse), which is to say that a choice of where to send \text{true} and \text{false} determines a family of types via \text{If}, but not uniquely. This follows the discussion in Section 2.5.4, except that we cannot derive the \(\eta \) rule for large elimination from extensional equality because there is no type “\(\text{Eq} (\text{type}, -, -) \)” available to carry out the argument in Theorem 2.5.8.

Remark 2.6.1. Large elimination only applies to types defined by mapping-out properties such as inductive types; there is no corresponding principle for mapping-in connectives like \(\Pi (A, B) \) because these do not quantify over any target, whether “small” or “large.”

Remark 2.6.2. If we have both small and large elimination for \(\text{Bool} \), then we can combine them into a derived induction principle for \(\text{Bool} \) that works for any \(a_t : A_t \) and \(a_f : A_f \), using large elimination to define the type family into which we perform a small elimination.

\[
\Gamma \vdash a_t : A_t \quad \Gamma \vdash a_f : A_f \quad \Gamma \vdash b : \text{Bool} \\
\frac{}{\Gamma \vdash \text{if} (a_t, a_f, b) : \text{If} (A_t, A_f, b)}
\]

With large elimination—or a related feature, type universes—we can prove the disjointness of the booleans. (Although the proof below uses equality reflection, the same theorem holds in intensional type theory for essentially the same reason.) Our claim that we cannot prove disjointness without these features is a (relatively simple) independence metatheorem requiring a model construction; see *The Independence of Peano’s Fourth Axiom from Martin-Löf’s Type Theory Without Universes* [Smi88].

Theorem 2.6.3. Using the rules for \(\text{If} \), there is a term

\[
1 \vdash \text{disjoint} : \Pi (\text{Eq} (\text{Bool}, \text{true}, \text{false}), \text{Void})
\]

Proof. We informally describe the derivation of disjoint. By \(\Pi \)-introduction we may assume \(\text{Eq} (\text{Bool}, \text{true}, \text{false}) \) and prove \(\text{Void} \). In order to do this, consider the following auxiliary family of types over \(\text{Bool} \):

\[
1.\text{Eq} (\text{Bool}, \text{true}, \text{false}) : \text{Bool} \vdash P := \text{If} (\text{Unit}, \text{Void}, q) \text{ type}
\]

Then

\[
1.\text{Eq} (\text{Bool}, \text{true}, \text{false}) \vdash \text{Unit} \\
= P[\text{id.} \text{true}] \quad \text{by } \beta \text{ for } \text{If} \\
= P[\text{id.} \text{false}] \quad \text{by equality reflection on } q \\
= \text{Void} \text{ type} \quad \text{by } \beta \text{ for } \text{If}
\]

and therefore \(1.\text{Eq} (\text{Bool}, \text{true}, \text{false}) \vdash \text{tt} : \text{Void} \). In sum, we define disjoint := \(\lambda (\text{tt}) \). \(\square \)
As for other inductive types, the large elimination principle of Void is:

\[
\Gamma \vdash a : \text{Void} \\
\Gamma \vdash \text{Absurd}(a) \text{ type}
\]

Unfortunately, we run into a problem when trying to define large elimination for Nat.

\[
\Gamma \vdash n : \text{Nat} \quad \Gamma \vdash A_z \text{ type} \quad \Gamma.\text{Nat."type"} \vdash A_s \text{ type} \\
\Gamma \vdash \text{Rec}(A_z, A_s, n) \text{ type}
\]

In the ordinary eliminator, the branch for \text{suc}(__) has two variables \(m : \text{Nat}, a : A(m)\) binding the predecessor \(m\) and (recursively) the result \(a\) of the eliminator on \(m\). When \(A := \text{type}\) the recursive result is a \text{type}, meaning that the \text{suc}(__) branch ought to bind a \text{type variable}, a concept which is not a part of our theory. This is a serious problem because recursive constructions of types were a major class of examples in Section 1.1.2.

Exercise 2.32. There is however a non-recursive large elimination principle for Nat which defines a \text{type} by case analysis on whether a number is zero. This principle follows from the rules in this section along with the other rules of extensional type theory; state and define it.

2.6.2 Universes

Although large elimination is a useful concept, it sees essentially no use in practice. We have just seen one reason: large eliminators cannot be recursive. The standard approach is instead to include universe types, which are “types of types,” or types which internalize the judgment \(\Gamma \vdash A \text{ type}\). Using universes, we can recover large elimination as small elimination into a universe; we are also able to express polymorphic type quantification using dependent functions out of a universe.

A universe is a type with no parameters, so its formation rule is once again a natural family of constants \(U_\Gamma \in \text{Ty}(\Gamma)\), or

\[
\Gamma \vdash U \text{ type} \\
\Delta \vdash \gamma : \Gamma \\
\Delta \vdash U = U[\gamma] \text{ type}
\]

As for its terms, the most straightforward definition would be to stipulate a natural isomorphism between terms of \(U\) and types:

\[
\iota : \text{Tm}(\Gamma, U) \cong \text{Ty}(\Gamma)
\]

Note that just as we did not ask for terms of \(\Pi\)-types to literally be terms with an extra free variable, we cannot ask for terms of \(U\) to literally be types: these are two different sorts!
In inference rules, the forward map of the isomorphism would introduce a new type former $\text{El}(-)$ which “decodes” an element of U into a genuine type. The reverse map conversely “encodes” a genuine type as an element of U. These intuitions lead us to often refer to elements of U as codes for types.

\[
\frac{\Gamma \vdash a : U}{\Gamma \vdash \text{El}(a) \text{ type}} \quad \quad \frac{\Delta \vdash \gamma : \Gamma}{\Delta \vdash \text{El}(a)[\gamma] = \text{El}(a[\gamma]) \text{ type}}
\]

\[
\frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash \text{code}(A) : U} \quad \quad \frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash \text{El}(\text{code}(A)) = A \text{ type}} \quad \quad \frac{\Gamma \vdash c : U}{\Gamma \vdash \text{code}(\text{El}(c)) = c : U}
\]

Unfortunately we can’t have nice things, as the last three rules above—the ones involving code—are unsound. In particular they imply that U contains (a code for) U, making it a “type of all types, including itself” and therefore subject to a variation on Russell’s paradox known as Girard’s paradox [Coq86].

2.6.2.1 Girard’s paradox

We present a simplification of Girard’s paradox due to Hurkens [Hur95]. The details of this paradox are not relevant to any later material in these lecture notes, so the reader may freely skip ahead to Page 58. In this subsection alone, we consider the rules concerning code as part of our type theory.

At a high level, the fact that U contains a code for itself means that we can construct a universe Θ that admits an embedding from its own double power set $P(P(\Theta))$; from this we can define a “set of all ordinals” and carry out a version of the Burali-Forti paradox. The details become somewhat involved, in part because the standard paradoxes of set theory rely on comprehension and extensionality principles not available to us in type theory. Indeed, historically it was far from clear that “$U : U$” was inconsistent, and in fact Martin-Löf’s first version of type theory had this very flaw [ML71].

\[
P : U \rightarrow U
\]

\[
P A = \text{code}(\text{El}(A) \rightarrow U)
\]

\[
P^2 : U \rightarrow U
\]

\[
P^2 A = P(P(A))
\]

\[
\Theta : U
\]

13This name is not so mysterious: it means “elements of,” and is pronounced “ell” or, often, omitted.

14An Agda formalization of Hurkens’s paradox is available at https://github.com/agda/agda/blob/master/test/Succeed/Hurkens.agda; formalizations in other proof assistants are readily available online.
$$\Theta = \text{code}((A : U) \to (\text{El}(P^2 A) \to \text{El}(A)) \to \text{El}(P^2 A))$$

Lemma 2.6.4 (Powerful universe). The universe Θ admits maps

$$\tau : \text{El}(P^2 \Theta) \to \Theta$$

$$\sigma : \Theta \to \text{El}(P^2 \Theta)$$

such that

$$(C : \text{El}(P^2 \Theta)) \to (\sigma (\tau C) = \lambda(\phi : \text{El}(P \Theta)) \to C(\phi \circ \tau \circ \sigma))$$

Proof. We define:

$$\tau : \text{El}(P^2 \Theta) \to \text{El}(\Theta)$$

$$\tau (\Phi : \text{El}(P^2 \Theta)) (A : U) (f : \text{El}(P^2 A) \to \text{El}(A)) (\chi : \text{El}(P A)) = \Phi (\lambda(\theta : \Theta) \to \chi (f (\theta A f)))$$

$$\sigma : \text{El}(\Theta) \to \text{El}(P^2 \Theta)$$

$$\sigma \theta = \theta \Theta \tau$$

We leave the equational condition to Exercise 2.33. □

Exercise 2.33. Show that the above definitions of τ and σ satisfy the necessary equation.

As an immediate consequence of Lemma 2.6.4, we have:

$$\sigma (\tau (\sigma x)) = \lambda(\phi : \text{El}(P \Theta)) \to \text{El}(\sigma (\phi \circ \tau \circ \sigma)) \quad (2.1)$$

One way to understand the statement of Lemma 2.6.4 is that, regarding P as a functor whose action on $f : \text{El}(Y) \to \text{El}(X)$ is precomposition $f^* : \text{El}(P X) \to \text{El}(P Y)$, the equational condition is equivalent to $\sigma \circ \tau = (\tau \circ \sigma)^*$. We derive a contradiction from Lemma 2.6.4 by constructing ordinals within Θ:

-- $y < x$ ("$y \in x$") when each f in σx contains y

$$y < x = \text{code}((f : \text{El}(P \Theta)) \to \text{El}(\sigma x f) \to \text{El}(f y))$$

-- f is inductive if for all x, if f is in σx then x is in f

$$\text{ind} : \text{El}(P \Theta) \to \text{U}$$

$$\text{ind} f = \text{code}((x : \text{El}(\Theta)) \to \text{El}(\sigma x f) \to \text{El}(f x))$$

-- x is well-founded if it is in every inductive f

$$\text{wf} : \text{El}(\Theta) \to \text{U}$$

$$\text{wf} x = \text{code}((f : \text{El}(P \Theta)) \to \text{El}(\text{ind} f) \to \text{El}(f x))$$
Specifically, we consider $\Omega := \tau (\lambda f \rightarrow \text{ind } f)$, the collection of all inductive collections. Using Lemma 2.6.4 we argue that Ω is both well-founded and not well-founded.

Lemma 2.6.5. Ω is well-founded.

Proof. Suppose $f : \text{El}(\mathcal{P} \Theta)$ is inductive; we must show $\text{El}(f \ \Omega)$. By the definition of ind, for this it suffices to show $\text{El}(\sigma \ \Omega \ f)$. Unfolding the definition of Ω and rewriting by the equation in Lemma 2.6.4 with $C := \text{ind}$, it suffices to show that $f \circ \tau \circ \sigma$ is inductive.

Thus suppose we are given $x : \text{El}(\Theta)$ such that $\text{El}(\sigma \ x \ (f \circ \tau \circ \sigma))$; we must show $\text{El}(f \ (\tau \ (\sigma \ x)))$. By rewriting $\text{El}(\sigma \ x \ (f \circ \tau \circ \sigma))$ along Equation (2.1), we conclude that $\text{El}(\sigma \ (\tau \ (\sigma \ x)))$. However, by our assumption that f is inductive, this implies $\text{El}(f \ (\tau \ (\sigma \ x)))$, which is what we wanted to show. \hfill \Box

To prove that Ω is not well-founded, we start by showing that the collection of “sets not containing themselves” $\phi := \lambda y \rightarrow \text{code}(\text{El}(\tau \ (\sigma \ y) < y) \rightarrow \text{Void})$ is inductive.

Lemma 2.6.6. ϕ is inductive.

Proof. Suppose we are given x such that $\text{El}(\sigma \ x \ \phi)$; we must show $\text{El}(\tau \ (\sigma \ x) < x) \rightarrow \text{Void}$. Thus suppose $\text{El}(\tau \ (\sigma \ x) < x)$, which is to say that for any f such that $\text{El}(\sigma \ x \ f)$, we have $\text{El}(f \ (\tau \ (\sigma \ x)))$. Using our hypothesis we may set $f := \phi$, from which we conclude $\text{El}(\tau \ (\sigma \ (\tau \ (\sigma \ x))) < \tau \ (\sigma \ x)) \rightarrow \text{Void}$. We derive the required contradiction by proving that $\text{El}(\tau \ (\sigma \ (\tau \ (\sigma \ x))) < \tau \ (\sigma \ x))$ holds, by $\text{El}(\tau \ (\sigma \ x) < x)$ and Exercise 2.34. \hfill \Box

Exercise 2.34. Show that $\text{El}(x < y)$ implies $\text{El}(\tau \ (\sigma \ x) < \tau \ (\sigma \ y))$.

Theorem 2.6.7. Void is inhabited.

Proof. Because Ω is well-founded and ϕ is inductive, we have $\text{El}(\tau \ (\sigma \ \Omega) < \Omega) \rightarrow \text{Void}$. To derive a contradiction, it suffices to show $\text{El}(\tau \ (\sigma \ \Omega) < \Omega)$, which is to say that for any f such that $\text{El}(\sigma \ \Omega \ f)$, we have $\text{El}(f \ (\tau \ (\sigma \ \Omega)))$. By the definition of Ω, $\text{El}(\sigma \ (\Omega \ f))$ implies that $f \circ \tau \circ \sigma$ is inductive; combining this with the fact that Ω is well-founded, we obtain $\text{El}(f \ (\tau \ (\sigma \ \Omega)))$ as required. \hfill \Box

2.6.2.2 Populating the universe

Returning to our definition of universe types, it is safe to postulate a type U of type-codes which decode via El into types. (Indeed, with large elimination it is even possible to define such a type manually, e.g. $U := \text{Bool}$ with $\text{El}(\text{true}) := \text{Unit}$ and $\text{El}(\text{false}) := \text{Void}$.)

$$U_{\Gamma} \in \text{Ty}(\Gamma)$$
$$\text{El} : \text{Trm}(\Gamma, U) \rightarrow \text{Ty}(\Gamma)$$
Our first attempt at populating $\text{Tm}(\Gamma, U)$ was to ask for an inverse to El, but that turns out to be inconsistent. Instead, we will simply manually equip U with codes decoding to the type formers we have presented so far, but crucially not with a code for U itself. This approach is somewhat verbose—for each type former we add an introduction rule for U, a substitution rule, and an equation stating that El decodes it to the corresponding type—but it allows us to avoid Girard’s paradox while still populating U with codes for (almost) every type in our theory.

For example, to close U under dependent function types we add the following rules:

\[
\begin{align*}
\Gamma \vdash a : U & \quad \Gamma.\text{El}(a) \vdash b : U & \quad \Delta \vdash \gamma : \Gamma & \quad \Gamma \vdash a : U & \quad \Gamma.\text{El}(a) \vdash b : U \\
\Gamma \vdash \text{pi}(a, b) : U & & \Delta \vdash \text{pi}(a, b)[\gamma] = \text{pi}(a[\gamma], b[\gamma.\text{El}(a)]) : U
\end{align*}
\]

The third rule states that $\text{pi}(a, b)$ is the code in U for the type $\Pi(\text{El}(a), \text{El}(b))$. Note that the context of b in the introduction rule for $\text{pi}(a, b)$ makes reference to $\text{El}(a)$, mirroring the dependency structure of Π-types. Although this move is forced, it means that the definitions of U and El each reference the other—the type of a constructor of U mentions El, and the type of El itself mentions U—so U and El must be defined simultaneously. In fact, this is the paradigmatic example of an inductive-recursive definition, an inductive type that is defined simultaneously with a recursive function out of it [Dyb00].

It is no more difficult to close U under dependent pairs, extensional equality, the unit type, and inductive types. These rules quickly become tedious, so we write only their introduction rules below, leaving the remaining rules to Appendix A.

\[
\begin{align*}
\Gamma \vdash a : U & \quad \Gamma.\text{El}(a) \vdash b : U & \quad \Gamma \vdash \text{sig}(a, b) : U \\
\Gamma \vdash \text{eq}(a, x, y) : U
\end{align*}
\]

We can now recover the large elimination principles of Section 2.6.1 in terms of small elimination into the type U. Moreover, because we can perfectly well extend the context by a variable of type U, we can now also construct types by recursion on natural numbers:

\[
\begin{align*}
\Gamma \vdash n : \text{Nat} & \quad \Gamma \vdash a_z : U & \quad \Gamma.\text{Nat}.U \vdash a_s : U \\
\Gamma \vdash \text{Rec}(a_z, a_s, n) : \text{El}(\text{rec}(a_z, a_s, n)) & \quad \text{type}
\end{align*}
\]

Remark 2.6.8. Proof assistant users are very familiar with universes, so such readers may be wondering why they have never seen El before. Indeed, proof assistants such as Coq and
Agda treat types and elements of \(U \) as indistinguishable. Historically, much of the literature calls such universes—for which \(\text{Tm}(\Gamma, U) \subseteq \text{Ty}(\Gamma) \)—universes à la Russell, in contrast to our universes à la Tarski, but we find such a subset inclusion to be meta-suspicious.

Instead, we prefer to say that Coq and Agda programs do not expose the notion of type to the user at all, instead consistently referring only to elements of \(U \). This obviates the need for the user to ever write or see \(\text{El} \), and the necessary calls to \(\text{El} \) can be inserted automatically by the proof assistant in a process known as elaboration.

\[\text{Remark 2.6.9.} \quad \text{Another more semantically natural variation of universes relaxes the judgmental equalities governing } \text{El} \text{ to isomorphisms } \text{El}(\pi(a, b)) \cong \text{Pi}(\text{El}(a), \text{El}(b)), \text{ producing what are known as weak universes à la Tarski. However, our strict formulation is more standard and more convenient.} \]

\[\text{Advanced Remark 2.6.10.} \quad \text{Universes in type theory play a similar role to Grothendieck universes and their categorical counterparts in set theory and category theory. We often refer to types encoded by } U \text{ as small or } U\text{-small, and ask for small types to be closed under various operations. As a result, universes in type theory roughly have the same proof-theoretical strength as strongly inaccessible cardinals. Note, however, that the lack of choice and excluded middle in type theory precludes a naïve comparison between it and ZFC or similar theories.} \]

2.6.3 Hierarchies of universes

Our definition of \(U \) is perfectly correct, but the fact that \(U \) lacks a code for itself means that we cannot recursively define types that mention \(U \). In addition, although we can quantify over “small” types with \(\Pi(U, -) \), we cannot write any type quantifiers whose domain includes \(U \). We cannot fix these shortcomings directly, but we can mitigate them by defining a second universe type \(U_1 \) closed under all the same type codes as before as well as a code for \(U \), but no code for \(U_1 \) itself. The same problem occurs one level up, so we add a third universe \(U_2 \) containing codes for \(U \) and \(U_1 \) but not \(U_2 \), and so forth.

In practice, nearly all applications of type theory require only a finite number of universes, but for uniformity and because this number varies between applications, it is typical to ask for a countably infinite (alternatively, finite but arbitrary) tower of universes each of which contains codes for the smaller ones. (For uniformity we write \(U_0 := U \).) This collection of \(U_i \) is known as a universe hierarchy.

To define an infinite number of types and terms, we must now write rule schemas, collections of rules that must be repeated for every (external, not internal) natural number \(i > 1 \). Each of these rules follows the same pattern in \(U \), with one new feature: \(U_i \) contains
a code $\text{uni}_{i,j}$ for U_j whenever j is strictly smaller than i.

\[
\begin{array}{c}
\Gamma \vdash a : U_i \\
\Gamma \vdash \text{U}_i \text{ type} \\
\Delta \vdash \gamma : \Gamma \\
\Gamma \vdash a : U_i \\
\Delta \vdash \text{El}_i(a) \text{ type} \\
\Delta \vdash \text{El}_i(a)[\gamma] = \text{El}_i(a[\gamma]) \text{ type}
\end{array}
\]

\[
\begin{array}{c}
\Gamma \vdash a : U_i \\
\Gamma \vdash \text{pi}_i(a,b) : U_i \\
\Gamma \vdash \text{sig}_i(a,b) : U_i \\
\Gamma \vdash \text{eq}_i(a,x,y) : U_i \\
\Gamma \vdash \text{uni}_{i,j} : U_i
\end{array}
\]

Again for uniformity we write $\text{pi}_0(a,b) := \text{pi}(a,b)$, etc., and we omit the substitution rules for type codes as well as the type equations explaining how each El_i computes on codes, such as $\text{El}_i(\text{eq}_i(a,x,y)) = \text{Eq}(\text{El}_i(a), x, y)$ and $\text{El}_i(\text{uni}_{i,j}) = U_j$.

It is easy to see that the rules for U_{i+1} are a superset of the rules for U_i: the only difference is the addition of the code $\text{uni}_{i+1,i} : U_{i+1}$ and codes that mention this code, such as $\text{pi}_{i+1}(\text{uni}_{i+1,i}, \text{uni}_{i+1,i}) : U_{i+1}$. Thus it should be possible to prove that every closed code of type U_i has a counterpart of type U_{i+1} that decodes to the same type, that is, “$U_i \subseteq U_{i+1}$.” However, this fact is not visible inside the theory. We have no induction principle for the universe, so we cannot define an “inclusion” function $f : U_i \rightarrow U_{i+1}$ much less prove that it satisfies $\text{El}_{i+1}(f(a)) = \text{El}_i(a)$. And there is simply no way, external or otherwise, to “lift” a variable of type U_i to the type U_{i+1}.

We thus equip our universe hierarchy with one final operation: a lifting operation that includes elements of U_i into U_{i+1}, which is compatible with El and sends type codes of U_i to their counterparts in U_{i+1}. Such a strict lifting operation allows users to generally avoid worrying about universe levels, because small codes can always be hoisted up to their larger counterparts when needed.

\[
\begin{array}{c}
\Gamma \vdash a : U_i \\
\Gamma \vdash \text{lift}_i(a) : U_{i+1} \\
\Delta \vdash \gamma : \Gamma \\
\Delta \vdash \text{lift}_i(a)[\gamma] = \text{lift}_i(a[\gamma]) : U_{i+1} \\
\Gamma \vdash a : U_i
\end{array}
\]

The last rule above states that a code and its lift both encode the same type. Recalling that the entire point of a universe hierarchy is to get as close as possible to “$U : U$” without being inconsistent, it makes sense to treat lifts as a clerical operation that does not affect the type about which we speak. In addition, this equation is actually needed to state that
lift commutes with codes, such as πi (other rules omitted):

\[
\begin{align*}
\Gamma \vdash a : U_i & \quad \Gamma . \text{El}_i(a) \vdash b : U_i \\
\Gamma \vdash \text{lift}_i(\pi_i(a, b)) = \pi_{i+1}(\text{lift}_i(a), \text{lift}_i(b)) : U_{i+1}
\end{align*}
\]

Remark 2.6.11. We say a universe hierarchy is (strictly) cumulative when it is equipped with lift operations that commute (strictly) with codes. Historically the term “cumulativity” often refers to material subset inclusions \(\text{Tm}(\Gamma, U_i) \subseteq \text{Tm}(\Gamma, U_{i+1}) \) but once again such conditions are incompatible with our perspective.

Remark 2.6.12. There is an equivalent presentation of universe hierarchies known as universes à la Coquand in which one stratifies the type judgment itself, and the ith universe precisely internalizes the ith type judgment [Coq13; Coq19; Gra+21; FAM23]. That is, we have sorts \(\text{Ty}_i(\Gamma) \) for \(i \in \mathbb{N} + \{\top\} \) with \(\text{Ty}(\Gamma) := \text{Ty}_\top(\Gamma) \), and natural isomorphisms \(\text{Ty}_i(\Gamma) \cong \text{Tm}(\Gamma, U_i) \) for \(i \in \mathbb{N} \) mediated by \(\text{El}_i/\text{code}_i \). This presentation essentially creates a new judgmental structure designed to be internalized by \(U \), and has the concrete benefit of unifying type formation and universe introduction into a single set of rules.

Exercise 2.35. Check that the equational rule \(\text{lift}_i(\pi_i(a, b)) = \pi_{i+1}(\text{lift}_i(a), \text{lift}_i(b)) \) above is meta-well-typed. (Hint: you need to use \(\text{El}_{i+1}(\text{lift}_i(a)) = \text{El}_i(a) \).)

Exercise 2.36. We only included lifts from \(U_i \) to \(U_{i+1} \), rather than from \(U_i \) to \(U_j \) for every \(i < j \). Show that the latter notion of lift is derivable for any concrete \(i < j \) and that it satisfies the expected equations.

Further reading

The literature on type theory is unfortunately neither notationally nor conceptually coherent, particularly regarding syntax and how it is defined. We summarize a number of important references that most closely match the perspective outlined in these lecture notes; note however that many references will agree in some ways and differ in others.

Historical references Nearly all of the ideas in this chapter can be traced back in some form to the philosopher Per Martin-Löf, whose collected works are available in the GitHub repository michaelt/martin-lof. Over the decades, Martin-Löf has considered many different variations on type theory; the closest to our presentation are his notes on substitution calculus [ML92] and the “Bibliopolis book” presenting what is now called extensional type theory [ML84b]. For a detailed philosophical exploration of the judgmental methodology that types internalize judgmental structure, see his “Siena lectures” [ML96]. Finally, the book *Programming in Martin-Löf’s Type Theory* [NPS90] remains one of the best pedagogical introductions to type theory as formulated in Martin-Löf’s logical framework.
Syntax of dependent type theory The presentation of type theory most closely aligned to ours can be found in the second author’s Ph.D. thesis [Gra23, Chapter 2]. Another valuable reference is Hofmann’s *Syntax and Semantics of Dependent Types* [Hof97, Sections 1 and 2], which as the title suggests, presents the syntax of type theory and connects it to semantical interpretations. Hofmann is very careful in his definition of syntax, but the technical details of capture-avoiding substitution and presyntax have largely been supplanted by subsequent work on logical frameworks, so we suggest that readers gloss over these technical details.

