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Preface

Dependent type theory (henceforth just type theory) often appears arcane to outside

observers for a handful of reasons. First, as in the parable of the blind men and the

elephant, there are myriad perspectives on type theory. The family of languages in

this book, mutatis mutandis, can be accurately described as:

• the core language of assertions and proofs in proof assistants like Agda [Agda],
Rocq (formerly known as Coq) [Rocq], Lean [dMU21], and Nuprl [Con+85];

• a richly-typed functional programming language, as in Idris [Bra13] and Pie

[FC18], and the aforementioned proof assistants Agda [Stu16] and Lean [Chr23].

• an axiom system for reasoning synthetically in a number of mathematical set-

tings, including locally cartesian closed 1-categories [Hof95b], homotopy types

[Shu21], and Grothendieck∞-topoi [Shu19];

• a structural [Tse17], constructive [Mar82] foundation for mathematics as an
alternative to ZFC set theory [Alt23].

A second difficulty is that it is quite complex to even define type theory in a

precise fashion, for reasons we shall discuss in Section 2.2, and the relative merits

of different styles of definition—and even which ones satisfactorily define any object

whatsoever—have been the subject of great debate among experts over the years.

Third, much of the literature on type theory is highly technical—involving either

lengthy proofs by induction or advanced mathematical machinery—in order to account

for its complex definition and applications.

Finally, and perhaps most confusingly of all, dependent type theory is not a single

logic, language, axiom system, or foundation; it is a family of systems descended from

the 1971 work of philosopher Per Martin-Löf [Mar71],
1
whose notable members include

extensional type theory [Mar82], intensional type theory [Mar75], observational type

theory [AMS07; PT22], homotopy type theory [UF13; Rij22], and various cubical type

theories [CCHM18; Ang+21]. Indeed, every proof assistant and programming language

mentioned above is built atop a different core type theory.

In this book, we present a modern research perspective on the design of “full-

spectrum” dependent type theories, those descended from Martin-Löf’s 1971 theory.

1
Which of course has its own ancestors, including Russell’s doctrine of types [Rus03].
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Our goal is to pose and begin to answer the following questions: What makes a good
type theory, and why are there so many? We focus on notions of equality in Martin-Löf
type theory as a microcosm of this broader question, studying how extensional, inten-

sional, observational, homotopy, and cubical type theories have provided increasingly

sophisticated answers to this deceptively simple question.

Although the design of type theory is inextricably linked to its applications (both

theoretical and practical), we stress that this book focuses only on the design of type

theory, as an object of study in its own right; there are many other resources for read-

ers interested in learning how to use type theory as a formal logic or programming

language. After studying this book, readers should be prepared to engage with con-

temporary research on type theory, and to understand the motivations behind various

extensions of Martin-Löf’s dependent type theory.

This book is in draft form. The authors welcome any feedback, includ-
ing typos and relevant citations.

How to use this book This book started as shared lecture notes for graduate courses

on dependent type theory taught simultaneously by the authors at Indiana University

and Aarhus University in Spring 2024. As such, it is designed to be read in a linear

fashion, with each chapter and section depending on many of the sections that come

before it, with a few exceptions as follows.

Sections marked with
★
, such as Section 2.7, are considered optional and are not

referenced until much later in the book if ever; these sections cover topics that we

consider important but nevertheless tangential to the immediate narrative. Smaller

tangents are confined to Remarks and Advanced Remarks, the latter requiring more

advanced mathematical prerequisites such as category theory. These often provide

useful context or intuition but are again not integral to the main narrative.

A one-semester graduate course should cover all of the non-optional material in

Chapters 1 to 4, which discuss extensional type theory, metatheory and implementation,

and intensional type theory. If taught at a brisk pace, this should leave a few weeks

for additional topics of the lecturer’s choice, which can be drawn from the remainder

of the book. Chapters 5 and 6 (on homotopy type theory and semantics, respectively)

depend on Chapters 1 to 4 but not on each other, and can be tackled in either order.

We expect that neither will fit in its entirety into the aforementioned one-semester

course, but we felt that the book would be incomplete without both present.

To the independent reader, we likewise strongly recommend reading the non-

optional sections of Chapters 1 to 4 in order, and seasoning to taste with some optional

sections and Chapters 5 and 6. Even the most targeted of reads should include a skim

of Chapter 2, which introduces the main ideas and notations used throughout.
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Figure 0.1: Dependency graph of sections.

For a more detailed account of cross-section dependencies, see Figure 0.1. Dashed

lines represent dependencies that are more superficial in nature; thick borders indicate

what we regard as the core sections of the book. Note that reading the book in textual

order satisfies all dependencies, but also that some sections can be safely deferred.

We end every chapter with a discussion of related literature, and encourage readers

to follow these pointers to learn about these topics in greater depth. We have also

attempted to include many references throughout the main body of the text, and the

lengthy bibliography should also be considered a useful resource for further study.

Finally, we have included some exercises throughout the text to reinforce important

concepts; for best results, the reader should work through at least some of these.

Solutions to selected exercises can be found in Appendix B.

Who is this book for? First and foremost, this book is intended as a resource for

early Ph.D. and advanced master’s students in computer science, mathematics, and

philosophy who wish to engage with current research in dependent type theory, such

as the syntax and semantics of homotopy, modal, and cubical type theories. We hope

that it also serves as a comprehensive resource for seasoned researchers in adjacent

areas, such as programming language theory or homotopy theory, who want to learn

about the technical principles guiding the design of type theories.

We have strived to minimize the book’s formal prerequisites besides a working

knowledge of basic discrete mathematics and, yes, the dreaded mathematical maturity.
We do not strictly assume prior familiarity with dependent type theory itself, but the

reader should ideally have a passing familiarity with using dependent type theory in

some proof assistant, as the book is light on background motivation.

In Chapter 1 we briefly motivate dependent types with a series of programming ex-

amples in Agda syntax which presuppose some basic familiarity with typed functional
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programming. Readers who lack this familiarity but have previously seen dependent

types should be able to safely skim Chapter 1 and start reading carefully at Chapter 2.

In Section 2.1 we assume the reader is familiar with judgments and inference

rules as a method of specifying simpler formal systems such as predicate logic or

the simply-typed lambda calculus. These topics are more than adequately covered

by a one-semester course on programming language theory or logic; by the first few

chapters of textbooks on programming language theory, such as Pierce [Pie02] or

Harper [Har16]; and by the first few chapters of many textbooks about using dependent

type theory, such as Rijke [Rij22].

Sections 3.1 to 3.3 discuss the implementation of type theory on computers, but

do not intend to assume much if any computer science expertise. Sections 3.2 and 3.6

make essential reference to computability and decidability but require only a very

superficial understanding of basic computability theory.

In Chapter 6 we revisit Chapters 2 and 3 using the language of category theory;

naturally, this chapter—and only this chapter—requires a working knowledge of basic

category theory as covered in a one-semester graduate course or the first four chapters

of Riehl [Rie16]. Readers without this prerequisite can simply skip Chapter 6, although

we hope that some will use this chapter as an invitation to learn category theory.

TODO below here. Add: pointers to the literature; why we wrote the book

(provide a coherent narrative of the first 50 years of type theory); discuss con-

tents in more detail; we have attempted to provide citations but it’s hard and

(although the field is young enough that we have been fortunate to meet many

of these people) we weren’t there. We have generally attempted to only include

“canonical” stuff but there are a few mentions of active but less-settled things

(OTT, cubical type theory). We have tried to be generally standard about termi-

nology and notation unless we felt strongly (examples?). See CUP proposal.

Notes to the expert We briefly remark on some editorial decisions that may surprise

experts in type theory. First, we emphasize that this book is about the design of type

theory, not how to use it. We therefore provide relatively few examples of working

within type theory, focusing instead on type theories quamathematical objects in their

own right. This focus sets us apart from most textbooks on the subject, which take a

single theory for granted and explore its characteristics as a foundation of mathematics

and/or functional programming language.

In light of this focus, experts may be surprised to find that our presentation does

not explicitly rely on category theory. This was a difficult decision for the authors,

both of whom view type theory from a categorical perspective, but we believe it is

simply not feasible to insist that students begin their journey into type theory by first
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reading a book on category theory, and early attempts to simultaneously introduce

category theory and type theory felt unsatisfactory on both counts.

That said, we do not attempt in any way to hide the presence of categories, functors,

and naturality in the foundations of type theory. On the contrary, in Chapter 2we define

various connectives by the functors they (co)represent, phrased in more elementary

language. We hope our exposition is accessible to readers encountering type theory

for the first time, but also plainly categorical in flavor to those with more mathematical

background. Moreover, Chapter 6 revisits many of the topics of Chapter 2 from a

purely categorical perspective.

Our perspective on type theory is deeply algebraic: we regard the judgments of

type theory as being indexed by well-formed contexts and types, all defined only up

to definitional equality. As a result, it is straightforward for us to introduce the notion

of a model of type theory in Section 3.4, of which syntax is the initial example.

Finally, we have aimed to confine the non-optional sections of this book to fit

within a semester of brisk lectures. For this reason we have elided numerous topics

of interest, including a systematic treatment of inductive types, more discussion of

elaboration, proofs of normalization, and countless interesting variations of type theory.

Particularly painful omissions include a discussion of quotient types in Chapter 2 and

an explanation of univalence as a universal property of the universe in Chapter 5.
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Introduction 1
The other five chapters of this book define, motivate, and analyze a series of increasingly

complex dependent type theories from first principles. This chapter has a rather

different purpose: to introduce the basic concepts of full-spectrum dependent type

theory—type and term dependency, definitional equality, and propositional equality—

from the user’s perspective. After all, it is difficult to understand abstract concepts

without some awareness of how they may be applied.

For this task we must fix a perspective on dependent type theory, and for better

or for worse we choose to view it in this chapter as a typed functional programming

language, using Agda syntax [Agda]. Any choice has the effect of potentially alienating

some readers, but we hope that most readers are able to at least partially follow the

narrative. We assure you that the remainder of the book is rather different from this

chapter, and is quite self-contained albeit perhaps lacking in top-level motivation. In

particular, the remainder of the book does not assume familiarity with programming.

In this chapter In Section 1.1 we introduce dependent types through the traditional

example of length-indexed vectors. In Section 1.2 we turn our attention to full-spectrum

dependency and the role of definitional equality, studying a dependently-typed im-

plementation of sprintf. Finally, in Section 1.3 we discover that typing even simple

list-processing functions can require inductive equational reasoning, motivating us to

introduce propositional equality and the propositions as types correspondence between
typed functional programming and formal logic.

Goals of the chapter By the end of this chapter, you will be able to:

• Give examples of full-spectrum dependency.

• Explain the role of definitional equality in type-checking, and how and why it

differs from ordinary closed-term evaluation.

• Explain the role of propositional equality in type-checking.
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1.1 Uniform dependency: length-indexed vectors

What does it mean for a programming language to be typed? Throughout this book, we

will regard a language’s (static) type system as its grammar, not as one ofmany potential

static analyses that might be enabled or disabled.
1
Indeed, just as a parser may reject

as nonsense a program whose parentheses are mismatched, or an untyped language’s

interpreter may reject as nonsense a program containing unbound identifiers, a type-

checker may reject as nonsense the program 1 + "hi" on the grounds that—much like

the previous two examples—there is no way to successfully evaluate it.

A type system divides a language’s well-parenthesized, well-scoped expressions

into a collection of sets. The expressions of type Nat are those that “clearly” compute

natural numbers, such as literal natural numbers (0, 1, 120), arithmetic expressions

(1+ 1), and fully-applied functions that return natural numbers (fact 5, atoi "120"); the
expressions of type String are those that clearly compute strings ("hi", itoa 5); and

for any types 𝐴 and 𝐵, the expressions of type 𝐴→ 𝐵 are those that clearly compute

functions that, when passed an input of type 𝐴, clearly compute an output of type 𝐵.

What do we mean by “clearly”? One typically insists that type-checking be fully

automated, much like parsing and identifier resolution. Given that determining the

result of a program is in general undecidable, any automated type-checking process will

necessarily compute a conservative underapproximation of the set of programs that

compute (e.g.) natural numbers. (Likewise, languages may complain about unbound

identifiers even in programs that can be evaluated without a runtime error!)

The goal of a type system is thus to rule out as many undesirable programs as

possible without ruling out too many desirable ones, where both of these notions

are subjective depending on which runtime errors one wants to rule out and which

programming idioms one wants to support. Language designers engage in the nev-

erending process of refining their type systems to rule out more errors and accept

more correct code. Full-spectrum dependent types can be seen as an extreme point in

this design space in the sense that they can capture highly sophisticated invariants of

functional programs, as we will see momentarily.

Every introduction to dependent types starts with the example of vectors, or lists

with specified length. We start one step earlier by considering lists with a specified

type of elements, a type which already exhibits a basic form of dependency.

Parameterizing by types One of the most basic data structures in functional pro-

gramming languages is the list, which is either empty (written []) or consists of an
1
The latter perspective is valid, but we wish to draw a sharp distinction between types qua (structural)

grammar, and static analyses that may be non-local, non-structural, or non-substitutive in nature.
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element 𝑥 adjoined to a list xs (written 𝑥 :: xs). Typed languages typically require that

a list’s elements all have the same type, in order to track what operations they support.

The simplest way to record this information is to have a separate type of lists for

each type of element: a ListOfNats is either empty or a Nat adjoined to a ListOfNats,
a ListOfStrings is either empty or a String adjoined to a ListOfStrings, etc.

data ListOfNats : Set2 where
[] : ListOfNats
_::_ : Nat→ ListOfNats→ ListOfNats

data ListOfStrings : Set where
[] : ListOfStrings
_::_ : String→ ListOfStrings→ ListOfStrings

This strategy clearly results in repetition at the level of the type system, but it

also causes code duplication because operations that work uniformly for any type

of elements (such as reversing a list) must be defined twice, once each for the two

apparently unrelated types ListOfNats and ListOfStrings.
In much the same way that functions—terms indexed by terms—promote code

reuse by allowing programmers to write a series of operations once and perform them

on many different inputs, we can solve both problems described above by allowing

types and terms to be uniformly parameterized by types. For example, we may consider

the types ListOfNats and ListOfStrings as two instances (List Nat and List String) of
a single family of types List as follows:

data List (𝐴 : Set) : Set where
[] : List 𝐴
_::_ : 𝐴→ List 𝐴→ List 𝐴

and any operation that works for all element types 𝐴, such as returning the first (or all

but first) element of a list, can be written as a family of operations:

head : (𝐴 : Set) → List 𝐴→ 𝐴

head 𝐴 [] = error "List must be non-empty."
head 𝐴 (𝑥 :: xs) = 𝑥

tail : (𝐴 : Set) → List 𝐴→ List 𝐴
tail 𝐴 [] = error "List must be non-empty."
tail 𝐴 (𝑥 :: xs) = xs

2
For the time being, the reader should understand − : Set as notation meaning “− is a type.”
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By partially applying head to its type argument, we see that head Nat has type
List Nat → Nat and head String has type List String → String, and the expression

1+ (head Nat (1 :: [])) has type Nat whereas 1+ (head String ("hi" :: [])) is ill-typed
because the second input to + has type String.

Parameterizing types by terms The perfectionist reader may find the List 𝐴 type

unsatisfactory because it does not prevent runtime errors caused by applying head
and tail to the empty list []. We cannot simply augment our types to track which lists

are empty, because 2 :: 1 :: [] and 1 :: [] are both nonempty but we can apply tail Nat
twice to the former before encountering an error, but only once to the latter.

Instead, we parameterize the type of lists not only by their type of elements but

also by their length—a term of type Nat—producing the following family of types:
3

data Vec (𝐴 : Set) : Nat→ Set where
[] : Vec 𝐴 0

_::_ : {𝑛 : Nat} → 𝐴→ Vec 𝐴 𝑛 → Vec 𝐴 (suc 𝑛)

Types parameterized by terms are known as dependent types.
Now the types of concrete lists are more informative—(2 :: 1 :: []) : Vec Int 2 and

(1 :: []) : Vec Int 1—but more importantly, we can give head and tailmore informative

types which rule out the runtime error of applying them to empty lists. We do so by

revising their input type to Vec 𝐴 (suc 𝑛) for some 𝑛 : Nat, which is to say that the

vector has length at least one, hence is nonempty:

head : {𝐴 : Set} {𝑛 : Nat} → Vec 𝐴 (suc 𝑛) → 𝐴

-- head [] is impossible
head (𝑥 :: xs) = 𝑥

tail : {𝐴 : Set} {𝑛 : Nat} → Vec 𝐴 (suc 𝑛) → Vec 𝐴 𝑛
-- tail [] is impossible
tail (𝑥 :: xs) = xs

Consider now the operation that concatenates two vectors:

append : {𝐴 : Set} {𝑛 : Nat} {𝑚 : Nat} → Vec 𝐴 𝑛 → Vec 𝐴𝑚 → Vec 𝐴 (𝑛 +𝑚)

Unlike our previous examples, the output type of this function is indexed not by a

variable 𝐴 or 𝑛, nor a constant Nat or 0, nor even a constructor suc −, but by an

expression 𝑛 +𝑚. This introduces a further complication, namely that we would like

3
Curly braces {𝑛 : Nat} indicate implicit arguments automatically inferred by the type-checker; the

term suc 𝑛 constructs the successor 1 + 𝑛 of a natural number 𝑛 : Nat.
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this expression to be simplified as soon as 𝑛 and𝑚 are known. For example, if we apply

append to two vectors of length one (𝑛 = 𝑚 = 1), then the result will be a vector of

length two (𝑛 +𝑚 = 1 + 1 = 2), and we would like the type system to be aware of this

fact in the sense of accepting as well-typed the expression head (tail (append 𝑙 𝑙 ′))
for 𝑙 and 𝑙 ′ of type Vec Nat 1.

Because head (tail 𝑥) is only well-typed when 𝑥 has type Vec 𝐴 (suc (suc 𝑛)) for
some 𝑛 : Nat, this condition amounts to requiring that the expression append 𝑙 𝑙 ′ not
only has type Vec𝐴 ((suc 0) + (suc 0)) as implied by the type of append, but also type
Vec 𝐴 (suc (suc 0)) as implied by its runtime behavior. In short, we would like the

two type expressions Vec 𝐴 (1 + 1) and Vec 𝐴 2 to denote the same type by virtue of

the fact that 1 + 1 and 2 denote the same value. In practice, we achieve this by allowing

the type-checker to evaluate expressions in types during type-checking.
In fact, the length of a vector can be any expression whatsoever of type Nat.

Consider filter, which takes a function 𝑓 : 𝐴→ Bool and a list and returns the sublist

for which 𝑓 returns true. If the input list has length 𝑛, what is the length of the output?

filter : {𝐴 : Set} {𝑛 : Nat} → (𝐴→ Bool) → Vec 𝐴 𝑛 → Vec 𝐴 ?

After a moment’s thought we realize the length is not a function of 𝑛 at all, but rather

a recursive function of the input function and list:

filter : {𝐴 : Set} {𝑛 : Nat} → (𝑓 : 𝐴→ Bool) → (𝑙 : Vec 𝐴 𝑛) →
Vec 𝐴 (filterLen 𝑓 𝑙)

filterLen : {𝐴 : Set} {𝑛 : Nat} → (𝐴→ Bool) → Vec 𝐴 𝑛 → Nat
filterLen 𝑓 [] = 0

filterLen 𝑓 (𝑥 :: xs) = if 𝑓 (𝑥) then suc (filterLen 𝑓 xs) else filterLen 𝑓 xs

As before, once 𝑓 and 𝑙 are known the type of filter 𝑓 𝑙 : Vec 𝐴 (filterLen 𝑓 𝑙) will
simplify by evaluating filterLen 𝑓 𝑙 , but as long as either remains a variable we cannot

learn much by computation. Nevertheless, filterLen has many properties of interest:

filterLen 𝑓 𝑙 is at most the length of 𝑙 , filterLen (𝜆𝑥 → false) 𝑙 is always 0 regardless

of 𝑙 , etc. We will revisit this point in Section 1.3.

Remark 1.1.1. If we regard Nat and + as a user-defined data type and recursive

function on it, as type theorists are wont to do, then filter’s type using filterLen is

entirely analogous to append’s type using +. We wish to emphasize that, whereas one

could easily imagine natural numbers and addition being a privileged component of

the type system, filter demonstrates that type indices may need to contain arbitrary

user-defined recursive functions. ⋄
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Another approach? If our only goal was to eliminate runtime errors from head
and tail, we might reasonably feel that dependent types have overcomplicated the

situation—we needed to introduce a new function just to write the type of filter! And
indeed there are simpler ways of keeping track of the length of lists, as follows.

First let us observe that a lower bound on a list’s length is sufficient to guar-

antee it is nonempty and thus that an application of head or tail will succeed; this
allows us to trade precision for simplicity by restricting type indices to be arithmetic

expressions. Secondly, in the above examples we can perform type-checking and

“length-checking” in two separate phases, where the first phase replaces every occur-

rence of Vec 𝐴 𝑛 with List 𝐴 before applying a standard non-dependent type-checking

algorithm. This is possible because we can regard the dependency in Vec 𝐴 𝑛 as

expressing a computable refinement—or subset—of the non-dependent type of lists,
namely {𝑙 : List 𝐴 | length 𝑙 = 𝑛}.

Combining these insights, we can by and large automate length-checking by

recasting the type dependency of Vec in terms of arithmetic inequality constraints

over an ML-style type system, and checking these constraints with SMT solvers and

other external tools. At a very high level, this is the approach taken by systems such

as Dependent ML [Xi07] and Liquid Haskell [Vaz+14]. Dependent ML, for instance,

type-checks the usual definition of filter at the following type, without any auxiliary

filterLen definition:

filter : Vec 𝐴𝑚 → ({𝑛 : Nat | 𝑛 ≤ 𝑚} × Vec 𝐴 𝑛)

Refinement type systems like these have proven very useful in practice and continue

to be actively developed, but we will not discuss them any further for the simple reason

that, although they are a good solution to head/tail and many other examples, they

cannot handle full-spectrum dependency as discussed below.

1.2 Non-uniform dependency: computing arities

Thus far, all our examples of (type- or term-) parameterized types are uniformly
parameterized, in the sense that the functions List : Set→ Set and Vec 𝐴 : Nat→ Set
do not inspect their arguments; in contrast, ordinary term-level functions out of Nat
such as fact : Nat→ Nat can and usually do perform case-splits on their inputs. In

particular, we have not yet considered any families of types in which the head, or

top-level, type constructor (→, Vec, Nat, etc.) differs between indices.

A type theory is said to have full-spectrum dependency if it permits the use of

non-uniformly term-indexed families of types, such as the following Nat-indexed family:
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nary : Set→ Nat→ Set
nary 𝐴 0 = 𝐴

nary 𝐴 (suc 𝑛) = 𝐴→ nary 𝐴 𝑛

Although Vec Nat and nary Nat are both functions Nat→ Set, the latter’s head type

constructor varies between indices: nary Nat 0 = Nat but nary Nat 1 = Nat→ Nat.
Using nary to compute the type of 𝑛-ary functions, we can now define not only

varadic functions but even higher-order functions taking variadic functions as input,

such as apply which applies an 𝑛-ary function to a vector of length 𝑛:

apply : {𝐴 : Set} {𝑛 : Nat} → nary 𝐴 𝑛 → Vec 𝐴 𝑛 → 𝐴

apply 𝑥 [] = 𝑥
apply 𝑓 (𝑥 :: xs) = apply (𝑓 𝑥) xs

For𝐴 = Nat and 𝑛 = 1, apply applies a unary function Nat→ Nat to the head element

of a Vec Nat 1; for 𝐴 = Nat and 𝑛 = 3, it applies a ternary function Nat → Nat →
Nat→ Nat to the elements of a Vec Nat 3:

apply suc (1 :: []) : Nat -- evaluates to 2

apply _+_ : Vec Nat 2→ Nat
apply _+_ (1 :: 2 :: []) : Nat -- evaluates to 3

apply (𝜆𝑥 𝑦 𝑧 → 𝑥 + 𝑦 + 𝑧) (1 :: 2 :: 3 :: []) : Nat -- evaluates to 6

Although apply is not the first time we have seen a function whose type involves a

different recursive function—we saw this already with filter—this is our first example of

a function that cannot be straightforwardly typed in an ML-style type system. Another

way to put it is that nary 𝐴 𝑛 → Vec 𝐴 𝑛 → 𝐴 is not the refinement of an ML type

because nary 𝐴 𝑛 is sometimes but not always a function type.

Remark 1.2.1. For the sake of completeness, it is also possible to consider non-
uniformly type-indexed families of types, which go by a variety of names including

non-parametric polymorphism, intensional type analysis, and typecase [HM95]. These

often serve as optimized implementations of uniformly type-indexed families of types;

a classic non-type-theoretic example is the C++ family of types std::vector for

dynamically-sized arrays, whose std::vector<bool> instance may be compactly

implemented using bitfields. ⋄

To understand the practical ramifications of non-uniform dependency, we will turn

our attention to a more complex example: a basic implementation of sprintf in Agda

(Figure 1.1). This function takes as input a String containing format specifiers such as

%u (indicating a Nat) or %s (indicating a String), as well as additional arguments of the
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data Token : Set where
char : Char→ Token
intTok : Token
natTok : Token
chrTok : Token
strTok : Token

lex : List Char→ List Token
lex [] = []
lex (’%’ :: ’%’ :: cs) = char ’%’ :: lex cs
lex (’%’ :: ’d’ :: cs) = intTok :: lex cs
lex (’%’ :: ’u’ :: cs) = natTok :: lex cs
lex (’%’ :: ’c’ :: cs) = chrTok :: lex cs
lex (’%’ :: ’s’ :: cs) = strTok :: lex cs
lex (𝑐 :: cs) = char 𝑐 :: lex cs

args : List Token→ Set
args [] = String
args (char _ :: toks) = args toks
args (intTok :: toks) = Int→ args toks
args (natTok :: toks) = Nat→ args toks
args (chrTok :: toks) = Char→ args toks
args (strTok :: toks) = String→ args toks

printfType : String→ Set
printfType 𝑠 = args (lex (toList 𝑠))

sprintf : (𝑠 : String) → printfType 𝑠
sprintf 𝑠 = loop (lex (toList 𝑠)) ""

where
loop : (toks : List Token) → String→ args toks
loop [] acc = acc
loop (char 𝑐 :: toks) acc = loop toks (acc ++ fromList (𝑐 :: []))
loop (intTok :: toks) acc = 𝜆𝑖 → loop toks (acc ++ showInt 𝑖)
loop (natTok :: toks) acc = 𝜆𝑛 → loop toks (acc ++ showNat 𝑛)
loop (chrTok :: toks) acc = 𝜆𝑐 → loop toks (acc ++ fromList (𝑐 :: []))
loop (strTok :: toks) acc = 𝜆𝑠 → loop toks (acc ++ 𝑠)

Figure 1.1: A basic Agda implementation of sprintf.
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appropriate type for each format specifier present, and returns a String in which each

format specifier is replaced by the corresponding argument rendered as a String.

sprintf "%s %u" "hi" 2 : String -- evaluates to "hi 2"
sprintf "%s" : String→ String
sprintf "nat %u then int %d then char %c" : Nat→ Int→ Char→ String
sprintf "%u" 5 : String -- evaluates to "5"
sprintf "%u%% of %s%c" 3 "GD" ’P’ : String -- evaluates to "3% of GDP"

Our implementation uses various types and functions imported from Agda’s stan-

dard library, notably toList : String→ List Char which converts a string to a list of

characters (length-one strings ’x’). It consists of four main components:

• a data type Tokenwhich enumerates all relevant components of the input String,
namely format specifiers (such as natTok : Token for %u and strTok : Token for

%s) and literal characters (char ’x’ : Token);

• a function lex which tokenizes the input string, represented as a List Char, from
left to right into a List Token for further processing;

• a function args which converts a List Token into a function type containing the

additional arguments that sprintf must take; and

• the sprintf function itself.

Let us begin by convincing ourselves that our first example type-checks:

sprintf "%s %u" "hi" 2 : String -- evaluates to "hi 2"

Because sprintf : (𝑠 : String) → printfType 𝑠 , the partial application sprintf "%s %u"
has type printfType "%s %u". By evaluation, the type-checker can see that

printfType "%s %u" = args (strTok :: char ’ ’ :: natTok :: [])
= String→ Nat→ String

and thus sprintf "%s %u" : String→ Nat→ String; the remainder of the expression

type-checks easily.

Now let us consider the definition of sprintf, which uses a helper function loop :

(toks : List Token) → String→ args toks whose first argument stores the Tokens yet
to be processed, and whose second argument is the String accumulated from printing

the already-processed Tokens. What is needed to type-check the definition of loop?
We can examine a representative case in which the next Token is natTok:

loop (natTok :: toks) acc = 𝜆𝑛 → loop toks (acc ++ showNat 𝑛)
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Note that toks : List Token and acc : String are (pattern) variables, and the right-hand

side ought to have type args (natTok :: toks). We can type-check the right-hand

side—given that _++_ : String → String → String is string concatenation and

showNat : Nat → String prints a natural number—and observe that it has type

Nat→ args toks by the type of loop.
Type-checking this clause thus requires us to reconcile the right-hand side’s ex-

pected type args (natTok :: toks) with its actual type Nat→ args toks. Although these

type expressions are quite dissimilar—one is a function type and the other is not—the

definition of args contains a promising clause:

args (natTok :: toks) = Nat→ args toks

As in our earlier example of Vec 𝐴 (1 + 1) and Vec 𝐴 2 we would like the type

expressions args (natTok :: toks) and Nat → args toks to denote the same type, but

unlike the equation 1 + 1 = 2, here both sides contain a free variable toks so we cannot

appeal to evaluation, which is a relation on closed terms (ones with no free variables).

One can nevertheless imagine some form of symbolic evaluation relation that

extends evaluation to open terms and can equate these two expressions. In this

particular case, this step of closed evaluation is syntactically indifferent to the value of

toks and thus can be safely applied even when toks is a variable. (Likewise, to revisit

an earlier example, the equation filterLen 𝑓 [] = 0 should hold even for variable 𝑓 .)

Thus we would like the type expressions args (natTok :: toks) and Nat→ args toks
to denote the same type by virtue of the fact that they symbolically evaluate to the same
symbolic value, and to facilitate this we must allow the type-checker to symbolically
evaluate expressions in types during type-checking. The congruence relation on

expressions so induced is known as definitional equality because it contains defining

clauses like this one.

Remark 1.2.2. Semantically we can justify this equation by observing that for any

closed instantiation toks of toks, args (natTok :: toks) and Nat → args toks will
evaluate to the same type expression—at least, once we have defined evaluation of

type expressions—and thus this equation always holds at runtime. But just as (for

reasons of decidability) the condition “when this expression is applied to a natural

number it evaluates to a natural number” is a necessary but not sufficient condition

for type-checking at Nat→ Nat, we do not want to take this semantic condition as

the definition of definitional equality. It is however a necessary condition assuming

that the type system is sound for the given evaluation semantics. (See Section 3.4.) ⋄

Definitional equality is the central concept in full-spectrum dependent type theory

because it determines which types are equal and thus which terms have which types.
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In practice, it is typically defined as the congruence closure of the 𝛽-like reductions

(also known as 𝛽𝛿𝜁 𝜄-reductions) plus 𝜂-equivalence at some types; see Chapter 2.

1.3 Proving type equations

Unfortunately, in light of Remark 1.2.2, there are many examples of type equations

that are not direct consequences of ordinary or even symbolic evaluation. On occasion

these equations are of such importance that researchers may attempt to make them

definitional—that is, to include them in the definitional equality relation and adjust

the type-checking algorithm accordingly [AMB13]. But such projects are often major

research undertakings, and there are even examples of equations that can be definitional

but are in practice best omitted due to efficiency or usability issues [Alt+01].

Let us turn once again to the example of filter from Section 1.1.

filter : {𝐴 : Set} {𝑛 : Nat} → (𝑓 : 𝐴→ Bool) → (𝑙 : Vec 𝐴 𝑛) →
Vec 𝐴 (filterLen 𝑓 𝑙)

filterLen : {𝐴 : Set} {𝑛 : Nat} → (𝐴→ Bool) → Vec 𝐴 𝑛 → Nat
filterLen 𝑓 [] = 0

filterLen 𝑓 (𝑥 :: xs) = if 𝑓 (𝑥) then suc (filterLen 𝑓 xs) else filterLen 𝑓 xs

Suppose for the sake of argument that we want the operation of filtering an arbitrary

vector by the constantly false predicate to return a Vec 𝐴 0:

filterAll : {𝐴 : Set} {𝑛 : Nat} → Vec 𝐴 𝑛 → Vec 𝐴 0

filterAll 𝑙 = filter (𝜆𝑥 → false) 𝑙 -- does not type-check

The right-hand side above has type Vec 𝐴 (filterLen (𝜆𝑥 → false) 𝑙) rather than
Vec𝐴 0 as desired, and here the expression filterLen (𝜆𝑥 → false) 𝑙 cannot be simplified

by (symbolic) evaluation because filterLen computes by recursion on the vector, here

a variable 𝑙 . However, by induction on the possible instantiations of 𝑙 : Vec 𝐴 𝑛, either:

• 𝑙 = [], in which case filterLen (𝜆𝑥 → false) [] is definitionally equal to (in fact,

evaluates to) 0; or

• 𝑙 = 𝑥 :: xs, in which case we have the definitional equalities

filterLen (𝜆𝑥 → false) (𝑥 :: xs)
= if false then suc (filterLen (𝜆𝑥 → false) xs) else filterLen (𝜆𝑥 → false) xs
= filterLen (𝜆𝑥 → false) xs
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for any 𝑥 and xs. By the inductive hypothesis on xs, filterLen (𝜆𝑥 → false) xs = 0

and thus filterLen (𝜆𝑥 → false) (𝑥 :: xs) = 0 as well.

By adding a type of provable equations 𝑎 ≡ 𝑏 to our language, we can represent

this inductive proof as a recursive function computing filterLen (𝜆𝑥 → false) 𝑙 ≡ 0:

_≡_ : {𝐴 : Set} → 𝐴→ 𝐴→ Set
refl : {𝐴 : Set} {𝑥 : 𝐴} → 𝑥 ≡ 𝑥

lemma : {𝐴 : Set} {𝑛 : Nat} → (𝑙 : Vec 𝐴 𝑛) → filterLen (𝜆𝑙 → false) 𝑙 ≡ 0

lemma [] = refl
lemma (𝑥 :: xs) = lemma xs

The [] clause of lemma ought to have type filterLen (𝜆𝑙 → false) [] ≡ 0, which is

definitionally equal to the type 0 ≡ 0 and thus refl type-checks. The (𝑥 :: xs) clause
must have type filterLen (𝜆𝑙 → false) (𝑥 :: xs) ≡ 0, which is definitionally equal to

filterLen (𝜆𝑙 → false) xs ≡ 0, the expected type of the recursive call lemma xs.
Now armed with a function lemma that constructs for any 𝑙 : Vec 𝐴 𝑛 a proof that

filterLen (𝜆𝑙 → false) 𝑙 ≡ 0, we can justify casting from the typeVec𝐴 (filterLen (𝜆𝑙 →
false) 𝑙) to Vec 𝐴 0. The dependent casting operation that passes between provably

equal indices of a dependent type (here Vec 𝐴 : Nat→ Set) is typically called subst:

subst : {𝐴 : Set} {𝑥 𝑦 : 𝐴} → (𝑃 : 𝐴→ Set) → 𝑥 ≡ 𝑦 → 𝑃 (𝑥) → 𝑃 (𝑦)

filterAll : {𝐴 : Set} {𝑛 : Nat} → Vec 𝐴 𝑛 → Vec 𝐴 0

filterAll {𝐴} 𝑙 = subst (Vec 𝐴) (lemma 𝑙) (filter (𝜆𝑥 → false) 𝑙)

Remark 1.3.1. The subst operation above is a special case of a much stronger principle

stating that the two types 𝑃 (𝑥) and 𝑃 (𝑦) are isomorphic whenever 𝑥 ≡ 𝑦: we can not

only cast 𝑃 (𝑥) → 𝑃 (𝑦) but also 𝑃 (𝑦) → 𝑃 (𝑥) by symmetry of equality, and both

round trips cancel. So although a proof 𝑥 ≡ 𝑦 does not make the types 𝑃 (𝑥) and
𝑃 (𝑦) definitionally equal, they are nevertheless equal in the sense of having the same

elements up to isomorphism. ⋄

Uses of subst are very common in dependent type theory; because dependently-

typed functions can both require and ensure complex invariants, one must frequently

prove that the output of some function is a valid input to another.
4
Crucially, although

subst is an “escape hatch” that compensates for the shortcomings of definitional

4
A more realistic variant of our lemma might account for any predicate that returns false on all the

elements of the given list, not just the constantly false predicate. Alternatively, one might prove that for

any 𝑠 : String, the final return type of sprintf 𝑠 is String.
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equality, it cannot result in runtime errors—unlike explicit casts in most programming

languages—because casting 𝑃 (𝑥) → 𝑃 (𝑦) requires a machine-checked proof that 𝑥 ≡ 𝑦.
The dependent type 𝑥 ≡ 𝑦 is known as propositional equality, and it is perhaps

the second most important concept in dependent type theory because it is the source

of all non-definitional type equations visible within the theory. There are many

formulations of propositional equality; they all implement _≡_, refl, and subst but
differ in many other respects, and each has unique benefits and drawbacks. We will

discuss propositional equality at length in Chapters 4 and 5.

To foreshadow the design space of propositional equality, consider that the subst
operator may itself be subject to various definitional equalities. If we apply filterAll
to a closed vector ls, then lemma ls will evaluate to refl, so filterAll ls is definitionally
equal to subst (Vec𝐴) refl (filter (𝜆𝑥 → false) ls). At this point, filter (𝜆𝑥 → false) ls
already has the desired type Vec 𝐴 0 because filterLen (𝜆𝑥 → false) ls evaluates to 0,

and thus the two types involved in the cast are now definitionally equal. Ideally the

subst term would now disappear having completed its job, and indeed the definitional

equality subst 𝑃 refl 𝑥 = 𝑥 does hold for many versions of propositional equality.

Programming and proving The propositional equality type 𝑎 ≡ 𝑏 has a rather

different flavor than Nat, 𝐴 → 𝐵, Vec 𝐴 𝑛, printfType 𝑠 , and all the other types we

have seen so far. This is perhaps most evident in our choice of terminology: whereas

terms of the latter types all represent data or computations, terms of type 𝑎 ≡ 𝑏 are
machine-checked proofs, intended not as computations but as justifications for casts.

Indeed, as the reader may already know, dependent type theory is not just a

typed functional programming language but also an expressive higher-order logic

implemented in many modern proof assistants such as Lean [dMU21] and Rocq [Rocq].

This is certainly convenient in practice; as we saw in filterAll, proving theorems quickly

becomes an important ingredient of dependently-typed programming.

What is surprising is not that programming and proving are in symbiosis, but that

they are in fact two sides of the same coin—terms are simultaneously programs and

proofs, and types are simultaneously program specifications and logical propositions—a

remarkable fact known by many names, including the propositions as types correspon-
dence, the proofs as programs correspondence, the Curry–Howard correspondence, and
the Brouwer–Heyting–Kolmogorov interpretation.

We have already witnessed the proofs as programs correspondence at work in

lemma, where we rendered a proof by induction on vectors as a recursive function

lemma : {𝐴 : Set} {𝑛 : Nat} → (𝑙 : Vec 𝐴 𝑛) → filterLen (𝜆𝑙 → false) 𝑙 ≡ 0

where type-checking the function’s clauses amounts to proof-checking the inductive

argument. We can go one step further: if lemma is a dependent function that given any
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input 𝑙 : Vec 𝐴 𝑛 produces a proof of filterLen (𝜆𝑙 → false) 𝑙 ≡ 0, then it is also a proof
that for all 𝑙 : Vec 𝐴 𝑛, filterLen (𝜆𝑙 → false) 𝑙 ≡ 0. More generally, any dependent

function 𝑓 : (𝑥 : 𝐴) → 𝐵(𝑥) is simultaneously a proof of the proposition ∀𝑥 : 𝐴. 𝐵(𝑥).
Dependent function types are but one of the many types with a secret life as

a logical connective. As a second example, non-dependent function types 𝐴 → 𝐵

correspond logically to implications𝐴 =⇒ 𝐵, as in the following proposition asserting

that for all𝑚,𝑛 : Nat, if suc𝑚 ≡ suc 𝑛, then𝑚 ≡ 𝑛.

sucInjective : {𝑚 𝑛 : Nat} → (suc𝑚 ≡ suc 𝑛) →𝑚 ≡ 𝑛

Why? To know the antecedent suc𝑚 ≡ suc 𝑛 is to have a proof 𝑝 : suc𝑚 ≡ suc 𝑛, in
which case sucInjective 𝑝 :𝑚 ≡ 𝑛 is a proof of the consequent𝑚 ≡ 𝑛.

More examples will arise as we become acquainted with more types, but we provide

just one more for illustration. Given types 𝐴 and 𝐵, expressions of product type 𝐴 × 𝐵
are pairs (𝑎, 𝑏) of 𝑎 : 𝐴 and 𝑏 : 𝐵. Logically, product types 𝐴 × 𝐵 correspond to

conjunctions 𝐴 ∧ 𝐵, as to have a proof of a conjunction 𝐴 ∧ 𝐵 is to have proofs of both

𝐴 and of 𝐵. Conversely, the first and second projection functions fst : (𝐴 × 𝐵) → 𝐴

and snd : (𝐴 × 𝐵) → 𝐵 prove that 𝐴 ∧ 𝐵 implies 𝐴 and, separately, implies 𝐵.

Remark 1.3.2. There are several senses in which proofs correspond to programs and

propositions to types. The most straightforward but superficial correspondence is the

observation that the natural deduction rules governing (e.g.) logical implication are

formally identical to the typing rules governing functions [How80]. From a philo-

sophical perspective, the meaning explanations of Martin-Löf [Mar82] describe why,

following the tenets of intuitionism, programming and constructive proof can be seen

as one and the same activity. Finally, from a mathematical perspective, one can regard

type theory as a formal logic which admits an interpretation in computable functions

[Hyl82]. (See Section 3.4 for a brief discussion of the latter.) ⋄

Although many types have clear interpretations as both program specifications

and logical propositions, we note that some types have an obvious bias toward only

one of the two readings. For example, Nat has a clear meaning in terms of data but

not as a proposition, whereas 𝑎 ≡ 𝑏 has a clear meaning as a proposition but not as

data (see however Chapter 5!). We revisit this important point in Section 2.7; for now

we simply remark that the propositions as types correspondence has played a central

role in the advancement of both logic and programming languages.
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Further reading

Our four categories of dependency—types/terms depending on types/terms—are remi-

niscent of the lambda cube of generalized type systems in which one augments the

simply-typed lambda calculus (whose functions exhibit term-on-term dependency)

with any combination of the remaining three forms of dependency [Bar91]; adding all

three yields the full-spectrum dependent type theory known as the calculus of construc-

tions [CH88]. However, the technical details of this line of work differ significantly

from our presentation in Chapter 2.

The propositions as types correspondence exists in many forms and has been

extended by researchers over decades to encompass a wide range of logical and pro-

gramming constructs. Book-length expositions include Proofs and Types [GLT89] and
PROGRAM = PROOF [Mim20]. Despite its importance to type theory we will discuss it

only once more, in Section 2.7.

The code in this chapter is written in Agda syntax [Agda]. Formore on dependently-

typed programming in Agda, see Verified Functional Programming in Agda [Stu16];

for a more engineering-oriented perspective on dependent types, see Type-Driven
Development with Idris [Bra17]. The sprintf example in Section 1.2 is inspired by the

paper Cayenne — A Language with Dependent Types [Aug99]. Conversely, to learn about
using Agda as a proof assistant for programming language theory, see Programming
Language Foundations in Agda [WKS22].
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Extensional type theory 2
In order to understand the subtle differences between modern dependent type theories,

we must first study the formal definition of a dependent type theory as a mathemat-

ical object. We will then be prepared for Chapter 3, in which we consider various

mathematical properties of type theory—particularly in connection to definitional

and propositional equality—and how they affect computer implementations of type

theory. In this chapter we therefore present the judgmental theory of Martin-Löf’s

extensional type theory [Mar82], one of the canonical variants of dependent type theory.

We strongly suggest following the exposition rather than simply reading the rules, but

the rules are collected for convenience in Appendix A (ignoring the rules marked with

(ITT), which are present only in intensional type theory).

To focus our discussion we do not attempt to give a comprehensive account of the

syntax of type theories, nor do we present any of the many alternative methods of

defining type theory, some of which are more efficient (but more technical) than the

one we present here. These questions lead to the fascinating and deep area of logical
frameworks which we must regrettably leave for a different course.

See also Chapter 6.

In this chapter In Section 2.1 we recall the concepts of judgments and inference

rules in the setting of the simply-typed lambda calculus. In Section 2.2 we consider

how to adapt these methods to the dependent setting, and in Section 2.3 we develop

these ideas into the basic judgmental structure of dependent type theory, in which

substitution plays a key role. In Section 2.4 we extend the basic rules of type theory

with rules governing dependent products, dependent sums, extensional equality, and

unit types. We argue that these connectives can be understood as internalizations of
judgmental structure, a perspective which provides a conceptual justification of these

connectives’ rules. In Section 2.5 we define several inductive types—the empty type,

booleans, coproducts, and natural numbers—and explain how and why these types do

not fit the pattern of the previous section. In Section 2.6 we discuss large elimination,

which is implicit in our examples of full-spectrum dependency from Section 1.2, and its

internalization via universe types. Finally, in Section 2.7 we reconsider the propositions

as types correspondence and argue that only certain types are logical propositions.

Goals of the chapter By the end of this chapter, you will be able to:
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• Define the core judgments of dependent type theory, and explain how and why

they differ from the judgments of simple type theory.

• Explain the role of substitutions in the syntax of dependent type theory.

• Define and justify the rules of the core connectives of type theory.

2.1 The simply-typed lambda calculus

The theory of typed functional programming is built on extensions of a core language

known as the simply-typed lambda calculus, which supports two types of data:

• functions of type 𝐴 → 𝐵 (for any types 𝐴, 𝐵): we write 𝜆𝑥.𝑏 for the function

that sends any input 𝑥 of type 𝐴 to an output 𝑏 of type 𝐵, and write 𝑓 𝑎 for the

application of a function 𝑓 of type 𝐴→ 𝐵 to an input 𝑎 of type 𝐴; and

• ordered pairs of type 𝐴 × 𝐵 (for any types 𝐴, 𝐵): we write (𝑎, 𝑏) for the pair

of a term 𝑎 of type 𝐴 with a term 𝑏 of type 𝐵, and write fst(𝑝) and snd(𝑝)
respectively for the first and second projections of a pair 𝑝 of type 𝐴 × 𝐵.

It can also be seen as the implication–conjunction fragment of intuitionistic propo-

sitional logic, or as an axiom system for cartesian closed categories.

In this section we formally define the simply-typed lambda calculus as a collec-

tion of judgments presented by inference rules, in order to prepare ourselves for the

analogous—but considerably more complex—definition of dependent type theory in

the remainder of this chapter. Our goal is thus not to give a textbook account of the

simply-typed lambda calculus but to draw the reader’s attention to issues that will

arise in the dependent setting.

Readers familiar with the simply-typed lambda calculus should be aware that our

definition does not reference the untyped lambda calculus (as discussed in Remark 2.1.2)

and considers terms modulo 𝛽𝜂-equivalence (Section 2.1.2).

2.1.1 Contexts, types, and terms

The simply-typed lambda calculus is made up of two sorts, or grammatical categories,

namely types and terms. We present these sorts by two well-formedness judgments:

• the judgment 𝐴 type stating that 𝐴 is a well-formed type, and
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• for any well-formed type 𝐴, the judgment 𝑎 : 𝐴 stating that 𝑎 is a well-formed

term of that type.

By comprehension these judgments determine respectively the collection of well-

formed types and, for every element of that collection, the collection of well-formed

terms of that type. (From now on we will stop writing “well-formed” because we do

not consider any other kind of types or terms; see Remark 2.1.2.)

Remark 2.1.1. A judgment is simply a proposition in our ambient mathematics, one

which takes part in the definition of a logical theory; we use this terminology to

distinguish such meta-propositions from the propositions of the logic that is being

defined [Mar87]. Similarly, a sort is a type in the ambient mathematics, as distinguished

from the types of the theory being defined. We refer to the ambient mathematics (in

which our definition is being carried out) as themetatheory and the logic being defined

as the object theory.
In this book we will be relatively agnostic about our metatheory, which the reader

can imagine as “ordinary mathematics.” However, one can often simplify matters by

adopting a domain-specific metatheory (a logical framework) well-suited to defining

languages/logics, as an additional level of indirection within the ambient metatheory.

⋄

Types We can easily define the types as the expressions generated by the following

context-free grammar:

Types 𝐴, 𝐵 ::= b | 𝐴 × 𝐵 | 𝐴→ 𝐵

We say that the judgment𝐴 type (“𝐴 is a type”) holds when𝐴 is a type in the above

sense. Note that in addition to function and product types we have included a base

type b; without b the grammar would have no terminal symbols and would thus be

empty.

Equivalently, we could define the 𝐴 type judgment by three inference rules corre-
sponding to the three production rules in the grammar of types:

b type

𝐴 type 𝐵 type

𝐴 × 𝐵 type
𝐴 type 𝐵 type

𝐴→ 𝐵 type

Each inference rule has some number of premises (here, zero or two) above the

line and a single conclusion below the line; by combining these rules into trees whose

leaves all have no premises, we can produce derivations of judgments (here, the well-

formedness of a type) at the root of the tree. The tree below is a proof that (b×b) → b
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is a type:

b type b type

b × b type b type

(b × b) → b type

Terms Terms are considerably more complex than types, so before attempting a

formal definition we will briefly summarize our intentions. For the remainder of this

section, fix a finite set 𝐼 . The well-formed terms are as follows:

• for any 𝑖 ∈ 𝐼 , the base term c𝑖 has type b;

• pairing (𝑎, 𝑏) has type 𝐴 × 𝐵 when 𝑎 : 𝐴 and 𝑏 : 𝐵;

• first projection fst(𝑝) has type 𝐴 when 𝑝 : 𝐴 × 𝐵;

• second projection snd(𝑝) has type 𝐵 when 𝑝 : 𝐴 × 𝐵;

• a function 𝜆𝑥.𝑏 has type 𝐴→ 𝐵 when 𝑏 : 𝐵 where 𝑏 can contain (in addition to

the usual term formers) the variable term 𝑥 : 𝐴 standing for the function’s input;

and

• a function application 𝑓 𝑎 has type 𝐵 when 𝑓 : 𝐴→ 𝐵 and 𝑎 : 𝐴.

The first difficulty we encounter is that unlike types, which are a single sort, there

are infinitely many sorts of terms (one for each type) many of which refer to one

another. A more significant issue is to make sense of the clause for functions: the

body 𝑏 of a function 𝜆𝑥.𝑏 : 𝐴 → 𝐵 is a term of type 𝐵 according to our original

grammar extended by a new constant 𝑥 : 𝐴 representing an indeterminate term of type

𝐴. Because 𝑏 can again be or contain a function 𝜆𝑦.𝑐 , we must account for finitely

many extensions 𝑥 : 𝐴,𝑦 : 𝐵, . . . .

To account for these extensions we introduce an auxiliary sort of contexts, or lists
of variables paired with types, representing local extensions of our theory by variable

terms.

Contexts The judgment ⊢ Γ cx (“Γ is a context”) expresses that Γ is a list of pairs

of term variables with types. We write 1 for the empty context and Γ, 𝑥 : 𝐴 for the

extension of Γ by a term variable 𝑥 of type 𝐴. As a context-free grammar, we might

write:

Variables 𝑥,𝑦 ::= 𝑥 | 𝑦 | 𝑧 | · · ·
Contexts Γ ::= 1 | Γ, 𝑥 :𝐴
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Equivalently, in inference rule notation:

⊢ 1 cx

⊢ Γ cx 𝐴 type

⊢ Γ, 𝑥 : 𝐴 cx

We will not spend time discussing variables or binding in this book because vari-

ables will, perhaps surprisingly, not be a part of our definition of dependent type

theory. For the purposes of this section we will simply assume that there is an infinite

set of variables 𝑥,𝑦, 𝑧 . . . , and that all the variables in any given context or term are

distinct.

Terms revisited With contexts in hand we are now ready to define the term judg-

ment, which we revise to be relative to a context Γ. The judgment Γ ⊢ 𝑎 : 𝐴 (“𝑎 has

type 𝐴 in context Γ”) is defined by the following inference rules:

(𝑥 : 𝐴) ∈ Γ
Γ ⊢ 𝑥 : 𝐴

𝑖 ∈ 𝐼
Γ ⊢ c𝑖 : b

Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑏 : 𝐵

Γ ⊢ (𝑎, 𝑏) : 𝐴 × 𝐵
Γ ⊢ 𝑝 : 𝐴 × 𝐵
Γ ⊢ fst(𝑝) : 𝐴

Γ ⊢ 𝑝 : 𝐴 × 𝐵
Γ ⊢ snd(𝑝) : 𝐵

Γ, 𝑥 : 𝐴 ⊢ 𝑏 : 𝐵

Γ ⊢ 𝜆𝑥 .𝑏 : 𝐴→ 𝐵

Γ ⊢ 𝑓 : 𝐴→ 𝐵 Γ ⊢ 𝑎 : 𝐴

Γ ⊢ 𝑓 𝑎 : 𝐵

The rules for c𝑖 , pairing, projections, and application straightforwardly render our

text into inference rule form, framed by a context Γ that is unchanged from premises to

conclusion. The lambda rule explains how contexts are changed: the body of a lambda

is typed in an extended context; and the variable rule explains how contexts are used:

in context Γ, the variables of type 𝐴 in Γ serve as additional terminal symbols of type

𝐴.

Rules such as pairing or lambda that describe how to create terms of a given type

former are known as introduction rules, and rules describing how to use terms of a

given type former, like projection and application, are known as elimination rules.

Remark 2.1.2. An alternative approach that is perhaps more familiar to programming

languages researchers is to define a collection of preterms

Terms 𝑎, 𝑏 ::= c𝑖 | 𝑥 | (𝑎, 𝑏) | fst(𝑎) | snd(𝑎) | 𝜆𝑥 .𝑎 | 𝑎 𝑏

which includes ill-formed (typeless) terms like fst(𝜆𝑥.𝑥) in addition to the well-formed

(typed) ones captured by our grammar above, and the inference rules are regarded

as carving out various subsets of well-formed terms [Har16]. In fact, one often gives

computational meaning to all preterms (as an extension of the untyped lambda calculus)
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and then proves that the well-typed ones are in some sense computationally well-

behaved.

This is not the approachwe are taking here; to us the term expression fst(𝜆𝑥.𝑥) does
not exist any more than the type expression→ ×→.

1
In fact, in light of Section 2.1.2,

there will not even exist a “forgetful” map from our collections of terms to these

preterms. ⋄

2.1.2 Equational rules

One shortcoming of our definition thus far is that our projections don’t actually project

anything and our function applications don’t actually apply functions—there is no

sense yet in which fst((𝑎, 𝑏)) : 𝐴 or (𝜆𝑥 .𝑥) 𝑎 : 𝐴 “are” 𝑎 : 𝐴. Rather than equip our

terms with operational meaning, we will quotient our terms by equations that capture

a notion of sameness including these examples. The reader can imagine this process

as analogous to the presentation of algebras by generators and relations, in which our

terms thus far are the generators of a “free algebra” of (well-formed but) uninterpreted

expressions.

Our true motivation for this quotient is to anticipate the definitional equality of

dependent type theory, but there are certainly intrinsic reasons as well, perhaps most

notably that the quotiented terms of the simply-typed lambda calculus serve as an

axiom system for reasoning about cartesian closed categories [Cro94, Chapter 4].

We quotient by the congruence relation generated by the following rules:

Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑏 : 𝐵

Γ ⊢ fst((𝑎, 𝑏)) = 𝑎 : 𝐴

Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑏 : 𝐵

Γ ⊢ snd((𝑎, 𝑏)) = 𝑏 : 𝐵

Γ ⊢ 𝑝 : 𝐴 × 𝐵
Γ ⊢ 𝑝 = (fst(𝑝), snd(𝑝)) : 𝐴 × 𝐵

Γ, 𝑥 : 𝐴 ⊢ 𝑏 : 𝐵 Γ ⊢ 𝑎 : 𝐴

Γ ⊢ (𝜆𝑥 .𝑏) 𝑎 = 𝑏 [𝑎/𝑥] : 𝐵

Γ ⊢ 𝑓 : 𝐴→ 𝐵

Γ ⊢ 𝑓 = 𝜆𝑥 .(𝑓 𝑥) : 𝐴→ 𝐵

The equations pertaining to elimination after introduction (projection from pairs

and application of lambdas) are called 𝛽-equivalences; the equations pertaining to

1
Perhaps one’s definition of context-free grammar carves out the grammatical expressions out of

arbitrary strings over an alphabet, but this process occurs at a different level of abstraction. The reader

should banish such thoughts along with their thoughts about terms with mismatched parentheses.
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introduction after elimination (pairs of projections and lambdas of applications) are

𝜂-equivalences.
We emphasize that these equations are not a priori directed, and are not restricted

to the “top level” of terms; we genuinely take the quotient of the collection of terms

at each type by these equations, automatically inducing equations such as 𝜆𝑥 .𝑥 =

𝜆𝑥 .fst((𝑥, 𝑥)).
The first two rules explain that projecting from a pair has the evident effect.

The third rule states that every term of type 𝐴 × 𝐵 can be written as a pair (of its

projections), in effect transforming the introduction rule for products from merely a

sufficient condition to a necessary one as well. Similarly, the fifth rule states that every

𝑓 : 𝐴→ 𝐵 can be written as a lambda (of its application).

The fourth rule explains that applying a lambda function 𝜆𝑥 .𝑏 to an argument 𝑎 is

equal to the body 𝑏 of that lambda with all occurrences of the placeholder variable

𝑥 replaced by the term 𝑎. However, this equation makes reference to a substitution
operation 𝑏 [𝑎/𝑥] (“substitute 𝑎 for 𝑥 in 𝑏”) that we have not yet defined.

Substitution We can define substitution 𝑏 [𝑎/𝑥] by structural recursion on 𝑏:

c𝑖 [𝑐/𝑥] := c𝑖
𝑥 [𝑐/𝑥] := 𝑐

𝑦 [𝑐/𝑥] := 𝑦 (for 𝑥 ≠ 𝑦)
(𝑎, 𝑏) [𝑐/𝑥] := (𝑎[𝑐/𝑥], 𝑏 [𝑐/𝑥])

fst(𝑝) [𝑐/𝑥] := fst(𝑝 [𝑐/𝑥])
snd(𝑝) [𝑐/𝑥] := snd(𝑝 [𝑐/𝑥])
(𝜆𝑦.𝑏) [𝑐/𝑥] := 𝜆𝑦.𝑏 [𝑐/𝑥] (for 𝑥 ≠ 𝑦 and 𝑦 ∉ FreeVariables(𝑐))
(𝑓 𝑎) [𝑐/𝑥] := 𝑓 [𝑐/𝑥] 𝑎[𝑐/𝑥]

In the case of substituting into a lambda (𝜆𝑦.𝑏) [𝑐/𝑥], we assume that the bound

variable 𝑦 introduced by the lambda is different from the variable 𝑥 being substituted

away and that 𝑦 does not happen to occur freely in 𝑐 . In practice both situations are

possible, in which case one must rename 𝑦 (and all references to 𝑦 in 𝑏) before applying

this rule. In any case, we intend this substitution to be capture-avoiding in the sense of

not inadvertently changing the referent of bound variables.

However, because we have quotiented our collection of terms by 𝛽𝜂-equivalence,

it is not obvious that substitution is well-defined as a function out of the collection of

terms; in order to map out of the quotient, we must check that substitution behaves

equally on equal terms. (It is also not obvious that substitution is a function into the
collection of terms, in the sense of producing well-formed terms, as we will discuss

shortly.)
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Consider the equation fst((𝑎, 𝑏)) = 𝑎. To see that substitution respects this equa-

tion, we can substitute into the left-hand side, yielding:

(fst((𝑎, 𝑏))) [𝑐/𝑥] = fst((𝑎, 𝑏) [𝑐/𝑥]) = fst((𝑎[𝑐/𝑥], 𝑏 [𝑐/𝑥]))

which is 𝛽-equivalent to 𝑎[𝑐/𝑥], the result of substituting into the right-hand side.

We can check the remaining equations in a similar fashion; the 𝑥 ≠ 𝑦 condition on

substitution into lambdas is necessary for substitution to respect 𝛽-equivalence of

functions.

2.1.3 Who type-checks the typing rules?

Our stated goal in Section 2.1.1 was to define a collection of well-formed types (written

𝐴 type), and for each of these a collection of well-formed terms (written 𝑎 : 𝐴). Have

we succeeded? First of all, our definition of terms is now indexed by contexts Γ and

written Γ ⊢ 𝑎 : 𝐴, to account for variables introduced by lambdas. This is no problem:

we recover the original notion of (closed) term by considering the empty context 1.
Nor is there any issue defining the collections of types Ty = {𝐴 | 𝐴 type} and contexts

Cx = {Γ | ⊢ Γ cx} as presented by the grammars or inference rules in Section 2.1.1.

It is less clear that the collections of terms are well-defined. We would like to say

that the collection of terms of type 𝐴 in context Γ, Tm(Γ, 𝐴), is the set of 𝑎 for which
there exists a derivation of Γ ⊢ 𝑎 : 𝐴, modulo the relation 𝑎 ∼ 𝑏 ⇐⇒ there exists

a derivation of Γ ⊢ 𝑎 = 𝑏 : 𝐴. Several questions arise immediately; for instance, is it

the case that whenever Γ ⊢ 𝑎 : 𝐴 is derivable, Γ is a context and 𝐴 is a type? If not,

then we have some “junk” judgments that should not correspond to elements of some

Tm(Γ, 𝐴).

Lemma 2.1.3. If Γ ⊢ 𝑎 : 𝐴 then ⊢ Γ cx and 𝐴 type.

To prove such a statement, one proceeds by induction on derivations of Γ ⊢ 𝑎 : 𝐴.

If, say, the derivation ends as follows:

...

Γ ⊢ 𝑝 : 𝐴 × 𝐵
Γ ⊢ fst(𝑝) : 𝐴

then the inductive hypothesis applied to the derivation of Γ ⊢ 𝑝 : 𝐴 × 𝐵 tells us that

⊢ Γ cx and𝐴×𝐵 type. The former is exactly one of the two statements we are trying to

prove. The other, 𝐴 type, follows from an “inversion lemma” (proven by cases on the
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− type judgment) that 𝐴 type and 𝐵 type is not only a sufficient but also a necessary

condition for 𝐴 × 𝐵 type.
Unfortunately our proof runs into an issue at the base cases, or at least it is not

clear over what Γ the following rules range:

(𝑥 : 𝐴) ∈ Γ
Γ ⊢ 𝑥 : 𝐴

𝑖 ∈ 𝐼
Γ ⊢ c𝑖 : b

We must either add premises to these rules stating ⊢ Γ cx, or else clarify that Γ al-

ways ranges only over contexts (which will be our strategy moving forward; see

Notation 2.2.1).

Another question is the well-definedness of our quotient:

Lemma 2.1.4. If Γ ⊢ 𝑎 = 𝑏 : 𝐴 then Γ ⊢ 𝑎 : 𝐴 and Γ ⊢ 𝑏 : 𝐴.

But because 𝛽-equivalence refers to substitution, proving this lemma requires:

Lemma 2.1.5 (Substitution). If Γ, 𝑥 : 𝐴 ⊢ 𝑏 : 𝐵 and Γ ⊢ 𝑎 : 𝐴 then Γ ⊢ 𝑏 [𝑎/𝑥] : 𝐵.

We already saw that we must check that substitution 𝑏 [𝑎/𝑥] respects equality of 𝑏,

but we must also check that it produces well-formed terms, again by induction on 𝑏.

Note that substitution changes a term’s context because it eliminates one of its free

variables.

If we resume our attempt to prove Lemma 2.1.4, we will notice that substitution

is not the only time that the context of a term changes; in the right-hand side of the

𝜂-rule of functions, 𝑓 is in context Γ, 𝑥 : 𝐴, whereas in the premise and left-hand side

it is in Γ:
Γ ⊢ 𝑓 : 𝐴→ 𝐵

Γ ⊢ 𝑓 = 𝜆𝑥.(𝑓 𝑥) : 𝐴→ 𝐵

And thus we need yet another lemma.

Lemma 2.1.6 (Weakening). If Γ ⊢ 𝑏 : 𝐵 and 𝐴 type then Γ, 𝑥 : 𝐴 ⊢ 𝑏 : 𝐵.

We will not belabor the point any further; eventually one proves enough lemmas

to conclude that we have a set of contexts Cx, a set of types Ty, and for every Γ ∈ Cx
and 𝐴 ∈ Ty a set of terms Tm(Γ, 𝐴). The complexity of each result is proportional to

the complexity of that sort’s definition: we define types outright, contexts by simple

reference to types, and terms by more complex reference to both types and contexts.

The judgments of dependent type theory are both more complex and more intertwined;

rather than enduring proportionally more suffering, we will adopt a slightly different

approach.
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Finally, whereas all the metatheorems mentioned in this section serve only to

establish that our definition is mathematically sensible, there are more genuinely

interesting and contentful metatheorems one might wish to prove, including canonicity,
the statement that (up to equality) the only closed terms of b are of the form c𝑖 (i.e.,
Tm(1, b) = {c𝑖}𝑖∈𝐼 ), and decidability of equality, the statement that for any Γ ⊢ 𝑎 : 𝐴

and Γ ⊢ 𝑏 : 𝐴 we can write a program which determines whether or not Γ ⊢ 𝑎 = 𝑏 : 𝐴.