Categorical semantics The book *Categories for Types* [Cro94] is a gentle introduction to the categorical semantics of the simply-typed lambda calculus and related theories; Castellan, Clairambault, and Dybjer [CCD21] discuss how to scale from such models to categories with families [Dyb96], the categorical counterpart of the substitution calculus. Readers can consult Hofmann [Hof97] for concrete examples of categories with families. Finally, we recommend Awodey’s paper on natural models [Awo18] for a more categorically-natural formulation of categories with families, as well as an excellent description of the local universes strictification procedure for producing models of dependent type theory from categories with enough structure [LW15].

Logical frameworks In these notes we have attempted to largely sidestep the question of what constitutes a valid collection of inference rules. The mathematics of syntax can and has occupied entire books, but in short, the natural families of constants and isomorphisms considered in this chapter can be formulated precisely in systems known as logical frameworks. A good introduction to logical frameworks is the seminal work of Harper, Honsell, and Plotkin [HHP93] on the Edinburgh Logical Framework, in which object-level judgments can be encoded as meta-level types.

For logical frameworks better suited to defining dependent type theory in particular, we refer readers to the generalized algebraic theories of [Car86] (or the tutorial on this subject by Sterling [Ste19]), or to quotient inductive-inductive types [AK16; Dij17; KKA19; Kov22]. For logical frameworks specifically designed to accomodate the binding and substitution of dependent type theory, we refer the reader to the Ph.D. theses of Haselwarter [Has21] and Uemura [Uem21].
In Chapter 2 we carefully defined Martin-Löf type theory as a formal mathematical object: a kind of “algebra” of indexed sets (of types and terms) equipped with various operations. We believe this perspective is essential to understanding both the what and the why of type theory, providing both a precise definition that can be unfolded into inference rules, as well as an explanation of what these rules intend to axiomatize.

This perspective is not, however, how most users of type theory interact with it. Most users of type theory interact with proof assistants, software systems for interactively developing and verifying large-scale proofs in type theory. Even when type theorists work on paper rather than on a computer, many of the conveniences of proof assistants bleed into their informal notation. Indeed, in Chapter 1 we used definitions, implicit arguments, data type declarations, and pattern matching without a second thought.

Although these lecture notes focus on theoretical rather than practical considerations, it is impossible to discuss the design space of type theory without discussing the pragmatics of proof assistants, as these have exerted a profound influence on the theory. Our goal in this chapter is to explain how to square our mathematical notion of type theory with (idealized) implementations\(^1\) of type theory, and to discover and unpack the substantial constraints that the latter must place on the former.

In this chapter In Section 3.1 we axiomatize the core functionality of proof assistants in terms of algorithmic elaboration judgments, and outline a basic implementation. In Section 3.2 we continue to refine our implementation, taking a closer look at how the equality judgments of type theory impact elaboration, and the metatheoretic properties we need equality to satisfy. In Section 3.3 we discuss other metatheorems of type theory and their relationship to program extraction. In Section 3.4 we show that the extensional type theory presented in Chapter 2 does not satisfy the metatheoretic properties discussed in Section 3.2, leading us to consider alternative theories in Chapters 4 and 5. Finally, in Section 3.5, we consider how to extend our elaborator to account for definitions.

Goals of the chapter By the end of this chapter, you will be able to:

- Explain why and how we define type-checking in terms of elaboration.
- Define the consistency, canonicity, normalization, and invertibility metatheorems, and identify why each is important.

\(^1\)At the end of this chapter, we provide some pointers to literature and implementations specifically geared to readers interested in learning how to actually implement type theory.
3.1 A judgmental reconstruction of proof assistants

What exactly is the relation between Agda code (or the code in Chapter 1) and the type theory in Chapter 2? Certainly, Coq and Agda—even without extensions—include many convenience features that the reader would not be surprised to see omitted in a theoretical description of type theory: implicit arguments, typeclasses/instance arguments, libraries, reflection, tactics… For the moment we set aside not only these but even more fundamental features such as data type declarations, pattern matching, and the ability to write definitions, in order to consider the simplest possible “Agda”: a type-checker. That is, our idealized Agda takes as input two expressions \(e \) and \(\tau \) and accepts in the case that \(e \) is a closed term of closed type \(\tau \), and rejects if not.

Slogan 3.1.1. Proof assistants are fancy type-checkers.

Remark 3.1.2. For the purposes of these notes, “proof assistant” refers only to proof assistants in the style of Coq, Agda, and Lean. In particular, we will not discuss LCF-style systems [GMW79] such as Nuprl [Con+85] and Andromeda [Bau+21], or systems not based on dependent type theory, such as Isabelle [NPW02] or HOL Light [Har09].

Convenience features of proof assistants are generally aimed at making it easier for users to write down the inputs \(e \) and \(\tau \), perhaps by allowing some information to be omitted and reconstructed mechanically, or even by presenting a totally different interface for building \(e \) and \(\tau \) interactively or from high-level descriptions. We start our investigation with the most generous possible assumptions—in which \(e \) and \(\tau \) contain all the information we might possibly need, including type annotations—and will find that type-checking is already a startlingly complex problem.

Remark 3.1.3. The title of this section is an homage to *A judgmental reconstruction of modal logic* [PD01], an influential article that reconsiders intuitionistic modal logic under the mindset that types internalize judgmental structure.

3.1.1 Type-checking as elaboration

In Section 2.1 we emphasized that we do not assume that the types and terms of type theory are obtained as the “well-formed” subsets of some collections of possibly-ill-formed *pretypes* or *preterms*, nor do we even assume that they are obtained as \(\beta\eta \)-equivalence classes” of well-formed-but-unquotiented terms.

Instead, *types* and *terms* are just the elements of the sets \(\text{Ty}(\Gamma) \) and \(\text{Tm}(\Gamma, A) \), which are defined in terms of each other and the sets \(\text{Cx} \) and \(\text{Sb}(\Delta, \Gamma) \). When we write e.g. \(\lambda(b) \), we
are naming a particular element of a particular set \(\text{Tm}(\Gamma, \Pi(A, B)) \) obtained by applying the “\(\Pi\)-introduction” map to \(b \in \text{Tm}(\Gamma.A, B) \); in particular, the values of \(\Gamma, A, B \) should be regarded as implicitly present, as they are in Appendix A where we write \(\lambda_{\Gamma,A,B}(b) \).

In Chapter 2 we reaped the benefits of this perspective, but it has come time to pay the piper: what, then, is a type-checker supposed to take as input? We certainly cannot say that a type-checker is given “a type \(A \) and a term \(a \)” because this assumes that \(A \) and \(a \) are well-formed. Type-checking cannot be a membership query; instead, it is a partial function from concrete syntax to the sets of genuine types and terms. For an input expression to “type-check” means that it names a type/term, not that it “is” one (which is a meta-type error, as types/terms are mathematical objects, and input expressions are strings).

For simplicity we assume that the inputs to type-checkers are not strings but abstract syntax trees (or well-formed formulas) conforming to the simple grammar in Figure 3.1.\footnote{In other words, we only consider input expressions that successfully parse; expressions that fail to parse (e.g., because their parentheses are mismatched) automatically fail to type-check.}

We call these semi-structured input expressions pretypes \(\tau \) and preterms \(e \), and write them as teletype s-expressions. In programming language theory, the process of mapping semi-structured input expressions into structured core language terms is known as elaboration.

Slogan 3.1.4. Type-checkers for dependent type theory are elaborators.

Remark 3.1.5. What is the relationship between features of the concrete syntax of a proof assistant, and features of the core syntax? According to Slogan 3.1.4, the concrete syntax should be seen as “instructions” for building core syntax. These instructions may be very close to or very far from that core syntax, but in either case, new user-facing features should only induce new core primitives when they cannot be (relatively compositionally) accounted for by the existing core language.

Algorithmic judgments Elaborators are partial functions that recursively consume pretypes and preterms (abstract syntax trees) and produce types and terms. In a real proof assistant, types and terms are of course not abstract mathematical entities but elements of some data type, but for our purposes we will imagine an idealized elaborator that outputs elements of \(\text{Ty}(\Gamma) \) and \(\text{Tm}(\Gamma, A) \). We present this elaborator not as functional programs written in pseudocode, but as algorithmic judgments defined by inference rules. Unlike the rules in Chapter 2, these rules are intended to define an algorithm, so we will take care to
ensure that any given elaboration judgment can be derived by at most one rule. (In other words, we define our elaborator as a deterministic logic program.)

We have already argued that pretype elaboration should take as input a pretype \(\tau \) and output a type \(A \), but what about contexts? Just as well-formedness of closed types \((1 \vdash \Pi(A, B) \text{ type}) \) refers to well-formedness of open types \((1.A \vdash B \text{ type}) \), it is perhaps unsurprising that elaborating closed pretypes requires elaborating open pretypes. However, we note that we do not need or want “precontexts”; we will only descend under binders after successfully elaborating their pretypes. For example, to elaborate \((\Pi \tau_0 \tau_1) \) we will first elaborate \(\tau_0 \) to the closed type \(A \), and only then in context \(1.A \) elaborate \(\tau_1 \) to \(B \).

Thus our two main algorithmic elaboration judgments are as follows:

1. \(\Gamma \vdash \tau \text{ type} \leadsto A \) asserts that elaborating the pretype \(\tau \) relative to \(\vdash \Gamma \text{ cx} \) succeeds and produces the type \(\Gamma \vdash A \text{ type} \).

2. \(\Gamma \vdash e : A \leadsto a \) asserts that elaborating the preterm \(e \) relative to \(\vdash \Gamma \text{ cx} \) and \(\Gamma \vdash A \text{ type} \) succeeds and produces the term \(\Gamma \vdash a : A \).

In pseudocode, the first judgment corresponds to a partial function \(\text{elabTy}(\Gamma, \tau) = A \) with the invariant that if \(\vdash \Gamma \text{ cx} \) and \(\text{elabTy} \) terminates successfully, then \(\Gamma \vdash A \text{ type} \).

Likewise, the second judgment is a partial function \(\text{elabTm}(\Gamma, A, e) = a \) whose successful outputs are terms \(\Gamma \vdash a : A \).

Elaborating pretypes The rules for \(\Gamma \vdash \tau \text{ type} \leadsto A \) are straightforward translations of the type-well-formedness rules of Chapter 2. (When it is necessary to contrast algorithmic and non-algorithmic rules, the latter are often referred to as *declarative.*)

\[
\begin{align*}
\Gamma \vdash \tau_0 \text{ type} \leadsto A & \quad \Gamma.A \vdash \tau_1 \text{ type} \leadsto B \\
\Gamma \vdash (\Pi \tau_0 \tau_1) \text{ type} \leadsto \Pi(A, B) & \quad \Gamma \vdash (\Sigma \tau_0 \tau_1) \text{ type} \leadsto \Sigma(A, B) \\
\Gamma \vdash \text{Un} \text{ it} \text{ type} \leadsto \text{Un} & \quad \Gamma \vdash \text{U} \text{n} \text{i} \text{t} \text{ e} \text{ r} \text{ type} \leadsto \text{U} \\
\Gamma \vdash (\text{El} e) \text{ type} \leadsto \text{El}(a) & \quad \Gamma \vdash e : U \leadsto a
\end{align*}
\]

3.1.2 Elaborating preterms: the problem of type equality

Elaborating preterms is significantly more fraught. But first, let us remind ourselves of the process of type-checking \((\lambda \tau_0 \tau_1 e) : \tau \). First, we attempt to elaborate the pretype \(1 \vdash \tau \text{ type} \leadsto C \); if this succeeds, we then attempt to elaborate the preterm \(1 \vdash (\lambda \tau_0 \tau_1 e) : C \leadsto c \). If this also succeeds, then the type-checker reports success, having transformed the input presyntax to a well-formed term \(1 \vdash c : C \).
Since \(\texttt{lam} \) is our presyntax for \(\lambda \), elaborating \(\texttt{lam} \) via \(1 \vdash (\texttt{lam} \; \tau_0 \; \tau_1 \; e) : C \leadsto c \) should produce a term \(c := \lambda_{1, A, B}(b) \) for some \(A, B, b \) determined by \(\tau_0, \tau_1, e \) respectively. We determine these by a series of recursive calls to the elaborator: first \(\Gamma \vdash \tau_0 \) type \(\leadsto A \), then \(\Gamma.A \vdash \tau_1 \text{ type } \leadsto B \), and finally \(\Gamma.A \vdash e : B \leadsto b \). Note that these steps must be performed sequentially and in this order, because each step uses the outputs of the previous steps as inputs: we elaborate \(\tau_1 \) in a context extended by \(A \), the result of elaborating \(\tau_0 \), and we elaborate \(e \) at type \(B \), the result of elaborating \(\tau_1 \).

At the end we obtain \(\Gamma.A \vdash b : B \), and thence by \(\Pi \)-introduction a term \(1 \vdash \lambda_{1, A, B}(b) : \Pi_1(A, B) \) that should be the elaborated form of \(e \). But the elaborated form of \(e \) is supposed to have type \(C \)—the result of elaborating \(\tau \)! Thus before returning \(\lambda_{1, A, B}(b) \) we need to check that \(1 \vdash C = \Pi(A, B) \) type. This is where “type-checking” actually happens: we have seen that \(\tau \) determines a real type and that \(e \) determines a real term, but until this point we have not actually checked whether “\(e \) has type \(\tau \).”

In pseudocode, we can define elaboration of \((\texttt{lam} \; \tau_0 \; \tau_1 \; e)\) as follows:

\[
\text{elabTm}(\Gamma, C, (\texttt{lam} \; \tau_0 \; \tau_1 \; e)) = \\
\quad \text{let } A = \text{elabTy}(\Gamma, \tau_0) \text{ in} \\
\quad \text{let } B = \text{elabTy}(\Gamma.A, \tau_1) \text{ in} \\
\quad \text{let } b = \text{elabTm}(\Gamma.A, B, e) \text{ in} \\
\quad \text{if (} \Gamma \vdash C = \Pi_\Gamma(A, B) \text{ type) then return } \lambda_{\Gamma, A, B}(b) \text{ else error}
\]

or equivalently, in algorithmic judgment notation:

\[
\begin{aligned}
\Gamma \vdash \tau_0 \text{ type } \leadsto A & \quad \Gamma.A \vdash \tau_1 \text{ type } \leadsto B & \quad \Gamma.A \vdash e : B \leadsto b & \quad \Gamma \vdash C = \Pi(A, B) \text{ type} \\
\hline
\Gamma \vdash (\texttt{lam} \; \tau_0 \; \tau_1 \; e) : C \leadsto \lambda_{\Gamma, A, B}(b)
\end{aligned}
\]

This will be the only rule that concludes \(\Gamma \vdash e : C \leadsto c \) for \(e := (\texttt{lam} \; \tau_0 \; \tau_1 \; e) \), ensuring that this rule “is the \texttt{lam} clause of \text{elabTm},” so to speak. Elaboration of other introduction forms will follow a similar pattern.

Exercise 3.1. Write the algorithmic rule for elaborating the preterm \((\texttt{pair} \; \tau_0 \; \tau_1 \; e_0 \; e_1)\).

Let us pause to make several remarks. First, note that our algorithm needs to check judgmental equality of types \(\Gamma \vdash C = \Pi_\Gamma(A, B) \) type. This step is, at least implicitly, part of all type-checking algorithms for all programming languages: if we define a function of type \(A \rightarrow B \) that returns \(e \), we have to check whether the type of \(e \) matches the declared return type \(B \). Sometimes this is as simple as checking the syntactic equality of two type expressions, but often this is non-trivial, perhaps a subtyping check.

In our present setting, checking type equality is extremely non-trivial. Suppose that \(C := \text{El}(c) \) and so we are checking \(\Gamma \vdash \text{El}(c) = \Pi(A, B) \) type for \(\Gamma \vdash c : U \). This type equality depends on the entire equational theory of terms: we may need to “rewrite
along” arbitrarily many term equations before concluding \(\Gamma \vdash c = \text{pi}(c_0, c_1) : U \); this only reduces the problem to \(\Gamma \vdash \Pi(\text{El}(c_0), \text{El}(c_1)) = \Pi(A, B) \) type for which it suffices to check \(\Gamma \vdash \text{El}(c_0) = A \) type and \(\Gamma.\text{Ar} \vdash \text{El}(c_1) = B \) type, each of which may once again require arbitrary amounts of computation. We will revisit this point in Section 3.2.1.

Secondly, note that we have assumed for now that the preterm \(\text{(lam} \var_0 \var_1 \text{e}) \) contains pretype annotations \(\tau_0, \tau_1 \) telling us the domain and codomain of the \(\Pi \)-type. In practice, a type-checker is essentially unusable unless it can reconstruct (most of) these annotations; we describe this reconstruction process in Section 3.2.2.

Remark 3.1.7. Naively, one might think that including these annotations is the source of our problem, because it forces us to compare the type \(C \) computed from \(\tau \) to the type \(\Pi(A, B) \) computed from the annotations \(\tau_0, \tau_1 \). This is not the case. If we omit \(\tau_0, \tau_1 \), then to elaborate \(e \) we must recover \(A \) and \(B \) from \(C \), which upgrades “does \(\Gamma \vdash C = \Pi(A, B) \) type?” to the strictly harder question “do there exist \(A, B \) such that \(\Gamma \vdash C = \Pi(A, B) \) type?” In addition, we will need to wonder whether this existence is unique: otherwise, it could be that \(\Gamma.\text{Ar} \vdash e : B \leadsto b \) for some choices of \(A, B \) but not others.

Elaborating elimination forms is not much harder than elaborating introduction forms. To elaborate \(\text{(app} \tau_0 \tau_1 \text{e}_0 \text{e}_1 \text{)} \), we elaborate the pretype annotations \(\Gamma \vdash \tau_0 \) type \(\leadsto A \) and \(\Gamma.\text{Ar} \vdash \tau_1 \) type \(\leadsto B \) in sequence, then the function \(\Gamma \vdash e_0 : \Pi(A, B) \leadsto f \) and its argument \(\Gamma \vdash e_1 : A \leadsto a \) in either order, before finally checking that the type of the computed term \(\text{app}_{\Gamma.\text{Ar}, B}(f, a) \), namely \(B[\text{id}.a] \), agrees with the expected type \(C \).

\[
\begin{align*}
\Gamma \vdash \tau_0 \text{ type } & \leadsto A & \Gamma.\text{Ar} \vdash \tau_1 \text{ type } & \leadsto B \\
\Gamma \vdash e_0 : \Pi(A, B) & \leadsto f & \Gamma \vdash e_1 : A & \leadsto a & \Gamma \vdash C = B[\text{id}.a] \text{ type} \\
\Gamma \vdash (\text{app} \tau_0 \tau_1 e_0 e_1) : C & \leadsto \text{app}_{\Gamma.\text{Ar}, B}(f, a)
\end{align*}
\]

Elaboration of other elimination forms follows a similar pattern. The only remaining case is term variables \(\text{(var} i \text{)} \), which we have chosen to represent as de Bruijn indices. To elaborate \(\text{(var} i \text{)} \) we check that the context has length at least \(i + 1 \); if so, then it remains only to check that the type of the variable \(q[p^i] \) agrees with the expected type.

\[
\begin{align*}
\Gamma = \Gamma'.A_i.A_{i-1}. \cdots .A_0 & \quad \Gamma \vdash C = A_i[p^{i+1}] \text{ type} \\
\Gamma \vdash (\text{var} i) : C & \leadsto q[p^i]
\end{align*}
\]

In the above rule, our algorithm needs to check judgmental equality of contexts, and to project \(\Gamma \) and \(A \) from \(\Gamma.\text{Ar} \). Unlike for type equality, we have no rules generating non-trivial context equalities, so structural induction on contexts is perfectly well-defined.

Remark 3.1.7. It is straightforward to extend our concrete syntax to support named variables: in our elaboration judgments, we replace \(\Gamma \) with an environment \(\Theta \) that is a list of pairs of genuine types with the “surface name” of the corresponding term variable. Every
environment determines a context by forgetting the names; in the variable elaboration rule, we simply look up the de Bruijn index corresponding to the given name.

Exercise 3.2. Write the algorithmic rules for elaborating \((\text{fst } \tau_0 \tau_1 e)\) and \((\text{snd } \tau_0 \tau_1 e)\).

3.2 Metatheory for type-checking

In Section 3.1 we saw that we can reduce type-checking to the problem of deciding the equality of types (at least, assuming that our input preterms have all type annotations). Deciding the equality of types in turn requires deciding the equality of terms, particularly in the presence of universes (Section 2.6.2). It is far from obvious that these relations are decidable—in fact, as we will see in Section 3.4, they are actually undecidable for the theory presented in Chapter 2—and proving their decidability relies on a difficult metatheorem known as normalization. In this section, we continue our exploration of elaboration with an emphasis on normalization and other metatheorems necessary for type-checking.

Remark 3.2.1. Recall from Section 2.1 that a metatheorem is just an ordinary theorem in the ambient metatheory, particularly one concerning the object type theory.

Before we can discuss computability-theoretic properties of the judgments of type theory, however, we must fix an encoding. We have taken pains to treat the rules of type theory as defining abstract sets \(\text{Ty}(\Gamma)\) and \(\text{Tm}(\Gamma, A)\) equipped with functions (type and term formers) satisfying various equations (\(\beta\) and \(\eta\) laws), which is the right perspective for understanding the mathematical structure of type theory. But to discuss the computational properties of type theory it is essential to exhibit an effective encoding of types and terms that is suitable for manipulation by a Turing machine or other model of computation: Turing machines cannot take mathematical entities as inputs, and whether equality of types is decidable can depend on how we choose to encode them!

This is analogous to the issue that arises in elementary computability theory when formalizing the halting problem: we must agree on how to encode Turing machines as inputs to other Turing machines, and we must ensure that this encoding is suitably effective. It is possible to pick an encoding of computable functions that trivializes the halting problem, at the expense of this encoding itself necessarily being uncomputable.

Returning to type theory, derivation trees of inference rules (e.g., as in Appendix A) turn out to be a perfectly suitable encoding. That is, when discussing computability-theoretic properties of types, terms, and equality judgments, we shall assume that each of these is encoded by equivalence classes of closed derivation trees; for example, we encode \(\text{Ty}(\Gamma)\) by the set of derivation trees with root \(\Gamma \vdash A\) type for some \(A\). (Just as there are many Turing machines realizing any given function \(\mathbb{N} \rightarrow \mathbb{N}\), there will be many derivation trees encoding any given type \(A \in \text{Ty}(\Gamma)\).) When we say “equality of types is decidable,” what
we shall mean is that “it is decidable whether two derivations encode the same type.” But
having fixed a convention, we will avoid belaboring the point any further.

3.2.1 Normalization and the decidability of equality

To complete the pretype and preterm elaboration algorithms presented in Section 3.1, it
remains only to show that type and term equality are decidable, which is equivalent to the
following normalization condition.

Remark 3.2.2. Type and term equality are automatically semidecidable because derivation
trees are recursively enumerable. That is, to check whether two types $A, B \in \text{Ty}(\Gamma)$ are
equal, we can enumerate every derivation tree of type theory, terminating if we encounter a
derivation of $\Gamma \vdash A = B$. Obviously, this is not a realistic implementation strategy. ◦

Definition 3.2.3. A normalization structure for a type theory is a pair of computable,
injective functions $\text{nfTy}: \text{Ty}(\Gamma) \to \mathbb{N}$ and $\text{nfTm}: \text{Tm}(\Gamma, A) \to \mathbb{N}$.

Definition 3.2.4. A type theory enjoys normalization if it admits a normalization structure.

The reader may find these definitions surprising: where did \mathbb{N} come from, and where
is the rest of the definition? We have chosen \mathbb{N} because it is a countable set with decidable
equality, but any other such set would suffice. In practice, one instead defines two sets of
abstract syntax trees TyNf, TmNf with discrete equality, and constructs a pair of computable,
injective functions $\text{nfTy}: \text{Ty}(\Gamma) \to \text{TyNf}$ and $\text{nfTm}: \text{Tm}(\Gamma, A) \to \text{TmNf}$. It is trivial to
exhibit computable, injective Gödel encodings of TyNf and TmNf, which when composed
with nfTy, nfTm exhibit a normalization structure in the sense of Definition 3.2.3.

As for Definition 3.2.3 being sufficient, the force of normalization is that it gives us
a decision procedure for type/term equality as follows: given $A, B \in \text{Ty}(\Gamma)$, A and B are
equal if and only if $\text{nfTy}(A) = \text{nfTy}(B)$ in \mathbb{N}. Asking for these maps to be computable
ensures that this procedure is computable; injectivity ensures that it is complete in the
sense that $\text{nfTy}(A) = \text{nfTy}(B)$ implies $A = B$. The soundness of this procedure—that $A = B$
implies $\text{nfTy}(A) = \text{nfTy}(B)$—is implicit in the statement that nfTy is a function out of
$\text{Ty}(\Gamma)$, the set of types considered modulo judgmental equality.

Warning 3.2.5. In Section 3.4 we shall see that extensional type theory does not admit a
normalization structure, but we will proceed under the assumption that the theory we
are elaborating satisfies normalization. In Chapter 4 we will see how to modify our type
theory to substantiate this assumption.

Assuming normalization, we can define algorithmic type and term equality judgments

1. $\Gamma \vdash A \Leftrightarrow B$ type asserts that the types $\Gamma \vdash A$ type and $\Gamma \vdash B$ type are judgmentally
equal according to some decision procedure.
2. $\Gamma \vdash a \iff b : A$ asserts that the terms $\Gamma \vdash a : A$ and $\Gamma \vdash b : A$ are judgmentally equal according to some decision procedure.

as follows:

\[
\frac{\text{nfty}(A) = \text{nfty}(B)}{\Gamma \vdash A \iff B \text{ type}} \quad \frac{\text{nftm}(a) = \text{nftm}(b)}{\Gamma \vdash a \iff b : A}
\]

We notate algorithmic equality differently from the declarative equality judgments $\Gamma \vdash A = B \text{ type}$ and $\Gamma \vdash a = b : A$ to stress that their definitions are completely different, even though (by our argument above) two types/terms are algorithmically equal if and only if they are declaratively equal. We thus complete the elaborator from Section 3.1 by replacing the “calls” to $\Gamma \vdash C = \Pi (A, B) \text{ type}$ with calls to $\Gamma \vdash C \iff \Pi (A, B) \text{ type}$.

Remark 3.2.6. It may seem surprising that normalization is so difficult; why can’t algorithmic equality just orient each declarative equality rule (e.g., $\text{fst} (\text{pair} (a, b)) \rightsquigarrow a$) and check whether the resulting rewriting system is confluent and terminating? Unfortunately, while this strategy suffices for some dependent type theories such as the calculus of constructions [CH88], it is very difficult to account for judgmental η rules. (What direction should $p \leftrightarrow \text{pair} (\text{fst} (p), \text{snd} (p))$ go? What about the η rule of Unit, $a \leftrightarrow \text{tt}$?) These rules require a type-sensitive decision procedure known as normalization by evaluation, whose soundness and completeness for declarative equality is nontrivial [ACD07; Abe13].

Exercise 3.3. We argued that the existence of a normalization structure implies that judgmental equality is decidable. In fact, this is a biimplication. Assume that definitional equality is decidable, and construct from this a normalization structure. (Hint: some classical reasoning is required, such as Markov’s principle or the law of excluded middle.)

Exercise 3.4. We have sketched how to use normalization to obtain a type-checking algorithm. This, too, is a biimplication. Using Exercise 3.3, show that the ability to decide type-checking implies that normalization holds.

3.2.2 Injectivity and bidirectional type-checking

We have seen how to define a rudimentary elaborator for type theory assuming that normalization holds, but the preterms that we can elaborate (Figure 3.1) are quite verbose, making our proof assistant more of a proof adversary. For instance, function application $(\text{app} \, \tau_0 \, \tau_1 \, e_0 \, e_1)$ requires annotations for both the domain and codomain of the Π-type.

These annotations are highly redundant, but it is far from clear how many of them can be mechanically reconstructed by our elaborator, nor if there is a consistent strategy for doing so. Users of typed functional programming languages like OCaml or Haskell
Pretypes $\tau := (\Pi \tau \tau) \mid (\Sigma \tau \tau) \mid \text{Unit} \mid \text{Uni} \mid (\text{El } e) \mid \cdots$

Preterms $e := (\text{var } i) \mid (\text{chk } e \tau) \mid (\text{lam } e) \mid (\text{app } e e) \mid (\text{pair } e e) \mid (\text{fst } e) \mid \cdots$

Figure 3.2: Syntax of pretypes and preterms for a bidirectional elaborator.

might imagine that virtually all types can be inferred automatically; unfortunately, this is impossible in dependent type theory, for which type inference is undecidable [Dow93].

It turns out there is a fairly straightforward, local, and usable approach to type reconstruction known as bidirectional type-checking [Coq96; PT00; McB18; McB19]. The core insight of bidirectional type-checking is that for some preterms it is easy to reconstruct or synthesize its type (e.g., if we know a function’s type then we know the type of its applications), but for other preterms we must be given a type at which to check it (e.g., to type-check a function we need to be told the type of its input variable).

By explicitly splitting elaboration into two mutually-defined algorithms—type-checking and type synthesis—we can dramatically reduce type annotations. In fact, in Figure 3.2 we can see that our new preterm syntax has no type annotations whatsoever except for a single annotation form (chk $e \tau$) that we will use sparingly. The ebb and flow of information between terms and types—between checking and synthesis—leads to the eponymous bidirectional flow of information that has proven easily adaptable to new type theories. But when should we check, and when should we synthesize?

Slogan 3.2.7. *Types are checked in introduction rules, and synthesized in elimination rules.*

We replace our two algorithmic elaboration judgments $\Gamma \vdash \tau \text{ type } \leadsto A$ and $\Gamma \vdash e : A \leadsto a$ with three algorithmic judgments as follows:

1. $\Gamma \vdash \tau \leftarrow \text{ type } \leadsto A$ (“check τ”) asserts that elaborating the pretype τ relative to $\vdash \Gamma \text{ cx}$ succeeds and produces the type $\Gamma \vdash A$ type.

2. $\Gamma \vdash e \leftarrow A \leadsto a$ (“check e against A”) asserts that elaborating the (unannotated) preterm e relative to $\vdash \Gamma \text{ cx}$ and a given type $\Gamma \vdash A$ type succeeds with $\Gamma \vdash a : A$.

3. $\Gamma \vdash e \Rightarrow A \leadsto a$ (“synthesize A from e”) asserts that elaborating the (unannotated) preterm e relative to $\vdash \Gamma \text{ cx}$ succeeds and produces both $\Gamma \vdash A$ type and $\Gamma \vdash a : A$.

The first two judgments, $\Gamma \vdash \tau \leftarrow \text{ type } \leadsto A$ and $\Gamma \vdash e \leftarrow A \leadsto a$, are similar to our previous judgments; when elaborating a preterm we are given a context and a type at which to check that preterm. In the third judgment, $\Gamma \vdash e \Rightarrow A \leadsto a$, we are also given a preterm and a context, but we output both a term and its type. The arrows are meant to indicate the direction of information flow: when checking $e \leftarrow A$ we are given A and using it to elaborate e, but when synthesizing $e \Rightarrow A$ we are producing A from e.
The rules for $\Gamma \vdash \tau \iff \text{type} \rightsquigarrow A$ are the same as those for $\Gamma \vdash \tau \text{type} \rightsquigarrow A$, except that they reference the new checking judgment $\Gamma \vdash e \iff A \rightsquigarrow a$ instead of $\Gamma \vdash e : A \rightsquigarrow a$. But for each old $\Gamma \vdash e : A \rightsquigarrow a$ rule, we must decide whether this preterm should be checked or synthesized, and if the latter, how to reconstruct the type.

The easiest case is the variable $(\text{var } i)$. Elaboration always takes place with respect to a context which records the types of each variable, so it is easy to synthesize the variable’s type. Notably, unlike in our previous variable rule, we do not need to check type equality!

$$\Gamma = \Gamma'.A_1.A_{i-1} \cdots A_0$$

$$\Gamma \vdash (\text{var } i) \Rightarrow A_i[p^{i+1}] \rightsquigarrow q[p^i]$$

Next, let us consider the rules for Π-types. According to Slogan 3.2.7, the introduction form (λe) should be checked. As in Section 3.1, to check $\Gamma \vdash (\lambda e) \iff C \rightsquigarrow \lambda(b)$ we must recursively check the body of the lambda, $\Gamma.A \vdash e \iff B \rightsquigarrow b$. But where do A and B come from? (Last time, we elaborated them from λe’s annotations.) We might imagine that we can recover A and B from the given type C,

$$\Gamma \vdash C \iff \Pi(A,B) \text{ type} \quad \Gamma.A \vdash e \iff B \rightsquigarrow b$$

$$\Gamma \vdash (\lambda e) \iff C \rightsquigarrow \lambda(b)$$

but this rule does not make sense as written; $\Gamma \vdash C \iff D$ type is an algorithm which takes two types and returns “yes” or “no”, and we cannot use it to invent the types A and B.

Worse yet, as foreshadowed in Remark 3.1.6, even if we can find A and B such that $\Gamma \vdash C \iff \Pi(A,B)$ type, there is no reason to expect this choice to be unique. That is, it could be that $\Gamma \vdash C \iff \Pi(A,B)$ type and $\Gamma \vdash C \iff \Pi(A’,B’)$ type both hold, but $A \neq A’$ (or alternatively, $A = A’$ and $B \neq B’$). If so, it is possible that e elaborates with respect to one of these choices but not the other, i.e., $\Gamma.A \vdash e \iff B \rightsquigarrow b$ succeeds but $\Gamma.A’ \vdash e \iff B’ \rightsquigarrow b$ fails; even if both succeed, they will necessarily elaborate two different terms! We must therefore consider these possibilities in order for elaboration to be well-defined.

Definition 3.2.8. A type theory has injective Π-types if $\Gamma \vdash \Pi(A,B) = \Pi(A’,B’)$ type implies $\Gamma \vdash A = A’$ type and $\Gamma.A \vdash B = B’$ type.

Definition 3.2.9. A type theory has invertible Π-types if it has injective Π-types and admits a computable function which, given $\Gamma \vdash C$ type, either produces the unique $\Gamma \vdash A$ type and $\Gamma.A \vdash B$ type for which $\Gamma \vdash C = \Pi(A,B)$ type, or determines that no such A,B exist.

Remark 3.2.10. That is, a type theory has injective Π-types if the type former $\Pi_\Gamma : (\sum_{A \in Ty(\Gamma)} Ty(\Gamma.A)) \to Ty(\Gamma)$ is injective. A type theory has invertible Π-types if the image of Π_Γ is decidable and Π_Γ admits a (computable) partial inverse $\Pi_\Gamma^{-1} : \text{Im}(\Pi_\Gamma) \to (\sum_{A \in Ty(\Gamma)} Ty(\Gamma.A))$. ✷
Particularly in light of Remark 3.2.10, one can easily extend the terminology of injectivity and invertibility to non-Π type formers.

Definition 3.2.11. If all the type constructors of a type theory are injective (resp., invertible), we say that the type theory has injective (resp., invertible) type constructors.

Having injective or invertible type constructors does not follow from normalization. (A type theory in which all empty types are equal may be normalizing but will not satisfy injectivity.) In practice, however, having invertible type constructors is almost always an immediate consequence of the proof of normalization. As we mentioned in Section 3.2.1, normalization proofs generally construct abstract syntax trees TyNf, TmNf of “β-short, η-long” types and terms for which equality is both syntactic as well as sound and complete for judgmental equality. Given a type $\Gamma \vdash C$ type, we invert its head constructor by computing $\text{nFTy}(C) \in \text{TyNf}$, checking its head constructor in TyNf, and projecting its arguments.

Injectivity and invertibility are very strong conditions. As we will see in the following set of exercises, function types in set theory are not injective, nor are Π-types injective in extensional type theory.

Exercise 3.5. Give an example of three sets X, Y, Z such that $X \neq Y$, but the set of functions $X \to Z$ is equal to the set of functions $Y \to Z$.

Exercise 3.6. Type theory admits a straightforward interpretation in which closed types are sets, and Exercise 3.5 shows that sets do not have injective Π-types. However, this does not imply that type theory lacks injective Π-types. Why not?

Exercise 3.7. Exhibit a context Γ and types A, B such that $\Gamma \vdash \Pi(A, B) = \Sigma(A, B)$ type. (Hint: you must use equality reflection and either large elimination or universes.)

Exercise 3.8. Exhibit a context Γ such that $\Gamma \vdash \Pi(\text{Unit}, \text{Void}) = \Pi(\text{Bool}, \text{Void})$ type. (Hint: you must use equality reflection and either large elimination or universes.)

Warning 3.2.12. In Section 3.4 we will conclude from Exercise 3.8 that extensional type theory does not have injective type constructors. We will proceed under the assumption that the theory we are elaborating has invertible type constructors, and in Chapter 4 we will see how to modify our type theory to substantiate this assumption.

Completing our elaborator The force of having invertible Π-types is to have an algorithm unPi which takes $\Gamma \vdash C$ type and returns the unique pair of types A, B for which $\Gamma \vdash C = \Pi(A, B)$ type, or raises an exception if this pair does not exist. Using unPi we can
repair our earlier attempt at checking \((\text{lam } e)\), and define the synthesis rule for \((\text{app } e_0 e_1)\):

\[
\text{unPi}(C) = (A, B) \quad \Gamma. A \vdash e \Leftarrow B \leadsto b
\]

\[
\Gamma \vdash (\text{lam } e) \Leftarrow C \leadsto \lambda(b)
\]

\[
\Gamma \vdash e_0 \Rightarrow C \leadsto f \quad \text{unPi}(C) = (A, B) \quad \Gamma \vdash e_1 \Leftarrow A \leadsto a
\]

\[
\Gamma \vdash (\text{app } e_0 e_1) \Rightarrow B[\text{id}.a] \leadsto \text{app}(f,a)
\]

This is the only elaboration rule for \((\text{lam } e)\); in particular, there is no synthesis rule for lambda, because we cannot elaborate \(e\) without knowing what type \(A\) to add to the context. On the other hand, to synthesize the type of \((\text{app } e_0 e_1)\), we synthesize the type of \(e_0\); if it is of the form \(\Pi(A, B)\), we then check that \(e_1\) has type \(A\) and then return \(B\), suitably instantiated. Putting these rules together, the reader might notice that we cannot type-check \((\text{app } (\text{lam } e_0) e_1)\), because this would require synthesizing \((\text{lam } e_0)\). In fact, bidirectional type-checking cannot type-check \(\beta\)-redexes in general for this reason.

For this reason, we have included a type-annotation preterm \((\text{chk } e \tau)\) which allows users to explicitly annotate a preterm with a pretype. The type of this preterm is trivially synthesizable: it is the result of elaborating \(\tau\)! In order to synthesize \((\text{chk } e \tau)\), we simply check \(e\) against \(\tau\), and if successful, return that type.

\[
\Gamma \vdash \tau \Leftarrow \text{type} \leadsto A \quad \Gamma \vdash e \Leftarrow A \leadsto a
\]

\[
\Gamma \vdash (\text{chk } e \tau) \Rightarrow A \leadsto a
\]

In particular, we can type-check the \(\beta\)-redex from before, as long as we annotate the lambda with its intended type: \((\text{app } (\text{chk } (\text{lam } e_0) (\Pi(\tau_0 \tau_1)) e_1))\).

The above rule allows us to treat a checkable term as synthesizable. The converse is much easier: to check the type of a synthesizable term, we simply compare the synthesized type to the expected type.

\[
\Gamma \vdash e \Rightarrow B \leadsto a \quad \Gamma \vdash A \Leftarrow B \text{ type}
\]

\[
\Gamma \vdash e \Leftarrow A \leadsto a
\]

As written, the above rule applies to any checking problem because its conclusion is unconstrained. In our elaboration algorithm, we should only apply this rule if no other rule matches. It is the final “catch-all” clause for situations where we have not one but two sources of type information: on the one hand, we can synthesize \(e\)’s type directly, and on the other hand, we are also given the type that \(e\) is supposed to have. Interestingly, this is the only rule where our bidirectional elaborator checks type equality \(\Gamma \vdash A \Leftarrow B \text{ type}\).

Exercise 3.9. For each of \((\text{pair } e_0 e_1), (\text{fst } e),\) and \((\text{snd } e)\), decide whether this preterm should be checked or synthesized, then write the algorithmic rule for elaborating it. (Hint: you must assume that \(\Sigma\)-types are invertible.)
3.3 **Metatheory for computing**

Our focus on type-checking has led us to normalization (Definition 3.2.4) and invertible type constructors (Definition 3.2.11) as metatheorems essential to the implementation of type theory. Notably, these metatheorems are stated with respect to types and terms in arbitrary contexts; in this section, we will discuss two more important metatheorems that concern only terms in the empty context Γ, namely consistency and canonicity. Neither of these properties is needed to implement a type-checker, but as we will see, they are essential to the applications of type theory to logic and programming languages respectively.

Definition 3.3.1. A type theory is **consistent** if there is no closed term $\Gamma \vdash a : \text{Void}$.

Consistency is the lowest bar that a type theory must pass in order to function as a logic. When we interpret types as logical propositions, Void corresponds to the false proposition. By the rules of Void (Section 2.5.1), the existence of a closed term $\Gamma \vdash a : \text{Void}$ (an assumption-free proof of false) implies that every closed type has at least one closed term $\Gamma \vdash \text{absurd}(a) : A$, or in other words, that every proposition has a proof. Thus Definition 3.3.1 corresponds to logical consistency in the traditional sense.

At this point we pause to sketch the model theory of type theory. In Chapter 2 we were careful to formulate the judgments of type theory as (indexed) sets, and the rules of type theory as (dependently-typed) operations between these sets and equations between these operations. As a result we can regard this data as a kind of generalized algebra signature, in the sense of Section 2.5.3; in particular, we obtain a general notion of “implementation” of, or algebra for, this signature—more commonly known as a model of type theory.

Definition 3.3.2. A **model of type theory** M consists of the following data:

1. a set Cx_M of M-contexts,
2. for each $\Delta, \Gamma \in \text{Cx}_M$, a set $\text{Sb}_M(\Delta, \Gamma)$ of M-substitutions from Δ to Γ,
3. for each $\Gamma \in \text{Cx}_M$, a set $\text{Ty}_M(\Gamma)$ of M-types in Γ, and
4. for each $\Gamma \in \text{Cx}_M$ and $A \in \text{Ty}_M(\Gamma)$, a set $\text{Tm}_M(\Gamma, A)$ of M-terms of A in Γ,
5. an empty M-context $1_M \in \text{Cx}_M$,
6. for each $\Gamma \in \text{Cx}_M$ and $A \in \text{Ty}_M(\Gamma)$, an M-context extension $\Gamma, \text{M}A \in \text{Cx}_M$,
7. for $\Gamma \in \text{Cx}_M, A \in \text{Ty}_M(\Gamma)$, and $B \in \text{Ty}_M(\Gamma, M\text{A})$, an M-Π type $\Pi_M(A, B) \in \text{Ty}_M(\Gamma)$,
8. and every other context, substitution, type, and term forming operation described in Appendix A, all subject to all the equations stated in Appendix A.
Definition 3.3.3. Given two models of type theory \(\mathcal{M}, \mathcal{N} \), a homomorphism of models of type theory \(f : \mathcal{M} \to \mathcal{N} \) consists of the following data:

1. a function \(\text{Cx}_f : \text{Cx}_\mathcal{M} \to \text{Cx}_\mathcal{N} \),
2. for each \(\Delta, \Gamma \in \text{Cx}_\mathcal{M} \), a function \(\text{Sb}_f(\Delta, \Gamma) : \text{Sb}_\mathcal{M}(\Delta, \Gamma) \to \text{Sb}_\mathcal{N}(\text{Cx}_f(\Delta), \text{Cx}_f(\Gamma)) \),
3. for each \(\Gamma \in \text{Cx}_\mathcal{M} \), a function \(\text{Ty}_f(\Gamma) : \text{Ty}_\mathcal{M}(\Gamma) \to \text{Ty}_\mathcal{N}(\text{Cx}_f(\Gamma)) \), and
4. for each \(\Gamma \in \text{Cx}_\mathcal{M} \) and \(A \in \text{Ty}_\mathcal{M}(\Gamma) \), a function \(\text{Tm}_f(\Gamma, A) : \text{Tm}_\mathcal{M}(\Gamma, A) \to \text{Tm}_\mathcal{N}(\text{Cx}_f(\Gamma), \text{Ty}_f(\Gamma)(A)) \),
5. such that \(\text{Cx}_f(1_\mathcal{M}) = 1_\mathcal{N} \),
6. and every other context, substitution, type, and term forming operation of \(\mathcal{M} \) is also sent to the corresponding operation of \(\mathcal{N} \) in a similar fashion.

Definition 3.3.4. The sets \(\text{Cx}, \text{Sb}(\Delta, \Gamma), \text{Ty}(\Gamma), \text{and} \text{Tm}(\Gamma, A) \), equipped with the context, substitution, type, and term forming operations described in Appendix A, tautologically form a model of type theory \(\mathcal{T} \) known as the syntactic model.

Theorem 3.3.5. The syntactic model \(\mathcal{T} \) is the initial model of type theory; that is, for any model of type theory \(\mathcal{M} \), there exists a unique homomorphism of models \(\mathcal{T} \to \mathcal{M} \).

The notions of model and homomorphism are quite complex, but they are mechanically derivable from the rules of type theory as presented in Appendix A, viewed as the signature of a quotient inductive-inductive type [KKA19] or generalized algebraic theory [Car86]. The initiality of the syntactic model expresses the fact that type theory is the “least” model of type theory, in the sense that it—by definition—satisfies all the rules of type theory and no others; this mirrors the sense in which initiality of \(\mathbb{N} \) with respect to \((1+−)\)-algebras expresses that the natural numbers are generated by \text{zero} and \text{suc}(−).

The model theory of type theory is an essential tool in the metatheorist’s toolbox; to prove any property of the syntactic model \(\mathcal{T} \), we simply produce a model of type theory \(\mathcal{M} \) such that Theorem 3.3.5 implies the property in question. In the case of consistency, it suffices to exhibit any non-trivial model of type theory whatsoever.

Theorem 3.3.6. Suppose there exists a model of type theory \(\mathcal{M} \) such that \(\text{Tm}_\mathcal{M}(1_\mathcal{M}, \text{Void}_\mathcal{M}) \) is empty; then type theory is consistent.

Proof. We must show that from the existence of \(\mathcal{M} \) and a term \(a \in \text{Tm}(1, \text{Void}) \) we can derive a contradiction. By Theorem 3.3.5, there is a homomorphism of models \(f : \mathcal{T} \to \mathcal{M}, \) and in particular a function \(\text{Tm}_f(1, \text{Void}) : \text{Tm}(1, \text{Void}) \to \text{Tm}_\mathcal{M}(1_\mathcal{M}, \text{Void}_\mathcal{M}) \); applying this function to \(a \) produces an element of \(\text{Tm}_\mathcal{M}(1_\mathcal{M}, \text{Void}_\mathcal{M}) \), an empty set. \(\square \)
Constructing a model of type theory is beyond the scope of these lecture notes, but we assert without proof that there is a “standard” set-theoretic model S of extensional type theory in which contexts are sets, types are families of sets indexed by their context, and each type former is interpreted as the corresponding construction on indexed sets.\(^3\) As a trivial corollary of Theorem 3.3.6, we obtain the consistency of extensional type theory.

Theorem 3.3.7 (Martin-Löf [ML84b]). **Extensional type theory is consistent.**

Note that while an inconsistent type theory is useless as a logic, it may still be useful for programming; indeed, many modern functional programming languages include some limited forms of dependent types despite being inconsistent.

Exercise 3.10. Consider an unrestricted fixed-point operator $\text{fix} : (A \to A) \to A$, i.e.,

$$
\frac{\Gamma \vdash A \text{ type} \quad \Gamma.A \vdash a : A[p]}{\Gamma \vdash \text{fix}(a) : A}
$$

Show that adding such a rule results in an inconsistent type theory.

In fact, our final metatheorem is directly connected to the interpretation of type theory as a programming language, although the connection may not be immediately apparent.

Definition 3.3.8. A type theory enjoys **canonicity** if for every closed $1 \vdash b : \text{Bool}$ either $1 \vdash b = \text{true} : \text{Bool}$ or $1 \vdash b = \text{false} : \text{Bool}$, but not both.

Remark 3.3.9. Another common statement of canonicity is that for every closed $1 \vdash n : \text{Nat}$ either $1 \vdash n = \text{zero} : \text{Nat}$ or $1 \vdash n = \text{suc}(m) : \text{Nat}$ where $1 \vdash m : \text{Nat}$. This statement is not equivalent to Definition 3.3.8 in general, but in practice one only considers type theories that satisfy both or neither, and proofs of one also imply the other *en passant.*

Remark 3.3.10. Consistency states that $\text{Tm}(1, \text{Void}) \cong \emptyset$, whereas canonicity states that $\text{Tm}(1, \text{Bool}) \cong \{\star, \star'\}$ and $\text{Tm}(1, \text{Nat}) \cong \mathbb{N}$. As discussed at length in Section 2.5, none of these properties hold in Γ because variables can produce noncanonical terms at any type; however, there are indeed no noncanonical closed terms of type Void, Bool, or Nat.

Theorem 3.3.11. **Extensional type theory enjoys canonicity.**

Frustratingly, although Theorem 3.3.11 was certainly known to researchers in the 1970s and 1980s, the authors are unable to locate a precise reference from this time period. For a modern proof of Theorem 3.3.11, we refer the reader to Sterling [Ste21, Chapter 4].

\(^3\)We refer the reader to Castellan, Clairambault, and Dybjer [CCD21] and Hofmann [Hof97] for tutorials on the categorical semantics of type theory.
Like consistency—and normalization and invertibility of type constructors—canonicity can be established by constructing a model of type theory, although the proofs of the latter three metatheorems are considerably more involved than the proof of consistency. Canonicity models interpret the contexts, substitutions, types, and terms of type theory as pairs of that syntactic object along with additional data which explains how that object may be placed in canonical form [Fre78; LS88; MS93; Cro94; Fio02; AK16; Coq19; KHS19]. Such models can be seen as displayed models of type theory over the syntactic model, and are called gluing models in the categorical literature. The interested reader may consult Lambek and Scott [LS88] for information on this perspective as it applies to higher-order logic, and Crole [Cro94] for an application to simple type theory.