2.2 Towards the syntax of dependent type theory

The reader is forewarned that the rules in this section serve to bridge the gap between

Section 2.1 and our “official” rules for extensional type theory, which start in Section 2.3.

As we discussed in Chapter 1, the defining distinction between dependent and

simple type theory is that in the former, types can contain term expressions and even

term variables. Thus, whereas in Section 2.1 a simple context-free grammar sufficed to

define the collection of types and we needed a context-sensitive system of inference

rules to define the well-typed terms, in dependent type theory we will find that both

the types and terms are context-sensitive because they refer to one another.

Types and contexts When is the dependent function type (𝑥 : 𝐴) → 𝐵 well-formed?

Certainly 𝐴 and 𝐵 must be well-formed types, but 𝐵 is allowed to contain the term

variable 𝑥 : 𝐴 whereas 𝐴 is not. In the case of (𝑛 : Nat) → Vec String (suc 𝑛), the
well-formedness of the codomain depends on the fact that suc 𝑛 is a well-formed term

of type Nat (the indexing type of Vec String), which in turn depends on the fact that 𝑛

is known to be an expression (in particular, a variable) of type Nat.
Thus as with the term judgment of Section 2.1, the type judgment of dependent

type theory must have access to the context of term variables, so we replace the

𝐴 type judgment (“𝐴 is a type”) of the simply-typed lambda calculus with a judgment

Γ ⊢ 𝐴 type (“𝐴 is a type in context Γ”). This innocuous change has many downstream

implications, so we will be fastidious about the context in which a type is well-formed.

The first consequence of this change is that contexts of term variables, which

we previously defined simply as lists of well-formed types, must now also take into

account in what context each type is well-formed. Informally we say that each type

can depend on all the variables before it in the context; formally, one might define the

judgment ⊢ Γ cx by the following pair of rules:

⊢ 1 cx

⊢ Γ cx Γ ⊢ 𝐴 type

⊢ Γ, 𝑥 : 𝐴 cx
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Notice that the rules defining the judgment ⊢ Γ cx refer to the judgment Γ ⊢ 𝐴 type,
which in turn depends on our notion of context. This kind of mutual dependence will

continue to crop up throughout the rules of dependent type theory.

Notation 2.2.1 (Presuppositions). With a more complex notion of context, it is more

important than ever for us to decide over what Γ the judgment Γ ⊢ 𝐴 type ranges.
We will say that the judgment Γ ⊢ 𝐴 type is only well-formed when ⊢ Γ cx holds, as
a matter of “meta-type discipline,” and similarly that the judgment Γ ⊢ 𝑎 : 𝐴 is only

well-formed when Γ ⊢ 𝐴 type (and thus also ⊢ Γ cx).
One often says that ⊢ Γ cx is a presupposition of the judgment Γ ⊢ 𝐴 type, and that

the judgments ⊢ Γ cx and Γ ⊢ 𝐴 type are presuppositions of Γ ⊢ 𝑎 : 𝐴. We will globally

adopt the convention that whenever we assert the truth of some judgment in prose or

as the premise of a rule, we also implicitly assert that its presuppositions hold. Dually,

we will be careful to check that none of our rules have meta-ill-typed conclusions.

Now that we have added a term variable context to the type well-formedness

judgment, we can explain when (𝑥 : 𝐴) → 𝐵 is a type: it is a (well-formed) type in Γ
when 𝐴 is a type in Γ and 𝐵 is a type in Γ, 𝑥 : 𝐴, as follows.

Γ ⊢ 𝐴 type Γ, 𝑥 : 𝐴 ⊢ 𝐵 type
Γ ⊢ (𝑥 : 𝐴) → 𝐵 type

Rules like this describing how to create a type are known as formation rules, to
parallel the terminology of introduction and elimination rules.

We can now sketch the formation rules for many of the types we encountered in

Chapter 1. Dependent types like _≡_ and Vec are particularly interesting because they

entangle the Γ ⊢ 𝐴 type judgment with the term well-formedness judgment Γ ⊢ 𝑎 : 𝐴.

⊢ Γ cx
Γ ⊢ Nat type

Γ ⊢ 𝐴 type Γ ⊢ 𝑛 : Nat

Γ ⊢ Vec 𝐴 𝑛 type

Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑏 : 𝐴

Γ ⊢ 𝑎 ≡ 𝑏 type

Note that the convention of presuppositions outlined in Notation 2.2.1 means that

the second and third rules have an implicit ⊢ Γ cx premise, and the third rule also

has an implicit Γ ⊢ 𝐴 type premise. To see that the conclusions of these rules are

meta-well-typed, we must check that ⊢ Γ cx holds in each case; this is an explicit

premise of the first rule and a presupposition of the premises of the second and third

rules.

The formation rule for propositional equality _≡_ in particular is a major source

of dependency because it singlehandledly allows arbitrary terms of arbitrary type to

occur within types. In fact, this rule by itself causes the inference rules of all three

judgments ⊢ Γ cx, Γ ⊢ 𝐴 type, and Γ ⊢ 𝑎 : 𝐴 to all depend on one another pairwise.
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Exercise 2.1. Attempt to derive that (𝑛 : Nat) → Vec String (suc 𝑛) is a well-formed

type in the empty context 1, using the rules introduced in this section thus far. Several

rules are missing; which judgments can you not yet derive?

The variable rule Let us turn now to the term judgment Γ ⊢ 𝑎 : 𝐴, and in particular

the rule stating that term variables in the context are well-formed terms. For simplicity,

imagine the special case where the last variable is the one under consideration:

Γ, 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴
!?

This rule needs considerable work, as neither of the conclusion’s presuppositions,

⊢ (Γ, 𝑥 : 𝐴) cx and Γ, 𝑥 : 𝐴 ⊢ 𝐴 type, currently hold. We can address the former

by adding premises ⊢ Γ cx and Γ ⊢ 𝐴 type to the rule, from which it follows that

⊢ (Γ, 𝑥 : 𝐴) cx.2 As for the latter, note that Γ ⊢ 𝐴 type does not actually imply

Γ, 𝑥 : 𝐴 ⊢ 𝐴 type—this would require proving a weakening lemma (see Lemma 2.1.6)

for types! (Conversely, if the rule has the premise Γ ⊢ 𝐴 type, then we cannot establish

well-formedness of the context.)

There are several ways to proceed. One is to prove a weakening lemma, but given

that the well-formedness of the variable rule requires weakening, it is necessary to

prove all our well-formedness, weakening, and substitution lemmas by a rather heavy

simultaneous induction. A second approach would be to add a silent weakening rule
stating that Γ, 𝑥 : 𝐴 ⊢ 𝐵 type whenever Γ ⊢ 𝐵 type; however, this introduces ambiguity

into our rules regarding the context(s) in which a type or term is well-formed.

We opt for a third option, which is to add explicit weakening rules asserting the
existence of an operation sending types and terms in context Γ to types and terms in

context Γ, 𝑥 : 𝐴, both written −[p]. (This notation will become less mysterious later.)

Γ ⊢ 𝐵 type Γ ⊢ 𝐴 type

Γ, 𝑥 : 𝐴 ⊢ 𝐵 [p] type
Γ ⊢ 𝑏 : 𝐵 Γ ⊢ 𝐴 type

Γ, 𝑥 : 𝐴 ⊢ 𝑏 [p] : 𝐵 [p]

Note that the type weakening rule is needed to make sense of the term weakening

rule.

We can now fix the variable rule we wrote above: using −[p] to weaken𝐴 by itself,

we move 𝐴 from context Γ to Γ, 𝑥 : 𝐴 as required in the conclusion of the rule.

⊢ Γ cx Γ ⊢ 𝐴 type

Γ, 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴[p]
2
Of course one could just directly add the premise ⊢ (Γ, 𝑥 : 𝐴) cx, but our short-term memory is

robust enough to recall that our next task is to ensure that 𝐴 is a type.
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To use variables that occur earlier in the context, we can apply weakening repeat-

edly until they are the last variable. Suppose that 1 ⊢ 𝐴 type and 𝑥 : 𝐴 ⊢ 𝐵 type, and
in the context 𝑥 : 𝐴,𝑦 : 𝐵 we want to use the variable 𝑥 . Ignoring the 𝑦 : 𝐵 in the

context for a moment, we know that 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴[p] by the last variable rule; thus

by weakening we have 𝑥 : 𝐴,𝑦 : 𝐵 ⊢ 𝑥 [p] : 𝐴[p] [p]. In general, we can derive the

following principle:

Γ ⊢ 𝐴 type Γ, 𝑥 : 𝐴 ⊢ 𝐵1 type . . . Γ, 𝑥 : 𝐴,𝑦1 : 𝐵1, . . . ⊢ 𝐵𝑛 type
Γ, 𝑥 : 𝐴,𝑦1 : 𝐵1, . . . , 𝑦𝑛 : 𝐵𝑛 ⊢ 𝑥 [p] . . . [p]︸      ︷︷      ︸

𝑛 times

: 𝐴[p] . . . [p]︸      ︷︷      ︸
𝑛 + 1 times

This approach to variables is elegant in that it breaks the standard variable rule

into two simpler primitives: a rule for the last variable, and rules for type and term

weakening. However, it introduces a redundancy in our notation, because the term

𝑥 [p]𝑛 encodes in two different ways the variable to which it refers: by the name 𝑥 as

well as positionally by the number of weakenings 𝑛.

A happy accident of our presentation of the variable rule is thus that we can delete

variable names altogether; in Section 2.3 we will present contexts simply as lists of

types𝐴.𝐵.𝐶 with no variable names, and adopt a single notation for “the last variable in

the context,” an encoding of the lambda calculus known as de Bruijn indexing [dBru72].

Conceptual elegance notwithstanding, this notation is very unfriendly to the reader

in larger examples
3
so we will continue to use named variables outside of the rules

themselves; translating between the two notations is purely mechanical.

Remark 2.2.2. The first author wishes to mention another approach to maintaining

readability, which is to continue using both named variables and explicit weakenings

[Gra09]; this approach has the downside of requiring us to explain variable binding,

but is simultaneously readable and precise about weakenings. ⋄

2.3 The calculus of substitutions

Weakening is one of two main operations in type theory that moves types and terms

between contexts, the other being substitution of terms for variables. For the same

reasons that we want to present weakening as an explicit type- and term-forming

operation, we will also formulate substitution as an explicit operation subject to

equations explicating how it computes on each construct of the theory.

3
According to Conor McBride, “Bob Atkey once memorably described the capacity to put up with de

Bruijn indices as a Cylon detector.” (https://mazzo.li/epilogue/index.html%3Fp=773.html)

https://mazzo.li/epilogue/index.html%3Fp=773.html
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However, rather than axiomatizing single substitutions and weakenings, we will

axiomatize arbitrary compositions of substitutions and weakenings. In light of the

fact that substitution shortens the context of a type/term and weakening length-

ens it, these composite operations—called simultaneous substitutions (henceforth just

substitutions)—can turn any context Γ into any other context Δ.
We thus add one final judgment to our presentation of type theory, Δ ⊢ 𝛾 : Γ (“𝛾 is

a substitution from Δ to Γ”), corresponding to operations that send types/terms from

context Γ to context Δ. (Not a typo; we will address the “backwards” notation later.)

Notation 2.3.1. Type theory has four basic judgments and three equality judgments:

1. ⊢ Γ cx asserts that Γ is a context.

2. Δ ⊢ 𝛾 : Γ, presupposing ⊢ Δ cx and ⊢ Γ cx, asserts that 𝛾 is a substitution from Δ
to Γ.

3. Γ ⊢ 𝐴 type, presupposing ⊢ Γ cx, asserts that 𝐴 is a type in context Γ.

4. Γ ⊢ 𝑎 : 𝐴, presupposing ⊢ Γ cx and Γ ⊢ 𝐴 type, asserts that 𝑎 is an element/term

of type 𝐴 in context Γ.

2
′
. Δ ⊢ 𝛾 = 𝛾 ′ : Γ, presupposing Δ ⊢ 𝛾 : Γ and Δ ⊢ 𝛾 ′ : Γ, asserts that 𝛾,𝛾 ′ are equal
substitutions from Δ to Γ.

3
′
. Γ ⊢ 𝐴 = 𝐴′ type, presupposing Γ ⊢ 𝐴 type and Γ ⊢ 𝐴′ type, asserts that 𝐴,𝐴′ are
equal types in context Γ.

4
′
. Γ ⊢ 𝑎 = 𝑎′ : 𝐴, presupposing Γ ⊢ 𝑎 : 𝐴 and Γ ⊢ 𝑎′ : 𝐴, asserts that 𝑎, 𝑎′ are equal
elements of type 𝐴 in context Γ.

Notation 2.3.2. WewriteCx for the set of contexts, Sb(Δ, Γ) for the set of substitutions
from Δ to Γ, Ty(Γ) for the set of types in context Γ, and Tm(Γ, 𝐴) for the set of terms

of type 𝐴 in context Γ.

This presentation of dependent type theory is known as the substitution calculus
[Mar92; Tas93]. Perhaps unsurprisingly, we must discuss a considerable number of

rules governing substitutions before presenting any concrete type and term formers;

we devote this section to those rules, and cover the main connectives of type theory in

Section 2.4.
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Contexts The rules for contexts are as in Section 2.2, but without variable names:

⊢ 1 cx

⊢ Γ cx Γ ⊢ 𝐴 type

⊢ Γ.𝐴 cx

Although there is no context equality judgment, note that two contexts can be

equal without being syntactically identical. If 1 ⊢ 𝐴 = 𝐴′ type then 1.𝐴 and 1.𝐴′ are
equal contexts on the basis that, like all operations of the theory, context extension

respects equality in both arguments. We have omitted the ⊢ Γ = Γ′ cx judgment for

the simple reason that there would be no rules governing it: the only reason why two

contexts can be equal is that their types are pairwise equal.

Substitutions The purpose of a substitution Δ ⊢ 𝛾 : Γ is to shift types and terms

from context Γ to context Δ:

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴 type

Δ ⊢ 𝐴[𝛾] type
Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : 𝐴

Δ ⊢ 𝑎[𝛾] : 𝐴[𝛾]

Unlike the substitution operation of Section 2.1, which was a function on terms

defined by cases, these rules define two binary type- and term- forming operations

that take a type (resp., term) and a substitution as input and produce a new type (resp.,

term). Note also that, despite sharing a notation, type and term substitution are two

distinct operations.

The simplest interesting substitution is weakening, written p:4

Γ ⊢ 𝐴 type

Γ.𝐴 ⊢ p : Γ

In concert with the substitution rules above we can recover the weakening rules from

the previous section, e.g., if Γ ⊢ 𝐵 type and Γ ⊢ 𝐴 type then Γ, 𝑥 : 𝐴 ⊢ 𝐵 [p] type.
Because substitutions Δ ⊢ 𝛾 : Γ encode arbitrary compositions of context-shifting

operations, we also have rules that close substitutions under nullary and binary com-

position:

⊢ Γ cx
Γ ⊢ id : Γ

Γ2 ⊢ 𝛾1 : Γ1 Γ1 ⊢ 𝛾0 : Γ0

Γ2 ⊢ 𝛾0 ◦ 𝛾1 : Γ0

These operations are unital and associative as one might expect:

Δ ⊢ 𝛾 : Γ

Δ ⊢ 𝛾 ◦ id = id ◦ 𝛾 = 𝛾 : Γ

Γ3 ⊢ 𝛾2 : Γ2 Γ2 ⊢ 𝛾1 : Γ1 Γ1 ⊢ 𝛾0 : Γ0

Γ3 ⊢ 𝛾0 ◦ (𝛾1 ◦ 𝛾2) = (𝛾0 ◦ 𝛾1) ◦ 𝛾2 : Γ0

4
This mysterious name can be explained by the fact that weakening corresponds semantically to a

projection map; p can thus be pronounced as either “weakening” or “projection”.
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We can summarize the rules above by stating that there is a category whose objects

are contexts and whose morphisms are substitutions.

We have already seen that substitutions shift the contexts of types and terms by

−[𝛾]; they also shift the context of other substitutions by precomposition. Later we

will have occasion to discuss all three context-shifting functions between sorts that

are induced by substitutions, as follows.

Notation 2.3.3. Given a substitution Δ ⊢ 𝛾 : Γ, we write 𝛾∗ for the following functions:

• 𝜉 ↦→ 𝜉 ◦ 𝛾 : Sb(Γ,Ξ) → Sb(Δ,Ξ),

• 𝐴 ↦→ 𝐴[𝛾] : Ty(Γ) → Ty(Δ), and

• 𝑎 ↦→ 𝑎[𝛾] : Tm(Γ, 𝐴) → Tm(Δ, 𝐴[𝛾]).

Composite substitutions introduce a possible redundancy into our rules: what

is the difference between substituting by 𝛾0 and then by 𝛾1 versus substituting once

by 𝛾0 ◦ 𝛾1? We add equations asserting that substituting by id is the identity and

substituting by a composite is composition of substitutions:

Γ ⊢ 𝐴 type

Γ ⊢ 𝐴[id] = 𝐴 type

Γ ⊢ 𝑎 : 𝐴

Γ ⊢ 𝑎[id] = 𝑎 : 𝐴

Γ2 ⊢ 𝛾1 : Γ1 Γ1 ⊢ 𝛾0 : Γ0 Γ0 ⊢ 𝐴 type

Γ2 ⊢ 𝐴[𝛾0 ◦ 𝛾1] = 𝐴[𝛾0] [𝛾1] type

Γ2 ⊢ 𝛾1 : Γ1 Γ1 ⊢ 𝛾0 : Γ0 Γ0 ⊢ 𝑎 : 𝐴

Γ2 ⊢ 𝑎[𝛾0 ◦ 𝛾1] = 𝑎[𝛾0] [𝛾1] : 𝐴[𝛾0 ◦ 𝛾1]

We can summarize the rules above by stating that the 𝛾∗ operations respect identity
and composition of substitutions, or more compactly, that the collections of types and

terms form presheaves Ty(−) and ∑
𝐴:Ty(−) Tm(−, 𝐴) on the category of contexts, with

restriction maps given by substitution (a perspective which inspires the notation 𝛾∗).
Before moving on, it is instructive to once again convince ourselves that the rules

above are meta-well-typed. In particular, the conclusion of the second rule is only

sensible if Γ ⊢ 𝑎[id] : 𝐴, but according to the rule for term substitution we only have

Γ ⊢ 𝑎[id] : 𝐴[id]. To make sense of this rule we must refer to the previous rule

equating the types 𝐴[id] and 𝐴. A consequence of this type equation is that terms of

type 𝐴[id] are equivalently terms of type 𝐴,5 and thus Γ ⊢ 𝑎[id] : 𝐴 as required. This

5
In some presentations of type theory this principle is explicit and is known as the type conversion

rule. For us it is a consequence of the judgments respecting equality, i.e., Tm(Γ, 𝐴[id]) = Tm(Γ, 𝐴) as
sets.
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is a paradigmatic example of the deeply intertwined nature of the rules of dependent

type theory; in particular, we cannot defer equations to the end of our construction the

way we did in Section 2.1 because many rules are only sensible after imposing certain

equations.

The variable rule revisited As in the previous section, the variable rule is restricted

to the last entry in the context, which we (unambiguously) always name q.6

Γ ⊢ 𝐴 type

Γ.𝐴 ⊢ q : 𝐴[p]

Writing p𝑛 for the 𝑛-fold composition of p with itself (with p0 = id), the following
rule is derivable from other rules (notated⇒) and thus not explicitly included in our

system:

Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵1 type . . . Γ.𝐴.𝐵1 . . . ⊢ 𝐵𝑛 type
Γ.𝐴.𝐵1 . . . 𝐵𝑛 ⊢ q [p𝑛] : 𝐴[p𝑛+1]

⇒

Thus a variable in our system is a term of the form q [p𝑛], where 𝑛 is its de Bruijn

index.

Terminal substitutions Our notation Δ ⊢ 𝛾 : Γ for substitutions is no accident;

it is indeed a good mental model to think of such substitutions as “terms of type Γ
in context Δ.” To understand why, let us think back to propositional logic. A term

1.𝐵 ⊢ 𝑐 : 𝐶 can be seen as a proof of 𝐶 under the hypothesis 𝐵, i.e., a proof that

𝐵 =⇒ 𝐶 . Given a substitution 1.𝐴 ⊢ 𝑏 : 1.𝐵 we can obtain a term 1.𝐴 ⊢ 𝑐 [𝑏] : 𝐶 [𝑏],
or a proof that 𝐴 =⇒ 𝐶 . This suggests that substituting corresponds logically to a

“cut,” and 𝑏 to a proof that 𝐴 =⇒ 𝐵.

Returning to the general case, contexts are lists of hypotheses, and a substitution

Δ ⊢ 𝛾 : Γ states that we can prove all the hypotheses of Γ using the hypotheses of Δ.
Thus anything that is true under the hypotheses Γ is also true under the hypotheses

Δ—hence the contravariance of the substitution operation.

More concretely, the idea is that a substitution Δ ⊢ 𝛾 : 1.𝐴1 . . . 𝐴𝑛 is an 𝑛-tuple of

terms 𝑎1, . . . , 𝑎𝑛 of types 𝐴1, . . . , 𝐴𝑛 , all in context Δ, and applying the substitution 𝛾

has the effect of substituting 𝑎1 for the first variable, 𝑎2 for the second variable, . . . and

𝑎𝑛 for the last variable. The final subtlety is that each type 𝐴𝑖 is in general dependent

on all the previous 𝐴 𝑗 for 𝑗 < 𝑖 , so the type of 𝑎2 is not just 𝐴2 but “𝐴2 [𝑎1/𝑥1],” so to

speak, all the way through “𝑎𝑛 : 𝐴𝑛 [𝑎1/𝑥1, . . . , 𝑎𝑛−1/𝑥𝑛−1].”
6
This mysterious name is chosen to pair well with the name p that we gave weakening; q can thus

be pronounced as either “variable” or “qariable”.
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If all of this sounds very complicated, well. . . at any rate, the remaining rules

governing substitution define such 𝑛-tuples in two cases, 0 and 𝑛 + 1. The nullary case

is fairly simple: any substitution Γ ⊢ 𝛿 : 1 into the empty context (a length-zero list of

types) is necessarily the empty tuple ⟨⟩, which we spell !.

⊢ Γ cx
Γ ⊢ ! : 1

Γ ⊢ 𝛿 : 1

Γ ⊢ ! = 𝛿 : 1

These rules state that 1 is a terminal object in the category of contexts, a perspective

which inspires the notations 1 and !.

Substitution extension The other case concerns substitutions Δ ⊢ − : Γ.𝐴 into a

context extension. Recall that Γ.𝐴 is an (𝑛 + 1)-tuple of types when Γ is an 𝑛-tuple

of types, and suppose that Δ ⊢ 𝛾 : Γ, which is to say that 𝛾 is an 𝑛-tuple of terms (in

context Δ) whose types are those in Γ. To extend this 𝑛-tuple to an (𝑛 + 1)-tuple of
terms whose types are those in Γ.𝐴, we simply adjoin one more term 𝑎 in context Δ
with type 𝐴[𝛾], where this substitution plugs the 𝑛 previously-given terms into the

dependencies of 𝐴.

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴 type Δ ⊢ 𝑎 : 𝐴[𝛾]
Δ ⊢ 𝛾 .𝑎 : Γ.𝐴

The final three rules of our calculus are equations governing this substitution

former:

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴 type Δ ⊢ 𝑎 : 𝐴[𝛾]
Δ ⊢ p ◦ (𝛾 .𝑎) = 𝛾 : Γ

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴 type Δ ⊢ 𝑎 : 𝐴[𝛾]
Δ ⊢ q [𝛾 .𝑎] = 𝑎 : 𝐴[𝛾]

Γ ⊢ 𝐴 type Δ ⊢ 𝛾 : Γ.𝐴

Δ ⊢ 𝛾 = (p ◦ 𝛾) .q [𝛾] : Γ.𝐴

Imagining for the moment that Γ = 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 and 𝛾 = [𝑎1/𝑥1, . . . , 𝑎𝑛/𝑥𝑛],
the second rule states that 𝑥𝑛 [𝑎1/𝑥1, . . . , 𝑎𝑛/𝑥𝑛] = 𝑎𝑛 , in other words, that substitut-

ing into the last variable 𝑥𝑛 replaces that variable by the last term 𝑎𝑛 . The first rule

states in essence that substituting into a type/term that does not mention (is weak-

ened by) 𝑥𝑛 is the same as dropping the last term 𝑎𝑛/𝑥𝑛 from the substitution, i.e.,

[𝑎1/𝑥1, . . . , 𝑎𝑛−1/𝑥𝑛−1].
Finally, the third rule states that every substitution 𝛾 into the context Γ.𝐴 is of the

form 𝛾0.𝑎, where 𝑎 is determined by the behavior of 𝛾 on the last variable, and 𝛾0 is

determined by the behavior of 𝛾 on the first 𝑛 variables. (See Exercise 2.5.)
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All of these rules in this section determine a category (of contexts and substitutions)

with extra structure, known collectively as a category with families [Dyb96]. We will

refer to any system that extends this collection of rules as a Martin-Löf type theory.

Exercise 2.2. Show that substitutions Γ ⊢ 𝛾 : Γ.𝐴 satisfying p ◦𝛾 = id are in bijection

with terms Γ ⊢ 𝑎 : 𝐴.

Exercise 2.3. Show that (𝛾 .𝑎) ◦ 𝛿 = (𝛾 ◦ 𝛿) .𝑎[𝛿].

Exercise 2.4. Given Δ ⊢ 𝛾 : Γ and Γ ⊢ 𝐴 type, construct a substitution that we will

name 𝛾 .𝐴, satisfying Δ.𝐴[𝛾] ⊢ 𝛾 .𝐴 : Γ.𝐴.

Exercise 2.5. Suppose that Γ ⊢ 𝐴 type and ⊢ Δ cx. Show that substitutions Δ ⊢ 𝛾 : Γ.𝐴
are in bijection with pairs of a substitution Δ ⊢ 𝛾0 : Γ and a term Δ ⊢ 𝑎 : 𝐴[𝛾0].

2.4 Internalizing judgmental structure: Π,Σ, Eq,Unit

With the basic structure of dependent type theory finally out of the way, we are

prepared to define standard type and term formers, starting with the best-behaved

connectives: dependent products, dependent sums, extensional equality, and the unit

type. Unlike inductive types (Section 2.5), each of these connectives can be described

concisely as internalizing judgmental structure of some kind.

2.4.1 Dependent products

We start with dependent function types, also known as dependent products or Π-types.
The formation rule is as in Section 2.2, but without variable names:

7

Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type
Γ ⊢ Π(𝐴, 𝐵) type

Remark 2.4.1. The Π notation and terminology is inspired by this type corresponding

semantically to a set-indexed product of sets

∏
𝑎∈𝐴 𝐵𝑎 . Indexed products generalize

ordinary products in the sense that

∏
𝑎∈{1,2} 𝐵𝑎 � 𝐵1 × 𝐵2. ⋄

Remarkably, the substitution calculus ensures that these rules are almost indis-

tinguishable from the introduction and elimination rules of simple function types in

7
We have switched our notation from (𝑥 : 𝐴) → 𝐵 because it is awkward without named variables.
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Section 2.1, with some minor additional bookkeeping to move types to the appropriate

contexts:

Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝑏 : 𝐵

Γ ⊢ 𝜆 (𝑏) : Π(𝐴, 𝐵)
Γ ⊢ 𝑎 : 𝐴 Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑓 : Π(𝐴, 𝐵)

Γ ⊢ app(𝑓 , 𝑎) : 𝐵 [id.𝑎]

There continue to be a few notational shifts: 𝜆s no longer comewith variable names,

and we write app(𝑓 , 𝑎) rather than 𝑓 𝑎 just to emphasize that function application

is a term constructor. The reader should convince themselves that in the final rule,

Γ ⊢ 𝐵 [id.𝑎] type; this substitutes 𝑎 for the last variable in 𝐵, leaving the rest of the

context unchanged.

Next we must specify equations not only on the introduction and elimination

forms, but on the type former itself. There are two groups of equations we must

impose; the first group explains how substitutions act on all three of these operations:

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type
Δ ⊢ Π(𝐴, 𝐵) [𝛾] = Π(𝐴[𝛾], 𝐵 [𝛾 .𝐴]) type

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝑏 : 𝐵

Δ ⊢ 𝜆 (𝑏) [𝛾] = 𝜆 (𝑏 [𝛾 .𝐴]) : Π(𝐴, 𝐵) [𝛾]

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : 𝐴 Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑓 : Π(𝐴, 𝐵)
Δ ⊢ app(𝑓 , 𝑎) [𝛾] = app(𝑓 [𝛾], 𝑎[𝛾]) : 𝐵 [𝛾 .𝑎[𝛾]]

Roughly speaking, these three rules state that substitutions commute past each

type and term former, but 𝐵 and 𝑏 are well-formed in a larger context (Γ.𝐴) than the

surrounding term (Γ), requiring us to “shift” the substitution so that it leaves the bound

variable of type𝐴 unchanged while continuing to act on all the free variables in Γ. (The
“shifted” substitution 𝛾 .𝐴 in these rules is the derived form defined in Exercise 2.4.)

Once again we should pause and convince ourselves that these rules are meta-

well-typed. Echoing the phenomenon we saw in Section 2.3 with Γ ⊢ 𝑎[id] : 𝐴, we

need to use the substitution rule for Π(𝐴, 𝐵) [𝛾] to see that the right-hand side of the

substitution rules for 𝜆 (𝑏) [𝛾] and app(𝑓 , 𝑎) [𝛾] are well-typed.

Exercise 2.6. Check that the substitution rule for app(𝑓 , 𝑎) [𝛾] is meta-well-typed; in

particular, show that both app(𝑓 , 𝑎) [𝛾] and app(𝑓 [𝛾], 𝑎[𝛾]) have the type 𝐵 [𝛾 .𝑎[𝛾]].

This patternwill continue: every timewe introduce a new type or term former 𝜃 , we

will add an equation 𝜃 (𝑎1, . . . , 𝑎𝑛) [𝛾] = 𝜃 (𝑎1 [𝛾1], . . . , 𝑎𝑛 [𝛾𝑛]) stating that substitutions
push past 𝜃 , adjusted as necessary in each argument. These rules are quite mechanical

and can even be automatically derived in some frameworks, but they are at the heart of
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type theory itself. From a logical perspective, they ensure that quantifier instantiation

is uniform. From a mathematical perspective, as we will see in Section 2.4.2, they

assert the naturality of type-theoretic constructions. And from an implementation

perspective, these rules can be assembled into a substitution algorithm, ensuring that

substitutions can be computed automatically by proof assistants.

Remark 2.4.2. The difference between this approach to substitution and the one

outlined in Section 2.1 is one of derivability vs admissibility. In the simply-typed

setting, the fact that all terms enjoy substitution is not part of the system but rather

must be proven (and even constructed in the first place) by induction over the structure

of terms, and so adding new constructs to the theory may cause substitution to fail.

In the substitution calculus, we assert that all types and terms enjoy substitution

as basic rules of the theory, and later add equations specifying how substitution

computes; thus any extension of the theory is guaranteed to enjoy substitution. Because

substitution is a crucial aspect of dependent type theory, we find this latter approach

more ergonomic. ⋄

The second group of equations is the 𝛽- and 𝜂-rules introduced in Section 2.1,

completing our presentation of dependent product types.

Γ ⊢ 𝑎 : 𝐴 Γ.𝐴 ⊢ 𝑏 : 𝐵

Γ ⊢ app(𝜆 (𝑏), 𝑎) = 𝑏 [id.𝑎] : 𝐵 [id.𝑎]

Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑓 : Π(𝐴, 𝐵)
Γ ⊢ 𝑓 = 𝜆 (app(𝑓 [p], q)) : Π(𝐴, 𝐵)

Exercise 2.7. Carefully explain why the 𝜂-rule above is meta-well-typed, in particular

why 𝜆 (app(𝑓 [p], q)) has the right type. Explicitly point out all the other rules and

equations (e.g., Π-introduction, Π-elimination, weakening) to which you refer.

Exercise 2.8. Show that using Π-types we can define a non-dependent function type

whose formation rule states that if Γ ⊢ 𝐴 type and Γ ⊢ 𝐵 type then Γ ⊢ 𝐴 → 𝐵 type.
Then define the introduction and elimination rules from Section 2.1 for this encoding,

and check that the 𝛽- and 𝜂-rules from Section 2.1 hold. (Hint: it is incorrect to define

𝐴→ 𝐵 := Π(𝐴, 𝐵).)
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Exercise 2.9. As discussed in Section 2.3, two contexts that are not syntactically

identical may nevertheless be equal. Give an example.

2.4.2 Dependent products internalize hypothetical judgments

With one type constructor, two term constructors, and five equations, it is natural to

wonder whether we have written “enough” or “the correct” rules to specify Π-types.

Onemay also wonder whether there is an easier way. We now introduce a methodology

for making sense of this collection of rules, and show howwe can use this methodology

to more efficiently define the later connectives. In short, we will view connectives

as internalizations of judgmental structure, and Γ ⊢ − : Π(𝐴, 𝐵) in particular as an

internalization of the hypothetical judgment Γ.𝐴 ⊢ − : 𝐵.

Remark 2.4.3. In this book we limit ourselves to a semi-informal discussion of this

perspective, which can be made fully precise with the language of category theory.

For instance, using the framework of natural models, Awodey [Awo18] shows that

the rules above exactly capture that Π-types classify the hypothetical judgment in a

precise sense. ⋄

Analyzing context extension To warm up, let us begin by recalling Exercise 2.5,

which establishes the following bijection of sets for every Δ, Γ, and 𝐴:

{𝛾 | Δ ⊢ 𝛾 : Γ.𝐴} � {(𝛾0, 𝑎) | Δ ⊢ 𝛾0 : Γ ∧ Δ ⊢ 𝑎 : 𝐴[𝛾0]}

Using Notation 2.3.2 we equivalently write:

𝜄Δ,Γ,𝐴 : Sb(Δ, Γ.𝐴) � ∑
𝛾 ∈Sb(Δ,Γ) Tm(Δ, 𝐴[𝛾])

where

∑
𝑎∈𝐴 𝐵𝑎 is our notation for the set-indexed coproduct of sets

∐
𝑎∈𝐴 𝐵𝑎 .

As stated, the bijections 𝜄Δ,Γ,𝐴 and 𝜄Δ′,Γ′,𝐴′ may be totally unrelated, but it turns out

that this collection of bijections is actually natural (or “parametric”) in Δ in the sense

that the behavior of 𝜄Δ0,Γ,𝐴 and 𝜄Δ1,Γ,𝐴 are correlated when we have a substitution from

Δ0 to Δ1.

Because these bijections have different types, to make this idea precise wemust find

a way to relate their differing domains Sb(Δ0, Γ.𝐴) and Sb(Δ1, Γ.𝐴) with one another,

as well as their codomains

∑
𝛾 ∈Sb(Δ0,Γ) Tm(Δ0, 𝐴[𝛾]) and

∑
𝛾 ∈Sb(Δ1,Γ) Tm(Δ1, 𝐴[𝛾]).

We have already seen the former in Notation 2.3.3: every substitution Δ0 ⊢ 𝛿 : Δ1

induces a function 𝛿∗ : Sb(Δ1, Γ.𝐴) → Sb(Δ0, Γ.𝐴). We leave the latter as an exercise:
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Exercise 2.10. Given Δ0 ⊢ 𝛿 : Δ1, use 𝛿
∗
(Notation 2.3.3) to define the following

function: ∑
𝛿∗ 𝛿
∗

:

∑
𝛾 ∈Sb(Δ1,Γ) Tm(Δ1, 𝐴[𝛾]) →

∑
𝛾 ∈Sb(Δ0,Γ) Tm(Δ0, 𝐴[𝛾])

Proof. Define (∑𝛿∗ 𝛿
∗) (𝛾, 𝑎) = (𝛿∗𝛾, 𝛿∗𝑎) = (𝛾 ◦ 𝛿, 𝑎[𝛿]). □

With these functions in hand we can now explain precisely what we mean by

the naturality of 𝜄−,Γ,𝐴. Fix a substitution Δ0 ⊢ 𝛿 : Δ1. We have two different ways

of turning a substitution Δ1 ⊢ 𝛾 : Γ.𝐴 into an element of

∑
𝛾0∈Sb(Δ0,Γ) Tm(Δ0, 𝐴[𝛾0]),

depicted by the “right then down” and “down then right” paths in the diagram below:

Sb(Δ1, Γ.𝐴)

Sb(Δ0, Γ.𝐴)

𝛿∗

∑
𝛾 ∈Sb(Δ1,Γ) Tm(Δ1, 𝐴[𝛾])

∑
𝛾 ∈Sb(Δ0,Γ) Tm(Δ0, 𝐴[𝛾])

𝜄Δ1,Γ,𝐴

∑
𝛿∗ 𝛿
∗

𝜄Δ0,Γ,𝐴

Going “right then down” we obtain

𝛾 𝜄Δ1,Γ,𝐴 (𝛾)

(∑𝛿∗ 𝛿
∗) (𝜄Δ1,Γ,𝐴 (𝛾))

and going “down then right” we obtain 𝛾 ↦→ 𝛾 ◦ 𝛿 ↦→ 𝜄Δ0,Γ,𝐴 (𝛾 ◦ 𝛿).
We say that the family of isomorphisms Δ ↦→ 𝜄Δ,Γ,𝐴 is natural when these two

paths always yield the same result, i.e., when (∑𝛿∗ 𝛿
∗) (𝜄Δ1,Γ,𝐴 (𝛾)) = 𝜄Δ0,Γ,𝐴 (𝛾 ◦ 𝛿) for

every Δ0 ⊢ 𝛿 : Δ1 and 𝛾 . In other words, 𝜄Δ0,Γ,𝐴 and 𝜄Δ1,Γ,𝐴 “do the same thing” as soon

as you correct the mismatch in their types by pre- and post-composing the appropriate

maps.

Exercise 2.11. Prove that 𝜄 is natural, i.e., that the following maps are equal:∑
𝛿∗ 𝛿
∗ ◦ 𝜄Δ1,Γ,𝐴 = 𝜄Δ0,Γ,𝐴 ◦ 𝛿∗ : Sb(Δ1, Γ.𝐴) →

∑
𝛾 ∈Sb(Δ0,Γ) Tm(Δ0, 𝐴[𝛾])

Proof. Suppose 𝛾 ∈ Sb(Δ1, Γ.𝐴). Unfolding the solutions to Exercises 2.5 and 2.10,

(∑𝛿∗ 𝛿
∗) (𝜄Δ1,Γ,𝐴 (𝛾)) = (

∑
𝛿∗ 𝛿
∗) (p ◦ 𝛾, q [𝛾]) = ((p ◦ 𝛾) ◦ 𝛿, q [𝛾] [𝛿])

𝜄Δ0,Γ,𝐴 (𝛿∗(𝛾)) = 𝜄Δ0,Γ,𝐴 (𝛾 ◦ 𝛿) = (p ◦ (𝛾 ◦ 𝛿), q [𝛾 ◦ 𝛿])

which are equal by the functoriality of substitution. □
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The terminology of “natural” comes from category theory, where 𝜄−,Γ,𝐴 is known

as a natural isomorphism, but we will prove and use naturality conditions without

referring to the general concept. One useful consequence of naturality is the following:

Exercise 2.12. Without unfolding the definition of 𝜄, show that the naturality of 𝜄 and

the fact that 𝜄Δ,Γ,𝐴 and 𝜄−1

Δ,Γ,𝐴 are inverses together imply that 𝜄−1
is natural, i.e., that

𝜄−1

Δ0,Γ,𝐴
◦∑𝛿∗ 𝛿

∗ = 𝛿∗ ◦ 𝜄−1

Δ1,Γ,𝐴
:

∑
𝛾 ∈Sb(Δ1,Γ) Tm(Δ1, 𝐴[𝛾]) → Sb(Δ0, Γ.𝐴)

Proof. Apply 𝜄−1

Δ0,Γ,𝐴
◦−◦ 𝜄−1

Δ1,Γ,𝐴
to both sides of the naturality equation for 𝜄 and cancel:

𝜄−1

Δ0,Γ,𝐴
◦∑𝛿∗ 𝛿

∗ ◦ 𝜄Δ1,Γ,𝐴 ◦ 𝜄−1

Δ1,Γ,𝐴
= 𝜄−1

Δ0,Γ,𝐴
◦ 𝜄Δ0,Γ,𝐴 ◦ 𝛿∗ ◦ 𝜄−1

Δ1,Γ,𝐴

𝜄−1

Δ0,Γ,𝐴
◦∑𝛿∗ 𝛿

∗ = 𝛿∗ ◦ 𝜄−1

Δ1,Γ,𝐴
□

Exercise 2.13. For categorically-minded readers: argue that 𝜄 is a natural isomorphism

in the standard sense, by rephrasing Exercises 2.10 and 2.11 in terms of categories and

functors.

Rather than defining context extension by the collection of rules in Section 2.3 and

then characterizing it in terms of 𝜄 after the fact, we can actually define it directly as “a

context Γ.𝐴 for which Sb(−, Γ.𝐴) is naturally isomorphic to

∑
𝛾 ∈Sb(−,Γ) Tm(−, 𝐴[𝛾]),”

which unfolds to all of the relevant rules.

In addition to its brevity, the true advantage of such characterizations is that they

are less likely to “miss” some important aspect of the definition. Zooming out, this

definition states that substitutions into Γ.𝐴 are dependent pairs of a substitution 𝛾

into Γ and a term in 𝐴[𝛾], which is exactly the informal description we started with in

Section 2.3.

With that in mind, our program for justifying the rules of type theory is as follows:

Slogan 2.4.4. A connective in type theory is given by (1) a natural type-forming operation
and (2) a natural isomorphism relating that type’s terms to judgmentally-determined
structure.

We must unfortunately remain vague here about the meaning of “judgmentally-

determined structure,” but it refers to sets constructed from the sorts Sb(Δ, Γ), Ty(Γ),
and Tm(Γ, 𝐴) using natural operations such as dependent products and dependent

sums—operations that are implicit in the meaning of inference rules. To make this more

precise requires a formal treatment of the algebra of judgments via logical frameworks.
In addition, although this slogan will make quick work of the remainder of Sec-

tion 2.4, we will need to revise it in Sections 2.5 and 2.6.



(2025-07-19) Internalizing judgmental structure: Π,Σ, Eq,Unit 41

Π-types The rules in Section 2.4.1 precisely capture the existence of an operation

ΠΓ : (∑𝐴∈Ty(Γ) Ty(Γ.𝐴)) → Ty(Γ)

natural in Γ (that is, one which commutes with substitution) along with the following

family of isomorphisms also natural in Γ:

𝜄Γ,𝐴,𝐵 : Tm(Γ,Π(𝐴, 𝐵)) � Tm(Γ.𝐴, 𝐵)

The first point expresses the formation rule and Π(𝐴, 𝐵) [𝛾] = Π(𝐴[𝛾], 𝐵 [𝛾 .𝐴]).
We focus on the second point, which characterizes the remaining rules in Section 2.4.1.

The reverse map 𝜄−1

Γ,𝐴,𝐵 : Tm(Γ.𝐴, 𝐵) → Tm(Γ,Π(𝐴, 𝐵)) is the introduction rule,

which sends terms Γ.𝐴 ⊢ 𝑏 : 𝐵 to 𝜆 (𝑏). The forward map is slightly more involved, but

we can guess that it should correspond to elimination. In fact it is application to a fresh
variable, or a combination of weakening and application—given Γ ⊢ 𝑓 : Π(𝐴, 𝐵), we
weaken to Γ.𝐴 ⊢ 𝑓 [p] : Π(𝐴, 𝐵) [p] and then apply to q, obtaining Γ.𝐴 ⊢ app(𝑓 [p], q) :

𝐵.

To complete this natural isomorphism we must check that it is an isomorphism,

and that it is natural. We begin with the isomorphism: for all ⊢ Γ cx, Γ ⊢ 𝐴 type, and
Γ.𝐴 ⊢ 𝐵 type,

𝜄−1

Γ,𝐴,𝐵 (𝜄Γ,𝐴,𝐵 (𝑓 )) = 𝑓
𝜄Γ,𝐴,𝐵 (𝜄−1

Γ,𝐴,𝐵 (𝑏)) = 𝑏

Unfolding definitions, we see that this isomorphism boils down essentially to 𝛽 and 𝜂.

𝜄−1

Γ,𝐴,𝐵 (𝜄Γ,𝐴,𝐵 (𝑓 ))
= 𝜆 (app(𝑓 [p], q))
= 𝑓 by the 𝜂 rule

𝜄Γ,𝐴,𝐵 (𝜄−1

Γ,𝐴,𝐵 (𝑏))
= app(𝜆 (𝑏) [p], q)
= app(𝜆 (𝑏 [p.𝐴]), q) 𝜆 (−) commutes with substitution

= 𝑏 [p.𝐴 ◦ id.q] by the 𝛽 rule

= 𝑏 [p.q] by Exercise 2.14 below

= 𝑏 [id]
= 𝑏
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Exercise 2.14. Using the definition of p.𝐴 from Exercise 2.4, prove the substitution

equality needed to complete the equational reasoning above.

As for the naturality of the isomorphisms 𝜄, as before we must first explain how to

relate the types of 𝜄Γ,𝐴,𝐵 and 𝜄Δ,𝐴[𝛾 ],𝐵 [𝛾 .𝐴] given a substitution Δ ⊢ 𝛾 : Γ. In this case,

the comparison functions are the following:

𝛾∗ : Tm(Γ,Π(𝐴, 𝐵)) → Tm(Δ,Π(𝐴[𝛾], 𝐵 [𝛾 .𝐴]))
𝛾 .𝐴∗ : Tm(Γ.𝐴, 𝐵) → Tm(Δ.𝐴[𝛾], 𝐵 [𝛾 .𝐴])

Naturality therefore states that “right then down” and “down then right” are equal

in the following diagram. (By the reader’s argument in Exercise 2.12, naturality of 𝜄

automatically implies the naturality of 𝜄−1
.)

Tm(Γ,Π(𝐴, 𝐵))

Tm(Δ,Π(𝐴[𝛾], 𝐵 [𝛾 .𝐴]))

𝛾∗

Tm(Γ.𝐴, 𝐵)

Tm(Δ.𝐴[𝛾], 𝐵 [𝛾 .𝐴])

𝜄Γ,𝐴,𝐵

𝛾 .𝐴∗

𝜄Δ,𝐴[𝛾 ],𝐵 [𝛾 .𝐴]

Fixing Γ ⊢ 𝑓 : Π(𝐴, 𝐵), we show 𝜄Γ,𝐴,𝐵 (𝑓 ) [𝛾 .𝐴] = 𝜄Δ,𝐴[𝛾 ],𝐵 [𝛾 .𝐴] (𝑓 [𝛾]) by comput-

ing:

𝜄Γ,𝐴,𝐵 (𝑓 ) [𝛾 .𝐴]
= app(𝑓 [p], q) [𝛾 .𝐴]
= app(𝑓 [p] [𝛾 .𝐴], q [𝛾 .𝐴]) app(−,−) commutes with substitution

= app(𝑓 [p ◦ 𝛾 .𝐴], q)
= app(𝑓 [𝛾 ◦ p], q)

𝜄Δ,𝐴[𝛾 ],𝐵 [𝛾 .𝐴] (𝑓 [𝛾])
= app(𝑓 [𝛾] [p], q)
= app(𝑓 [𝛾 ◦ p], q)

Thus all of the rules ofΠ-types are summed up by a natural operationΠΓ (formation

and its substitution law) along with a natural isomorphism 𝜄Γ,𝐴,𝐵 : Tm(Γ,Π(𝐴, 𝐵)) �
Tm(Γ.𝐴, 𝐵) where 𝜄−1

and 𝜄 are introduction and elimination, the round-trips are 𝛽

and 𝜂, and naturality is the remaining substitution laws.
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An alternative eliminator There is a strange asymmetry in the two maps 𝜄 and 𝜄−1

underlying our natural isomorphism: the latter is literally the introduction rule, but

the former combines elimination with weakening and the variable rule. It turns out

that there is an equivalent formulation of Π-elimination more faithful to our current

perspective:

Γ ⊢ 𝑓 : Π(𝐴, 𝐵)
Γ.𝐴 ⊢ 𝜆−1(𝑓 ) : 𝐵

⇒

Such a presentation replaces the current app(−,−), 𝛽 , and 𝜂 rules with the above

rule along with new versions of 𝛽 and 𝜂 stating simply that 𝜆−1(𝜆 (𝑏)) = 𝑏 and

𝜆 (𝜆−1(𝑓 )) = 𝑓 respectively. We recover ordinary function application via app(𝑓 , 𝑎) :=

𝜆−1(𝑓 ) [id.𝑎].
Although in practice our original formulation of function application is much more

useful than anti-𝜆, the latter is more semantically natural. A variant of this argument

is discussed by Gratzer et al. [Gra+22], because in the context of modal type theories
one often encounters elimination forms akin to 𝜆−1(−) and it can be far from obvious

what the corresponding app(−,−) operation would be.

Exercise 2.15. Verify the claim that 𝜆−1(−) and its 𝛽 and 𝜂 rules do in fact imply our

original elimination, 𝛽 , and 𝜂 rules.

2.4.3 Dependent sums

We now present dependent pair types, also known as dependent sums or Σ-types. In a

reversal of our discussion of Π-types, we will begin by defining dependent sums as an

internalization of judgmental structure before unfolding this into inference rules.

The Σ type former behaves just like the Π type former: a natural family of types

indexed by pairs of a type 𝐴 and an 𝐴-indexed family of types 𝐵,

ΣΓ : (∑𝐴∈Ty(Γ) Ty(Γ.𝐴)) → Ty(Γ)

or in inference rule notation,

Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type
Γ ⊢ Σ(𝐴, 𝐵) type

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type
Δ ⊢ Σ(𝐴, 𝐵) [𝛾] = Σ(𝐴[𝛾], 𝐵 [𝛾 .𝐴]) type

(Recall that we write

∑
𝐴∈Ty(Γ) Ty(Γ.𝐴) for the indexed coproduct

∐
𝐴∈Ty(Γ) Ty(Γ.𝐴).)

Where Σ-types and Π-types differ is in their elements. Whereas Γ ⊢ Π(𝐴, 𝐵) type
internalizes termswith a free variable Γ.𝐴 ⊢ 𝑏 : 𝐵, the type Γ ⊢ Σ(𝐴, 𝐵) type internalizes
pairs of terms Γ ⊢ 𝑎 : 𝐴 and Γ ⊢ 𝑏 : 𝐵 [id.𝑎], naturally in Γ:

𝜄Γ,𝐴,𝐵 : Tm(Γ,Σ(𝐴, 𝐵)) � ∑
𝑎∈Tm(Γ,𝐴) Tm(Γ, 𝐵 [id.𝑎])
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Remarkably, the above line completes our definition of dependent sum types, but in

the interest of the reader we will proceed to unfold this natural isomorphism into

inference rules in three stages. First, we will unfold the maps 𝜄Γ,𝐴,𝐵 and 𝜄−1

Γ,𝐴,𝐵 into

three term formers; second, we will unfold the two round-trip equations into a pair of

equational rules; and finally, we will unfold the naturality condition into three more

equational rules.

Exercise 2.16. Just as in Exercise 2.8, show that using Σ-types we can define a non-

dependent pair type whose formation rule states that if Γ ⊢ 𝐴 type and Γ ⊢ 𝐵 type then
Γ ⊢ 𝐴 × 𝐵 type. Then define the introduction and elimination rules from Section 2.1

for this encoding, and check that the 𝛽- and 𝜂-rules from Section 2.1 hold.

Remark 2.4.5. There is an unfortunate terminological collision between simple types

and dependent types: although Π-types seem to generalize simple functions, they are

called dependent products, and although Σ-types seem to generalize simple products
because their elements are pairs, they are called dependent sums.

The reason is twofold: first, the elements of indexed coproducts (known to pro-

grammers as “tagged unions”) are actually pairs (“pairs of a tag bit with data”), whereas

the elements of indexed products (“𝑛-ary pairs”) are actually functions (sending 𝑛 to

the 𝑛-th projection). Secondly, both concepts generalize simple finite products: the

product 𝐵1 × 𝐵2 is both an indexed product

∏
𝑎∈{1,2} 𝐵𝑎 and an indexed coproduct of a

constant family

∑
_∈𝐵1

𝐵2. ⋄

To unpack the natural isomorphism, we note first that the forward direction

𝜄Γ,𝐴,𝐵 : Tm(Γ,Σ(𝐴, 𝐵)) → ∑
𝑎∈Tm(Γ,𝐴) Tm(Γ, 𝐵 [id.𝑎]) sends terms Γ ⊢ 𝑝 : Σ(𝐴, 𝐵) to

(meta-)pairs of terms, so we can unfold this map into a pair of term formers with the

same premises:

Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑝 : Σ(𝐴, 𝐵)
Γ ⊢ fst(𝑝) : 𝐴

Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑝 : Σ(𝐴, 𝐵)
Γ ⊢ snd(𝑝) : 𝐵 [id.fst(𝑝)]

The map 𝜄−1

Γ,𝐴,𝐵 :

∑
𝑎∈Tm(Γ,𝐴) Tm(Γ, 𝐵 [id.𝑎]) → Tm(Γ,Σ(𝐴, 𝐵)) sends a pair of

terms to a single term of type Σ(𝐴, 𝐵), so we unfold it into one term former with two

term premises:

Γ ⊢ 𝑎 : 𝐴 Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑏 : 𝐵 [id.𝑎]
Γ ⊢ pair(𝑎, 𝑏) : Σ(𝐴, 𝐵)

Unlike in our judgmental analysis of dependent products, the standard introduction

and elimination forms of dependent sums correspond exactly to the maps 𝜄−1
and 𝜄, so
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the two round-trip equations are exactly the standard 𝛽 and 𝜂 principles:

Γ ⊢ 𝑎 : 𝐴 Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑏 : 𝐵 [id.𝑎]
Γ ⊢ fst(pair(𝑎, 𝑏)) = 𝑎 : 𝐴 Γ ⊢ snd(pair(𝑎, 𝑏)) = 𝑏 : 𝐵 [id.𝑎]

Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑝 : Σ(𝐴, 𝐵)
Γ ⊢ 𝑝 = pair(fst(𝑝), snd(𝑝)) : Σ(𝐴, 𝐵)

It remains to unpack the naturality of 𝜄, which as we have seen previously, en-

codes the fact that the term formers commute with substitution. The reader may be

surprised to learn, however, that the substitution rule for pair(−,−) actually implies

the substitution rules for fst(−) and snd(−) in the presence of 𝛽 and 𝜂. (Categorically,

this is the fact that naturality of 𝜄−1
implies naturality of 𝜄, as we saw in Exercise 2.12.)

Given the rule

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : 𝐴 Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑏 : 𝐵 [id.𝑎]
Δ ⊢ pair(𝑎, 𝑏) [𝛾] = pair(𝑎[𝛾], 𝑏 [𝛾]) : Σ(𝐴, 𝐵) [𝛾]

fix a substitution Δ ⊢ 𝛾 : Γ and a term Γ ⊢ 𝑝 : Σ(𝐴, 𝐵). Then

fst(𝑝) [𝛾]
= fst(pair(fst(𝑝) [𝛾], snd(𝑝) [𝛾])) by the 𝛽 rule

= fst(pair(fst(𝑝), snd(𝑝)) [𝛾]) by the above rule

= fst(𝑝 [𝛾]) by the 𝜂 rule

and the calculation for snd(−) is identical. Nevertheless it is typical to include substi-

tution rules for all three term formers: there is nothing wrong with equating terms

that are already equal, and even in type theory, discretion can be the better part of

valor.

Exercise 2.17. Check that the substitution rule for pair above is meta-well-typed, in

particular the second component 𝑏 [𝛾]. (Hint: use Exercise 2.3.)

Exercise 2.18. Show that the substitution rule for 𝜆−1(−) follows from the substitu-

tion rule for 𝜆 (−) and the equations 𝜆 (𝜆−1(𝑓 )) = 𝑓 and 𝜆−1(𝜆 (𝑏)) = 𝑏.

2.4.4 Extensional equality

We now turn to the simplest form of propositional equality, known as extensional
equality or Eq-types. As their name suggests, Eq-types internalize the term equality
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judgment. They are defined as follows, naturally in Γ:

EqΓ : (∑𝐴∈Ty(Γ) Tm(Γ, 𝐴) × Tm(Γ, 𝐴)) → Ty(Γ)
𝜄Γ,𝐴,𝑎,𝑏 : Tm(Γ, Eq(𝐴, 𝑎, 𝑏)) � {★ | 𝑎 = 𝑏}

In other words, Eq(𝐴, 𝑎, 𝑏) is a type when Γ ⊢ 𝑎 : 𝐴 and Γ ⊢ 𝑏 : 𝐴, and has a unique

inhabitant exactly when the judgment Γ ⊢ 𝑎 = 𝑏 : 𝐴 holds (otherwise it is empty). The

inference rules for extensional equality are as follows:

Γ ⊢ 𝑎, 𝑏 : 𝐴

Γ ⊢ Eq(𝐴, 𝑎, 𝑏) type
Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎, 𝑏 : 𝐴

Δ ⊢ Eq(𝐴, 𝑎, 𝑏) [𝛾] = Eq(𝐴[𝛾], 𝑎[𝛾], 𝑏 [𝛾]) type

Γ ⊢ 𝑎 : 𝐴

Γ ⊢ refl : Eq(𝐴, 𝑎, 𝑎)
Γ ⊢ 𝑎, 𝑏 : 𝐴 Γ ⊢ 𝑝 : Eq(𝐴, 𝑎, 𝑏)

Γ ⊢ 𝑎 = 𝑏 : 𝐴

Γ ⊢ 𝑎, 𝑏 : 𝐴 Γ ⊢ 𝑝 : Eq(𝐴, 𝑎, 𝑏)
Γ ⊢ 𝑝 = refl : Eq(𝐴, 𝑎, 𝑏)

The penultimate rule is known as equality reflection, and it is somewhat unusual

because it concludes an arbitrary term equality judgment from the existence of a

term. This rule is quite strong in light of the facts that (1) judgmentally equal terms

can be silently exchanged at any location in any judgment, (2) the equality proof

Γ ⊢ 𝑝 : Eq(𝐴, 𝑎, 𝑏) is not recorded in those exchanges, and (3) 𝑝 could even be a

variable, e.g., in context Γ.Eq(𝐴, 𝑎, 𝑏).
Type theories with an extensional equality type are called extensional. The conse-

quences of equality reflection will be the primary motivation behind the latter half of

this book, but for nowwe simply note that these rules are a very natural axiomatization

of an equality type as the internalization of equality.

Exercise 2.19. Explain how these inference rules correspond to our EqΓ and 𝜄Γ,𝐴,𝑎,𝑏
definition.

Exercise 2.20. Where are the substitution rules for term formers? (Hint: there are

two equivalent answers, in terms of either the natural isomorphism or the inference

rules.)
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2.4.5 The unit type

We conclude our tour of the best-behaved connectives of type theory with the simplest

connective of all: the unit type.

UnitΓ ∈ Ty(Γ)
𝜄Γ : Tm(Γ,Unit) � {★}

This unfolds to the following rules:

⊢ Γ cx
Γ ⊢ Unit type

Δ ⊢ 𝛾 : Γ

Δ ⊢ Unit [𝛾] = Unit type

⊢ Γ cx
Γ ⊢ tt : Unit

Γ ⊢ 𝑎 : Unit

Γ ⊢ 𝑎 = tt : Unit

Exercise 2.21. Where is the elimination principle? Where are the substitution rules

for term formers? (Hint: what would these say in terms of the natural isomorphism?)

2.5 Inductive types: Void, Bool, +, Nat

We now turn our attention to inductive types, data types with induction principles.

Unlike the type formers in Section 2.4, which are typically “hard coded” into type

theories,
8
inductive types are usually specified as extensions to the theory (data type

declarations) via inductive schemas [Dyb94; CP90], or in theoretical contexts, encoded

as well-founded trees known as W-types [Mar82; Mar84b]. These schemas can be

extended ad infinitum to account for increasingly complex forms of inductive definition,

including indexed induction [Dyb94], mutual induction, induction-recursion [Dyb00],

induction-induction [NS12], quotient induction-induction [KKA19], and so forth.

For simplicity we restrict our attention to four specific types—the empty type,

booleans, coproducts, and natural numbers—that illustrate the basic issues that arise

when specifying inductive types in type theory. Unfortunately, we will immediately

need to refine Slogan 2.4.4.

8
This is an oversimplification: in practice, Σ and Unit are usually obtained as special cases of

dependent record types [Pol02], 𝑛-ary Σ-types with named projections.
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2.5.1 The empty type

We begin with the empty type Void, a “type with no elements.” Logically, this type

corresponds to the false proposition, so there should be no way to construct an element

of Void (a proof of false) except by deriving a contradiction from local hypotheses.

The type former is straightforward: naturally in Γ, a constant VoidΓ ∈ Ty(Γ), or

⊢ Γ cx
Γ ⊢ Void type

Δ ⊢ 𝛾 : Γ

Δ ⊢ Void [𝛾] = Void type

As for the elements of Void, an obvious guess is to say that the elements of the

empty type at each context are the empty set, i.e., naturally in Γ,

𝜄Γ : Tm(Γ,Void) � ∅ (!?)

This cannot be right, however, because Void does have elements in some contexts—the

variable rule alone forces q ∈ Tm(Γ.Void,Void), and other type formers can populate

Void even further, e.g., app(q, tt) ∈ Tm(Γ.Π(Unit,Void),Void).

Interlude: mapping in, mapping out To see how to proceed, let us take a brief

sojourn into set theory. There are several ways to define the product 𝐴 × 𝐵 of two sets,

for example by constructing it as the set of ordered pairs {(𝑎, 𝑏) | 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵} or
even more explicitly as the set {{{𝑎}, {𝑎, 𝑏}} | 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵}. However, in addition

to these explicit constructions, it is also possible to characterize the set 𝐴 × 𝐵 up to

isomorphism, as the set such that every function 𝑋 → 𝐴 × 𝐵 is determined by a pair

of functions 𝑋 → 𝐴 and 𝑋 → 𝐵 and vice versa.

Similarly, we can characterize one-element sets 1 as those sets for which there is

exactly one function 𝑋 → 1 for all sets 𝑋 . In fact, both of these characterizations are

set-theoretical analogues of Slogan 2.4.4, where 𝑋 plays the role of the context Γ.
After some thought, we realize that the analogous characterization of the zero-

element (empty) set 0 is significantly more awkward: there is exactly one function

𝑋 → 0 when 𝑋 is empty, and no functions 𝑋 → 0 when 𝑋 is non-empty. As it turns

out, in this case it is more elegant to consider the functions out of 0 rather than the

functions into it: a zero-element set 0 has exactly one function 0→ 𝑋 for all sets 𝑋 .

Exercise 2.22. Suppose that 𝑍 is a set such that for all sets 𝑋 there is exactly one

function 𝑍 → 𝑋 . Show that 𝑍 is isomorphic to the empty set.

Void revisited Recall from Section 2.3 that terms correspond to “dependent func-

tions from Γ to 𝐴.” In Section 2.4 we considered only type formers 𝑇 that are easily

characterized in terms of the maps into that type former from an arbitrary context Γ:
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in each case we defined maps/terms Tm(Γ,𝑇 ) as naturally isomorphic to the data of

𝑇 ’s introduction rule.

To characterize the maps out of Void into an arbitrary type 𝐴, we cannot leave the

context fully unconstrained; instead, we characterize the maps/terms Tm(Γ.Void, 𝐴)
for all ⊢ Γ cx and Γ.Void ⊢ 𝐴 type, recalling that—by the rules for Π-types—these are

equivalently the dependent functions out of Void in context Γ, i.e., Γ ⊢ 𝑓 : Π(Void, 𝐴).

Advanced Remark 2.5.1. Writing C for the category of contexts and substitutions,

terms Tm(Γ, 𝐴) are “dependent morphisms” from Γ to 𝐴 in the sense of being ordinary

morphisms Γ → Γ.𝐴 in the slice category C/Γ by Exercise 2.2. Thus, for right adjoint
type operations 𝐺—those in Section 2.4—it is easy to describe Tm(Γ,𝐺 (𝐴)) directly.

For left adjoint type operations 𝐹 , the situation is more fraught. Type theory

is fundamentally “right-biased” because its judgments concern maps from arbitrary

contexts into fixed types, but not vice versa. Thus to discuss dependent morphisms

𝐹 (𝑋 ) → 𝐴 we must speak about elements of Tm(Γ.𝐹 (𝑋 ), 𝐴), quantifying not only

over the ambient context/slice Γ but also the type 𝐴 into which we are mapping.

Confusingly, we encountered no issues defining Σ-types, despite dependent sum
being the left adjoint to pullback. This is because Σ is also the right adjoint to the

functor C → C→ sending 𝐴 ↦→ id𝐴, and it is the latter perspective that we axiomatize.

The left adjoint axiomatization makes an appearance in some systems, notably in

programming languages with existential types, phrased as let (𝑎, 𝑏) = 𝑝 in 𝑥 . ⋄

Putting all these ideas together, we define Void as the type for which, naturally in

Γ, there is exactly one dependent function from Void to 𝐴 for any dependent type 𝐴:

𝜌Γ,𝐴 : Tm(Γ.Void, 𝐴) � {★}

To sum up the difference between the incorrect definition Tm(Γ,Void) � ∅ and
the correct one above, the former states that Tm(Γ,Void) is the smallest set (in the

sense of mapping into all other sets), whereas the latter states that in any context, Void
is the smallest type. More poetically, at the level of judgments we can see that Void is

not always empty, but at the level of types, every type “believes” that Void is empty.