Exercise 3.11. In light of Remark 3.3.10, we might imagine that canonicity follows from the existence of a model of type theory M for which $\text{TM}_M(1_M, \text{Bool}_M)$ has exactly two elements. This is not the case; why? (Why can’t we mimic the proof of Theorem 3.3.6?)

The force of canonicity is that it implies the existence of an “evaluation” algorithm that, given a closed boolean $1 \vdash a : \text{Bool}$, reports whether a is equal to true or to false. There are two ways to obtain such an algorithm; the first is to prove canonicity in a constructive metatheory, so that the proof itself constitutes such an algorithm. The second is to appeal to Markov’s principle: because derivation trees are recursively enumerable, a classical proof of canonicity implies that the naïve enumeration algorithm will terminate.

In a direct sense, such an algorithm is indeed an interpreter for closed terms of type theory. But canonicity also produces a much richer notion of computational adequacy for type theory; giving this theory its due weight would take us too far afield, but we will briefly sketch the highlights. By results in categorical realizability [Jac99; Oos08], essentially every model of computation gives rise to a highly structured and well-behaved category known as a realizability topos; these categories support models of dependent type theory in which terms of type Bool are (equivalence classes of) boolean computations in some idealized model of computation. For instance, in the effective topos [Hyl82], closed terms of type Bool are equivalence classes of Turing machines modulo Kleene equivalence (i.e., two machines are equivalent if they coterminate with the same value).

Because models of type theory in realizability topoi interpret terms in concrete (albeit theoretical) notions of computation such as Turing machines or combinator calculi, they can be regarded abstractly as compilers for type theory. Alternatively, they serve to justify the program extraction mechanisms found in proof assistants such as Coq and Agda, which associate to each term an OCaml or Haskell program whose observable behavior is compatible with the definitional equality of type theory.

From this perspective, canonicity guarantees that definitional equality fully constrains the observable behaviors of extracted programs: for any closed boolean $1 \vdash b : \text{Bool}$, every possible extract for b must evaluate to (the extract of) either true or false, as predetermined
by whether \(b = \text{true} \) or \(b = \text{false} \). Note that it is still possible for two different extracts of \(b \) to have very different execution traces; canonicity only constrains their observable behavior, considered modulo some appropriate notion of observational equivalence.

Remark 3.3.12. The above discussion may clarify why canonicity is harder to prove than consistency: consistency implies the *existence* of a non-trivial model of type theory, whereas canonicity places a constraint on *all* models of type theory.

We emphasize once more that, unlike normalization and invertibility of type constructors, neither consistency nor canonicity is required to implement a bidirectional type-checker for type theory. However, it seems safe to assume that anybody writing such a type-checker is interested in type theory’s applications to logic or programming or both, in which case consistency and canonicity are relevant properties. In addition, failures of canonicity often indicate a paucity of definitional equalities that can have a negative effect on the usability of a type theory even as a logic.

3.4 Equality in extensional type theory is undecidable

In this section we present two proofs that term equality in extensional type theory is undecidable, and hence extensional type theory does not admit a normalization structure by Exercise 3.3. The first proof, due to Castellan, Clairambault, and Dybjer [CCD17], is conceptually straightforward but requires an appeal to the set-theoretic model of extensional type theory. The second proof, due to Hofmann [Hof95a], requires only the assumption that extensional type theory is consistent (Theorem 3.3.7), but is more complex, requiring the machinery of recursively inseparable sets. Both of these ideas arise with some frequency in the metatheory of type theory, so we cover both proofs in some detail.

3.4.1 The first proof: deciding equality of SK terms

The strategy of our first proof is to exhibit a context \(\Gamma_{SK} \) and an encoding \(\llbracket \cdot \rrbracket \) of terms of the SK combinator calculus into type-theoretic terms in context \(\Gamma_{SK} \), such that two SK terms are convertible if and only if their encodings are judgmentally equal. Because convertibility of SK terms is undecidable, judgmental equality is as well.

Recall that the SK combinator calculus is an extremely minimal Turing-complete language generated by application and two combinators named \(S \) and \(K \):

\[
\text{Combinators } \ x := \ S \mid K \mid x \ x
\]

Combinators compute according to the following rewriting system \(\leftrightarrow \). We say that two combinators are *convertible*, written \(x \sim y \), if they are related by the reflexive, symmetric,
Equality in extensional type theory is undecidable

and transitive closure of ↦→.

\[S \ x \ y \ z \mapsto (x \ z) \ (y \ z) \]
\[K \ x \ y \mapsto x \]
\[x \mapsto x' \]
\[y \mapsto y' \]
\[x \ y \mapsto x \ y' \]

We define the following context, written in Agda-style notation:

\[\Gamma_{SK} := 1, \]
\[A : U, \]
\[_ \bullet _ : A \to A \to A, \]
\[s : A, \]
\[k : A, \]
\[e_1 : (a \ b : A) \to \text{Eq}(A, (k \bullet a) \bullet b, a), \]
\[e_2 : (a \ b \ c : A) \to \text{Eq}(A, ((s \bullet a) \bullet b) \bullet c, (a \bullet c) \bullet (b \bullet c)) \]

Writing \(\Lambda \) for the set of SK combinator terms, we can straightforwardly define a function \(\llbracket - \rrbracket : \Lambda \to \text{Tm}(\Gamma_{SK}, A) \) by sending application, \(S \), and \(K \) to \(\bullet \), \(s \), and \(k \) respectively, and this function respects convertibility of combinators.

Lemma 3.4.1. There is a function \(\llbracket - \rrbracket : \Lambda \to \text{Tm}(\Gamma_{SK}, A) \) such that \(x \sim y \implies \llbracket x \rrbracket = \llbracket y \rrbracket \).

Exercise 3.12. The context \(\Gamma_{SK} \) only includes two of the four generating rules of \(\mapsto \mapsto \). Why haven’t we included the other two, or reflexivity, symmetry, or transitivity?

Lemma 3.4.1 implies that term equality is sound for an undecidable problem, but this does not yet imply that term equality is undecidable; it is possible, for example, that all terms in the image of \(\llbracket - \rrbracket \) are equal. To complete our proof, we must observe that term equality is also complete for convertibility; we argue this by using the set-theoretic model of type theory to recover the convertibility class of \(x \) from the term \(\llbracket x \rrbracket \).

Theorem 3.4.2. If \(\llbracket x \rrbracket = \llbracket y \rrbracket \) then \(x \sim y \).

Proof. Let us write \(f : \mathcal{T} \to \mathcal{S} \) for the homomorphism from the syntactic model \(\mathcal{T} \) to the set-theoretic model \(\mathcal{S} \). This homomorphism interprets syntactic contexts \(\Gamma \) as sets \(\text{Cx}_f(\Gamma) \), syntactic types \(A \in \text{Ty}(\Gamma) \) as \(\text{Cx}_f(\Gamma) \)-indexed families of sets \((\text{Ty}_f(\Gamma)(A))_{\gamma \in \text{Cx}_f(\Gamma)} \), syntactic terms \(a \in \text{Tm}(\Gamma, A) \) as dependent functions \(\text{Tm}_f(\Gamma, A)(a) : (y : \text{Cx}_f(\Gamma)) \to (\text{Ty}_f(\Gamma)(A))_{\gamma} \), and syntactic context extensions \(\Gamma.A \) as indexed coproducts \(\sum_{\gamma \in \text{Cx}_f(\Gamma)} (\text{Ty}_f(\Gamma)(A))_{\gamma} \).

Unwinding definitions, elements of \(\text{Cx}_f(\Gamma_{SK}) \) are “SK-algebras," or dependent tuples of a set along with application, \(S \), and \(K \) operations satisfying the convertibility axioms. Combinators modulo convertibility form such an algebra in the evident way; writing \([x] \) for the convertibility equivalence class of \(x \in \Lambda \), we have

\[y_{SK} := (A/\sim, (\lambda [x] [y] \to [x \ y]), [s], [k], \#, \#) \in \text{Cx}_f(\Gamma_{SK}) \]
Equality in extensional type theory is undecidable

Homomorphisms of models respect equality, so from \(\repl{x}{S} = \repl{y}{S} \in \tm{\Gamma_{SK}}{A} \) we see that these terms are interpreted in \(S\) as equal dependent functions \(\((A, \ldots) : Cx_f(\Gamma_{SK})\) \rightarrow A\), and in particular, applying these functions to \(y_{SK}\) produces two equal elements of \(\Lambda/\sim\). We can prove by induction on combinators that for any \(z \in \Lambda\) this interpretation recovers \(z\) up to convertibility, \(\tm{\Gamma_{SK}}{A}(\repl{z}{S}) = [z]\), and thus \([x] = [y]\) as required. □

Theorem 3.4.3. Equality of terms \(a, b \in \tm{\Gamma_{SK}}{A}\) is undecidable.

Proof. Suppose it were decidable; then for any \(x, y \in \Lambda\) we can decide the equality of \(\repl{x}{S}, \repl{y}{S} \in \tm{\Gamma_{SK}}{A}\). By Lemma 3.4.1 and Theorem 3.4.2, \(\repl{x}{S} = \repl{y}{S}\) if and only if \(x \sim y\), so we can in turn decide the convertibility of SK-combinators, which is impossible. □

By unfolding a few more details of the set-theoretic model of type theory, we can also see that extensional type theory also fails to have injective type constructors.

Theorem 3.4.4. Extensional type theory does not have injective \(\Pi\)-types.

Proof. Using equality reflection and universes,

1.\(\text{Eq}(U, \pi(\text{unit}, \text{void}), \pi(\text{bool}, \text{void})) \vdash \Pi(\text{Unit}, \text{Void}) = \Pi(\text{Bool}, \text{Void})\) type

If extensional type theory had injective \(\Pi\)-types, this would imply:

1.\(\text{Eq}(U, \pi(\text{unit}, \text{void}), \pi(\text{bool}, \text{void})) \vdash \text{Unit} = \text{Bool}\) type

This implies in particular that \(\text{true}\) and \(\text{false}\) are elements of \(\text{Unit}\) in this context. By the \(\eta\) rule for \(\text{Unit}\) this implies that \(\text{true} = \text{false}\) in this context, and hence by Theorem 2.6.3,

1.\(\text{Eq}(U, \pi(\text{unit}, \text{void}), \pi(\text{bool}, \text{void})) \vdash \text{tt} : \text{Void}\)

Let us abbreviate \(E \equiv \text{Eq}(U, \pi(\text{unit}, \text{void}), \pi(\text{bool}, \text{void}))\). The set-theoretic interpretation \(f : \tau \rightarrow S\) sends the above term to a dependent function \(\tm{\Gamma_{SK}}{1.E}(\text{Void})(\text{tt}) : (e : Cx_f(1.E)) \rightarrow (\tm{\Gamma_{SK}}{1.E}(\text{Void}))_e\). The domain of this function is inhabited exactly when \(\text{Unit} \rightarrow \text{Void}\) and \(\text{Bool} \rightarrow \text{Void}\) are interpreted as equal sets, which is the case because both are empty. Applying the function to that inhabitant, we obtain an element of the set \(\tm{\Gamma_{SK}}{1.E}(\text{Void}) = 0\), which is a contradiction. □

3.4.2 The second proof: separating classes of Turing machines

In the first proof we reduce an undecidable problem to the judgmental equality of open terms, but establishing the completeness of this reduction requires appealing to the set-theoretic model of type theory. Our second proof relies only on the consistency of extensional type theory, showing that deciding judgmental equality of closed functions would allow us to algorithmically separate two recursively inseparable subsets of \(\mathbb{N}\).
Notation 3.4.5. Fix a standard, effective Gödel encoding of Turing machines, in which the standard operations on Turing machines are definable by primitive recursion. We write ϕ_n for the partial function induced by the Turing machine encoded by n.

Theorem 3.4.6 (Rosser [Ros36], Trahtenbrot [Tra53], and Kleene [Kle50]). Consider the following two subsets of the natural numbers:

$$A = \{ n \in \mathbb{N} \mid \phi_n(n) \text{ terminates with result } 0 \}$$
$$B = \{ n \in \mathbb{N} \mid \phi_n(n) \text{ terminates with result } 1 \}$$

There is no Turing machine which terminates on all inputs and separates A from B.

Proof. Suppose we are given a Turing machine e which always terminates with value 0 or 1, such that $e(n) = 0$ when $n \in A$ and $e(n) = 1$ when $n \in B$. Consider the algorithm

$$F(n) := \begin{cases}
\text{halt}(1) & e(n) = 0 \\
\text{halt}(0) & e(n) = 1
\end{cases}$$

Because e terminates on all inputs, so does F. Note that $e(F(n)) \neq e(n)$ by construction: if $e(F(n)) = 1$ then $e(n) = 0$ and vice versa. By the second recursion theorem, there exists a Turing machine f realizing F applied to its own Gödel number. However, $e(f)$ can be neither 0 nor 1 as $e(f) = e(F(f))$ by definition, but $e(f) \neq e(F(f))$. □

We will show that the existence of a normalization structure for extensional type theory contradicts the above theorem. First, we observe that we can write a “small-step interpreter” for Turing machines in type theory. Let us write TM and $State$ for \mathbb{N} to indicate that we are interpreting a natural number as a Turing machine or Turing machine state respectively, as encoded by ϕ. Then we can define the following functions in type theory by primitive recursion:

- $\text{init} : TM \to \mathbb{N} \to State$
- $\text{hasHalted} : State \to (b : \text{Bool}) \times (\text{if} (\mathbb{N}, \text{Unit}, b)$
- $\text{step} : State \to State$

Using these operations, we can run a Turing machine for an arbitrary but finite number of steps on any input, determine whether it has halted, and if so, extract the result. We can therefore define the following function:

-- returns true iff Turing machine n halts on n with result 1 in fewer than t steps
$\text{returnOne} : TM \to \mathbb{N} \to \text{Bool}$
returnOne $n \ t = \text{go} (\text{init} \ n \ n) \ t$
where
\[
\begin{align*}
go &: \text{State} \to \text{Nat} \to \text{Bool} \\
go \, s \, \text{zero} &= \text{false} \\
go \, s \, (\text{suc} \, n) = \text{if} \ \text{fst} \, (\text{hasHalted} \, s) \ \text{then} \ \text{isOne} \, (\text{snd} \, (\text{hasHalted} \, s)) \ \text{else} \ \text{go} \, (\text{step} \, s) \, n
\end{align*}
\]

Let \(H_0 \in \mathbb{N} \) be the encoding of a Turing machine which immediately halts with result 0 regardless of its input. Then, writing \(\bar{m} \) for the element of \(\text{Tm}(1, \text{Nat}) \) corresponding to \(m \in \mathbb{N} \), we will show that \(\text{returnOne}(\bar{n}) \), \(\text{returnOne}(\bar{H}_0) \in \text{Tm}(1, \Pi(\text{Nat}, \text{Bool})) \) are equal (resp., unequal) when \(n \) is a Turing machine which halts with result 0 (resp., 1).

Lemma 3.4.7. If \(n \in \mathbb{N} \) is such that \(\phi_n(n) = 0 \), then

1. \(\vdash \text{returnOne}(\bar{n}) = \text{returnOne}(\bar{H}_0) : \Pi(\text{Nat}, \text{Bool}) \).

Proof. By the \(\eta \) rule for \(\Pi \)-types, it suffices to show

1. \(t : \text{Nat} \vdash \text{returnOne}(\bar{n}) \, t = \text{returnOne}(\bar{H}_0) \, t : \text{Bool} \)

By equality reflection, this follows from:

1. \(t : \text{Nat} \vdash P_t : \text{Eq}(\text{Bool}, \text{returnOne}(\bar{n}) \, t, \text{returnOne}(\bar{H}_0) \, t) \)

In Exercise 3.13 the reader will establish this by \(\text{Nat} \) elimination on \(t \). Note that by \(\phi_n(n) = 0 \), there exists some number \(\ell \) such that the Turing machine encoded by \(n \) halts in \(t \) steps on \(n \) with result 0. Thus we must in essence construct the following terms:

1. \(t : \text{Nat} \vdash P_0 : \text{Eq}(\text{Bool}, \text{returnOne}(\bar{n}) \, \text{zero}, \text{returnOne}(\bar{H}_0) \, \text{zero}) \)

1. \(t : \text{Nat} \vdash P_1 : \text{Eq}(\text{Bool}, \text{returnOne}(\bar{n}) \, (\text{suc} \, \text{zero}), \text{returnOne}(\bar{H}_0) \, (\text{suc} \, \text{zero})) \)

\[\vdots \]

1. \(t : \text{Nat} \vdash P_{\ell+1} : \text{Eq}(\text{Bool}, \text{returnOne}(\bar{n}) \, (\text{suc}^{\ell+1} \, t), \text{returnOne}(\bar{H}_0) \, (\text{suc}^{\ell+1} \, t)) \)

In the above, we write \(\text{suc}^{\ell+1}(t) \) for the \((\ell + 1)\)-fold application of \(\text{suc}(−) \) to \(t \). When \(i \leq \ell \) it is straightforward to construct \(P_i \), as both sides equal \text{false}. For \(P_{\ell+1} \), we note that \(\text{returnOne}(m \, (\text{suc}^k \, t)) = \text{false} \) when \(m \) encodes a machine which halts in fewer than \(k \) steps with a result other than 1, completing the proof. \(\square \)

Exercise 3.13. Fill in the gap in the above argument using the elimination principle for \(\text{Nat} \).

The remaining condition is easier to show.
Lemma 3.4.8. If \(n \in \mathbb{N} \) is such that \(\phi_n(n) = 1 \), then if the equality
\[
1 \vdash \text{returnOne } \bar{n} = \text{returnOne } H_0 : \Pi(\text{Nat}, \text{Bool})
\]
holds, extensional type theory is inconsistent.

Proof. Because \(\phi_n(n) \) terminates, there is some number of steps \(t \) for which \(\text{returnOne } \bar{n} t = \text{true} \). On the other hand, \(\text{returnOne } H_0 t = \text{false} \) for every \(t \), so by applying both of these equal functions to \(t \) we conclude that \(1 \vdash \text{true} = \text{false} : \text{Bool} \). By Theorem 2.6.3 this implies extensional type theory is inconsistent. \(\square \)

Theorem 3.4.9. The judgmental equality \(1 \vdash \text{returnOne } \bar{n} = \text{returnOne } H_0 : \Pi(\text{Nat}, \text{Bool}) \) cannot be decidable for all \(n \in \mathbb{N} \).

Proof. By Lemma 3.4.7, this equation holds if \(\phi_n(n) = 0 \); by Lemma 3.4.8 and Theorem 3.3.7, it does not hold if \(\phi_n(n) = 1 \). If this equation were decidable, we would be able to define a terminating algorithm which separates the subsets of \(n \in \mathbb{N} \) for which \(\phi_n(n) = 0 \) and \(\phi_n(n) = 1 \), contradicting Theorem 3.4.6. \(\square \)

3.5 A case study in elaboration: definitions

To round out our discussion of elaboration, we sketch how to extend our concrete syntax and type-checker to account for definitions, a key part of any proof assistant. The input to a proof assistant is typically not a single term \(e : \tau \) but a sequence of definitions

\[
def_1 : \tau_1 = e_1 \\
def_2 : \tau_2 = e_2 \\
\vdots \\
def_n : \tau_n = e_n
\]

where every \(e_j \) and \(\tau_j \) can mention \(\text{def}_i \) for \(i < j \).

To account for this cross-definition dependency, we might imagine elaborating each definition one at a time, adding a new (nameless) variable to the context for each successful definition. Such a strategy might proceed as follows:

1. elaborate \(1 \vdash \tau_1 \iff \text{type } \leadsto A_1 \) and \(1 \vdash e_1 \iff A_1 \leadsto a_1 \); if successful,
2. elaborate \(1.A_1 \vdash \tau_2 \iff \text{type } \leadsto A_2 \) and \(1.A_1 \vdash e_2 \iff A_2 \leadsto a_2 \); if successful,
3. continue elaborating each \(\tau_i \) and \(e_i \) in context \(1.A_1 \ldots A_{i-1} \) as above.

Unfortunately this algorithm is too naive: if we treat \(\text{def}_1 \) as a variable of type \(A_1 \), the type-checker will not have access to the definition \(\text{def}_1 = a_1 \). Consider:
A case study in elaboration: definitions

const : Nat
const = 2

proof : const ≡ 2
proof = refl

Here const will successfully elaborate in the empty context to \(\text{suc(suc(zero))} : \text{Nat} \), but the elaboration problem for proof will be \(1.\text{Nat} ⊢ \text{refl} \iff \text{q} \equiv \text{suc(suc(zero))} \leadsto ? \), which will fail: an arbitrary variable of type \(\text{Nat} \) is surely not equal to 2!

Remark 3.5.1. For readers familiar with functional programming, we summarize the above discussion as “let is no longer \(\lambda \),” in reference to the celebrated encoding of \((\text{let } x = a \text{ in } b)\) as \((\lambda x. b) a\) often adopted in Lisp-family languages. This slogan is not unique to dependent type theory; users of ML-family languages may already be familiar with this phenomenon in light of the Hindley-Milner approach to typing \(\text{let} \).

To solve this problem, we must somehow instrument our elaborator with the ability to remember not only the type of a definition but its definiens as well. There are several ways to accomplish this; one possibility is to add a new form of definitional context extension “\(\Gamma. (\text{q} := a : A) \)” in which the variable is judgmentally equal to a given term \(a \) [McB99; SP94]. We opt for an indirect but less invasive encoding of this idea: taking inspiration from Section 2.6.2, wherein we encoded “extending the context by a type variable” by adding a new type former, singleton types, whose terms are elements of \(A \) judgmentally equal to \(a \).

Singleton types The singleton type of \(\Gamma ⊢ a : A \), written \(\Gamma ⊢ \text{Sing}(A, a) \) type, is a type whose elements are in bijection with the elements of \(\text{Tm}(\Gamma, A) \) that are equal to \(a \), namely the singleton subset \(\{ a \} \) [Asp95; SH06]. That is, naturally in \(\Gamma \),

\[
\text{Sing}_{\Gamma} : (\sum_{A \in \text{Ty}(\Gamma)} \text{Tm}(\Gamma, A)) \to \text{Ty}(\Gamma)
\]

\[
t_{\Gamma, A, a} : \text{Tm}(\Gamma, \text{Sing}(A, a)) \cong \{ b \in \text{Tm}(\Gamma, A) \mid b = a \}
\]

In inference rules,

\[
\frac{\Gamma ⊢ a : A}{\Gamma ⊢ \text{Sing}(A, a) \text{ type}} \quad \frac{\Gamma ⊢ a : A}{\Gamma ⊢ \text{in}(a) : \text{Sing}(A, a)} \quad \frac{\Gamma ⊢ s : \text{Sing}(A, a)}{\Gamma ⊢ \text{out}(s) : A}
\]

\[
\frac{\Gamma ⊢ s : \text{Sing}(A, a)}{\Gamma ⊢ \text{out}(s) = a : A} \quad \frac{\Gamma ⊢ a : A \quad \Gamma ⊢ s : \text{Sing}(A, a)}{\Gamma ⊢ \text{in}(\text{out}(s)) = s : \text{Sing}(A, a)}
\]

This definition may seem rather odd, but note that a variable of type \(\text{Sing}(A, a) \) determines a term \(\text{out}(q) : A[p] \) that is judgmentally equal to \(a[p] \), thereby allowing us to extend contexts by “defined variables.”
Remark 3.5.2. In extensional type theory, we can define singleton types as pairs of an element of A and a proof that this element equals a, i.e., $\text{Sing}(A, a) := \Sigma(A, \text{Eq}(A[p], q, a[p]))$ with $\text{in}(a) := \text{pair}(a, \text{refl})$ and $\text{out}(s) := \text{fst}(s)$. This encoding makes essential use of equality reflection, but singleton types can also be added as a primitive type former to type theories without equality reflection, without disrupting normalization. □

Extending our elaborator We begin by introducing concrete syntax for lists of $e : \tau$ pairs, which we call *declarations*:

\[
\text{Declarations} \quad ds := (\text{decls} (e_1 \, \tau_1) \ldots) \\
\text{Pretypes} \quad \tau := \cdots \\
\text{Preterms} \quad e := \cdots
\]

We extend our bidirectional elaborator as follows. First, we parameterize all our judgments by a second context Θ that keeps track of which variables in Γ are ordinary “local” variables (introduced by types/terms such as Π or λ), and which variables refer to declarations. We write Θ as a list $1.\text{decl.decl.local.} \ldots$ with the same length as $\Gamma = 1.A_1.A_2.A_3. \ldots$, to indicate in this case that only the variable of type A_3 is local. We will replace the variable rule shortly; the remaining elaboration rules do not interact with Θ except to extend Θ by local whenever a new variable is added to the context Γ.

Secondly, we introduce a new algorithmic judgment $\Gamma; \Theta \vdash ds \text{ ok}$ which type-checks a list of declarations ds by elaborating the first declaration $(e_1 \, \tau_1)$ in context $\Gamma; \Theta$ into the term $a_1 : A_1$, and then elaborating the remaining declarations in context $\Gamma.\text{Sing}(A_1, a_1); \Theta.\text{decl}$.

\[
\begin{align*}
\Gamma; \Theta \vdash \tau_1 \Leftarrow & \text{type} \rightsquigarrow A_1 \quad \Gamma; \Theta \vdash e_1 \Leftarrow A_1 \rightsquigarrow a_1 \\
\Gamma.\text{Sing}(A_1, a_1); \Theta.\text{decl} \vdash & (\text{decls} (e_2 \, \tau_2) \ldots) \text{ ok}
\end{align*}
\]

\[
\Gamma; \Theta \vdash (\text{decls}) \text{ ok} \quad \frac{\Gamma; \Theta \vdash (\text{decls} (e_1 \, \tau_1) (e_2 \, \tau_2) \ldots) \text{ ok}}{\Gamma; \Theta \vdash (\text{decls}) \text{ ok}}
\]

Finally, we must edit our variable rule to account for whether a variable is an ordinary local variable or refers to an earlier declaration; in the latter case, we must insert an extra $\text{out}(\cdot)$ around the variable so it has the correct type A rather than $\text{Sing}(A, a)$.

\[
\begin{align*}
\Gamma = \Gamma'.A_i.A_{i-1}. \cdots .A_0 \\
\Theta = \Theta'.\text{local}.x_{i-1}. \cdots .x_0
\end{align*}
\]

\[
\frac{\Gamma; \Theta \vdash (\text{var} \, i) \Rightarrow A_i[p^{i+1}] \rightsquigarrow q[p^i]}{\Gamma; \Theta \vdash (\text{var} \, i) \Rightarrow A[p^{i+1}] \rightsquigarrow \text{out}(q[p^i])}
\]

In the second rule above, the rules of singleton types ensure that the elaborated term $\text{out}(q[p^i])$ is judgmentally equal to $a[p^{i+1}]$, where a is the previously-elaborated definiens.
of the corresponding declaration. Putting everything together, to check an input file
\((\text{decls (} e_1 \, \tau_1 \, e_2 \, \tau_2 \, \ldots))\) we attempt to derive \(1; 1 \vdash (\text{decls (} e_1 \, \tau_1 \, e_2 \, \tau_2 \, \ldots))\) ok.

To sum up, we emphasize once again that although these lecture notes focus on the
\textit{core calculi} of proof assistants, it is impossible to have a satisfactory understanding of
this topic without paying heed to their \textit{surface languages} as well; often, the best way to
understand a new surface language feature is to add a new feature in the core language
to accommodate it. Ideally, our alterations to the core language will be minor but will
significantly simplify elaboration.

\textbf{Further reading}

There are a number of excellent pedagogical resources on type-checkers for dependent
type theory that we encourage our implementation-inclined readers to explore. Coquand
[Coq96] describes algorithms for bidirectional type-checking and deciding equality along
with a proof sketch of correctness. Löh, McBride, and Swierstra [LMS10] include additional
exposition and a complete Haskell implementation that extends a type-checker for a simply-
typed calculus that is also described in the paper. The \textit{Mini-TT} tutorial by Coquand et al.
[Coq+09] includes a Haskell implementation of a type theory which is unsound (allowing
arbitrary fixed-points) but supports data type declarations and basic pattern matching.

In addition to the aforementioned papers, there are numerous online resources, including
a tutorial by Christiansen [Chr19] on the \textit{normalization by evaluation} algorithm
for deciding equality, and the \textit{elaboration-zoo} of Kovács [Kov] which is an excellent
resource for more advanced implementation techniques.
Intensional type theory

In Chapter 3 we outlined several key properties of type theories: consistency states that type theory can be viewed as a logic, canonicity states that type theory can be viewed as a programming language, normalization allows us to define a type-checking algorithm, and invertibility of type constructors improves that algorithm. Unfortunately, we also saw in Section 3.4 that extensional type theory does not satisfy the latter two properties due to the equality reflection rule of its Eq-types (Section 2.4.4).

If we remove Eq-types from extensional type theory then it will satisfy all four metatheorems above, but it becomes unusably weak. A foreseeable consequence is that type theory would no longer have an equality proposition; a more subtle issue is that many equations stop holding altogether, judgmentally or otherwise. This is because inductive types are characterized by maps into other types only, so what properties they enjoy depends on what types exist. Indeed we have already seen that Eq-types allow us to prove their \(\eta \)-rules and universes allow us to prove disjointness of their constructors; without Eq-types their \(\eta \)-rules will no longer be provable, and disjointness cannot even be stated!

We are left asking: how should we internalize judgmental equality as a type, if not Eq? This question has preoccupied type theorists for decades and—fortunately for their continued employment—has no clear-cut answer. We will find that deleting equality reflection causes equality types to become underconstrained, and their most canonical replacement, intensional identity types, lack several important reasoning principles. The decades-long quest for a suitable identity type has resulted in many subtle variations as well as some major innovations in type theory, as we will explore in Chapter 5. But first we turn our attention to intensional type theory, or type theory with intensional identity types, the system on which most type-theoretic proof assistants are based.

Notation 4.0.1. We adopt the common acronyms ETT and ITT for extensional type theory and intensional type theory respectively.

In this chapter In Section 4.1 we explore the basic properties that any propositional equality connective must satisfy, and show that a small set of primitive operations suffice to recover many of the positive consequences of equality reflection while allowing for normalization. In Section 4.2 we formally define the intensional identity type according to the framework of inductive types outlined in Section 2.5, and show that this type precisely satisfies the properties of equality outlined above. In Section 4.3 we compare extensional and intensional identity types, noting that the latter lacks several important principles, but by adding two axioms to it we can recover all the reasoning principles of extensional type theory in a precise sense. Finally, in Section 4.4, we summarize a line of research on
observational type theory [AMS07], which attempts to improve intensional identity types without sacrificing normalization.

Goals of the chapter By the end of this chapter, you will be able to:

- Define subst and contractibility of singletons, use them to prove other properties of equality, and implement them using intensional identity types.
- Explain how intensional identity types fit into the framework of internalizing judgmental structure that we developed in Chapter 2.
- Discuss the relationship and tradeoffs between intensional and extensional equality.
- Informally describe observational type theory, and explain how it addresses the shortcomings of intensional and extensional type theory.

4.1 *Programming with propositional equality*

In this section we will informally consider what properties should be satisfied by any “type of equations.” Recall from Section 1.1.3 that such a propositional (or typal, or internal) notion of equality is important for proving equations between types that type-checkers cannot handle automatically, and that such type equations allow us to cast (coerce) between the types involved. In Section 3.1 we discussed how type-checkers automatically handle definitional (judgmental) type equalities; one can therefore think of propositional type equalities as “verified casts” that users manually insert into terms.

Our starting point will be the type theory described in Chapter 2 but without Eq-types. Instead we will add an identity type \(\text{Id} \)\(^1\) with the same formation (and universe introduction) rule but no other properties yet:

\[
\begin{align*}
\Gamma \vdash a : A & \quad \Gamma \vdash b : A \\
\Gamma \vdash \text{Id}(A, a, b) \text{ type} & \\
\Gamma \vdash a : U_i & \quad \Gamma \vdash x : \text{El}(a) & \quad \Gamma \vdash y : \text{El}(a) \\
\Gamma \vdash \text{id}(a, x, y) : U_i & \\
\Gamma \vdash \text{El}(\text{id}(a, x, y)) = \text{Id}(\text{El}(a), x, y) \text{ type}
\end{align*}
\]

The primary way to use a proof of \(\text{Id}(A, a, a')\) is in concert with an \(A\)-indexed family of types \(b : A \to U\); namely, we conclude that the \(a\) and \(a'\) instances of this family are themselves equal in the sense that we have a proof of \(\text{Id}(U, b a, b a')\), and as a result we are able to cast between the types \(\text{El}(b a)\) and \(\text{El}(b a')\). Notably, because type equality is central to this story, universes will play a major role in this section.

\(^1\) Although beyond the scope of these lecture notes, we expect the **Superego** connective to internalize the rules of type theory; arguably singleton types internalize the self and thus serve as the **Ego**.
Notation 4.1.1. What should we call terms of type $\text{Id}(A, a, b)$? This type will no longer precisely internalize the equality judgment so it can be misleading to call them equalities between a and b. On the other hand, calling them “proofs of equality between a and $b” is too cumbersome. We will refer to them as identifications between a and b.

Notation 4.1.2. In the remainder of this section we will return to the informal notation of Chapter 1; in particular, we omit $\text{El}(-)$, thereby suppressing the difference between types and terms of type U. We resume our more rigorous notation in Section 4.2.

4.1.1 Constructing identifications

Following the discussion above, we can already formulate two necessary conditions on $\text{Id}(A, a, b)$. First, we must have some source of identifications between terms. As with Eq-types we choose reflexivity; in concert with definitional equality, this allows us to prove any terms are identified as long as they differ only by β, η, and expanding definitions:

$$\text{refl} : \{ A : U \} \to (a : A) \to \text{Id}(A, a, a)$$

Secondly, given an identification $\text{Id}(A, a, a’) and a dependent type $B : A \to U$, we must be able to convert terms of type $B(a)$ to $B(a’)$, a process (confusingly) known as substitution:

$$\text{subst} : \{ A : U \} \{ a a’ : A \} \to (B : A \to U) \to \text{Id}(A, a, a’) \to B a \to B a’$$

Remark 4.1.3. The subst function did not emerge in our discussion of Eq-types for the simple reason that equality reflection trivializes it: $\text{subst} B p b = b$. Indeed, all of the operations we discuss in this section are trivial in the presence of equality reflection. ☐

By assuming that Id-types satisfy refl and subst we are off to a good start, but a priori these are only two of the many combinators that we expect to be definable for $\text{Id}(A, a, b)$; for starters, as an equality relation, identifications ought to be not only reflexive but also symmetric and transitive. Fortunately and somewhat surprisingly, it turns out that both symmetry and transitivity are consequences of refl and subst.

Lemma 4.1.4. Using refl and subst, we can prove symmetry of identifications, i.e.,

$$\text{sym} : \{ A : U \} \{ a b : A \} \to \text{Id}(A, a, b) \to \text{Id}(A, b, a)$$

Proof. Fix $A : U$ and $a b : A$ and $p : \text{Id}(A, a, b)$. To construct a term of type $\text{Id}(A, b, a)$, we simply choose a clever B at which to instantiate subst:

$$B : A \to U$$
$$B x = \text{id}(A, x, a)$$
In particular, note that \(B(a) = \text{Id}(A, a, a)\) is easily proven by \text{refl}, and \(B(b) = \text{Id}(A, b, a)\) is our goal; thus \(\text{subst} \ p\) is a function \(B(a) \rightarrow B(b)\) and our goal follows soon after:

\[
\text{sym} : \{ A : U \} \{ a \ b : A \} \rightarrow \text{Id}(A, a, b) \rightarrow \text{Id}(A, b, a) \\
\text{sym} \{ A \ a \ b \} \ p = \text{subst} (\lambda x \rightarrow \text{id}(A, x, a)) \ p \ (\text{refl} \ a)
\]

\textbf{Lemma 4.1.5.} \textit{Using ref\l and subst, we can prove transitivity of identifications, i.e.,}

\[
\text{trans} : \{ A : U \} \{ a \ b \ c : A \} \rightarrow \text{Id}(A, a, b) \rightarrow \text{Id}(A, b, c) \rightarrow \text{Id}(A, a, c)
\]

\textit{Proof.} Fix \(A : U, a b c : A, p : \text{Id}(A, a, b), \) and \(q : \text{Id}(A, b, c).\) To construct a term of type \(\text{Id}(A, a, c)\), we again choose a clever instantiation of subst, in this case \(B(x) = \text{Id}(A, x, a).\) Once again, \(B(b)\) is easily proven by our assumption \(p,\) and \(B(c)\) is our goal. Substituting along \(q : \text{Id}(A, b, c)\) completes our proof:

\[
\text{trans} : \{ A : U \} \{ a b c : A \} \rightarrow \text{Id}(A, a, b) \rightarrow \text{Id}(A, b, c) \rightarrow \text{Id}(A, a, c) \\
\text{trans} \{ A \ a \ b \ c \} \ p \ q = \text{subst} (\lambda x \rightarrow \text{id}(A, a, x)) \ q \ p
\]

\textbf{Exercise 4.1.} \textit{Provide an alternative proof} \text{trans'} \textit{of Lemma 4.1.5 which substitutes along} \(p\) \textit{rather than} \(q,\) \textit{using a slightly different choice of} \(B.\)

In fact, \text{refl} \text{and subst also allow us to prove that identifications are a congruence, in the sense that given} \(\text{Id}(A, a, a')\) \text{and} \(f : A \rightarrow B,\) \text{we obtain an identification} \(\text{Id}(B, f \ a, f \ a').\)

\textbf{Lemma 4.1.6.} \textit{Using subst, we can prove congruence of identifications, i.e.,}

\[
\text{cong} : \{ A B : U \} \{ a a' : A \} \rightarrow (f : A \rightarrow B) \rightarrow \text{Id}(A, a, a') \rightarrow \text{Id}(B, f \ a, f \ a')
\]

\textit{Proof.} The proof strategy remains the same, so we proceed directly to the term:

\[
\text{cong} : \{ A B : U \} \{ a a' : A \} \rightarrow (f : A \rightarrow B) \rightarrow \text{Id}(A, a, a') \rightarrow \text{Id}(B, f \ a, f \ a') \\
\text{cong} \{ A B \ a \ a' \} \ f \ p = \text{subst} (\lambda x \rightarrow \text{id}(B, f \ a, f \ x)) \ p (\text{refl} \ (f \ a))
\]

Finally, we must consider how subst ought to compute. Because subst can produce terms of any type, including \text{Bool} and \text{Nat}, we must impose some definitional equalities on it if our type theory is to satisfy canonicity (Section 3.3). One equation springs to mind immediately: if we apply subst \(B\) to \text{refl} \(a,\) the resulting coercion \(B a \rightarrow B a\) has the type of the identity function, so it is reasonable to ask for it to \textit{be} the identity function. That is, we ask for the following definitional equality:

\[
\text{subst} \ B \ (\text{refl} \ a) \ b = b : B \ a
\]
4.1.2 Constructing identifications of identifications

Although `refl` and `subst` go quite a long way, they do not suffice to derive all the properties of identifications we might expect; we start encountering their limits as soon as we consider identifications between elements of `Id(𝐴, 𝑎, 𝑏)` itself. These identifications of identifications arise very naturally in practice. Quite often we must use `subst` when constructing a dependently-typed term in order to align various type indices; if we ever construct a type that depends on such a term, we will very quickly be in the business of proving that two potentially distinct sequences of `subst` casts are themselves equal.

For the sake of concreteness, consider the following pair of operations that “rotate” a `Vec`tor (a list of specified length, as defined in Chapter 1):

```haskell
append : {𝐴 : U} {𝑛 𝑚 : Nat} → Vec 𝑀 → Vec 𝑀 → Vec 𝑀 (𝑛 + 𝑚)
comm : {𝑛 𝑚 : Nat} → Id(Nat, 𝑛 + 𝑚, 𝑚 + 𝑛)

rot1 : {𝐴 : U} {𝑛 : Nat} → Vec 𝑀 → Vec 𝑀
rot1 [] = []
rot1 {𝑛} (𝑥 ∷ xs) = subst (Vec 𝑀) (comm 𝑛 1) (append xs (𝑥 ∷ []))

rot2 : {𝐴 : U} {𝑛 : Nat} → Vec 𝑀 → Vec 𝑀
rot2 [] = []
rot2 (𝑥 ∷ []) = x ∷ []
rot2 {𝑛} (𝑥₀ ∷ 𝑥₁ ∷ xs) = subst (Vec 𝑀) (comm 𝑛 2) (append xs (𝑥₀ ∷ 𝑥₁ ∷ []))
```

We expect to be able to prove that `rot1` twice is the same as `rot2`:

```haskell
{𝐴 : U} {𝑛 : Nat} → (xs : Vec 𝑀 (2 + 𝑛)) → Id(Vec 𝑀 (2 + 𝑛), rot1 (rot1 xs), rot2 xs)
```

However, this will not be possible with our current set of primitives. In our definitions of `rot1` and `rot2` we were forced to include various applications of `subst` to correct mismatches between the indices `(𝑛 + 1), (1 + 𝑛)` and `(𝑛 + 2), (2 + 𝑛)`, and these `subst` terms will get in our way as we try to establish the above identification. If we proceed by induction on `xs`, for instance, we will get stuck attempting to construct a identification between

```haskell
 subst (Vec 𝑀) (comm 𝑛 1)
(append (subst (Vec 𝑀) (comm 𝑛 1) (append xs (𝑥₀ ∷ []))) (𝑥₁ ∷ []))
```

and

```haskell
 subst (Vec 𝑀) (comm 𝑛 2) (append xs (𝑥₀ ∷ 𝑥₁ ∷ []))
```

of type `Vec 𝑀 (2+𝑛)`. Unfortunately, because `𝑛` is a variable, neither `comm 𝑛 1` nor `comm 𝑛 2` are the reflexive identification, so we can make no further progress.
The above example is a bit involved, but there are many smaller (albeit more contrived) examples of identifications that are beyond our reach; for example, given a variable \(p : \text{Id}(A, a, b) \) we cannot construct an identification \(\text{Id}(\text{Id}(A, a, b), p, \text{sym}(\text{sym} p)) \).

Our “API” for identity types is thus missing an operation that allows us to prove identifications between two identifications. To hit upon this operation, we introduce the concept of (propositional) singleton types (in contrast to the “definitional singleton types” of Section 3.5). Given a type \(A \) and a term \(a : A \), the singleton type \([a] \) is defined as follows:

\[
[a] = \sum_{b:A} \text{Id}(A, a, b)
\]

That is, \([a]\) is the type of “elements of \(A \) that can be identified with \(a \).” Intuitively, there should only be one such element, namely \(a \) itself—or to be more precise, \((a, \text{refl } a)\). But this, too, is not yet provable. Certainly, given an arbitrary element \((b, p) : [a]\) we can see that (by \(p \)) their first projections \(a \) and \(b \) are identified, but we have no way of identifying their second projections \(\text{refl } a \) and \(p \).

In fact, most of our “coherence problems” of identifying identifications can be reduced to the problem of identifying all elements of \([a]\): this is in some sense the ur-coherence problem. Intuitively this is because being able to identify arbitrary \((b, p)\) with \((a, \text{refl } a)\) allows us to transform subst terms involving the arbitrary identification \(p \) into subst terms involving the distinguished identification \(\text{refl } a \), the latter of which “compute away.”

Lemma 4.1.7. Suppose we are given some \(A : U \) and \(a : A \) such that all elements of \([a]\) are identified; then for any \(b : A \) and \(p : \text{Id}(A, a, b) \) we have \(\text{Id}(\text{Id}(A, a, b), p, \text{sym}(\text{sym} p)) \).

Proof. Fixing \(A, a, b, \) and \(p \), we notice that \((a, \text{refl } a), (b, p) : [a]\) by definition, and thus by assumption we have an identification \(q : \text{Id}([a], (a, \text{refl } a), (b, p)) \). As before, we shall choose a clever \(B \) for which subst \(B \) solves our problem, namely:

\[
B : [a] \rightarrow U
\]

\[
B (b_0, p_0) = \text{id}([a], (a, \text{refl } a), (b_0, p_0))
\]

Inspecting our definition of Lemma 4.1.4, we see that \(\text{sym}(\text{refl } x) = x \) definitionally, and thus the following definitional equalities hold:

\[
B (a, \text{refl } a) = \text{Id}(\text{Id}(A, a, a), \text{refl } a, \text{sym}(\text{sym}(\text{refl } a)))
\]

\[
= \text{Id}(\text{Id}(A, a, a), \text{refl } a, \text{sym}(\text{sym}(\text{refl } a)))
\]

\[
= \text{Id}(\text{Id}(A, a, a), \text{refl } a, \text{refl } a)
\]

\[
B (b, p) = \text{Id}(\text{Id}(A, a, b), p, \text{sym}(\text{sym} p))
\]

It is easy to produce an element of the former type (namely, \(\text{refl}(\text{refl } a) \)), the latter type is our goal, and \(q \) is an identification between the two indices. Thus:
We substantiate the assumption of Lemma 4.1.7 with a new primitive operation on identity types, uniq, that identifies \((a, \text{refl } a)\) with arbitrary elements of \([a]\). (By sym and trans, it follows that any two arbitrary elements of \([a]\) are also identified.) As with subst, we also assert that a certain definitional equality holds when uniq is supplied with the reflexive identification. This operation is often called singleton contractibility \([\text{Coq14;UF13}]\), and it will feature prominently in Chapter 5.

\[
\text{uniq} : \{A : U\} \rightarrow (x : [a]) \rightarrow \text{Id}([a], (a, \text{refl } a), x)
\]

\[
\text{uniq } (a, \text{refl } a) = \text{refl } (a, \text{refl } a)
\]

Exercise 4.2. Like subst, uniq is definable in extensional type theory; show this.

Exercise 4.3. Recalling trans (Lemma 4.1.5) and trans' (Exercise 4.1), use subst and uniq to construct a term of the following type:

\[
\{A : U\} \rightarrow (p : \text{Id} (A, a, b)) \rightarrow (q : \text{Id} (A, b, c)) \rightarrow \text{Id} (\text{Id} (A, a, c), \text{trans } p q, \text{trans' } p q)
\]

4.1.3 Intensional identity types

To summarize Sections 4.1.1 and 4.1.2, we have asked for \(\text{Id} (A, a, b)\) to support the following three operations subject to two definitional equalities:

\[
\text{refl} : \{a : A\} \rightarrow (a : A) \rightarrow \text{Id} (A, a, a)
\]

\[
\text{subst} : \{A : U\} \rightarrow (a : A) \rightarrow (B : A \rightarrow U) \rightarrow \text{Id} (A, a, a') \rightarrow B a \rightarrow B a'
\]

\[
\text{uniq} : \{A : U\} \rightarrow (a : A) \rightarrow (x : [a]) \rightarrow \text{Id} ([a], (a, \text{refl } a), x)
\]

\[
\text{subst } B (\text{refl } a) b = b
\]

\[
\text{uniq } (a, \text{refl } a) = \text{refl } (a, \text{refl } a)
\]

Definition 4.1.8. An intensional identity type is any type \(\text{Id} (A, a, b)\) equipped with the three operations above satisfying the two definitional equalities above.

Intensional identity types were introduced by Martin-Lôf \([\text{ML75}]\) and have been the “standard” formulation of propositional equality in type theory for most of the intervening years, although various authors have presented them via different but equivalent
sets of primitive operations and equations [CP90b; PPM90; PM93; Str93; Coq14]. Our presentation most closely follows Coquand [Coq14] which, to our knowledge, was first proposed by Steve Awodey in 2009. In Sections 4.3 and 4.4 we will also consider related but non-equivalent presentations endowing \(\text{Id}(A, a, b) \) with more properties [Str93; Hof95a; AMS07].

Let us be clear, however, that this broad agreement in the literature is not an indication of happiness. On the contrary, most type theorists have many complaints about intensional identity types: there are several important properties that they do not satisfy, and they can be frustrating in practice for a number of reasons. They have persisted for so long because of a relative lack of compelling alternatives that also satisfy the two crucial properties of:

1. Capturing the most important properties of equality—reflexivity, symmetry, transitivity, congruence, substitutivity, etc.—thus enabling a wide range of constructions.

2. Their inclusion in a type theory is compatible with all the metatheorems discussed in Chapter 3, especially—unlike Eq-types—normalization.

In Section 4.3 we will discuss the shortcomings of \(\text{Id} \)-types in more detail, but it will turn out that these shortcomings can be mostly overcome by adding several axioms (postulated terms, or in essence, free variables) to type theory. Adding such axioms causes canonicity to fail, but as discussed in Section 3.3, type theories without canonicity are merely frustrating (requiring more manual reasoning by identifications), whereas type theories without normalization are essentially un-type-checkable. As a result, many users of type theory opt to work with \(\text{Id} \)-types with some additional axioms.

But before we get ahead of ourselves, we proceed by formally defining \(\text{Id} \)-types and thus the type theory known as intensional type theory.

4.2 Intensional identity types

In this section we formally define intensional identity types, or \(\text{Id} \)-types, returning to the style of definition adopted throughout Chapter 2. Although it is possible to add \(\text{Id} \)-types to extensional type theory, we are primarily interested in defining intensional type theory, which is obtained by replacing certain rules of ETT by the rules in this section. Specifically, we remove from the theory of Chapter 2 all rules pertaining to Eq-types; in Appendix A those rules are annotated (ETT), and the rules added in this section are annotated (ITT).

Although the rules for \(\text{Id} \)-types appear complicated and unmotivated at first, it will turn out that they arise naturally from our methodology that types internalize judgmental structure. Recalling Slogan 2.5.3, connectives in type theory are specified by a natural

2The equivalence between the presentations of Martin-Löf [ML75] and Paulin-Mohring [PM93] is due to Hofmann [Str93, Addendum].
type-forming operation whose terms are either defined by a mapping-in property (a natural
isomorphism with judgmentally-defined structure) or a mapping-out property (an algebra
signature for which the type carries a weakly initial algebra).