Unwinding 𝜌Γ,𝐴 into inference rules, we obtain:

⊢ Γ cx Γ.Void ⊢ 𝐴 type

Γ.Void ⊢ absurd′ : 𝐴
✎

⊢ Γ cx Γ.Void ⊢ 𝑎 : 𝐴

Γ.Void ⊢ absurd′ = 𝑎 : 𝐴
✎

We have marked these rules with ✎ to indicate that they are provisional; in

practice, as we previously discussed for 𝜆−1(−), it is awkward to use rules whose

conclusions constrain the shape of their context. But just as with app(−,−), it is more

standard to present an equivalent axiomatization absurd(𝑏) := absurd′ [id.𝑏] that
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“builds in a cut”:

Γ ⊢ 𝑏 : Void Γ.Void ⊢ 𝐴 type

Γ ⊢ absurd(𝑏) : 𝐴[id.𝑏]
Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑏 : Void Γ.Void ⊢ 𝐴 type

Δ ⊢ absurd(𝑏) [𝛾] = absurd(𝑏 [𝛾]) : 𝐴[𝛾 .𝑏 [𝛾]]

Γ ⊢ 𝑏 : Void Γ.Void ⊢ 𝑎 : 𝐴

Γ ⊢ absurd(𝑏) = 𝑎[id.𝑏] : 𝐴[id.𝑏]
✎

The term absurd(−) is known as the induction principle for Void, in the sense that

it allows users to prove a theorem for all terms of type Void by proving that it holds

for each constructor of Void, of which there are none.

In light of our definition of Void, we update Slogan 2.4.4 as follows:

Slogan 2.5.2. A connective in type theory is given by (1) a natural type-forming operation
Υ and (2) one of the following:

2.1. a natural isomorphism relating Tm(Γ, Υ) to judgmentally-determined structure, or

2.2. for all Γ.Υ ⊢ 𝐴 type, a natural isomorphism relating Tm(Γ.Υ, 𝐴) to judgmentally-
determined structure.

The final rule for absurd(−), the𝜂 principle, implies a very strong equality principle

for terms in an inconsistent context (Exercise 2.26) which we derive in the following

sequence of exercises. For this reason, and because this rule is derivable in the presence

of extensional equality (Section 2.5.5), we consider it provisional ✎ for the time being.

Exercise 2.23. Show that if Γ ⊢ 𝑏0, 𝑏1 : Void then Γ ⊢ 𝑏0 = 𝑏1 : Void.

Exercise 2.24. Fixing Δ ⊢ 𝛾 : Γ, prove that there is at most one substitution Δ ⊢ 𝛾 :

Γ.Void satisfying p ◦ 𝛾 = 𝛾 .

Exercise 2.25. Let Γ.Void ⊢ 𝐴 type and Γ ⊢ 𝑎 : 𝐴[id.𝑏]. Show that Γ.Void ⊢ 𝐴[id.𝑏 ◦
p] = 𝐴 type, and therefore that Γ.Void ⊢ 𝑎[p] : 𝐴.

Exercise 2.26. Derive the following rule, using the previous exercise and the 𝜂 rule.

Γ ⊢ 𝑏 : Void Γ.Void ⊢ 𝐴 type Γ ⊢ 𝑎 : 𝐴[id.𝑏]
Γ ⊢ 𝑎 = absurd(𝑏) : 𝐴[id.𝑏]

⇒
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Exercise 2.27. We have included the rule Δ ⊢ absurd(𝑏) [𝛾] = absurd(𝑏 [𝛾]) :

𝐴[𝛾 .𝑏 [𝛾]] but it is in fact derivable using the 𝜂 rule. Prove this.

Exercise 2.28. In Remark 2.5.1, we claimed that Σ-types admit both a “mapping in”

characterization (as in Section 2.4.3) and a “mapping out” characterization. Show that

naturally in Γ, there is an isomorphism

Tm(Γ.Σ(𝐴, 𝐵),𝐶) � Tm(Γ.𝐴.𝐵,𝐶 [p2.pair(q [p], q)])

2.5.2 Booleans

We turn now to the booleans Bool, a “type with two elements.” Once again the type

former is straightforward: BoolΓ ∈ Ty(Γ) naturally in Γ, or

Γ ⊢ Bool type

Δ ⊢ 𝛾 : Γ

Δ ⊢ Bool [𝛾] = Bool type

It is also clear that we want two constructors of Bool, true and false, natural in Γ:

Γ ⊢ true : Bool Γ ⊢ false : Bool

Δ ⊢ 𝛾 : Γ

Δ ⊢ true = true [𝛾] : Bool

Δ ⊢ 𝛾 : Γ

Δ ⊢ false = false [𝛾] : Bool

Keeping Slogan 2.5.2 in mind, there are two possible ways to complete our axioma-

tization of Bool. As with Void it is tempting but incorrect to define 𝜄 : Tm(Γ,Bool) �
{★,★′}; although the natural transformation 𝜄−1

is equivalent to our rules for true and

false, 𝜄 does not account for variables of type Bool or other indeterminate booleans

that arise in non-empty contexts.
9
Thus we must instead characterize maps out of

Bool by giving a family of sets naturally isomorphic to Tm(Γ.Bool, 𝐴).
So, what should terms Γ.Bool ⊢ 𝑎 : 𝐴 be? By substitution, such a term clearly de-

termines a pair of terms Γ ⊢ 𝑎[id.true] : 𝐴[id.true] and Γ ⊢ 𝑎[id.false] : 𝐴[id.false].
Conversely, if true and false are the “only” booleans, then such a pair of terms should

uniquely determine elements of Tm(Γ.Bool, 𝐴) in the sense that to map out of Bool, it
suffices to explain what to do on true and on false.

9
Even if variables 𝑥 : Bool stand for one of true or false, 𝑥 itself must be an indeterminate boolean

equal to neither constructor; otherwise the identity 𝜆𝑥.𝑥 : Bool → Bool would be a constant function.
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To formalize this idea, let us write ((id.true)∗, (id.false)∗) for the function which

sends 𝑎 ∈ Tm(Γ.Bool, 𝐴) to the pair (𝑎[id.true], 𝑎[id.false]). We complete our speci-

fication of Bool by asking for this map to be a natural isomorphism; that is, naturally

in Γ, we have:

BoolΓ ∈ Ty(Γ)
trueΓ, falseΓ ∈ Tm(Γ,Bool)

((id.true)∗, (id.false)∗) : Tm(Γ.Bool, 𝐴) � Tm(Γ, 𝐴[id.true]) × Tm(Γ, 𝐴[id.false])

This definition is remarkable in several ways. For the first time we are asking not

only for the existence of some natural isomorphism, but for a particular map to be

a natural isomorphism; moreover, because this map is defined in terms of true and

false, these must be asserted prior to the natural isomorphism itself. We update our

slogan accordingly:

Slogan 2.5.3. A connective in type theory is given by (1) a natural type-forming operation
Υ and (2) one of the following:

2.1. a natural isomorphism relating Tm(Γ, Υ) to judgmentally-determined structure, or

2.2. a collection of natural term constructors for Υ which, for all Γ.Υ ⊢ 𝐴 type, determine
a natural isomorphism relating Tm(Γ.Υ, 𝐴) to judgmentally-determined structure.

In the case of Void there were no term constructors to specify, and because there

is at most one (natural) isomorphism between anything and {★}, it was unnecessary
to specify the underlying map. In general, however, we emphasize that it is essential

to specify the map; doing so ensures that when we define a function “by cases” on

true and false, applying that function to true or false recovers the specified case and

not something else. On the other hand, because we have specified the underlying map,

it being an isomorphism is a property rather than additional structure: there is at most

one possible inverse.

Zooming out, our definition of Bool has a similar effect to our definition of Void
from Section 2.5.1: Tm(Γ,Bool) is not the set {true, false} at the level of judgments, but

every type “believes” that it is. This is the role of type-theoretic induction principles.

Advanced Remark 2.5.4. From the categorical perspective, option 2.2 in Slogan 2.5.3

asserts that the inclusion map of Υ’s constructors into Υ’s terms is left orthogonal to
all types. Maps which are left orthogonal to a class of objects and whose codomain

belongs to that class are known as fibrant replacements; in this sense, we have defined

Tm(−,Void) and Tm(−,Bool) as fibrant replacements of the constantly zero- and

two-element presheaves. This perspective is crucial to early work in homotopy type

theory [AW09] and the formulation of the intensional identity type in natural models

[Awo18]. ⋄
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It remains to unfold our natural isomorphism into inference rules. There are no

additional rules for the forward map, which is substitution by id.true and id.false. As
the reader may have already guessed, the backward map is essentially

10
dependent if :

Γ.Bool ⊢ 𝐴 type Γ ⊢ 𝑎𝑡 : 𝐴[id.true] Γ ⊢ 𝑎𝑓 : 𝐴[id.false] Γ ⊢ 𝑏 : Bool

Γ ⊢ if (𝑎𝑡 , 𝑎𝑓 , 𝑏) : 𝐴[id.𝑏]

Δ ⊢ 𝛾 : Γ
Γ.Bool ⊢ 𝐴 type Γ ⊢ 𝑎𝑡 : 𝐴[id.true] Γ ⊢ 𝑎𝑓 : 𝐴[id.false] Γ ⊢ 𝑏 : Bool

Δ ⊢ if (𝑎𝑡 , 𝑎𝑓 , 𝑏) [𝛾] = if (𝑎𝑡 [𝛾], 𝑎𝑓 [𝛾], 𝑏 [𝛾]) : 𝐴[𝛾 .𝑏 [𝛾]]
The fact that if is an inverse to ((id.true)∗, (id.false)∗) expresses the 𝛽 and 𝜂 laws:

Γ.Bool ⊢ 𝐴 type Γ ⊢ 𝑎𝑡 : 𝐴[id.true] Γ ⊢ 𝑎𝑓 : 𝐴[id.false]
Γ ⊢ if (𝑎𝑡 , 𝑎𝑓 , true) = 𝑎𝑡 : 𝐴[id.true] Γ ⊢ if (𝑎𝑡 , 𝑎𝑓 , false) = 𝑎𝑓 : 𝐴[id.false]

Γ.Bool ⊢ 𝐴 type Γ.Bool ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑏 : Bool

Γ ⊢ if (𝑎[id.true], 𝑎[id.false], 𝑏) = 𝑎[id.𝑏] : 𝐴[id.𝑏]
✎

The 𝛽 laws—the first two equations—are perhaps more familiar than the 𝜂 law,

which effectively asserts that any two terms dependent on Bool are equal if (and only

if) they are equal on true and false. (The 𝜂 rule is sometimes decomposed into a

“local expansion” and a collection of “commuting conversions.”) Although semantically

justified, it is typical to omit judgmental 𝜂 laws for all inductive types because they are

not syntax-directed and thus challenging to implement, and because they are derivable

in the presence of extensional equality (Section 2.5.5).

Exercise 2.29. Give rules axiomatizing the boolean analogue of absurd′, and prove

that these rules are interderivable with our rules for if (𝑎𝑡 , 𝑎𝑓 , 𝑏).

2.5.3 Coproducts

Our next example is the coproduct type 𝐴 + 𝐵, the “disjoint union of 𝐴 and 𝐵.” This

inductive type former follows the same pattern as the booleans but introduces one

important subtlety. Like Π-types, Σ-types, and Eq-types, the + type former takes

parameters, in this case a pair of types in the same context:

Γ ⊢ 𝐴 type Γ ⊢ 𝐵 type
Γ ⊢ 𝐴 + 𝐵 type

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴 type Γ ⊢ 𝐵 type
Δ ⊢ (𝐴 + 𝐵) [𝛾] = 𝐴[𝛾] + 𝐵 [𝛾] type

10
The inverse directly lands in Γ.Bool and not Γ, but as with absurd′ (Section 2.5.1) we adopt a more

standard presentation in which all conclusions have a generic context; see Exercise 2.29.
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Like Bool, 𝐴 + 𝐵 has two constructors; unlike Bool, its constructors are unary
(rather than nullary) operations whose arguments have types 𝐴 and 𝐵 respectively:

Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝐵 type
Γ ⊢ inl(𝑎) : 𝐴 + 𝐵

Γ ⊢ 𝑏 : 𝐵 Γ ⊢ 𝐴 type

Γ ⊢ inr(𝑏) : 𝐴 + 𝐵

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝐵 type
Δ ⊢ inl(𝑎) [𝛾] = inl(𝑎[𝛾]) : 𝐴[𝛾] + 𝐵 [𝛾]

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑏 : 𝐵 Γ ⊢ 𝐴 type

Δ ⊢ inr(𝑏) [𝛾] = inr(𝑏 [𝛾]) : 𝐴[𝛾] + 𝐵 [𝛾]

The names inl and inr are customary, abbreviating the left injection and right injection
of the types 𝐴 and 𝐵 into the coproduct 𝐴 + 𝐵. The type 𝐴 + 𝐵 is a disjoint union in

the sense that these injections are distinguished even in the case that 𝐴 = 𝐵.

Following the pattern established with Bool, we assert that maps out of 𝐴 + 𝐵 are

uniquely determined by their behavior on its two constructors inl(−) and inr(−). In
this case, because the inl(−) constructor has type “𝐴 → (𝐴 + 𝐵),” the condition of

“being determined by one’s behavior on inl(𝑎) : 𝐴 + 𝐵” is properly stated relative to a

variable 𝑎 : 𝐴 (and analogously with inr(𝑏) and a variable 𝑏 : 𝐵).

The mapping-out property for 𝐴 + 𝐵 thus involves the two substitutions

(p.inl(q))∗ : Tm(Γ.(𝐴 + 𝐵),𝐶) → Tm(Γ.𝐴,𝐶 [p.inl(q)])
(p.inr(q))∗ : Tm(Γ.(𝐴 + 𝐵),𝐶) → Tm(Γ.𝐵,𝐶 [p.inr(q)])

the first of which sends 𝑐 ∈ Tm(Γ.(𝐴 + 𝐵),𝐶) to 𝑐 [p.inl(q)] ∈ Tm(Γ.𝐴,𝐶 [p.inl(q)]),
in essence precomposing the input map of type “(𝐴 + 𝐵) → 𝐶” with the left injection

“𝐴→ (𝐴 + 𝐵)” (except that𝐶 depends on 𝐴 + 𝐵, and everything in sight depends on Γ).
Other than these substitutions not landing in context Γ, the specification of 𝐴 + 𝐵

mirrors that of Bool. Naturally in Γ, we have the formation and introduction rules

+Γ : (Ty(Γ) × Ty(Γ)) → Ty(Γ)
inlΓ,𝐴,𝐵 : Tm(Γ, 𝐴) → Tm(Γ, 𝐴 + 𝐵)
inrΓ,𝐴,𝐵 : Tm(Γ, 𝐵) → Tm(Γ, 𝐴 + 𝐵)

andwe assert that for all Γ.(𝐴+𝐵) ⊢ 𝐶 type, the followingmap is a natural isomorphism:

((p.inl(q))∗, (p.inr(q))∗) :

Tm(Γ.(𝐴 + 𝐵),𝐶) � Tm(Γ.𝐴,𝐶 [p.inl(q)]) × Tm(Γ.𝐵,𝐶 [p.inr(q)])
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Unfolding the reverse direction of this natural isomorphism and building in a cut,

we obtain the following “case distinction” eliminator and substitution rule:

Γ ⊢ 𝐴 type Γ ⊢ 𝐵 type Γ.(𝐴 + 𝐵) ⊢ 𝐶 type
Γ.𝐴 ⊢ 𝑐𝑙 : 𝐶 [p.inl(q)] Γ.𝐵 ⊢ 𝑐𝑟 : 𝐶 [p.inr(q)] Γ ⊢ 𝑝 : 𝐴 + 𝐵

Γ ⊢ case(𝑐𝑙 , 𝑐𝑟 , 𝑝) : 𝐶 [id.𝑝]

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴 type Γ ⊢ 𝐵 type Γ.(𝐴 + 𝐵) ⊢ 𝐶 type
Γ.𝐴 ⊢ 𝑐𝑙 : 𝐶 [p.inl(q)] Γ.𝐵 ⊢ 𝑐𝑟 : 𝐶 [p.inr(q)] Γ ⊢ 𝑝 : 𝐴 + 𝐵
Δ ⊢ case(𝑐𝑙 , 𝑐𝑟 , 𝑝) [𝛾] = case(𝑐𝑙 [𝛾 .𝐴], 𝑐𝑟 [𝛾 .𝐵], 𝑝 [𝛾]) : 𝐶 [𝛾 .𝑝 [𝛾]]

with the two 𝛽 laws:

Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝐵 type
Γ.(𝐴 + 𝐵) ⊢ 𝐶 type Γ.𝐴 ⊢ 𝑐𝑙 : 𝐶 [p.inl(q)] Γ.𝐵 ⊢ 𝑐𝑟 : 𝐶 [p.inr(q)]

Γ ⊢ case(𝑐𝑙 , 𝑐𝑟 , inl(𝑎)) = 𝑐𝑙 [id.𝑎] : 𝐶 [id.inl(𝑎)]

Γ ⊢ 𝑏 : 𝐵 Γ ⊢ 𝐴 type
Γ.(𝐴 + 𝐵) ⊢ 𝐶 type Γ.𝐴 ⊢ 𝑐𝑙 : 𝐶 [p.inl(q)] Γ.𝐵 ⊢ 𝑐𝑟 : 𝐶 [p.inr(q)]

Γ ⊢ case(𝑐𝑙 , 𝑐𝑟 , inr(𝑏)) = 𝑐𝑟 [id.𝑏] : 𝐶 [id.inr(𝑏)]

and the often omitted 𝜂 law:

Γ.(𝐴 + 𝐵) ⊢ 𝐶 type Γ.(𝐴 + 𝐵) ⊢ 𝑐 : 𝐶 Γ ⊢ 𝑝 : 𝐴 + 𝐵
Γ ⊢ case(𝑐 [p.inl(q)], 𝑐 [p.inr(q)], 𝑝) = 𝑐 [id.𝑝] : 𝐶 [id.𝑝]

✎

Exercise 2.30. We could now redefine Bool as the coproduct Unit + Unit.
Write this exercise.

2.5.4 Natural numbers

Our final example of an inductive type is the type of natural numbers Nat, the “least
type closed under zero : Nat and suc(−) : Nat → Nat.” The natural numbers are

conceptually similar to Bool and +, but the recursive nature of suc(−) complicates the
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situation significantly. The formation and introduction rules remain straightforward:

Γ ⊢ Nat type Γ ⊢ zero : Nat

Γ ⊢ 𝑛 : Nat

Γ ⊢ suc(𝑛) : Nat

Δ ⊢ 𝛾 : Γ

Δ ⊢ Nat [𝛾] = Nat type

Δ ⊢ 𝛾 : Γ

Δ ⊢ zero [𝛾] = zero : Nat

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑛 : Nat

Γ ⊢ suc(𝑛) [𝛾] = suc(𝑛[𝛾]) : Nat

As with Bool and +, we might imagine asking for maps out of Nat to be determined

by their behavior on zero and suc(−), i.e., for the substitutions

(id.zero)∗ : Tm(Γ.Nat, 𝐴) → Tm(Γ, 𝐴[id.zero])
(p.suc(q))∗ : Tm(Γ.Nat, 𝐴) → Tm(Γ.Nat, 𝐴[p.suc(q)])

to determine for every Γ.Nat ⊢ 𝐴 type a natural isomorphism

((id.zero)∗, (p.suc(q))∗) :

Tm(Γ.Nat, 𝐴) � Tm(Γ, 𝐴[id.zero]) × Tm(Γ.Nat, 𝐴[p.suc(q)]) (!?)

This turns out not to be the correct definition, but first, note that the first substitu-

tion moves us from Γ.Nat to Γ because the zero constructor is nullary, whereas the

second substitution moves us from Γ.Nat also to Γ.Nat because the suc(−) constructor
has type “Nat → Nat”; if the argument of suc(−) was of type 𝑋 rather than Nat, then
the latter substitution would be Γ.𝑋 ⊢ p.suc(q) : Γ.Nat.

But given that suc(−) is recursive—taking Nat to Nat—we now for the first time

are defining a judgment by a natural isomorphism whose right-hand side also has

the very same judgment we are trying to define, namely Tm(Γ.Nat, . . . ), i.e., terms in

context Γ.Nat. This natural isomorphism is therefore not so much a definition of its

left-hand side as it is an equation that the left-hand side must satisfy—in principle, this

equation may have many different solutions for Tm(Γ.Nat, 𝐴), or no solutions at all.

Interlude: initial algebras This equation asserts in essence that the natural num-

bers are a set 𝑁 satisfying the isomorphism 𝑁 � {★} ⊔ 𝑁 ,
11
where the reverse map

equips 𝑁 with a choice of “implementations” of zero ∈ 𝑁 and suc(−) : 𝑁 → 𝑁 . The

11
Why? In algebraic notation and ignoring dependency, the equation states that 𝐴Γ×𝑁 � 𝐴Γ ×𝐴Γ×𝑁

,

which simplifies to (Γ × 𝑁 ) � Γ ⊔ (Γ × 𝑁 ) and thus 𝑁 � {★} ⊔ 𝑁 .
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set of natural numbersNwith zero := 0 and suc(𝑛) := 𝑛+1 are a solution, but there are

infinitely many other solutions as well, such asN∪{∞} with zero := 0, suc(𝑛) := 𝑛+1,

and suc(∞) := ∞.
Nevertheless one might imagine that (N, 0,− + 1) is a distinguished solution in

some way, and indeed it is the “least” set 𝑁 with a point 𝑧 ∈ 𝑁 and endofunction

𝑠 : 𝑁 → 𝑁—here we are dropping the requirement of (𝑧, 𝑠) being an isomorphism—in

the sense that for any (𝑁, 𝑧, 𝑠) there is a unique function 𝑓 : N → 𝑁 with 𝑓 (0) = 𝑧
and 𝑓 (𝑛 + 1) = 𝑠 (𝑓 (𝑛)). Such triples (𝑁, 𝑧, 𝑠) are known as algebras for the signature
𝑁 ↦→ {★} ⊔ 𝑁 , structure-preserving functions between algebras are known as algebra
homomorphisms, and algebras with the above minimality property are initial algebras.

The above definitions extend directly to dependent algebras and homomorphisms:

given an ordinary algebra (𝑁, 𝑧, 𝑠), a displayed algebra over (𝑁, 𝑧, 𝑠) is a triple of an
𝑁 -indexed family of sets {𝑁̃𝑛}𝑛∈𝑁 , an element 𝑧 ∈ 𝑁̃𝑧 , and a function 𝑠 : (𝑛 : 𝑁 ) →
𝑁̃𝑛 → 𝑁̃𝑠 (𝑛) [KKA19]. Given any displayed algebra (𝑁̃ , 𝑧, 𝑠) over the natural number

algebra (N, 0,− + 1), there is once again a unique function 𝑓 : (𝑛 : N) → 𝑁̃𝑛 with

𝑓 (0) = 𝑧 and 𝑓 (𝑛 + 1) = 𝑠 (𝑛, 𝑓 (𝑛)). The reader is likely familiar with the special case

of displayed algebras over N valued in propositions rather than sets:

∀𝑃 : N→ Prop. 𝑃 (0) =⇒ (∀𝑛.𝑃 (𝑛) =⇒ 𝑃 (𝑛 + 1)) =⇒ ∀𝑛.𝑃 (𝑛)

Advanced Remark 2.5.5. The data of a displayed algebra over (𝑁, 𝑧, 𝑠) is equivalent
to the data of an algebra homomorphism into (𝑁, 𝑧, 𝑠), where the forward direction of

this equivalence sends the family {𝑁̃𝑛}𝑛∈𝑁 to the first projection (∑𝑛∈𝑁 𝑁̃𝑛) → 𝑁 . A

displayed algebra over the natural number algebra is thus a homomorphism 𝑁̃ → N;
the initiality ofN implies this map has a unique section homomorphism, which unfolds

to the dependent universal property stated above. ⋄

Natural numbers revisited Coming back to our specification of Nat, our formation

and introduction rules axiomatize an algebra (Nat, zero, suc(−)) for the signature

𝑁 ↦→ {★} ⊔ 𝑁 , but our proposed +-style natural isomorphism does not imply that

this algebra is initial. The solution is to simply axiomatize that any displayed alge-

bra over (Nat, zero, suc(−)) admits a unique displayed algebra homomorphism from

(Nat, zero, suc(−)).
Unwinding definitions, we ask that naturally in Γ, and for any𝐴 ∈ Ty(Γ.Nat), 𝑎𝑧 ∈

Tm(Γ, 𝐴[id.zero]), and 𝑎𝑠 ∈ Tm(Γ.Nat.𝐴,𝐴[p2.suc(q [p])]), we have an isomorphism:

𝜌Γ,𝐴,𝑎𝑧 ,𝑎𝑠 : {𝑎 ∈ Tm(Γ.Nat, 𝐴) | 𝑎𝑧 = 𝑎[id.zero] ∧ 𝑎𝑠 [p.q.𝑎] = 𝑎[p.suc(q)]} � {★}

The type of 𝑎𝑠 is easier to understand with named variables: it is a term of type

𝐴(suc(𝑛)) in context Γ, 𝑛 : Nat, 𝑎 : 𝐴(𝑛).
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Remark 2.5.6. This is the third time we have defined a connective in terms of a natural

isomorphism with {★}. In Section 2.4.5, we used such an isomorphism to assert that

Unit has a unique element in every context; in Section 2.5.1, we asserted dually that

every dependent type over Void admits a unique dependent function from Void. The
present definition is analogous to the latter, but restricted to algebras: every displayed

algebra over Nat admits a unique displayed algebra homomorphism from Nat. ⋄

Advanced Remark 2.5.7. In light of Remark 2.5.4 and Remark 2.5.6, we have defined

Nat as the fibrant replacement of the initial object in the category of (1⊔−)-algebras. ⋄

In rule form, the reverse direction of the natural isomorphism states that any

displayed algebra (𝐴, 𝑎𝑧, 𝑎𝑠) over Nat gives rise to a map out of Nat,

Γ ⊢ 𝑛 : Nat
Γ.Nat ⊢ 𝐴 type Γ ⊢ 𝑎𝑧 : 𝐴[id.zero] Γ.Nat.𝐴 ⊢ 𝑎𝑠 : 𝐴[p2.suc(q [p])]

Γ ⊢ rec(𝑎𝑧, 𝑎𝑠 , 𝑛) : 𝐴[id.𝑛]

which commutes with substitution,

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑛 : Nat
Γ.Nat ⊢ 𝐴 type Γ ⊢ 𝑎𝑧 : 𝐴[id.zero] Γ.Nat.𝐴 ⊢ 𝑎𝑠 : 𝐴[p2.suc(q [p])]

Δ ⊢ rec(𝑎𝑧, 𝑎𝑠 , 𝑛) [𝛾] = rec(𝑎𝑧 [𝛾], 𝑎𝑠 [𝛾 .Nat.𝐴], 𝑛[𝛾]) : 𝐴[𝛾 .𝑛[𝛾]]

and is a displayed algebra homomorphism, which is to say that the map sends zero to

𝑎𝑧 and suc(𝑛) to 𝑎𝑠 (𝑛, rec(𝑛)):

Γ.Nat ⊢ 𝐴 type Γ ⊢ 𝑎𝑧 : 𝐴[id.zero] Γ.Nat.𝐴 ⊢ 𝑎𝑠 : 𝐴[p2.suc(q [p])]
Γ ⊢ rec(𝑎𝑧, 𝑎𝑠 , zero) = 𝑎𝑧 : 𝐴[id.zero]

Γ ⊢ 𝑛 : Nat
Γ.Nat ⊢ 𝐴 type Γ ⊢ 𝑎𝑧 : 𝐴[id.zero] Γ.Nat.𝐴 ⊢ 𝑎𝑠 : 𝐴[p2.suc(q [p])]

Γ ⊢ rec(𝑎𝑧, 𝑎𝑠 , suc(𝑛)) = 𝑎𝑠 [id.𝑛.rec(𝑎𝑧, 𝑎𝑠 , 𝑛)] : 𝐴[id.suc(𝑛)]

Finally, the 𝜂 rule of Nat, which is again typically omitted, expresses that there is

exactly one displayed algebra homomorphism fromNat to (𝐴, 𝑎𝑧, 𝑎𝑠): if Γ.Nat ⊢ 𝑎 : 𝐴 is

a term that sends zero to𝑎𝑧 and suc(𝑛) to𝑎𝑠 (𝑛, 𝑎[id.𝑛]), then it is equal to rec(𝑎𝑧, 𝑎𝑠 , q).

Γ.Nat ⊢ 𝐴 type Γ.Nat ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑛 : Nat
Γ ⊢ 𝑎𝑧 : 𝐴[id.zero] Γ ⊢ 𝑎𝑧 = 𝑎[id.zero] : 𝐴[id.zero]

Γ.Nat.𝐴 ⊢ 𝑎𝑠 : 𝐴[p2.suc(q [p])]
Γ.Nat ⊢ 𝑎𝑠 [p.q.𝑎] = 𝑎[p.suc(q)] : 𝐴[p.suc(q)]

Γ ⊢ rec(𝑎𝑧, 𝑎𝑠 , 𝑛) = 𝑎[id.𝑛] : 𝐴[id.𝑛]
✎



(2025-07-19) Inductive types: Void, Bool, +, Nat 59

Exercise 2.31. Rewrite the first rec rule using named variables instead of p and q,
and convince yourself that it expresses a form of natural number induction.

Exercise 2.32. Define addition for Nat in terms of rec. We strongly recommend

solving Exercise 2.31 prior to this exercise in order to use standard named syntax.

Inductive types are initial algebras Our definition of Nat is more similar to Void,
Bool, and + than it may first appear. In fact, all four types are initial algebras for

different signatures, although the absence of recursive constructors allowed us to

sidestep this machinery until now. The empty type Void is the initial algebra for the

signature 𝑋 ↦→ 0: a (displayed) 0-algebra is just a (dependent) type with no additional

data, so initiality asserts that any Γ.Void ⊢ 𝐴 type admits a unique displayed algebra

homomorphism—a dependent function with no additional conditions—from Void.
Likewise, (Bool, true, false) is the initial algebra for 𝑋 ↦→ {★} ⊔ {★}. A displayed

({★} ⊔ {★})-algebra over Bool is a type Γ.Bool ⊢ 𝐴 type and two terms Γ ⊢ 𝑎𝑡 :

𝐴[id.true] and Γ ⊢ 𝑎𝑓 : 𝐴[id.false]; initiality states that for any such displayed algebra
there is a unique displayed algebra homomorphism (Bool, true, false) → (𝐴, 𝑎𝑡 , 𝑎𝑓 ):

𝜌Γ,𝐴,𝑎𝑡 ,𝑎𝑓 : {𝑎 ∈ Tm(Γ.Bool, 𝐴) | 𝑎𝑡 = 𝑎[id.true] ∧ 𝑎𝑓 = 𝑎[id.false]} � {★}

Coproduct types are more complicated because their signature involves types that

may depend on the context, but setting this aside, (𝐴 + 𝐵, inl(−), inr(−)) is the initial
algebra for 𝑋 ↦→ 𝐴 ⊔ 𝐵.

We refrain from restating Slogan 2.5.3 in terms of initial algebras because the

general theory of displayed algebras and homomorphisms for a given signature is too

significant a detour; we hope the reader is convinced that a general pattern exists.

Exercise 2.33. In Section 2.5.2, our definition of Bool roughly asserted a natural

isomorphism between 𝑎 ∈ Tm(Γ.Bool, 𝐴) and pairs of terms (𝑎[id.true], 𝑎[id.false]).
Prove that this definition is equivalent to the 𝜌Γ,𝐴,𝑎𝑡 ,𝑎𝑓 characterization above.

2.5.5 Unicity via extensional equality

In this section we have defined the inductive types Void, Bool, +, and Nat by equipping
themwith constructors and asserting that dependentmaps out of them are judgmentally
uniquely determined by where they send those constructors. That is, a choice of where

to send the constructors determines a map via elimination, and any two maps out of

an inductive type are judgmentally equal if they agree on the constructors.

This unicity condition is incredibly strong. First of all, it implies the substitution

rule for eliminators, because e.g. if (𝑎𝑡 , 𝑎𝑓 , q) [𝛾 .Bool] and if (𝑎𝑡 [𝛾], 𝑎𝑓 [𝛾], q) agree on
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true and false (see Exercise 2.27). More alarmingly, in the case of Void, it states that
all terms in contexts containing Void are equal to one another (see Exercise 2.26).

It turns out that these unicity principles—the 𝜂 rules of inductive types—are deriv-

able from the other rules of inductive types in the presence of equality reflection

(Section 2.4.4), the other suspiciously strong rule of extensional type theory.

Theorem 2.5.8. The following rule (𝜂 for Void) can be derived from the other rules for
Void in conjunction with the rules for Eq.

Γ ⊢ 𝑏 : Void Γ.Void ⊢ 𝑎 : 𝐴

Γ ⊢ absurd(𝑏) = 𝑎[id.𝑏] : 𝐴[id.𝑏]
✎,⇒

Proof. Suppose Γ ⊢ 𝑏 : Void and Γ.Void ⊢ 𝑎 : 𝐴. By equality reflection (Section 2.4.4),

it suffices to exhibit an element of Eq(𝐴[id.𝑏], absurd(𝑏), 𝑎[id.𝑏]), which we obtain

easily by Void elimination:

Γ ⊢ absurd(𝑏) : Eq(𝐴[id.𝑏], absurd(𝑏), 𝑎[id.𝑏]) □

In Chapter 3 we will see that all of these suspicious rules are problematic from

an implementation perspective, leading us to replace extensional type theory with

intensional type theory (Chapter 4), which differs formally in only two ways: it replaces

Eq-types with a different equality type that does not admit equality reflection, and it

deletes the 𝜂 rules from Void, Bool, +, and Nat.
In light of the fact that the latter rules are derivable from the former, we—as is

conventional—simply omit the 𝜂 rules for inductive types from the official specification

of extensional type theory. (These rules were all marked as provisional ✎.) Note that

this does not apply to the 𝜂 rules for Π, Σ, or Unit, which remain in both type theories.

Semantically, deleting these 𝜂 rules relaxes the unique existence to simply existence.
An algebra which admits a (possibly non-unique) algebra homomorphism to any

other algebra is known as weakly initial instead of initial. Rather than asking for the

collection of algebra homomorphisms to be naturally isomorphic to {★}, we ask for

the map from algebra homomorphisms to {★} to admit a natural section (right inverse).

Advanced Remark 2.5.9. Recalling Remark 2.5.4, Theorem 2.5.8 corresponds to the fact

that a class of morphisms L which is weakly orthogonal to R is in fact orthogonal to R
when R is closed under relative diagonals (𝑋 𝑌 ∈ R implies𝑋 𝑋 ×𝑌 𝑋 ∈ R). ⋄

Exercise 2.34. Prove that the 𝜂 rule for Bool can be derived from the other rules for

Bool in conjunction with the rules for Eq, by mirroring the proof of Theorem 2.5.8.
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2.6 Universes: U0,U1,U2, . . .

We are nearly finished with our definition of extensional type theory, but what’s

missing is significant: our theory is still not full-spectrum dependent in the sense

described in Section 1.2! That is, we have still not introduced the ability to define

a family of types whose head type constructor differs at different indices, such as a

Bool-indexed family of types which sends true to Nat and false to Unit. A more subtle

but fatal flaw with our current theory is that—despite all the logical connectives at our

disposal—we cannot prove that true and false are different, i.e., we cannot exhibit a

term 1 ⊢ 𝑝 : Π(Eq(Bool, true, false),Void).
It turns out that addressing the former will solve the latter en passant, so in

this section we will discuss two approaches for defining dependent types by case

analysis. In Section 2.6.1 we introduce large elimination, which equips inductive types

with a second elimination principle targeting type-valued algebras (which send each

constructor to a type), in addition to their usual elimination principle targeting algebras

valued in a single dependent type (which send each constructor to a term of that type).

Unfortunately we will see that large elimination has some serious limitations, so

it will not be an official part of our definition of extensional type theory. Instead, in

Section 2.6.2, we introduce type universes, connectives which internalize the judgment

Γ ⊢ 𝐴 type modulo “size issues.” By internalizing types as terms of a universe type,

universes reduce the problem of computing types by case analysis to the problem of

computing terms by case analysis, which we solved in Section 2.5. That said, universes

are a deep and complex topic that will bring us one step closer to our discussion of

homotopy type theory in Chapter 5.

2.6.1 Large elimination

In Section 2.5 we discussed elimination principles for inductive types such as Bool,
which allow us to define dependent functions out of inductive types by cases on

that type’s constructors. A direct but uncommon way of achieving full-spectrum

dependency is to equip each inductive type with a second elimination principle, large
elimination, which allows us to define dependent families of types by cases [Smi89].

12

12
Large elimination maps Bool into the collection of all types, which is “large” (in the sense of being

“the proper class of all sets”) rather than the collection of terms of a single type, which is “small” (“a set”).
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In the case of Bool, large elimination is characterized by the following rules:

Γ ⊢ 𝐴𝑡 type Γ ⊢ 𝐴𝑓 type Γ ⊢ 𝑏 : Bool

Γ ⊢ If (𝐴𝑡 , 𝐴𝑓 , 𝑏) type
✎

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴𝑡 type Γ ⊢ 𝐴𝑓 type Γ ⊢ 𝑏 : Bool

Δ ⊢ If (𝐴𝑡 , 𝐴𝑓 , 𝑏) [𝛾] = If (𝐴𝑡 [𝛾], 𝐴𝑓 [𝛾], 𝑏 [𝛾]) type
✎

Γ ⊢ 𝐴𝑡 type Γ ⊢ 𝐴𝑓 type
Γ ⊢ If (𝐴𝑡 , 𝐴𝑓 , true) = 𝐴𝑡 type Γ ⊢ If (𝐴𝑡 , 𝐴𝑓 , false) = 𝐴𝑓 type

✎

If we compare these to the rules of ordinary (“small”) elimination,

Γ.Bool ⊢ 𝐴 type Γ ⊢ 𝑎𝑡 : 𝐴[id.true] Γ ⊢ 𝑎𝑓 : 𝐴[id.false] Γ ⊢ 𝑏 : Bool

Γ ⊢ if (𝑎𝑡 , 𝑎𝑓 , 𝑏) : 𝐴[id.𝑏]

Γ.Bool ⊢ 𝐴 type Γ ⊢ 𝑎𝑡 : 𝐴[id.true] Γ ⊢ 𝑎𝑓 : 𝐴[id.false]
Γ ⊢ if (𝑎𝑡 , 𝑎𝑓 , true) = 𝑎𝑡 : 𝐴[id.true] Γ ⊢ if (𝑎𝑡 , 𝑎𝑓 , false) = 𝑎𝑓 : 𝐴[id.false]

we see that the large eliminator If is exactly analogous to the small eliminator if
“specialized to 𝐴 := type.” Note that this statement is nonsense because the judgment

“type” is not a type, but the intuition is useful and will be formalized momentarily.

(Indeed, for this reason we cannot formally obtain If as a special case of if .) Continuing
on with the metaphor, the rule for If is simpler than the rule for if because it has a
fixed codomain “type” which is moreover not dependent on Bool: it makes no sense

to ask for “Γ ⊢ 𝐴𝑡 type[id.true].”
It is even more standard to omit the 𝜂 rule for large elimination than for small elim-

ination (which is itself typically omitted), but such a rule would state that dependent

types indexed by Bool are uniquely determined by their values on true and false:

Γ.Bool ⊢ 𝐴 type Γ ⊢ 𝑏 : Bool

Γ ⊢ 𝐴[id.𝑏] = If (𝐴[id.true], 𝐴[id.false], 𝑏) type
✎✎

If we include the 𝜂 rule, then the rules for If would express that instantiating a

Bool-indexed type at true and false, i.e. ((id.true)∗, (id.false)∗), has a natural inverse:

((id.true)∗, (id.false)∗) : Ty(Γ.Bool) � Ty(Γ) × Ty(Γ)

Again, compare this to our original formulation of small elimination for Bool:

((id.true)∗, (id.false)∗) : Tm(Γ.Bool, 𝐴) � Tm(Γ, 𝐴[id.true]) × Tm(Γ, 𝐴[id.false])
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When we elide 𝜂, large elimination instead states that this map has a section (a

right inverse), which is to say that a choice of where to send true and false determines

a family of types via If , but not uniquely. This follows the discussion in Section 2.5.5,

except that we cannot derive the 𝜂 rule for large elimination from extensional equal-

ity because there is no type “Eq(type,−,−)” available to carry out the argument in

Theorem 2.5.8.

Remark 2.6.1. Large elimination only applies to types defined by mapping-out prop-

erties such as inductive types; there is no corresponding principle for mapping-in

connectives like Π(𝐴, 𝐵) because these do not quantify over any target, whether “small”

or “large.” ⋄

Remark 2.6.2. If we have both small and large elimination for Bool, then we can

combine them into a derived induction principle for Bool that works for any 𝑎𝑡 : 𝐴𝑡
and 𝑎𝑓 : 𝐴𝑓 , using large elimination to define the type family into which we perform a

small elimination.

Γ ⊢ 𝑎𝑡 : 𝐴𝑡 Γ ⊢ 𝑎𝑓 : 𝐴𝑓 Γ ⊢ 𝑏 : Bool

Γ ⊢ if (𝑎𝑡 , 𝑎𝑓 , 𝑏) : If (𝐴𝑡 , 𝐴𝑓 , 𝑏)
✎,⇒

⋄

With large elimination—or a related feature, type universes—we can prove the

disjointness of the booleans. (Although the proof below uses equality reflection, the

same theorem holds in intensional type theory for essentially the same reason.) Our

claim that we cannot prove disjointness without these features is a (relatively simple)

independence metatheorem requiring a model construction; see The Independence of
Peano’s Fourth Axiom from Martin-Löf’s Type Theory Without Universes [Smi88].

Theorem 2.6.3. Using the rules for If , there is a term

1 ⊢ disjoint : Π(Eq(Bool, true, false),Void)

Proof. We informally describe the derivation of disjoint. By Π-introduction we may

assume Eq(Bool, true, false) and proveVoid. In order to do this, consider the following
auxiliary family of types over Bool:

1.Eq(Bool, true, false).Bool ⊢ 𝑃 := If (Unit,Void, q) type

Then

1.Eq(Bool, true, false) ⊢ Unit
= 𝑃 [id.true] by 𝛽 for If
= 𝑃 [id.false] by equality reflection on q
= Void type by 𝛽 for If



64 Extensional type theory (2025-07-19)

and therefore 1.Eq(Bool, true, false) ⊢ tt : Void. In sum, we define disjoint := 𝜆 (tt).
□

As for other inductive types, the large elimination principle of Void is:

Γ ⊢ 𝑎 : Void

Γ ⊢ Absurd(𝑎) type
✎

Unfortunately, we run into a problem when stating large elimination for Nat.

Γ ⊢ 𝑛 : Nat Γ ⊢ 𝐴𝑧 type Γ.Nat.“type” ⊢ 𝐴𝑠 type
Γ ⊢ Rec(𝐴𝑧, 𝐴𝑠 , 𝑛) type

!?

In the ordinary eliminator, the branch for suc(−) has two variables𝑚 : Nat, 𝑎 : 𝐴(𝑚)
binding the predecessor𝑚 and (recursively) the result 𝑎 of the eliminator on𝑚. When

“𝐴 := type” the recursive result is a type, meaning that the suc(−) branch ought to bind
a type variable, a concept which is not a part of our theory. This is a serious problem

because recursive constructions of types were a major class of examples in Section 1.2.

Exercise 2.35. There is however a non-recursive large elimination principle for Nat
which defines a type by case analysis on whether a number is zero. This principle
follows from the rules in this section along with the other rules of extensional type

theory; state and define it.

Exercise 2.36. Although it is highly non-standard, it is possible to consider a substi-

tution calculus that includes rules for extending contexts by type variables:

⊢ Γ cx
⊢ Γ.type cx

Write the remaining rules governing this new form of context extension. (Hint: substi-

tutions Δ ⊢ 𝛾 : Γ.type should be in bijection with a certain set.)

2.6.2 Universes

Although large elimination is a useful concept, it sees essentially no use in practice.

We have just seen one reason: large eliminators cannot be recursive. The standard

approach is instead to include universe types, which are “types of types,” or types which

internalize the judgment Γ ⊢ 𝐴 type. Using universes, we can recover large elimination

as small elimination into a universe; we are also able to express polymorphic type

quantification using dependent functions out of a universe.
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A universe is a type with no parameters, so its formation rule is once again a

natural family of constants UΓ ∈ Ty(Γ), or

Γ ⊢ U type

Δ ⊢ 𝛾 : Γ

Δ ⊢ U = U [𝛾] type

As for its terms, the most straightforward definition would be to stipulate a natural

isomorphism between terms of U and types:

𝜄 : Tm(Γ,U) � Ty(Γ) (?!)

Note that just as we did not ask for terms of Π-types to literally be terms with an extra

free variable, we cannot ask for terms of U to literally be types: these are two different

sorts!

In inference rules, the forward map of the isomorphism would introduce a new

type former El(−)13 which “decodes” an element of U into a genuine type. The reverse

map conversely “encodes” a genuine type as an element of U. These intuitions lead us

to often refer to elements of U as codes for types.

Γ ⊢ 𝑎 : U

Γ ⊢ El(𝑎) type
Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : U

Δ ⊢ El(𝑎) [𝛾] = El(𝑎[𝛾]) type

Γ ⊢ 𝐴 type

Γ ⊢ code(𝐴) : U
?!

Γ ⊢ 𝐴 type

Γ ⊢ El(code(𝐴)) = 𝐴 type
?!

Γ ⊢ 𝑐 : U

Γ ⊢ code(El(𝑐)) = 𝑐 : U
?!

Unfortunately we can’t have nice things, as the last three rules above—the ones

involving code—are unsound. In particular they imply that U contains (a code for) U,

making it a “type of all types, including itself” and therefore subject to a variation on

Russell’s paradox known as Girard’s paradox [Coq86], as outlined in Section 2.6.4.

2.6.2.1 Populating the universe

Returning to our definition of universe types, it is safe to postulate a type U of type-

codes which decode via El into types. (Indeed, with large elimination it is even

possible to define such a type manually, e.g. U := Bool with El(true) := Unit and
El(false) := Void.)

UΓ ∈ Ty(Γ)
El : Tm(Γ,U) → Ty(Γ)

13
This name is not so mysterious: it means “elements of,” and is pronounced “ell” or, often, omitted.
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Our first attempt at populating Tm(Γ,U) was to ask for an inverse to El, but that
turns out to be inconsistent. Instead, we will simply manually equip U with codes

decoding to the type formers we have presented so far, but crucially not with a code

for U itself. This approach is somewhat verbose—for each type former we add an

introduction rule for U, a substitution rule, and an equation stating that El decodes
it to the corresponding type—but it allows us to avoid Girard’s paradox while still

populating U with codes for (almost) every type in our theory.

Unfortunately, this means that universe types do not follow our slogan; see

however Remark 2.6.9.

For example, to close U under dependent function types we add the following

rules:

Γ ⊢ 𝑎 : U Γ.El(𝑎) ⊢ 𝑏 : U

Γ ⊢ pi(𝑎, 𝑏) : U

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : U Γ.El(𝑎) ⊢ 𝑏 : U

Δ ⊢ pi(𝑎, 𝑏) [𝛾] = pi(𝑎[𝛾], 𝑏 [𝛾 .El(𝑎)]) : U

Γ ⊢ 𝑎 : U Γ.El(𝑎) ⊢ 𝑏 : U

Γ ⊢ El(pi(𝑎, 𝑏)) = Π(El(𝑎), El(𝑏)) type

The third rule states that pi(𝑎, 𝑏) is the code in U for the type Π(El(𝑎), El(𝑏)).
Note that the context of 𝑏 in the introduction rule for pi(𝑎, 𝑏) makes reference to El(𝑎),
mirroring the dependency structure of Π-types. Although this move is forced, it means

that the definitions of U and El each reference the other—the type of a constructor

of U mentions El, and the type of El itself mentions U—so U and El must be defined

simultaneously. In fact, this is the paradigmatic example of an inductive-recursive
definition, an inductive type that is defined simultaneously with a recursive function

out of it [Dyb00].

It is no more difficult to close U under dependent pairs, extensional equality, the

unit type, and inductive types. These rules quickly become tedious, so we write only

their introduction rules below, leaving the remaining rules to Appendix A.

Γ ⊢ 𝑎 : U Γ.El(𝑎) ⊢ 𝑏 : U

Γ ⊢ sig(𝑎, 𝑏) : U

Γ ⊢ 𝑎 : U Γ ⊢ 𝑥,𝑦 : El(𝑎)
Γ ⊢ eq(𝑎, 𝑥,𝑦) : U

Γ ⊢ unit : U Γ ⊢ void : U Γ ⊢ bool : U Γ ⊢ nat : U

Γ ⊢ 𝑎, 𝑏 : U

Γ ⊢ coprod(𝑎, 𝑏) : U

We can now recover the large elimination principles of Section 2.6.1 in terms of

small elimination into the type U. Moreover, because we can perfectly well extend
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the context by a variable of type U, we can now also construct types by recursion on

natural numbers:

Γ ⊢ 𝑛 : Nat Γ ⊢ 𝑎𝑧 : U Γ.Nat.U ⊢ 𝑎𝑠 : U

Γ ⊢ Rec(𝑎𝑧, 𝑎𝑠 , 𝑛) := El(rec(𝑎𝑧, 𝑎𝑠 , 𝑛)) type
⇒

Notation 2.6.4. In general, we will refer to a pair (𝐵, 𝐸) of a type Γ ⊢ 𝐵 type and a type
family Γ.𝐵 ⊢ 𝐸 type over it as a universe whenever it is appropriate to think of 𝐵 as a

collection of codes for types and 𝐸 as a decoding function. For example, we can regard

Nat as a universe of (codes of) finite types when equipped with the recursively-defined

type family sending each 𝑛 to the coproduct of 𝑛 copies of Unit. We will encounter

more examples of universes in Sections 2.7 and 5.2.

Remark 2.6.5. Proof assistant users are very familiar with universes, so such readers

may be wondering why they have never seen El before. Indeed, proof assistants such
as Rocq and Agda treat types and elements of U as indistinguishable. Historically,

much of the literature calls such universes—for which Tm(Γ,U) ⊆ Ty(Γ)—universes à
la Russell, in contrast to our universes à la Tarski, but we find such a subset inclusion

to be meta-suspicious.

Instead, we prefer to say that Rocq and Agda programs do not expose the notion

of type to the user at all, instead consistently referring only to elements of U. This

obviates the need for the user to ever write or see El, and the necessary calls to El can
be inserted automatically by the proof assistant in a process known as elaboration. ⋄

Remark 2.6.6. Another more semantically natural variation of universes relaxes the

judgmental equalities governing El to isomorphisms El(pi(𝑎, 𝑏)) � Π(El(𝑎), El(𝑏)),
producing what are known as weak universes à la Tarski. However, our strict formula-

tion is more standard and more convenient. ⋄

Advanced Remark 2.6.7. Universes in type theory play a similar role to Grothendieck

universes and their categorical counterparts in set theory and category theory. We

often refer to types encoded by U as small or U-small, and ask for small types to be

closed under various operations. As a result, universes in type theory roughly have

the same proof-theoretical strength as strongly inaccessible cardinals. Note, however,

that the lack of choice and excluded middle in type theory (see Section 2.7.4) precludes

a naïve comparison between it and ZFC or similar theories; see Section 3.5.1. ⋄

2.6.3 Hierarchies of universes

Our definition of U is perfectly correct, but the fact that U lacks a code for itself means

that we cannot recursively define types that mention U. In addition, although we can
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quantify over “small” types with Π(U,−), we cannot write any type quantifiers whose

domain includes U. We cannot fix these shortcomings directly, but we can mitigate

them by defining a second universe type U1 closed under all the same type codes as

before as well as a code for U, but no code for U1 itself. The same problem occurs one

level up, so we add a third universe U2 containing codes for U and U1 but not U2, and

so forth.

In practice, nearly all applications of type theory require only a finite number of

universes, but for uniformity and because this number varies between applications, it

is typical to ask for a countably infinite (alternatively, finite but arbitrary) tower of

universes each of which contains codes for the smaller ones. (For uniformity we write

U0
:= U.) This collection of U𝑖 is known as a universe hierarchy.
To define an infinite number of types and terms, we must now write rule schemas,

collections of rules that must be repeated for every (external, not internal) natural

number 𝑖 > 0. Each of these rules follows the same pattern in U, with one new feature:

U𝑖 contains a code uni𝑖, 𝑗 for U𝑗 whenever 𝑗 is strictly smaller than 𝑖 .

Γ ⊢ U𝑖 type

Γ ⊢ 𝑎 : U𝑖
Γ ⊢ El𝑖 (𝑎) type

Γ ⊢ 𝑎, 𝑏 : U𝑖
Γ ⊢ coprod𝑖 (𝑎, 𝑏) : U𝑖

Γ ⊢ 𝑎 : U𝑖 Γ.El𝑖 (𝑎) ⊢ 𝑏 : U𝑖
Γ ⊢ pi𝑖 (𝑎, 𝑏) : U𝑖 Γ ⊢ sig𝑖 (𝑎, 𝑏) : U𝑖

Γ ⊢ 𝑎 : U𝑖 Γ ⊢ 𝑥,𝑦 : El𝑖 (𝑎)
Γ ⊢ eq𝑖 (𝑎, 𝑥,𝑦) : U𝑖

Γ ⊢ unit𝑖 : U𝑖 Γ ⊢ void𝑖 : U𝑖 Γ ⊢ bool𝑖 : U𝑖 Γ ⊢ nat𝑖 : U𝑖

𝑗 < 𝑖

Γ ⊢ uni𝑖, 𝑗 : U𝑖

Again for uniformity we write pi
0
(𝑎, 𝑏) := pi(𝑎, 𝑏), etc., and we omit the associated

substitution rules and the type equations explaining how each El𝑖 computes on codes,

such as El𝑖 (eq𝑖 (𝑎, 𝑥,𝑦)) = Eq(El𝑖 (𝑎), 𝑥,𝑦) and El𝑖 (uni𝑖, 𝑗 ) = U𝑗 .

It is easy to see that the rules for U𝑖+1 are a superset of the rules for U𝑖 : the only
difference is the addition of the code uni𝑖+1,𝑖 : U𝑖+1 and codes that mention this code,

such as pi𝑖+1(uni𝑖+1,𝑖 , uni𝑖+1,𝑖) : U𝑖+1. Thus it should be possible to prove that every

closed code of type U𝑖 has a counterpart of type U𝑖+1 that decodes to the same type, that

is, “U𝑖 ⊊ U𝑖+1.” However, this fact is not visible inside the theory. We have no induction

principle for the universe, so we cannot define an “inclusion” function 𝑓 : U𝑖 → U𝑖+1
much less prove that it satisfies El𝑖+1(𝑓 (𝑎)) = El𝑖 (𝑎). And there is simply no way,

external or otherwise, to “lift” a variable of type U𝑖 to the type U𝑖+1.
We thus equip our universe hierarchy with one final operation: a lifting operation

that includes elements of U𝑖 into U𝑖+1, which is compatible with El and sends type

codes of U𝑖 to their counterparts in U𝑖+1. Such a strict lifting operation allows users to
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generally avoid worrying about universe levels, because small codes can always be

hoisted up to their larger counterparts when needed.

Γ ⊢ 𝑐 : U𝑖
Γ ⊢ lift𝑖 (𝑐) : U𝑖+1

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : U𝑖
Δ ⊢ lift𝑖 (𝑎) [𝛾] = lift𝑖 (𝑎[𝛾]) : U𝑖+1

Γ ⊢ 𝑎 : U𝑖
Γ ⊢ El𝑖+1(lift𝑖 (𝑎)) = El𝑖 (𝑎) type

The last rule above states that a code and its lift both encode the same type.

Recalling that the entire point of a universe hierarchy is to get as close as possible to

“U : U” without being inconsistent, it makes sense to treat lifts as a clerical operation

that does not affect the type about which we speak. In addition, this equation is actually

needed to state that lift commutes with codes, such as pi (other rules omitted):

Γ ⊢ 𝑎 : U𝑖 Γ.El𝑖 (𝑎) ⊢ 𝑏 : U𝑖
Γ ⊢ lift𝑖 (pi𝑖 (𝑎, 𝑏)) = pi𝑖+1(lift𝑖 (𝑎), lift𝑖 (𝑏)) : U𝑖+1

Remark 2.6.8. We say a universe hierarchy is (strictly) cumulative when it is equipped

with lift operations that commute (strictly) with codes. Historically the term “cumu-

lativity” often refers to material subset inclusions Tm(Γ,U𝑖) ⊆ Tm(Γ,U𝑖+1) but once
again such conditions are incompatible with our perspective. ⋄

Remark 2.6.9. There is an equivalent presentation of universe hierarchies known as

universes à la Coquand in which one stratifies the type judgment itself, and the 𝑖th

universe precisely internalizes the 𝑖th type judgment [Coq13; Coq19; Gra+21; FAM23].

That is, we have sorts Ty𝑖 (Γ) for 𝑖 ∈ N ∪ {⊤} with Ty(Γ) := Ty⊤(Γ), and natural

isomorphisms Ty𝑖 (Γ) � Tm(Γ,U𝑖) for 𝑖 ∈ N mediated by El𝑖 /code𝑖 . This presentation
essentially creates a new judgmental structure designed to be internalized by U, and

has the concrete benefit of unifying type formation and universe introduction into a

single set of rules. ⋄

Exercise 2.37. Check that the equational rule lift𝑖 (pi𝑖 (𝑎, 𝑏)) = pi𝑖+1(lift𝑖 (𝑎), lift𝑖 (𝑏))
above is meta-well-typed. (Hint: you need to use El𝑖+1(lift𝑖 (𝑎)) = El𝑖 (𝑎).)

Exercise 2.38. We only included lifts from U𝑖 to U𝑖+1, rather than from U𝑖 to U𝑗 for

every 𝑖 < 𝑗 . Show that the latter notion of lift is derivable for any concrete 𝑖 < 𝑗 and

that it satisfies the expected equations.
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2.6.4 Girard’s paradox

We close our discussion of universes by substantiating our claim in Section 2.6.2 that

it is inconsistent for U to contain a code for itself, a fact commonly known as Girard’s

paradox; specifically, we present a simplified argument due to Hurkens [Hur95].
14

The details of this paradox are not relevant to any later material in this book, so the

reader may freely skip the rest of this section. In this subsection alone, we adopt the

(inconsistent) rules of Section 2.6.2 pertaining to code.
At a high level, the fact that U contains a code for itself means that we can

construct a universe Θ that admits an embedding from its own double power set

P (P Θ); from this we can define a “set of all ordinals” and carry out a version of

the Burali-Forti paradox. The details become somewhat involved, in part because the

standard paradoxes of set theory rely on comprehension and extensionality principles

not available to us in type theory. Indeed, historically it was far from clear that “U : U”

was inconsistent, and in fact Martin-Löf’s first version of type theory had this very

flaw [Mar71].

P : U → U
P 𝐴 = code(El(𝐴) → U)

P2
: U → U

P2 𝐴 = P (P 𝐴)

Θ : U
Θ = code((𝐴 : U) → (El(P2 𝐴) → El(𝐴)) → El(P2 𝐴))

Lemma 2.6.10 (Powerful universe). The universe Θ admits maps

𝜏 : El(P2 Θ) → Θ

𝜎 : Θ→ El(P2 Θ)

such that

(𝐶 : El(P2 Θ)) → (𝜎 (𝜏 𝐶) = 𝜆(𝜙 : El(P Θ)) → 𝐶 (𝜙 ◦ 𝜏 ◦ 𝜎))

Proof. We define:

𝜏 : El(P2 Θ) → El(Θ)
14
An Agda formalization of Hurkens’s paradox is available at https://github.com/agda/agda/

blob/master/test/Succeed/Hurkens.agda; formalizations in other proof assistants are readily avail-

able online.

https://github.com/agda/agda/blob/master/test/Succeed/Hurkens.agda
https://github.com/agda/agda/blob/master/test/Succeed/Hurkens.agda
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𝜏 (Φ : El(P2 Θ)) (𝐴 : U) (𝑓 : El(P2 𝐴) → El(𝐴)) (𝜒 : El(P 𝐴)) =
Φ (𝜆(𝜃 : Θ) → 𝜒 (𝑓 (𝜃 𝐴 𝑓 )))

𝜎 : El(Θ) → El(P2 Θ)
𝜎 𝜃 = 𝜃 Θ 𝜏

We leave the equational condition to Exercise 2.39. □

Exercise 2.39. Show that the above definitions of 𝜏 and 𝜎 satisfy the necessary equa-

tion.

As an immediate consequence of Lemma 2.6.10, we have:

𝜎 (𝜏 (𝜎 𝑥)) = 𝜆(𝜙 : El(P Θ)) . 𝜎 𝑥 (𝜙 ◦ 𝜏 ◦ 𝜎) (2.1)

One way to understand the statement of Lemma 2.6.10 is that, regarding P as a functor

whose action on 𝑓 : El(𝑌 ) → El(𝑋 ) is precomposition 𝑓 ∗ : El(P 𝑋 ) → El(P 𝑌 ), the
equational condition is equivalent to 𝜎 ◦ 𝜏 = (𝜏 ◦ 𝜎)∗∗.

We derive a contradiction from Lemma 2.6.10 by constructing ordinals within Θ:

-- 𝑦 < 𝑥 (“𝑦 ∈ 𝑥”) when each 𝑓 in 𝜎 𝑥 contains 𝑦
(<) : El(Θ) → El(Θ) → U
𝑦 < 𝑥 = code((𝑓 : El(P Θ)) → El(𝜎 𝑥 𝑓 ) → El(𝑓 𝑦))

-- 𝑓 is inductive if for all 𝑥 , if 𝑓 is in 𝜎 𝑥 then 𝑥 is in 𝑓
ind : El(P Θ) → U
ind 𝑓 = code((𝑥 : El(Θ)) → El(𝜎 𝑥 𝑓 ) → El(𝑓 𝑥))

-- 𝑥 is well-founded if it is in every inductive 𝑓
wf : El(Θ) → U
wf 𝑥 = code((𝑓 : El(P Θ)) → El(ind 𝑓 ) → El(𝑓 𝑥))

Specifically, we consider Ω := 𝜏 (𝜆𝑓 → ind 𝑓 ), the collection of all inductive

collections. Using Lemma 2.6.10 we argue that Ω is both well-founded and not well-

founded.

Lemma 2.6.11. Ω is well-founded.

Proof. Suppose 𝑓 : El(P Θ) is inductive; we must show El(𝑓 Ω). By the definition of

ind, for this it suffices to show El(𝜎 Ω 𝑓 ). Unfolding the definition of Ω and rewriting

by the equation in Lemma 2.6.10 with 𝐶 := ind, it suffices to show that 𝑓 ◦ 𝜏 ◦ 𝜎 is

inductive.
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Thus suppose we are given 𝑥 : El(Θ) such that El(𝜎 𝑥 (𝑓 ◦ 𝜏 ◦ 𝜎)); we must show

El(𝑓 (𝜏 (𝜎 𝑥))). By rewriting El(𝜎 𝑥 (𝑓 ◦ 𝜏 ◦ 𝜎)) along Equation (2.1), we conclude

that El(𝜎 (𝜏 (𝜎 𝑥)) 𝑓 ). However, by our assumption that 𝑓 is inductive, this implies

El(𝑓 (𝜏 (𝜎 𝑥))), which is what we wanted to show. □

To prove that Ω is not well-founded, we start by showing that the collection of “sets

not containing themselves” 𝜙 := 𝜆𝑦 → code(El(𝜏 (𝜎 𝑦) < 𝑦) → Void) is inductive.

Lemma 2.6.12. 𝜙 is inductive.

Proof. Suppose we are given 𝑥 such that El(𝜎 𝑥 𝜙); we must show El(𝜏 (𝜎 𝑥) <

𝑥) → Void. Thus suppose El(𝜏 (𝜎 𝑥) < 𝑥), which is to say that for any 𝑓 such that

El(𝜎 𝑥 𝑓 ), we have El(𝑓 (𝜏 (𝜎 𝑥))). Using our hypothesis we may set 𝑓 := 𝜙 , from

which we conclude El(𝜏 (𝜎 (𝜏 (𝜎 𝑥))) < 𝜏 (𝜎 𝑥)) → Void. We derive the required

contradiction by proving that El(𝜏 (𝜎 (𝜏 (𝜎 𝑥))) < 𝜏 (𝜎 𝑥)) holds, by El(𝜏 (𝜎 𝑥) < 𝑥)
and Exercise 2.40. □

Exercise 2.40. Show that El(𝑥 < 𝑦) implies El(𝜏 (𝜎 𝑥) < 𝜏 (𝜎 𝑦)).

Theorem 2.6.13. There is a closed term of type Void.

Proof. Because Ω is well-founded and𝜙 is inductive, we have El(𝜏 (𝜎 Ω) < Ω) → Void.
To derive a contradiction, it suffices to show El(𝜏 (𝜎 Ω) < Ω), which is to say that for

any 𝑓 such that El(𝜎 Ω 𝑓 ), we have El(𝑓 (𝜏 (𝜎 Ω))). By the definition of Ω, El(𝜎 (Ω 𝑓 ))
implies that 𝑓 ◦ 𝜏 ◦ 𝜎 is inductive; combining this with the fact that Ω is well-founded,

we obtain El(𝑓 (𝜏 (𝜎 Ω))) as required. □

2.7★ Propositions and propositional truncation

Throughout this chapter we have considered types as indexed collections (of functions,

pairs, natural numbers, codes for other types, etc.) but types can also be regarded, by

the famed propositions as types correspondence [How80], as logical propositions in

an intuitionistic higher-order logic, as discussed in Section 1.3. In short:

Slogan 2.7.1 (Propositions as types). Type theory has a logical interpretation in which
types are logical propositions, and terms of a given type are proofs of that proposition.

Definition 2.7.2. We say Γ ⊢ 𝐴 type is inhabited if there exists a term Γ ⊢ 𝑎 : 𝐴. Thus

under Slogan 2.7.1 types are propositions and inhabited types are true propositions.
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As the reader may be aware, the propositions as types correspondence extends

far beyond the basic type and term judgments: contexts are local hypotheses, Unit
is the true proposition, Void is the false proposition, non-dependent Π-types (→,

see Exercise 2.8) are implication, non-dependent Σ-types (×, see Exercise 2.16) are
conjunction, and Π-types are universal quantification.

To formally substantiate this correspondence, we observe that the rules for Unit,
Void,→-types, and ×-types exactly match the corresponding rules of propositional

logic when we replace type-theoretic judgments by logical judgments. For example,

the rules governing implication in propositional logic exactly match the formation,

introduction, and elimination rules of non-dependent Π-types:

𝑝 prop 𝑞 prop

𝑝 → 𝑞 prop

Γ, 𝑝 ⊢ 𝑞 true
Γ ⊢ 𝑝 → 𝑞 true

Γ ⊢ 𝑝 → 𝑞 true Γ ⊢ 𝑝 true
Γ ⊢ 𝑞 true

This perfect formal correspondence starts to break down for Π-types, because

predicate logic consists of two distinct syntactic classes—the logical propositions and

predicates on the one hand, and the domains of quantification, or sorts, on the other—

whereas in type theory both the propositions and the domains of quantification are

drawn from a single syntactic class of types. Worse yet, extensional type theory lacks

connectives corresponding to logical disjunction and existential quantification!

In this section we will take a closer look at the logical content of type theory,

paying close attention to the distinction between propositions and sorts, a distinction

which clarifies both of the problems described above. In Section 2.7.1 we propose

a refinement to the naïve propositions as types correspondence of Slogan 2.7.1. In

Section 2.7.2 we discover a minor but fatal discrepancy between the behaviors of

existential quantification (resp., disjunction) in logic and Σ-types (resp., coproduct
types) in type theory. In Section 2.7.3 we consider a new type former, propositional
truncation, which allows us to recover disjunction and existential quantification. Finally,
in Section 2.7.4 we discuss the constructive nature of type theory’s higher-order logic.

Warning 2.7.3. Although propositional truncation (Section 2.7.3) is well established

in the setting of extensional type theory [Hof97; AB04], we—and in our estimation,

most authors—do not consider it one of the “canonical” connectives of extensional

type theory. The reader may safely skip to Chapter 3 and return to this section in

advance of reading Section 5.1.

Not sure who to cite for propositional truncation in this section...
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2.7.1 Propositions as some types

In predicate logic, universal quantification ∀𝑥 : 𝜏 . 𝜙 (𝑥) is a proposition when 𝜙 is a

proposition with a free variable 𝑥 of sort 𝜏 . Sorts are the collections over which the

quantifiers range, and they are grammatically distinct from propositions.

Remark 2.7.4. “Predicate logic” often refers to single-sorted predicate logic in which

all quantifiers range over a single (anonymous) collection, but one can equally well

consider many-sorted predicate logics including “typed” logics whose sorts are the

types of the simply-typed lambda calculus [LS88]. For example, ordinary (ZFC) set

theory is formally a collection of axioms in single-sorted predicate logic with a binary

relation symbol ∈, where the single sort is the collection of sets. ⋄

Under the propositions as types correspondence, types serve both roles: as propo-

sitions whose terms are proofs (𝑝 : Eq(𝐴, 𝑎, 𝑏) is a “proof” of 𝑎 = 𝑏) and as sorts whose

terms are elements (𝑛 : Nat is an “element” of the collection of natural numbers). When

we translate the logical proposition ∀𝑥 : N. 𝑥 = 𝑥 into the type Π(Nat, Eq(Nat, q, q)),
we think of Nat as a sort and Eq(Nat, q, q) as a proposition, but type theory does not

make any such distinction. Indeed both arguments of a Π-type are just types, and it is

no less valid to consider the Π-type Π(Eq(Nat, zero, zero),Nat) whose domain is the

equality “proposition” and whose codomain is the natural number “sort.”

So how can we tell whether a type is a proposition or a sort? Many types are

intrinsically biased toward one of these interpretations. The types Unit, Bool, and
Nat are all inhabited and thus “true propositions,” but Bool and Nat have multiple
inhabitants whereas Unit does not. For this reason, rendering the judgment Γ ⊢
𝑏 : Bool as “Bool is true” loses valuable information (which 𝑏?), but rendering Γ ⊢
𝑎 : Unit as “Unit is true” does not, suggesting that Unit tends toward a proposition

whereas Bool and Nat tend toward sorts. Unfortunately, other connectives are less

straightforward; the Π-type Π(Nat, Eq(Nat, q, q)) is the “proposition” that all natural
numbers are equal to themselves, but Π(Nat,Nat) is the “sort” of functions N→ N.

Following the intuition that a proposition should be a type without multiple

inhabitants, we formally define propositions in type theory as types whose terms are

all equal to one another:

Definition 2.7.5. A proposition is a type Γ ⊢ 𝐴 type for which the judgment Γ.𝐴.𝐴[p] ⊢
q [p] = q : 𝐴[p2] holds.

Propositions are also known as mere propositions to emphasize that they lack

information beyond inhabitation, and as subsingletons because they have at most one

element. We can revise Slogan 2.7.1 accordingly, at the expense of its catchiness:
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Slogan 2.7.6 (Propositions as some types). Type theory has a logical interpretation in
which the logical propositions are types whose terms are all equal, and proofs of a given
proposition are terms of the corresponding type (which are unique if they exist).

Exercise 2.41. Show that Unit and Void are propositions.

Warning 2.7.7. The type Γ ⊢ 𝐴 type being a proposition is not equivalent to the

cardinality of the set Tm(Γ, 𝐴) being at most one. Instead, Γ ⊢ 𝐴 type is a proposition
if and only if for all substitutions Δ ⊢ 𝛾 : Γ, |Tm(Δ, 𝐴[𝛾]) | ≤ 1.

For a counterexample, let us take on faith for the moment that type theory is

consistent (Theorem 3.4.8) in the sense that there are no terms 1 ⊢ 𝑎 : Void. Then there

are no terms of type 1.U ⊢ El(q) type, because such a term 1.U ⊢ 𝑏 : El(q) would
induce a term 1 ⊢ 𝑏 [id.void] : Void. But 1.U ⊢ El(q) type is not a proposition; if it
were, every type encoded in U would have to be a proposition, again contradicting

consistency via the disjointness of Bool (Theorem 2.6.3).

Using Π-types and Eq-types we can internalize the property of being a proposition.

For any Γ ⊢ 𝐴 type we define isProp(𝐴) := (𝑎 𝑏 : 𝐴) → Eq(𝐴, 𝑎, 𝑏), or more formally:

Γ ⊢ isProp(𝐴) := Π(𝐴,Π(𝐴[p], Eq(𝐴[p2], q [p], q))) type

Exercise 2.42. Show that Γ ⊢ 𝐴 type is a proposition in the sense of Definition 2.7.5

if and only if Γ ⊢ isProp(𝐴) type is inhabited.

Exercise 2.43. Show that Bool and Nat are not propositions, in the sense that the

types Γ ⊢ isProp(Bool) → Void type and Γ ⊢ isProp(Nat) → Void type are inhabited.
(Hint: adapt the proof of Theorem 2.6.3.)

Our third source of propositions after the true proposition Unit and the false

proposition Void will be Eq-types. In extensional type theory, equalities are sometimes

true and sometimes false but are always propositions, due to the 𝜂-rule stating that all

terms of type Eq(𝐴, 𝑎, 𝑏) are judgmentally equal to refl.

Lemma 2.7.8. If Γ ⊢ 𝑎, 𝑏 : 𝐴 then Γ ⊢ Eq(𝐴, 𝑎, 𝑏) type is a proposition.

Proof. We must show Γ.Eq(𝐴, 𝑎, 𝑏) .Eq(𝐴, 𝑎, 𝑏) [p] ⊢ q [p] = q : Eq(𝐴, 𝑎, 𝑏) [p2]. The
𝜂-rule for Eq-types states that all terms of Eq-type are equal to refl; in particular, both

q [p] and q are equal to refl and thus to each other. □

Remark 2.7.9. What does it mean for a proposition to be false? Given that a proposi-

tion Γ ⊢ 𝐴 type is true if it is inhabited, one might imagine that a proposition is false if

Tm(Γ, 𝐴) is empty—but then no proposition can be false, as even the so-called false

proposition Void is inhabited in some contexts. Recalling from Section 2.5.1 that Void
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is the “smallest type,” it is also the “falsest proposition” in the sense that in any context

where Void is inhabited, so is every other proposition (by absurd(−)). The correct
notion of a proposition Γ ⊢ 𝐴 type being false is therefore that Γ ⊢ 𝐴→ Void type is
inhabited, or equivalently that 𝐴 ⇐⇒ Void.

It is not a coincidence that the correct notions of being a proposition, being true,

and being false are all preserved by substitution and expressible internally in type

theory, whereas the incorrect notions of Tm(Γ, 𝐴) having cardinality ≤ 1, = 1, and = 0

satisfy neither of these properties. (See Warning 2.7.7 and Exercise 2.42.) ⋄

Whereas Eq(𝐴, 𝑎, 𝑏) is a proposition for any 𝐴, 𝑎, 𝑏, the types Π(𝐴, 𝐵) and Σ(𝐴, 𝐵)
may or may not be propositions depending on what 𝐴, 𝐵 are; returning to our earlier

example, Π(Nat,Nat) has multiple inhabitants but Π(Nat, Eq(Nat, q, q)) does not.

Lemma 2.7.10. If Γ ⊢ 𝐴 type, Γ.𝐴 ⊢ 𝐵 type, and 𝐵 is a proposition, then their dependent
product Γ ⊢ Π(𝐴, 𝐵) type is a proposition.

Proof. Unfolding Definition 2.7.5, we must show

Γ.Π(𝐴, 𝐵) .Π(𝐴, 𝐵) [p] ⊢ q [p] = q : Π(𝐴, 𝐵) [p2]

By the natural isomorphism defining Π-types, this condition is equivalent to the two

functions being equal when applied to a new variable of type 𝐴:

Γ.Π(𝐴, 𝐵) .Π(𝐴, 𝐵) [p] .𝐴[p2] ⊢ app(q [p2], q) = app(q [p], q) : 𝐵 [p3.q]

which follows from our assumption that 𝐵, hence any 𝐵 [𝛾], is a proposition. □

Corollary 2.7.11. For any Γ ⊢ 𝐴 type, Γ ⊢ isProp(𝐴) type is a proposition.

Proof. We must show that

Γ ⊢ Π(𝐴,Π(𝐴[p], Eq(𝐴[p2], q [p], q))) type

is a proposition. Applying Lemma 2.7.10 twice, it suffices to show that

Γ.𝐴.𝐴[p] ⊢ Eq(𝐴[p2], q [p], q) type

is a proposition, which is immediate by Lemma 2.7.8. □

The requirements for Σ(𝐴, 𝐵) to be a proposition are more severe than for Π(𝐴, 𝐵):
both 𝐴 and 𝐵 must be propositions. Worse yet, 𝐴 + 𝐵 may not be a proposition even

when both 𝐴 and 𝐵 are propositions!
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Exercise 2.44. Find propositions Γ ⊢ 𝐴 type and Γ ⊢ 𝐵 type such that 𝐴 + 𝐵 is not a

proposition, in the sense that Γ ⊢ isProp(𝐴 + 𝐵) → Void type is inhabited. Can you

find an additional condition on 𝐴 and 𝐵 that ensures 𝐴 + 𝐵 is a proposition?

Exercise 2.45. Show that if Γ ⊢ 𝐴 type, Γ.𝐴 ⊢ 𝐵 type, and both 𝐴 and 𝐵 are proposi-

tions, then their dependent sum Γ ⊢ Σ(𝐴, 𝐵) type is a proposition.

Exercise 2.46. Find a type Γ ⊢ 𝐴 type and a proposition Γ.𝐴 ⊢ 𝐵 type such that Γ ⊢
Σ(𝐴, 𝐵) type is not a proposition, in the sense that Γ ⊢ isProp(Σ(𝐴, 𝐵)) → Void type
is inhabited.

In the case that Γ.𝐴 ⊢ 𝐵 type is a proposition and Γ ⊢ 𝐴 type is not, Σ(𝐴, 𝐵) is not
a proposition but rather the subtype of 𝐴 on which the predicate 𝐵 holds, because its

elements are pairs of an element 𝑎 : 𝐴 and a proof 𝑏 : 𝐵 [id.𝑎] that 𝐵 holds on 𝑎.

Exercise 2.47. Suppose that Γ ⊢ 𝐴 type, Γ.𝐴 ⊢ 𝐵 type, and 𝐵 is a proposition. Show

that “Σ(𝐴, 𝐵) is the subtype of 𝐴 on which 𝐵 holds” in the sense that internally to type

theory, (1) there is an injective function Σ(𝐴, 𝐵) → 𝐴, and (2) 𝐵(𝑎) holds if and only if

𝑎 : 𝐴 is in the image of that function. What happens if 𝐵 is not a proposition?

We may summarize our results as follows:

Corollary 2.7.12. The “propositions as some types” interpretation of type theory (Slo-
gan 2.7.6) supports the following logical connectives:

• Unit is the true proposition.

• Void is the false proposition.

• Eq(𝐴, 𝑎, 𝑏) is the proposition 𝑎 = 𝑏 for sort 𝐴.

• If 𝐵 is a proposition then Π(𝐴, 𝐵) is the proposition ∀𝑥 : 𝐴. 𝐵(𝑥) for sort 𝐴.

• If 𝐴 and 𝐵 are propositions then 𝐴→ 𝐵 is the proposition 𝐴 =⇒ 𝐵.

• If 𝐴 and 𝐵 are propositions then 𝐴 × 𝐵 is the proposition 𝐴 ∧ 𝐵.

• If 𝐴 is a proposition then 𝐴→ Void is the proposition ¬𝐴.

Proof. Each bullet point above asserts both that the given type is a proposition in the

sense of Definition 2.7.5, and that its rules match those of a particular logical connective.

We have proven most of these claims above and leave the rest to the reader. □
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Although Corollary 2.7.12 spans most of the connectives of predicate logic, it

omits two connectives, namely disjunction and existential quantification. Coproduct

types are a natural candidate for logical disjunction: by +-introduction, if either 𝐴
or 𝐵 are inhabited then 𝐴 + 𝐵 is inhabited, and by +-elimination, given functions

𝐴→ 𝐶 and 𝐵 → 𝐶 we may construct a function 𝐴 + 𝐵 → 𝐶 . Likewise Σ-types are a
natural candidate for existential quantification: by Σ-introduction, if 𝑎 : 𝐴 and 𝐵(𝑎) is
inhabited then Σ(𝐴, 𝐵) is inhabited, and by Σ-elimination, if Σ(𝐴, 𝐵) is inhabited then

there is an 𝑎 : 𝐴 for which 𝐵(𝑎) is inhabited.
Unfortunately, these types are not propositions; as we have seen in Exercises 2.44

and 2.46, it is neither the case that 𝐴 + 𝐵 is a proposition whenever 𝐴 and 𝐵 are

propositions, nor that Σ(𝐴, 𝐵) is a proposition whenever 𝐵 is a proposition. We are

faced with two possibilities: is “propositions as some types” too restrictive, or it is

genuinely incorrect to use Σ-types (resp., coproduct types) as existential quantifiers
(resp., disjunction)? We will find in Section 2.7.2 that it is the latter.

Universes of propositions On a more positive note, in light of Corollary 2.7.11 we

can use Σ-types to define a hierarchy of universes of propositions Prop𝑖 as the subtypes
of U𝑖 (Exercise 2.47) spanned by codes of propositions:

⊢ Γ cx
Γ ⊢ Prop𝑖 := Σ(U𝑖 , isProp(El(q))) : U𝑖+1

⇒
Γ ⊢ 𝑝 : Prop𝑖

Γ ⊢ Prf𝑖 (𝑝) := El(fst(𝑝)) type
⇒

Note that each (Prop𝑖 , Prf𝑖 (−)) is a universe in the sense of Notation 2.6.4.

To close Prop𝑖 under logical connectives we simply combine the closure conditions

of U𝑖 from Section 2.6 with the closure conditions of propositions in Corollary 2.7.12.

Exercise 2.48. Provide definitions of bot𝑖 , and𝑖 (𝑎, 𝑏), and forall𝑖 (𝑎, 𝑏) satisfying:

⊢ Γ cx
Γ ⊢ bot𝑖 : Prop𝑖

⇒
⊢ Γ cx

Γ ⊢ Prf𝑖 (bot𝑖) = Void type
⇒

Γ ⊢ 𝑎, 𝑏 : Prop𝑖
Γ ⊢ and𝑖 (𝑎, 𝑏) : Prop𝑖

⇒
Γ ⊢ 𝑎, 𝑏 : Prop𝑖

Γ ⊢ Prf𝑖 (and𝑖 (𝑎, 𝑏)) = Prf𝑖 (𝑎) × Prf𝑖 (𝑏) type
⇒

Γ ⊢ 𝑎 : U𝑖 Γ.El𝑖 (𝑎) ⊢ 𝑏 : Prop𝑖
Γ ⊢ forall(𝑎, 𝑏) : Prop𝑖

⇒

Γ ⊢ 𝑎 : U𝑖 Γ.El𝑖 (𝑎) ⊢ 𝑏 : Prop𝑖
Γ ⊢ Prf𝑖 (forall(𝑎, 𝑏)) = Π(El𝑖 (𝑎), Prf𝑖 (𝑏)) type

⇒
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Notation 2.7.13. Mirroring our notation for type universes, we write Prop := Prop
0

and Prf (−) := Prf0(−). We will also suppress universe levels when they are immaterial

to the point at hand.

As with U𝑖 , having a type of propositions allows us to formulate logical notions

and principles that quantify over or otherwise refer to propositions. For example,

we will say that a predicate over the type 𝐴 is a function 𝑃 : 𝐴→ Prop, and a binary
relation over 𝐴 and 𝐵 is a function 𝑅 : 𝐴 × 𝐵 → Prop. Because quantification over

Prop may be nested arbitrarily deeply, the logical interpretation of type theory extends

automatically to higher-order logic.

Remark 2.7.14. It is worth asking whether one really needs a hierarchy of universes

of propositions. On the one hand, such a hierarchy Prop
0
, Prop

1
, . . . falls out naturally

from our definition of each Prop𝑖 as a subtype of U𝑖 . On the other hand, recall that we

introduced the hierarchy U0,U1, . . . in the first place to approximate the idea that U is

a “type of all types, including itself” without falling victim to Girard’s paradox; but

Prop should not include itself for the much simpler reason that it is not a proposition!

In stark contrast to the situation with type universes, it is perfectly consistent to

have a single type Prop containing codes for all propositions regardless of their universe

level; these single universes are known as impredicative universes of propositions,
in contrast to the predicative hierarchy described above. Although they constitute

an extension to the type theories discussed in this book, they are widely (but not

universally) accepted, appearing for instance in the Coq and Lean proof assistants. We

will discuss them in more depth in Section 5.1. ⋄

2.7.2 The illusion of choice

Although Σ(𝐴, 𝐵) appears to satisfy the logical rules governing existential quantifica-

tion, it is not a proposition in the sense of Definition 2.7.5 and thus cannot be part of

the “propositions as some types” interpretation of type theory. We now illustrate why

it is problematic that Σ(𝐴, 𝐵) is not a proposition when 𝐵 is a predicate, by considering

a naïve type-theoretic translation of the axiom of choice using Σ-types as existentials.
One formulation of the axiom of choice is that for any one-to-many binary relation

𝑅 between sorts 𝜏 and 𝜎 , there exists a function 𝑓 : 𝜏 → 𝜎 satisfying ∀𝑥 : 𝜏 . 𝑅(𝑥, 𝑓 (𝑥)).
Such a function is often called a choice function, in the sense that it chooses for each

𝑥 : 𝜏 one of the (possibly many) 𝑦 : 𝜎 to which 𝑥 must be related.

Definition 2.7.15. In typed higher-order logic, the axiom of choice is the proposition
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that for any sorts 𝜏, 𝜎 and any predicate 𝑅 over 𝜏 × 𝜎 ,

(∀𝑥 : 𝜏 . ∃𝑦 : 𝜎. 𝑅(𝑥,𝑦)) =⇒ (∃𝑓 : 𝜏 → 𝜎.∀𝑥 : 𝜏 . 𝑅(𝑥, 𝑓 (𝑥)))

Suppose we follow the logical interpretation of type theory described in Corol-

lary 2.7.12, and moreover interpret Σ(𝐴, 𝐵) as ∃𝑥 : 𝐴. 𝐵(𝑥). The result is a type which
states that for all types 𝐴, 𝐵 and for all relations 𝑃 : 𝐴 × 𝐵 → Prop,

NaiveChoice := ((𝑎 : 𝐴) → ∑
𝑏:𝐵 Prf (𝑃 (𝑎, 𝑏))) →

(∑𝑓 :𝐴→𝐵 (𝑎 : 𝐴) → Prf (𝑃 (𝑎, 𝑓 (𝑎))))

Note that the types 𝐴 and 𝐵 correspond respectively to the sorts 𝜏 and 𝜎 in Defini-

tion 2.7.15, and are not assumed to be propositions. As a result, neither the antecedent

nor the consequent of NaiveChoice is in general a proposition.

Lemma 2.7.16. NaiveChoice is inhabited in type theory.

Proof. Suppose that 𝐹 : (𝑎 : 𝐴) → ∑
𝑏:𝐵 Prf (𝑃 (𝑎, 𝑏)). We must construct a term of

type

∑
𝑓 :𝐴→𝐵 (𝑎 : 𝐴) → Prf (𝑃 (𝑎, 𝑓 (𝑎))). By Σ-introduction, it suffices to exhibit a term

𝑓 : 𝐴 → 𝐵, for which we choose 𝑓 (𝑎) = fst(𝐹 (𝑎)), as well as a term 𝑔 : (𝑎 : 𝐴) →
Prf (𝑃 (𝑎, 𝑓 (𝑎))), for which 𝑔(𝑎) = snd(𝐹 (𝑎)) is sufficient. Putting it all together,

𝜆𝐹 → ((𝜆𝑎 → fst(𝐹 𝑎)), (𝜆𝑎 → snd(𝐹 𝑎))) : NaiveChoice □

Traditionally, the force of the axiom of choice is that from the mere fact—the

logical proposition—that for every 𝑥 there exists some 𝑦 with 𝑅(𝑥,𝑦), one can obtain an

actual function—data in the sort 𝜏 → 𝜎—that concretely chooses one such 𝑦 for each

𝑥 . Regardless of how one feels about the axiom of choice, it is clear that the proof of

Lemma 2.7.16 is doing something altogether different: it directly extracts the choice of

𝑏 : 𝐵 from the “proof” of the antecedent 𝐹 : (𝑎 : 𝐴) → ∑
𝑏:𝐵 Prf (𝑃 (𝑎, 𝑏)) by sending

each 𝑎 : 𝐴 to the first projection of 𝐹 (𝑎).
In other words, our proof of NaiveChoice relies essentially on the fact that we can

extract non-trivial data from the “proof” 𝐹 (𝑎) of an existential. Rereading Lemma 2.7.16,

NaiveChoice simply states that from a pair-valued function 𝑎 ↦→ (𝑏, 𝑝) we can obtain

a pair of functions 𝑎 ↦→ 𝑏 and 𝑎 ↦→ 𝑝—hardly the axiom of choice!

Remark 2.7.17. The typeNaiveChoice is sometimes known as the type-theoretic axiom
of choice despite being neither an axiom nor a choice principle. We concede however

that it is type-theoretic. ⋄

What has gone wrong? The antecedent of NaiveChoice is much stronger than the

antecedent of the axiom of choice: from a term of type

∑
𝑏:𝐵 Prf (𝑃 (𝑎, 𝑏)) we can project

out an element 𝑏 of sort 𝐵, whereas in higher-order logic, knowing the proposition
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∃𝑏 : 𝐵. 𝑃 (𝑎, 𝑏) does not license one to obtain a concrete witness of sort 𝐵. In logic, one

can assume that such a 𝑏 : 𝐵 exists, but only in service of proving another proposition.
Put simply, inhabitation of

∑
𝑏:𝐵 Prf (𝑃 (𝑎, 𝑏)) in type theory is too informative. It

contains too much data; it is not a proposition.

2.7.3 Truncating types to propositions

Now that we have seen why Σ-types are not existential quantifiers, we turn to the

problem of correctly capturing existential quantification in type theory. After deriv-

ing a “mapping out” characterization of existentials, we will present a simpler but

equally expressive connective known variously as propositional truncation, squash types,
or bracket types [UF13; Hof97; Con+85; AB04] which we will consider an optional

extension to the extensional type theory defined in this chapter.

2.7.3.1 Existentials in type theory

In Section 2.7.2 we identified two key discrepancies between Σ-types and existential

quantification. First, Σ(𝐴, 𝐵) is not a proposition even when 𝐵 is a proposition. Sec-

ondly, given a proof of ∃𝑥 : 𝐴. 𝐵(𝑥), the witness (first projection) of sort 𝐴 should be

accessible only for purposes of inhabiting other propositions, not sorts.

Recalling Slogan 2.5.3, to specify an existential quantification type ∃(𝐴, 𝐵) in
type theory we must first decide whether to characterize the maps in or out of that

type. The second discrepancy above suggests that we need to restrict the maps out of
existentials—what one can do with a term of type ∃(𝐴, 𝐵)—so we will start there.

The formation rule for ∃(𝐴, 𝐵) is identical to that of Σ(𝐴, 𝐵). Naturally in Γ,

∃Γ : (∑𝐴∈Ty(Γ) Ty(Γ.𝐴)) → Ty(Γ) (✎)

As for the mapping out property, implications ∃(𝐴, 𝐵) → 𝐶 should correspond to

proofs of𝐶 under the assumption that there is a witness of sort 𝐴 and an inhabitant of

𝐵 at that witness. Phrased as a natural isomorphism, we require that naturally in Γ
and for every Γ ⊢ 𝐴 type, Γ.𝐴 ⊢ 𝐵 type, and Γ ⊢ 𝐶 type where 𝐶 is a proposition,

𝜌Γ,𝐴,𝐵,𝐶 : Tm(Γ.∃(𝐴, 𝐵),𝐶 [p]) � Tm(Γ.𝐴.𝐵,𝐶 [p2]) (✎)

Note that 𝜌 is exactly the (non-dependent case of the) mapping out property satisfied

by Σ(𝐴, 𝐵) as shown in Exercise 2.28, the only difference being that for ∃-types we
restrict 𝐶 to be a proposition. In particular, this restriction prevents us from setting

𝐶 = 𝐴 and thence deriving a first projection map ∃(𝐴, 𝐵) → 𝐴.
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Remark 2.7.18. The naturality requirement above is superfluous; the family of iso-

morphisms 𝜌Γ,𝐴,𝐵,𝐶 is necessarily natural because 𝐶 is a proposition and thus all maps

into Tm(Γ.𝐴.𝐵,𝐶 [p2]) must be equal. ⋄

Now that we have suitably restricted the maps out of ∃-types, we complete our

specification by requiring that ∃(𝐴, 𝐵) is a proposition for every 𝐴, 𝐵, for example by

asserting that any two terms of type ∃(𝐴, 𝐵) are equal.

Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑝, 𝑞 : ∃(𝐴, 𝐵)
Γ ⊢ 𝑝 = 𝑞 : ∃(𝐴, 𝐵)

✎

Given all the type formers now at our disposal, one might wonder whether there is

some clever way to encode ∃-types in terms of Σ-types and perhaps other connectives

from this chapter. Swan [Swa25] has shown recently that the answer is no. There are

however quite a few different and reasonable extensions to extensional type theory

which allow one to define a type satisfying the specification of ∃-types, including of
course the provisional rules for ∃(𝐴, 𝐵) themselves, or an impredicative universe of

propositions (Remark 2.7.14), or our next topic of discussion, propositional truncation.

Exercise 2.49. Following the pattern of ∃-types, write a set of rules for disjunction
types 𝐴 ∨ 𝐵. The type 𝐴 ∨ 𝐵 should be similar to 𝐴 + 𝐵 except that, like ∃-types, it is a
proposition and its mapping out property is restricted to maps into propositions.

Deriving introduction and dependent elimination Our specification of ∃-types
departs from Slogan 2.5.3 in several important ways: we did not specify any intro-

duction rules, the elimination principle only describes non-dependent maps out of

∃(𝐴, 𝐵), and the elimination principle does not state that a particular substitution map

is an isomorphism. For the curious reader, we now explain how all of these properties

follow from our more compact specification of ∃-types.
We start with the introduction rule. Setting 𝐶 := ∃(𝐴, 𝐵) in our mapping out

property, we have a natural isomorphism:

𝜌𝐴,𝐵,∃ (𝐴,𝐵) : Tm(Γ.∃(𝐴, 𝐵), ∃(𝐴, 𝐵) [p]) � Tm(Γ.𝐴.𝐵, ∃(𝐴, 𝐵) [p2])

The unique element of the left-hand side is the variable q ∈ Tm(Γ.∃(𝐴, 𝐵), ∃(𝐴, 𝐵) [p]),
so 𝜌𝐴,𝐵,∃ (𝐴,𝐵) (q) must be the unique element of Tm(Γ.𝐴.𝐵, ∃(𝐴, 𝐵) [p2]), which by

substitution induces a function

epair : (∑𝑎∈Tm(Γ,𝐴) Tm(Γ, 𝐵 [id.𝑎])) → Tm(Γ, ∃(𝐴, 𝐵))

corresponding to the introduction rule for ∃-types. Note that there is a unique such
function because Γ ⊢ ∃(𝐴, 𝐵) type is a proposition.
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The full elimination principle is more challenging. We must show that for any

proposition Γ.∃(𝐴, 𝐵) ⊢ 𝐶 type, the following map is a natural isomorphism:

(p2.epair(q [p], q))∗ : Tm(Γ.∃(𝐴, 𝐵),𝐶) � Tm(Γ.𝐴.𝐵,𝐶 [p2.epair(q [p], q)])

As before, because 𝐶 is a proposition this is the only such function, so we can forget

about the particular choice of map and construct any such isomorphism whatsoever.

To reduce this principle to the non-dependent principle stated earlier, we observe

that all possible dependencies on a proposition (in this case, Γ ⊢ ∃(𝐴, 𝐵) type) are
equal to one another. That is, for any type Γ.𝑃 ⊢ 𝐶 type depending on a proposition

Γ ⊢ 𝑃 type, we have isomorphisms

Tm(Γ.𝑃 .𝑃 [p],𝐶 [p2.q [p]]) � Tm(Γ.𝑃 .𝑃 [p],𝐶 [p2.q]) � Tm(Γ.𝑃,𝐶)

We may therefore replace the dependency of 𝐶 on the copy of ∃(𝐴, 𝐵) in the

context with a “local” dependency introduced on the right-hand side by a Σ-type:

Tm(Γ.∃(𝐴, 𝐵),𝐶) � Tm(Γ.∃(𝐴, 𝐵),Σ(∃(𝐴, 𝐵),𝐶) [p])

and similarly remove the dependency in the codomain of (p2.epair(q [p], q))∗:

Tm(Γ.𝐴.𝐵,𝐶 [p2.epair(q [p], q)]) � Tm(Γ.𝐴.𝐵,Σ(∃(𝐴, 𝐵),𝐶) [p2])

We complete the argument by composing the above isomorphisms with the isomor-

phism 𝜌𝐴,𝐵,Σ (∃ (𝐴,𝐵),𝐶 ) , noting that Γ ⊢ Σ(∃(𝐴, 𝐵),𝐶) [p2] type is a proposition.

Exercise 2.50. Complete this argument by defining the omitted isomorphisms and

checking that they compose to an isomorphism between the required sets.

2.7.3.2 Propositional truncation

The rules for ∃-types differ from the rules of Σ-types in two essential ways: they

assert that ∃(𝐴, 𝐵) is a proposition, and they restrict the mapping out property to

propositions. It turns out to be useful to isolate the process of replacing any type 𝐴

with a proposition that maps out into only other propositions. We call this type the

propositional truncation of 𝐴; it is, in a precise sense, the proposition that most closely

approximates the type 𝐴.

We notate the propositional truncation of 𝐴 as Trunc(𝐴), although other popular

notations include [𝐴] [AB04] and ∥𝐴∥ [UF13]. Its formation rule is straightforward:

Γ ⊢ 𝐴 type

Γ ⊢ Trunc(𝐴) type
✎

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴 type

Δ ⊢ Trunc(𝐴) [𝛾] = Trunc(𝐴[𝛾]) type
✎
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The remaining rules for Trunc(𝐴) are similar to those of ∃-types but stripped of

any resemblance to Σ-types. First, for every 𝑎 : 𝐴 we have a term seal(𝑎) : Trunc(𝐴).
Secondly, Trunc(𝐴) is a proposition. Finally, for every proposition Γ ⊢ 𝐶 type, we
have an isomorphism Tm(Γ.Trunc(𝐴),𝐶 [p]) � Tm(Γ.𝐴,𝐶 [p]).

Γ ⊢ 𝐴 type Γ ⊢ 𝑎 : 𝐴

Γ ⊢ seal(𝑎) : Trunc(𝐴)
✎

Γ ⊢ 𝐴 type Γ ⊢ 𝑝, 𝑞 : Trunc(𝐴)
Γ ⊢ 𝑝 = 𝑞 : Trunc(𝐴)

✎

Γ ⊢ 𝐴 type Γ ⊢ 𝐶 type
Γ.𝐶.𝐶 [p] ⊢ q [p] = q : 𝐶 [p2] Γ ⊢ 𝑎 : Trunc(𝐴) Γ.𝐴 ⊢ 𝑐 : 𝐶 [p]

Γ ⊢ open(𝑎, 𝑐) : 𝐶
✎

Exercise 2.51. Why does the open(−,−) rule give rise to an isomorphism

Tm(Γ.Trunc(𝐴),𝐶 [p]) � Tm(Γ.𝐴,𝐶 [p])

for every proposition Γ ⊢ 𝐶 type, and not just a map in the reverse direction? Where

are the 𝛽 and 𝜂 principles? And where are the substitution rules for term formers?

If we take Trunc-types as primitive, we can use them to define a type ∃′(𝐴, 𝐵)
satisfying the rules of ∃-types from Section 2.7.3.1:

∃′(𝐴, 𝐵) := Trunc(Σ(𝐴, 𝐵))

Clearly ∃′(𝐴, 𝐵) is a proposition and has the correct natural formation rule. As for the

mapping out property of ∃-types, suppose Γ ⊢ 𝐶 type is a proposition. Then:

Tm(Γ.∃′(𝐴, 𝐵),𝐶 [p])
� Tm(Γ.Σ(𝐴, 𝐵),𝐶 [p]) by mapping out for Trunc-types
� Tm(Γ.𝐴.𝐵,𝐶 [p2]) by mapping out for Σ-types

Exercise 2.52. Conversely, if we take ∃-types as primitive, we can define a type

Trunc′(𝐴) satisfying the rules of Trunc(𝐴), namely Trunc′(𝐴) := ∃(𝐴,Unit). Show
that Trunc′(𝐴) satisfies the same mapping out property as Trunc(𝐴), using only the

mapping out property of ∃-types.
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Exercise 2.53. If we take Trunc-types as primitive, we may also define disjunction

types as 𝐴 ∨ 𝐵 := Trunc(𝐴 + 𝐵). Show that this definition satisfies the rules proposed

in Exercise 2.49.

Although it is beyond the scope of this book, we note that one can develop a

considerable amount of theory about Trunc-types [AB04]. For example, they provide

us with yet another characterization of propositions, namely as the types 𝐴 for which

𝐴 and Trunc(𝐴) are isomorphic (internally to type theory). In fact:

Lemma 2.7.19. The type 𝐴 is a proposition if and only if there exists a retraction of
seal(−) : 𝐴→ Trunc(𝐴), i.e., a function 𝑓 : Trunc(𝐴) → 𝐴 such that seal(−) followed
by 𝑓 is the identity 𝐴→ 𝐴. In this case 𝑓 is necessarily an isomorphism.

It follows that Trunc(Trunc(𝐴)) is isomorphic to Trunc(𝐴), and in fact that propo-

sitional truncation forms an idempotent monad.

Finally, if we take Trunc-types as primitive, it is natural to also close each type

universe U𝑖 under propositional truncation with the following rules:

Γ ⊢ 𝑎 : U𝑖
Γ ⊢ trunc𝑖 (𝑎) : U𝑖

✎
Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : U𝑖

Δ ⊢ trunc𝑖 (𝑎) [𝛾] = trunc𝑖 (𝑎[𝛾]) : U𝑖
✎

Γ ⊢ 𝑎 : U𝑖
Γ ⊢ El𝑖 (trunc𝑖 (𝑎)) = Trunc(El𝑖 (𝑎)) type

✎

Γ ⊢ 𝑎 : U𝑖
Γ ⊢ lift𝑖 (trunc𝑖 (𝑎)) = trunc𝑖+1(lift𝑖 (𝑎)) : U𝑖+1

✎

Recalling that we defined the universes of propositions Prop𝑖 as the subtypes of
U𝑖 spanned by codes of propositions, the above rules imply that each Prop𝑖 is closed
under propositional truncation of types in U𝑖 and thus induce a map U𝑖 → Prop𝑖
sending each type in U𝑖 to its propositional truncation in Prop𝑖 . By replaying our

earlier constructions at the level of codes, they also imply that every Prop𝑖 is closed
under existential quantification and disjunction in the appropriate sense.

Advanced Remark 2.7.20. If we regard U𝑖 and Prop𝑖 as categories, then the aforemen-

tioned propositional truncation map U𝑖 → Prop𝑖 is the left adjoint to the inclusion

functor from propositions to types, and thus that propositional truncation exhibits

Prop𝑖 as a reflective subcategory of U𝑖 . The substitution rules for Trunc-types ensure
that this reflection extends to each slice and commutes with pullbacks.

Chasing this thread further, the condition of a type theory admitting Trunc-types is
a syntactic analogue of its category of closed types being regular, in the sense of having
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a stable factorization system of effective epimorphisms followed by a monomorphism.

The reader may consult Awodey and Bauer [AB04] for further discussion, including the

connection between intuitionistic predicate logic and type theorywithTrunc-types. ⋄

2.7.4 The logic of type theory

We close our exploration of propositions in extensional type theory by returning to the

discussion of choice principles from Section 2.7.2. Suppose that we add Trunc-types to
extensional type theory and properly formulate the axiom of choice in terms of “mere

existence” (∃-types or truncated Σ-types):

Choice := (𝐴 𝐵 : U) → (𝑃 : El(𝐴) × El(𝐵) → Prop) →
((𝑎 : El(𝐴)) → Trunc(∑𝑏:El (𝐵) Prf (𝑃 (𝑎, 𝑏)))) →
Trunc(∑𝑓 :𝐴→𝐵 (𝑎 : 𝐴) → Prf (𝑃 (𝑎, 𝑓 (𝑎))))

Is Choice inhabited in type theory?

Theorem 2.7.21. The proposition Choice is independent of extensional type theory
with Trunc-types, in the sense that neither Choice nor Choice→ Void is inhabited.

Remark 2.7.22. We will not prove Theorem 2.7.21 or any of the other independence

theorems in this section; however, in Section 6.5 we will discuss how these theorems

can be derived from models of type theory in various topoi. ⋄

Theorem 2.7.21 demonstrates that extensional type theory with Trunc-types does
not agree with the higher-order logic of classical sets, in which the axiom of choice

holds. In fact, type theory is a constructive logic, in the sense that it does not admit

(nor does it refute) several notable principles of classical logic
15
such as the axiom of

choice, the law of excluded middle (LEM), and double-negation elimination (DNE):

LEM := (𝑃 : Prop) → (Prf (𝑃) ∨ (Prf (𝑃) → Void))
DNE := (𝑃 : Prop) → ((Prf (𝑃) → Void) → Void) → Prf (𝑃)

Theorem 2.7.23. The propositions LEM and DNE imply one another, and are indepen-
dent of extensional type theory with Trunc-types.

Surprisingly, type theory is also consistent with some principles that are false in
classical logic, such as the principle that every function Nat → Nat is computable.

15
Note that there are several distinct senses in which a logic may be constructive; see Remark 2.7.25.
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Theorem 2.7.24. Fix some Gödel numbering of Turing machines, and let Church’s
thesis be the proposition that for every 𝑓 : Nat → Nat, there merely exists some 𝑛 : Nat
such that the Turing machine encoded by 𝑛 computes the function 𝑓 . Church’s thesis is
independent of type theory.

Church’s thesis is incompatible with the law of excluded middle. Using excluded

middle one can easily define a function 𝑓 : Nat → Nat that sends every Turing

machine code to 0 if the encoded machine halts and 1 otherwise; by the standard

halting argument, 𝑓 cannot be computed by a Turing machine.

The flexibility of type theory to be extended by a wide range of axioms, both

classical and anti-classical, allows mathematicians to use it as a powerful domain-

specific logic for reasoning synthetically about certain classes of objects that are

difficult to manipulate explicitly. In Section 5.2 we will encounter examples of synthetic

reasoning in homotopy type theory.

Remark 2.7.25. Constructivity in the sense of omitting classical principles—and thus

being compatible with a range of classical and anti-classical axioms—is sometimes

known as neutral constructivism. Constructivity can also refer to more opinionated

reasoning systems, including Brouwerian intuitionism, in which (for instance) all

functions from the real numbers to the real numbers are continuous, and Russian
constructivism, which admits recursion-theoretic principles such as Church’s thesis. ⋄
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Further reading

The literature on type theory is unfortunately neither notationally nor conceptually

coherent, particularly regarding syntax and how it is defined. We summarize a number

of important references that most closely match the perspective outlined in this book;

note however that many references will agree in some ways and differ in others.

Historical references Nearly all of the ideas in this chapter can be traced back in

some form to the philosopher Per Martin-Löf, whose collected works are available

in the GitHub repository michaelt/martin-lof. Over the decades, Martin-Löf has

considered many different variations on type theory; the closest to our presentation

are his notes on substitution calculus [Mar92] and the “Bibliopolis book” presenting

what is now called extensional type theory [Mar84b]. For a detailed philosophical

exploration of the judgmental methodology that types internalize judgmental structure,

see his “Siena lectures” [Mar96]. Finally, the book Programming in Martin-Löf’s Type
Theory [NPS90] remains one of the best pedagogical introductions to type theory as

formulated in Martin-Löf’s logical framework.

Syntax of dependent type theory The presentation of type theory most closely

aligned to ours can be found in the second author’s Ph.D. thesis [Gra23, Chapter 2].

Another valuable reference is Hofmann’s Syntax and Semantics of Dependent Types
[Hof97, Sections 1 and 2], which as the title suggests, presents the syntax of type

theory and connects it to semantical interpretations. Hofmann is very careful in his

definition of syntax, but the technical details of capture-avoiding substitution and

presyntax have largely been supplanted by subsequent work on logical frameworks,

so we suggest that readers gloss over these technical details.

Logical frameworks In this book we have attempted to largely sidestep the question

of what constitutes a valid collection of inference rules. The mathematics of syntax

can and has occupied entire books, but in short, the natural families of constants and

isomorphisms considered in this chapter can be formulated precisely in systems known

as logical frameworks. A good introduction to logical frameworks is the seminal work

of Harper, Honsell, and Plotkin [HHP93] on the Edinburgh Logical Framework, in

which object-level judgments can be encoded as meta-level types.

For logical frameworks better suited to defining dependent type theory in particular,

we refer readers to the generalized algebraic theories of [Car86] (or the tutorial on

this subject by Sterling [Ste19]), or to quotient inductive-inductive types [AK16; Dij17;
KKA19; Kov22]. For logical frameworks specifically designed to accomodate the

https://github.com/michaelt/martin-lof/
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binding and substitution of dependent type theory, we refer the reader to the Ph.D.

theses of Haselwarter [Has21] and Uemura [Uem21].
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Metatheory and implementation 3
In Chapter 2 we carefully defined Martin-Löf type theory as a formal mathematical

object: a kind of “algebra” of indexed sets (of types and terms) equipped with various

operations. We believe this perspective is essential to understanding both the what
and the why of type theory, providing both a precise definition that can be unfolded

into inference rules, as well as an explanation of what these rules intend to axiomatize.

This perspective is not, however, how most users of type theory interact with

it. Most users of type theory interact with proof assistants, software systems for

interactively developing and verifying large-scale proofs in type theory. Even when

type theorists work on paper rather than on a computer, many of the conveniences

of proof assistants bleed into their informal notation. Indeed, in Chapter 1 we used

definitions, implicit arguments, data type declarations, and pattern matching without

a second thought.

Although this book focuses on theoretical rather than practical considerations, it is

impossible to discuss the design space of type theory without discussing the pragmatics

of proof assistants, as these have exerted a profound influence on the theory. Our goal

in this chapter is to explain how to square our mathematical notion of type theory with

(idealized) implementations
1
of type theory, and to discover and unpack the substantial

constraints that the latter must place on the former.

In this chapter In Section 3.1 we axiomatize the core functionality of proof assistants

in terms of algorithmic elaboration judgments, and outline a basic implementation. In

Section 3.2 we continue to refine our implementation, taking a closer look at how the

equality judgments of type theory impact elaboration, and the metatheoretic properties

we need equality to satisfy. In Section 3.3 we consider how to extend our elaborator to

account for definitions. In Section 3.4 we discuss other metatheorems of type theory

and their relationship to program extraction. In Section 3.5 we construct a set-theoretic

model of extensional type theory and explore some of its metatheoretic consequences—

including a counterexample to one of the properties discussed in Section 3.2. Finally,

in Section 3.6 we disprove a second important metatheoretic property, leading us to

consider alternatives to extensional type theory (Chapter 2) in Chapters 4 and 5.

1
At the end of this chapter, we provide some pointers to literature and implementations specifically

geared to readers interested in learning how to actually implement type theory.
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Goals of the chapter By the end of this chapter, you will be able to:

• Explain why and how we define type-checking in terms of elaboration.

• Define the consistency, canonicity, normalization, and invertibility metatheo-

rems, and identify why each is important.

• Explain which metatheorems are disrupted by extensional equality, and sketch

why.

3.1 A judgmental reconstruction of proof assistants

What exactly is the relation between Agda code (or the code in Chapter 1) and the type

theory in Chapter 2? Certainly, Rocq and Agda—even without extensions—include

many convenience features that the reader would not be surprised to see omitted

in a theoretical description of type theory: implicit arguments, typeclasses/instance

arguments, libraries, reflection, tactics. . . For the moment we set aside not only these

but even more fundamental features such as data type declarations, pattern matching,

and the ability to write definitions, in order to consider the simplest possible “Agda”: a

type-checker. That is, our idealized Agda takes as input two expressions 𝑒 and 𝜏 and

accepts in the case that 𝑒 is a closed term of closed type 𝜏 , and rejects if not.

Slogan 3.1.1. Proof assistants are fancy type-checkers.

Remark 3.1.2. For the purposes of this book, “proof assistant” refers only to proof

assistants in the style of Rocq, Agda, and Lean. In particular, we will not discuss

LCF-style systems [GMW79] such as Nuprl [Con+85] and Andromeda [Bau+21], or

systems not based on dependent type theory, such as Isabelle [NPW02] or HOL Light

[Har09]. ⋄

Convenience features of proof assistants are generally aimed at making it easier

for users to write down the inputs 𝑒 and 𝜏 , perhaps by allowing some information to

be omitted and reconstructed mechanically, or even by presenting a totally different

interface for building 𝑒 and 𝜏 interactively or from high-level descriptions. We start our

investigation with the most generous possible assumptions—in which 𝑒 and 𝜏 contain

all the information we might possibly need, including type annotations—and will find

that type-checking is already a startlingly complex problem.

Remark 3.1.3. The title of this section is an homage to A judgmental reconstruction of
modal logic [PD01], an influential article that reconsiders intuitionistic modal logic

under the mindset that types internalize judgmental structure. ⋄
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Pretypes 𝜏 ::= (Pi 𝜏 𝜏) | (Sigma 𝜏 𝜏) | Unit | Uni | (El 𝑒) | · · ·
Preterms 𝑒 ::= (var 𝑖) | (lam 𝜏 𝜏 𝑒) | (app 𝜏 𝜏 𝑒 𝑒) | (pair 𝜏 𝜏 𝑒 𝑒) | (fst 𝜏 𝜏 𝑒) | · · ·
Indices 𝑖 ::= 0 | 1 | 2 | · · ·

Figure 3.1: Syntax of pretypes and preterms.

3.1.1 Type-checking as elaboration

In Section 2.1 we emphasized that we do not assume that the types and terms of

type theory are obtained as the “well-formed” subsets of some collections of possibly-

ill-formed pretypes or preterms, nor do we even assume that they are obtained as

“𝛽𝜂-equivalence classes” of well-formed-but-unquotiented terms.

Instead, types and terms are just the elements of the sets Ty(Γ) and Tm(Γ, 𝐴), which
are defined in terms of each other and the sets Cx and Sb(Δ, Γ). When we write e.g.

𝜆 (𝑏), we are naming a particular element of a particular set Tm(Γ,Π(𝐴, 𝐵)) obtained
by applying the “Π-introduction” map to 𝑏 ∈ Tm(Γ.𝐴, 𝐵); in particular, the values of

Γ, 𝐴, 𝐵 should be regarded as implicitly present, as they are in Appendix A where we

write 𝜆Γ,𝐴,𝐵 (𝑏).
In Chapter 2 we reaped the benefits of this perspective, but it has come time to

pay the piper: what, then, is a type-checker supposed to take as input? We certainly

cannot say that a type-checker is given “a type 𝐴 and a term 𝑎” because this assumes

that 𝐴 and 𝑎 are well-formed. Type-checking cannot be a membership query; instead, it
is a partial function from concrete syntax to the sets of genuine types and terms. For

an input expression to “type-check” means that it names a type/term, not that it “is”

one (which is a meta-type error, as types/terms are mathematical objects, and input

expressions are strings).

For simplicity we assume that the inputs to type-checkers are not strings but

abstract syntax trees (or well-formed formulas) conforming to the simple grammar in

Figure 3.1.
2
We call these semi-structured input expressions pretypes 𝜏 and preterms

𝑒 , and write them as teletype s-expressions. In programming language theory, the

process of mapping semi-structured input expressions into structured core language

terms is known as elaboration.

Slogan 3.1.4. Type-checkers for dependent type theory are elaborators.

Remark 3.1.5. What is the relationship between features of the concrete syntax of a

proof assistant, and features of the core syntax? According to Slogan 3.1.4, the concrete

syntax should be seen as “instructions” for building core syntax. These instructions

2
In other words, we only consider input expressions that successfully parse; expressions that fail to

parse (e.g., because their parentheses are mismatched) automatically fail to type-check.
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may be very close to or very far from that core syntax, but in either case, new user-

facing features should only induce new core primitives when they cannot be (relatively

compositionally) accounted for by the existing core language. ⋄

Algorithmic judgments Elaborators are partial functions that recursively consume

pretypes and preterms (abstract syntax trees) and produce types and terms. In a

real proof assistant, types and terms are of course not abstract mathematical entities

but elements of some data type, but for our purposes we will imagine an idealized

elaborator that outputs elements of Ty(Γ) and Tm(Γ, 𝐴). We present this elaborator not

as functional programs written in pseudocode, but as algorithmic judgments defined
by inference rules. Unlike the rules in Chapter 2, these rules are intended to define

an algorithm, so we will take care to ensure that any given elaboration judgment

can be derived by at most one rule. (In other words, we define our elaborator as a

deterministic logic program.)

We have already argued that pretype elaboration should take as input a pretype

𝜏 and output a type 𝐴, but what about contexts? Just as well-formedness of closed

types (1 ⊢ Π(𝐴, 𝐵) type) refers to well-formedness of open types (1.𝐴 ⊢ 𝐵 type), it
is perhaps unsurprising that elaborating closed pretypes requires elaborating open

pretypes. However, we note that we do not need or want “precontexts”; we will only

descend under binders after successfully elaborating their pretypes. For example, to

elaborate (Pi 𝜏0 𝜏1) we will first elaborate 𝜏0 to the closed type 𝐴, and only then in

context 1.𝐴 elaborate 𝜏1 to 𝐵.

Thus our two main algorithmic elaboration judgments are as follows:

1. Γ ⊢ 𝜏 type⇝ 𝐴 asserts that elaborating the pretype 𝜏 relative to ⊢ Γ cx succeeds
and produces the type Γ ⊢ 𝐴 type.

2. Γ ⊢ 𝑒 : 𝐴 ⇝ 𝑎 asserts that elaborating the preterm 𝑒 relative to ⊢ Γ cx and

Γ ⊢ 𝐴 type succeeds and produces the term Γ ⊢ 𝑎 : 𝐴.

In pseudocode, the first judgment corresponds to a partial function elabTy(Γ, 𝜏) =
𝐴 with the invariant that if ⊢ Γ cx and elabTy terminates successfully, then Γ ⊢
𝐴 type. Likewise, the second judgment is a partial function elabTm(Γ, 𝐴, 𝑒) = 𝑎 whose
successful outputs are terms Γ ⊢ 𝑎 : 𝐴.

Elaborating pretypes The rules for Γ ⊢ 𝜏 type⇝ 𝐴 are straightforward translations

of the type-well-formedness rules of Chapter 2. (When it is necessary to contrast

algorithmic and non-algorithmic rules, the latter are often referred to as declarative.)
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Γ ⊢ 𝜏0 type⇝ 𝐴 Γ.𝐴 ⊢ 𝜏1 type⇝ 𝐵

Γ ⊢ (Pi 𝜏0 𝜏1) type⇝ Π(𝐴, 𝐵)
Γ ⊢ 𝜏0 type⇝ 𝐴 Γ.𝐴 ⊢ 𝜏1 type⇝ 𝐵

Γ ⊢ (Sigma 𝜏0 𝜏1) type⇝ Σ(𝐴, 𝐵)

Γ ⊢ Unit type⇝ Unit Γ ⊢ Uni type⇝ U

Γ ⊢ 𝑒 : U⇝ 𝑎

Γ ⊢ (El 𝑒) type⇝ El(𝑎)

3.1.2 Elaborating preterms: the problem of type equality

Elaborating preterms is significantly more fraught. But first, let us remind ourselves

of the process of type-checking (lam 𝜏0 𝜏1 𝑒) : 𝜏 . First, we attempt to elaborate the

pretype 1 ⊢ 𝜏 type⇝ 𝐶; if this succeeds, we then attempt to elaborate the preterm

1 ⊢ (lam 𝜏0 𝜏1 𝑒) : 𝐶 ⇝ 𝑐 . If this also succeeds, then the type-checker reports success,

having transformed the input presyntax to a well-formed term 1 ⊢ 𝑐 : 𝐶 .

Since lam is our presyntax for 𝜆, elaborating lam via 1 ⊢ (lam 𝜏0 𝜏1 𝑒) : 𝐶 ⇝ 𝑐

should produce a term 𝑐 := 𝜆1,𝐴,𝐵 (𝑏) for some𝐴, 𝐵,𝑏 determined by 𝜏0, 𝜏1, 𝑒 respectively.

We determine these by a series of recursive calls to the elaborator: first Γ ⊢ 𝜏0 type⇝ 𝐴,

then Γ.𝐴 ⊢ 𝜏1 type⇝ 𝐵, and finally Γ.𝐴 ⊢ 𝑒 : 𝐵 ⇝ 𝑏. Note that these steps must be

performed sequentially and in this order, because each step uses the outputs of the

previous steps as inputs: we elaborate 𝜏1 in a context extended by 𝐴, the result of

elaborating 𝜏0, and we elaborate 𝑒 at type 𝐵, the result of elaborating 𝜏1.

At the end we obtain Γ.𝐴 ⊢ 𝑏 : 𝐵, and thence by Π-introduction a term 1 ⊢
𝜆1,𝐴,𝐵 (𝑏) : Π1(𝐴, 𝐵) that should be the elaborated form of 𝑒 . But the elaborated form

of 𝑒 is supposed to have type 𝐶—the result of elaborating 𝜏! Thus before returning

𝜆1,𝐴,𝐵 (𝑏) we need to check that 1 ⊢ 𝐶 = Π(𝐴, 𝐵) type. This is where “type-checking”
actually happens: we have seen that 𝜏 determines a real type and that 𝑒 determines a

real term, but until this point we have not actually checked whether “𝑒 has type 𝜏 .”

In pseudocode, we can define elaboration of (lam 𝜏0 𝜏1 𝑒) as follows:

elabTm(Γ,𝐶, (lam 𝜏0 𝜏1 𝑒)) =
let 𝐴 = elabTy(Γ, 𝜏0) in
let 𝐵 = elabTy(Γ.𝐴, 𝜏1) in
let 𝑏 = elabTm(Γ.𝐴, 𝐵, 𝑒) in
if (Γ ⊢ 𝐶 = ΠΓ (𝐴, 𝐵) type) then return 𝜆Γ,𝐴,𝐵 (𝑏) else error
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or equivalently, in algorithmic judgment notation:

Γ ⊢ 𝜏0 type⇝ 𝐴

Γ.𝐴 ⊢ 𝜏1 type⇝ 𝐵 Γ.𝐴 ⊢ 𝑒 : 𝐵⇝ 𝑏 Γ ⊢ 𝐶 = Π(𝐴, 𝐵) type
Γ ⊢ (lam 𝜏0 𝜏1 𝑒) : 𝐶 ⇝ 𝜆Γ,𝐴,𝐵 (𝑏)

This will be the only rule that concludes Γ ⊢ 𝑒 : 𝐶 ⇝ 𝑐 for 𝑒 := (lam 𝜏0 𝜏1 𝑒),
ensuring that this rule “is the lam clause of elabTm,” so to speak. Elaboration of other

introduction forms will follow a similar pattern.

Exercise 3.1. Write the algorithmic rule for elaborating the preterm (pair 𝜏0 𝜏1 𝑒0 𝑒1).

Let us pause to make several remarks. First, note that our algorithm needs to check

judgmental equality of types Γ ⊢ 𝐶 = ΠΓ (𝐴, 𝐵) type. This step is, at least implicitly,

part of all type-checking algorithms for all programming languages: if we define a

function of type𝐴→ 𝐵 that returns 𝑒 , we have to check whether the type of 𝑒 matches

the declared return type 𝐵. Sometimes this is as simple as checking the syntactic

equality of two type expressions, but often this is non-trivial, perhaps a subtyping

check.

In our present setting, checking type equality is extremely non-trivial. Suppose that

𝐶 := El(𝑐) and so we are checking Γ ⊢ El(𝑐) = Π(𝐴, 𝐵) type for Γ ⊢ 𝑐 : U. This type

equality depends on the entire equational theory of terms: we may need to “rewrite

along” arbitrarily many term equations before concluding Γ ⊢ 𝑐 = pi(𝑐0, 𝑐1) : U; this

only reduces the problem to Γ ⊢ Π(El(𝑐0), El(𝑐1)) = Π(𝐴, 𝐵) type for which it suffices

to check Γ ⊢ El(𝑐0) = 𝐴 type and Γ.𝐴 ⊢ El(𝑐1) = 𝐵 type, each of which may once again

require arbitrary amounts of computation. We will revisit this point in Section 3.2.1.

Secondly, note that we have assumed for now that the preterm (lam 𝜏0 𝜏1 𝑒)
contains pretype annotations 𝜏0, 𝜏1 telling us the domain and codomain of the Π-type.

In practice, a type-checker is essentially unusable unless it can reconstruct (most of)

these annotations; we describe this reconstruction process in Section 3.2.2.

Remark 3.1.6. Naïvely, one might think that including these annotations is the source

of our problem, because it forces us to compare the type 𝐶 computed from 𝜏 to the

type Π(𝐴, 𝐵) computed from the annotations 𝜏0, 𝜏1. This is not the case. If we omit

𝜏0, 𝜏1, then to elaborate 𝑒 we must recover 𝐴 and 𝐵 from 𝐶 , which upgrades “does

Γ ⊢ 𝐶 = Π(𝐴, 𝐵) type?” to the strictly harder question “do there exist 𝐴, 𝐵 such that

Γ ⊢ 𝐶 = Π(𝐴, 𝐵) type?” In addition, we will need to wonder whether this existence is

unique: otherwise, it could be that Γ.𝐴 ⊢ 𝑒 : 𝐵 ⇝ 𝑏 for some choices of 𝐴, 𝐵 but not

others. ⋄

Elaborating elimination forms is not much harder than elaborating introduc-

tion forms. To elaborate (app 𝜏0 𝜏1 𝑒0 𝑒1), we elaborate the pretype annotations
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Γ ⊢ 𝜏0 type ⇝ 𝐴 and Γ.𝐴 ⊢ 𝜏1 type ⇝ 𝐵 in sequence, then the function Γ ⊢ 𝑒0 :

Π(𝐴, 𝐵) ⇝ 𝑓 and its argument Γ ⊢ 𝑒1 : 𝐴⇝ 𝑎 in either order, before finally checking

that the type of the computed term appΓ,𝐴,𝐵 (𝑓 , 𝑎), namely 𝐵 [id.𝑎], agrees with the

expected type 𝐶 .

Γ ⊢ 𝜏0 type⇝ 𝐴 Γ.𝐴 ⊢ 𝜏1 type⇝ 𝐵

Γ ⊢ 𝑒0 : Π(𝐴, 𝐵) ⇝ 𝑓 Γ ⊢ 𝑒1 : 𝐴⇝ 𝑎 Γ ⊢ 𝐶 = 𝐵 [id.𝑎] type
Γ ⊢ (app 𝜏0 𝜏1 𝑒0 𝑒1) : 𝐶 ⇝ appΓ,𝐴,𝐵 (𝑓 , 𝑎)

Elaboration of other elimination forms follows a similar pattern. The only remain-

ing case is term variables (var 𝑖), which we have chosen to represent as de Bruijn

indices. To elaborate (var 𝑖) we check that the context has length at least 𝑖 + 1; if

so, then it remains only to check that the type of the variable q [p𝑖] agrees with the

expected type.

Γ = Γ′.𝐴𝑖 .𝐴𝑖−1. · · · .𝐴0 Γ ⊢ 𝐶 = 𝐴𝑖 [p𝑖+1] type
Γ ⊢ (var 𝑖) : 𝐶 ⇝ q [p𝑖]

In the above rule, our algorithm needs to check judgmental equality of contexts,
and to project Γ and 𝐴 from Γ.𝐴. Unlike for type equality, we have no rules generating
non-trivial context equalities, so structural induction on contexts is perfectly well-

defined.

Remark 3.1.7. It is straightforward to extend our concrete syntax to support named

variables: in our elaboration judgments, we replace Γ with an environment Θ that is

a list of pairs of genuine types with the “surface name” of the corresponding term

variable. Every environment determines a context by forgetting the names; in the

variable elaboration rule, we simply look up the de Bruijn index corresponding to the

given name. ⋄

Exercise 3.2. Write the algorithmic rules for elaborating (fst 𝜏0 𝜏1 𝑒) and (snd 𝜏0 𝜏1 𝑒).

3.2 Metatheory for type-checking

In Section 3.1 we saw that we can reduce type-checking to the problem of deciding

the equality of types (at least, assuming that our input preterms have all type annota-

tions). Deciding the equality of types in turn requires deciding the equality of terms,

particularly in the presence of universes (Section 2.6.2). It is far from obvious that

these relations are decidable—in fact, as we will see in Section 3.6, they are actually
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undecidable for the theory presented in Chapter 2—and proving their decidability relies

on a difficult metatheorem known as normalization. In this section, we continue our

exploration of elaboration with an emphasis on normalization and other metatheorems

necessary for type-checking.

Remark 3.2.1. Recall from Section 2.1 that a metatheorem is just an ordinary theorem

in the ambient metatheory, particularly one concerning the object type theory. ⋄

Before we can discuss computability-theoretic properties of the judgments of type

theory, however, we must fix an encoding. We have taken pains to treat the rules

of type theory as defining abstract sets Ty(Γ) and Tm(Γ, 𝐴) equipped with functions

(type and term formers) satisfying various equations (𝛽 and 𝜂 laws), which is the

right perspective for understanding the mathematical structure of type theory. But to

discuss the computational properties of type theory it is essential to exhibit an effective

encoding of types and terms that is suitable for manipulation by a Turing machine or

other model of computation: Turing machines cannot take mathematical entities as

inputs, and whether equality of types is decidable can depend on how we choose to

encode them!

This is analogous to the issue that arises in elementary computability theory when

formalizing the halting problem: we must agree on how to encode Turing machines as

inputs to other Turing machines, and we must ensure that this encoding is suitably

effective. It is possible to pick an encoding of computable functions that trivializes the

halting problem, at the expense of this encoding itself necessarily being uncomputable.