The formation rule of \(\text{Id}(A, a, b)\) is identical to that of \(\text{Eq}(A, a, b)\):

\[
\Gamma \vdash a : A \quad \Gamma \vdash b : A \quad \Delta \vdash \gamma : \Gamma \\
\Gamma \vdash \text{Id}(A, a, b) \text{ type} \\
\Delta \vdash \text{Id}(A, a, b)[\gamma] = \text{Id}(A[\gamma], a[\gamma], b[\gamma]) \text{ type}
\]

Or equivalently, the following type-forming operation natural in \(\Gamma\):

\[
\text{Id}_\Gamma : (\sum_{A \in \text{Ty}(\Gamma)} \text{Tm}(\Gamma, A) \times \text{Tm}(\Gamma, A)) \to \text{Ty}(\Gamma)
\]

We must now decide whether to define \(\text{Id}(A, a, b)\) by a mapping-in property or a
mapping-out property. In Chapter 2 we saw that mapping-in properties are generally
both simpler and better-behaved, but we already defined \(\text{Eq}\)-types by the mapping-in
property of internalizing judgmental equality (i.e., \(\text{Tm}(\Gamma, \text{Eq}(A, a, b)) \cong \{\star \mid a = b\}\)), and
it is unclear what other structure we could ask for \(\text{Id}\)-types to internalize.\(^3\)

Faced with no other options, we are forced to consider a mapping-out property instead.
Per the discussion in Sections 2.5.2 and 2.5.3, such a property starts with a collection of
natural term constructors of \(\text{Id}(A, a, b)\), in this case only \text{refl}exivity:

\[
\Gamma \vdash a : A \\
\Gamma \vdash \text{refl} : \text{Id}(A, a, a) \\
\Delta \vdash \gamma : \Gamma \\
\Gamma \vdash a : A \\
\Delta \vdash \text{refl}[\gamma] = \text{refl} : \text{Id}(A[\gamma], a[\gamma], a[\gamma])
\]

Or equivalently, the following term-forming operation natural in \(\Gamma\):

\[
\text{refl}_{\Gamma, A, a} \in \text{Tm}(\Gamma, \text{Id}(A, a, a))
\]

Whereas the mapping-in property of \(\text{Eq}\)-types asserts that \text{refl} is their only inhabitant,
the mapping-out property of \(\text{Id}\)-types will assert that every type believes that \text{refl} is their
only inhabitant, in just the same way that every type “believes” that \text{true} and \text{false} are
the only elements of \text{Bool}, namely that to map out of \text{Bool} it suffices to explain how to
behave on \text{true} and \text{false}.

Remark 4.2.1. Like the induction principles of inductive types, the \text{subst} and \text{uniq} primitives
of Section 4.1 are both maps out of \(\text{Id}(A, a, b)\) that have prescribed behavior on
the constructor \text{refl}. We will see shortly that both \text{subst} and \text{uniq} are definable via the
\text{Id}-elimination principle we are about to present, and remarkably, that \text{Id}-elimination can
conversely be recovered as a combination of \text{subst} and \text{uniq}!

\(^3\)Cubical type theory in fact invents a new judgmental structure for propositional equality to internalize,
but we will return to this point in Section 5.4.
Compared to subst and uniq, \(\text{Id}\)-elimination is more clearly motivated by general considerations (mapping-out properties), more self-contained (not requiring \(\Sigma\)-types), and even often more ergonomic in practice. But subst and uniq are nevertheless very important combinators that certainly merit special discussion.

Luckily \(\text{refl}\) is not a recursive constructor, so we can avoid the discussion of displayed algebras of Section 2.5.3 and return to the simpler characterization of mapping-out properties in Sections 2.5.2 and 2.5.4 as a section (right inverse) to substitution of constructors. In exchange we must for the first time consider an inductive type former that has formation data, namely a type \(A\) and two terms \(a, b : A\).

Suppose we have a dependent type over an identity type:

\[
\Gamma. A[A[p], \text{Id}(A[p^2], q[p], q) \vdash C\ 	ext{type}
\]

Into any term of the above type we can substitute \(\text{refl}\):

\[
(id.q.\text{refl})^* : \text{Tm}(\Gamma. A[A[p].\text{Id}(A[p^2], q[p], q), C)) \rightarrow \text{Tm}(\Gamma, a : A, C[a, a, \text{refl}(a)])
\]

The elimination principle for \(\text{Id}\)-types is precisely a section of the above map.

Let us unpack this a bit. First, we rewrite the above map using named variables:

\[
[a/b, \text{refl}/p] : \text{Tm}(\Gamma, a : A, b : A, p : \text{Id}(A, a, b), C(a, b, p)) \rightarrow \text{Tm}(\Gamma, a : A, C(a, a, \text{refl}(a)))
\]

A section to this map tells us that to construct an element of \(C(a, b, p)\) for any \(a, b : A\) and \(p : \text{Id}(A, a, b)\), it suffices to say what to do on \(a, a, \text{refl}\) (i.e., provide a term of type \(C(a, a, \text{refl})\)). Compared to our definition of if in Section 2.5.2, the context on the left is more complex because the domain of a dependent type \(C : \text{Id}(A, a, b) \rightarrow U\) is itself dependent on \(a, b : A\), and the context on the right is more complex because the constructor \(\text{refl}\) is dependent on \(a : A\).

Remark 4.2.2. From a more nuts-and-bolts perspective, imagine that we asked for \(C\) not to be dependent on all three of \(a, b, p\) as \(\Gamma, a : A, b : A, p : \text{Id}(A, a, b) \vdash C(a, b, p)\) type, but only on \(p\), i.e., \(\Gamma, p : \text{Id}(A, a, b) \vdash C(p)\) type for some fixed \(a, b : A\). Then we would not even be able to even state what it means to substitute \(\text{refl}\) for \(p\), because \(\text{refl}\) only has type \(\text{Id}(A, a, b)\) when \(a\) and \(b\) are definitionally equal. Instead, we ask for all of \(a, b, p\) to be variables, and consider the substitution of \(a, a, \text{refl}\) for \(a, b, p\).

Unfolding the above section into inference rules, we once again “build in a cut” by applying the stipulated term in context \(\Gamma. A[A[p].\text{Id}(A[p^2], q[p], q)\) to arguments \(a : A, b : A, p : \text{Id}(A, a, b)\) all in context \(\Gamma\). The first rule below is the section map itself, the second rule is naturality of the section map, and the third states that applying the section...
map followed by \((id.q.refl)^*\) is the identity:

\[
\begin{align*}
\Gamma &\vdash a : A \\
\Gamma &\vdash b : A \\
\Gamma &\vdash p : Id(A, a, b) \\
\Gamma.\Delta &\vdash J(c, p) : C[id.a.b.p]
\end{align*}
\]
\[
\Delta &\vdash \gamma : \Gamma \\
\Gamma &\vdash a : A \\
\Gamma &\vdash b : A \\
\Gamma &\vdash p : Id(A, a, b) \\
\Gamma.\Delta &\vdash J(c, p)[\gamma] = J(c[(\gamma \circ p).q], p[\gamma]) : C[\gamma.a[\gamma].b[\gamma].p[\gamma]]
\]

\[
\begin{align*}
\Gamma &\vdash a : A \\
\Gamma.\Delta &\vdash J(c, p) : C[id.a.b.p]
\end{align*}
\]

These rules complete our definition of \(Id\)-types and thus of intensional type theory.

As with the eliminators of \(Void\), \(Bool\), and \(Nat\), it can be helpful to think of \(J(c, p)\) as somehow “pattern-matching on \(p\)” with clause \(c\).

match \((a, b, p)\) with

\[
(a, a, refl) \rightarrow c a
\]

From this perspective, the definitional equality \(J(c, refl) = c[id.a] : C[id.a.a.refl]\) states that the entire **match** expression reduces to \(c\) when \((a, b, p)\) is indeed of the form \((a, a, refl)\).

Remark 4.2.3. The name of \(J\) for \(Id\)-elimination dates back to Martin-Löf [ML84a], in which Martin-Löf notates \(Id\)-types as \(I\), and he seems to have chosen \(J\) simply because it is the next letter of the alphabet. At any rate, unlike \(Id\)entity or \(refl\)exivity, it has no obvious meaning as the initial letter of pre-existing mathematical terminology.

For readers who might find this notational choice to be singularly arbitrary, we recall Scott’s story of mailing Church a postcard asking why \(\lambda\) was chosen as the symbol for function abstraction in his \(\lambda\)-calculus, and receiving the same postcard with the annotation “eeny, meeny, miny, moe” [Sco18].

Like extensional type theory, intensional type theory satisfies consistency and canonicity; unlike extensional type theory, it also satisfies the metatheorems on open terms discussed in Chapter 3 and is therefore exceptionally well-behaved from the perspective of both theory and implementability.

Theorem 4.2.4 (Martin-Löf [ML71], Martin-Löf [ML75], and Coquand [Coq91]). *Intensional type theory satisfies consistency, canonicity, normalization, and has invertible type constructors.*
One typically deduces all of these properties from the proof of normalization: given that normalization amounts to concretely characterizing the sets \(\text{Tm}(\Gamma, A) \) for all \(\Gamma, A \), consistency and canonicity amount to verifying that these characterizations of \(\text{Tm}(1, \text{Void}) \) and \(\text{Tm}(1, \text{Bool}) \) contain zero and two elements respectively, and invertibility of \(\Pi \)-types amounts to inverting the induced \(\Pi(_, _\) map on normal forms. There are many proofs of normalization for intensional type theory and minor variations on it, some relying on semantic model constructions [AK16; Coq19; Ste21] and others more closely connected to algorithms used in real implementations [ACD07; Abe13; AÖV17].

From J to subst and uniq We close this section by showing that \(J \) is interprovable with the combination of subst and uniq, first that both subst and uniq are instances of \(J \).

Notation 4.2.5. Our \(J(b, p) \) notation is not well-suited to informal constructions with named variables, because \(b \) silently binds a variable of type \(A \), and moreover, the type \(C \) can be hard to infer by inspection. In our informal notation we will therefore wrap \(J \) as a function with the following type, satisfying the definitional equality \(j B b a a \circ \text{refl} = b a \).

\[
\begin{align*}
 j: & \{A : U\} (C : (a b : A) \to \text{Id}(A, a, b) \to U) \to ((a : A) \to C a a \circ \text{refl}) \\
 & (a b : A) (p : \text{Id}(A, a, b)) \to C a b p
\end{align*}
\]

Likewise we introduce the functions \(\pi, \text{sig} : (A : U) (B : A \to U) \to U \) as wrappers for the codes \(\pi(_, _) \) and \(\text{sig}(_, _) \) respectively.

Exercise 4.4. Use the elimination principle \(J \) to define the function \(j \) above, and check that your definition of \(j \) satisfies the stipulated definitional equality.

The flexibility and complexity of \(J \) come from the fact that the motive [McB02] \(C \) can depend not only on the two elements of \(A \) but also the identification itself, both in arbitrary ways; many principles fall immediately out of \(J \) given a sufficiently clever choice of \(C \).

Lemma 4.2.6. Using \(j \) we can define subst, i.e., a term of type

\[
\text{subst} : \{A : U\} \{a a' : A\} \to (B : A \to U) \to \text{Id}(A, a, a') \to B a \to B a'
\]

satisfying the definitional equality \(\text{subst refl} b = b \).

Proof. We will apply \(j \) to the same \(a, a' : A \) and \(p : \text{Id}(A, a, a') \) as subst, choosing a motive such that the type of the fully-applied \(j \) will be \(B a \to B a' \):

\[
C x y _ = \pi(B x) (\lambda__ \to B y)
\]

We have \(C a b p = B a \to B a' \) as desired, and it remains only to exhibit a term of type \((a : A) \to C a a \circ \text{refl} = (a : A) \to B a \to B a \), which is easy to do. In total:
Exercise 4.5. Check that the above definition of subst satisfies the required equation.

Lemma 4.2.7. Using j we can define uniq, i.e., a term of type

$$\text{uniq} : \{ A : U \} \{ a : A \} \rightarrow (x : [a]) \rightarrow \text{Id}([a], (a, \text{refl}), x)$$

satisfying the definitional equality $\text{uniq} (a, \text{refl}) = \text{refl}$.

Proof. Writing $A : U$, $a : A$, and $x := (b, p) : \sum_{b : A} \text{Id}(A, a, b)$ for the arguments of uniq, we will apply j to a, b, p with a motive that allows us to reduce the general case of a, b, p to the particular and easy case of a, a, refl:

$$C \ x \ y \ p' = \text{id}(\text{sig} A (\lambda z \rightarrow \text{id}(A, x, z)), (x, \text{refl}), (y, p'))$$

Then $C \ a \ b \ p = \text{Id}([a], (a, \text{refl}), (b, p))$, and it remains only to exhibit a term of type $(a : A) \rightarrow C \ a \ a \ \text{refl} = (a : A) \rightarrow \text{Id}([a], (a, \text{refl}), (a, \text{refl}))$, which is again easy:

$$\text{uniq} : \{ A : U \} \{ a : A \} \rightarrow (x : [a]) \rightarrow \text{Id}([a], (a, \text{refl}), x)$$

$$\text{uniq} \{ A \ a \} \ (b, p) = j (\lambda x \ y \ p' \rightarrow \text{id}(\text{sig} A (\lambda z \rightarrow \text{id}(A, x, z)), (x, \text{refl}), (y, p')))$$

$$(\lambda x \rightarrow \text{refl}_{(x, \text{refl})}) \ a \ b \ p$$

The reader can again verify that the stipulated definitional equality holds.

Note that unlike the motive we used in Lemma 4.2.6, the motive here depends not only on $x, y : A$ but also the identification $p' : \text{Id}(A, x, y)$. Note also that the motive actually generalizes our goal: rather than proving that for a fixed $a : A$ we can identify (a, refl) and $(b, p) : [a]$, we prove that for any $x, y : A$ we can identify (x, refl) and $(y, p') : [x]$. □

Exercise 4.6. Check that the above definition of uniq satisfies the required equation.

And back again Conversely, using subst and uniq it is also possible to define a term j satisfying the required definitional equality. We leave most of the construction to the reader in the following series of exercises. In these exercises we fix the arguments of j as $A : U$, $C : (a \ b : A) (p : \text{Id}(A, a, b)) \rightarrow U$, $c : (a : A) \rightarrow (C \ a \ a \ \text{refl})$, $a, b : A$, and $p : \text{Id}(A, a, b)$, and we define the following “partially uncurried” type family:

$$C_a : (x : [a]) \rightarrow U$$

$$C_a \ x = C \ a \ (\text{fst} \ x) \ (\text{snd} \ x)$$

Exercise 4.7. Define a term $c_a : C_a (a, \text{refl})$.

```latex
\text{subst} : \{ A : U \} \{ a \ a' : A \} \rightarrow (B : A \rightarrow U) \rightarrow \text{Id}(A, a, a') \rightarrow B \ a \rightarrow B \ a'
```

$$\text{subst} \{ A \ a \ a' \} \ B \ p = j (\lambda x \ y _ \rightarrow \text{pi} (B \ x) (\lambda _ \rightarrow B \ y)) (\lambda _ \rightarrow x) \ a \ a' \ p$$

The reader can verify that the stipulated definitional equality holds. □
Exercise 4.8. Without using \mathbf{J}, define a term $q : \text{Id}([a], (a, \text{refl}), (b, p))$.

Exercise 4.9. Using c_a and q but not \mathbf{J}, define a term $c_b : C_a (b, p)$.

Exercise 4.10. Show that the type of c_b is equal to $C a b p$, and use this to combine the previous three exercises into a definition of j that uses subst and uniq but not \mathbf{J}.

Exercise 4.11. Check that your solution to Exercise 4.10 satisfies $j C c a a \text{refl} = c a$.

Exercise 4.12. We have seen in Remark 4.1.3 and Exercise 4.2 that subst and uniq are definable for Eq-types in ETT; from Exercise 4.10 it follows that j is also definable in ETT for Eq-types. Give an explicit definition of j for Eq-types in ETT. (Hint: you can combine the above results, but it is also fairly straightforward to arrive at the definition independently.)

Although it is perhaps easier to wrap one’s head around subst and uniq rather than \mathbf{J}, as we noted in Remark 4.2.1 it is often more straightforward in practice to use \mathbf{J} directly. Consider for instance the function cong from Section 4.1, which we really ought to have stated for dependent functions:

$$
\text{cong} : (f : (a : A) \rightarrow B a) \{a_0 a_1 : A\} (p : \text{Id}(A, a_0, a_1)) \rightarrow \text{Id}(B a_1, \text{subst} B p (f a_0), f a_1)
$$

Defining dependent cong in terms of subst and uniq is a headache, because one must use both simultaneously to handle the occurrence of p in the type. It is, however, straightforward to define with \mathbf{J}:

$$
\text{cong} f = j (\lambda a_0 a_1 p \rightarrow \text{Id}(B a_1, \text{subst} B p (f a_0), f a_1)) (\lambda a \rightarrow \text{refl}_{f(a)})
$$

4.3 Limitations of the intensional identity type

We have now seen that the rules for Id-types are well-motivated from a theoretical perspective as the mapping-out formulation of equality, and that they support the operations of subst and uniq presented in Section 4.1, which in turn imply many properties including the symmetry, transitivity, and congruence of equality. We have also seen that ITT is more well-behaved than ETT (Theorem 4.2.4), and that all the rules of Id-types are validated by the Eq-types of ETT (Exercise 4.12).

Have we even lost anything at all by moving from ETT to ITT? Well, yes; the entire point of moving to ITT was to remove equality reflection from our theory, in light of its undecidability (Section 3.4). Removing equality reflection does come at a cost: in ETT whenever we can prove $p : \text{Eq}(A, a, a')$ we can freely use terms of type $B a$ at type $B a'$, but in ITT we must explicitly appeal to the proof p with subst $B p : B a \rightarrow B a'$.
So then are types and terms of ITT simply more bureaucratic than those of ETT, or does ITT actually “prove fewer statements” than ETT in some meaningful sense? This is an excellent question, and one that requires some care to set up precisely.

Given that closed types (of a consistent type theory) can be seen as logical propositions and their terms as their proofs, we might naïvely wonder is every non-empty closed type of ETT also non-empty in ITT? This question does not make sense as posed because, by equality reflection, well-formed types in ETT need not be well-formed in ITT. Consider for instance the following closed type of ETT:

\[(p : \text{Eq}(\text{Bool}, \text{true}, \text{false})) \rightarrow \text{Eq}(\text{Eq}(\text{Bool}, \text{true}, \text{false}), \text{refl}, p)\]

On the other hand, closed types of ITT do correspond to closed types of ETT in a more-or-less straightforward way, because their rules differ only in their choice of equality type, and the \text{Eq}-types of ETT satisfy all the rules of the \text{Id}-types of ITT (and more); to make this translation precise we once again turn to model theory.

Definition 4.3.1. We define a model of ITT, a homomorphism of models of ITT, and the syntactic model \(T_{\text{ITT}}\) of ITT following Definitions 3.3.2 to 3.3.4, but replacing the structure corresponding to \text{Eq}-types with that of \text{Id}-types; as in Theorem 3.3.5, \(T_{\text{ITT}}\) is the initial model of ITT. For clarity we rename the concepts defined in Definitions 3.3.2 to 3.3.4 to model of ETT, homomorphism of models of ETT, and syntactic model \(T_{\text{ETT}}\) of ETT.

Theorem 4.3.2. The underlying sets of the syntactic model of ETT support a model of ITT.

Proof. Intuitively, this means that the syntax of ETT “satisfies the rules of ITT.” Formally, we construct a model \(M\) of ITT whose contexts are the contexts of the syntax of ETT, \(\text{Cx}_M := \text{Cx}_{T_{\text{ETT}}}\); whose substitutions are the substitutions of the syntax of ETT, \(\text{Sb}_M(\Delta, \Gamma) := \text{Sb}_{T_{\text{ETT}}}(\Delta, \Gamma)\); and likewise for types and terms. For all the rules of ITT that are also present in ETT, we choose the corresponding structure, e.g., \(1_M := 1_{T_{\text{ETT}}}\).

The only subtlety is how to define the \text{Id}-types of \(M\), and for this we choose the \text{Eq}-types of \(T_{\text{ETT}}\), i.e., \(\text{Id}_M(A, a, b) := \text{Eq}_{T_{\text{ETT}}}(A, a, b)\) and \(\text{refl}_M := \text{refl}_{T_{\text{ETT}}}\). The reader has already verified in Exercise 4.12 that the \(J\) eliminator is definable in ETT. \(\square\)

Corollary 4.3.3. There is a function \([-\]\) that sends contexts (resp., substitutions, types, terms) of ITT to contexts (resp., substitutions, types, terms) of ETT.

Proof. By Theorem 4.3.2 and the initiality of the syntactic model of ITT, there is a unique homomorphism \(f : T_{\text{ITT}} \rightarrow M\) of models of ITT, and thus in particular there are functions \(\text{Cx}_f : \text{Cx}_{T_{\text{ITT}}} \rightarrow \text{Cx}_M = \text{Cx}_{T_{\text{ETT}}}\) and likewise for substitutions, types, and terms. \(\square\)

By construction, this translation \([-\]\) of ITT to ETT “does nothing” except at \text{Id}-types, where \([\text{Id}(A, a, b)] = \text{Eq}([A], [a], [b])\). Intuitively, this is possible because \text{Eq}-types are defined to have only \text{refl} as elements, which is strictly stronger than the definition of \text{Id}-types as “appearing to other types to have only \text{refl} as elements.”
Exercise 4.13. Using Corollary 4.3.3 and Theorem 3.3.7, prove that intensional type theory is consistent.

We can now ask a more precise question:

Question 4.3.4. Suppose that $1 \vdash A$ type in ITT, and that in ETT there is a term $1 \vdash a : \llbracket A \rrbracket$. Then does there necessarily exist a term $1 \vdash a' : A$ in ITT?

By focusing only on types that are well-formed in ITT, this formulation avoids the pitfalls discussed earlier. Perhaps the converse of Question 4.3.4 is more intuitive: do there exist propositions that can be stated without equality reflection, but that can only be proven with equality reflection? Unfortunately, such propositions do exist, and thus the answer to Question 4.3.4 is no; even worse, the counterexamples are ones that users of type theory are likely to encounter frequently in practice.

Independence We note that counterexamples to Question 4.3.4 are in fact propositions that are independent of intensional type theory, i.e., propositions for which neither A nor $A \rightarrow \text{Void}$ are provable—equivalently, are inhabited, or contain at least one closed term.

Lemma 4.3.5. If $1 \vdash A$ type is a counterexample to Question 4.3.4, then A is independent of intensional type theory.

Proof. By definition, there must exist a term $1 \vdash a : \llbracket A \rrbracket$ in ETT, but no term $1 \vdash a' : A$ in ITT. Thus A is by definition not provable in ITT, so it suffices to show that $A \rightarrow \text{Void}$ is also not provable in ITT. Suppose that there were a term $1 \vdash f : A \rightarrow \text{Void}$ in ITT; then there would also be a term $1 \vdash [f] : \llbracket A \rrbracket \rightarrow \text{Void}$ in ETT, but this would mean there is a closed proof $\llbracket f \rrbracket(a)$ of Void in ETT, contradicting its consistency (Theorem 3.3.7). □

Of course, there are other kinds of independent propositions too; as a sufficiently strong formal system, ITT is subject to Gödel’s incompleteness theorem and thus one can construct independent propositions roughly corresponding to “the type of consistency proofs of ITT” But for now we restrict our attention to counterexamples to Question 4.3.4, exploring two in particular: function extensionality and uniqueness of identity proofs.

4.3.1 Function extensionality

The principle of function extensionality states that for any two functions $f, g : (a : A) \rightarrow B(a)$, if $f(a)$ and $g(a)$ are equal for all $a : A$, then f and g are equal. We reproduce the formal statement of funext below, along with its non-dependent special case funext’:

$$
\text{Funext} = (A : U) \rightarrow (B : A \rightarrow U) \rightarrow (f, g : (a : A) \rightarrow B(a)) \rightarrow \\
((a : A) \rightarrow \text{Id}(B(a, f(a), g(a))) \rightarrow \text{Id}((a : A) \rightarrow B(a, f, g))
$$
Funext' = (A B : U) → (f g : A → B) →
((a : A) → Id(B, f a, g a)) → Id(A → B, f, g)

Both of these are counterexamples to Question 4.3.4 and thus independent of ITT. First, we check that \([\text{Funext}]\) is provable in ETT.

Exercise 4.14. Construct a closed term of type \([\text{Funext}]\) in extensional type theory.

Next, we must check that Funext is not provable in intensional type theory. As with consistency (Theorem 3.3.6), it suffices to exhibit a model of ITT in which the set of closed terms of type Funext is empty. However, it is surprisingly difficult to do so!⁴ One such model is—tautologically—the syntax of ITT itself, or \(\mathcal{ITT}\); however, showing that this is the case is precisely what we are already trying to prove. A more useful observation is that the models used to prove normalization contain concrete characterizations of \(\text{Tm}(\Gamma, A)\) for all \(\Gamma, A\) and thus it is possible to unfold such a model and explicitly verify that there are no normal forms—and hence no elements whatsoever—of \(\text{Tm}(1, \text{Funext})\) [Hof95a].

Remark 4.3.6. The latter approach is tantamount to the proof-theoretic technique of showing that a formula is not derivable by proving cut elimination for a calculus and then checking by induction that the formula has no cut-free proofs.

One can also imagine more “mathematical” (and non-initial) models that refute function extensionality. An early example of such a model based on realizability and gluing was given by Streicher [Str93, Chapter 3]; a more recent example is the (categorical) “polynomial” model of von Glehn [Gle14]. In both cases the model construction is somewhat involved but checking that they refute Funext is comparatively straightforward. In any case, any of these arguments allows us to conclude:

Theorem 4.3.7. There is no closed term of type Funext in intensional type theory.