Returning to type theory, derivation trees of inference rules (e.g., as in Appendix A)

turn out to be a perfectly suitable encoding. That is, when discussing computability-

theoretic properties of types, terms, and equality judgments, we shall assume that each

of these is encoded by equivalence classes of closed derivation trees; for example, we

encode Ty(Γ) by the set of derivation trees with root Γ ⊢ 𝐴 type for some 𝐴. (Just as

there are many Turing machines realizing any given function N→ N, there will be
many derivation trees encoding any given type 𝐴 ∈ Ty(Γ).) When we say “equality of

types is decidable,” what we shall mean is that “it is decidable whether two derivations

encode the same type.” But having fixed a convention, we will avoid belaboring the

point any further.

3.2.1 Normalization and the decidability of equality

To complete the pretype and preterm elaboration algorithms presented in Section 3.1,

it remains only to show that type and term equality are decidable, which is equivalent

to the following normalization condition.
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Remark 3.2.2. Type and term equality are automatically semidecidable because deriva-
tion trees are recursively enumerable. That is, to check whether two types𝐴, 𝐵 ∈ Ty(Γ)
are equal, we can enumerate every derivation tree of type theory, terminating if we en-

counter a derivation of Γ ⊢ 𝐴 = 𝐵 type. Obviously, this is not a realistic implementation

strategy. ⋄

Definition 3.2.3. A normalization structure for a type theory is a pair of computable,

injective functions nfTy : Ty(Γ) → N and nfTm : Tm(Γ, 𝐴) → N.

Definition 3.2.4. A type theory enjoys normalization if it admits a normalization

structure.

The reader may find these definitions surprising: where did N come from, and

where is the rest of the definition? We have chosen N because it is a countable set with

decidable equality, but any other such set would suffice. In practice, one instead defines

two sets of abstract syntax trees TyNf, TmNfwith discrete equality, and constructs a pair
of computable, injective functions nfTy : Ty(Γ) → TyNf and nfTm : Tm(Γ, 𝐴) → TmNf.
It is trivial to exhibit computable, injective Gödel encodings of TyNf and TmNf, which
when composed with nfTy, nfTm exhibit a normalization structure in the sense of

Definition 3.2.3.

As for Definition 3.2.3 being sufficient, the force of normalization is that it gives us

a decision procedure for type/term equality as follows: given𝐴, 𝐵 ∈ Ty(Γ),𝐴 and 𝐵 are

equal if and only if nfTy(𝐴) = nfTy(𝐵) in N. Asking for these maps to be computable

ensures that this procedure is computable; injectivity ensures that it is complete in the

sense that nfTy(𝐴) = nfTy(𝐵) implies 𝐴 = 𝐵. The soundness of this procedure—that
𝐴 = 𝐵 implies nfTy(𝐴) = nfTy(𝐵)—is implicit in the statement that nfTy is a function

out of Ty(Γ), the set of types considered modulo judgmental equality.

Warning 3.2.5. In Section 3.6 we shall see that extensional type theory does not admit

a normalization structure, but we will proceed under the assumption that the theory

we are elaborating satisfies normalization. In Chapter 4 we will see how to modify our

type theory to substantiate this assumption.

Assuming normalization, we can define algorithmic type and term equality judg-

ments

1. Γ ⊢ 𝐴⇔ 𝐵 type asserts that the types Γ ⊢ 𝐴 type and Γ ⊢ 𝐵 type are judgmentally

equal according to some decision procedure.

2. Γ ⊢ 𝑎 ⇔ 𝑏 : 𝐴 asserts that the terms Γ ⊢ 𝑎 : 𝐴 and Γ ⊢ 𝑏 : 𝐴 are judgmentally

equal according to some decision procedure.
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as follows:

nfTy(𝐴) = nfTy(𝐵)
Γ ⊢ 𝐴⇔ 𝐵 type

nfTm(𝑎) = nfTm(𝑏)
Γ ⊢ 𝑎 ⇔ 𝑏 : 𝐴

We notate algorithmic equality differently from the declarative equality judgments

Γ ⊢ 𝐴 = 𝐵 type and Γ ⊢ 𝑎 = 𝑏 : 𝐴 to stress that their definitions are completely different,

even though (by our argument above) two types/terms are algorithmically equal if and

only if they are declaratively equal. We thus complete the elaborator from Section 3.1

by replacing the “calls” to Γ ⊢ 𝐶 = Π(𝐴, 𝐵) type with calls to Γ ⊢ 𝐶 ⇔ Π(𝐴, 𝐵) type.

Remark 3.2.6. It may seem surprising that normalization is so difficult; why can’t

algorithmic equality just orient each declarative equality rule (e.g., fst(pair(𝑎, 𝑏)) ⇝
𝑎) and check whether the resulting rewriting system is confluent and terminating?

Unfortunately, while this strategy suffices for some dependent type theories such as

the calculus of constructions [CH88], it is very difficult to account for judgmental 𝜂

rules. (What direction should 𝑝 ↭ pair(fst(𝑝), snd(𝑝)) go? What about the 𝜂 rule

of Unit, 𝑎 ↭ tt?) These rules require a type-sensitive decision procedure known

as normalization by evaluation, whose soundness and completeness for declarative

equality is nontrivial [ACD07; Abe13]. ⋄

Exercise 3.3. We argued that the existence of a normalization structure implies

that judgmental equality is decidable. In fact, this is a biimplication. Assume that

definitional equality is decidable, and construct from this a normalization structure.

(Hint: some classical reasoning is required, such as Markov’s principle or the law of

excluded middle.)

Exercise 3.4. We have sketched how to use normalization to obtain a type-checking

algorithm. This, too, is a biimplication. Using Exercise 3.3, show that the ability to

decide type-checking implies that normalization holds.

3.2.2 Injectivity and bidirectional type-checking

We have seen how to define a rudimentary elaborator for type theory assuming that

normalization holds, but the preterms that we can elaborate (Figure 3.1) are quite

verbose, making our proof assistant more of a proof adversary. For instance, function

application (app 𝜏0 𝜏1 𝑒0 𝑒1) requires annotations for both the domain and codomain

of the Π-type.

These annotations are highly redundant, but it is far from clear how many of them

can bemechanically reconstructed by our elaborator, nor if there is a consistent strategy



(2025-07-19) Metatheory for type-checking 101

Pretypes 𝜏 ::= (Pi 𝜏 𝜏) | (Sigma 𝜏 𝜏) | Unit | Uni | (El 𝑒) | · · ·
Preterms 𝑒 ::= (var 𝑖) | (chk 𝑒 𝜏) | (lam 𝑒) | (app 𝑒 𝑒) | (pair 𝑒 𝑒) | (fst 𝑒) | · · ·

Figure 3.2: Syntax of pretypes and preterms for a bidirectional elaborator.

for doing so. Users of typed functional programming languages like OCaml or Haskell

might imagine that virtually all types can be inferred automatically; unfortunately,

this is impossible in dependent type theory, for which type inference is undecidable

[Dow93].

It turns out there is a fairly straightforward, local, and usable approach to type

reconstruction known as bidirectional type-checking [Coq96; PT00; McB18; McB19].

The core insight of bidirectional type-checking is that for some preterms it is easy to

reconstruct or synthesize its type (e.g., if we know a function’s type then we know the

type of its applications), but for other preterms we must be given a type at which to

check it (e.g., to type-check a function we need to be told the type of its input variable).

By explicitly splitting elaboration into two mutually-defined algorithms—type-

checking and type synthesis—we can dramatically reduce type annotations. In fact, in

Figure 3.2 we can see that our new preterm syntax has no type annotations whatsoever

except for a single annotation form (chk 𝑒 𝜏) that we will use sparingly. The ebb and
flow of information between terms and types—between checking and synthesis—leads

to the eponymous bidirectional flow of information that has proven easily adaptable

to new type theories. But when should we check, and when should we synthesize?

Slogan 3.2.7. Types are checked in introduction rules, and synthesized in elimination
rules.

We replace our two algorithmic elaboration judgments Γ ⊢ 𝜏 type ⇝ 𝐴 and

Γ ⊢ 𝑒 : 𝐴⇝ 𝑎 with three algorithmic judgments as follows:

1. Γ ⊢ 𝜏 ⇐ type⇝ 𝐴 (“check 𝜏”) asserts that elaborating the pretype 𝜏 relative to

⊢ Γ cx succeeds and produces the type Γ ⊢ 𝐴 type.

2. Γ ⊢ 𝑒 ⇐ 𝐴⇝ 𝑎 (“check 𝑒 against 𝐴”) asserts that elaborating the (unannotated)

preterm 𝑒 relative to ⊢ Γ cx and a given type Γ ⊢ 𝐴 type succeeds with Γ ⊢ 𝑎 : 𝐴.

3. Γ ⊢ 𝑒 ⇒ 𝐴 ⇝ 𝑎 (“synthesize 𝐴 from 𝑒”) asserts that elaborating the (unanno-

tated) preterm 𝑒 relative to ⊢ Γ cx succeeds and produces both Γ ⊢ 𝐴 type and
Γ ⊢ 𝑎 : 𝐴.

The first two judgments, Γ ⊢ 𝜏 ⇐ type⇝ 𝐴 and Γ ⊢ 𝑒 ⇐ 𝐴⇝ 𝑎, are similar to

our previous judgments; when elaborating a preterm we are given a context and a



102 Metatheory and implementation (2025-07-19)

type at which to check that preterm. In the third judgment, Γ ⊢ 𝑒 ⇒ 𝐴⇝ 𝑎, we are

also given a preterm and a context, but we output both a term and its type. The arrows
are meant to indicate the direction of information flow: when checking 𝑒 ⇐ 𝐴 we are

given 𝐴 and using it to elaborate 𝑒 , but when synthesizing 𝑒 ⇒ 𝐴 we are producing 𝐴

from 𝑒 .

The rules for Γ ⊢ 𝜏 ⇐ type ⇝ 𝐴 are the same as those for Γ ⊢ 𝜏 type ⇝ 𝐴,

except that they reference the new checking judgment Γ ⊢ 𝑒 ⇐ 𝐴 ⇝ 𝑎 instead of

Γ ⊢ 𝑒 : 𝐴 ⇝ 𝑎. But for each old Γ ⊢ 𝑒 : 𝐴 ⇝ 𝑎 rule, we must decide whether this

preterm should be checked or synthesized, and if the latter, how to reconstruct the

type.

The easiest case is the variable (var 𝑖). Elaboration always takes place with respect

to a context which records the types of each variable, so it is easy to synthesize the

variable’s type. Notably, unlike in our previous variable rule, we do not need to check

type equality!

Γ = Γ′.𝐴𝑖 .𝐴𝑖−1. · · · .𝐴0

Γ ⊢ (var 𝑖) ⇒ 𝐴𝑖 [p𝑖+1] ⇝ q [p𝑖]
Next, let us consider the rules for Π-types. According to Slogan 3.2.7, the introduc-

tion form (lam 𝑒) should be checked. As in Section 3.1, to check Γ ⊢ (lam 𝑒) ⇐ 𝐶 ⇝
𝜆 (𝑏) we must recursively check the body of the lambda, Γ.𝐴 ⊢ 𝑒 ⇐ 𝐵⇝ 𝑏. But where

do 𝐴 and 𝐵 come from? (Last time, we elaborated them from lam’s annotations.) We

might imagine that we can recover 𝐴 and 𝐵 from the given type 𝐶 ,

Γ ⊢ 𝐶 ⇔ Π(𝐴, 𝐵) type Γ.𝐴 ⊢ 𝑒 ⇐ 𝐵⇝ 𝑏

Γ ⊢ (lam 𝑒) ⇐ 𝐶 ⇝ 𝜆 (𝑏)
!?

but this rule does not make sense as written; Γ ⊢ 𝐶 ⇔ 𝐷 type is an algorithm which

takes two types and returns “yes” or “no”, and we cannot use it to invent the types 𝐴

and 𝐵.

Worse yet, as foreshadowed in Remark 3.1.6, even if we can find 𝐴 and 𝐵 such that

Γ ⊢ 𝐶 ⇔ Π(𝐴, 𝐵) type, there is no reason to expect this choice to be unique. That

is, it could be that Γ ⊢ 𝐶 ⇔ Π(𝐴, 𝐵) type and Γ ⊢ 𝐶 ⇔ Π(𝐴′, 𝐵′) type both hold, but

𝐴 ≠ 𝐴′ (or alternatively, 𝐴 = 𝐴′ and 𝐵 ≠ 𝐵′). If so, it is possible that 𝑒 elaborates with
respect to one of these choices but not the other, i.e., Γ.𝐴 ⊢ 𝑒 ⇐ 𝐵⇝ 𝑏 succeeds but

Γ.𝐴′ ⊢ 𝑒 ⇐ 𝐵′ ⇝ ? fails; even if both succeed, they will necessarily elaborate two

different terms! We must foreclose these possibilities in order for elaboration to be

well-defined.

Definition 3.2.8. A type theory has injective Π-types if Γ ⊢ Π(𝐴, 𝐵) = Π(𝐴′, 𝐵′) type
implies Γ ⊢ 𝐴 = 𝐴′ type and Γ.𝐴 ⊢ 𝐵 = 𝐵′ type.
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Definition 3.2.9. A type theory has invertible Π-types if it has injective Π-types and

admits a computable function which, given Γ ⊢ 𝐶 type, either produces the unique
Γ ⊢ 𝐴 type and Γ.𝐴 ⊢ 𝐵 type for which Γ ⊢ 𝐶 = Π(𝐴, 𝐵) type, or determines that no

such 𝐴, 𝐵 exist.

Remark 3.2.10. That is, a type theory has injective Π-types if the type former ΠΓ :

(∑𝐴∈Ty(Γ) Ty(Γ.𝐴)) → Ty(Γ) is injective. A type theory has invertible Π-types if the

image of ΠΓ is decidable and ΠΓ admits a (computable) partial inverse Π−1

Γ : Im(ΠΓ) →
(∑𝐴∈Ty(Γ) Ty(Γ.𝐴)). ⋄

Particularly in light of Remark 3.2.10, one can easily extend the terminology of

injectivity and invertibility to non-Π type formers.

Definition 3.2.11. If all the type constructors of a type theory are injective (resp.,

invertible), we say that the type theory has injective (resp., invertible) type constructors.

Having injective or invertible type constructors does not follow from normalization.

(A type theory in which all empty types are equal may be normalizing but will not

satisfy injectivity.) In practice, however, having invertible type constructors is almost

always an immediate consequence of the proof of normalization. As we mentioned in

Section 3.2.1, normalization proofs generally construct abstract syntax trees TyNf, TmNf
of “𝛽-short, 𝜂-long” types and terms for which equality is both syntactic as well as

sound and complete for judgmental equality. Given a type Γ ⊢ 𝐶 type, we invert its
head constructor by computing nfTy(𝐶) ∈ TyNf, checking its head constructor in

TyNf, and projecting its arguments.

Injectivity and invertibility are very strong conditions; function types in set theory

are not injective, nor are Π-types injective in extensional type theory.

Exercise 3.5. Give an example of three sets 𝑋,𝑌, 𝑍 such that 𝑋 � 𝑌 , but the set of

functions 𝑋 → 𝑍 is equal to the set of functions 𝑌 → 𝑍 .

Exercise 3.6. We will see in Section 3.5 that type theory admits an interpretation in

which closed types are sets. Exercise 3.5 shows that sets do not have injective Π-types,

but these two facts together do not imply that type theory lacks injective Π-types.

Why not?

Warning 3.2.12. In Section 3.5 we shall see that extensional type theory does not have
injective type constructors, due to interactions between equality reflection and large

elimination or universes (Theorem 3.5.19). We will proceed under the assumption that

the theory we are elaborating has invertible type constructors, and in Chapter 4 we

will see how to modify our type theory to substantiate this assumption.
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Completing our elaborator The force of having invertible Π-types is to have an

algorithm unPi which takes Γ ⊢ 𝐶 type and returns the unique pair of types 𝐴, 𝐵 for

which Γ ⊢ 𝐶 = Π(𝐴, 𝐵) type, or raises an exception if this pair does not exist. Using

unPi we can repair our earlier attempt at checking (lam 𝑒), and define the synthesis

rule for (app 𝑒0 𝑒1):

unPi(𝐶) = (𝐴, 𝐵) Γ.𝐴 ⊢ 𝑒 ⇐ 𝐵⇝ 𝑏

Γ ⊢ (lam 𝑒) ⇐ 𝐶 ⇝ 𝜆 (𝑏)

Γ ⊢ 𝑒0 ⇒ 𝐶 ⇝ 𝑓 unPi(𝐶) = (𝐴, 𝐵) Γ ⊢ 𝑒1 ⇐ 𝐴⇝ 𝑎

Γ ⊢ (app 𝑒0 𝑒1) ⇒ 𝐵 [id.𝑎] ⇝ app(𝑓 , 𝑎)

This is the only elaboration rule for (lam 𝑒); in particular, there is no synthesis rule
for lambda, because we cannot elaborate 𝑒 without knowing what type 𝐴 to add to

the context. On the other hand, to synthesize the type of (app 𝑒0 𝑒1), we synthesize
the type of 𝑒0; if it is of the form Π(𝐴, 𝐵), we then check that 𝑒1 has type 𝐴 and then

return 𝐵, suitably instantiated. Putting these rules together, the reader might notice

that we cannot type-check (app (lam 𝑒0) 𝑒1), because this would require synthesizing
(lam 𝑒0). In fact, bidirectional type-checking cannot type-check 𝛽-redexes in general

for this reason.

For this reason, we have included a type-annotation preterm (chk 𝑒 𝜏) which
allows users to explicitly annotate a preterm with a pretype. The type of this preterm is

trivially synthesizable: it is the result of elaborating 𝜏 ! In order to synthesize (chk 𝑒 𝜏),
we simply check 𝑒 against 𝜏 , and if successful, return that type.

Γ ⊢ 𝜏 ⇐ type⇝ 𝐴 Γ ⊢ 𝑒 ⇐ 𝐴⇝ 𝑎

Γ ⊢ (chk 𝑒 𝜏) ⇒ 𝐴⇝ 𝑎

In particular, we can type-check the 𝛽-redex from before, as long as we annotate the

lambda with its intended type: (app (chk (lam 𝑒0) (Pi 𝜏0 𝜏1)) 𝑒1).
The above rule allows us to treat a checkable term as synthesizable. The converse

is much easier: to check the type of a synthesizable term, we simply compare the

synthesized type to the expected type.

Γ ⊢ 𝑒 ⇒ 𝐵⇝ 𝑎 Γ ⊢ 𝐴⇔ 𝐵 type

Γ ⊢ 𝑒 ⇐ 𝐴⇝ 𝑎

As written, the above rule applies to any checking problem because its conclusion

is unconstrained. In our elaboration algorithm, we should only apply this rule if no

other rule matches. It is the final “catch-all” clause for situations where we have not
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one but two sources of type information: on the one hand, we can synthesize 𝑒’s

type directly, and on the other hand, we are also given the type that 𝑒 is supposed to

have. Interestingly, this is the only rule where our bidirectional elaborator checks type

equality Γ ⊢ 𝐴⇔ 𝐵 type.

Exercise 3.7. For each of (pair 𝑒0 𝑒1), (fst 𝑒), and (snd 𝑒), decide whether this

preterm should be checked or synthesized, then write the algorithmic rule for elabo-

rating it. (Hint: you must assume that Σ-types are invertible.)

3.3★ A case study in elaboration: definitions

To round out our discussion of elaboration, we sketch how to extend our concrete

syntax and type-checker to account for definitions, a key part of any proof assistant.

The input to a proof assistant is typically not a single term 𝑒 : 𝜏 but a sequence of
definitions

def1 : 𝜏1 = 𝑒1

def2 : 𝜏2 = 𝑒2

...

def𝑛 : 𝜏𝑛 = 𝑒𝑛

where every 𝑒 𝑗 and 𝜏 𝑗 can mention def𝑖 for 𝑖 < 𝑗 .

To account for this cross-definition dependency, we might imagine elaborating

each definition one at a time, adding a new (nameless) variable to the context for each

successful definition. Such a strategy might proceed as follows:

1. elaborate 1 ⊢ 𝜏1 ⇐ type⇝ 𝐴1 and 1 ⊢ 𝑒1 ⇐ 𝐴1 ⇝ 𝑎1; if successful,

2. elaborate 1.𝐴1 ⊢ 𝜏2 ⇐ type⇝ 𝐴2 and 1.𝐴1 ⊢ 𝑒2 ⇐ 𝐴2 ⇝ 𝑎2; if successful,

3. continue elaborating each 𝜏𝑖 and 𝑒𝑖 in context 1.𝐴1. . . . .𝐴𝑖−1 as above.

Unfortunately this algorithm is too naïve: if we treat def1 as a variable of type 𝐴1,

the type-checker will not have access to the definition def1 = 𝑎1. Consider:

const : Nat
const = 2

proof : const ≡ 2

proof = refl
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Here const will successfully elaborate in the empty context to suc(suc(zero)) : Nat,
but the elaboration problem for proof will be 1.Nat ⊢ refl⇐ q ≡ suc(suc(zero)) ⇝
? , which will fail: an arbitrary variable of type Nat is surely not equal to 2!

Remark 3.3.1. For readers familiar with functional programming, we summarize the

above discussion as “let is no longer 𝜆,” in reference to the celebrated encoding of

(let 𝑥 = 𝑎 in 𝑏) as ((𝜆𝑥 . 𝑏) 𝑎) often adopted in Lisp-family languages. This slogan

is not unique to dependent type theory; users of ML-family languages may already

be familiar with this phenomenon in light of the Hindley-Milner approach to typing

let. ⋄

To solve this problem, we must somehow instrument our elaborator with the ability

to remember not only the type of a definition but its definiens as well. There are several
ways to accomplish this; one possibility is to add a new form of definitional context
extension “Γ.(q := 𝑎 : 𝐴)” in which the variable is judgmentally equal to a given term

𝑎 [McB99; SP94]. We opt for an indirect but less invasive encoding of this idea: taking

inspiration from Section 2.6.2, wherein we encoded “extending the context by a type

variable” by adding a new type U whose terms are codes for types, we will add a new

type former, singleton types, whose terms are elements of 𝐴 judgmentally equal to 𝑎.

Singleton types The singleton type of Γ ⊢ 𝑎 : 𝐴, written Γ ⊢ Sing(𝐴, 𝑎) type, is a
type whose elements are in bijection with the elements of Tm(Γ, 𝐴) that are equal to
𝑎, namely the singleton subset {𝑎} [Asp95; SH06]. That is, naturally in Γ,

SingΓ : (∑𝐴∈Ty(Γ) Tm(Γ, 𝐴)) → Ty(Γ)
𝜄Γ,𝐴,𝑎 : Tm(Γ, Sing(𝐴, 𝑎)) � {𝑏 ∈ Tm(Γ, 𝐴) | 𝑏 = 𝑎}

In inference rules,

Γ ⊢ 𝑎 : 𝐴

Γ ⊢ Sing(𝐴, 𝑎) type
Γ ⊢ 𝑎 : 𝐴

Γ ⊢ in(𝑎) : Sing(𝐴, 𝑎)
Γ ⊢ 𝑠 : Sing(𝐴, 𝑎)
Γ ⊢ out(𝑠) : 𝐴

Γ ⊢ 𝑠 : Sing(𝐴, 𝑎)
Γ ⊢ out(𝑠) = 𝑎 : 𝐴

Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑠 : Sing(𝐴, 𝑎)
Γ ⊢ in(out(𝑠)) = 𝑠 : Sing(𝐴, 𝑎)

This definition may seem rather odd, but note that a variable of type Sing(𝐴, 𝑎)
determines a term out(q) : 𝐴[p] that is judgmentally equal to 𝑎[p], thereby allowing

us to extend contexts by “defined variables.”

Remark 3.3.2. In extensional type theory, we can define singleton types as pairs of an

element of𝐴 and a proof that this element equals𝑎, i.e., Sing(𝐴, 𝑎) := Σ(𝐴, Eq(𝐴[p], q, 𝑎[p]))
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with in(𝑎) := pair(𝑎, refl) and out(𝑠) := fst(𝑠). This encoding makes essential use of

equality reflection, but singleton types can also be added as a primitive type former to

type theories without equality reflection, without disrupting normalization. ⋄

Extending our elaborator We begin by introducing concrete syntax for lists of

𝑒 : 𝜏 pairs, which we call declarations:

Declarations ds ::= (decls (𝑒1 𝜏1) . . . )
Pretypes 𝜏 ::= · · ·
Preterms 𝑒 ::= · · ·

We extend our bidirectional elaborator as follows. First, we parameterize all our

judgments by a second context Θ that keeps track of which variables in Γ are ordinary

“local” variables (introduced by types/terms such as Π or 𝜆), and which variables refer

to declarations. We write Θ as a list 1.decl.decl.local. . . . with the same length as

Γ = 1.𝐴1.𝐴2.𝐴3. . . . , to indicate in this case that only the variable of type 𝐴3 is local.

We will replace the variable rule shortly; the remaining elaboration rules do not interact

with Θ except to extend Θ by local whenever a new variable is added to the context Γ.
Secondly, we introduce a new algorithmic judgment Γ;Θ ⊢ ds ok which type-

checks a list of declarations ds by elaborating the first declaration (𝑒1 𝜏1) in context

Γ;Θ into the term 𝑎1 : 𝐴1, and then elaborating the remaining declarations in context

Γ.Sing(𝐴1, 𝑎1);Θ.decl.

Γ;Θ ⊢ (decls) ok

Γ;Θ ⊢ 𝜏1 ⇐ type⇝ 𝐴1 Γ;Θ ⊢ 𝑒1 ⇐ 𝐴1 ⇝ 𝑎1

Γ.Sing(𝐴1, 𝑎1);Θ.decl ⊢ (decls (𝑒2 𝜏2) . . . ) ok
Γ;Θ ⊢ (decls (𝑒1 𝜏1) (𝑒2 𝜏2) . . . ) ok

Finally, we must edit our variable rule to account for whether a variable is an

ordinary local variable or refers to an earlier declaration; in the latter case, we must

insert an extra out(−) around the variable so it has the correct type 𝐴 rather than

Sing(𝐴, 𝑎).

Γ = Γ′.𝐴𝑖 .𝐴𝑖−1. · · · .𝐴0

Θ = Θ′.local.𝑥𝑖−1. · · · .𝑥0

Γ;Θ ⊢ (var 𝑖) ⇒ 𝐴𝑖 [p𝑖+1] ⇝ q [p𝑖]

Γ = Γ′.𝐴𝑖 .𝐴𝑖−1. · · · .𝐴0

Θ = Θ′.decl.𝑥𝑖−1. · · · .𝑥0

unSing(𝐴𝑖) = (𝐴, 𝑎)
Γ;Θ ⊢ (var 𝑖) ⇒ 𝐴[p𝑖+1] ⇝ out(q [p𝑖])

In the second rule above, the rules of singleton types ensure that the elaborated

term out(q [p𝑖]) is judgmentally equal to 𝑎[p𝑖+1], where 𝑎 is the previously-elaborated
definiens of the corresponding declaration. Putting everything together, to check an in-

put file (decls (𝑒1 𝜏1) (𝑒2 𝜏2) . . . )we attempt to derive 1; 1 ⊢ (decls (𝑒1 𝜏1) (𝑒2 𝜏2) . . . ) ok.
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To sum up, we emphasize once again that although this book focuses on the core
calculi of proof assistants, it is impossible to have a satisfactory understanding of this

topic without paying heed to their surface languages as well; often, the best way to

understand a new surface language feature is to add a new feature in the core language

to accommodate it. Ideally, our alterations to the core language will be minor but will

significantly simplify elaboration.

3.4 Models for metatheory

Our focus on type-checking has led us to normalization (Definition 3.2.4) and invertible

type constructors (Definition 3.2.11) as metatheorems essential to the implementation

of type theory. Notably, these metatheorems are stated with respect to types and terms

in arbitrary contexts; in this section, we will discuss two more important metatheorems

that concern only terms in the empty context 1, namely consistency and canonicity.
Neither of these properties is needed to implement a type-checker, but as we will

see, they are essential to the applications of type theory to logic and programming

languages respectively.

Definition 3.4.1. A type theory is consistent if there is no closed term 1 ⊢ 𝑎 : Void.

Consistency is the lowest bar that a type theory must pass in order to function

as a logic. When we interpret types as logical propositions, Void corresponds to the

false proposition. By the rules of Void (Section 2.5.1), the existence of a closed term

1 ⊢ 𝑎 : Void (an assumption-free proof of false) implies that every closed type has at

least one closed term 1 ⊢ absurd(𝑎) : 𝐴, or in other words, that every proposition has

a proof. Thus Definition 3.4.1 corresponds to logical consistency in the traditional

sense.

At this point we pause to sketch the model theory of type theory. In Chapter 2 we

were careful to formulate the judgments of type theory as (indexed) sets, and the rules

of type theory as (dependently-typed) operations between these sets and equations

between these operations. As a result we can regard this data as a kind of generalized

algebra signature, in the sense of Section 2.5.4; in particular, we obtain a general notion

of “implementation” of, or algebra for, this signature—more commonly known as a

model of type theory.

Definition 3.4.2. A model of type theoryM consists of the following data:

1. a set CxM ofM-contexts,

2. for each Δ, Γ ∈ CxM , a set SbM (Δ, Γ) ofM-substitutions from Δ to Γ,
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3. for each Γ ∈ CxM , a set TyM (Γ) ofM-types in Γ, and

4. for each Γ ∈ CxM and 𝐴 ∈ TyM (Γ), a set TmM (Γ, 𝐴) ofM-terms of 𝐴 in Γ,

5. an emptyM-context 1M ∈ CxM ,

6. for each Γ ∈ CxM and 𝐴 ∈ TyM (Γ), anM-context extension Γ.M𝐴 ∈ CxM ,

7. for Γ ∈ CxM , 𝐴 ∈ TyM (Γ), and 𝐵 ∈ TyM (Γ.M𝐴), anM-Π type ΠM (𝐴, 𝐵) ∈
TyM (Γ),

8. and every other context, substitution, type, and term forming operation described

in Appendix A, all subject to all the equations stated in Appendix A.

Definition 3.4.3. Given two models of type theoryM,N , a homomorphism of models
of type theory 𝑓 :M →N consists of the following data:

1. a function Cx𝑓 : CxM → CxN ,

2. for eachΔ, Γ ∈ CxM , a function Sb𝑓 (Δ, Γ) : SbM (Δ, Γ) → SbN (Cx𝑓 (Δ),Cx𝑓 (Γ)),

3. for each Γ ∈ CxM , a function Ty𝑓 (Γ) : TyM (Γ) → TyN (Cx𝑓 (Γ)), and

4. for each Γ ∈ CxM and 𝐴 ∈ TyM (Γ), a function Tm𝑓 (Γ, 𝐴) : TmM (Γ, 𝐴) →
TmN (Cx𝑓 (Γ), Ty𝑓 (Γ) (𝐴)),

5. such that Cx𝑓 (1M) = 1N ,

6. and every other context, substitution, type, and term forming operation ofM is

also sent to the corresponding operation of N in a similar fashion.

Definition 3.4.4. The sets Cx, Sb(Δ, Γ), Ty(Γ), and Tm(Γ, 𝐴), equipped with the

context, substitution, type, and term forming operations described in Appendix A,

tautologically form a model of type theory T known as the syntactic model.

Theorem 3.4.5. The syntactic model T is the initial model of type theory; that is, for
any model of type theoryM, there exists a unique homomorphism of models T →M.

The notions of model and homomorphism are quite complex, but they are me-

chanically derivable from the rules of type theory as presented in Appendix A, viewed

as the signature of a quotient inductive-inductive type (QIIT) [KKA19] or general-

ized algebraic theory (GAT) [Car86]. The initiality of the syntactic model expresses

the fact that type theory is the “least” model of type theory, in the sense that it—by

definition—satisfies all the rules of type theory and no others; this mirrors the sense

in which initiality of N with respect to (1 ⊔ −)-algebras expresses that the natural
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numbers are generated by zero and suc(−). The reader curious to learn more about

how GATs/QIITs are defined and to see a proof of Theorem 3.4.5 is encouraged to

consult Bezem et al. [Bez+21] or Kaposi, Kovács, and Altenkirch [KKA19].

Remark 3.4.6. Theorem 3.4.5 should be regarded as stating the soundness and com-

pleteness of type theory with respect to this notion of model. The homomorphism

T → M expresses soundness: the syntax of type theory can be interpreted into

any modelM. Conversely, the fact that the syntax constitutes a model T expresses

completeness: any result that holds for all models must in particular hold for T and

thence for the syntax.

We note that Definitions 3.4.2 and 3.4.3 were carefully chosen so as to make

soundness and completeness nearly tautological, and indeed, this is evidenced by the

fact that these definitions and theorems can be mechanically derived by the general

machinery of quotient inductive-inductive types or generalized algebraic theories.

Unimpressed readers may commiserate with Girard’s “broccoli logic” critique of such

semantics [Gir99]. ⋄

While the definition of a model does not lend much insight into type theory on its

own, the model theory of type theory is an essential tool in the metatheorist’s toolbox;

to prove any property of the syntactic model T , we simply produce a model of type

theoryM such that Theorem 3.4.5 implies the property in question. In the case of

consistency, it suffices to exhibit any non-trivial model of type theory whatsoever.

Theorem3.4.7. Suppose there exists amodel of type theoryM such that TmM (1M,VoidM)
is empty; then type theory is consistent.

Proof. Wemust show that from the existence ofM and a term 𝑎 ∈ Tm(1,Void) we can
derive a contradiction. By Theorem 3.4.5, there is a homomorphism of models 𝑓 : T →
M, and in particular a function Tm𝑓 (1,Void) : Tm(1,Void) → TmM (1M,VoidM);
applying this function to 𝑎 produces an element of TmM (1M,VoidM), an empty

set. □

In Section 3.5 we will see that there is a “standard” set-theoretic model S of

extensional type theory in which contexts are sets, types are families of sets indexed

by their context, and each type former is interpreted as the corresponding construction

on indexed sets. As a trivial corollary of this model and Theorem 3.4.7, we obtain the

consistency of extensional type theory. We postpone further details of the set-theoretic

model to Section 3.5; interested readers may also consult Castellan, Clairambault, and

Dybjer [CCD21] and Hofmann [Hof97] for tutorials on the categorical semantics of

type theory.

Theorem 3.4.8 (Martin-Löf [Mar84b]). Extensional type theory is consistent.
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Note that while an inconsistent type theory is useless as a logic, it may still be

useful for programming; indeed, many modern functional programming languages

include some limited forms of dependent types despite being inconsistent.

Exercise 3.8. Consider an unrestricted fixed-point operator fix : (𝐴→ 𝐴) → 𝐴, i.e.,

Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝑎 : 𝐴[p]
Γ ⊢ fix(𝑎) : 𝐴

✎

Show that adding such a rule results in an inconsistent type theory.

In fact, our final metatheorem is directly connected to the interpretation of type

theory as a programming language, although the connection may not be immediately

apparent.

Definition 3.4.9. A type theory enjoys canonicity if for every closed 1 ⊢ 𝑏 : Bool
either 1 ⊢ 𝑏 = true : Bool or 1 ⊢ 𝑏 = false : Bool, but not both.

Remark 3.4.10. Another common statement of canonicity is that for every closed

1 ⊢ 𝑛 : Nat either 1 ⊢ 𝑛 = zero : Nat or 1 ⊢ 𝑛 = suc(𝑚) : Nat where 1 ⊢ 𝑚 : Nat.
This statement is not equivalent to Definition 3.4.9 in general, but in practice one only

considers type theories that satisfy both or neither, and proofs of one also imply the

other en passant. ⋄

Remark 3.4.11. Consistency states that Tm(1,Void) � ∅, whereas canonicity states

that Tm(1,Bool) � {★,★′} and Tm(1,Nat) � N. As discussed at length in Section 2.5,

none of these properties hold in Γ because variables can produce noncanonical terms

at any type; however, there are indeed no noncanonical closed terms of type Void,
Bool, or Nat. ⋄

Theorem 3.4.12. Extensional type theory enjoys canonicity.

Proof. See Section 6.6. □

Frustratingly, although Theorem 3.4.12 was certainly known to researchers in the

1970s and 1980s, we are unable to locate a precise reference from that time period.

Like consistency, normalization, and invertibility of type constructors, canonicity

can be established by constructing a model of type theory, although the proofs of the

latter three metatheorems are considerably more involved than the proof of consistency.

As we will see in Section 6.6, canonicity models interpret the contexts, substitutions,

types, and terms of type theory as pairs of that syntactic object along with additional

data which explains how that object may be placed in canonical form [Fre78; LS88;

MS93; Cro94; Fio02; AK16; Coq19; KHS19]. Such models can be seen as displayed
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models of type theory over the syntactic model, and are called gluing models in the

categorical literature.

Exercise 3.9. In light of Remark 3.4.11, we might imagine that canonicity follows

from the existence of a model of type theoryM for which TmM (1M,BoolM) has
exactly two elements. This is not the case; why? (Why can’t we mimic the proof of

Theorem 3.4.7?)

The force of canonicity is that it implies the existence of an “evaluation” algorithm

that, given a closed boolean 1 ⊢ 𝑎 : Bool, reports whether 𝑎 is equal to true or to false.
There are two ways to obtain such an algorithm; the first is to prove canonicity in a

constructive metatheory, so that the proof itself constitutes such an algorithm. The

second is to appeal to Markov’s principle: because derivation trees are recursively enu-

merable, a classical proof of canonicity implies that the naïve enumeration algorithm

will terminate.

In a direct sense, such an algorithm is indeed an interpreter for closed terms of type

theory. But canonicity also produces a much richer notion of computational adequacy

for type theory; giving this theory its due weight would take us too far afield, but we

will briefly sketch the highlights. By results in categorical realizability [Jac99; vOos08],

essentially every model of computation gives rise to a highly structured and well-

behaved category known as a realizability topos; these categories support models of

dependent type theory in which terms of type Bool are (equivalence classes of) boolean
computations in some idealized model of computation. For instance, in the effective
topos [Hyl82], closed terms of type Bool are equivalence classes of Turing machines

modulo Kleene equivalence (i.e., two machines are equivalent if they coterminate with

the same value).

Because models of type theory in realizability topoi interpret terms in concrete

(albeit theoretical) notions of computation such as Turing machines or combinator

calculi, they can be regarded abstractly as compilers for type theory. Alternatively,
they serve to justify the program extraction mechanisms found in proof assistants such

as Rocq and Agda, which associate to each term an OCaml or Haskell program whose

observable behavior is compatible with the definitional equality of type theory.

From this perspective, canonicity guarantees that definitional equality fully con-

strains the observable behaviors of extracted programs: for any closed boolean 1 ⊢
𝑏 : Bool, every possible extract for 𝑏 must evaluate to (the extract of) either true or

false, as predetermined by whether 𝑏 = true or 𝑏 = false. Note that it is still possible
for two different extracts of 𝑏 to have very different execution traces; canonicity only

constrains their observable behavior, considered modulo some appropriate notion of

observational equivalence.

Remark 3.4.13. The above discussion may clarify why canonicity is harder to prove
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than consistency: consistency implies the existence of a non-trivial model of type

theory, whereas canonicity places a constraint on all models of type theory. ⋄

We emphasize once more that, unlike normalization and invertibility of type con-

structors, neither consistency nor canonicity is required to implement a bidirectional

type-checker for type theory. However, it seems safe to assume that anybody writing

such a type-checker is interested in type theory’s applications to logic or programming

or both, in which case consistency and canonicity are relevant properties. In addition,

failures of canonicity often indicate a paucity of definitional equalities that can have a

negative effect on the usability of a type theory even as a logic.

3.5★ The set model of type theory

We now spell out the details of the set-theoretic model S of extensional type theory

alluded to in Section 3.4 [Hof97]. The remainder of this book will not depend on

this section, but it may nevertheless be valuable to readers interested in better under-

standing the model theory of type theory or how type theory relates to traditional

mathematics.

In short, S interprets the contexts of type theory as sets, substitutions as functions,

dependent types as indexed families of sets, terms as indexed families of elements,

and every type- and term-forming operation as its “standard” mathematical coun-

terpart. For example, the S-interpretation of the closed functions from Nat to Nat,
TmS (1S,ΠS (NatS,NatS)), is (isomorphic to) the set of ordinary mathematical func-

tions N→ N.
The main subtlety in defining S is that we would like the set CxS of S-contexts to

be “the collection of all sets,” but this collection is unfortunately not a set: by Russell’s

paradox, having a “set of all sets including itself” leads to contradiction. To properly

circumvent this issue we must introduce the notion of Grothendieck universes, the
set-theoretic cousins of the type-theoretic universes introduced in Section 2.6.

3.5.1 Grothendieck universes

Grothendieck universes are sets that resemble a “set of all sets” without falling victim

to Russell’s paradox. Roughly speaking, they are collections of sets that are closed

under all the operations of set theory: they contain ∅ and are closed under formation

of powersets, unions, set comprehensions, and so forth.
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Definition 3.5.1. A Grothendieck universe V is a set satisfying the following condi-

tions:

1. ∅ ∈ V .

2. Transitivity: If 𝑋 ∈ V and 𝑌 ∈ 𝑋 , then 𝑌 ∈ V .

3. Closure under powersets: If 𝑋 ∈ V then P(𝑋 ) ∈ V .

4. Closure under indexed unions: If 𝑋 ∈ V and 𝑓 : 𝑋 →V , then

⋃
𝑥∈𝑋 𝑓 (𝑥) ∈ V .

5. N ∈ V . (This condition is omitted by many authors.)

We admit that Definition 3.5.1 may seem somewhat mysterious; unfortunately,

thoroughly justifying these axioms is beyond the scope of this book. We refer the

reader to Shulman [Shu08] for a reference which assumes relatively little set-theoretic

background.

For our purposes, the axioms of Grothendieck universes satisfy three important

properties. First, all the closure properties of Grothendieck universes are closure

properties of sets: replacing 𝑋 ∈ V with “𝑋 is a set,” it is true that ∅ and N are sets,

and that sets are transitive and closed under powersets and indexed unions. In other

words, the collection of all sets looks like a Grothendieck universe—except that a

Grothendieck universe must be a set, which the collection of all sets is not.

Secondly, these closure conditions imply all the other usual closure conditions

of sets. For example, V is also closed under subsets, products, and function spaces,

defined by their standard set-theoretic encodings. We prove a number of these closure

conditions below, noting that these are not intended to be exhaustive.

Lemma 3.5.2. Every Grothendieck universeV is closed under the following constructions:

1. Subsets: If 𝑋 ∈ V and 𝑌 ⊆ 𝑋 , then 𝑌 ∈ V .

2. Binary unions: If 𝑋,𝑌 ∈ V then 𝑋 ∪ 𝑌 ∈ V .

3. Products: If 𝑋,𝑌 ∈ V then 𝑋 × 𝑌 ∈ V .

4. Function spaces: If 𝑋,𝑌 ∈ V then 𝑋 → 𝑌 ∈ V .

5. Indexed coproducts: If 𝑋 ∈ V and 𝑓 : 𝑋 →V , then
∑
𝑥∈𝑋 𝑓 (𝑥) ∈ V .

6. Indexed products: If 𝑋 ∈ V and 𝑓 : 𝑋 →V , then
∏
𝑥∈𝑋 𝑓 (𝑥) ∈ V .

Proof.

1. This follows directly from 𝑌 ∈ P(𝑋 ) ∈ V and transitivity.
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2. We obtain binary unions as a special case of indexed unions, using the fact

that the two-element set P(P(∅)) = {∅, {∅}} is an element of V . Let 𝑓 :

P(P(∅)) → V be the function sending ∅ to 𝑋 and {∅} to 𝑌 ; then we define

𝑋 ∪ 𝑌 :=
⋃
𝑥∈𝑋 𝑓 (𝑥) ∈ V .

3. Following the usual set-theoretic construction, we define 𝑋 × 𝑌 to be the subset

of P(P(𝑋 ∪ 𝑌 )) consisting of ordered pairs (𝑥,𝑦) with 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 , where
(𝑥,𝑦) := {{𝑥}, {𝑥,𝑦}}. We observe that 𝑋 × 𝑌 ∈ V by the closure ofV under

binary unions, powersets, and subsets.

4. Functions 𝑓 : 𝑋 → 𝑌 are in bijection with subsets 𝑆 ⊆ 𝑋 × 𝑌 satisfying the

condition that for all 𝑥 ∈ 𝑋 , there exists a unique 𝑦 ∈ 𝑌 such that the ordered

pair (𝑥,𝑦) is in 𝑆 . We may therefore take the collection of all such 𝑆—a subset

of P(𝑋 × 𝑌 ) and thus an element ofV—as the definition of the function space

𝑋 → 𝑌 .

5. We define the indexed disjoint union

∑
𝑥∈𝑋 𝑓 (𝑥) as the subset of 𝑋 ×

⋃
𝑥∈𝑋 𝑓 (𝑥)

consisting of ordered pairs (𝑥,𝑦) for which 𝑦 ∈ 𝑓 (𝑥).

6. Similarly, we define the indexed product

∏
𝑥∈𝑋 𝑓 (𝑥) as the subset of 𝑋 →⋃

𝑥∈𝑋 𝑓 (𝑥) consisting of the functions 𝑔 for which 𝑔(𝑥) ∈ 𝑓 (𝑥) for all 𝑥 ∈ 𝑋 . □

Finally and most importantly, although the existence of Grothendieck universes is

independent from the axioms of ordinary (ZFC) set theory, it is consistent to assume

that they exist,
3
and the resulting theory is well-understood albeit stronger than ZFC.

Advanced Remark 3.5.3. In fact, assuming the existence of a Grothendieck universe

V is exactly the same as assuming the existence of a strongly inaccessible cardinal.

This is fairly modest as far as large cardinal axioms are concerned, but it is strong

enough that ZFC+V proves Con(ZFC). Indeed,V is a model of ZFC! ⋄

Remark 3.5.4. As we will see in Section 3.5.4, one consequence of the set-theoretic

model of type theory is the consistency of type theory. By Gödel’s incompleteness

theorem, constructing this model must require a metatheory stronger than extensional

type theory. Although ZFC and extensional type theory are not exactly aligned in

strength, we should not be surprised that plain ZFC is too weak. In fact, if we augment

extensional type theory with an impredicative universe of propositions (Section 2.7)

and a few axioms, it becomes exactly as strong as ZFC with a universe hierarchy

[Wer97]. ⋄

In the remainder of Section 3.5, we will rely on an ambient assumption that there is

a (𝜔 + 1)-indexed hierarchy of nested Grothendieck universes, in the following sense.

3
In particular, it does not follow from the axioms thatV contains itself.
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Definition 3.5.5. For a partial order 𝐼 , an 𝐼 -hierarchy of Grothendieck universes (V𝑖)𝑖∈𝐼
is a family of Grothendieck universesV𝑖 such thatV𝑖 ∈ V𝑗 whenever 𝑖 < 𝑗 .

Axiom 3.5.6. There exists an (𝜔+1)-hierarchy of Grothendieck universesV0 ∈ · · · ∈ V𝜔 .

Intuitively, Axiom 3.5.6 states thatV0 contains all the sets that exist in ZFC,V1

contains all the sets of ZFC+V0,V2 contains all the sets of ZFC+V0+V1, and so forth.

One often refers to the sets of ZFC as small sets for emphasis, and in general for a

Grothendieck universeV we say that a set 𝑋 isV-small if 𝑋 ∈ V . Thus Axiom 3.5.6

equivalently states that small sets areV𝑖-small andV𝑖 isV𝑗 -small for all 𝑖 < 𝑗 .

3.5.2 The substitution calculus of sets

Exhibiting a modelM of type theory (Definition 3.4.2) requires an enormous amount

of data, but we can break the process down into three steps:

1. First, one must define the sets ofM-contexts CxM ,M-substitutions SbM (−,−),
M-types TyM (−), andM-terms TmM (−,−).

2. Next, one must provide theM-interpretations of the rules of the substitution

calculus (Section 2.3), the core structure of type theory governing variables and

substitutions, and verify that these satisfy the associated equations.

3. Finally, for each connective (Π-types,Void,U𝑖 , etc.) one providesM-interpretations

of the associated rules, and again verifies the associated equations.

The steps must be performed in this order, because the choice of sets (e.g., CxM)

in the first step affects the interpretation of the substitution calculus (e.g., pM ) in the

second step, which in turn affects the interpretation of every connective. However,

the interpretations of non-U connectives do not depend on one another and can be

added in any order, because we were careful in Chapter 2 to avoid mentioning (e.g.)
Π-types in the rules for Σ-types.

We will now carry out the first two steps of defining the set model S. By the end of
this subsection, we will have a model of a dependent type theory with no connectives,

mirroring the situation at the end of Section 2.3.

The basic sets With the machinery of Grothendieck universes (Definition 3.5.1)

under our belt, we can now define the basic sets of the S-interpretation of type theory:

the S-contexts, S-substitutions, S-types, and S-terms. Rather than defining the set

of S-contexts CxS to be the nonexistent “set of all sets,” we will define it to be a
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Grothendieck universe, a set of some sets which is closed under all the set-forming

operations of set theory. For reasons that will become clear later, we choose the set of

S-contexts to beV𝜔 , the largest Grothendieck universe asserted by Axiom 3.5.6.

CxS := V𝜔
For any two S-contexts Δ, Γ ∈ CxS , the set of S-substitutions from Δ to Γ is simply

the set of ordinary functions from Δ to Γ:

SbS (Δ, Γ) := Δ→ Γ (Δ, Γ ∈ CxS)

Notation 3.5.7. Throughout this section, the variables Γ, 𝛾, 𝐴, 𝑎, . . . range over S-
contexts, substitutions, types, and terms, not syntactic contexts, substitutions, types,
and terms as they generally have throughout this book. We believe this notation is the

least confusing in the long run, but the reader should proceed cautiously.

Intuitively, an S-type 𝐴 in S-context Γ should be a family of sets indexed by the

set Γ, i.e., a choice of set 𝐴(𝑥) for each 𝑥 ∈ Γ. As in our definition of CxS , we can
obtain a set of such families by restricting all the sets 𝐴(𝑥) to be elements ofV𝜔 :

TyS (Γ) := Γ →V𝜔 (Γ ∈ CxS)

Finally, given an S-context Γ ∈ V𝜔 and an S-type 𝐴 : Γ →V𝜔 in that context, an

S-term 𝑎 ∈ TmS (Γ, 𝐴) should be a family of elements of each 𝐴(𝑥) for each 𝑥 ∈ Γ. In
other words, 𝑎 should be a dependent function (𝑥 : Γ) → 𝐴(𝑥), where 𝑎(𝑥) ∈ 𝐴(𝑥) for
all 𝑥 ∈ Γ. Set-theoretically, such functions are more commonly understood as elements

of the Γ-indexed product of the sets 𝐴(−); see Remarks 2.4.1 and 2.4.5.

TmS (Γ, 𝐴) :=
∏
𝑥∈Γ 𝐴(𝑥) (Γ ∈ CxS, 𝐴 ∈ TyS (Γ))

Summing up, we defineS-contexts as (V𝜔 -small) sets, S-substitutions as functions,
S-types as indexed families of (V𝜔 -small) sets, and S-terms as indexed families of

elements.

The category of substitutions Having now defined the basic sets underlying

the S-interpretation of type theory, our next task is to define the operations of the

substitution calculus (collected in the first section of Appendix A), starting with the

identity and composition of substitutions.

For every S-context Γ ∈ CxS , we must define an identity S-substitution idS in

SbS (Γ, Γ). Unfolding the definitions of CxS and SbS (Γ, Γ), this is for every Γ ∈ V𝜔 a

function Γ → Γ, which we can simply take to be the identity function:

idS :

∏
Γ∈V𝜔 Γ → Γ

idS Γ 𝑥 := 𝑥
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Next, given any Γ0, Γ1, Γ2 ∈ CxS , 𝛾1 ∈ SbS (Γ2, Γ1), and 𝛾0 ∈ SbS (Γ1, Γ0) we must

define the composite S-substitution 𝛾0 ◦S 𝛾1 ∈ SbS (Γ2, Γ0), namely by function com-

position:

_◦S_ :

∏
Γ0,Γ1,Γ2∈CxS SbS (Γ1, Γ0) → SbS (Γ2, Γ1) → SbS (Γ2, Γ0)

(𝛾0 ◦S 𝛾1) (𝑥) := 𝛾0(𝛾1(𝑥))

Notation 3.5.8. Starting with the above definition, we suppress unambiguous argu-

ments for clarity: in this case, the S-contexts Γ0, Γ1, Γ2.

In the substitution calculus, identity and composition satisfy various equations,

namely that composition is associative with identity as a left and right unit. We must

therefore verify that our definitions of S-identity and S-composition validate the same

equations:

Exercise 3.10. Verify the following equations:

• For all 𝛾 ∈ SbS (Δ, Γ), idS ◦S 𝛾 = 𝛾 = 𝛾 ◦S idS .

• For all 𝛾2 ∈ SbS (Γ3, Γ2), 𝛾1 ∈ SbS (Γ2, Γ1), and 𝛾0 ∈ SbS (Γ1, Γ0), 𝛾0 ◦S (𝛾1 ◦S 𝛾2) =
(𝛾0 ◦S 𝛾1) ◦S 𝛾2.

The empty context Next we define the emptyS-context 1S ∈ CxS and the terminal

S-substitution !S ∈ SbS (Γ, 1S) for every Γ ∈ CxS . Notably, although we call 1 the

empty context, it is in fact interpreted as a one-element set.

1S ∈ V𝜔
1S := {★}

Remark 3.5.9. We write {★} to emphasize that it does not matter which one-element

set inV𝜔 we choose. The most natural concrete choice of one-element set is perhaps

{∅}, which we note is an element ofV𝜔 by axioms (1), (2) and (3) of Definition 3.5.1. ⋄

Exercise 3.11. In light of the definition of 1S above, show that closed S-types are
just sets and closed S-terms are just elements of those sets. To be precise, construct

isomorphisms 𝜄 : TyS (1S) � V𝜔 and 𝜅𝐴 : TmS (1S, 𝐴) � 𝜄 (𝐴) for all 𝐴 ∈ TyS (1S).

The terminal S-substitution into 1S is the constant function returning ★.

!S :

∏
Γ∈CxS SbS (Γ, 1S)

!S (𝑥) := ★

We have one equation to check before moving on.
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Lemma 3.5.10. For all 𝛿 ∈ SbS (Γ, 1S), 𝛿 = !S .

Proof. Unfolding definitions, we see that 𝛿 and !S are both functions Γ → {★}. There
is only one such function, so they must be equal. □

Applying substitutions Applying an S-substitution Δ → Γ to an S-type (resp.,
S-term) in context Γ must produce an S-type (resp., S-term) in context Δ:

_[_]S :

∏
Δ,Γ∈CxS

∏
𝛾 ∈SbS (Δ,Γ) TyS (Γ) → TyS (Δ)

_[_]S :

∏
Δ,Γ∈CxS

∏
𝛾 ∈SbS (Δ,Γ)

∏
𝐴∈TyS (Γ) TmS (Γ, 𝐴) → TmS (Δ, 𝐴[𝛾]S)

Thankfully, the types of these operations are significantly more intimidating than

their definitions. Unfolding definitions in the first line, we must take a function

𝛾 : Δ → Γ and a function 𝐴 : Γ → V𝜔 and produce a function Δ → V𝜔 , which is

easily accomplished by composing 𝐴 and 𝛾 . Substitution on terms is identical:

𝐴[𝛾]S := 𝐴 ◦ 𝛾
𝑎[𝛾]S := 𝑎 ◦ 𝛾

The substitution calculus includes a number of equations governing _[_], namely

that substituting by id is the identity and substituting by a composite substitution is the

same as a composition of substitutions; checking these for S is again straightforward.

Exercise 3.12. Verify the following, where Γ ∈ CxS ,𝐴 ∈ TyS (Γ), and 𝑎 ∈ TmS (Γ, 𝐴):

• 𝐴[idS]S = 𝐴.

• 𝑎[idS]S = 𝑎.

• If 𝛾1 ∈ SbS (Γ2, Γ1) and 𝛾0 ∈ SbS (Γ1, Γ), then 𝐴[𝛾0 ◦S 𝛾1]S = 𝐴[𝛾0]S [𝛾1]S .

• If 𝛾1 ∈ SbS (Γ2, Γ1) and 𝛾0 ∈ SbS (Γ1, Γ), then 𝑎[𝛾0 ◦S 𝛾1]S = 𝑎[𝛾0]S [𝛾1]S .

Extending contexts The remaining operations of the substitution calculus are

context extension Γ.𝐴, substitution extension 𝛾 .𝑎, the weakening substitution p, and
the variable term q. Wemust start by defining theS-interpretation of context extension,
because it occurs in the types of all the other operations.

Recall from Sections 2.3 and 2.4.2 that substitutions into Γ.𝐴 are roughly “pairs of a

substitution into Γ and a term of type𝐴.” More precisely, there is a natural isomorphism

between substitutions 𝛾 ∈ Sb(Δ, Γ.𝐴) and pairs (𝛾0 ∈ Sb(Δ, Γ), 𝑎 ∈ Tm(Δ, 𝐴[𝛾0])).
Unfolding S-interpretations and setting Δ = 1S , in light of Exercise 3.11 we see that
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elements of the set Γ.S𝐴 must be in bijection with pairs (𝑥0 ∈ Γ, 𝑎 ∈ 𝐴(𝑥0)), and so

we might as well take this as the definition of Γ.S𝐴.

_.S_ :

∏
Γ∈CxS TyS (Γ) → CxS

Γ.S𝐴 :=
∑
𝑥∈Γ 𝐴(𝑥)

We must be careful to check that this set is actually an element of CxS = V𝜔 ,
which follows from the closure of Grothendieck universes under indexed coprod-

ucts (Lemma 3.5.2).

Once again, to define pS , qS , and _.S_ we must unfold their types, which will

turn out to be significantly more intimidating than their definitions. Weakening, for

example, is simply the first projection from

∑
:

pS :

∏
Γ∈V𝜔

∏
𝐴∈Γ→V𝜔 (

∑
𝑥∈Γ 𝐴(𝑥)) → Γ

pS (𝑥, 𝑎) := 𝑥

Similarly, variables and substitution extension are respectively the second projec-

tion and pairing operations of

∑
. For any Δ, Γ ∈ V𝜔 and 𝐴 ∈ Γ →V𝜔 :

qS :

∏
𝑝∈ (∑𝑥 ∈Γ 𝐴(𝑥 ) ) 𝐴(pS (𝑝))

qS (𝑥, 𝑎) := 𝑎

_.S_ :

∏
𝛾 ∈Δ→Γ (

∏
𝑦∈Δ𝐴(𝛾 (𝑦))) → Δ→ ∑

𝑥∈Γ 𝐴(𝑥)
(𝛾 .S𝑎) (𝑦) := (𝛾 (𝑦), 𝑎(𝑦))

Exercise 3.13. Check that the types given above for pS , qS , and _.S_ match the types

given in Section 2.3, by unfolding the S-interpretations given throughout this section.

The S-interpretations of context extension, substitution extension, weakening,

and variables as

∑
, pairing, first projection, and second projection may in fact clarify

the meaning of these operations in the substitution calculus. At any rate, it is straight-

forward to verify the necessary equations, which correspond to the 𝛽- and 𝜂-laws of∑
.

Lemma 3.5.11. If Δ, Γ ∈ CxS and 𝐴 ∈ TyS (Γ), then:

• If 𝛾 ∈ SbS (Δ, Γ) and 𝑎 ∈ TmS (Δ, 𝐴[𝛾]S), then pS ◦S (𝛾 .S𝑎) = 𝛾 .

• If 𝛾 ∈ SbS (Δ, Γ) and 𝑎 ∈ TmS (Δ, 𝐴[𝛾]S), then qS [𝛾 .S𝑎] = 𝑎.

• If 𝛾 ∈ SbS (Δ, Γ.S𝐴) then 𝛾 = (pS ◦S 𝛾).S (qS [𝛾]S).
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Proof. These all follow essentially by definition. For the first equation, fix 𝛾 : Δ→ Γ
and 𝑎 ∈ ∏

𝑦∈Δ𝐴(𝛾 (𝑦)); we must show 𝜋1 ◦ (𝜆𝑦 → (𝛾 (𝑦), 𝑎(𝑦))) = 𝛾 . Because both
sides are functions, it suffices to check that they agree on all 𝑦 ∈ Δ, and indeed both

produce 𝛾 (𝑦) when applied to 𝑦. For the second equation we must show 𝜋2 ◦ (𝜆𝑦 →
(𝛾 (𝑦), 𝑎(𝑦))) = 𝑎, which again follows by applying both sides to 𝑦 ∈ Δ.

For the third equation, fix𝛾 : Δ→ ∑
𝑥∈Γ 𝐴(𝑥) and show𝛾 = 𝜆𝑦 → (𝜋1(𝛾 (𝑦)), 𝜋2(𝛾 (𝑦))).

This follows by applying both sides to 𝑦 ∈ Δ and noting that 𝛾 (𝑦) ∈ ∑𝑥∈Γ 𝐴(𝑥) is by
definition of the form (𝑥0, 𝑎). □

The reader should now verify that we have provided an S-interpretation of every

rule of the substitution calculus, covering the first section of Appendix A.

Notation 3.5.12. We note that we can safely reuse notations from Chapter 2 for theirS
counterparts. In particular, following Exercise 2.4, wewrite𝛾 .S𝐴 for (𝛾 ◦S pS) .S (qS)S .

3.5.3 The type-theoretic connectives of sets

Now that we have defined the S-interpretation of the basic structure of type theory,

we can extend S with any connectives of our choice. Unlike the operations considered

in Section 3.5.2, the connectives of type theory are (generally) defined independently

of one another, allowing us to model them in a modular fashion. We consider some

representative cases, namely, the S-interpretations of Π-types, Eq-types, Void, Bool,
and U0.

Π-types Taking advantage of the compact representation of the rules of Π-types

introduced in Section 2.4.2, the S-interpretation of Π-types consists of an S-type-
forming operation and a family of isomorphisms of sets:

ΠS :

∏
Γ∈CxS (

∑
𝐴∈TyS (Γ) TyS (Γ.S𝐴)) → TyS (Γ)

𝜄S :

∏
Γ∈CxS

∏
𝐴∈TyS (Γ)

∏
𝐵∈TyS (Γ.S𝐴) TmS (Γ,ΠS Γ (𝐴, 𝐵)) � TmS (Γ.S𝐴, 𝐵)

subject to the following equations expressing their naturality in Γ ∈ CxS :

(ΠS Γ (𝐴, 𝐵)) [𝛾]S = ΠS Δ (𝐴[𝛾]S, 𝐵 [𝛾 .S𝐴]S) (𝛾 ∈ SbS (Δ, Γ))
(𝜄S Γ 𝐴 𝐵 𝑓 ) [𝛾 .S𝐴]S = 𝜄S Δ (𝐴[𝛾]S) (𝐵 [𝛾 .S𝐴]S) (𝑓 [𝛾]S) (𝛾 ∈ SbS (Δ, Γ))

To get a handle on the situation, let us consider the types of ΠS and 𝜄S when

specialized to the empty context 1S , and simplified along the isomorphisms of Exer-
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cise 3.11:

ΠS 1S : (∑𝐴∈V𝜔 (𝐴→V𝜔 )) → V𝜔
𝜄S 1S :

∏
𝐴∈V𝜔

∏
𝐵∈𝐴→V𝜔 ΠS 1S (𝐴, 𝐵) �

∏
𝑎∈𝐴 𝐵(𝑎)

That is, in the empty context, for any 𝐴 ∈ V𝜔 and 𝐵 : 𝐴 → V𝜔 we must choose a

set ΠS 1S (𝐴, 𝐵) ∈ V𝜔 to serve as the S-Π-type of 𝐴 and 𝐵, and this set must be

isomorphic to the set-theoretic indexed product

∏
𝑎∈𝐴 𝐵(𝑎).

The situation for arbitrary contexts is essentially the same, except that all three of

𝐴, 𝐵, and their S-Π-type are additionally indexed by a set Γ. We define ΠS as follows:

ΠS Γ (𝐴, 𝐵) 𝑥 :=
∏
𝑎∈𝐴(𝑥 ) 𝐵(𝑥, 𝑎) (𝑥 ∈ Γ)

noting that 𝐵 : (∑𝑥∈Γ 𝐴(𝑥)) → V𝜔 by the definition of Γ.S𝐴 in Section 3.5.2. Finally,

we must verify that our definition

∏
𝑎∈𝐴(𝑥 ) 𝐵(𝑥, 𝑎) ∈ V𝜔 , which indeed holds by

Lemma 3.5.2.

Lemma 3.5.13. ΠS is natural in Γ, i.e., (ΠS Γ (𝐴, 𝐵)) [𝛾]S = ΠS Δ (𝐴[𝛾]S, 𝐵 [𝛾 .S𝐴]S)
in TyS (Δ) for any 𝛾 ∈ SbS (Δ, Γ).

Proof. Unfolding the operations of the substitution calculus, we must show:

(ΠS Γ (𝐴, 𝐵)) ◦ 𝛾 = ΠS Δ (𝐴 ◦ 𝛾, 𝜆(𝑦, 𝑎) → 𝐵(𝛾 (𝑦), 𝑎))

These are both functions Δ→V𝜔 , so it suffices to check that they agree on all 𝑦 ∈ Δ:

((ΠS Γ (𝐴, 𝐵)) ◦ 𝛾) (𝑦)
= ΠS Γ (𝐴, 𝐵) (𝛾 (𝑦))
=
∏
𝑎∈𝐴(𝛾 (𝑦) ) 𝐵(𝛾 (𝑦), 𝑎)

=
∏
𝑎∈ (𝐴◦𝛾 ) (𝑦) (𝜆(𝑦, 𝑎) → 𝐵(𝛾 (𝑦), 𝑎)) (𝑦, 𝑎)

= ΠS Δ (𝐴 ◦ 𝛾, 𝜆(𝑦, 𝑎) → 𝐵(𝛾 (𝑦), 𝑎)) 𝑦 □

As for the isomorphism 𝜄S , unfolding definitions we must construct:

𝜄S :

∏
Γ∈V𝜔

∏
𝐴∈Γ→V𝜔

∏
𝐵∈ (∑𝑥 ∈Γ 𝐴(𝑥 ) )→V𝜔 (∏𝑥∈Γ

∏
𝑎∈𝐴(𝑥 ) 𝐵(𝑥, 𝑎)) �

∏
𝑝∈ (∑𝑥 ∈Γ 𝐴(𝑥 ) ) 𝐵(𝑝)

Fixing Γ, 𝐴, 𝐵, this isomorphism is simply the dependent (un)currying isomorphism

(𝑥 : Γ) → (𝑎 : 𝐴(𝑥)) → 𝐵(𝑥, 𝑎) � (𝑝 :

∑
𝑥 :Γ 𝐴(𝑥)) → 𝐵(𝑝), defined as follows:

𝜄S Γ 𝐴 𝐵 𝑓 (𝑥, 𝑎) := 𝑓 𝑥 𝑎

𝜄−1

S Γ 𝐴 𝐵 𝑔 𝑥 𝑎 := 𝑔 (𝑥, 𝑎)
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Exercise 3.14. Verify that 𝜄S and 𝜄−1

S are inverses.

Exercise 3.15. Verify that 𝜄S is natural in Γ. (Hint: show that

(𝜄S Γ 𝐴 𝐵 𝑓 ) ◦ (𝜆(𝑦, 𝑎) → (𝛾 (𝑦), 𝑎)) = 𝜄S Δ (𝐴 ◦ 𝛾) (𝜆(𝑦, 𝑎) → 𝐵(𝛾 (𝑦), 𝑎)) (𝑓 ◦ 𝛾)

for any 𝑓 ∈ ∏𝑥∈Γ
∏
𝑎∈𝐴(𝑥 ) 𝐵(𝑥, 𝑎) and 𝛾 ∈ SbS (Δ, Γ), by showing that they agree on

all (𝑦, 𝑎) ∈ ∑𝑦∈Δ𝐴(𝛾 (𝑦)).)

Eq-types The S-interpretation of extensional equality types is analogous to that of

Π-types. Following Section 2.4.4, we must define an S-type-forming operation and a

family of isomorphisms of sets, both natural in Γ:

EqS :

∏
Γ∈CxS (

∑
𝐴∈TyS (Γ) TmS (Γ, 𝐴) × TmS (Γ, 𝐴)) → TyS (Γ)

𝜄S :

∏
Γ∈CxS

∏
𝐴∈TyS (Γ)

∏
𝑎,𝑏∈TmS (Γ,𝐴) TmS (Γ, EqS Γ (𝐴, 𝑎, 𝑏)) � {★ | 𝑎 = 𝑏}

We define EqS Γ (𝐴, 𝑎, 𝑏) to be the Γ-indexed family of sets that maps 𝑥 ∈ Γ to a

one-element set when 𝑎(𝑥) = 𝑏 (𝑥) ∈ 𝐴(𝑥), and an empty set otherwise.

EqS Γ (𝐴, 𝑎, 𝑏) 𝑥 := {★ | 𝑎(𝑥) = 𝑏 (𝑥)}

To define 𝜄S , we note that S-terms 𝑒 ∈ TmS (Γ, EqS Γ (𝐴, 𝑎, 𝑏)) are constant

functions sending every 𝑥 ∈ Γ to the unique element ★. In particular, the existence

of such an 𝑒 implies that 𝑎(𝑥) = 𝑏 (𝑥) for all 𝑥 ∈ Γ, and any two such terms 𝑒, 𝑒′ must

agree on all 𝑥 ∈ Γ and thus be equal. Thus:

𝜄S Γ 𝐴 𝑎 𝑏 𝑒 := ★

𝜄−1

S Γ 𝐴 𝑎 𝑏 ★ 𝑥 := ★

Exercise 3.16. Verify that 𝜄S and 𝜄−1

S are inverses.

Exercise 3.17. State and prove the naturality equations for EqS and 𝜄S . (Hint: refer-
ence the naturality equations in Section 2.4.4, and unfold definitions.)

The empty type Our next type Void is defined not by a mapping-in property but a

mapping-out property. However, as discussed in Section 2.5.1, it can nevertheless be

axiomatized as a natural type-forming operation with a natural family of isomorphisms:

VoidS :

∏
Γ∈CxS TyS (Γ)

𝜌S :

∏
Γ∈CxS

∏
𝐴∈TyS (Γ.SVoidS ) TmS (Γ.SVoidS, 𝐴) � {★}



124 Metatheory and implementation (2025-07-19)

Given thatVoid is called the empty type, it is perhaps unsurprising thatS interprets

it as the empty set, regarded as a constant family over Γ ∈ V𝜔 and 𝑥 ∈ Γ.

VoidS Γ 𝑥 := ∅

Elements of the S-context Γ.SVoidS are pairs of 𝑥 ∈ Γ and 𝑦 ∈ VoidS 𝑥 , but the
latter set is defined to be empty, so no such pairs exist and Γ.SVoidS = ∅. Accordingly,
S-terms 𝑓 ∈ TmS (Γ.SVoidS, 𝐴) are (dependent) functions out of an empty set. As

discussed in Section 2.5.1, there is exactly one such function for every 𝐴, and this is

precisely the content of the isomorphism 𝜌S .

𝜌S Γ 𝐴 𝑎 := ★

Exercise 3.18. Complete the S-interpretation of Void: verify that 𝜌S is an isomor-

phism, and prove the naturality equations for VoidS and 𝜌S , following Section 2.5.1.

Booleans Like Void, the booleans are also defined by a mapping-out property.

Recalling Section 2.5.2, the specification of Bool has three components, the first two

being a natural type-former and two natural term-formers:

BoolS :

∏
Γ∈CxS TyS (Γ)

trueS, falseS :

∏
Γ:CxS TmS (Γ,BoolS)

The third component is once again a natural isomorphism, but unlike the previous

examples in which the two directions of the isomorphism encode introduction and

elimination, here the forward map is fixed by the choice of trueS and falseS , and
the reverse map expresses the principle that maps out of Bool are determined by

their instantiations at true and false. Writing 𝜌 Γ 𝐴 for the map which sends 𝑎 ∈
TmS (Γ.SBoolS, 𝐴) to the pair of S-terms (𝑎[idS .StrueS]S, 𝑎[idS .SfalseS]S), we
require 𝜌 to be an isomorphism.

𝜌 :

∏
Γ∈CxS

∏
𝐴∈TyS (Γ.SBoolS )TmS (Γ.SBoolS, 𝐴) �

TmS (Γ, 𝐴[idS .StrueS]S) × TmS (Γ, 𝐴[idS .SfalseS]S)
𝜌 Γ 𝐴 𝑎 := (𝑎[idS .StrueS]S, 𝑎[idS .SfalseS]S)

We can define BoolS to be any fixed two-element set {trueS, falseS}, regarded as

a constant family over Γ ∈ V𝜔 and 𝑥 ∈ Γ.

BoolS Γ 𝑥 := {0, 1}
trueS Γ 𝑥 := 1

falseS Γ 𝑥 := 0
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Exercise 3.19. State and prove the naturality equations for BoolS , trueS , and falseS .

It remains only to check that 𝜌 Γ 𝐴 is indeed an isomorphism.

Lemma 3.5.14. The map 𝑎 ↦→ (𝑎[idS .StrueS]S, 𝑎[idS .SfalseS]S) is an isomorphism

TmS (Γ.SBoolS, 𝐴) � TmS (Γ, 𝐴[idS .StrueS]S) × TmS (Γ, 𝐴[idS .SfalseS]S)

Proof. Unfolding definitions, the S-context Γ.SBoolS is the set Γ × {0, 1}, so S-
types 𝐴 ∈ TyS (Γ.SBoolS) are families of sets Γ × {0, 1} → V𝜔 , and S-terms 𝑎 ∈
TmS (Γ.SBoolS, 𝐴) are dependent functions

∏
𝑝∈Γ×{0,1} 𝐴(𝑝). But∏

𝑝∈Γ×{0,1} 𝐴(𝑝)
�

∏
𝑥∈Γ

∏
𝑏∈{0,1} 𝐴(𝑥, 𝑏)

�
∏
𝑥∈Γ 𝐴(𝑥, 1) ×𝐴(𝑥, 0)

� (∏𝑥∈Γ 𝐴(𝑥, 1)) × (
∏
𝑥∈Γ 𝐴(𝑥, 0))

where the forward composite map is 𝑎 ↦→ ((𝜆𝑥 → 𝑎(𝑥, 1)), (𝜆𝑥 → 𝑎(𝑥, 0))). Unfolding
definitions, this is precisely the map we wanted to show is an isomorphism. □

Universes The final connective we discuss is U, a “type of types” whose terms

Γ ⊢ 𝑎 : U decode to types Γ ⊢ El(𝑎) type. As we saw in Section 2.6, universe types

require far more rules than the other connectives: type theory has a countably infinite

hierarchy of universes U = U0 : U1 : U2 : . . . , each closed under codes for every type-

former and satisfying definitional equalities involving El, with lift operations between

these universes commuting with all the aforementioned operations. In addition, the

S-interpretation of U as a “set of sets” will force us to confront some set-theoretic

technicalities.

The good news is that all of this structure will fall quite neatly into place. The

astute reader may have noticed that Axiom 3.5.6 postulates an infinite hierarchy of

Grothendieck universesV0 ∈ · · · ∈ V𝜔 of which we have only usedV𝜔 thus far; the

remainingV𝑖 serve as the S-interpretations of the type-theoretic universe hierarchy.
Let us begin by defining (U0)S = US and (El0)S = ElS :

US :

∏
Γ∈V𝜔 TyS (Γ)

US Γ 𝑥 := V0

ElS :

∏
Γ∈V𝜔 TmS (Γ,US) → TyS (Γ)

ElS Γ 𝑐 := 𝑐

To make sense of the last definition, we note that ElS Γ : (Γ →V0) → (Γ →V𝜔 ). By
our hypothesis V0 ∈ V𝜔 and Lemma 3.5.2, V0 ⊆ V𝜔 , so in particular (Γ → V0) ⊆
(Γ →V𝜔 ).
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Exercise 3.20. State and prove the naturality equations for US and ElS .

Following Section 2.6.2, the S-interpretation of U must include codes for Π-types:

piS :

∏
Γ∈CxS (

∑
𝐴∈TmS (Γ,US ) TmS (Γ.SElS (𝐴),US)) → TmS (Γ,US)

satisfying a naturality equation as well as the following equation in Γ →V𝜔 :

ElS Γ (piS Γ (𝐴, 𝐵)) = ΠS Γ (ElS Γ 𝐴, ElS Γ 𝐵)

Because ElS Γ is just the inclusion (Γ → V0) ⊆ (Γ → V𝜔 ), we can simply take

the above equation as a definition—setting piS Γ (𝐴, 𝐵) := ΠS Γ (𝐴, 𝐵)—as long as we

prove that the right-hand side lands inside of Γ → V0 when 𝐴 and 𝐵 are pointwise

V0-small.

Lemma 3.5.15. If Γ ∈ V𝜔 , 𝐴 ∈ Γ →V0, and 𝐵 ∈ (
∑
𝑥∈Γ 𝐴(𝑥)) → V0, then

(∏𝑥∈Γ
∏
𝑎∈𝐴(𝑥 ) 𝐵(𝑥, 𝑎)) ∈ Γ →V0

Proof. Note that this statement refines a similar observation in our construction of

S-Π-types, in which all the V0 are replaced by V𝜔 . The proof is identical: because
V0 is a Grothendieck universe, Lemma 3.5.2 implies that

∏
𝑎∈𝐴(𝑥 ) 𝐵(𝑥, 𝑎) ∈ V0 for all

𝑥 ∈ Γ. □

The naturality equation for piS then follows immediately from the naturality of

ΠS . The codes for other connectives proceed identically, using the fact that V0 is

closed under every relevant construction. For the remainder of the universe hierarchy,

we define (U𝑖)S Γ 𝑥 := V𝑖 and check that (El𝑖)S and (lift𝑖)S are subset inclusions.

3.5.4 Using the set model

We finally arrive at the main result of this section.

Theorem 3.5.16. S is a model of extensional type theory.

Although extensional type theory is often considered an alternative to set theory,

the fact that S allows us to reduce questions about type theory to questions about

sets makes the set model one of the most powerful tools for studying the properties of

type theory. In Section 3.6, we appeal to S in two proofs that equality in extensional

type theory is undecidable; in the remainder of this section, we will quickly rattle

off several other corollaries of Theorem 3.5.16, starting with the consistency of type

theory (Theorem 3.4.8).
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Proof of Theorem 3.4.8. To show that type theory is consistent, by Theorem 3.4.7 it

suffices to exhibit a modelM in which TmM (1M,VoidM) is empty. ChoosingM = S,
by Exercise 3.11 we have TmS (1S,VoidS) � VoidS 1S ★ := ∅. □

More generally, S tells us that any term in extensional type theory—that is, in its

syntactic model T (Definition 3.4.4)—gives rise to a corresponding function of sets.

On the one hand, this lets us construct functions on sets by writing down terms in

type theory; on the other hand, we can disprove the existence of terms by showing

that their image under the S-interpretation does not exist, as we just did in the proof

of consistency.

Lemma 3.5.17. Within type theory, there are no injective functions (Nat → Nat) →
Nat; that is, there are no closed terms of type∑

𝑓 :(Nat→Nat )→Nat (𝑔1, 𝑔2 : Nat → Nat) → 𝑓 (𝑔1) = 𝑓 (𝑔2) → 𝑔1 = 𝑔2

Proof. Unfolding definitions, the image of such a term under S is a pair whose first

projection is an ordinary set-theoretic function 𝑓 : (N→ N) → N, and whose second

projection is a three-argument function that takes two functions 𝑔1, 𝑔2 : N→ N and

𝑥 ∈ {★ | 𝑓 (𝑔1) = 𝑓 (𝑔2)}, and returns {★ | 𝑔1 = 𝑔2}. In particular, although the second

projection is unique when it exists, it exists only when 𝑓 is injective. But N→ N is

uncountable, so there can be no injective functions from it to N. □

Remark 3.5.18. This argument does not go through if we restrict attention to the

syntactic model, because the set Tm(1,Π(Nat,Nat)) of closed terms of type Nat →
Nat is countable: it is a quotient of a subset of finite derivation trees, which are

countable. ⋄

Theorem 3.5.19. Extensional type theory does not have injective Π-types (Defini-
tion 3.2.8).

Proof. Using equality reflection and universes, the following judgment holds:

1.Eq(U, pi(unit, void), pi(bool, void)) ⊢ Π(Unit,Void) = Π(Bool,Void) type

If extensional type theory had injective Π-types, this would imply:

1.Eq(U, pi(unit, void), pi(bool, void)) ⊢ Unit = Bool type

This implies in particular that true and false are elements of Unit in this context.

By the 𝜂 rule for Unit this implies that true = false in this context, and hence by

Theorem 2.6.3,

1.Eq(U, pi(unit, void), pi(bool, void)) ⊢ tt : Void
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TheS-interpretation of the above context is a set with one element ifΠS (UnitS,VoidS)
ΠS (BoolS,VoidS) are equal sets, which is indeed the case because both are ∅. Thus
the S-interpretation of the above term must be a function from a one-element set to ∅,
which does not exist. We conclude that there is no such term, and thus extensional

type theory does not have injective Π-types. □

Finally, recall that all of the constructions in this section have assumed an (𝜔 + 1)-
hierarchy of Grothendieck universes V0 ∈ · · · ∈ V𝜔 (Axiom 3.5.6): we use V𝜔 to

model contexts and types, and smaller V𝑖 to model U𝑖 . In general, we need 𝑛 + 1

Grothendieck universes to model a type theory with 𝑛 universes.

Theorem 3.5.20. An (𝑛 + 1)-hierarchy of Grothendieck universes V0 ∈ · · · ∈ V𝑛
suffices to construct a set-theoretic model of extensional type theory with 𝑛 universes
U0 : · · · : U𝑛−1.

3.6 Equality in extensional type theory is undecidable

In this section we present two proofs that term equality in extensional type theory

is undecidable, and hence extensional type theory does not admit a normalization

structure by Exercise 3.3. The first proof, due to Castellan, Clairambault, and Dybjer

[CCD17], is conceptually straightforward but requires an appeal to the set-theoretic

model (Section 3.5). The second proof, due to Hofmann [Hof95a], requires only the

assumption that extensional type theory is consistent (Theorem 3.4.8), but is more

complex, requiring the machinery of recursively inseparable sets. Both of these ideas

arise with some frequency in the metatheory of type theory, so we cover both proofs

in some detail.

3.6.1 The first proof: deciding equality of SK terms

The strategy of our first proof is to exhibit a context Γ𝑆𝐾 and an encoding ⟦−⟧ of terms

of the SK combinator calculus into type-theoretic terms in context Γ𝑆𝐾 , such that two

SK terms are convertible if and only if their encodings are judgmentally equal. Because

convertibility of SK terms is undecidable, judgmental equality is as well.

Recall that the SK combinator calculus is an extremely minimal Turing-complete

language generated by application and two combinators named 𝑆 and 𝐾 :

Combinators 𝑥 ::= 𝑆 | 𝐾 | 𝑥 𝑥
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Combinators compute according to the following rewriting system ↦→. We say

that two combinators are convertible, written 𝑥 ∼ 𝑦, if they are related by the reflexive,

symmetric, and transitive closure of ↦→.

𝑆 𝑥 𝑦 𝑧 ↦→ (𝑥 𝑧) (𝑦 𝑧) 𝐾 𝑥 𝑦 ↦→ 𝑥

𝑥 ↦→ 𝑥 ′

𝑥 𝑦 ↦→ 𝑥 ′ 𝑦

𝑦 ↦→ 𝑦′

𝑥 𝑦 ↦→ 𝑥 𝑦′

We define the following context, written in Agda-style notation:

Γ𝑆𝐾 := 1,
𝐴 : U,
_•_ : 𝐴→ 𝐴→ 𝐴,

𝑠 : 𝐴,

𝑘 : 𝐴,

𝑒1 : (𝑎 𝑏 : 𝐴) → Eq(𝐴, (𝑘 • 𝑎) • 𝑏, 𝑎),
𝑒2 : (𝑎 𝑏 𝑐 : 𝐴) → Eq(𝐴, ((𝑠 • 𝑎) • 𝑏) • 𝑐, (𝑎 • 𝑐) • (𝑏 • 𝑐))

Writing Λ for the set of SK combinator terms, we can straightforwardly define

a function ⟦−⟧ : Λ → Tm(Γ𝑆𝐾 , 𝐴) by sending application, 𝑆 , and 𝐾 to •, 𝑠 , and 𝑘
respectively, and this function respects convertibility of combinators.

Lemma 3.6.1. There is a function ⟦−⟧ : Λ→ Tm(Γ𝑆𝐾 , 𝐴) such that 𝑥 ∼ 𝑦 =⇒ ⟦𝑥⟧ =
⟦𝑦⟧.

Exercise 3.21. The context Γ𝑆𝐾 only includes two of the four generating rules of ↦→.

Why haven’t we included the other two, or reflexivity, symmetry, or transitivity?

Lemma 3.6.1 implies that term equality is sound for an undecidable problem, but

this does not yet imply that term equality is undecidable; it is possible, for example,

that all terms in the image of ⟦−⟧ are equal. To complete our proof, we must observe

that term equality is also complete for convertibility; we argue this by using the set-

theoretic model of type theory to recover the convertibility class of 𝑥 from the term

⟦𝑥⟧.

Theorem 3.6.2. If ⟦𝑥⟧ = ⟦𝑦⟧ then 𝑥 ∼ 𝑦.

Proof. Let us write 𝑓 : T → S for the homomorphism from the syntactic model T to

the set-theoretic model S. This homomorphism interprets syntactic contexts Γ as sets

Cx𝑓 (Γ), syntactic types 𝐴 ∈ Ty(Γ) as Cx𝑓 (Γ)-indexed families of sets, and syntactic

context extensions as indexed coproducts of those families. (See Section 3.5 for more

details.)
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Unwinding definitions, elements of Cx𝑓 (Γ𝑆𝐾 ) are “SK-algebras,” or dependent

tuples of a set along with application, 𝑆 , and 𝐾 operations satisfying the convertibility

axioms. Combinators modulo convertibility form such an algebra in the evident way;

writing [𝑥] for the convertibility equivalence class of 𝑥 ∈ Λ, we have

𝛾𝑆𝐾 := (Λ/∼, (𝜆[𝑥] [𝑦] → [𝑥 𝑦]), [𝑠], [𝑘],★,★) ∈ Cx𝑓 (Γ𝑆𝐾 )

Homomorphisms of models respect equality, so from ⟦𝑥⟧ = ⟦𝑦⟧ ∈ Tm(Γ𝑆𝐾 , 𝐴) we
see that these terms are interpreted inS as equal dependent functions

∏
(𝐴,... ) :Cx𝑓 (Γ𝑆𝐾 ) 𝐴,

and in particular, applying these functions to 𝛾𝑆𝐾 produces two equal elements of Λ/∼.
We can prove by induction on combinators that for any 𝑧 ∈ Λ this procedure recovers

𝑧 up to convertibility (i.e., sends ⟦𝑧⟧ to [𝑧]) and thus [𝑥] = [𝑦] as required. □

Theorem 3.6.3. Equality of terms 𝑎, 𝑏 ∈ Tm(Γ𝑆𝐾 , 𝐴) is undecidable.

Proof. Suppose it were decidable; then for any 𝑥,𝑦 ∈ Λ we can decide the equality

of ⟦𝑥⟧, ⟦𝑦⟧ ∈ Tm(Γ𝑆𝐾 , 𝐴). By Lemma 3.6.1 and Theorem 3.6.2, ⟦𝑥⟧ = ⟦𝑦⟧ if and
only if 𝑥 ∼ 𝑦, so we can in turn decide the convertibility of SK-combinators, which is

impossible. □

3.6.2 The second proof: separating classes of Turing machines

In the first proof we reduce an undecidable problem to the judgmental equality of open

terms, but establishing the completeness of this reduction requires appealing to the

set-theoretic model of type theory. Our second proof relies only on the consistency of

extensional type theory, showing that deciding judgmental equality of closed functions

would allow us to algorithmically separate two recursively inseparable subsets of N.

Notation 3.6.4. Fix a standard, effective Gödel encoding of Turing machines, in which

the standard operations on Turing machines are definable by primitive recursion. We

write 𝜙𝑛 for the partial function induced by the Turing machine encoded by 𝑛.

Theorem 3.6.5 (Rosser [Ros36], Trakhtenbrot [Tra53], and Kleene [Kle50]). Consider
the following two subsets of the natural numbers:

𝐴 = {𝑛 ∈ N | 𝜙𝑛 (𝑛) terminates with result 0}
𝐵 = {𝑛 ∈ N | 𝜙𝑛 (𝑛) terminates with result 1}

There is no Turing machine which terminates on all inputs and separates 𝐴 from 𝐵.
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Proof. Suppose we are given a Turing machine 𝑒 which always terminates with value 0

or 1, such that 𝑒 (𝑛) = 0 when 𝑛 ∈ 𝐴 and 𝑒 (𝑛) = 1 when 𝑛 ∈ 𝐵. Consider the algorithm

𝐹 (𝑛) :=

{
halt(1) 𝑒 (𝑛) = 0

halt(0) 𝑒 (𝑛) = 1

Because 𝑒 terminates on all inputs, so does 𝐹 . Note that 𝑒 (𝐹 (𝑛)) ≠ 𝑒 (𝑛) by construc-
tion: if 𝑒 (𝐹 (𝑛)) = 1 then 𝑒 (𝑛) = 0 and vice versa. By the second recursion theorem,

there exists a Turing machine 𝑓 realizing 𝐹 applied to its own Gödel number. However,

𝑒 (𝑓 ) can be neither 0 nor 1 as 𝑒 (𝑓 ) = 𝑒 (𝐹 (𝑓 )) by definition, but 𝑒 (𝑓 ) ≠ 𝑒 (𝐹 (𝑓 )). □

We will show that the existence of a normalization structure for extensional type

theory contradicts the above theorem. First, we observe that we can write a “small-

step interpreter” for Turing machines in type theory. Let us write TM and State for
Nat to indicate that we are interpreting a natural number as a Turing machine or

Turing machine state respectively, as encoded by 𝜙 . Then we can define the following

functions in type theory by primitive recursion:

• init : TM→ Nat → State

• hasHalted : State→ ∑
𝑏:Bool if (Nat,Unit, 𝑏)

• step : State→ State

Using these operations, we can run a Turing machine for an arbitrary but finite

number of steps on any input, determine whether it has halted, and if so, extract the

result. We can therefore define the following function:

-- returns true iff Turing machine 𝑛 halts on 𝑛 with result 1 in fewer than 𝑡 steps
returnOne : TM→ Nat → Bool
returnOne 𝑛 𝑡 = go (init 𝑛 𝑛) 𝑡

where
go : State→ Nat → Bool
go 𝑠 zero = false
go 𝑠 (suc 𝑛) =

if fst (hasHalted 𝑠) then isOne (snd (hasHalted 𝑠)) else go (step 𝑠) 𝑛

Let 𝐻0 ∈ N be the encoding of a Turing machine which immediately halts with re-

sult 0 regardless of its input. Then, writing 𝑚̄ for the element of Tm(1,Nat) correspond-
ing to𝑚 ∈ N, we will show that returnOne(𝑛), returnOne(𝐻0) ∈ Tm(1,Π(Nat,Bool))
are equal (resp., unequal) when 𝑛 is a Turing machine which halts with result 0 (resp.,

1).
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Lemma 3.6.6. If 𝑛 ∈ N is such that 𝜙𝑛 (𝑛) = 0, then

1 ⊢ returnOne 𝑛 = returnOne 𝐻0 : Π(Nat,Bool) .

Proof. By the 𝜂 rule for Π-types, it suffices to show

1, 𝑡 : Nat ⊢ returnOne 𝑛 𝑡 = returnOne 𝐻0 𝑡 : Bool

By equality reflection, this follows from:

1, 𝑡 : Nat ⊢ 𝑃𝑡 : Eq(Bool, returnOne 𝑛 𝑡, returnOne 𝐻0 𝑡)

In Exercise 3.22 the reader will establish this by Nat elimination on 𝑡 . Note that

by 𝜙𝑛 (𝑛) = 0, there exists some number ℓ such that the Turing machine encoded by 𝑛

halts in 𝑡 steps on 𝑛 with result 0. Thus we must in essence construct the following

terms:

1, 𝑡 : Nat ⊢ 𝑃0 : Eq(Bool, returnOne 𝑛 zero, returnOne 𝐻0 zero)
1, 𝑡 : Nat ⊢ 𝑃1 : Eq(Bool, returnOne 𝑛 (suc zero), returnOne 𝐻0 (suc zero))
...

1, 𝑡 : Nat ⊢ 𝑃ℓ+1 : Eq(Bool, returnOne 𝑛 (sucℓ+1 𝑡), returnOne 𝐻0 (sucℓ+1 𝑡))

In the above, we write sucℓ+1(𝑡) for the (ℓ + 1)-fold application of suc(−) to 𝑡 .
When 𝑖 ≤ ℓ it is straightforward to construct 𝑃𝑖 , as both sides equal false. For 𝑃ℓ+1,
we note that returnOne𝑚 (suc𝑘 𝑡) = false when𝑚 encodes a machine which halts in

fewer than 𝑘 steps with a result other than 1, completing the proof. □

Exercise 3.22. Fill in the gap in the above argument using the elimination principle

for Nat.

The remaining condition is easier to show.

Lemma 3.6.7. If 𝑛 ∈ N is such that 𝜙𝑛 (𝑛) = 1, then if the equality

1 ⊢ returnOne 𝑛 = returnOne 𝐻0 : Π(Nat,Bool)

holds, extensional type theory is inconsistent.

Proof. Because𝜙𝑛 (𝑛) terminates, there is some number of steps 𝑡 forwhich returnOne𝑛 𝑡 =
true. On the other hand, returnOne 𝐻0 𝑡 = false for every 𝑡 , so by applying both of

these equal functions to 𝑡 we conclude that 1 ⊢ true = false : Bool. By Theorem 2.6.3

this implies extensional type theory is inconsistent. □
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Theorem3.6.8. The judgmental equality 1 ⊢ returnOne𝑛 = returnOne𝐻0 : Π(Nat,Bool)
cannot be decidable for all 𝑛 ∈ N.

Proof. By Lemma 3.6.6, this equation holds if 𝜙𝑛 (𝑛) = 0; by Lemma 3.6.7 and Theo-

rem 3.4.8, it does not hold if 𝜙𝑛 (𝑛) = 1. If this equation were decidable, we would be

able to define a terminating algorithm which separates the subsets of 𝑛 ∈ N for which

𝜙𝑛 (𝑛) = 0 and 𝜙𝑛 (𝑛) = 1, contradicting Theorem 3.6.5. □
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Further reading

There are a number of excellent pedagogical resources on type-checkers for depen-

dent type theory that we encourage our implementation-inclined readers to explore.

Coquand [Coq96] describes algorithms for bidirectional type-checking and deciding

equality along with a proof sketch of correctness. Löh, McBride, and Swierstra [LMS10]

include additional exposition and a complete Haskell implementation that extends

a type-checker for a simply-typed calculus that is also described in the paper. The

Mini-TT tutorial by Coquand et al. [Coq+09] includes a Haskell implementation of a

type theory which is unsound (allowing arbitrary fixed-points) but supports data type

declarations and basic pattern matching.

In addition to the aforementioned papers, there are numerous online resources,

including a tutorial by Christiansen [Chr19] on the normalization by evaluation algo-

rithm for deciding equality, and the elaboration-zoo of Kovács [Kov16] which is an

excellent resource for more advanced implementation techniques.
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Intensional type theory 4
In Chapter 3 we outlined several key properties of type theories: consistency states that

type theory can be viewed as a logic, canonicity states that type theory can be viewed as

a programming language, normalization allows us to define a type-checking algorithm,

and invertibility of type constructors improves that algorithm. Unfortunately, we

also saw in Section 3.6 that extensional type theory does not satisfy the latter two

properties due to the equality reflection rule of its Eq-types (Section 2.4.4).

If we remove Eq-types from extensional type theory then it will satisfy all four

metatheorems above, but it becomes unusably weak. A foreseeable consequence is

that type theory would no longer have an equality proposition; a more subtle issue

is that many equations stop holding altogether, judgmentally or otherwise. This is

because inductive types are characterized by maps into other types only, so what

properties they enjoy depends on what types exist. Indeed we have already seen that

Eq-types allow us to prove their 𝜂-rules and universes allow us to prove disjointness

of their constructors; without Eq-types their 𝜂-rules will no longer be provable, and

disjointness cannot even be stated!

We are left asking: how should we internalize judgmental equality as a type, if
not Eq? This question has preoccupied type theorists for decades and—fortunately

for their continued employment—has no clear-cut answer. We will find that deleting

equality reflection causes equality types to become underconstrained, and their most

canonical replacement, intensional identity types, lack several important reasoning

principles. The decades-long quest for a suitable identity type has resulted in many

subtle variations as well as some major innovations in type theory, as we will explore in

Chapter 5. But first we turn our attention to intensional type theory, or type theory with
intensional identity types, the system on which most type-theoretic proof assistants

are based.

Notation 4.0.1. We adopt the common acronyms ETT and ITT for extensional type

theory and intensional type theory respectively.

In this chapter In Section 4.1 we explore the basic properties that any propositional

equality connective must satisfy, and show that a small set of primitive operations

suffice to recover many of the positive consequences of equality reflection while

allowing for normalization. In Section 4.2 we formally define the intensional identity

type according to the framework of inductive types outlined in Section 2.5, and show
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that this type precisely satisfies the properties of equality outlined above. In Section 4.3

we compare extensional and intensional identity types, noting that the latter lacks

several important principles, but by adding two axioms to it we can recover all the

reasoning principles of extensional type theory in a precise sense. Finally, in Section 4.4,

we summarize a line of research on observational type theory [AMS07], which attempts

to improve intensional identity types without sacrificing normalization.

Goals of the chapter By the end of this chapter, you will be able to:

• Define subst and contractibility of singletons, use them to prove other properties

of equality, and implement them using intensional identity types.

• Explain how intensional identity types fit into the framework of internalizing

judgmental structure that we developed in Chapter 2.

• Discuss the relationship and tradeoffs between intensional and extensional

equality.

• Informally describe observational type theory, and explain how it addresses the

shortcomings of intensional and extensional type theory.

4.1 Programming with propositional equality

In this section we will informally consider what properties should be satisfied by

any “type of equations.” Recall from Section 1.3 that such a propositional (or typal, or
internal) notion of equality is important for proving equations between types that type-

checkers cannot handle automatically, and that such type equations allow us to cast

(coerce) between the types involved. In Section 3.1 we discussed how type-checkers

automatically handle definitional (judgmental) type equalities; one can therefore think

of propositional type equalities as “verified casts” that users manually insert into terms.

Our starting point will be the type theory described in Chapter 2 but without Eq-
types. Instead we will add an identity type Id1

with the same formation (and universe

introduction) rule but no other properties yet:

Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑏 : 𝐴

Γ ⊢ Id(𝐴, 𝑎, 𝑏) type
Γ ⊢ 𝑎 : U𝑖 Γ ⊢ 𝑥 : El(𝑎) Γ ⊢ 𝑦 : El(𝑎)

Γ ⊢ id(𝑎, 𝑥,𝑦) : U𝑖
Γ ⊢ El(id(𝑎, 𝑥,𝑦)) = Id(El(𝑎), 𝑥,𝑦) type

1
Although beyond the scope of this book, we expect the Superego connective to internalize the

rules of type theory; arguably singleton types internalize the self and thus serve as the Ego.
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The primary way to use a proof of Id(𝐴, 𝑎, 𝑎′) is in concert with an 𝐴-indexed

family of types 𝑏 : 𝐴 → U; namely, we conclude that the 𝑎 and 𝑎′ instances of this
family are themselves equal in the sense that we have a proof of Id(U, 𝑏 𝑎, 𝑏 𝑎′), and as
a result we are able to cast between the types El(𝑏 𝑎) and El(𝑏 𝑎′). Notably, because
type equality is central to this story, universes will play a major role in this section.

Notation 4.1.1. What should we call terms of type Id(𝐴, 𝑎, 𝑏)? This type will no

longer precisely internalize the equality judgment so it can be misleading to call them

equalities between 𝑎 and 𝑏. On the other hand, calling them “proofs of equality between

𝑎 and 𝑏” is too cumbersome. We will refer to them as identifications between 𝑎 and 𝑏.

Notation 4.1.2. In the remainder of this section we will return to the informal notation

of Chapter 1; in particular, we omit El(−), thereby suppressing the difference between

types and terms of type U. We resume our more rigorous notation in Section 4.2.

4.1.1 Constructing identifications

Following the discussion above, we can already formulate two necessary conditions

on Id(𝐴, 𝑎, 𝑏). First, we must have some source of identifications between terms. As

with Eq-types we choose reflexivity; in concert with definitional equality, this allows

us to prove any terms are identified as long as they differ only by 𝛽 , 𝜂, and expanding

definitions:

refl : {𝐴 : U} → (𝑎 : 𝐴) → Id(𝐴, 𝑎, 𝑎)

Secondly, given an identification Id(𝐴, 𝑎, 𝑎′) and a dependent type 𝐵 : 𝐴 → U, we

must be able to convert terms of type 𝐵(𝑎) to 𝐵(𝑎′), a process (confusingly) known as

substitution:

subst : {𝐴 : U} {𝑎 𝑎′ : 𝐴} → (𝐵 : 𝐴→ U) → Id(𝐴, 𝑎, 𝑎′) → 𝐵 𝑎 → 𝐵 𝑎′

Remark 4.1.3. The subst function did not emerge in our discussion of Eq-types for
the simple reason that equality reflection trivializes it: subst 𝐵 𝑝 𝑏 = 𝑏. Indeed, all

of the operations we discuss in this section are trivial in the presence of equality

reflection. ⋄

By assuming that Id-types satisfy refl and subst we are off to a good start, but a
priori these are only two of the many combinators that we expect to be definable for

Id(𝐴, 𝑎, 𝑏); for starters, as an equality relation, identifications ought to be not only

reflexive but also symmetric and transitive. Fortunately and somewhat surprisingly, it

turns out that both symmetry and transitivity are consequences of refl and subst.
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Lemma 4.1.4. Using refl and subst, we can prove symmetry of identifications, i.e.,

sym : {𝐴 : U} {𝑎 𝑏 : 𝐴} → Id(𝐴, 𝑎, 𝑏) → Id(𝐴,𝑏, 𝑎)

Proof. Fix 𝐴 : U and 𝑎 𝑏 : 𝐴 and 𝑝 : Id(𝐴, 𝑎, 𝑏). To construct a term of type Id(𝐴,𝑏, 𝑎),
we simply choose a clever 𝐵 at which to instantiate subst:

𝐵 : 𝐴→ U
𝐵 𝑥 = id(𝐴, 𝑥, 𝑎)

In particular, note that 𝐵(𝑎) = Id(𝐴, 𝑎, 𝑎) is easily proven by refl, and 𝐵(𝑏) =
Id(𝐴,𝑏, 𝑎) is our goal; thus subst 𝐵 𝑝 is a function 𝐵(𝑎) → 𝐵(𝑏) and our goal follows

soon after:

sym : {𝐴 : U} {𝑎 𝑏 : 𝐴} → Id(𝐴, 𝑎, 𝑏) → Id(𝐴,𝑏, 𝑎)
sym {𝐴 𝑎 𝑏} 𝑝 = subst (𝜆𝑥 → id(𝐴, 𝑥, 𝑎)) 𝑝 (refl 𝑎) □

Lemma 4.1.5. Using refl and subst, we can prove transitivity of identifications, i.e.,

trans : {𝐴 : U} {𝑎 𝑏 𝑐 : 𝐴} → Id(𝐴, 𝑎, 𝑏) → Id(𝐴,𝑏, 𝑐) → Id(𝐴, 𝑎, 𝑐)

Proof. Fix 𝐴 : U, 𝑎 𝑏 𝑐 : 𝐴, 𝑝 : Id(𝐴, 𝑎, 𝑏), and 𝑞 : Id(𝐴,𝑏, 𝑐). To construct a term of

type Id(𝐴, 𝑎, 𝑐), we again choose a clever instantiation of subst, in this case 𝐵(𝑥) =
Id(𝐴, 𝑎, 𝑥). Once again, 𝐵(𝑏) is easily proven by our assumption 𝑝 , and 𝐵(𝑐) is our
goal. Substituting along 𝑞 : Id(𝐴,𝑏, 𝑐) completes our proof:

trans : {𝐴 : U} {𝑎 𝑏 𝑐 : 𝐴} → Id(𝐴, 𝑎, 𝑏) → Id(𝐴,𝑏, 𝑐) → Id(𝐴, 𝑎, 𝑐)
trans {𝐴 𝑎 𝑏 𝑐} 𝑝 𝑞 = subst (𝜆𝑥 → id(𝐴, 𝑎, 𝑥)) 𝑞 𝑝 □

Exercise 4.1. Provide an alternative proof trans′ of Lemma 4.1.5 which substitutes

along 𝑝 rather than 𝑞, using a slightly different choice of 𝐵.

In fact, refl and subst also allow us to prove that identifications are a congru-

ence, in the sense that given Id(𝐴, 𝑎, 𝑎′) and 𝑓 : 𝐴 → 𝐵, we obtain an identification

Id(𝐵, 𝑓 𝑎, 𝑓 𝑎′).

Lemma 4.1.6. Using subst, we can prove congruence of identifications, i.e.,

cong : {𝐴 𝐵 : U} {𝑎 𝑎′ : 𝐴} → (𝑓 : 𝐴→ 𝐵) → Id(𝐴, 𝑎, 𝑎′) → Id(𝐵, 𝑓 𝑎, 𝑓 𝑎′)

Proof. The proof strategy remains the same, so we proceed directly to the term:

cong : {𝐴 𝐵 : U} {𝑎 𝑎′ : 𝐴} → (𝑓 : 𝐴→ 𝐵) → Id(𝐴, 𝑎, 𝑎′) → Id(𝐵, 𝑓 𝑎, 𝑓 𝑎′)
cong {𝐴 𝐵 𝑎 𝑎′} 𝑓 𝑝 = subst (𝜆𝑥 → id(𝐵, 𝑓 𝑎, 𝑓 𝑥)) 𝑝 (refl (𝑓 𝑎)) □
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Finally, we must consider how subst ought to compute. Because subst can produce

terms of any type, including Bool and Nat, we must impose some definitional equalities

on it if our type theory is to satisfy canonicity (Section 3.4). One equation springs

to mind immediately: if we apply subst 𝐵 to refl 𝑎, the resulting coercion 𝐵 𝑎 → 𝐵 𝑎

has the type of the identity function, so it is reasonable to ask for it to be the identity
function. That is, we ask for the following definitional equality:

subst 𝐵 (refl 𝑎) 𝑏 = 𝑏 : 𝐵 𝑎

4.1.2 Constructing identifications of identifications

Although refl and subst go quite a long way, they do not suffice to derive all the prop-

erties of identifications we might expect; we start encountering their limits as soon as

we consider identifications between elements of Id(𝐴, 𝑎, 𝑏) itself. These identifications
of identifications arise very naturally in practice. Quite often we must use subst when
constructing a dependently-typed term in order to align various type indices; if we ever

construct a type that depends on such a term, we will very quickly be in the business

of proving that two potentially distinct sequences of subst casts are themselves equal.

For the sake of concreteness, consider the following pair of operations that “rotate”

a Vector (a list of specified length, as defined in Chapter 1):

append : {𝐴 : U} {𝑛 𝑚 : Nat} → Vec 𝐴 𝑛 → Vec 𝐴𝑚 → Vec 𝐴 (𝑛 +𝑚)
comm : {𝑛 𝑚 : Nat} → Id(Nat, 𝑛 +𝑚,𝑚 + 𝑛)

rot1 : {𝐴 : U} {𝑛 : Nat} → Vec 𝐴 𝑛 → Vec 𝐴 𝑛
rot1 [] = []
rot1 {𝐴 (suc𝑛)} (𝑥 :: xs) = subst (Vec 𝐴) (comm 𝑛 1) (append xs (𝑥 :: []))

rot2 : {𝐴 : U} {𝑛 : Nat} → Vec 𝐴 𝑛 → Vec 𝐴 𝑛
rot2 [] = []
rot2 (𝑥 :: []) = 𝑥 :: []
rot2 {𝐴 (suc(suc𝑛))} (𝑥0

:: 𝑥1
:: xs) =

subst (Vec 𝐴) (comm 𝑛 2) (append xs (𝑥0
:: 𝑥1

:: []))

We expect to be able to prove that rot1 twice is the same as rot2:

{𝐴 : U} {𝑛 : Nat} → (xs : Vec𝐴 (2+𝑛)) → Id(Vec𝐴 (2+𝑛), rot1 (rot1 xs), rot2 xs)

However, this will not be possible with our current set of primitives. In our definitions

of rot1 and rot2 we were forced to include various applications of subst to correct
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mismatches between the indices (𝑛+1), (1+𝑛) and (𝑛+2), (2+𝑛), and these subst terms

will get in our way as we try to establish the above identification. If we proceed by

induction on xs, for instance, we will get stuck attempting to construct a identification

between

subst (Vec 𝐴) (comm 𝑛 1)
(append (subst (Vec 𝐴) (comm 𝑛 1) (append xs (𝑥0

:: []))) (𝑥1
:: []))

and

subst (Vec 𝐴) (comm 𝑛 2) (append xs (𝑥0
:: 𝑥1

:: []))

of type Vec 𝐴 (2 + 𝑛). Unfortunately, because 𝑛 is a variable, neither comm 𝑛 1 nor

comm 𝑛 2 are the reflexive identification, so we can make no further progress.

The above example is a bit involved, but there are many smaller (albeit more con-

trived) examples of identifications that are beyond our reach; for example, given a vari-

able 𝑝 : Id(𝐴, 𝑎, 𝑏) we cannot construct an identification Id(Id(𝐴, 𝑎, 𝑏), 𝑝, sym (sym 𝑝)).
Our “API” for identity types is thus missing an operation that allows us to prove

identifications between two identifications. To hit upon this operation, we introduce

the concept of (propositional) singleton types (in contrast to the “definitional singleton

types” of Section 3.3). Given a type𝐴 and a term 𝑎 : 𝐴, the singleton type [𝑎] is defined
as follows:

[𝑎] = ∑
𝑏:𝐴 Id(𝐴, 𝑎, 𝑏)

That is, [𝑎] is the type of “elements of 𝐴 that can be identified with 𝑎.” Intuitively,

there should only be one such element, namely 𝑎 itself—or to be more precise, (𝑎, refl 𝑎).
But this, too, is not yet provable. Certainly, given an arbitrary element (𝑏, 𝑝) : [𝑎] we
can see that (by 𝑝) their first projections 𝑎 and 𝑏 are identified, but we have no way of

identifying their second projections refl 𝑎 and 𝑝 .
In fact, most of our “coherence problems” of identifying identifications can be

reduced to the problem of identifying all elements of [𝑎]: this is in some sense the

ur-coherence problem. Intuitively this is because being able to identify arbitrary (𝑏, 𝑝)
with (𝑎, refl 𝑎) allows us to transform subst terms involving the arbitrary identification

𝑝 into subst terms involving the distinguished identification refl 𝑎, the latter of which
“compute away.”

Lemma 4.1.7. Suppose we are given some𝐴 : U and 𝑎 : 𝐴 such that all elements of [𝑎] are
identified; then for any 𝑏 : 𝐴 and 𝑝 : Id(𝐴, 𝑎, 𝑏) we have Id(Id(𝐴, 𝑎, 𝑏), 𝑝, sym (sym 𝑝)).

Proof. Fixing 𝐴, 𝑎, 𝑏, and 𝑝 , we notice that (𝑎, refl 𝑎), (𝑏, 𝑝) : [𝑎] by definition, and

thus by assumption we have an identification 𝑞 : Id( [𝑎], (𝑎, refl 𝑎), (𝑏, 𝑝)). As before,
we shall choose a clever 𝐵 for which subst 𝐵 solves our problem, namely:
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𝐵 : [𝑎] → U
𝐵 (𝑏0, 𝑝0) = id(id(𝐴, 𝑎, 𝑏0), 𝑝0, sym (sym 𝑝0))

Inspecting our definition of Lemma 4.1.4, we see that sym (refl 𝑥) = refl 𝑥 defini-

tionally, and thus the following definitional equalities hold:

𝐵 (𝑎, refl 𝑎) = Id(Id(𝐴, 𝑎, 𝑎), refl 𝑎, sym (sym (refl 𝑎)))
= Id(Id(𝐴, 𝑎, 𝑎), refl 𝑎, sym (refl 𝑎))
= Id(Id(𝐴, 𝑎, 𝑎), refl 𝑎, refl 𝑎)

𝐵 (𝑏, 𝑝) = Id(Id(𝐴, 𝑎, 𝑏), 𝑝, sym (sym 𝑝))

It is easy to produce an element of the former type (namely, refl (refl 𝑎)), the latter
type is our goal, and 𝑞 is an identification between the two indices. Thus:

symsym : {𝐴 : U} {𝑎 𝑏 : 𝐴} → (𝑝 : Id(𝐴, 𝑎, 𝑏)) → Id(Id(𝐴, 𝑎, 𝑏), 𝑝, sym (sym 𝑝))
symsym {𝐴 𝑎 𝑏} 𝑝 = subst
(𝜆(𝑏0, 𝑝0) → id(id(𝐴, 𝑎, 𝑏0), 𝑝0, sym (sym 𝑝0)))
? : Id( [𝑎], (𝑎, refl 𝑎), (𝑏, 𝑝)) -- by assumption
(refl (refl 𝑎)) □

We substantiate the assumption of Lemma 4.1.7 with a new primitive operation on

identity types, uniq, that identifies (𝑎, refl 𝑎) with arbitrary elements of [𝑎]. (By sym
and trans, it follows that any two arbitrary elements of [𝑎] are also identified.) As with
subst, we also assert that a certain definitional equality holds when uniq is supplied

with the reflexive identification. This operation is often called singleton contractibility
[Coq14; UF13], and it will feature prominently in Chapter 5.

uniq : {𝐴 : U} {𝑎 : 𝐴} → (𝑥 : [𝑎]) → Id( [𝑎], (𝑎, refl 𝑎), 𝑥)
uniq (𝑎, refl 𝑎) = refl (𝑎, refl 𝑎)

Exercise 4.2. Like subst, uniq is definable in extensional type theory; show this.

Exercise 4.3. Recalling trans (Lemma 4.1.5) and trans′ (Exercise 4.1), use subst and
uniq to construct a term of the following type:

{𝐴 : U} {𝑎 𝑏 𝑐 : 𝐴} → (𝑝 : Id(𝐴, 𝑎, 𝑏)) → (𝑞 : Id(𝐴,𝑏, 𝑐)) →
Id(Id(𝐴, 𝑎, 𝑐), trans 𝑝 𝑞, trans′ 𝑝 𝑞)
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4.1.3 Intensional identity types

To summarize Sections 4.1.1 and 4.1.2, we have asked for Id(𝐴, 𝑎, 𝑏) to support the

following three operations subject to two definitional equalities:

refl : {𝐴 : U} → (𝑎 : 𝐴) → Id(𝐴, 𝑎, 𝑎)
subst : {𝐴 : U} {𝑎 𝑎′ : 𝐴} → (𝐵 : 𝐴→ U) → Id(𝐴, 𝑎, 𝑎′) → 𝐵 𝑎 → 𝐵 𝑎′

uniq : {𝐴 : U} {𝑎 : 𝐴} → (𝑥 : [𝑎]) → Id( [𝑎], (𝑎, refl 𝑎), 𝑥)

subst 𝐵 (refl 𝑎) 𝑏 = 𝑏

uniq (𝑎, refl 𝑎) = refl (𝑎, refl 𝑎)

Definition 4.1.8. An intensional identity type is any type Id(𝐴, 𝑎, 𝑏) equipped with

the three operations above satisfying the two definitional equalities above.

Intensional identity types were introduced by Martin-Löf [Mar75] and have been

the “standard” formulation of propositional equality in type theory for most of the

intervening years, although various authors have presented them via different but

equivalent sets of primitive operations and equations [CP90; PP90; Pau93; Str93;

Coq14].
2
Our presentation most closely follows Coquand [Coq14] which, to our

knowledge, was first proposed by Steve Awodey in 2009. In Sections 4.3 and 4.4 we

will also consider related but non-equivalent presentations endowing Id(𝐴, 𝑎, 𝑏) with
more properties [Str93; Hof95a; AMS07].

Let us be clear, however, that this broad agreement in the literature is not an

indication of happiness. On the contrary, most type theorists have many complaints

about intensional identity types: there are several important properties that they do

not satisfy, and they can be frustrating in practice for a number of reasons. They have

persisted for so long because of a relative lack of compelling alternatives that also

satisfy the two crucial properties of:

1. Capturing the most important properties of equality—reflexivity, symmetry,

transitivity, congruence, substitutivity, etc.—thus enabling a wide range of con-

structions.

2. Their inclusion in a type theory is compatible with all the metatheorems dis-

cussed in Chapter 3, especially—unlike Eq-types—normalization.

In Section 4.3 we will discuss the shortcomings of Id-types in more detail, but

it will turn out that these shortcomings can be mostly overcome by adding several

2
The equivalence between the presentations of Martin-Löf [Mar75] and Paulin-Mohring [Pau93] is

due to Hofmann [Str93, Addendum].



(2025-07-19) Intensional identity types 143

axioms (postulated terms, or in essence, free variables) to type theory. Adding such

axioms causes canonicity to fail, but as discussed in Section 3.4, type theories without

canonicity are merely frustrating (requiring more manual reasoning by identifications),

whereas type theories without normalization are essentially un-type-checkable. As

a result, many users of type theory opt to work with Id-types with some additional

axioms.

But before we get ahead of ourselves, we proceed by formally defining Id-types
and thus the type theory known as intensional type theory.

4.2 Intensional identity types

In this section we formally define intensional identity types, or Id-types, returning to

the style of definition adopted throughout Chapter 2. Although it is possible to add

Id-types to extensional type theory, we are primarily interested in defining intensional
type theory, which is obtained by replacing certain rules of ETT by the rules in this

section. Specifically, we remove from the theory of Chapter 2 all rules pertaining to

Eq-types; in Appendix A those rules are annotated (ETT), and the rules added in this

section are annotated (ITT).

Although the rules for Id-types appear complicated and unmotivated at first, it

will turn out that they arise naturally from our methodology that types internalize

judgmental structure. Recalling Slogan 2.5.3, connectives in type theory are specified

by a natural type-forming operation whose terms are either defined by a mapping-in

property (a natural isomorphism with judgmentally-defined structure) or a mapping-

out property (an algebra signature for which the type carries a weakly initial algebra).

The formation rule of Id(𝐴, 𝑎, 𝑏) is identical to that of Eq(𝐴, 𝑎, 𝑏):

Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑏 : 𝐴

Γ ⊢ Id(𝐴, 𝑎, 𝑏) type
Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑏 : 𝐴

Δ ⊢ Id(𝐴, 𝑎, 𝑏) [𝛾] = Id(𝐴[𝛾], 𝑎[𝛾], 𝑏 [𝛾]) type

Or equivalently, the following type-forming operation natural in Γ:

IdΓ : (∑𝐴∈Ty(Γ) Tm(Γ, 𝐴) × Tm(Γ, 𝐴)) → Ty(Γ)

We must now decide whether to define Id(𝐴, 𝑎, 𝑏) by a mapping-in property or a

mapping-out property. In Chapter 2 we saw that mapping-in properties are generally

both simpler and better-behaved, but we already defined Eq-types by the mapping-in

property of internalizing judgmental equality (i.e., Tm(Γ, Eq(𝐴, 𝑎, 𝑏)) � {★ | 𝑎 = 𝑏}),
and it is unclear what other structure we could ask for Id-types to internalize.

3

3
Cubical type theory in fact invents a new judgmental structure for propositional equality to inter-

nalize, but we will return to this point in Section 5.3.
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Faced with no other options, we are forced to consider a mapping-out property

instead. Per the discussion in Sections 2.5.2 to 2.5.4, such a property starts with a

collection of natural term constructors of Id(𝐴, 𝑎, 𝑏), in this case only reflexivity:

Γ ⊢ 𝑎 : 𝐴

Γ ⊢ refl : Id(𝐴, 𝑎, 𝑎)
Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : 𝐴

Δ ⊢ refl [𝛾] = refl : Id(𝐴[𝛾], 𝑎[𝛾], 𝑎[𝛾])

Or equivalently, the following term-forming operation natural in Γ:

reflΓ,𝐴,𝑎 ∈ Tm(Γ, Id(𝐴, 𝑎, 𝑎))

Whereas the mapping-in property of Eq-types asserts that refl is their only inhab-

itant, the mapping-out property of Id-types will assert that every type believes that
refl is their only inhabitant, in just the same way that every type “believes” that true
and false are the only elements of Bool, namely that to map out of Bool it suffices to

explain how to behave on true and false.

Remark 4.2.1. Like the induction principles of inductive types, the subst and uniq
primitives of Section 4.1 are both maps out of Id(𝐴, 𝑎, 𝑏) that have prescribed behavior
on the constructor refl. We will see shortly that both subst and uniq are definable

via the Id-elimination principle we are about to present, and remarkably, that Id-
elimination can conversely be recovered as a combination of subst and uniq!

Compared to subst and uniq, Id-elimination is more clearly motivated by general

considerations (mapping-out properties), more self-contained (not requiring Σ-types),
and even often more ergonomic in practice. But subst and uniq are nevertheless very

important combinators that certainly merit special discussion. ⋄

Luckily refl is not a recursive constructor, so we can avoid the displayed algebras

of Section 2.5.4 and return to the simpler characterization of mapping-out properties

in Sections 2.5.3 and 2.5.5 as a section (right inverse) to substitution of constructors.

Suppose we have a dependent type over an identity type:

Γ.𝐴.𝐴[p] .Id(𝐴[p2], q [p], q) ⊢ 𝐶 type

Into any term of the above type we can substitute refl:

(id.q.refl)∗ : Tm(Γ.𝐴.𝐴[p] .Id(𝐴[p2], q [p], q),𝐶) → Tm(Γ.𝐴,𝐶 [id.q.refl])

The elimination principle for Id-types is precisely a section of the above map.

Let us unpack this a bit. First, we rewrite the above map using named variables:

[𝑎/𝑏, refl/𝑝] :

Tm(Γ, 𝑎 : 𝐴,𝑏 : 𝐴, 𝑝 : Id(𝐴, 𝑎, 𝑏),𝐶 (𝑎, 𝑏, 𝑝)) → Tm(Γ, 𝑎 : 𝐴,𝐶 (𝑎, 𝑎, refl(𝑎)))
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A section to this map tells us that to construct an element of 𝐶 (𝑎, 𝑏, 𝑝) for any 𝑎, 𝑏 : 𝐴

and 𝑝 : Id(𝐴, 𝑎, 𝑏), it suffices to say what to do on 𝑎, 𝑎, refl (i.e., provide a term of

type 𝐶 (𝑎, 𝑎, refl)). Compared to our definition of if in Section 2.5.2, the context on the

left is more complex because the domain of a dependent type 𝐶 : Id(𝐴, 𝑎, 𝑏) → U is

itself dependent on 𝑎, 𝑏 : 𝐴, and the context on the right is more complex because the

constructor refl is dependent on 𝑎 : 𝐴.

Remark 4.2.2. From a more nuts-and-bolts perspective, imagine that we asked for 𝐶

not to depend on all three of 𝑎, 𝑏, 𝑝 as Γ, 𝑎 : 𝐴,𝑏 : 𝐴, 𝑝 : Id(𝐴, 𝑎, 𝑏) ⊢ 𝐶 (𝑎, 𝑏, 𝑝) type, but
only on 𝑝 , i.e., Γ, 𝑝 : Id(𝐴, 𝑎, 𝑏) ⊢ 𝐶 (𝑝) type for some fixed 𝑎, 𝑏 : 𝐴. Then we would not

even be able to even state what it means to substitute refl for 𝑝 , because refl only has

type Id(𝐴, 𝑎, 𝑏) when 𝑎 and 𝑏 are definitionally equal. Instead, we ask for all of 𝑎, 𝑏, 𝑝

to be variables, and consider the substitution of 𝑎, 𝑎, refl for 𝑎, 𝑏, 𝑝 . ⋄

Unfolding the above section into inference rules, we once again “build in a cut”

by applying the stipulated term in context Γ.𝐴.𝐴[p] .Id(𝐴[p2], q [p], q) to arguments

𝑎 : 𝐴, 𝑏 : 𝐴, and 𝑝 : Id(𝐴, 𝑎, 𝑏) all in context Γ. The first rule below is the section

map itself, the second rule is naturality of the section map, and the third states that

applying the section map followed by (id.q.refl)∗ is the identity:

Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑏 : 𝐴 Γ ⊢ 𝑝 : Id(𝐴, 𝑎, 𝑏)
Γ.𝐴.𝐴[p] .Id(𝐴[p2], q [p], q) ⊢ 𝐶 type Γ.𝐴 ⊢ 𝑐 : 𝐶 [id.q.refl]

Γ ⊢ J(𝑐, 𝑝) : 𝐶 [id.𝑎.𝑏.𝑝]

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑏 : 𝐴 Γ ⊢ 𝑝 : Id(𝐴, 𝑎, 𝑏)
Γ.𝐴.𝐴[p] .Id(𝐴[p2], q [p], q) ⊢ 𝐶 type Γ.𝐴 ⊢ 𝑐 : 𝐶 [id.q.refl]
Δ ⊢ J(𝑐, 𝑝) [𝛾] = J(𝑐 [(𝛾 ◦ p).q], 𝑝 [𝛾]) : 𝐶 [𝛾 .𝑎[𝛾] .𝑏 [𝛾] .𝑝 [𝛾]]

Γ ⊢ 𝑎 : 𝐴 Γ.𝐴.𝐴[p] .Id(𝐴[p2], q [p], q) ⊢ 𝐶 type Γ.𝐴 ⊢ 𝑐 : 𝐶 [id.q.refl]
Γ ⊢ J(𝑐, refl) = 𝑐 [id.𝑎] : 𝐶 [id.𝑎.𝑎.refl]

These rules complete our definition of Id-types and thus of intensional type theory.

As with the eliminators of Void, Bool, and Nat, it can be helpful to think of J(𝑐, 𝑝)
as somehow “pattern-matching on 𝑝” with clause 𝑐 .

match (𝑎, 𝑏, 𝑝) with
(𝑎, 𝑎, refl) → 𝑐 𝑎

From this perspective, the definitional equality J(𝑐, refl) = 𝑐 [id.𝑎] states that the entire
match expression reduces to 𝑐 when (𝑎, 𝑏, 𝑝) is indeed of the form (𝑎, 𝑎, refl).
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Remark 4.2.3. The name of J for Id-elimination dates back to Martin-Löf [Mar84a], in

which Martin-Löf notates Id-types as I, and he seems to have chosen J simply because

it is the next letter of the alphabet. At any rate, unlike Identity or reflexivity, it has no
obvious meaning as the initial letter of pre-existing mathematical terminology.

For readers who might find this notational choice to be singularly arbitrary, we

recall Scott’s story of mailing Church a postcard askingwhy 𝜆was chosen as the symbol

for function abstraction in his lambda calculus, and receiving the same postcard with

the annotation “eeny, meeny, miny, moe” [Sco18]. ⋄

Like extensional type theory, intensional type theory satisfies consistency and

canonicity; unlike extensional type theory, it also satisfies the metatheorems on open

terms discussed in Chapter 3 and is therefore exceptionally well-behaved from the

perspective of both theory and implementability.

Theorem 4.2.4 (Martin-Löf [Mar71; Mar75] and Coquand [Coq91]). Intensional type
theory satisfies consistency, canonicity, normalization, and has invertible type constructors.

One typically deduces all of these properties from the proof of normalization:

given that normalization amounts to concretely characterizing the sets Tm(Γ, 𝐴) for
all Γ, 𝐴, consistency and canonicity amount to verifying that these characterizations

of Tm(1,Void) and Tm(1,Bool) contain zero and two elements respectively, and

invertibility of Π-types amounts to inverting the induced Π(−,−) map on normal

forms. There are many proofs of normalization for intensional type theory and minor

variations on it, some relying on semantic model constructions [AK16; Coq19; Ste21]

and others more closely connected to algorithms used in real implementations [ACD07;

Abe13; AÖV17].

From J to subst and uniq We close this section by showing that J is interprovable
with the combination of subst and uniq, first that both subst and uniq are instances of

J.

Notation 4.2.5. Our J(𝑏, 𝑝) notation is not well-suited to informal constructions with

named variables, because 𝑏 silently binds a variable of type𝐴, and moreover, the type𝐶

can be hard to infer by inspection. In our informal notation wewill therefore wrap J as a
function with the following type, satisfying the definitional equality j 𝐵 𝑏 𝑎 𝑎 refl = 𝑏 𝑎.

j : {𝐴 : U} (𝐶 : (𝑎 𝑏 : 𝐴) → Id(𝐴, 𝑎, 𝑏) → U) → ((𝑎 : 𝐴) → 𝐶 𝑎 𝑎 refl) →
(𝑎 𝑏 : 𝐴) (𝑝 : Id(𝐴, 𝑎, 𝑏)) → 𝐶 𝑎 𝑏 𝑝

Likewise we introduce the functions pi, sig : (𝐴 : U) (𝐵 : 𝐴 → U) → U as

wrappers for the codes pi(−,−) and sig(−,−) respectively.
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Exercise 4.4. Use the elimination principle J to define the function j above, and check
that your definition of j satisfies the stipulated definitional equality.

The flexibility and complexity of J come from the fact that the motive [McB02] 𝐶

can depend not only on the two elements of 𝐴 but also the identification itself, both in

arbitrary ways; many principles fall immediately out of J given a sufficiently clever

choice of 𝐶 .

Lemma 4.2.6. Using j we can define subst, i.e., a term of type

subst : {𝐴 : U} {𝑎 𝑎′ : 𝐴} → (𝐵 : 𝐴→ U) → Id(𝐴, 𝑎, 𝑎′) → 𝐵 𝑎 → 𝐵 𝑎′

satisfying the definitional equality subst refl 𝑏 = 𝑏.

Proof. We will apply j to the same 𝑎, 𝑎′ : 𝐴 and 𝑝 : Id(𝐴, 𝑎, 𝑎′) as subst, choosing a

motive such that the type of the fully-applied j will be 𝐵 𝑎 → 𝐵 𝑎′:

𝐶 𝑥 𝑦 _ = pi (𝐵 𝑥) (𝜆_→ 𝐵 𝑦)

We have 𝐶 𝑎 𝑎′ 𝑝 = 𝐵 𝑎 → 𝐵 𝑎′ as desired, and it remains only to exhibit a term of

type (𝑎 : 𝐴) → 𝐶 𝑎 𝑎 refl = (𝑎 : 𝐴) → 𝐵 𝑎 → 𝐵 𝑎, which is easy to do. In total:

subst : {𝐴 : U} {𝑎 𝑎′ : 𝐴} → (𝐵 : 𝐴→ U) → Id(𝐴, 𝑎, 𝑎′) → 𝐵 𝑎 → 𝐵 𝑎′

subst {𝐴 𝑎 𝑎′} 𝐵 𝑝 = j (𝜆𝑥 𝑦 _→ pi (𝐵 𝑥) (𝜆_→ 𝐵 𝑦)) (𝜆_ 𝑥 → 𝑥) 𝑎 𝑎′ 𝑝

The reader can verify that the stipulated definitional equality holds. □

Exercise 4.5. Check that the above definition of subst satisfies the required equation.