The authors are uncertain to whom this result should be attributed. Turner [Tur89] suggests that it was known to Martin-Löf and it was certainly known to type theorists in the 1980s, but the earliest explicit discussion of the independence of Funext we have located is the countermodel of Streicher [Str93].

There are many examples of function extensionality arising in practice. For instance, in ITT we can prove \((n m : \text{Nat}) → \text{Id}(\text{Nat}, n + m, m + n)\) but not \(\text{Id}(\text{Nat} → \text{Nat} → \text{Nat}, (+), (+) \circ \text{flip})\). Similarly, although mergeSort, bubbleSort : \(\text{List Nat} → \text{List Nat}\) agree on all inputs, we cannot prove they are equal functions. This has real consequences in

⁴There are many simple “countermodels of function extensionality” which fail to validate the \(\eta\)-rule of \(\Pi\)-types and are therefore not models of ITT as we have defined it. They are, however, models of the calculus of inductive constructions, which lacks \(\eta\) for \(\Pi\)-types.
practice: if we write a function that calls bubbleSort, is it equal to the same function where these calls have been replaced by calls to mergeSort? If function extensionality held this would follow immediately from cong; as it stands, one must manually argue that the text of the function respects swapping subroutines in this way—even though it is impossible to define a function that doesn’t!

We view the independence of function extensionality as perhaps the greatest failing of intensional type theory, as it frequently causes problems with no benefit, and it is therefore common to simply postulate Funext when working in ITT, that is, to add a rule

$$\frac{\vdash \Gamma \text{cx}}{\Gamma \vdash \text{funext} : \text{Funext}}$$

Postulating an axiom in this way is equivalent to prepending every context by a variable of type Funext, and it therefore preserves normalization (a property of all contexts) while disrupting canonicity (a property of the empty context, which is “no longer empty”).

Exercise 4.15. Argue that postulating Funext causes canonicity to fail. That is, produce a closed term of type \(\text{Bool}\) in ITT adjoined with the above rule that appears to be judgmentally equal to neither \(\text{true}\) nor \(\text{false}\). (You do not need to formally prove this fact.)

4.3.2 Uniqueness of identity proofs

Our second counterexample to Question 4.3.4 is the principle of uniqueness of identity proofs (UIP), which states that any two identifications between the same two terms are themselves identified.

$$\text{UIP} = (A : U) \rightarrow (a \ b : A) \rightarrow (p \ q : \text{Id}(A, a, b)) \rightarrow \text{Id}(\text{Id}(A, a, b), p, q)$$

In short, UIP asserts that identifications are unique: up to identification, there is at most one proof of \(\text{Id}(A, a, b)\) for any \(a, b : A\). Types with at most one element are often called (homotopy) propositions, so we might equivalently phrase UIP as the principle that propositional equality is a proposition. Like Funext, UIP is independent of ITT. On the one hand, it holds in ETT and thus cannot be refuted by ITT:

Exercise 4.16. Construct a closed term of type \([\text{UIP}]\) in extensional type theory.

To see that UIP is not provable in ITT, it again suffices to exhibit a countermodel, a model of ITT in which the set of closed terms of type UIP is empty. The original such

5There are occasions where one may wish to not identify all pointwise-equal procedures, e.g., when studying the runtime of algorithms, but we stress that ITT also does not allow us to distinguish pointwise-equal functions; studying runtime in this way requires other axioms and, likely, the removal of \(\beta\)-rules.

6The terminology of “propositional equality” is perhaps ill-advised.
countermodel, the groupoid model of type theory of Hofmann and Streicher [HS98], is very instructive as well as historically significant as a precursor to homotopy type theory (Chapter 5), so unlike the countermodels of Funext we will take the time to sketch it below.

The groupoid model is similar to the set-theoretic model of type theory (Section 3.3) except that it replaces sets with groupoids, sets equipped with additional structure:

Definition 4.3.8. A groupoid $X = (|X|, \mathcal{R}, \text{id}, (-)^{-1}, \circ)$ consists of a set $|X|$, a family of sets \mathcal{R} indexed over $|X| \times |X|$, and dependent functions:

- $\text{id} : \{x : |X|\} \to \mathcal{R}(x, x),$
- $(-)^{-1} : \{x y : |X|\} \to \mathcal{R}(x, y) \to \mathcal{R}(y, x)$, and
- $(\circ) : \{x y z : |X|\} \to \mathcal{R}(y, z) \to \mathcal{R}(x, y) \to \mathcal{R}(x, z),$

such that $\text{id} \circ f = f = f \circ \text{id}$, $f \circ f^{-1} = \text{id}$, $\text{id} = f^{-1} \circ f$, and $f \circ (g \circ h) = (f \circ g) \circ h$.

Definition 4.3.9. Given two groupoids X, Y, a homomorphism of groupoids $F : X \to Y$ is a pair of functions $F_0 : |X| \to |Y|$ and $F_1 : \{x x' : |X|\} \to \mathcal{R}_X(x, x') \to \mathcal{R}_Y(F_0(x), F_0(x'))$ for which F_1 commutes with the groupoid operations, i.e.,

- $F_1(\text{id}) = \text{id}$,
- $F_1(f^{-1}) = F_1(f)^{-1}$, and
- $F_1(g \circ f) = F_1(g) \circ F_1(f)$.

Exercise 4.17. For categorically-minded readers: argue that a groupoid is exactly the same as a category all of whose morphisms are isomorphisms, and a homomorphism of groupoids is exactly a functor.

Advanced Remark 4.3.10. The name “groupoid” comes from the perspective that these are a weaker notion of group in which the multiplication is a partial operation.

We can think of a groupoid as equipping its underlying set with a “proof-relevant notion of equality” which like ordinary equality is reflexive, symmetric, transitive, and respected by functions (groupoid homomorphisms), but unlike ordinary equality “can hold in more than one way.” Following this intuition, we will model closed types $A \in \text{Ty}(1)$ not as sets X but as groupoids $(|X|, \mathcal{R}, \ldots)$, closed terms $a \in \text{Tm}(1, A)$ as elements of $|X|$, and closed identifications $p \in \text{Tm}(1, \text{Id}(A, a, b))$ as elements of $\mathcal{R}(a, b)$.

Before outlining the model itself, we give a few examples of groupoids.

Example 4.3.11. Every set A can be regarded as a discrete groupoid ΔA in which $\mathcal{R}_{\Delta A}(x, y) = \{\star \mid x = y\}$. The remaining structure is uniquely determined: $\text{id} = \star$, $\star^{-1} = \star$, etc.
Example 4.3.12. Given two groupoids X, Y, the set of groupoid homomorphisms $X \rightarrow Y$ (Definition 4.3.9) admits a natural groupoid structure in which

$$
\mathcal{R}_{X \rightarrow Y}(F, G) = \\
\{ T : \langle x : |X| \rangle \rightarrow \mathcal{R}(F_0 x, G_0 x) \mid \forall f : \mathcal{R}(x, y). G_1(f) \circ T(x) = T(y) \circ F_1(f) \}
$$

In light of Exercise 4.17, categorically-minded readers might observe that T is exactly a natural transformation from F to G. We leave the remaining structure as an exercise.

Example 4.3.13. For an explicit example of a groupoid that is not discrete, consider the groupoid traditionally called $B(\mathbb{Z}/2)$, whose underlying set is the singleton $\{\star\}$, $\mathcal{R}_{B(\mathbb{Z}/2)}(\star, \star) = \mathbb{Z}/2 = \{0, 1\}$, and the remaining structure is as follows:

$$
id = 0 \\
x \circ y = x + y \mod 2 \\
x^{-1} = x
$$

The reader can check that these operations satisfy the necessary equations. (Hint: this is equivalent to checking that $\mathbb{Z}/2$ with the above id, \circ, and $(-)^{-1}$ forms a group.)

Example 4.3.14. There is a “large” groupoid S of all “small” sets, where $\mathcal{R}_S(X, Y)$ is the set of bijections between the sets X and Y, and the operations are the identity, inverse, and composition of bijections. This groupoid is not discrete because there can be more than one bijection between a pair of sets, e.g., id, swap $\in \mathcal{R}_S(\{\star, \star\}', \{\star, \star\}')$.

Example 4.3.15. There is a “large” groupoid G of all “small” groupoids, whose underlying collection is the proper class of all groupoids, and for which $\mathcal{R}_G(X, Y)$ is the set of all groupoid isomorphisms (invertible homomorphisms, or homomorphisms for which F_0 and each F_1 are bijections) from X to Y. The groupoid S from Example 4.3.14 embeds into G, so G is also not discrete.

As in the set-theoretic model of type theory, groupoids and groupoid-indexed families of groupoids form a model of type theory. Writing \mathcal{G} for the groupoid model of (intensional) type theory and $f : \mathcal{T}_{\mathcal{ITT}} \rightarrow \mathcal{G}$ for the homomorphism from the syntactic model to \mathcal{G}, f interprets syntactic contexts Γ as groupoids $\text{Cx}_f(\Gamma)$, the closed context 1 as the one-element, one-identification groupoid, syntactic substitutions as groupoid homomorphisms, and syntactic types $A \in \text{Ty}(\Gamma)$ as $\text{Cx}_f(\Gamma)$-indexed families of groupoids $(\text{Ty}_f(\Gamma)(A))_{\gamma \in \text{Cx}_f(\Gamma)}$. Such a family assigns to each groupoid element $\gamma \in \text{Cx}_f(\Gamma)$ a groupoid $(\text{Ty}_f(\Gamma)(A))_{\gamma}$, and to each identification $\alpha \in \mathcal{R}_{\text{Cx}_f(\Gamma)}(\gamma, \gamma')$ a homomorphism $(\text{Ty}_f(\Gamma)(A))_{\gamma} \rightarrow (\text{Ty}_f(\Gamma)(A))_{\gamma'}$ in a manner compatible with identity and composition. (Using Example 4.3.15, we can repackage the data of such a family quite simply as a groupoid homomorphism $\text{Cx}_f(\Gamma) \rightarrow \mathcal{G}$.) Finally, f interprets syntactic terms $a \in \text{Tr}(\Gamma, A)$ as dependent functions assigning to each element $\gamma \in \text{Cx}_f(\Gamma)$ of the context an element of the groupoid $(\text{Ty}_f(\Gamma)(A))_{\gamma}$ in a
manner that respects identifications. (We can again phrase this condition as a groupoid homomorphism, but we will not pursue the details further.)

Most of the structure of the groupoid model of type theory mirrors that of the set-theoretic model, with some added complication to account for identifications; for example, rather than interpreting the universe as the large set of all small sets, we interpret it as the large groupoid G of all small groupoids (Example 4.3.15). The key departure is in the interpretation of Id-types: for closed $A \in \text{Ty}_G(1_G)$ and $a, b \in \text{Tm}_G(1_G, A)$, the G-identity type $\text{Id}_G(A, a, b)$ is chosen to be (the discrete groupoid on) the set of identifications in the groupoid A between a and b, namely $\Delta \mathcal{R}_A(a, b)$.

It is not at all obvious that such an interpretation supports J, but this is the force of the groupoid model: because all types and terms respect identifications, it is in fact the case that dependent functions from Id-types into any G-type are generated by the data of where to send refl. Interested readers can find these and all the other details in the paper of Hofmann and Streicher [HS98].

Theorem 4.3.16 (Hofmann and Streicher [HS98]). There is no closed term of type UIP in intensional type theory.

Proof. This follows immediately from the fact that the groupoid model interprets UIP as the empty groupoid, whose proof we sketch below. Recall that:

\[
\text{UIP} = (A : U) \rightarrow (a b : A) \rightarrow (p q : \text{Id}(A, a, b)) \rightarrow \text{Id}(\text{Id}(A, a, b), p, q)
\]

A term of this type in G would be a dependent function out of the interpretation of U, which is the groupoid of groupoids G. Suppose that such a function exists; then we could apply it to the groupoid $B(\mathbb{Z}/2) \in G$ defined in Example 4.3.13, then twice to the unique element $\star \in |B(\mathbb{Z}/2)|$ of that groupoid, and then to the two distinct identifications $0, 1 \in \mathcal{R}_{B(\mathbb{Z}/2)}(\star, \star)$. The result would have to be a proof that $0 = 1$, which is false. \[\square\]

4.3.2.1 Towards homotopy type theory

The busy reader may wish to skip this section initially, although we suggest that they return to it when reading Section 5.1. The groupoid model demonstrates that Id-types support richer interpretations than merely equations: identifications can be any data that is respected by all the constructs of type theory.

Although the groupoid model provides us with interesting examples of identity types, we note that the identity types of any groupoid X, $\Delta \mathcal{R}_X(x, y)$, are always discrete groupoids with no interesting identifications of their own. Thus the groupoid model does validate the “uniqueness of identity proofs of identity proofs”:

\[
\text{UIPIP} : (A : U) \rightarrow (a b : A) \rightarrow (p q : \text{Id}(A, a, b)) \rightarrow \text{Id}(\text{Id}(\text{Id}(A, a, b), p, q), \alpha, \beta)
\]
Like UIP, this principle is also independent of ITT, and we can construct a countermodel in 2-groupoids, which contain a second level of “2-identifications” $R^2(p, q)$ between any pair of identifications $p, q \in R(a, b)$ between elements a, b. Although we will not define these precisely, we note that the passage from groupoids to 2-groupoids is analogous to the passage from sets to groupoids; for instance, every groupoid can be regarded as a discrete 2-groupoid with the same elements and 1-identifications but with trivial 2-identifications.

The story once again repeats for the 2-groupoid model of type theory, and in fact for any n: there is a model of ITT in which closed types are interpreted as n-groupoids, and this model refutes $U(IP)^n$ but validates $U(IP)^{n+1}$. In fact, this suggests correctly that ordinary groupoids ought to be thought of as 1-groupoids and sets as 0-groupoids; indeed, the set (0-groupoid) model of type theory validates UIP. Looking downward, the large 0-groupoid of $(−1)$-groupoids is the set of propositions $\{\emptyset, \ast\}$ as we will see in Section 5.1.1.

But what about for all n? Is it possible to construct a model that simultaneously refutes $U(IP)^n$ for every $n \in \mathbb{N}$? Intuitively, such a model would have to interpret closed types as “∞-groupoids” with countably infinite towers of identifications. The answer is yes [War08, Corollary 4.26], and in fact Voevodsky’s simplicial model of homotopy type theory [KL21] can be seen as precisely such a model [KS15].

4.3.3 Hofmann’s conservativity theorem

We have generated an infinite stream of counterexamples to Question 4.3.4—propositions that are provable in ETT but not ITT—namely Funext and $U(IP)^n$ for $n \geq 1$. Is there a third class of counterexamples? Surprisingly, no: all counterexamples to Question 4.3.4 are generated by Funext and UIP in a precise sense. (Note that UIP implies $U(IP)^n$ for $n > 1$.)

To state this claim more precisely, let us write $\Gamma_{ax} := 1, \text{funext} : \text{Funext}, \text{uip} : \text{UIP}$

for the ITT context containing two variables, one of type Funext and one of type UIP; types and terms of ITT in context Γ_{ax} are in bijection with closed types and terms of intensional type theory extended by two rules postulating Funext and UIP. Then, Hofmann’s celebrated conservativity result states that:

Theorem 4.3.17 (Hofmann [Hof95a]). *Suppose that $\Gamma_{ax} \vdash A$ type in ITT, and $\llbracket \Gamma_{ax} \rrbracket \vdash a : \llbracket A \rrbracket$ in ETT; then there exists a term $\Gamma_{ax} \vdash a' : A$ in ITT.*

In Exercises 4.14 and 4.16 the reader has constructed proofs $1 \vdash p : \llbracket \text{Funext} \rrbracket$ and $1 \vdash q : \llbracket \text{UIP} \rrbracket$ of function extensionality and UIP in ETT, so we can discharge the hypotheses of $\llbracket \Gamma_{ax} \rrbracket$ to obtain the following corollary:

Corollary 4.3.18. *If $\Gamma_{ax} \vdash A$ type in ITT and $1 \vdash a : \llbracket A \rrbracket[p/\text{funext}, q/\text{uip}]$ in ETT, then there exists a term $\Gamma_{ax} \vdash a' : A$ in ITT.*
Corollary 4.3.18 is great news: although ITT is weaker than ETT, it is weaker by exactly two principles, namely function extensionality and uniqueness of identity proofs. We are led naturally to wonder whether there is a “best of both worlds”:

Question 4.3.19. Can we extend intensional type theory (with new terms and/or equations) in such a way that Funext and UIP are derivable, and the resulting type theory enjoys both canonicity and normalization?

If we are satisfied with only one of canonicity or normalization, note that ETT is such an extension of ITT satisfying canonicity (Theorem 3.3.11) but not normalization (Section 3.4); on the other hand, extending ITT with axioms for Funext and UIP trivially makes these provable and satisfies normalization (Theorem 4.2.4) but not canonicity (Exercise 4.15).

Remark 4.3.20. Such tradeoffs are common in the design of type theory: canonicity says that a type theory has “enough” equations, whereas normalization generally requires that there not be “too many”; it can be hard to find the right balance.

Type theorists have considered Question 4.3.19 since the 1990s, and there is some good news to report. If we are content for the moment to solve only the problem of UIP (ignoring Funext), there is in fact a rather modest extension of ITT that satisfies canonicity and normalization and in which UIP is provable.

For this, it will help us to consider an equivalent formulation of UIP due to Streicher [Str93] known as *Axiom K*:

\[K = (A : U) \rightarrow (a : A) \rightarrow (p : \text{Id}(A, a, a)) \rightarrow \text{Id}(ext{Id}(A, a, a), p, \text{refl}) \]

It is easy to see that K follows from UIP, as it is the special case of UIP in which a and b are the same and one of the identity proofs is refl. The other direction of the biimplication is more subtle, but follows from a careful application of J, or identity elimination.

Exercise 4.18. Prove that K implies UIP in ITT.

As with subst and uniq, there is a sensible definitional equality with which to equip K, namely \(K a a \text{refl} = \text{refl} \), and we can even rephrase it as a “second elimination principle” of \(\text{Id} \)-types as follows:

\[K \]

\[\text{In light of Remark 4.2.3, perhaps the reader can guess where the name K comes from.} \]
It is instructive to compare the rules for K to those of J, whose motives quantify over both sides of the identification. Although J may seem superficially more general, neither J nor K imply the other. On the one hand, K is equivalent to UIP, which is independent of ITT; on the other hand, we needed the additional flexibility of J to define subst (Lemma 4.2.6), and we invite the reader to attempt this definition with K alone.

Although adding the above rules for K to intensional type theory breaks the pattern of inductive types we established in Section 2.5, the resulting theory continues to enjoy all the good properties of intensional type theory.

Theorem 4.3.21. Intensional type theory plus the above rules for K satisfies consistency, canonicity, normalization, has invertible type constructors, and also validates UIP.

In fact, K was originally introduced not to restore extensionality to ITT but in the study of dependent pattern-matching, where early formulations of pattern-matching for dependent type theory [Coq92] were found to derive K and were thus stronger than the standard rules of ITT. Although researchers have subsequently formulated a weaker notion of pattern-matching that does not derive K [CDP14], many proof assistants such as Agda still include K by default, often via pattern-matching.

Unfortunately it is significantly more challenging to add function extensionality to ITT in a satisfactory (canonicity-preserving) fashion, either in tandem with or independently of K/UIP. There are a number of type theories that admit function extensionality and satisfy all the relevant metatheorems, most notably observational type theories (Section 4.4, which also validate UIP) and cubical type theories (Section 5.4, which intentionally do not validate UIP), but these systems are quite a bit more complex than ITT and have not supplanted it.

Thus, despite its shortcomings, many practitioners choose to work in ITT extended with an axiom for function extensionality and either an axiom for UIP or a version of dependent pattern-matching that validates K.

\[\Gamma \vdash a : A \quad \Gamma \vdash p : \text{Id}(A, a, a) \quad \Gamma.A.\text{Id}(A[p], q, q) \vdash B \text{ type} \quad \Gamma.A \vdash b : B[\text{id.refl}] \]

\[\Gamma \vdash K(b, p) : B[\text{id.refl}] \]

\[\Gamma \vdash a : A \quad \Gamma.A.\text{Id}(A[p], q, q) \vdash B \text{ type} \quad \Gamma.A \vdash b : B[\text{id.refl}] \]

\[\Delta \vdash \gamma : \Gamma
\]

\[\Gamma \vdash a : A \quad \Gamma \vdash p : \text{Id}(A, a, a) \quad \Gamma.A.\text{Id}(A[p], q, q) \vdash B \text{ type} \quad \Gamma.A \vdash b : B[\text{id.refl}] \]

\[\Delta \vdash K(b, p)[\gamma] = K(b[(\gamma \circ p).q], p[\gamma]) : B[\gamma.a[\gamma], p[\gamma]] \]
4.4 An alternative approach: observational type theory

Omitted in this draft.

Further reading

We have mentioned previously that proof assistants decide equality of terms using a type-sensitive algorithm known as normalization by evaluation (NbE). Proofs of the normalization metatheorem for intensional type theory proceed by establishing that NbE is sound and complete for the equational theory of ITT, using a proof technique known as Kripke logical relations. There are many papers dedicated to proving normalization for variants of ITT; Abel [Abe13] includes a lengthy exposition starting with the non-dependent case, Abel, Öhman, and Vezzosi [AÖV17] formalize their proof in Agda, and Coquand [Coq19] and Sterling [Ste21] present semantic formulations of NbE that are significantly less technical but require more mathematical sophistication.

As for the independence and conservativity theorems discussed in Section 4.3, the theses of Streicher [Str93] and Hofmann [Hof95a] remain excellent references and more a modern account is presented by Winterhalter [Win20]. Furthermore, recent advances in semantics have enabled much shorter proofs of conservativity [KL23]. The independence of function extensionality from ITT has led to a cottage industry of observational type theories as discussed in Section 4.4; the authors are biased but recommend Sterling, Angiuli, and Gratzer [SAG22, Section 1] for a brief history of equality in type theory. On the other hand, the independence of UIP has spawned an entire subdiscipline, homotopy type theory (Chapter 5). Models of homotopy type theory, such as Voevodsky’s simplicial model [KL21], can be seen as vast generalizations of the groupoid model of Hofmann and Streicher [HS98].
Martin-Löf type theory

This appendix presents a substitution calculus [ML92; Tas93; Dyb96] for several variants of Martin-Löf’s dependent type theory. Martin-Löf type theories are systems admitting the rules in section Contexts and substitutions; the rules specific to extensional type theory, those axiomatizing extensional equality types, are marked (ETT); the rules specific to intensional type theory, those axiomatizing intensional equality types, are marked (ITT).

Judgments

Martin-Löf type theory has four basic judgments:

1. \(\Gamma \vdash \text{cx} \) asserts that \(\Gamma \) is a context.

2. \(\Delta \vdash \gamma : \Gamma \), presupposing \(\vdash \Delta \text{cx} \) and \(\vdash \Gamma \text{cx} \), asserts that \(\gamma \) is a substitution from \(\Delta \) to \(\Gamma \) (i.e., assigns a term in \(\Delta \) to each variable in \(\Gamma \)).

3. \(\Gamma \vdash A \text{type} \), presupposing \(\vdash \Gamma \text{cx} \), asserts that \(A \) is a type in context \(\Gamma \).

4. \(\Gamma \vdash a : A \), presupposing \(\vdash \Gamma \text{cx} \) and \(\Gamma \vdash A \text{type} \), asserts that \(a \) is an element/term of type \(A \) in context \(\Gamma \).

The presuppositions of a judgment are its meta-implicit-arguments, so to speak. For instance, the judgment \(\Gamma \vdash A \text{type} \) is sensible to write (is meta-well-typed) only when the judgment \(\vdash \Gamma \text{cx} \) holds. We adopt the convention that asserting the truth of a judgment implicitly asserts its well-formedness; thus asserting \(\Gamma \vdash A \text{type} \) also asserts \(\vdash \Gamma \text{cx} \).

As we assert the existence of various contexts, substitutions, types, and terms, we will simultaneously need to assert that some of these (already introduced) objects are equal to other (already introduced) objects of the same kind.

1. \(\Delta \vdash \gamma = \gamma' : \Gamma \), presupposing \(\Delta \vdash \gamma : \Gamma \) and \(\Delta \vdash \gamma' : \Gamma \), asserts that \(\gamma, \gamma' \) are equal substitutions from \(\Delta \) to \(\Gamma \).

2. \(\Gamma \vdash A = A' \text{type} \), presupposing \(\Gamma \vdash A \text{type} \) and \(\Gamma \vdash A' \text{type} \), asserts that \(A, A' \) are equal types in context \(\Gamma \).

3. \(\Gamma \vdash a = a' : A \), presupposing \(\Gamma \vdash a : A \) and \(\Gamma \vdash a' : A \), asserts that \(a, a' \) are equal elements of type \(A \) in context \(\Gamma \).
Two types (resp., contexts, substitutions, terms) being equal has the force that it does in standard mathematics: any expression can be replaced silently by an equal expression without affecting the meaning or truth of the statement in which it appears. One important example of this principle is the “conversion rule” which states that if $\Gamma \vdash A = A'$, then $\Gamma \vdash a : A'$.

In the rules that follow, some arguments of substitution, type, and term formers are typeset as gray subscripts; these are arguments that we will often omit because they can be inferred from context and are tedious and distracting to write.