Lemma 4.2.7. Using j we can define uniq, i.e., a term of type

uniq : {𝐴 : U} {𝑎 : 𝐴} → (𝑥 : [𝑎]) → Id( [𝑎], (𝑎, refl), 𝑥)

satisfying the definitional equality uniq (𝑎, refl) = refl.

Proof. Writing 𝐴 : U, 𝑎 : 𝐴, and 𝑥 := (𝑏, 𝑝) :

∑
𝑏:𝐴 Id(𝐴, 𝑎, 𝑏) for the arguments of uniq,

we will apply j to 𝑎, 𝑏, 𝑝 with a motive that allows us to reduce the general case of

𝑎, 𝑏, 𝑝 to the particular and easy case of 𝑎, 𝑎, refl:

𝐶 𝑥 𝑦 𝑝′ = id(sig 𝐴 (𝜆𝑧 → id(𝐴, 𝑥, 𝑧)), (𝑥, refl), (𝑦, 𝑝′))

Then 𝐶 𝑎 𝑏 𝑝 = Id( [𝑎], (𝑎, refl), (𝑏, 𝑝)), and it remains only to exhibit a term of

type (𝑎 : 𝐴) → 𝐶 𝑎 𝑎 refl = (𝑎 : 𝐴) → Id( [𝑎], (𝑎, refl), (𝑎, refl)), which is again easy:

uniq : {𝐴 : U} {𝑎 : 𝐴} → (𝑥 : [𝑎]) → Id( [𝑎], (𝑎, refl), 𝑥)
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uniq {𝐴 𝑎} (𝑏, 𝑝) = j (𝜆𝑥 𝑦 𝑝′ → id(sig 𝐴 (𝜆𝑧 → id(𝐴, 𝑥, 𝑧)), (𝑥, refl), (𝑦, 𝑝′)))
(𝜆𝑥 → refl(𝑥,refl ) ) 𝑎 𝑏 𝑝

The reader can again verify that the stipulated definitional equality holds.

Note that unlike the motive we used in Lemma 4.2.6, the motive here depends not

only on 𝑥,𝑦 : 𝐴 but also the identification 𝑝′ : Id(𝐴, 𝑥,𝑦). Note also that the motive

actually generalizes our goal: rather than proving that for a fixed 𝑎 : 𝐴 we can identify

(𝑎, refl) and (𝑏, 𝑝) : [𝑎], we prove that for any 𝑥,𝑦 : 𝐴 we can identify (𝑥, refl) and
(𝑦, 𝑝′) : [𝑥]. □

Exercise 4.6. Check that the above definition of uniq satisfies the required equation.

And back again Conversely, using subst and uniq it is also possible to define a term

j satisfying the required definitional equality. We leave most of the construction to the

reader in the following series of exercises. In these exercises we fix the arguments of

j as 𝐴 : U, 𝐶 : (𝑎 𝑏 : 𝐴) (𝑝 : Id(𝐴, 𝑎, 𝑏)) → U, 𝑐 : (𝑎 : 𝐴) → (𝐶 𝑎 𝑎 refl), 𝑎, 𝑏 : 𝐴, and

𝑝 : Id(𝐴, 𝑎, 𝑏), and we define the following “partially uncurried” type family:

𝐶𝑎 : (𝑥 : [𝑎]) → U
𝐶𝑎 𝑥 = 𝐶 𝑎 (fst 𝑥) (snd 𝑥)

Exercise 4.7. Define a term 𝑐𝑎 : 𝐶𝑎 (𝑎, refl).

Exercise 4.8. Without using J, define a term 𝑞 : Id( [𝑎], (𝑎, refl), (𝑏, 𝑝)).

Exercise 4.9. Using 𝑐𝑎 and 𝑞 but not J, define a term 𝑐𝑏 : 𝐶𝑎 (𝑏, 𝑝).

Exercise 4.10. Show that the type of 𝑐𝑏 is equal to 𝐶 𝑎 𝑏 𝑝 , and use this to combine

the previous three exercises into a definition of j that uses subst and uniq but not J.

Exercise 4.11. Check that your solution to Exercise 4.10 satisfies j 𝐶 𝑐 𝑎 𝑎 refl = 𝑐 𝑎.

Exercise 4.12. We have seen in Remark 4.1.3 and Exercise 4.2 that subst and uniq
are definable for Eq-types in ETT; from Exercise 4.10 it follows that j is also definable

in ETT for Eq-types. Give an explicit definition of j for Eq-types in ETT. (Hint: you

can combine the above results, but it is also fairly straightforward to arrive at the

definition independently.)

Although it is perhaps easier to wrap one’s head around subst and uniq rather

than J, as we noted in Remark 4.2.1 it is often more straightforward in practice to use J
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directly. Consider for instance the function cong (Lemma 4.1.6) which we really ought

to have stated for dependent functions:

dcong : {𝐴 : U} {𝐵 : 𝐴→ U} (𝑓 : (𝑎 : 𝐴) → 𝐵 𝑎) {𝑎 𝑎′ : 𝐴} (𝑝 : Id(𝐴, 𝑎, 𝑎′)) →
Id(𝐵 𝑎′, subst 𝐵 𝑝 (𝑓 𝑎), 𝑓 𝑎′)

Defining dcong in terms of subst and uniq is a headache, because one must use both

simultaneously to handle the occurrence of 𝑝 in the type. It is, however, straightforward

to define with J:

dcong 𝑓 = j (𝜆𝑎 𝑎′ 𝑝 → Id(𝐵 𝑎′, subst 𝐵 𝑝 (𝑓 𝑎), 𝑓 𝑎′)) (𝜆𝑎 → refl𝑓 (𝑎) )

4.3 Limitations of the intensional identity type

We have now seen that the rules for Id-types are well-motivated from a theoretical

perspective as the mapping-out formulation of equality, and that they support the

operations of subst and uniq presented in Section 4.1, which in turn imply many

properties including the symmetry, transitivity, and congruence of equality. We have

also seen that ITT is more well-behaved than ETT (Theorem 4.2.4), and that all the

rules of Id-types are validated by the Eq-types of ETT (Exercise 4.12).

Have we even lost anything at all by moving from ETT to ITT?Well, yes; the entire

point of moving to ITT was to remove equality reflection from our theory, in light of

its undecidability (Section 3.6). Removing equality reflection does come at a cost: in

ETT whenever we can prove 𝑝 : Eq(𝐴, 𝑎, 𝑎′) we can freely use terms of type 𝐵 𝑎 at type

𝐵 𝑎′, but in ITT we must explicitly appeal to the proof 𝑝 with subst 𝐵 𝑝 : 𝐵 𝑎 → 𝐵 𝑎′.
So then are types and terms of ITT simply more bureaucratic than those of ETT,

or does ITT actually “prove fewer statements” than ETT in some meaningful sense?

This is an excellent question, and one that requires some care to set up precisely.

Given that closed types (of a consistent type theory) can be seen as logical propo-

sitions and their terms as their proofs, we might naïvely wonder is every non-empty
closed type of ETT also non-empty in ITT? This question does not make sense as posed

because, by equality reflection, well-formed types in ETT need not be well-formed in

ITT. Consider for instance the following closed type of ETT:

(𝑝 : Eq(Bool, true, false)) → Eq(Eq(Bool, true, false), refl, 𝑝)

On the other hand, closed types of ITT do correspond to closed types of ETT in

a more-or-less straightforward way, because their rules differ only in their choice of

equality type, and the Eq-types of ETT satisfy all the rules of the Id-types of ITT (and

more); to make this translation precise we once again turn to model theory.
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Definition 4.3.1. We define a model of ITT, a homomorphism of models of ITT, and
the syntactic model T𝐼𝑇𝑇 of ITT following Definitions 3.4.2 to 3.4.4, but replacing the

structure corresponding to Eq-types with that of Id-types; as in Theorem 3.4.5, T𝐼𝑇𝑇 is

the initial model of ITT. For clarity we rename the concepts defined in Definitions 3.4.2

to 3.4.4 to model of ETT, homomorphism of models of ETT, and syntactic model T𝐸𝑇𝑇 of
ETT.

Theorem 4.3.2. The underlying sets of the syntactic model of ETT support a model of
ITT.

Proof. Intuitively, this means that the syntax of ETT “satisfies the rules of ITT.” For-

mally, we construct a modelM of ITT whose contexts are the contexts of the syntax of

ETT, CxM := CxT𝐸𝑇𝑇 ; whose substitutions are the substitutions of the syntax of ETT,
SbM (Δ, Γ) := SbT𝐸𝑇𝑇 (Δ, Γ); and likewise for types and terms. For all the rules of ITT

that are also present in ETT, we choose the corresponding structure, e.g., 1M := 1TETT .
The only subtlety is how to define the Id-types ofM, and for this we choose the

Eq-types of T𝐸𝑇𝑇 , i.e., IdM (𝐴, 𝑎, 𝑏) := EqT𝐸𝑇𝑇 (𝐴, 𝑎, 𝑏) and reflM := reflT𝐸𝑇𝑇 . The reader
has already verified in Exercise 4.12 that the J eliminator is definable in ETT. □

Corollary 4.3.3. There is a function ⟦−⟧ that sends contexts (resp., substitutions, types,
terms) of ITT to contexts (resp., substitutions, types, terms) of ETT.

Proof. By Theorem 4.3.2 and the initiality of the syntactic model of ITT, there is a

unique homomorphism 𝑓 : T𝐼𝑇𝑇 →M of models of ITT, and thus in particular there

are functions Cx𝑓 : CxT𝐼𝑇𝑇 → CxM = CxT𝐸𝑇𝑇 and likewise for substitutions, types,

and terms. □

By construction, this translation ⟦−⟧ of ITT to ETT “does nothing” except at

Id-types, where ⟦Id(𝐴, 𝑎, 𝑏)⟧ = Eq(⟦𝐴⟧, ⟦𝑎⟧, ⟦𝑏⟧). Intuitively, this is possible because
Eq-types are defined to have only refl as elements, which is strictly stronger than the

definition of Id-types as “appearing to other types to have only refl as elements.”

Exercise 4.13. Using Corollary 4.3.3, describe how any model of ETT induces a model

of ITT. Conclude that the set model of ETT described in Section 3.5 induces a model

of ITT which we will call the set model of ITT.

Exercise 4.14. Prove that intensional type theory is consistent. (Hint: use Exercise 4.13
and adapt the proof of Theorem 3.4.8.)

We can now ask a more precise question:

Question 4.3.4. Suppose that 1 ⊢ 𝐴 type in ITT, and that in ETT there is a term
1 ⊢ 𝑎 : ⟦𝐴⟧. Then does there necessarily exist a term 1 ⊢ 𝑎′ : 𝐴 in ITT?



(2025-07-19) Limitations of the intensional identity type 151

Remark 4.3.5. Types containing at least one term are said to be inhabited (Defi-

nition 2.7.2), so Question 4.3.4 equivalently asks, “if ⟦𝐴⟧ is inhabited in ETT, is 𝐴

inhabited in ITT?” ⋄

By focusing only on types that are well-formed in ITT, this formulation avoids the

pitfalls discussed earlier. Perhaps the converse of Question 4.3.4 is more intuitive: do
there exist types that can be formed without equality reflection, but that can only be
inhabited with equality reflection? Unfortunately, such types do exist, and thus the

answer to Question 4.3.4 is no; even worse, the counterexamples are ones that users of

type theory are likely to encounter frequently in practice.

Independence The famed propositions-as-types correspondence (Section 2.7) states

that types can be read as logical propositions and terms as proofs. Under this reading,

counterexamples to Question 4.3.4 are propositions that are independent of intensional
type theory, i.e., propositions 𝐴 for which neither 𝐴 nor 𝐴→ Void are provable.

4

Lemma 4.3.6. If 1 ⊢ 𝐴 type is a counterexample to Question 4.3.4, then 𝐴 is independent
of intensional type theory.

Proof. By definition, there must exist a term 1 ⊢ 𝑎 : ⟦𝐴⟧ in ETT, but no term 1 ⊢ 𝑎′ : 𝐴

in ITT. Thus𝐴 is by definition not provable in ITT, so it suffices to show that𝐴→ Void
is also not provable in ITT. Suppose that there were a term 1 ⊢ 𝑓 : 𝐴→ Void in ITT;

then there would also be a term 1 ⊢ ⟦𝑓 ⟧ : ⟦𝐴⟧ → Void in ETT, but this would

mean there is a closed proof ⟦𝑓 ⟧(𝑎) of Void in ETT, contradicting its consistency

(Theorem 3.4.8). □

Of course, there are other kinds of independent propositions too; as a sufficiently

strong formal system, ITT is subject to Gödel’s incompleteness theorem and thus

one can construct independent propositions roughly corresponding to “the type of

consistency proofs of ITT.” But for now we restrict our attention to counterexamples

to Question 4.3.4, exploring two in particular: function extensionality and uniqueness

of identity proofs.

4.3.1 Function extensionality

The principle of function extensionality states that for any two functions 𝑓 , 𝑔 : (𝑎 :

𝐴) → 𝐵(𝑎), if 𝑓 (𝑎) and 𝑔(𝑎) are equal for all 𝑎 : 𝐴, then 𝑓 and 𝑔 are equal. We

4
For the purposes of this section we refer only to the naïve reading of all types as propositions

(Slogan 2.7.1), ignoring for the moment any issues related to mere propositions (Sections 2.7 and 5.1).
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reproduce the formal statement of funext below, along with its non-dependent special

case funext′:

Funext = (𝐴 : U) → (𝐵 : 𝐴→ U) → (𝑓 𝑔 : (𝑎 : 𝐴) → 𝐵 𝑎) →
((𝑎 : 𝐴) → Id(𝐵 𝑎, 𝑓 𝑎, 𝑔 𝑎)) → Id((𝑎 : 𝐴) → 𝐵 𝑎, 𝑓 , 𝑔)

Funext′ = (𝐴 𝐵 : U) → (𝑓 𝑔 : 𝐴→ 𝐵) →
((𝑎 : 𝐴) → Id(𝐵, 𝑓 𝑎, 𝑔 𝑎)) → Id(𝐴→ 𝐵, 𝑓 , 𝑔)

Both of these are counterexamples to Question 4.3.4 and thus independent of ITT.

First, we check that ⟦Funext⟧ is provable in ETT.

Exercise 4.15. Construct a closed term of type ⟦Funext⟧ in extensional type theory.

Next, we must check that Funext is not provable in intensional type theory. As

with consistency (Theorem 3.4.7), it suffices to exhibit a model of ITT in which the

set of closed terms of type Funext is empty. However, it is surprisingly difficult to

do so!
5
One such model is—tautologically—the syntax of ITT itself, or T𝐼𝑇𝑇 ; however,

showing that this is the case is precisely what we are already trying to prove. A more

useful observation is that the models used to prove normalization contain concrete

characterizations of Tm(Γ, 𝐴) for all Γ, 𝐴 and thus it is possible to unfold such a

model and explicitly verify that there are no normal forms—and hence no elements

whatsoever—of Tm(1, Funext) [Hof95a].

Remark 4.3.7. The latter approach is tantamount to the proof-theoretic technique of

showing that a formula is not derivable by proving cut elimination for a calculus and

then checking by induction that the formula has no cut-free proofs. ⋄

One can also imagine more “mathematical” (and non-initial) models that refute

function extensionality. An early example of such a model based on realizability

and gluing was given by Streicher [Str93, Chapter 3]; a more recent example is the

(categorical) “polynomial” model of von Glehn [vGle14]. In both cases the model con-

struction is somewhat involved but checking that they refute Funext is comparatively

straightforward. In any case, any of these arguments allows us to conclude:

Theorem 4.3.8. There is no closed term of type Funext in intensional type theory.

The authors are uncertain to whom this result should be attributed. Turner [Tur89]

suggests that it was known to Martin-Löf and it was certainly known to type theorists

5
There are many simple “countermodels of function extensionality” which fail to validate the 𝜂-rule

of Π-types and are therefore not models of ITT as we have defined it. They are, however, models of the

calculus of inductive constructions, which lacks 𝜂 for Π-types.
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in the 1980s, but the earliest explicit discussion of the independence of Funext we have
located is the countermodel of Streicher [Str93].

There are many examples of function extensionality arising in practice. For in-

stance, in ITT we can prove (𝑛 𝑚 : Nat) → Id(Nat, 𝑛 +𝑚,𝑚 + 𝑛) but not Id(Nat →
Nat → Nat, (+), (+) ◦ flip). Similarly, although mergeSort, bubbleSort : List Nat →
List Nat agree on all inputs, we cannot prove they are equal functions. This has real

consequences in practice: if we write a function that calls bubbleSort, is it equal to the
same function where these calls have been replaced by calls to mergeSort? If function
extensionality held this would follow immediately from cong; as it stands, one must

manually argue that the text of the function respects swapping subroutines in this

way—even though it is impossible to define a function that doesn’t!
We view the independence of function extensionality as perhaps the greatest failing

of intensional type theory, as it frequently causes problems with no benefit,
6
and it is

therefore common to simply postulate Funext when working in ITT, that is, to add a

rule

⊢ Γ cx
Γ ⊢ funext : Funext

✎

Postulating an axiom in this way is equivalent to prepending every context by

a variable of type Funext, and it therefore preserves normalization (a property of all
contexts) while disrupting canonicity (a property of the empty context, which is “no

longer empty”).

Exercise 4.16. Argue that postulating Funext causes canonicity to fail. That is, pro-

duce a closed term of type Bool in ITT adjoined with the above rule that appears to

be judgmentally equal to neither true nor false. (You do not need to formally prove

this fact.)

4.3.2 Uniqueness of identity proofs

Our second counterexample to Question 4.3.4 is the principle of uniqueness of identity
proofs (UIP), which states that any two identifications between the same two terms are

themselves identified.

UIP = (𝐴 : U) → (𝑎 𝑏 : 𝐴) → (𝑝 𝑞 : Id(𝐴, 𝑎, 𝑏)) → Id(Id(𝐴, 𝑎, 𝑏), 𝑝, 𝑞)
6
There are occasions where one may wish to not identify all pointwise-equal procedures, e.g.,

when studying the runtime of algorithms, but we stress that ITT also does not allow us to distinguish
pointwise-equal functions; studying runtime in this way requires other axioms and, likely, the removal

of 𝛽-rules.



154 Intensional type theory (2025-07-19)

In short, UIP asserts that identifications are unique: up to identification, there is

at most one proof of Id(𝐴, 𝑎, 𝑏) for any 𝑎, 𝑏 : 𝐴. Types with at most one element are

called (homotopy) propositions (Section 5.1), so we might equivalently phrase UIP as the

principle that propositional equality is a proposition.
7
Like Funext, UIP is independent

of ITT. On the one hand, it holds in ETT and thus cannot be refuted by ITT:

Exercise 4.17. Construct a closed term of type ⟦UIP⟧ in extensional type theory.

To see that UIP is not provable in ITT, it again suffices to exhibit a countermodel, a

model of ITT in which the set of closed terms of type UIP is empty. The original such

countermodel, the groupoid model of type theory of Hofmann and Streicher [HS98], is

both instructive and historically significant as a precursor to homotopy type theory

(Chapter 5), so unlike the countermodels of Funext we will sketch it in some detail.

The groupoid model is similar to the set-theoretic model of type theory (Section 3.5)

except that it replaces sets with groupoids, sets equipped with additional structure:

Definition 4.3.9. A groupoid 𝑋 = ( |𝑋 |,R, id, (−)−1, ◦) consists of a set |𝑋 |, a family

of sets R indexed over |𝑋 | × |𝑋 |, and dependent functions:

• id : {𝑥 : |𝑋 |} → R(𝑥, 𝑥),

• (−)−1
: {𝑥 𝑦 : |𝑋 |} → R(𝑥,𝑦) → R(𝑦, 𝑥), and

• (◦) : {𝑥 𝑦 𝑧 : |𝑋 |} → R(𝑦, 𝑧) → R(𝑥,𝑦) → R(𝑥, 𝑧),

such that id ◦ 𝑓 = 𝑓 = 𝑓 ◦ id, 𝑓 ◦ 𝑓 −1 = id, id = 𝑓 −1 ◦ 𝑓 , and 𝑓 ◦ (𝑔 ◦ ℎ) = (𝑓 ◦ 𝑔) ◦ ℎ.

Definition 4.3.10. Given two groupoids 𝑋,𝑌 , a homomorphism of groupoids 𝐹 : 𝑋 →
𝑌 is a pair of functions 𝐹0 : |𝑋 | → |𝑌 | and 𝐹1 : {𝑥 𝑥 ′ : |𝑋 |} → R𝑋 (𝑥, 𝑥 ′) →
R𝑌 (𝐹0(𝑥), 𝐹0(𝑥 ′)) for which 𝐹1 commutes with the groupoid operations, i.e.,

• 𝐹1(id) = id,

• 𝐹1(𝑓 −1) = 𝐹1(𝑓 )−1
, and

• 𝐹1(𝑔 ◦ 𝑓 ) = 𝐹1(𝑔) ◦ 𝐹1(𝑓 ).

7
The terminology of “propositional equality” is perhaps ill-advised.
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Exercise 4.18. For categorically-minded readers: argue that a groupoid is exactly the

same as a category all of whose morphisms are isomorphisms, and a homomorphism

of groupoids is exactly a functor.

Advanced Remark 4.3.11. The name “groupoid” comes from the perspective that these

are a weaker notion of group in which the multiplication is a partial operation. ⋄

We can think of a groupoid as equipping its underlying set with a “proof-relevant

notion of equality” which like ordinary equality is reflexive, symmetric, transitive,

and respected by functions (groupoid homomorphisms), but unlike ordinary equality

“can hold in more than one way.” Following this intuition, we will model closed types

𝐴 ∈ Ty(1) not as sets 𝑋 but as groupoids ( |𝑋 |,R, . . . ), closed terms 𝑎 ∈ Tm(1, 𝐴)
as elements of |𝑋 |, and closed identifications 𝑝 ∈ Tm(1, Id(𝐴, 𝑎, 𝑏)) as elements of

R(𝑎, 𝑏).
Before outlining the model itself, we give a few examples of groupoids.

Example 4.3.12. Every set 𝐴 can be regarded as a discrete groupoid Δ𝐴 in which

RΔ𝐴 (𝑥,𝑦) = {★ | 𝑥 = 𝑦}. The remaining structure is uniquely determined: id = ★,

★−1 = ★, etc.

Example 4.3.13. Given two groupoids𝑋,𝑌 , the set of groupoid homomorphisms𝑋 → 𝑌

(Definition 4.3.10) admits a natural groupoid structure in which

R𝑋→𝑌 (𝐹,𝐺) =
{𝑇 : (𝑥 : |𝑋 |) → R(𝐹0 𝑥,𝐺0 𝑥) | ∀𝑓 : R(𝑥,𝑦). 𝐺1(𝑓 ) ◦𝑇 (𝑥) = 𝑇 (𝑦) ◦ 𝐹1(𝑓 )}

In light of Exercise 4.18, categorically-minded readers might observe that 𝑇 is exactly

a natural transformation from 𝐹 to𝐺 . We leave the remaining structure as an exercise.

Example 4.3.14. For an explicit example of a groupoid that is not discrete, consider

the groupoid traditionally called 𝐵(Z/2), whose underlying set is the singleton {★},
R𝐵 (Z/2) (★,★) = Z/2 = {0, 1}, and the remaining structure is as follows:

id = 0

𝑥 ◦ 𝑦 = 𝑥 + 𝑦 mod 2

𝑥−1 = 𝑥

The reader can check that these operations satisfy the necessary equations. (Hint: this

is equivalent to checking that Z/2 with the above id, ◦, and (−)−1
forms a group.)

Example 4.3.15. There is a “large” groupoid S of all “small” sets, where RS(𝑋,𝑌 ) is the
set of bijections between the sets 𝑋 and 𝑌 , and the operations are the identity, inverse,

and composition of bijections. This groupoid is not discrete because there can be more

than one bijection between a pair of sets, e.g., id, swap ∈ RS({★,★′}, {★,★′}).
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Example 4.3.16. There is a “large” groupoid G of all “small” groupoids, whose underly-

ing collection is the proper class of all groupoids, and for which RG(𝑋,𝑌 ) is the set
of all groupoid isomorphisms (invertible homomorphisms, or homomorphisms for

which 𝐹0 and each 𝐹1 are bijections) from 𝑋 to 𝑌 . The groupoid S from Example 4.3.15

embeds into G, so G is also not discrete.

As in the set-theoretic model of type theory, groupoids and groupoid-indexed

families of groupoids form a model of type theory. Writing G for the groupoid model

of (intensional) type theory and 𝑓 : T𝐼𝑇𝑇 → G for the homomorphism from the syn-

tactic model to G, 𝑓 interprets syntactic contexts Γ as groupoids Cx𝑓 (Γ), the closed
context 1 as the one-element, one-identification groupoid, syntactic substitutions as

groupoid homomorphisms, and syntactic types 𝐴 ∈ Ty(Γ) as Cx𝑓 (Γ)-indexed families

of groupoids (Ty𝑓 (Γ) (𝐴))𝛾 ∈Cx𝑓 (Γ) . Such a family assigns to each groupoid element

𝛾 ∈ Cx𝑓 (Γ) a groupoid (Ty𝑓 (Γ) (𝐴))𝛾 , and to each identification 𝛼 ∈ RCx𝑓 (Γ) (𝛾,𝛾 ′) a
homomorphism (Ty𝑓 (Γ) (𝐴))𝛾 → (Ty𝑓 (Γ) (𝐴))𝛾 ′ in a manner compatible with identity

and composition. (Using Example 4.3.16, we can repackage the data of such a family

quite simply as a groupoid homomorphism Cx𝑓 (Γ) → G.) Finally, 𝑓 interprets syntac-

tic terms 𝑎 ∈ Tm(Γ, 𝐴) as dependent functions assigning to each element 𝛾 ∈ Cx𝑓 (Γ)
of the context an element of the groupoid (Ty𝑓 (Γ) (𝐴))𝛾 in a manner that respects

identifications. (We can again phrase this condition as a groupoid homomorphism, but

we will not pursue the details further.)

Most of the structure of the groupoid model of type theory mirrors that of the

set-theoretic model, with some added complication to account for identifications; for

example, rather than interpreting the universe as the large set of all small sets, we

interpret it as the large groupoid G of all small groupoids (Example 4.3.16). The key

departure is in the interpretation of Id-types: for closed 𝐴 ∈ TyG (1G) and 𝑎, 𝑏 ∈
TmG (1G, 𝐴), the G-identity type IdG (𝐴, 𝑎, 𝑏) is chosen to be (the discrete groupoid on)

the set of identifications in the groupoid 𝐴 between 𝑎 and 𝑏, namely ΔR𝐴 (𝑎, 𝑏).
It is not at all obvious that such an interpretation supports J, but this is the force

of the groupoid model: because all types and terms respect identifications, it is in fact

the case that dependent functions from Id-types into any G-type are generated by the

data of where to send refl. Interested readers can find these and all the other details in

the paper of Hofmann and Streicher [HS98].

Theorem 4.3.17 (Hofmann and Streicher [HS98]). There is no closed term of type UIP
in intensional type theory.

Proof. This follows immediately from the fact that the groupoid model interprets UIP
as the empty groupoid, whose proof we sketch below. Recall that:

UIP = (𝐴 : U) → (𝑎 𝑏 : 𝐴) → (𝑝 𝑞 : Id(𝐴, 𝑎, 𝑏)) → Id(Id(𝐴, 𝑎, 𝑏), 𝑝, 𝑞)
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A term of this type in G would be a dependent function out of the interpretation

of U, which is the groupoid of groupoids G. Suppose that such a function exists; then

we could apply it to the groupoid 𝐵(Z/2) ∈ G defined in Example 4.3.14, then twice

to the unique element ★ ∈ |𝐵(Z/2) | of that groupoid, and then to the two distinct

identifications 0, 1 ∈ R𝐵 (Z/2) (★,★). The result would have to be a proof that 0 = 1,

which is false. □

4.3.2.1 Towards homotopy type theory

The busy reader may wish to skip this section initially. The groupoid model demon-

strates that Id-types support richer interpretations than merely equations: identifica-

tions can be any data that is respected by all the constructs of type theory.

Although the groupoid model provides us with interesting examples of identity

types, we note that the identity types of any groupoid𝑋 , ΔR𝑋 (𝑥,𝑦), are always discrete
groupoids with no interesting identifications of their own. Thus the groupoid model

does validate the “uniqueness of identity proofs of identity proofs”:

UIPIP = (𝐴 : U) → (𝑎 𝑏 : 𝐴) → (𝑝 𝑞 : Id(𝐴, 𝑎, 𝑏)) →
(𝛼 𝛽 : Id(Id(𝐴, 𝑎, 𝑏), 𝑝, 𝑞)) → Id(Id(Id(𝐴, 𝑎, 𝑏), 𝑝, 𝑞), 𝛼, 𝛽)

Like UIP, this principle is also independent of ITT, and we can construct a coun-

termodel in 2-groupoids, which contain a second level of “2-identifications” R2(𝑝, 𝑞)
between any pair of identifications 𝑝, 𝑞 ∈ R(𝑎, 𝑏) between elements 𝑎, 𝑏. Although we

will not define these precisely, we note that the passage from groupoids to 2-groupoids

is analogous to the passage from sets to groupoids; for instance, every groupoid can

be regarded as a discrete 2-groupoid with the same elements and 1-identifications but

with trivial 2-identifications.

The story once again repeats for the 2-groupoid model of type theory, and in fact

for any 𝑛: there is a model of ITT in which closed types are interpreted as 𝑛-groupoids,

and this model refutes U(IP)𝑛 but validates U(IP)𝑛+1. In fact, this suggests correctly

that ordinary groupoids ought to be thought of as 1-groupoids and sets as 0-groupoids;
indeed, the set (0-groupoid) model of type theory validates U(IP)1. Looking downward,
the large 0-groupoid of (−1)-groupoids is the set of propositions {∅, {★}}.

But what about for all 𝑛? Is it possible to construct a model that simultaneously

refutes U(IP)𝑛 for every 𝑛 ∈ N? Intuitively, such a model would have to interpret

closed types as “∞-groupoids” with countably infinite towers of identifications. The

answer is yes [War08, Corollary 4.26], and in fact Voevodsky’s simplicial model of

homotopy type theory [KL21] can be seen as precisely such a model [KS15].
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4.3.3 Hofmann’s conservativity theorem

We have generated an infinite stream of counterexamples to Question 4.3.4, or propo-

sitions that are provable in ETT but not ITT, namely Funext and U(IP)𝑛 for 𝑛 ≥ 1.

Is there a third class of counterexamples? Surprisingly, no: all counterexamples to

Question 4.3.4 are generated by Funext and UIP in a precise sense. (Note that UIP
implies U(IP)𝑛 for 𝑛 > 1.)

To state this claim more precisely, let us write

Γ𝑎𝑥 := 1, funext : Funext, uip : UIP

for the ITT context containing two variables, one of type Funext and one of type UIP;
types and terms of ITT in context Γ𝑎𝑥 are in bijection with closed types and terms

of intensional type theory extended by two rules postulating Funext and UIP. Then,
Hofmann’s celebrated conservativity result states that:

Theorem 4.3.18 (Hofmann [Hof95a]). Suppose that Γ𝑎𝑥 ⊢ 𝐴 type in ITT, and ⟦Γ𝑎𝑥⟧ ⊢
𝑎 : ⟦𝐴⟧ in ETT; then there exists a term Γ𝑎𝑥 ⊢ 𝑎′ : 𝐴 in ITT.

In Exercises 4.15 and 4.17 the reader has constructed proofs 1 ⊢ 𝑝 : ⟦Funext⟧ and
1 ⊢ 𝑞 : ⟦UIP⟧ of function extensionality and UIP in ETT, so we can discharge the

hypotheses of ⟦Γ𝑎𝑥⟧ to obtain the following corollary:

Corollary 4.3.19. If Γ𝑎𝑥 ⊢ 𝐴 type in ITT and 1 ⊢ 𝑎 : ⟦𝐴⟧[𝑝/funext, 𝑞/uip] in ETT, then
there exists a term Γ𝑎𝑥 ⊢ 𝑎′ : 𝐴 in ITT.

Corollary 4.3.19 is great news: although ITT is weaker than ETT, it is weaker

by exactly two principles, namely function extensionality and uniqueness of identity

proofs. We are led naturally to wonder whether there is a “best of both worlds”:

Question 4.3.20. Can we extend intensional type theory (with new terms and/or equa-
tions) in such a way that Funext and UIP are derivable, and the resulting type theory
enjoys both canonicity and normalization?

If we are satisfied with only one of canonicity or normalization, note that ETT is

such an extension of ITT satisfying canonicity (Theorem 3.4.12) but not normalization

(Section 3.6); on the other hand, extending ITTwith axioms for Funext andUIP trivially

makes these provable and satisfies normalization (Theorem 4.2.4) but not canonicity

(Exercise 4.16).

Remark 4.3.21. Such tradeoffs are common in the design of type theory: canonicity

says that a type theory has “enough” equations, whereas normalization generally

requires that there not be “too many”; it can be hard to find the right balance. ⋄
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Type theorists have considered Question 4.3.20 since the 1990s, and there is some

good news to report. If we are content for the moment to solve only the problem of

UIP (ignoring Funext), there is in fact a rather modest extension of ITT that satisfies

canonicity and normalization and in which UIP is provable.

For this, it will help us to consider an equivalent formulation ofUIP due to Streicher

[Str93] known as Axiom K :8

K = (𝐴 : U) → (𝑎 : 𝐴) → (𝑝 : Id(𝐴, 𝑎, 𝑎)) → Id(Id(𝐴, 𝑎, 𝑎), 𝑝, refl)

It is easy to see that K follows from UIP, as it is the special case of UIP in which 𝑎

and 𝑏 are the same and one of the identity proofs is refl. The other direction of the

biimplication is more subtle, but follows from a careful application of J, or identity
elimination.

Exercise 4.19. Prove that K implies UIP in ITT.

As with subst and uniq, there is a sensible definitional equality with which to equip
k : K, namely k 𝐴 𝑎 refl = refl, and we can even rephrase k as a “second elimination

principle” of Id-types as follows:

Γ ⊢ 𝑎 : 𝐴

Γ ⊢ 𝑝 : Id(𝐴, 𝑎, 𝑎) Γ.𝐴.Id(𝐴[p], q, q) ⊢ 𝐵 type Γ.𝐴 ⊢ 𝑏 : 𝐵 [id.refl]
Γ ⊢ K(𝑏, 𝑝) : 𝐵 [id.𝑎.𝑝]

Γ ⊢ 𝑎 : 𝐴 Γ.𝐴.Id(𝐴[p], q, q) ⊢ 𝐵 type Γ.𝐴 ⊢ 𝑏 : 𝐵 [id.refl]
Γ ⊢ K(𝑏, refl) = 𝑏 [id.𝑎.refl] : 𝐵 [id.𝑎.refl]

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : 𝐴

Γ ⊢ 𝑝 : Id(𝐴, 𝑎, 𝑎) Γ.𝐴.Id(𝐴[p], q, q) ⊢ 𝐵 type Γ.𝐴 ⊢ 𝑏 : 𝐵 [id.refl]
Δ ⊢ K(𝑏, 𝑝) [𝛾] = K(𝑏 [(𝛾 ◦ p) .q], 𝑝 [𝛾]) : 𝐵 [𝛾 .𝑎[𝛾] .𝑝 [𝛾]]

It is instructive to compare the rules for K to those of J, whose motives

Γ.𝐴.𝐴[p] .Id(𝐴[p2], q [p], q) ⊢ 𝐶 type

quantify over both sides of the identification. Although J may seem superficially more

general, neither J nor K imply the other. On the one hand, K is equivalent to UIP,
which is independent of ITT; on the other hand, we needed the additional flexibility

of J to define subst (Lemma 4.2.6), and we invite the reader to attempt this definition

with K alone.

8
In light of Remark 4.2.3, perhaps the reader can guess where the name K comes from.
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Although adding the above rules for K to intensional type theory breaks the pattern

of inductive types we established in Section 2.5, the resulting theory continues to enjoy

all the good properties of intensional type theory.

Theorem 4.3.22. Intensional type theory plus the above rules for K satisfies consistency,
canonicity, normalization, has invertible type constructors, and also validates UIP.

In fact, K was originally introduced not to restore extensionality to ITT but in the

study of dependent pattern-matching, where early formulations of pattern-matching

for dependent type theory [Coq92] were found to derive K and were thus stronger

than the standard rules of ITT. Although researchers have subsequently formulated

a weaker notion of pattern-matching that does not derive K [CDP14], many proof

assistants such as Agda still include K by default, often via pattern-matching.

Unfortunately it is significantly more challenging to add function extensionality

to ITT in a satisfactory (canonicity-preserving) fashion, either in tandem with or

independently of K/UIP. There are a number of type theories that admit function

extensionality and satisfy all the relevant metatheorems, most notably observational
type theories (Section 4.4, which also validate UIP) and cubical type theories (Chapter 5,
which intentionally do not validateUIP), but these systems are quite a bit more complex

than ITT and have not supplanted it.

Thus, despite its shortcomings, many practitioners choose to work in ITT extended

by an axiom for function extensionality and either an axiom for UIP or a version of

dependent pattern-matching that validates K.

4.4★ Observational type theory (draft)
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Further reading

We have mentioned previously that proof assistants decide equality of terms using a

type-sensitive algorithm known as normalization by evaluation (NbE). Proofs of the

normalization metatheorem for intensional type theory proceed by establishing that

NbE is sound and complete for the equational theory of ITT, using a proof technique

known as Kripke logical relations. There are many papers dedicated to proving normal-

ization for variants of ITT; Abel [Abe13] includes a lengthy exposition starting with

the non-dependent case, Abel, Öhman, and Vezzosi [AÖV17] formalize their proof in

Agda, and Coquand [Coq19] and Sterling [Ste21] present semantic formulations of

NbE that are significantly less technical but require more mathematical sophistication.

As for the independence and conservativity theorems discussed in Section 4.3,

the theses of Streicher [Str93] and Hofmann [Hof95a] remain excellent references;

however, a more modern account is available in the thesis of Winterhalter [Win20], and

recent advances in semantics have enabled much shorter albeit sophisticated proofs of

conservativity [KL25].

The independence of function extensionality from ITT has led to a cottage industry

of observational type theories as discussed in Section 4.4; the authors are biased but

recommend Sterling, Angiuli, and Gratzer [SAG22, Section 1] for a brief history of

equality in type theory. On the other hand, the independence of UIP has spawned

an entire subdiscipline, homotopy type theory (Chapter 5). Models of homotopy type

theory, such as Voevodsky’s simplicial model [KL21], can be seen as vast generalizations

of the groupoid model of Hofmann and Streicher [HS98].
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Univalent type theories 5
In Chapter 4 we saw that replacing Eq-types with Id-types allows type theory to enjoy

normalization and other properties needed for practical implementation, at the cost of

losing two of extensional type theory’s reasoning principles: function extensionality

and uniqueness of identity proofs (UIP). We then considered how one may restore

these principles to type theory, both with and without sacrificing canonicity.

In this chapter we consider a radically different extension of intensional type the-

ory known as homotopy type theory (HoTT). Rather than attempting to restore UIP to

type theory, homotopy type theory extends ITT with a reasoning principle known as

univalence, which in fact refutes UIP in a vast generalization of the groupoid counter-

model discussed in Section 4.3.2. Univalence is a rather subtle principle that is difficult

to even state properly, so we will begin by considering univalence for propositions

before moving on to the full univalence principle and its many consequences.

Univalence is traditionally stated as an axiom which breaks the canonicity property

of intensional type theory. As a result, although its repercussions are vastly different

from those of UIP, it has the same drawbacks from the perspective of implementation.

In the second half of this chapter we turn our attention to cubical type theory, which
extends the judgmental structure of type theory and reimagines the Id-types of homo-

topy type theory as defined by a mapping in property. The result is a type theory that

admits the principles of univalence and function extensionality while simultaneously

enjoying the properties of canonicity, normalization, and decidability of type-checking.

This chapter brings the reader up to present-day research in type theory. The

univalence principle was first proposed in 2010 by Voevodsky [Voe10], and much of our

current understanding of its consequences was developed in 2013 in the bookHomotopy
Type Theory: Univalent Foundations of Mathematics [UF13]. The first cubical type

theories emerged around 2016 [CCHM18; Ang+21], and the first proof of normalization

was given in 2021 [SA21]. Univalent type theories remain far from settled; at the time

of writing, researchers continue to grapple with the semantics and consequences of

univalence, and are even developing successors to cubical type theory [Shu22].

In this chapter In Section 5.1 we revisit universes of propositions (Section 2.7) in the

setting of intensional type theory, and define the axioms of propositional univalence

and resizing. In Section 5.2 we formulate the full univalence axiom and give awhirlwind

tour of homotopy type theory, including homotopy levels, higher inductive types, and
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some applications and consequences of univalence. In Section 5.3 we introduce the

novel judgmental structure of cubical type theory and use it to define a “mapping in”

variation of intensional identity types known as Path-types. Finally, in Section 5.4, we

explain how the cubical apparatus allows us to define a univalent type theory which

enjoys the canonicity property.

Goals of the chapter By the end of this chapter, you will be able to:

• Define universes of propositions in intensional type theory, and state proposi-

tional univalence and propositional resizing.

• State the univalence axiom, including the notion of equivalence.

• Explain several core concepts of homotopy type theory, including homotopy

levels and higher inductive types.

• Discuss the goals of cubical type theory, and explain how the interval, coercion,

and composition address these goals.

5.1 Propositional univalence

In Section 4.3 we identified two principles of ETT absent from ITT, function extensional-

ity and UIP, which characterize the identity types of Π-types and Id-types respectively.
One can understand the univalence principle (Section 5.2.1) as yet another absent

principle which characterizes the identity type of U𝑖 , but univalence is significantly
harder to motivate because it is not a principle of ETT—in fact, it contradicts UIP—and

because type universes are already the most complex connective of type theory.

Before presenting the full univalence principle in Section 5.2 we will warm up

with a discussion of propositional univalence, the univalence principle restricted to

universes of propositions Prop𝑖 (Section 2.7). Propositional univalence simplifies full

univalence in several ways: it is easier to state, is consistent with UIP, and is in a

certain sense validated by the set model (Section 3.5). On top of these pedagogical

advantages, propositional univalence is an important reasoning principle in its own

right, especially when coupled with the related principle of propositional resizing.

Notation 5.1.1. Throughout this section we return to the informal notation for

intensional type theory used in Chapter 1 and Section 4.1.

Assumption 5.1.2. In order to avoid annoying technicalities, we work in ITT extended

by the function extensionality axiom funext : Funext as defined in Section 4.3.
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5.1.1 Homotopy propositions

Before stating propositional univalence, we must adapt the notion of proposition
introduced in Section 2.7 from ETT to ITT. Recall that propositions are “types whose

terms are all equal” or “types with at most one element.” More formally, we said that a

type 𝐴 is a proposition in ETT if one of these equivalent conditions holds:

1. any two terms 𝑎, 𝑏 : 𝐴 are judgmentally equal (Definition 2.7.5), or

2. the type isProp(𝐴) := (𝑎 𝑏 : 𝐴) → Eq(𝐴, 𝑎, 𝑏) is inhabited (Exercise 2.42).

In intensional type theory we must replace the Eq-type in (2) with an Id-type, at
which point it becomes clear that these conditions are no longer equivalent because

Id-types—by design!—lack equality reflection.

2
′
. the type IsHProp(𝐴) := (𝑎 𝑏 : 𝐴) → Id(𝐴, 𝑎, 𝑏) is inhabited.

As a result, ITT has two natural notions of proposition: (1) types with one term up to

definitional equality, known as strict propositions, and (2
′
) types with one term up to

propositional equality (identification), known as homotopy propositions.1

Both notions have their advantages and disadvantages. Strict propositions are

more convenient because definitional equality is silent, avoiding the need for subst
casts; unfortunately, very few types are strict propositions in ITT. (Not even Void is a

strict proposition, due to its lack of 𝜂-rule!) In contrast, homotopy propositions are

less convenient but much more common.

Exercise 5.1. Show that IsHProp(Void) is inhabited.

Another important advantage of homotopy propositions is that the property of

being a homotopy proposition can be stated internally (IsHProp𝑖 : U𝑖 → U𝑖 ), so we

can define a hierarchy of universes of propositions HProp𝑖 as the subtypes of each U𝑖
spanned by homotopy propositions, as in Section 2.7.1:

HProp𝑖 : U𝑖+1
HProp𝑖 =

∑
𝐴:U𝑖 IsHProp𝑖 (𝐴)

For these reasons, and because they play a central role in Section 5.2, we will focus

exclusively on homotopy propositions in the remainder of this book.

Notation 5.1.3. Mirroring our notation for Prop𝑖 , we will suppress the indices on
HProp𝑖 and IsHProp𝑖 when they are immaterial. We will also collapse the distinction

1
There is nothing yet intrinsically “homotopical” about homotopy propositions. We will soon see

that they are part of a more comprehensive taxonomy of types known as homotopy levels (Section 5.2.2).
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between elements of HProp and types 𝐴 : U for which IsHProp(𝐴) is inhabited, by
treating the projection HProp → U as silent and writing 𝐴 : HProp when 𝐴 : U and 𝐴

is a homotopy proposition. (In Exercise 5.9 we will see that it is safe to suppress the

choice of proof 𝑝 : IsHProp(𝐴) because IsHProp(𝐴) is itself a homotopy proposition.)

Homotopy propositions in ITT are closed under many of the same connectives

as propositions in ETT (Corollary 2.7.12) with a few notable exceptions. In particular,

Id(𝐴, 𝑎, 𝑏) is not in general a homotopy proposition. (Uniqueness of identity proofs is

precisely the statement that all identity types are propositions!) More frustratingly,

one needs function extensionality to show that propositions are closed under Π-types.

Exercise 5.2. Show that if 𝐵 : 𝐴→ HProp then (𝑎 : 𝐴) → 𝐵(𝑎) : HProp.

5.1.2 Propositional univalence

When are two homotopy propositions—henceforth just “propositions”—identified in

intensional type theory? Unfortunately not very often, given that HProp is defined in

terms of U, which is in turn defined as a collection of codes for (i.e., names of) types.

For the third time, we have found a type of identifications lacking. In Section 4.3.1,

we saw that Id(Π(𝐴, 𝐵), 𝑓 , 𝑔) is underspecified in ITT and proposed that, as in ETT,

such identifications should be given by pointwise identifications of 𝑓 (𝑎) and 𝑔(𝑎) for
all 𝑎 : 𝐴. In Section 4.3.2, we saw that Id(Id(𝐴, 𝑎, 𝑏), 𝑝, 𝑞) is underspecified in ITT and

proposed that, as in ETT, this type should always be inhabited. This time, it is not

so clear what Id(HProp, 𝐴, 𝐵) should or even could be. We cannot look to ETT for

inspiration, because the ETT type Eq(Prop, 𝐴, 𝐵) is just as underspecified!
After some thought, we notice that from any identification Id(HProp, 𝐴, 𝐵) we can

obtain (by subst and symmetry) a pair of functions 𝐴 → 𝐵 and 𝐵 → 𝐴, which is to

say that 𝐴 ⇐⇒ 𝐵. Our desired characterization of Id(HProp, 𝐴, 𝐵) should therefore

imply, or at least be compatible with, the propositions 𝐴 and 𝐵 being interprovable.

We further note that the converse implication holds in an analogous scenario in set

theory. Suppose we have two propositions (predicates) 𝜙,𝜓 over a set 𝑋 . These induce

a pair of subsets of 𝑋 , {𝑥 ∈ 𝑋 | 𝜙 (𝑥)} and {𝑥 ∈ 𝑋 | 𝜓 (𝑥)}, which by the extensionality

axiom of set theory are equal if and only if the predicates 𝜙 and𝜓 are interprovable.

Emboldened by these observations, we introduce the principle of propositional

univalence: interprovable propositions are identified.

_⇔_ : HProp → HProp → HProp
𝐴⇔ 𝐵 = (𝐴→ 𝐵) × (𝐵 → 𝐴)

HPropIsUnivalent : U
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HPropIsUnivalent = (𝐴 𝐵 : HProp) → (𝐴⇔ 𝐵) → Id(HProp, 𝐴, 𝐵)

Exercise 5.3. Show that if 𝐴, 𝐵 : HProp then (𝐴⇔ 𝐵) : HProp.

Warning 5.1.4. Although HPropIsUnivalent is a correct statement of propositional

univalence, in Section 5.1.3 we will propose a more abstract formulation which—unlike

the above statement—is validated by the set model of type theory (Theorem 5.1.8).

The axiom HPropIsUnivalent is quite a bit stronger than it may first appear.

Theorem 5.1.5. For any propositions𝐴 and 𝐵,HPropIsUnivalent𝐴 𝐵 is an isomorphism
between (𝐴⇔ 𝐵) and Id(HProp, 𝐴, 𝐵).

Proof. That is, we must define a map inv : Id(HProp, 𝐴, 𝐵) → (𝐴⇔ 𝐵) such that both

round trips cancel up to identification. The map itself is a direct consequence of subst:
inv 𝑝 := (subst id 𝑝, subst id (sym 𝑝)). The first round trip

(𝑥 : 𝐴⇔ 𝐵) → Id(𝐴⇔ 𝐵, inv (HPropIsUnivalent 𝐴 𝐵 𝑥), 𝑥)

is immediate from Exercise 5.3. For the second round trip

(𝑝 : Id(HProp, 𝐴, 𝐵)) → Id(Id(HProp, 𝐴, 𝐵),HPropIsUnivalent 𝐴 𝐵 (inv 𝑝), 𝑝)

we note that the composite

𝑖 := (HPropIsUnivalent 𝐴 𝐵) ◦ inv : Id(HProp, 𝐴, 𝐵) → Id(HProp, 𝐴, 𝐵)

is idempotent in the sense that (by the first round trip) there is an identification between
𝑖 ◦ 𝑖 and 𝑖 . We complete the proof in Exercise 5.4 by showing that all idempotent maps

Id(𝐴, 𝑎, 𝑏) → Id(𝐴, 𝑎, 𝑏) are the identity function. □

Exercise 5.4. Show the following result due to Escardó [Esc14]: if 𝑖 : {𝑎 𝑏 : 𝐴} →
Id(𝐴, 𝑎, 𝑏) → Id(𝐴, 𝑎, 𝑏) is idempotent then it is, up to identification, the identity

function. (Hint: start by identifying 𝑖 𝑝 and trans (𝑖 refl) 𝑝 for all 𝑝 using identity

elimination, then identify trans (𝑖 refl) (𝑖 refl) and (𝑖 refl).)

Corollary 5.1.6. Propositional univalence holds if and only if the canonical map
Id(HProp, 𝐴, 𝐵) → (𝐴⇔ 𝐵) induced by subst is an isomorphism.

Given that our statement of propositional univalence took inspiration from set

theory, one might wonder whether it holds in the set model of ITT (Exercise 4.13); if it

did, we would conclude not only that HPropIsUnivalent is consistent but also that it is
compatible with UIP. Sadly this is not the case given how we have defined HProp.
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Lemma 5.1.7. The set model of ITT interprets HPropIsUnivalent as the empty set.

Proof. Recall that we construct the set model of ITT by interpreting ITT into ETT

(Corollary 4.3.3) and further interpreting ETT into sets (Section 3.5). The first interpre-

tation simply translates Id-types into Eq-types:

⟦HPropIsUnivalent⟧ = (𝐴 𝐵 : Prop) → (𝐴⇔ 𝐵) → Eq(Prop, 𝐴, 𝐵)

It remains to show that TmS (1S, ⟦HPropIsUnivalent⟧S) = ∅ where S is the set

model of ETT. Unfolding the S-interpretations of Π-types, Eq-types, and U-types, it

suffices to exhibit a pair of elements 𝐴, 𝐵 ∈ PropS = {𝑋 ∈ V0 | ∀𝑥,𝑦 ∈ 𝑋 . 𝑥 = 𝑦} such
that the following set is empty:

((𝐴→ 𝐵) × (𝐵 → 𝐴)) → {★ | 𝐴 = 𝐵}

In other words, we must find a pair of subsingleton sets 𝐴 ≠ 𝐵 for which there are

functions 𝐴→ 𝐵 and 𝐵 → 𝐴. For this we can exhibit any pair of unequal one-element

sets, such as 𝐴 := {★} and 𝐵 := {{★}}. □

Zooming out, because HProp is defined as the subtype of U spanned by types

with at most one element, it is interpreted in the set model as the collection of all

sets with at most one element—and certainly not all one-element sets are equal! We

note that there are set-theoretic representations of “the set of all propositions” that are
propositionally univalent, most notably the two-element set {⊤,⊥}. However, in order

to formally connect this set to propositional univalence, we must come up with a more

abstract notion of a “univalent universe of propositions” for which it is a valid model.

5.1.3 Abstracting propositional univalence

Recall from Notation 2.6.4 that a “universe” is any pair of a type 𝑈 with a function

sending elements of 𝑈 to types. Following this logic, a “universe of propositions”

should be any type Ω equipped with a decoding function 𝑓 : Ω → U subject to the

additional condition that 𝑓 (𝑥) is a proposition for every 𝑥 : Ω. If we bundle the

latter two conditions into a single map dec : Ω → HProp and add universe levels, we

conclude that abstract universes of (U𝑖-small) propositions are elements of the Σ-type

PropUniverse𝑖 =
∑

Ω:U𝑖+1 (Ω → HProp𝑖)

The “concrete” universe of propositions HProp𝑖 is of course one such universe, when

paired with the trivial decoding id : HProp𝑖 → HProp𝑖 .
The statement of propositional univalence for HProp, HPropIsUnivalent, immedi-

ately generalizes to abstract universes of propositions.
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IsUnivalent𝑖 : PropUniverse𝑖 → U𝑖+1
IsUnivalent𝑖 (Ω, dec) = (𝑥 𝑦 : Ω) → (dec(𝑥) ⇔ dec(𝑦)) → Id(Ω, 𝑥,𝑦)

We say that an abstract universe of propositions (Ω, dec) is univalent if the type

IsUnivalent (Ω, dec) is inhabited, and we note that HPropIsUnivalent is precisely the

statement that (HProp, id) is univalent.
One important difference betweenHProp and an arbitrary universe of propositions

(Ω, dec) is that the former has many inhabitants (Unit, Void, 𝐴→ Void, etc.) because
it contains all the propositions in U, whereas the latter need not be inhabited at all.

Exercise 5.5. Show that (Void, absurd(−)) and (Unit, 𝜆_→ Unit) are univalent uni-
verses of propositions.

There are several ways we might rule out these trivial examples. One is to require

our universes of propositions to be closed under a variety of logical operations (true,

false, implication, etc.). Instead, we will require that our universe contains a code for

every proposition in HProp up to interprovability. We say that an abstract universe of

U𝑖-small propositions (Ω, dec) is adequate if there is a map enc : HProp𝑖 → Ω such

that dec(enc(𝐴)) ⇔ 𝐴 for all 𝐴 : HProp𝑖 , a condition clearly satisfied by (HProp𝑖 , id).

IsAdequate𝑖 : PropUniverse𝑖 → U𝑖+1
IsAdequate𝑖 (Ω, dec) =

∑
enc:HProp𝑖→Ω (𝐴 : HProp𝑖) → dec(enc(𝐴)) ⇔ 𝐴

We may then ask whether it is consistent to assume that ITT has an adequate,

univalent universe of U𝑖-small propositions for every 𝑖 , or in other words, whether it

is consistent to postulate an axiom of the following type:

PropositionalUnivalence𝑖 =
∑
𝑋 :PropUniverse𝑖 IsUnivalent𝑖 (𝑋 ) × IsAdequate𝑖 (𝑋 )

Note that if (Ω, dec) is univalent, then IsAdequate𝑖 (Ω, dec) can be rephrased as

the condition that dec : Ω → HProp𝑖 has a left inverse.

Theorem 5.1.8. The set model of ITT extends to a model of ITT with the axioms
PropositionalUnivalence𝑖 for every 𝑖 .

Proof. Constructing such a model amounts to choosing an element of the set

TmS (1S, ⟦PropositionalUnivalence𝑖⟧S)

for each 𝑖 , where S is the set model of ETT and ⟦−⟧ is the translation of ITT into ETT.

Unfolding definitions, we must choose an element of TmS (1S, ⟦PropUniverse𝑖⟧)
and verify that it is univalent (by checking an equation) and adequate (by constructing

a map satisfying some condition). Elements of TmS (1S, ⟦PropUniverse𝑖⟧) are in turn
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pairs of a set Ω ∈ V𝑖+1 and a map dec : Ω →V𝑖 such that |dec(𝑥) | ≤ 1 for all 𝑥 ∈ Ω.
We choose Ω := {⊤,⊥} with dec(⊤) := {★} and dec(⊥) := ∅.

To see that (Ω, dec) is univalent, we must show that for all 𝑥,𝑦 ∈ Ω, if there are
functions dec(𝑥) → dec(𝑦) and dec(𝑦) → dec(𝑥) then 𝑥 = 𝑦. This is immediate by

case analysis: whenever 𝑥 ≠ 𝑦, dec(𝑥) and dec(𝑦) are {★} and ∅ (or vice versa), in
which case there are no functions {★} → ∅.

Finally, to see that (Ω, dec) is adequate, we must construct a function

enc : {𝑋 ∈ V𝑖 | |𝑋 | ≤ 1} → Ω

along with, for every 𝑋 ∈ V𝑖 satisfying |𝑋 | ≤ 1, a choice of maps 𝑋 → dec(enc(𝑋 ))
and dec(enc(𝑋 )) → 𝑋 . We take enc to be the function that sends ∅ to ⊥ and all

one-element sets to ⊤. We leave it to the reader to verify that the required maps exist

uniquely in both cases. □

Corollary 5.1.9. Intensional type theory is consistent with the axioms Funext, UIP, and
PropositionalUnivalence𝑖 for all 𝑖 .

Propositional resizing The proof of Theorem 5.1.8 establishes a stronger result

than the theorem statement: the set model supports a single univalent universe of
propositions {⊤,⊥} that is simultaneously adequate for U𝑖-small propositions of ev-

ery universe level 𝑖 . To make this statement precise, we observe that elements of

PropUniverse𝑖 can be “lifted” to PropUniverse𝑖+1 by using the lift operations between

type universes U𝑖 → U𝑖+1 stipulated in Section 2.6.3.

Exercise 5.6. Define functions lift′𝑖 : PropUniverse𝑖 → PropUniverse𝑖+1 for every 𝑖 , in
terms of the operators lift𝑖 (−) : U𝑖 → U𝑖+1.

Notation 5.1.10. We suppress applications of lift′𝑖 and lift𝑖 (−) in our informal notation.

Instead, we write (HProp
0
, id) for both the element of PropUniverse

0
and its image

under lift′
0
in PropUniverse

1
.

We conclude that the proof of Theorem 5.1.8 shows that the set model of ITT is

consistent with axioms stating that (1) there is a universe (Ω, dec) : PropUniverse
0

such that (2) IsUnivalent0(Ω, dec) holds, and (3) IsAdequate𝑖 (Ω, dec) holds for all 𝑖 .
Before moving on, we simplify this axiomatization by rephrasing axiom schema

(3) so as to not refer to the univalent universe stipulated in axioms (1) and (2). Indeed,

the salient point of (3) is simply that it is possible to fit all of the propositions of type

theory into a single universe of propositions, a property introduced in Remark 2.7.14

under the name of impredicativity.
To rephrase axiom schema (3), we note that it implies IsAdequate𝑖 (HProp0

, id)
for all 𝑖 , where the necessary encoding maps HProp𝑖 → HProp

0
are obtained by
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composing enc𝑖 : HProp𝑖 → Ω with dec : Ω → HProp
0
. These encoding maps are

often called “resize” because they take any large proposition HProp𝑖 to an equivalent

small proposition HProp
0
(i.e., one for which resize(𝐴) ⇔ 𝐴), and the corresponding

axiom schema expressing impredicativity is known as propositional resizing:

PropositionalResizing𝑖 = IsAdequate𝑖 (HProp0
)

Corollary 5.1.11. Intensional type theory is consistent with the axioms Funext, UIP,
PropositionalUnivalence

0
, and PropositionalResizing𝑖 for all 𝑖 .

Exercise 5.7. Show that the axioms of Corollary 5.1.11 imply the axioms (1), (2), and

(3) mentioned above. Conclude that they imply PropositionalUnivalence𝑖 for all 𝑖 .

Remark 5.1.12. In category theory, univalent and impredicative universes of propo-

sitions are known as subobject classifiers. Subobject classifiers play a central role in

elementary topoi, the categorical axiomatization of the category of sets, and type

theory extended by the axioms listed in Corollary 5.1.11 is a common “type-theorist’s

substitute” for set theory. ⋄

Remark 5.1.13. The set model of ITT factors through the set model of ETT, so from

the model constructions above we may deduce that ETT is consistent with the axioms

⟦PropositionalUnivalence
0
⟧ and ⟦PropositionalResizing𝑖⟧ for all 𝑖 . ⋄

What are these principles good for? Because propositional univalence characterizes

the otherwise underspecified identity type of HProp
0
, it upgrades many properties

of HProp
0
from holding only morally to holding literally. For example, propositions

should form a meet-semilattice under conjunction, but in ITT (and even ETT) this

holds only up to interprovability unless we assume propositional univalence.

The real power, however, appears when we combine univalence with resizing.

Readers familiar with category theory may know that subobject classifiers (along with

some other connectives of type theory) suffice to construct finite colimits such as

booleans, coproducts, and even quotients. Even resizing by itself lets us construct

previously out-of-reach connectives such as propositional truncation.

Lemma 5.1.14. Assuming PropositionalResizing𝑖 for all 𝑖 , propositional truncation (in
the sense of Section 2.7.3) is definable.

Proof. Using propositional resizing, we define propositional truncation as follows:

Trunc : U𝑖 → HProp
0

Trunc(𝐴) = resize((𝑋 : HProp
0
) → (𝐴→ 𝑋 ) → 𝑋 )



172 Univalent type theories (2025-07-19)

By construction, Trunc(𝐴) is a proposition. To establish the mapping out property,

it suffices to show that (𝐴 → 𝐵) ⇔ (Trunc(𝐴) → 𝐵) for all propositions 𝐵; by
resizing, it moreover suffices to consider the case where 𝐵 : HProp

0
. In the forward

direction, given 𝑓 : 𝐴→ 𝐵 we send 𝑝 : Trunc(𝐴) to 𝑝 𝐵 𝑓 : 𝐵. In the reverse direction,

given 𝑔 : Trunc(𝐴) → 𝐵 we send 𝑎 : 𝐴 to 𝑔 (𝜆𝐶 𝑓 → 𝑓 𝑎) : 𝐵. □

From propositional truncation we also obtain disjunction and existential quantifi-

cation, as discussed in Section 2.7.3. We conclude that the set models of ITT and ETT

extend to models of all three of these connectives; we can moreover show that ITT

and ETT are consistent with the law of excluded middle as defined in Section 2.7.4.

Exercise 5.8. Show that ITT is consistent with the law of excluded middle. (Hint:

first observe that the set model of ITT extends a model of ITT with the axiom

IsAdequate𝑖 (Bool, 𝜆𝑏 → if (Unit,Void, 𝑏)), then show that this axiom implies LEM.)

5.2 Homotopy type theory

Having warmed up with propositional univalence, we now turn our attention to the

full univalence principle of Voevodsky [Voe10]. Just as function extensionality, UIP,

and propositional univalence respectively characterize the identity types of Π-types,

Id-types, and universes of propositions, the univalence principle characterizes the

identity types of U𝑖 , the universes of arbitrary types.

Recall from Section 5.1 that a universe of propositions is univalent if interprov-

able propositions in that universe are identified. To generalize this condition to type

universes, we assert roughly that isomorphic types in U are identified, but we must im-

mediately add a caveat: unlike propositional univalence, there are many nonequivalent

ways one might state this principle formally, and many of them are inconsistent!

Compounding our difficulties, there is often more than one isomorphism between

pairs of isomorphic types 𝐴, 𝐵 : U—even Bool is isomorphic to itself in two distinct

ways—so the assertion that isomorphisms induce identifications Id(U, 𝐴, 𝐵) is incom-

patible with UIP. As a result, we can no longer model types as sets; in fact, models of

univalence require mathematical machinery far outside the scope of this book [KL21].

In Section 5.2.1 we precisely state and then analyze the univalence principle. In

Section 5.2.2 we will show that univalence refutes every possible variation U(IP)𝑛 of
uniqueness of identity proofs as introduced in Section 4.3.2.1. We then reintroduce

these principles on a type-by-type basis as homotopy levels, one of the most important

concepts in homotopy type theory (intensional type theory extended by univalence).

In Section 5.2.3 we introduce higher inductive types, a generalization of inductive
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types suggested by the failure of UIP. Finally, in Section 5.2.4 we briefly survey a few

interesting applications of homotopy type theory.

Remark 5.2.1. Homotopy type theory (HoTT) is a new and active subfield of dependent

type theory, and we cannot possibly do it justice in this section. We strongly encourage

interested readers to seek out other resources, such as the community-written “HoTT

Book” [UF13] and Rijke’s Introduction to Homotopy Type Theory [Rij22]. Throughout

this section we will reference the HoTT Book for a number of workhorse lemmas; the

same results can be found in Part II of Rijke [Rij22]. ⋄

Notation 5.2.2. Throughout this section we continue in the informal notation for

intensional type theory used in Chapter 1 and Sections 4.1 and 5.1.