Contexts and substitutions

\[
\begin{array}{ccc}
\vdash \Gamma \text{cx} & \Gamma \vdash A \text{type} \\
\hline
\vdash \Gamma \text{cx} & \vdash \Gamma \text{cx} & \vdash \Gamma \text{cx} \\
\vdash \Gamma \text{cx} & \Gamma \vdash A \text{cx} & \Gamma \vdash A \text{cx} \\
\vdash \Gamma \text{cx} & \Gamma \vdash !\Gamma : 1 & \Gamma \vdash !\Gamma : 1 \\
\Delta \vdash \gamma : \Gamma & \Delta \vdash \gamma : \Gamma & \Gamma_3 \vdash \gamma_2 : \Gamma_2 \\
\Delta \vdash \gamma : \Gamma & \Delta \vdash \gamma : \Gamma & \Gamma_3 \vdash \gamma_2 \circ (\gamma_1 \circ \gamma_2) = (\gamma_0 \circ \gamma_1) \circ \gamma_2 : \Gamma_0 \\
\Delta \vdash \gamma : \Gamma & \Delta \vdash \gamma = \gamma : \Gamma & \Delta \vdash \gamma_0 \circ \gamma_1 = \gamma_0 \circ \gamma_1 : \Gamma_0 \\
\Delta \vdash \gamma : \Gamma & \Delta \vdash \gamma = \gamma : \Gamma & \Gamma_3 \vdash \gamma_0 \circ \gamma_1 = (\gamma_0 \circ \gamma_1) : \Gamma_0 \\
\Gamma \vdash A \text{type} & \Gamma \vdash A \text{type} & \Gamma \vdash a : A \\
\Gamma \vdash A[\gamma]_{\Delta, \Gamma} : A[\gamma] & \Gamma \vdash a[\gamma]_{\Delta, \Gamma} : A[\gamma] & \Gamma \vdash a[\gamma]_{\Delta, \Gamma} : a[\gamma] \\
\Gamma \vdash A \text{type} & \Gamma \vdash A \text{type} & \Gamma \vdash A \text{type} \\
\Gamma \vdash A[\text{id}_{\Gamma}] = A \text{type} & \Gamma \vdash a[\text{id}_{\Gamma}] = a : A & \Gamma \vdash a[\text{id}_{\Gamma}] = a[\gamma]_{\Delta, \Gamma} : A[\gamma]_{\Delta, \Gamma} \\
\Gamma_2 \vdash \gamma_1 : \Gamma_1 & \Gamma_1 \vdash \gamma_0 : \Gamma_0 & \Gamma_0 \vdash A \text{type} \\
\Gamma_2 \vdash A[\gamma_0 \circ \gamma_1] = A[\gamma_0][\gamma_1] : A[\gamma_0 \circ \gamma_1] & \Gamma_2 \vdash a[\gamma_0 \circ \gamma_1] = a[\gamma_0][\gamma_1] : A[\gamma_0 \circ \gamma_1] & \Gamma \vdash \delta : 1 \\
\Gamma \vdash \delta : 1 & \Gamma \vdash \delta : 1 & \Gamma \vdash \delta : 1 \\
\Delta \vdash \gamma : \Gamma & \Delta \vdash A \text{type} & \Delta \vdash A \text{type} \\
\Delta \vdash \gamma[\Delta, \Gamma, A] : \Gamma.A & \Delta \vdash a[\Delta, \Gamma, A] : \Gamma.A & \Delta \vdash a[\Delta, \Gamma, A] : \Gamma.A \\
\end{array}
\]
\[
\begin{align*}
\Gamma \vdash A \text{ type} & \quad \Delta \vdash \gamma : \Gamma \quad \Delta \vdash a : A[\gamma] \\
\Delta \vdash p_{\Gamma,A} \circ_{\Gamma,A} (\gamma.a) = \gamma : \Gamma & \quad \Delta \vdash q_{\Gamma,A}[\gamma.a] = a : A[\gamma] \\
\end{align*}
\]

\[
\Delta \vdash \gamma : \Gamma.A \\
\Delta \vdash \gamma = (p_{\Gamma,A} \circ_{\Gamma,A} \gamma). (q_{\Gamma,A}[\gamma.a]) : \Gamma.A
\]

Π-types

\[
\begin{align*}
\Gamma \vdash A \text{ type} & \quad \Gamma.A \vdash B \text{ type} \\
\Gamma \vdash \Pi_{\Gamma}(A,B) \text{ type} & \\
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash a : A & \quad \Gamma.A \vdash B \text{ type} \quad \Gamma \vdash f : \Pi(A,B) \\
\Gamma \vdash \text{app}_{\Gamma,A,B}(f, a) : B[\text{id}_{\Gamma.a}] & \\
\end{align*}
\]

\[
\begin{align*}
\Delta \vdash \gamma : \Gamma & \quad \Gamma \vdash A \text{ type} \quad \Gamma.A \vdash B \text{ type} \\
\Delta \vdash \Pi_{\Gamma}(A,B)[\gamma] = \Pi_{\Lambda}(A[\gamma], B[(\gamma \circ p_{\Delta,A[\gamma]}). q_{\Delta,A[\gamma]}]) \text{ type} & \\
\end{align*}
\]

\[
\begin{align*}
\Delta \vdash \gamma : \Gamma & \quad \Gamma \vdash A \text{ type} \quad \Gamma.A \vdash b : B \\
\Delta \vdash \lambda(b)[\gamma] = \lambda(b[(\gamma \circ p).q]) : \Pi(A,B)[\gamma] & \\
\end{align*}
\]

\[
\begin{align*}
\Delta \vdash \gamma : \Gamma & \quad \Gamma \vdash a : A \quad \Gamma.A \vdash B \text{ type} \quad \Gamma \vdash f : \Pi(A,B) \\
\Delta \vdash \text{app}(f, a)[\gamma] = \text{app}(f[\gamma], a[\gamma]) : B[(\text{id}_{\Gamma.a} \circ \gamma)] & \\
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash a : A & \quad \Gamma.A \vdash b : B \\
\Gamma \vdash \text{app}(\lambda(b), a) = b[\text{id}.a] : B[\text{id}.a] & \\
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash \text{app}(\lambda(b), a) = b[\text{id}.a] : B[\text{id}.a] & \\
\Gamma \vdash f = \lambda(\text{app}(f[\gamma.A], q_{\gamma.A})) : \Pi(A,B) & \\
\end{align*}
\]

Σ-types

\[
\begin{align*}
\Gamma \vdash A \text{ type} & \quad \Gamma.A \vdash B \text{ type} \\
\Gamma \vdash \Sigma_{\Gamma}(A,B) \text{ type} & \\
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash a : A & \quad \Gamma.A \vdash B \text{ type} \\
\Gamma \vdash \text{pair}_{\Gamma,A,B}(a, b) : \Sigma(A,B) & \\
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash a : A & \quad \Gamma.A \vdash B \text{ type} \\
\Gamma \vdash \text{pair}_{\Gamma,A,B}(a, b) : \Sigma(A,B) & \\
\end{align*}
\]
\[
\frac{\Gamma \vdash A \text{ type} \quad \Gamma. A \vdash B \text{ type} \quad \Gamma \vdash \rho : \Sigma(A, B)}{\Gamma \vdash \text{fst}_{\Gamma, A, B}(\rho) : A} \quad \text{SIGMA/ELIM/FST}
\]

\[
\frac{\Gamma \vdash A \text{ type} \quad \Gamma. A \vdash B \text{ type} \quad \Gamma \vdash \rho : \Sigma(A, B)}{\Gamma \vdash \text{snd}_{\Gamma, A, B}(\rho) : B[\text{id}.\text{fst}(\rho)]} \quad \text{SIGMA/ELIM/SND}
\]

\[
\Delta \vdash \gamma : \Gamma \quad \Gamma \vdash A \text{ type} \quad \Gamma. A \vdash B \text{ type} \\
\Delta \vdash \Sigma_{\gamma}(A, B)[\gamma] = \Sigma_{\Delta}(A[\gamma], B[(\gamma \circ p).q]) \text{ type}
\]

\[
\Delta \vdash \gamma : \Gamma \quad \Gamma \vdash a : A \quad \Gamma. A \vdash B \text{ type} \quad \Gamma \vdash b : B[\text{id}.a] \\
\Gamma \vdash \text{pair}(a, b)[\gamma] = \text{pair}(a[\gamma], b[\gamma]) : \Sigma(A, B)[\gamma]
\]

\[
\Delta \vdash \gamma : \Gamma \quad \Gamma \vdash A \text{ type} \quad \Gamma. A \vdash B \text{ type} \quad \Gamma \vdash \rho : \Sigma(A, B) \\
\Gamma \vdash \text{fst}(\rho)[\gamma] = \text{fst}(\rho[\gamma]) : A[\gamma]
\]

\[
\Delta \vdash \gamma : \Gamma \quad \Gamma \vdash A \text{ type} \quad \Gamma. A \vdash B \text{ type} \quad \Gamma \vdash \rho : \Sigma(A, B) \\
\Gamma \vdash \text{snd}(\rho)[\gamma] = \text{snd}(\rho[\gamma]) : B[(\text{id} \circ \text{fst}(\rho)) \circ \gamma]
\]

\[
\frac{\Gamma \vdash a : A \quad \Gamma. A \vdash B \text{ type} \quad \Gamma \vdash b : B[\text{id}.a]}{\Gamma \vdash \text{fst}(\text{pair}(a, b)) = a : A}
\]

\[
\frac{\Gamma \vdash a : A \quad \Gamma. A \vdash B \text{ type} \quad \Gamma \vdash b : B[\text{id}.a]}{\Gamma \vdash \text{snd}(\text{pair}(a, b)) = b : B[\text{id}.a]}
\]

\[
\frac{\Gamma \vdash A \text{ type} \quad \Gamma. A \vdash B \text{ type} \quad \Gamma \vdash \rho : \Sigma(A, B)}{\Gamma \vdash \rho = \text{pair}(\text{fst}(\rho), \text{snd}(\rho)) : \Sigma(A, B)}
\]

Extensional equality types

\[
\frac{\Gamma \vdash a : A \quad \Gamma \vdash b : A}{\Gamma \vdash \text{Eq}_{\text{eq}/\text{form}}(A, a, b) \text{ type} \quad \text{EQ/FORM (ETT)}}
\]

\[
\frac{\Gamma \vdash a : A}{\Gamma \vdash \text{refl}_{\text{eq/intro}}(A, a, a) \text{ type} \quad \text{EQ/INTRO (ETT)}}
\]

\[
\Delta \vdash \gamma : \Gamma \\
\Delta \vdash \text{Eq}_{\text{eq}}(A, a, b)[\gamma] = \text{Eq}_{\Delta}(A[\gamma], a[\gamma], b[\gamma]) \text{ type} \quad \text{ETT}
\]

\[
\Delta \vdash \gamma : \Gamma \\
\Delta \vdash \text{refl}[\gamma] = \text{refl} : \text{Eq}(A, a, a)[\gamma] \quad \text{ETT}
\]
\[
\Gamma \vdash a : A \quad \Gamma \vdash b : A \quad \Gamma \vdash p : \text{Eq}(A, a, b) \\
\frac{}{\Gamma \vdash a = b : A} \quad \text{(ETT)}
\]

\[
\Gamma \vdash a : A \quad \Gamma \vdash b : A \quad \Gamma \vdash p : \text{Eq}(A, a, b) \\
\frac{}{\Gamma \vdash p = \text{refl} : \text{Eq}(A, a, b)} \quad \text{(ETT)}
\]

Unit type

\[
\vdash \Gamma \text{cx} \quad \text{UNIT/FORM} \quad \vdash \Gamma \text{cx} \quad \text{UNIT/INTRO}
\]

\[
\Delta \vdash \gamma : \Gamma \\
\frac{}{\Delta \vdash \text{Unit}_\Gamma[\gamma] = \text{Unit}_\Delta \text{type}}
\]

\[
\Delta \vdash \gamma : \Gamma \\
\frac{}{\Delta \vdash \text{tt}_\Gamma[\gamma] = \text{tt}_\Delta : \text{Unit}}
\]

\[
\Gamma \vdash a : \text{Unit} \\
\frac{}{\Gamma \vdash a = \text{tt} : \text{Unit}}
\]

Empty type

\[
\vdash \Gamma \text{cx} \quad \text{EMPTY/FORM} \quad \vdash \Gamma \text{cx} \quad \text{EMPTY/INTRO}
\]

\[
\Delta \vdash \gamma : \Gamma \\
\frac{}{\Delta \vdash \text{Void}_\Gamma[\gamma] = \text{Void}_\Delta \text{type}}
\]

\[
\Delta \vdash \gamma : \Gamma \\
\frac{}{\Delta \vdash \text{absurd}_{\Gamma, A}(b)[\gamma] = \text{absurd}_{A, \gamma}(b) : A[\gamma.b[\gamma]]}
\]

Boolean type

\[
\vdash \Gamma \text{cx} \quad \text{BOOL/FORM}
\]

\[
\vdash \Gamma \text{cx} \quad \text{BOOL/INTRO/TRUE} \\
\frac{}{\Gamma \vdash \text{true}_\Gamma : \text{Bool}}
\]

\[
\vdash \Gamma \text{cx} \quad \text{BOOL/INTRO/FALSE} \\
\frac{}{\Gamma \vdash \text{false}_\Gamma : \text{Bool}}
\]

\[
\Gamma \vdash b : \text{Bool} \\
\frac{\Gamma.\text{Bool} \vdash A \text{ type}}{\Gamma \vdash a_t : A[\text{id.true}]} \\
\frac{\Gamma.\text{Bool} \vdash A \text{ type}}{\Gamma \vdash a_f : A[\text{id.false}]} \\
\frac{}{\Gamma \vdash \text{if}_{\Gamma, A}(a_t, a_f, b) : A[\text{id.b}]} \quad \text{BOOL/ELIM}
\]
\[\Delta \vdash \gamma : \Gamma \]
\[\Delta \vdash \text{bool}_\Gamma [\gamma] = \text{bool}_\Delta : \text{bool} \]
\[\Delta \vdash \gamma : \Gamma \]
\[\Delta \vdash \text{true}_\Gamma [\gamma] = \text{true}_\Delta : \text{true} \]
\[\Delta \vdash \gamma : \Gamma \]
\[\Delta \vdash \text{false}_\Gamma [\gamma] = \text{false}_\Delta : \text{false} \]

\[\Delta \vdash \gamma : \Gamma \]
\[\Gamma \vdash b : \text{bool} \quad \Gamma.\text{bool} \vdash A \ 	ext{type} \quad \Gamma \vdash a_t : A[\text{true}] \quad \Gamma \vdash a_f : A[\text{false}] \]
\[\Delta \vdash \text{if}(a_t, a_f, b)[\gamma] = \text{if}(a_t[\gamma], a_f[\gamma], b[\gamma]) : A[\gamma].b[\gamma] \]
\[\Gamma \vdash \text{if}(a_t, a_f, \text{true}) = a_t : A[\text{true}] \]
\[\Gamma \vdash \text{if}(a_t, a_f, \text{false}) = a_f : A[\text{false}] \]

Natural number type

\[\vdash \Gamma \text{cx} \]
\[\Gamma \vdash \text{nat}_\Gamma \ 	ext{type} \]

\[\vdash \Gamma \text{cx} \]
\[\Gamma \vdash \text{nat}_\Gamma \text{intro/zero} \quad \Gamma \vdash n : \text{nat} \quad \Gamma \vdash \text{suc}_\Gamma (n) : \text{nat} \]

\[\Gamma \vdash a_z : A[\text{id}.\text{zero}] \quad \Gamma.\text{nat}.A \vdash a_s : A[\text{p}^2.\text{suc}(\text{q}[p])] \quad \Gamma \vdash n : \text{nat} \]
\[\Gamma \vdash \text{rec}_{\Gamma,A}(a_z, a_s, n) : A[\text{id}.n] \]

\[\Delta \vdash \gamma : \Gamma \]
\[\Gamma \vdash n : \text{nat} \]
\[\Delta \vdash \text{nat}_\Gamma [\gamma] = \text{nat}_\Delta : \text{nat} \]

\[\Delta \vdash \gamma : \Gamma \]
\[\Delta \vdash \text{zero}_\Gamma [\gamma] = \text{zero}_\Delta : \text{zero} \]
\[\Delta \vdash \text{suc}_\Gamma (n)[\gamma] = \text{suc}_\Delta (n[\gamma]) : \text{suc} \]

\[\Delta \vdash \gamma : \Gamma \quad \Gamma.\text{nat} \vdash A \ 	ext{type} \]
\[\Gamma \vdash a_z : A[\text{id}.\text{zero}] \quad \Gamma.\text{nat}.A \vdash a_s : A[\text{p}^2.\text{suc}(\text{q}[p])] \quad \Gamma \vdash n : \text{nat} \]
\[\Delta \vdash \text{rec}(a_z, a_s, n)[\gamma] = \text{rec}(a_z[\gamma], a_s[\gamma].(\gamma \circ \text{p}^2).\text{q}[\text{p}].\text{q}[\gamma], n[\gamma]) : A[\gamma.n[\gamma]] \]
\[\begin{align*}
\Gamma \vdash \text{Nat} &\vdash A \text{ type} & \Gamma \vdash a_z : A[\text{id.zero}] & \quad \Gamma \vdash a_z : A[\text{p}^2.\text{suc}(q[p])] \\
\Gamma \vdash \text{rec}(a_z, a_z, \text{zero}) = a_z : A[\text{id.zero}] \\
\Gamma \vdash \text{Nat} &\vdash A[\text{id.zero}] & \Gamma \vdash a_z : A[\text{id.zero}] & \quad \Gamma \vdash A \vdash \text{Nat} &\vdash A[\text{p}^2.\text{suc}(q[p])] & \Gamma \vdash n : \text{Nat} \\
\Gamma \vdash \text{rec}(a_z, a_z, \text{suc}(n)) = a_z[\text{id.n.rec}(a_z, a_z, n)] : A[\text{id.suc}(n)]
\end{align*} \]

Intensional equality types

\[\begin{align*}
\Gamma \vdash a : A & \quad \Gamma \vdash b : A & \quad \Gamma \vdash a : A \\
\Gamma \vdash \text{Id}_\Gamma(A, a, b) \text{ type} & \quad \Gamma \vdash \text{refl}_{\Gamma, a, a} : \text{Id}(A, a, a) \\
\Gamma \vdash a : A & \quad \Gamma \vdash b : A & \quad \Gamma \vdash p : \text{Id}(A, a, b) \\
\Gamma.A.A[p].\text{Id}(A[\text{p}^2], q[p], q) \vdash C \text{ type} & \quad \Gamma.A \vdash c : C[p.q.q.\text{refl}] \\
\Gamma \vdash J_{\Gamma,A,a,b,c}(c, p) : C[\text{id.a.b.p}] & \quad \text{ID/ELIM (ITT)}
\end{align*} \]

\[\begin{align*}
\Delta \vdash \gamma : \Gamma & \quad \Gamma \vdash a : A & \quad \Gamma \vdash b : A \\
\Delta \vdash \text{Id}_\Delta(A, a, b)[\gamma] = \text{Id}_\Delta(A[\gamma], a[\gamma], b[\gamma]) \text{ type} & \quad \text{(ITT)} \\
\Delta \vdash \gamma : \Gamma & \quad \Gamma \vdash a : A \\
\Delta \vdash \text{refl}[\gamma] = \text{refl} : \text{Id}(A[\gamma], a[\gamma], a[\gamma]) & \quad \text{(ITT)} \\
\Delta \vdash \gamma : \Gamma & \quad \Gamma \vdash a : A & \quad \Gamma \vdash b : A & \quad \Gamma \vdash p : \text{Id}(A, a, b) \\
\Gamma.A.A[p].\text{Id}(A[\text{p}^2], q[p], q) \vdash C \text{ type} & \quad \Gamma.A \vdash c : C[p.q.q.\text{refl}] \\
\Delta \vdash J(c, p)[\gamma] = J(c[((\gamma \circ p).q), p[\gamma]]) : C[\gamma.a[\gamma].b[\gamma].p[\gamma]] & \quad \text{(ITT)} \\
\Gamma \vdash a : A & \quad \Gamma.A.A[p].\text{Id}(A[\text{p}^2], q[p], q) \vdash C \text{ type} & \quad \Gamma.A \vdash c : C[p.q.q.\text{refl}] \\
\Gamma \vdash J(c, \text{refl}) = c[\text{id.a}] : C[\text{id.a.a.\text{refl}}] & \quad \text{(ITT)}
\end{align*} \]

Universes

\[\begin{align*}
\vdash \Gamma \text{cx} & \quad \text{UNI/FORM} & \quad \Gamma \vdash a : U_i \\
\Gamma \vdash U_{\Gamma, i} \text{ type} & \quad \text{EL/FORM} & \quad \Gamma \vdash \text{El}_{\Gamma, i}(a) \text{ type} \\
\Gamma \vdash c_0 : U_i & \quad \Gamma.A.\text{El}(c_0) \vdash c_1 : U_i & \quad \text{PI/CODE} \\
\Gamma \vdash \text{pi}_{\Gamma, i}(c_0, c_1) : U_i & \quad \Gamma \vdash c_0 : U_i & \quad \Gamma.A.\text{El}(c_0) \vdash c_1 : U_i \\
\Gamma \vdash \text{sig}_{\Gamma, i}(c_0, c_1) : U_i & \quad \text{SIG/CODE}
\end{align*} \]
\[
\begin{align*}
\Gamma \vdash c : U_i & \quad \Gamma \vdash x, y : \text{El}(c) \\
\hline
\Gamma \vdash \text{eq}_{\Gamma}(c, x, y) : U_i & \quad \text{EQ/CODE (ETT)} \\
\Gamma \vdash \text{id}_{\Gamma}(c, x, y) : U_i & \quad \text{ID/CODE (ITT)}
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash \text{cx} & \quad \text{UNIT/CODE} \\
\Gamma \vdash \text{unit}_{\Gamma} : U_i & \quad \text{UNIT/TYPE} \\
\Gamma \vdash \text{nat}_{\Gamma} : U_i & \quad \text{NAT/TYPE} \\
\Gamma \vdash \text{void}_{\Gamma} : U_i & \quad \text{VOID/TYPE}
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash \text{cx} & \quad \text{UNIT/TYPE} \\
\Gamma \vdash \text{bool}_{\Gamma} : U_i & \quad \text{BOOL/TYPE} \\
\Gamma \vdash \text{uni}_{\Gamma} : U_i & \quad \text{UNI/TYPE} \\
\Gamma \vdash c : U_i & \quad \text{U/TYPE}
\end{align*}
\]

\[
\begin{align*}
\Delta \vdash \gamma : \Gamma & \quad \Delta \vdash \text{El}(a)[\gamma] = \text{El}(a[\gamma]) : U_i \\
\Delta \vdash \text{lift} \gamma : \Gamma & \quad \text{LIFT/TYPE}
\end{align*}
\]

\[
\begin{align*}
\Delta \vdash \gamma : \Gamma & \quad \Delta \vdash \text{un}_i \gamma : \text{uni}_i : U_i \\
\Delta \vdash \text{uni}_i \gamma : \text{uni}_i : U_i & \quad \text{UNI/TYPE}
\end{align*}
\]

\[
\begin{align*}
\Delta \vdash \gamma : \Gamma & \quad \Delta \vdash \text{nat}_i \gamma : \text{nat}_i : U_i \\
\Delta \vdash \text{void}_i \gamma : \text{void}_i : U_i & \quad \text{VOID/TYPE}
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash c_0 : U_i & \quad \Gamma \vdash c_1 : U_i \\
\Gamma \vdash \text{El}(\text{pi}(c_0, c_1)) = \Pi(\text{El}(c_0), \text{El}(c_1)) \quad \text{TYPE/PAIR}
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash c_0 : U_i & \quad \Gamma \vdash c_1 : U_i \\
\Gamma \vdash \text{El}(\text{sig}(c_0)) = \Sigma(\text{El}(c_0), \text{El}(c_1)) \quad \text{TYPE/PAIR}
\end{align*}
\]
\[
\Gamma \vdash c : U_i \quad \Gamma \vdash x, y : El(c) \\
\Gamma \vdash El(eq(c, x, y)) = Eq(El(c), x, y) \text{ type} \tag{ETT}
\]

\[
\Gamma \vdash c : U_i \quad \Gamma \vdash x, y : El(c) \\
\Gamma \vdash El(id(c, x, y)) = Id(El(c), x, y) \text{ type} \tag{ITT} \\
\Gamma \vdash El(unit) = \text{Unit type}
\]

\[
\Gamma \vdash El(nat) = \text{Nat type} \quad \Gamma \vdash El(void) = \text{Void type} \quad \Gamma \vdash El(bool) = \text{Bool type}
\]

\[
j < i \\
\Gamma \vdash El(\text{uni}_j) = U_j \text{ type} \quad \Gamma \vdash c : U_i \quad \Gamma \vdash El_{i+1}(\text{lift}(c)) = \text{El}_i(c) \text{ type}
\]
Bibliography

[Bru72] N. G. de Bruijn. “Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem”. In: Indagationes Mathematicae 75.5 (1972), pp. 381–392. ISSN: 1385-7258. DOI: 10.1016/1385-7258(72)90034-0.
Bibliography

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Venue</th>
<th>DOI or URL</th>
</tr>
</thead>
</table>