Assumption 5.2.3. We continue to work in ITT extended by the function extensionality

axiom funext : Funext as defined in Section 4.3.

5.2.1 The univalence principle

In order to state the univalence principle we must first present a series of strange

auxiliary definitions; we assure the reader that a lengthy discussion will follow. First,

we observe that whenever we have an identification Id(U, 𝐴, 𝐵) between types, we

can use subst to obtain a “cast” (or “coercion”) function 𝐴→ 𝐵.

coe : {𝐴 𝐵 : U} → Id(U, 𝐴, 𝐵) → 𝐴→ 𝐵

coe 𝑝 = subst id 𝑝

In fact, using Id-elimination we can show that coe 𝑝 is always an isomorphism.

(We will prove this momentarily, but note that the inverse map to coe 𝑝 is coe (sym 𝑝),
or coercion along the reverse identification.) There are several ways of stating that a

map is an isomorphism, and we will insist on a slightly peculiar one: a map 𝑓 : 𝐴→ 𝐵

is an equivalence, written IsEquiv(𝑓 ), if every 𝑏 : 𝐵 has a unique preimage 𝑓 −1(𝑏) in 𝐴.

IsContr(𝑋 ) = ∑
𝑥 :𝑋 (𝑦 : 𝑋 ) → Id(𝑋, 𝑥,𝑦)

IsEquiv(𝑓 ) = (𝑏 : 𝐵) → IsContr(∑𝑎:𝐴 Id(𝐵,𝑏, 𝑓 (𝑎)))

Here IsContr(𝑋 ) (“𝑋 is contractible”) is the statement that the type 𝑋 has a unique

element—there is a choice of 𝑥 : 𝑋 such that every 𝑦 : 𝑋 is the same as 𝑥—and thus

IsEquiv(𝑓 ) states that for all 𝑏 : 𝐵 there is a unique 𝑎 : 𝐴 such that 𝑏 is 𝑓 (𝑎).2

2
The type

∑
𝑎:𝐴 Id (𝐵,𝑏, 𝑓 (𝑎)) is known as the (homotopy) fiber of 𝑓 at 𝑏. Using this terminology, 𝑓 is

an equivalence if all of its fibers are contractible.
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To prove that coe 𝑝 is an equivalence, we can use the Id-eliminator j (Exercise 4.4)
to consider only the case where 𝑝 is refl. Coercion along refl is definitionally equal

to the identity function (by coe refl = subst id refl = id) so it suffices to show that

for all 𝑋 : U and 𝑥 : 𝑋 , the type
∑
𝑦:𝑋 Id(𝑋, 𝑥,𝑦) is contractible. This type is clearly

inhabited by (𝑥, refl); the statement that all elements of

∑
𝑦:𝑋 Id(𝑋, 𝑥,𝑦) are identified

with (𝑥, refl) is precisely singleton contractibility (uniq from Section 4.1.2).

coeisequiv : (𝐴 𝐵 : U) → (𝑝 : Id(U, 𝐴, 𝐵)) → IsEquiv(coe 𝑝)
coeisequiv = j (𝜆𝐴 𝐵 𝑝 → IsEquiv(coe 𝑝)) (𝜆𝑋 𝑥 → ((𝑥, refl), uniq))

We can bundle coe and coeisequiv into a single map idtoequiv𝑖 from identifications

Id(U𝑖 , 𝐴, 𝐵) to equivalences 𝐴 ≃ 𝐵, i.e., pairs of a function 𝑓 : 𝐴 → 𝐵 and a proof of

IsEquiv(𝑓 ). Simply put, identifications of types induce equivalences.

_≃_ : U
𝐴 ≃ 𝐵 =

∑
𝑓 :𝐴→𝐵 IsEquiv(𝑓 )

idtoequiv𝑖 : (𝐴 𝐵 : U𝑖) → Id(U𝑖 , 𝐴, 𝐵) → 𝐴 ≃ 𝐵
idtoequiv𝑖 𝐴 𝐵 𝑝 = (coe 𝑝, coeisequiv 𝐴 𝐵 𝑝)

The univalence principle is the assertion that idtoequiv𝑖 𝐴 𝐵 is an equivalence for

all 𝐴, 𝐵 : U𝑖 . That is, not only do identifications of types in U𝑖 induce equivalences, but
equivalences of types in U𝑖 conversely induce identifications!

Univalence𝑖 = (𝐴 𝐵 : U𝑖) → IsEquiv(idtoequiv𝑖 𝐴 𝐵)

We emphasize that univalence asserts that a particular map Id(U𝑖 , 𝐴, 𝐵) → 𝐴 ≃ 𝐵
is an equivalence, not just that there exists a map 𝐴 ≃ 𝐵 → Id(U𝑖 , 𝐴, 𝐵) going in

the opposite direction. As we have previously seen e.g. in the definition of Bool
(Section 2.5.2), such conditions let us deduce not only the existence of a map in the

opposite direction but also how that map must behave on certain inputs.

Remark 5.2.4. The name of univalence for this property is due to Voevodsky, who

explained in a 2014 lecture [Voe14] that he intended it to evoke the not-quite universal

property satisfied by univalent universes, namely that every family of types has exactly

one “classifying map” into U—unless the family is too large, in which case there is

no such map. Voevodsky also attributes the term in part to a translation quirk in

the Russian edition of Boardman and Vogt [BV73], in which faithful functor was

translated as univalent functor (univalentnyj funktor), perhaps in reference to the

univalent functions from complex analysis. ⋄

Definition 5.2.5. Homotopy type theory, or HoTT, is intensional type theory extended

by axioms funext : Funext and univalence𝑖 : Univalence𝑖 for every 𝑖 .
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Remark 5.2.6. Homotopy type theory refers both to a particular formal system (Defi-

nition 5.2.5) and to the entire subfield of type theory concerned with the univalence

principle and related topics. When there is possibility for confusion, we will use the

phrase Book HoTT (as in, “HoTT as formulated in the HoTT Book [UF13]”) to refer

unambiguously to the formal system. ⋄

Univalence is not validated by the set model; unlike in Section 5.1, there is no way

to get around the fact that isomorphic sets are not equal. In fact, for reasons that will

become clear in Section 5.2.2, it is quite difficult to construct any model of HoTT. The

first and “standard” model of HoTT is due to Voevodsky [KL21] and interprets types

as Kan complexes, a common definition of∞-groupoid (Section 4.3.2.1). Perhaps the

most important consequence of this model is:

Theorem 5.2.7 (Kapulkin and Lumsdaine [KL21]). Homotopy type theory is consistent.

As discussed in Section 4.3.1, adding axioms to ITT preserves the properties of

normalization and decidable type-checking but generally—including in the case of

univalence—disrupts canonicity. In Sections 5.3 and 5.4 we will present an alternative

to Book HoTT known as cubical type theory, which admits the univalence principle

while also enjoying the metatheoretic properties of canonicity, normalization, etc.

The statement of univalence is rather involved and has likely raised more questions

than it has answered, including why we have introduced this particular definition of

equivalence, and how univalence relates to propositional univalence. It is difficult to

fully answer these questions without first developing considerable machinery—for

which we again recommend that the reader consult a more comprehensive resource—

but we will nevertheless attempt some explanations.

On equivalences Our definition of IsEquiv is likely unfamiliar to the reader, so we

start our discussion by exploring its properties. First and foremost, a map 𝑓 : 𝐴→ 𝐵

is an equivalence if and only if it has an inverse 𝐵 → 𝐴 in the usual sense:

HasInverse(𝑓 ) = ∑
𝑔:𝐵→𝐴 (Id(𝐴→ 𝐴,𝑔 ◦ 𝑓 , id𝐴)) × (Id(𝐵 → 𝐵, 𝑓 ◦ 𝑔, id𝐵))

Lemma 5.2.8 (Sections 4.1 to 4.4 [UF13]). For all 𝑓 : 𝐴→ 𝐵, IsEquiv(𝑓 ) is inhabited if
and only if HasInverse(𝑓 ) is inhabited.

Proof sketch. In the forward direction we are given 𝑝 : IsEquiv(𝑓 ) and must construct

a function 𝑔 : 𝐵 → 𝐴. For any 𝑏 : 𝐵 we note that 𝑝 (𝑏) : IsContr(∑𝑎:𝐴 Id(𝐵,𝑏, 𝑓 (𝑎))),
so fst(𝑝 (𝑏)) :

∑
𝑎:𝐴 Id(𝐵,𝑏, 𝑓 (𝑎)) is a pair of an element of 𝐴 and a proof that 𝑓 sends

that element to 𝑏 up to identification. We therefore define 𝑔 := 𝜆𝑏 → fst(fst(𝑝 𝑏));
the round trip identifications follow from function extensionality, the aforementioned

identity proof, and the proof of contractibility.
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In the reverse direction we are given 𝑔 : 𝐵 → 𝐴, 𝛼 : Id(𝐴 → 𝐴,𝑔 ◦ 𝑓 , id𝐴), and
𝛽 : Id(𝐵 → 𝐵, 𝑓 ◦ 𝑔, id𝐵) and must construct a proof of IsEquiv(𝑓 ). In particular, for

every 𝑏 : 𝐵 we must exhibit an element 𝑎 : 𝐴 such that Id(𝐵,𝑏, 𝑓 (𝑎)). (In fact we must

show that the type

∑
𝑎:𝐴 Id(𝐵,𝑏, 𝑓 (𝑎)) is contractible, but we leave that part of the

proof to the HoTT Book.) For the element of 𝐴, we choose 𝑔(𝑏); the identification
Id(𝐵,𝑏, 𝑓 (𝑔(𝑏))) follows by applying 𝛽 to𝑏 in an appropriate sense (Remark 5.2.14). □

If 𝑓 : 𝐴 → 𝐵 is an equivalence if and only if it has an inverse, then why did we

introduce the notion of equivalence at all? The definition of IsEquiv(𝑓 ) satisfies one
critical property that HasInverse(𝑓 ) does not: IsEquiv(𝑓 ) is a homotopy proposition.

Lemma 5.2.9 (Lemma 3.11.4 [UF13]). For any type 𝑋 , IsContr(𝑋 ) is a proposition.

Corollary 5.2.10. For all 𝑓 : 𝐴→ 𝐵, IsEquiv(𝑓 ) is a proposition.

Proof. Immediate from Exercise 5.2 and Lemma 5.2.9. □

In fact, if we change the statement of univalence to refer to HasInverse instead of

IsEquiv, the resulting axiom is actually inconsistent with ITT!

idtohasinv𝑖 : (𝐴 𝐵 : U𝑖) → Id(U𝑖 , 𝐴, 𝐵) →
∑
𝑓 :𝐴→𝐵 HasInverse(𝑓 )

idtohasinv𝑖 𝐴 𝐵 𝑝 = (coe 𝑝, . . . )

Ambivalence𝑖 = (𝐴 𝐵 : U𝑖) → HasInverse(idtohasinv 𝐴 𝐵) (!?)

Theorem 5.2.11. ITT extended by Funext and Ambivalence𝑖 for all 𝑖 is inconsistent.

Proof sketch. We obtain a contradiction by using Ambivalence to (1) construct a type

𝐴 and 𝛼 : Id(𝐴 → 𝐴, id𝐴, id𝐴) such that Id(Id(𝐴 → 𝐴, id𝐴, id𝐴), 𝛼, refl) → Void,
and (2) prove that Id(Id(𝐴 → 𝐴, id𝐴, id𝐴), 𝛼, refl). We note that (2) is the source of

inconsistency here; (1) also holds in HoTT as a consequence of univalence.

To establish claim (1) it suffices to exhibit a type𝐴 for which (𝑎 : 𝐴) → Id(𝐴, 𝑎, 𝑎) is
not a homotopy proposition. The simplest such constructions rely on higher inductive

types (Section 5.2.3) such as the circle S1 (Section 5.2.3.1) or propositional truncation

(as shown explicitly in the HoTT Book [UF13, Theorem 4.1.3]), but the latter argument

can be adapted to ITT with two nested univalent or ambivalent universes.

For claim (2) we first prove an intermediate lemma. Suppose 𝑓 : 𝐴→ 𝐵, (𝑔, 𝛽,𝛾) :

HasInverse(𝑓 ), and 𝑎 : 𝐴. There are two ways to identify 𝑓 (𝑔(𝑓 (𝑎))) and 𝑓 (𝑎): by
using 𝛽 to cancel 𝑔◦ 𝑓 (i.e., cong 𝑓 (𝛽 𝑎)) and by using 𝛾 to cancel 𝑓 ◦𝑔 (i.e., cong (𝜆𝑥 →
𝑥 (𝑓 𝑎)) 𝛾 ). These two identifications need not be related but Ambivalence allows us
to construct an identification between them (and in fact to prove that HasInverse(𝑓 ) is
a proposition for all 𝑓 : 𝐴→ 𝐵). We obtain (2) by setting 𝑓 , 𝑔 = id, 𝛽 = 𝛼 , and 𝛾 = refl.

As for the lemma we recall that by Ambivalence,
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idtohasinv 𝐴 𝐵 : Id(U, 𝐴, 𝐵) → ∑
𝑓 :𝐴→𝐵 HasInverse(𝑓 )

is an isomorphism, so (𝑓 , (𝑔, 𝛽,𝛾)) :

∑
𝑓 :𝐴→𝐵 HasInverse(𝑓 ) must be identified with

idtohasinv 𝐴 𝐵 𝑝 for some 𝑝 : Id(U, 𝐴, 𝐵). By Id-elimination it suffices to consider

𝑝 = refl, in which case 𝑓 = 𝑔 = id𝐴, 𝛽 = refl, 𝛾 = refl, and the result is immediate. □

That said, there are many suitable alternatives to IsEquiv in the statement of

univalence. The reader can find several such definitions along with an extensive

discussion in Chapter 4 of the HoTT Book [UF13].

We remark that equivalences appear twice in the statement of univalence—once in

the codomain of idtoequiv and once in the assertion that idtoequiv is an equivalence—

and the foregoing discussion applies only to the former (“inner”) occurrence. As a

trivial consequence of Lemma 5.2.8, the following statement is interprovable with

Univalence𝑖 and thus a perfectly acceptable formulation of the univalence principle:

Univalence′𝑖 = (𝐴 𝐵 : U𝑖) → HasInverse(idtoequiv𝑖 𝐴 𝐵)

As observed by Licata [Lic16], Univalence𝑖 is also interprovable with the even

simpler statement that for all 𝐴, 𝐵 : U𝑖 there is a map ua : 𝐴 ≃ 𝐵 → Id(U𝑖 , 𝐴, 𝐵) such
that for all equivalences (𝑓 , 𝑝) : 𝐴 ≃ 𝐵, there is an identification—often called ua𝛽
because it resembles a 𝛽-rule—between the functions coe (ua (𝑓 , 𝑝)) and 𝑓 .

Univalence′′𝑖 = (𝐴 𝐵 : U𝑖) →∑
ua:(𝐴≃𝐵)→Id (U𝑖 ,𝐴,𝐵) ((𝑒 : 𝐴 ≃ 𝐵) → Id(𝐴→ 𝐵, coe (ua 𝑒), fst(𝑒)))

Comparison to other principles A good starting point for understanding uni-

valence is to compare it to the other principles we have considered adding to ITT:

function extensionality, UIP, propositional univalence, and propositional resizing.

The relationship between univalence and function extensionality is straightforward

albeit surprising: univalence actually implies function extensionality [UF13, Section

4.9]! As a result, our assumption of Funext throughout this section and in the defi-

nition of homotopy type theory (Definition 5.2.5) is actually redundant; however, by

separately asserting Funext we were able to avoid some technicalities in the discussion

of alternative definitions of IsEquiv and Univalence.
As their names suggest, univalence also implies propositional univalence.

Lemma 5.2.12 (Theorem 2.7.2 [UF13]). For any 𝑥,𝑦 :

∑
𝑎:𝐴 𝐵(𝑎) there is an equivalence

Id(∑𝑎:𝐴 𝐵(𝑎), 𝑥,𝑦) ≃
∑
𝑝 :Id (𝐴,fst (𝑥 ),fst (𝑦) ) Id(𝐵(𝑦), subst 𝐵 𝑝 snd(𝑥), snd(𝑦))

Lemma 5.2.13. Univalence for U𝑖 implies HPropIsUnivalent for HProp𝑖 .
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Proof. Recall that HProp𝑖 =
∑
𝑋 :U𝑖 IsHProp𝑖 (𝑋 ), and suppose (𝐴,ℎ𝐴), (𝐵,ℎ𝐵) : HProp𝑖

and (𝑓 , 𝑔) : 𝐴 ⇔ 𝐵; we must show Id(HProp𝑖 , (𝐴,ℎ𝐴), (𝐵,ℎ𝐵)). By Lemma 5.2.12 it

suffices to exhibit 𝑝 : Id(U𝑖 , 𝐴, 𝐵) such that Id(IsHProp𝑖 (𝐵), subst IsHProp𝑖 𝑝 ℎ𝐴, ℎ𝐵).
To construct 𝑝 we observe that by univalence and Lemma 5.2.8 it suffices to exhibit

a pair of mutually inverse maps 𝐴→ 𝐵 and 𝐵 → 𝐴. By function extensionality and

the fact that 𝐴 and 𝐵 are propositions, the given maps 𝑓 : 𝐴→ 𝐵 and 𝑔 : 𝐵 → 𝐴 are

necessarily mutually inverse. Finally, the required identification between proofs of

IsHProp𝑖 (𝐵) is automatic from the fact that IsHProp𝑖 is a proposition (Exercise 5.9). □

One consequence of Lemma 5.2.13 is that all models of HoTT validate our original

statement of propositional univalence for HProp𝑖 , whereas in Section 5.1 we only

produced a model of the “abstract” version of propositional univalence introduced

in Section 5.1.3. A large class of models of HoTT additionally validate propositional

resizing between all pairs of universes of propositions HProp𝑖 ,HProp𝑗 [Shu19], but
this principle is known to be independent of univalence [Uem19].

While we are discussing propositional univalence, it is worth understanding why

the statement of HPropIsUnivalent is so much simpler than that of univalence. There

are two major differences between the statements besides the universes in question.

First, univalence refers to equivalences

∑
𝑓 :𝐴→𝐵 IsEquiv(𝑓 ) whereas propositional

univalence refers to pairs of maps (𝐴 → 𝐵) × (𝐵 → 𝐴). But in the case where 𝐴

and 𝐵 are propositions, these two types are equivalent (in fact, IsEquiv(𝑓 ) ≃ 𝐵 →
𝐴)! Secondly, univalence states that (a version of) coe is an equivalence whereas

HPropIsUnivalent simply asserts a map going in the opposite direction; we have

already seen in Corollary 5.1.6 that these conditions are interprovable for HProp.

Remark 5.2.14. Surprisingly, function extensionality is yet another case in which a

canonical map is an equivalence if and only if there is a map in the opposite direction.

Let 𝐴, 𝐵 : U and 𝑓 , 𝑔 : 𝐴 → 𝐵, and recall from Section 4.3.1 that (non-dependent)

function extensionality posits a map ((𝑎 : 𝐴) → Id(𝐵, 𝑓 (𝑎), 𝑔(𝑎))) → Id(𝐴→ 𝐵, 𝑓 , 𝑔)
which takes pointwise identifications to identifications of functions.

Although we did not note it at the time, in ITT one can always define a map which

takes identifications of functions to pointwise identifications:

happly : Id(𝐴→ 𝐵, 𝑓 , 𝑔) → (𝑎 : 𝐴) → Id(𝐵, 𝑓 (𝑎), 𝑔(𝑎))
happly ℎ 𝑎 = cong (𝜆𝑥 → 𝑥 𝑎) ℎ

The function extensionality map implies that happly is an equivalence [Lum11]. ⋄

Our final comparison is the most interesting: how does univalence relate to UIP?

As we will now see, HoTT’s hierarchy of univalent universes refutes not only the

uniqueness of identity proofs but also the “uniqueness of identity proofs of identity

proofs” and all of its further iterations as introduced in Section 4.3.2.1.
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5.2.2 Homotopy levels and the failure of UIP

Perhaps the most significant consequence of univalence is that it refutes UIP, the state-

ment that for all types 𝐴 and elements 𝑎, 𝑏 : 𝐴, all identity proofs 𝑝, 𝑞 : Id(𝐴, 𝑎, 𝑏) are
identified. In fact, no matter how deeply we nest Id-types Id(Id(Id(. . . , 𝑎, 𝑏), 𝑝, 𝑞), 𝛼, 𝛽)
in HoTT, there is no point at which identifications necessarily trivialize.

Do not however confuse the failure of a global property with the global failure

of a property: there are many types in HoTT that do satisfy UIP “locally,” and many

others that satisfy U(IP)𝑛 for some 𝑛 > 1. Reformulated as a Nat-indexed family of

predicates over types, U(IP)𝑛 will turn out to be a crucial measure of the “homotopical

complexity” of a type known as its homotopy level or h-level.
We begin by rephrasing UIP and UIPIP from Section 4.3 as predicates.

HasUIP : U → U
HasUIP 𝐴 = (𝑎 𝑏 : 𝐴) → (𝑝 𝑞 : Id(𝐴, 𝑎, 𝑏)) → Id(Id(𝐴, 𝑎, 𝑏), 𝑝, 𝑞)

HasUIPIP : U → U
HasUIPIP 𝐴 = (𝑎 𝑏 : 𝐴) → (𝑝 𝑞 : Id(𝐴, 𝑎, 𝑏)) → (𝛼 𝛽 : Id(Id(𝐴, 𝑎, 𝑏), 𝑝, 𝑞)) →

Id(Id(Id(𝐴, 𝑎, 𝑏), 𝑝, 𝑞), 𝛼, 𝛽)

Our original statement of UIP is precisely that every type satisfies HasUIP, i.e., UIP =

(𝐴 : U) → HasUIP(𝐴) and similarly for UIPIP.
It remains to generalizeHasUIP andHasUIPIP toHasU(IP)𝑛 . Extending to 𝑛 > 2 is

straightforward as soon as we notice HasUIPIP(𝐴) = (𝑎 𝑏 : 𝐴) → HasUIP(Id(𝐴, 𝑎, 𝑏)).
But we can also extend the hierarchy downward:

HasU(IP)0 : U → U
HasU(IP)0 𝐴 = (𝑎 𝑏 : 𝐴) → Id(𝐴, 𝑎, 𝑏)

We have already seen this definition in Section 5.1: this is exactly IsHProp(𝐴), the
statement that 𝐴 is a homotopy proposition! And although it may seem that the

hierarchy stops here, in light of Lemma 5.2.15 we may take one final step downward:

HasU(IP)−1
: U → U

HasU(IP)−1 𝐴 = IsContr 𝐴

Lemma 5.2.15 (Lemma 3.11.10 [UF13]). For all 𝐴 : U, IsHProp(𝐴) if and only if
IsContr((𝑎 𝑏 : 𝐴) → Id(𝐴, 𝑎, 𝑏)).

Following the convention introduced by Voevodsky [VAG+20], we may define a

Nat-indexed family of predicates IsOfHLevel with the base case IsContr at 𝑛 = 0:

IsOfHLevel : Nat → U → U
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Homotopy levels HasU(IP)𝑛 𝑛-types Common name
IsOfHLevel 0 HasU(IP)−1 (−2)-type contractible

IsOfHLevel 1 HasU(IP)0 (−1)-type proposition

IsOfHLevel 2 HasUIP 0-type h-set

IsOfHLevel 3 HasUIPIP 1-type 1-groupoid

IsOfHLevel (𝑛 + 2) HasU(IP)𝑛+1 𝑛-type 𝑛-groupoid

Figure 5.1: Competing terminologies for homotopy levels.

IsOfHLevel 0 𝐴 = IsContr 𝐴
IsOfHLevel (suc 𝑛) 𝐴 = (𝑎 𝑏 : 𝐴) → IsOfHLevel 𝑛 (Id(𝐴, 𝑎, 𝑏))

It is natural (pun intended) to start numbering h-levels at 0, although this has the

unfortunate consequence of disagreeing with our numbering scheme for HasU(IP)𝑛
which starts at −1. Worse yet, mathematicians have yet a third numbering scheme for

homotopy levels, called homotopy 𝑛-types;3 see Figure 5.1 for reference.

Remark 5.2.16. The h-level numbering scheme is common in homotopy type theory

but nowhere else; as far as we know, the HasU(IP)𝑛 numbering scheme is unique to

our book, where it is introduced purely for pedagogical reasons. For most purposes

we strongly recommend following the standard numbering of homotopy 𝑛-types. ⋄

The theory of h-levels contains many of the most important lemmas in homotopy

type theory. We will briefly sketch some of the main results and direct the reader to

Chapter 7 of the HoTT Book [UF13] or Chapter 12 of Rijke [Rij22] for more information.

Exercise 5.9. Show that IsOfHLevel 𝑛 𝐴 is a proposition for all 𝐴, and conclude that

IsHProp(𝐴) is a proposition. (Hint: use induction, Lemma 5.2.9, and Exercise 5.2.)

Exercise 5.9 suggests that we can define universes of types of h-level 𝑛 as the

subtypes of each U𝑖 spanned by types satisfying IsOfHLevel𝑛. A particularly important

example is the universe of types with HasUIP (i.e., of h-level 2), also known as h-sets.

HSet𝑖 : U𝑖+1
HSet𝑖 =

∑
𝐴:U𝑖 HasUIP(𝐴)

In Corollary 2.7.12 we showed that propositions in ETT are closed under various

connectives. Generalizations of those statements hold for h-levels in HoTT:

• IsOfHLevel 0 Unit, IsOfHLevel 1 Void, and IsOfHLevel 2 Bool.
3
As discussed in Section 4.3.2.1, types satisfyingUIPIP correspond to 1-groupoids, and types satisfying

UIP correspond to 0-groupoids or ordinary sets, suggesting that contractible types are (−2)-groupoids.
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• IsOfHLevel 𝑛 (Id(𝐴, 𝑎, 𝑏)) if IsOfHLevel (suc 𝑛) 𝐴.

• IsOfHLevel 𝑛 ((𝑎 : 𝐴) → 𝐵(𝑎)) if (𝑎 : 𝐴) → IsOfHLevel 𝑛 (𝐵(𝑎)).

• IsOfHLevel 𝑛 (∑𝑎:𝐴 𝐵(𝑎)) if IsOfHLevel 𝑛 𝐴 and (𝑎 : 𝐴) → IsOfHLevel 𝑛 (𝐵(𝑎)).

• IsOfHLevel (suc 𝑛) 𝐴 if IsOfHLevel 𝑛 𝐴.

Exercise 5.10. Show that HSet𝑖 is closed under Π-types and Σ-types. Is it also closed

under Id-types? Why or why not?

Refuting UIP We have seen now that many types in HoTT satisfy HasUIP, but a
direct consequence of univalence is that U0 is not one of them.

Theorem 5.2.17. U0 is not an h-set, i.e., HasUIP(U0) → Void is inhabited.

Proof. Suppose 𝜙 : HasUIP(U0), and recall from Section 5.2.1 that the univalence

principle for U0 implies—in fact, is interprovable with—the statement

(𝐴 𝐵 : U0) →
∑

ua:(𝐴≃𝐵)→Id (U0,𝐴,𝐵) ((𝑒 : 𝐴 ≃ 𝐵) → Id(𝐴→ 𝐵, coe (ua 𝑒), fst(𝑒)))

In particular, every equivalence (𝑓 , pf ) : Bool ≃ Bool induces an identification

ua (𝑓 , pf ) : Id(U0,Bool,Bool) such that coe (ua (𝑓 , pf )) is identified with 𝑓 .

Applying the above to the two equivalences idBool, not : Bool → Bool, the latter
being the map sending true to false and vice versa (which can be shown to be an

equivalence), we obtain identifications 𝑝, 𝑞 : Id(U0,Bool,Bool) for which Id(Bool →
Bool, coe 𝑝, idBool) and Id(Bool → Bool, coe 𝑞, not).

On the other hand, by 𝜙 : HasUIP(U0) we have an identification between 𝑝 and 𝑞:

𝛼 : Id(Id(U0,Bool,Bool), 𝑝, 𝑞)
𝛼 = fst(𝜙 Bool Bool 𝑝 𝑞)

Thus cong coe 𝛼 is an identification between coe 𝑝 and coe 𝑞, and by symmetry and

transitivity we obtain an identification 𝛽 : Id(Bool → Bool, idBool, not). But then
happly 𝛽 true : Id(Bool, true, false), from which we derive a contradiction. □

The above argument is not specific to Bool, but it does require that U0 contain

at least one type with provably distinct elements—that is, that U0 contain a non-

proposition. (Indeed, the univalent universe HProp is an h-set!) Similarly, given that

U1 contains the type U0 which is not an h-set, by a more sophisticated version of this

argument due to Kraus and Sattler [KS15], one can show that U1 is not a 1-groupoid.

Iterating this process, for any 𝑖 ∈ N the type U𝑖 does not have h-level 𝑖 + 2.
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Theorem 5.2.18 (Kraus and Sattler [KS15]). For every external natural number 𝑖 ∈ N,
the type IsOfHLevel (suc𝑖+2(zero)) U𝑖 → Void is inhabited in HoTT.

Corollary 5.2.19. HoTT does not validate the axiom U(IP)𝑛 for any 𝑛.

One consequence of Theorem 5.2.18 is that every type in HoTT is equipped with a

infinite tower of non-trivial Id-types. These identifications are symmetric and transitive,

but groupoid laws such as symsym (Lemma 4.1.7) and associativity hold only weakly,
or up to higher identifications. Remarkably, such “infinite dimensional” towers of

identifications—which in type theory exist as a consequence of J without UIP—are
known in mathematics as∞-groupoids, where they were introduced to abstract the

structure of arbitrary-dimensional paths in topological spaces [Por21]. (See Sections

2.1–2.4 of the HoTT Book [UF13] for more on this perspective.)

Remark 5.2.20. The branch of mathematics devoted to∞-groupoids and their gener-

alizations is known as homotopy theory, and∞-groupoids are also known as homotopy
types. The name “homotopy type theory” is a pun in which “type” refers both to

homotopy types and to type theory. ⋄

Advanced Remark 5.2.21. The homotopical perspective on type theory sheds light on

many mysterious aspects of Id-types. In particular, people often struggle to reconcile

Id-elimination—which states that maps out of 𝑎 : 𝐴,𝑏 : 𝐴, 𝑝 : Id(𝐴, 𝑎, 𝑏) are controlled
by their behavior on refl—with the existence of provably non-refl identifications. In

homotopy theoretic terms, Id-elimination expresses that the inclusion of𝐴 into its path

space 𝑃𝐴 =
∑
𝑎,𝑏:𝐴 Id(𝐴, 𝑎, 𝑏) is a trivial cofibration, which is perfectly compatible with

𝐴 having non-trivial paths, whereas UIP expresses that the free loop space fibration

Ω𝐴→ 𝐴 is a trivial fibration, which holds only when 𝐴 is a discrete space (set). ⋄

5.2.3 Higher inductive types

Although the behavior of identifications in HoTT mirrors the behavior of paths in

topological spaces, univalent universes are thus far the only source of non-trivial paths

(or non-h-sets) in the theory. To take more advantage of the connection between

Id-types and topology, most users of HoTT consider a further extension of type theory

known as higher inductive types (HITs), a form of inductive type generated not only

by (ordinary) “point” constructors but also “path” constructors, freely-added elements

of their Id-types. HITs allow us to axiomatize many important topological spaces in

HoTT, although we note that they do increase the strength of the theory: the HITs in

this section allow us to construct types with no finite h-level (i.e.,

∑
𝐴:U (𝑛 : Nat) →

IsOfHLevel 𝑛 𝐴→ Void) which is not possible with only univalence [KS15].
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As in Section 2.5 we will define several representative HITs, namely the circle,

suspensions, and set truncations, and make no attempt to develop a general schema

for higher inductive definitions [CH19].

5.2.3.1 The circle type

Our first example of a HIT is S1, the type “generated by a point pt : S1 and a path

loop : Id(S1, pt, pt).” If we depict paths as arrows between points, S1 is a circle:

pt • loop

As in Section 2.5, it is clear that postulating the circle must involve postulating the

type former S1 itself along with its two constructors pt and loop:

S1 : U
pt : S1

loop : Id(S1, pt, pt)

and the difficulty lies entirely in specifying its elimination principle, which captures

the idea that S1 is in some sense “generated” or “determined” by pt and loop.
Of course, unlike in Section 2.5, the loop constructor of S1 has type Id(S1, pt, pt)

rather than S1 itself. We make sense of this by thinking of identifications in S1 as part
of the higher structure of S1 itself rather than as elements of some unrelated type, even

though we can only “access” these identifications with Id-types.

Remark 5.2.22. We already saw in Section 2.5 that ordinary inductive types have terms

that are not constructors, such as variables q ∈ Tm(Γ.Bool,Bool). Path constructors

further complicate this situation: by applying Id-type operations such as sym and

trans to loop, we can obtain infinitely many elements of Id(S1, pt, pt)—even in the

empty context—that are provably not identified with loop! For this reason we say S1 is
generated by pt and loop, as even internally one can see that it has non-loop paths. ⋄

As with ordinary inductive types, the introduction data allows us to define a

canonical evaluation map which applies any function S1 → 𝐴 to the constructors:

evalS1 : {𝐴 : U} → (S1 → 𝐴) → ∑
𝑎:𝐴 Id(𝐴, 𝑎, 𝑎)

evalS1 𝑓 = (𝑓 pt, cong 𝑓 loop)

with the caveat that “applying” 𝑓 : S1 → 𝐴 to loop : Id(S1, pt, pt) requires cong. The
(non-dependent) elimination principle expresses that maps S1 → 𝐴 are determined by

their behavior on constructors, which we formalize by asking for a section to evalS1 :



184 Univalent type theories (2025-07-19)

recS1 : {𝐴 : U} → ∑
𝑎:𝐴 Id(𝐴, 𝑎, 𝑎) → (S1 → 𝐴)

recS1 IsSection : Id((∑𝑎:𝐴 Id(𝐴, 𝑎, 𝑎)) → (∑𝑎:𝐴 Id(𝐴, 𝑎, 𝑎)), evalS1 ◦ recS1, id)

Unfolding the above, recS1 is a “recursion principle” for S1 which states that for any

type𝐴, maps S1 → 𝐴 are defined by a choice of point 𝑎 : 𝐴 and path 𝑝 : Id(𝐴, 𝑎, 𝑎), and
recS1 IsSection states that we have two “𝛽-rule” identifications: between recS1 (𝑎, 𝑝) pt
and 𝑎, and (roughly) between cong (recS1 (𝑎, 𝑝)) loop and 𝑝 .

It is natural to wonder whether these “𝛽-rules” should be definitional equalities

rather than just identifications. It is certainly more convenient to make them defini-

tional; in the absence of a definitional equality recS1 (𝑎, 𝑝) pt = 𝑎, the left-hand side of

the second 𝛽-rule, cong (recS1 (𝑎, 𝑝)) loop, actually has type

Id(𝐴, recS1 (𝑎, 𝑝) pt, recS1 (𝑎, 𝑝) pt)

whereas the right-hand side has type Id(𝐴, 𝑎, 𝑎), so subst is required to even state the

second 𝛽-rule. On the other hand, it would be quite strange to include a definitional

equality that mentions cong—a user-defined function that exists independently of

S1—and moreover the intended models of higher inductive types often do not validate

the second 𝛽-rule definitionally [LS19].

There is no fully satisfactory solution to this problem in Book HoTT, but the

standard compromise is to assert 𝛽-rules on points as definitional equalities, and 𝛽-

rules on paths as holding only up to identification [UF13]. For simplicity, we will

continue treating all 𝛽-rules of HITs as holding only up to identification.

Stating the dependent elimination principle for S1 requires us to generalize the

evaluation map to dependent functions out of S1:

devalS1 : (𝐴 : S1 → U) → ((𝑥 : S1) → 𝐴 𝑥) → ∑
𝑎:𝐴 pt Id(𝐴 pt, subst 𝐴 loop 𝑎, 𝑎)

devalS1 𝐴 𝑓 = (𝑓 pt, dcong 𝑓 loop)

Before arriving at the eliminator, we can simplify matters slightly by recalling that

in Section 2.5.5 we showed that 𝜂-rules for inductive types hold whether or not they

are added explicitly. That argument took place in ETT and used equality reflection

to derive judgmental 𝜂-rules, but in HoTT one can replay a prefix of that argument

and conclude that asking for a family of sections to devalS1 is the same as asking for

devalS1 to be an equivalence; in both cases, the second round trip is automatic.

Summing up, our specification of the circle HIT therefore consists of a type S1 : U,

constructors pt : S1 and loop : Id(S1, pt, pt), and the following elimination principle:

EliminationS1 : (𝐴 : S1 → U) → isEquiv(devalS1 𝐴)

The inverse map to devalS1 𝐴 is of course the dependent eliminator for S1, and the two
round trips unfold precisely to identifications expressing the 𝛽- and 𝜂-laws.
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Remark 5.2.23. Yet again we are asking for a canonical map to be an equivalence;

phrasing S1-elimination in this way bundles the eliminator and its 𝛽- and 𝜂-laws into

a very concise package which is moreover a proposition. ⋄

We conclude our discussion of the circle by using univalence to prove that the

loop constructor is not identified with refl, and thus that S1 is not an h-set.

Lemma 5.2.24. S1 is not an h-set; in particular, Id(Id(S1, pt, pt), loop, refl) → Void.

Proof. Using S1-elimination, we can define a function 𝑓 : S1 → U sending pt to Bool
and loop to the path ua not : Id(U,Bool,Bool) induced by univalence applied to

not : Bool ≃ Bool, reusing notation from the proof of Theorem 5.2.17. Suppose loop
and refl are identified. Then cong 𝑓 loop and cong 𝑓 refl would be identified, and in

turn ua not and refl would be identified. But coe (ua not) is not and coe refl is idBool ,

and as we have already seen in the proof of Theorem 5.2.17, these are not identified. □

The proof of Lemma 5.2.24 makes essential use of univalence. In the absence of

univalence, the rules for S1 can be validated in the set model of ITT—and are thus

consistent with global UIP—by interpreting S1 as a one-element set. In type theories

with UIP, higher inductive types do not behave as topological spaces but rather as

inductive types subject to equations (or “data types with laws” [Tur85]). Because there

is nothing “higher” about such HITs, they are often called quotient inductive types
(QITs); the reader has already met one, namely propositional truncation (Section 2.7.3).

Exercise 5.11. Write down a specification of Bool in the style of our specification of

S1, then show that the usual rules for Bool imply that devalBool : (𝐴 : Bool → U) →
((𝑏 : Bool) → 𝐴 𝑏) → (𝐴 true ×𝐴 false) is an equivalence for all 𝐴.

Exercise 5.12. Show that if 𝐵 : U, 𝑏𝑡 , 𝑏 𝑓 : 𝐵, and the evaluation map (𝐴 : 𝐵 → U) →
((𝑏 : 𝐵) → 𝐴 𝑏) → (𝐴 𝑏𝑡 ×𝐴 𝑏 𝑓 ) is an equivalence for all 𝐴, then 𝐵 ≃ Bool.

5.2.3.2 Suspensions

Our next example of a HIT is the suspension Susp 𝐴 of a type 𝐴, which is generated

by two point constructors north, south : Susp 𝐴 and a family of path constructors

merid : (𝑎 : 𝐴) → Id(Susp 𝐴, south, north). The intuition behind these strange

constructor names is that Susp 𝐴 can be pictured as a globe consisting of a north and

south pole joined by a meridian path for every 𝑎 : 𝐴.

As with the circle, we start our specification of Susp 𝐴 by postulating constructors:

Susp : U → U
north : {𝐴 : U} → Susp 𝐴
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south : {𝐴 : U} → Susp 𝐴
merid : {𝐴 : U} → (𝑎 : 𝐴) → Id(Susp 𝐴, south, north)

Using these constructors we define a dependent evaluation map, noting that (as in

coproduct types and Nat) evaluation at merid is parameterized by 𝑎 : 𝐴.

devalSusp : {𝐴 : U} → (𝐵 : Susp 𝐴→ U) → ((𝑥 : Susp 𝐴) → 𝐵 𝑥) →∑
𝑏𝑠 :𝐵 south

∑
𝑏𝑛 :𝐵 north(𝑎 : 𝐴) → Id(𝐵 north, subst 𝐵 (merid 𝑎) 𝑏𝑠 , 𝑏𝑛)

devalSusp 𝐵 𝑓 = (𝑓 south, 𝑓 north, 𝜆𝑎 → dcong 𝑓 (merid 𝑎))

Finally, the elimination principle states that evaluation is an equivalence for all 𝐴, 𝐵.

EliminationSusp : {𝐴 : U} → (𝐵 : Susp 𝐴→ U) → isEquiv(devalSusp 𝐵)

Suspensions are an important tool in homotopy theory.

Exercise 5.13. Show that S1 ≃ Susp Bool. (Hint: draw a picture.)

In fact one can define 𝑛-spheres S𝑛 as the 𝑛-fold suspensions of Bool: the 1-sphere

is the circle, the 2-sphere S2 = Susp (Susp Bool) is the ordinary sphere, and so forth.

S− : Nat → U
S0 = Bool
Ssuc(𝑛) = Susp S𝑛

Lemma 5.2.24 generalizes to the statement that S𝑛 refutes IsOfHLevel (suc 𝑛) for
all 𝑛 : Nat [UF13, Theorem 8.6.17]. As a result, the disjoint union of all 𝑛-spheres is a

single type with no finite h-level, resolving the remark at the start of this section.
4

Corollary 5.2.25. For all𝑚 : Nat, the type
∑
𝑛:Nat S

𝑛 does not have h-level𝑚.

5.2.3.3 Set truncations

For our final example of HITs we consider set truncations |𝐴|, which are considerably

more complex than S1 and Susp due to having a recursive path constructor. In our

last encounter with recursive constructors—namely suc : Nat → Nat in Section 2.5.4—

we needed to phrase the mapping out property of Nat in terms of displayed algebra

homomorphisms out of an initial algebra; the same will be true here.

The set truncation |𝐴| of a type 𝐴 has two constructors, starting with a point

[𝑎] : |𝐴| for every 𝑎 : 𝐴. Then, for every pair of paths 𝑝, 𝑞 : Id( |𝐴|, 𝑥,𝑦) in the set

truncation itself, it has a path trunc 𝑝 𝑞 between those two paths.

4
In the standard model of HoTT, even S2

does not have finite h-level. To the authors’ knowledge, it

is still open whether this classic result of Serre [Ser53] can be shown inside HoTT.



(2025-07-19) Homotopy type theory 187

|_| : U → U
[_] : {𝐴 : U} → 𝐴→ |𝐴|
trunc : {𝐴 : U} {𝑥 𝑦 : |𝐴|} → (𝑝 𝑞 : Id( |𝐴|, 𝑥,𝑦)) → Id(Id( |𝐴|, 𝑥,𝑦), 𝑝, 𝑞)

Because we think of the Id-types of a HIT as part of its specification, we consider not

only 𝑥,𝑦 : |𝐴| but also 𝑝, 𝑞 : Id( |𝐴|, 𝑥,𝑦) as recursive arguments of trunc.
To specify the elimination principle we must adapt the notions of (displayed)

algebra and (displayed) algebra homomorphism from Section 2.5.4 to the HIT setting.

Skipping to the end of this process, for each 𝐴 : U we define displayed algebras over
( |𝐴|, [−], trunc) as triples (𝐵,𝑏, 𝛽) of:

• a type 𝐵 : |𝐴| → U,

• a function 𝑏 : (𝑎 : 𝐴) → 𝐵 [𝑎], and

• a function 𝛽 which for any 𝑥,𝑦 : |𝐴|, 𝑥 : 𝐵(𝑥), 𝑦 : 𝐵(𝑦), 𝑝, 𝑞 : Id( |𝐴|, 𝑥,𝑦),
𝑝 : Id(𝐵(𝑦), subst 𝐵 𝑝 𝑥,𝑦), and 𝑞 : Id(𝐵(𝑦), subst 𝐵 𝑞 𝑥,𝑦) produces an identifi-

cation Id(Id(𝐵(𝑦), subst 𝐵 𝑞 𝑥,𝑦), 𝑝′, 𝑞) where

𝑝′ = subst (𝜆𝑟 → Id(𝐵(𝑦), subst 𝐵 𝑟 𝑥,𝑦)) (trunc 𝑝 𝑞) 𝑝

and displayed algebra homomorphisms from ( |𝐴|, [−], trunc) to (𝐵,𝑏, 𝛽) as functions
𝑓 : (𝑥 : |𝐴|) → 𝐵(𝑥) that send [−] to 𝑏 and trunc to 𝛽 in an appropriate sense.

These definitions are mechanically derivable from the constructors but are admit-

tedly rather unwieldy. There is however a considerably simpler perspective in the case

of set truncation, starting from the observation that the constructors for |𝐴| are just a
pair of a map [−] : 𝐴→ |𝐴| and a proof trunc : HasUIP |𝐴| that |𝐴| is an h-set.

Lemma5.2.26 (Lemma 6.9.1 [UF13]). Adisplayed algebra (𝐵,𝑏, 𝛽) over ( |𝐴|, [−], trunc)
is equivalently a type 𝐵 : |𝐴| → U, a function 𝑏 : (𝑎 : 𝐴) → 𝐵 [𝑎], and a proof that 𝐵(𝑥)
is an h-set for every 𝑥 : |𝐴|.

Combining the first and third data, we may define the type DAlgebra of displayed
algebras as pairs of a family of h-sets 𝐵 : |𝐴| → HSet and a function𝑏 : (𝑎 : 𝐴) → 𝐵 [𝑎].

DAlgebra : U → U
DAlgebra 𝐴 =

∑
𝐵: |𝐴 |→HSet (𝑎 : 𝐴) → 𝐵 [𝑎]

Given a displayed algebra (𝐵,𝑏) : DAlgebra 𝐴, we define displayed algebra homomor-

phisms from |𝐴| to (𝐵,𝑏) as functions 𝑓 : (𝑥 : |𝐴|) → 𝐵(𝑥) that send [𝑎] to 𝑏 𝑎. (The
requirement that 𝑓 send trunc to 𝛽 is automatic because the type of 𝛽 is a proposition.)

DAlgebraHom : (𝐴 : U) → DAlgebra 𝐴→ U
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DAlgebraHom 𝐴 (𝐵,𝑏) = ∑
𝑓 :(𝑥 : |𝐴 | )→𝐵 (𝑥 ) Id((𝑎 : 𝐴) → 𝐵 [𝑎], 𝑏, 𝜆𝑎 → 𝑓 [𝑎])

In Section 2.5.4, the elimination principle for Nat stated that for every displayed

algebra (𝐴, 𝑎𝑧, 𝑎𝑠) over (Nat, zero, suc(−)) there is a unique displayed algebra homo-

morphism from the latter to the former. The analogous condition here is that the type

of such displayed algebra homomorphisms is contractible.

Elimination |− | : {𝐴 : U} → (𝐵̃ : DAlgebra 𝐴) → IsContr(DAlgebraHom 𝐴 𝐵̃)

Anotherway to phrase the elimination principle is to ask that for all𝐵 : |𝐴| → HSet,
precomposition by [−] determines an equivalence:

comp : {𝐴 : U} → (𝐵 : |𝐴| → HSet) → ((𝑥 : |𝐴|) → 𝐵 𝑥) → ((𝑎 : 𝐴) → 𝐵 [𝑎])
comp 𝐵 𝑓 𝑎 = 𝑓 [𝑎]

Elimination′|− | : {𝐴 : U} → (𝐵 : |𝐴| → HSet) → IsEquiv(comp 𝐵)

In Section 2.7.3 we said that the propositional truncation of 𝐴 is the proposition

that most closely approximates the type 𝐴. As one might expect, the set truncation of

𝐴 is likewise the h-set that most closely approximates 𝐴.

Theorem 5.2.27. For all 𝐴 : U and 𝐵 : HSet, (𝐴→ 𝐵) ≃ (|𝐴| → 𝐵).

Proof. This is exactly the non-dependent case of Elimination′|− | . □

Propositional truncation and set truncation are the first two in a series of 𝑛-
truncation operations that best approximate 𝐴 by an 𝑛-type. In practice, propositional

truncation ((−1)-truncation) and set truncation (0-truncation) come up most often.

5.2.4 Applications of homotopy type theory

Higher inductive types and univalent universes (of non-propositions) are rather exotic

features for which many users of type theory lack intuition, so it is reasonable to

wonder how they came about and what makes them interesting. Unfortunately, an

early attempt to motivate univalence proved too much of a digression to include in

this book, so instead we close this section by outlining three major applications of

homotopy type theory in an attempt to convey a sense of the field.
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Synthetic homotopy theory One of the earliest recognized applications of HoTT

was as a framework for reasoning synthetically or axiomatically about homotopy types,

as opposed to the traditional practice of working with respect to a particular “analytic”

realization of homotopy types as topological spaces, Kan complexes, etc. To this end, it

is natural to wonder howmany classical results about homotopy types may be replayed

within HoTT, starting with foundational results from algebraic topology (a field which

classifies topological spaces by means of algebraic invariants).

In algebraic topology, the fundamental group 𝜋1(𝑋, 𝑥) of the space𝑋 based at 𝑥 ∈ 𝑋
is the set of homotopy equivalence classes of loops based at 𝑥 , with loop concatenation

as its multiplication. Within type theory, we can define the fundamental group of

𝑋 : U based at 𝑥 : 𝑋 as the set truncation of the space of identifications of 𝑥 with itself,

i.e., 𝜋1(𝑋, 𝑥) = |Id(𝑋, 𝑥, 𝑥) |. Armed with this definition, a more complex version of

our proof that the circle is not an h-set (Lemma 5.2.24) establishes a standard result:

Theorem 5.2.28 (Licata and Shulman [LS13]). The fundamental group of the circle,
𝜋1(S1, pt), is isomorphic to the integers under addition.

In other words, not only is loop distinct from refl, but (up to identification) the type
Id(S1, pt, pt) consists precisely of all the 𝑛-fold compositions of loop, i.e., the 𝑛-fold
applications of trans to loop and sym loop.

It is worth noting that the HoTT proof of Theorem 5.2.28 is very different from

the standard proof one might encounter in an algebraic topology course, as it relies on

a univalent universe and makes no reference to real numbers or even topology (e.g.,

the Lebesgue covering lemma). This is to be expected, as constructions inside HoTT

are valid in any Grothendieck∞-topos and not just topological spaces [Shu19].

Descent and colimits The role of univalent universes in characterizations of higher

inductive types such as Theorem 5.2.28 is part of the higher-categorical phenomenon

of descent, in which universes improve the behavior of colimits.

In topology, space-indexed families (such as vector bundles or covering spaces)

are typically encoded as a “total space” 𝑌 equipped with a continuous projection map

𝜋 : 𝑌 → 𝑋 to the indexing space𝑋 , where the value of the family at 𝑥 ∈ 𝑋 is recovered

as the preimage 𝜋−1(𝑥). This suggests that there are two ways to encode 𝑋 -indexed

families of types in type theory: as the usual maps into the universe 𝑋 → U or as

maps into 𝑋 , Fam(𝑋 ) = ∑
𝑌 :U 𝑌 → 𝑋 . Univalence implies that these definitions agree

in the sense that Fam(𝑋 ) ≃ (𝑋 → U), and in fact univalence is interprovable with

this equivalence (along with function extensionality and propositional univalence).

In the case of 𝑋 = S1, by combining the above equivalence with the elimination

principle for the circle at U, we can prove that S1 is equivalent to what homotopy

theorists know as the classifying space of Z-torsors.
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Theorem 5.2.29. There is an equivalence (∑𝑌 :U 𝑌 → 𝑆1) ≃ (∑𝑌0:U 𝑌0 ≃ 𝑌0).

More generally, this equivalence allows us to characterize maps into homotopy

colimits—types with mapping out properties—by transforming them into maps out of
those types and applying the elimination principle specialized to a univalent universe.

Some descent-type theorems hold in the absence of univalence. For instance, our

proof that universes imply the disjointness of booleans (Theorem 2.6.3) is descent for

coproducts, which holds in ETT (and sets). However, it is only in HoTT (and∞-topoi)
that descent holds for all colimits such as S1, the homotopy pushout 1← (1 ⊔ 1) → 1.

Structure Identity Principle A third and perhaps more familiar application of

univalence is the structure identity principle (SIP), which states that identifications of

structured types are equivalent to structure-preserving equivalences [CD13].

Suppose we define the type of monoids in HoTT in the usual way, as tuples of an

h-set𝑋 along with an identity element 𝑒 : 𝑋 , a binary multiplication _·_ : 𝑋 → 𝑋 → 𝑋 ,

and proofs that the multiplication is unital and associative. (We require that the carrier

is an h-set to ensure that the identifications are propositions and not interesting data.)

Mon =
∑
𝑋 :HSet

∑
𝑒 :𝑋

∑
_·_:𝑋→𝑋→𝑋 ((𝑥 : 𝑋 ) → Id(𝑋, 𝑥 · 𝑒, 𝑥) × Id(𝑋, 𝑒 · 𝑥, 𝑥)) ×

((𝑥 𝑦 𝑧 : 𝑋 ) → Id(𝑋, 𝑥 · (𝑦 · 𝑧), (𝑥 · 𝑦) · 𝑧))

Remarkably, a direct consequence of univalence (as well as some standard Id-type
manipulations such as Lemma 5.2.12) is that identifications of monoids are equivalent

to monoid isomorphisms. In other words, the type theory has somehow “predicted”

the correct notion of sameness for monoids!

Theorem 5.2.30. For all 𝑋,𝑌 : Mon, the type of identifications Id(Mon, 𝑋,𝑌 ) is equiv-
alent to the type of monoid isomorphisms between 𝑋 and 𝑌 , or equivalences of the
carriers fst(𝑋 ) ≃ fst(𝑌 ) sending the unit and multiplication of 𝑋 to those of 𝑌 .

As a consequence, because all constructions within type theory respect identifica-

tion, all constructions on monoids automatically transfer across monoid isomorphisms.

Corollary 5.2.31. Any property of monoids 𝑃 : Mon→ U respects monoid isomorphism.

Although we have illustrated the SIP as it applies to monoids, analogous statements

hold not only for all algebraic structures on h-sets but even for (higher) categories and

many other structures up to the appropriate notion of equivalence [Ahr+25].
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5.3 Cubical type theory (draft)

Thus far in this chapter, we have introduced the univalence axiom and studied a

few of its consequences. Hopefully the reader has been convinced that this is an

interesting principle with which to extend type theory and that it at least offers partial

compensation for the loss of the extensional equality type. However, so far we have

considered only the extension of ITT by an simple axiom to obtain univalence and,

consequently, the resulting theory does not satisfy canonicity.

In particular, it is not difficult to encounter interesting closed elements of type Nat
which are constructed via univalence, but in core HoTT these programs cannot be

evaluated to closed numerals. Famously, Brunerie [Bru18] gave a concise construction

of an element of the type

∑
𝑛:Nat 𝜋4(𝑆3) = Z/𝑛Z but the lack of canonicity meant

that actually working out the concrete 𝑛 : Nat for which this equation held was

considerably more difficult [Bru16]. This is far from the only example: the proof that

𝜋1(𝑆1) ≃ Z referenced in Section 5.2 ought to give an algorithm for computing the

winding number of a map 𝑆1 → 𝑆1
, but this algorithm can only be run if canonicity

holds.

Remark 5.3.1. In fact, in Section 5.2 we assumed function extensionality along with

univalence. A more careful account would allow us to derive the former from the latter

and in fact our solution to canonicity and univalence will handle funext en passant. ⋄

At first, one might hope that this problem can be fixed “locally” and that one can

simply add a definitional equality to ua to recover canonicity. Unfortunately, no such

obvious equalities present themselves. A moment’s contemplation will reveal how

while there is a reasonable candidate for coe applied to ua(. . . ), the general case of
J and ua is far murkier; such an equation must correctly handle, for instance, the

application of sym and trans to ua along with any other number of constructions.

More generally, we justified our definition of Id around the idea that every element of

Id(𝐴, 𝑎, 𝑏) was controlled by refl, but this is simply no longer the case in the presence

of ua.
Accordingly, our approach to balancing canonicity alongside univalence will in-

volve a more global and radical change. We shall reimagine the intensional identity

type in order to give it a new mapping in property which gives us the flexibility

we need to implement univalence. The result of these changes will be cubical type

theory [CCHM18; AFH18; Ang+21].

Unfortunately, cubical type theory is vastly more complex than any other type

theory we have discussed in this book. Accordingly, we cannot realistic present in the

same detail that we have given to ETT or ITT. Our compromise is to introduce what

we term core cubical type theory in this section. We detail the required modifications to
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the judgmental structure of type theory, present the additional operations necessary

to manipulate them, and sketch how these operations behave and can be used to

implement univalence. The last step, however, will mostly be cursory and we will

omit most of the rules governing these operations. We do, however, return to them in

Section 5.4 where we discuss some of these details more thoroughly (though still not in

the entirety). Our goal is to provide a working knowledge of cubical type theory, rather

than a precise account. For the latter, we refer the reader to Angiuli et al. [Ang+21]

which does include a more exhaustive account of the theory.

The basis of cubical type theory In this section, we discuss the rules that must

be added to intensional type theory in order to arrive at cubical type theory. For

concreteness, we will take our base type theory to type theory without any sort of

identity type. It is possible to include the intensional identity type as it is possible to

extend cubical type theory with indexed inductive types more generally. However, we

shall set about to find a better behaved identity type (path types) and so its inclusion is

superfluous.

5.3.1 A judgmental structure for identity types

We begin by convincing ourselves that the judgmental structure of cubical type theory

is, in fact, helpful for our problem of giving the identity type a mapping-in property.

We begin by observing that we have already attempted to provide an identity type with

such a characterization: this was the extensional identity type we moved away from

in Chapter 4. There is not an obvious alternative judgmental structure in intensional

type theory for the identity type to internalize, so we shall invent one.

This entire process will be broken up into two steps:

1. introduce a new form of judgment and define the new identity type to internalize

it,

2. equip each type with additional operations such that this new identity type can

implement the expected operations.

We shall eventually see that the first step occupies our attention in Section 5.3.2,

while the second takes up Sections 5.3.4 and 5.3.6

It is notable that these two steps are actually distinct: with both the intensional and

extensional identity types, once we fixed the judgmental structure we internalized all

the rules of the identity type came more-or-less for free. In fact, the same will be true

here: the second step does not alter the behavior of the identity type per se. The issue
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is that the judgmental structure being internalized is no longer definitional equality

and so we must add additional structure to all types in order to ensure that this new

structure is a useful approximation of equality.

More heuristically, we cannot internalize actual judgmental equality via a mapping-

in property and so we internalize a new judgmental structure for identifications. We

then attempt to paper over the difference between these new judgmental identifica-

tions and actual definitional equality by equipping every single type with additional

operations ensuring the former is closer to the latter.

Notation 5.3.2. With an eye towards cubical type theory, we will refer to our new iden-

tity type as a path type and write Path(𝐴, 𝑎, 𝑏) and occasionally refer to identifications

as paths.

In particular, it is only after both steps are completed that we will have a replace-

ment for Id that we can contemplate using for univalence. There is a degree of flexibility

in how we draw the line between these two steps in cubical type theory. We can make

the judgmental structure relatively light-weight by making the operations on types

more onerous or vice versa. This division is the source of the differences between the

various flavors of cubical type theory, but overall the differences are slight. We will

choose to follow Angiuli et al. [Ang+21] and adopt a relatively minimal judgmental

structure at the expense of slightly more complex operations on types.

Let us warm up by considering a direct approach following Licata and Harper

[LH12] loosely. We need a new judgment to internalize identifications, so let us simply

introduce a new sort of identifications 𝛼, 𝛽,𝛾 which reify identifications and a new

judgment Γ ⊢ 𝛼 : 𝑎 = 𝑏 : 𝐴 stating that 𝛼 is such an identification between 𝑎, 𝑏 : 𝐴. As

usual, we will write Id(Γ, 𝑎, 𝑏, 𝐴) for the set of 𝛼 satisfying Γ ⊢ 𝛼 : 𝑎 = 𝑏 : 𝐴. The idea is

that we can now at least easily define Path(𝐴, 𝑎, 𝑏) via the follow natural isomorphism:

Tm(Γ, Path(𝐴, 𝑎, 𝑏)) � Id(Γ, 𝑎, 𝑏, 𝐴)

This completes our goal of defining Path(𝐴, 𝑎, 𝑏) and it yields all the necessary

rules for this type. The reader will immediately notice, however, that this type is

impossible to use and absolutely not a substitute for the identity type. Indeed, just

because we claimed that Γ ⊢ 𝛼 : 𝑎 = 𝑏 : 𝐴 reifies identifications does nothing to

actually force 𝛼 to behave like any sort of equality. We have only shifted the work

into specifying this judgment. For instance, we might choose to include a “reflexivity

identification” via the following rule:

Γ ⊢ 𝑎 = 𝑏 : 𝐴

Γ ⊢ reflId : 𝑎 = 𝑏 : 𝐴
✎
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Of course, this cannot be the only rule governing our new judgment; the point of

this exercise was to allow for additional identifications (such as ua) to arise naturally.

In order to do this, we can simply add other inference rules to this judgment! While

we do not detail the process here, the reader can imagine that e.g., an identification of

pairs can be constructed from identifications of components.

These rules ensure that we can construct elements of Path(𝐴, 𝑎, 𝑏), but do not

actually give us much leverage in using elements of this new type. Our elimination rule

for Path(𝐴, 𝑎, 𝑏) lets us conclude that there is some identification between 𝑎 and 𝑏, but

this is of limited use: there is nothing like J for identifications or even the equivalent

of subst.
Before when identity types internalized definitional equality, we relied on the fact

that everything in type theory was automatically congruent and substitutive with

respect to definitional equality. Now we are internalizing identifications and nothing

forces types in our theory to respect identifications in the same way. This is what the

second step of the procedure above referred to: we will require additional operations

on terms to bridge this gap. For instance, for each type family Γ.𝐴 ⊢ 𝐵 type there
must be an equivalent of subst which sends identifications Γ ⊢ 𝛼 : 𝑎 = 𝑏 : 𝐴 to maps

between 𝐵(𝑎) and 𝐵(𝑏).
However, we will not attempt to unfold this further. The problem is that it is

difficult to present the full set of rules governing Γ ⊢ 𝛼 : 𝑎 = 𝑏 : 𝐴 as well as to

present the set of operations all types must enjoy in order to force them to respect

identifications. The first problem is the most serious and stems from our desire to

support univalence. If we are to have univalence, then we know that there will be

elements 𝑎, 𝑏 : 𝐴 such that the collection of identifications between 𝑎 and 𝑏 contains

distinct elements and, accordingly, we will quickly run into the need for non-trivial

identifications between identifications.

In fact, one can imagine these arising even without univalence: we had discussed

that a pair of identifications Γ ⊢ 𝛼 : 𝑎 = 𝑎′ : 𝐴 and Γ ⊢ 𝑏 : 𝑏′ = 𝐵 : ought to induce

an identification Γ ⊢ (𝛼, 𝛽) : pair(𝑎, 𝑏) = pair(𝑎′, 𝑏′) : 𝐴 × 𝐵 and we ought to arrange

that (reflId, reflId) = reflId. To properly account for this and other “higher identifica-

tions”, we are quickly led to introducing a new judgment for governing identifications

between identifications. As the reader might guess, however, the problem does not

stop here and we require judgments for identifications between identifications be-

tween identifications... This infinite regress then becomes plain. Accordingly, rather

than special-casing a judgment for identifications between terms, we shall design an

apparatus which smoothly handles identifications of arbitrary “height”.

It is here that we encounter cubes for the first time. Cubical type theory starts

from the insight that an identification between 𝑎, 𝑏 : 𝐴 can be viewed as a function

I→ 𝐴 from some “type” I. Since we already have a good idea of how to account for

functions within the judgments of type theory, if we could recast identity types more
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into the shape of functions we could reuse this knowledge.

Of course, it is not obvious that functions and identity types share much in com-

mon.
5
A small amount of topological intuition can help motivate this approach: we can

say that two points in a space 𝑥,𝑦 ∈ 𝑋 are path-connected just when there is a continu-

ous function from the real interval 𝑝 : [0, 1] → 𝑋 such that 𝑝 (0) = 𝑥 and 𝑝 (1) = 𝑥 . The
geometry of [0, 1] ensures that this notion of identification is actually an equivalence

relation. For instance, transitivity comes from the map [0, 1] → [0, 1] ∨ [0, 1] dividing
the interval into two halves and the continuity of 1 − 𝑥 provides symmetry. A major

advantage of this definition is that it stacks to identifications between identifications

without additional effort: we just take functions from [0, 1] × [0, 1] satisfying the

relevant boundary conditions.

Of course, we have nothing like the real interval in type theory, nor do we intend

to add it. However, we can add a judgmental structure which simulates some of its

properties and use this as the basis for our definition of an identification in a type. We

shall add a faux type I to our theory and extend our grammar of context to hypothesize

over “variables” of type I such that an identification is then just a term in a context

containing such an interval variable.

Remark 5.3.3. It is not yet clear why I must be a separate structure rather than an

ordinary type. Indeed, this is a subtle point and relates to the additional operations

necessary to implement the equivalent J and its related operations. In fact, we shall

see that I cannot support these operations and so it cannot be a type. However, in all

other respects it does behave like a type: we shall see that the substitution calculus

around I as well as the rules for forming elements its elements are essentially the same

as for terms. For this reason, one often refers to I as a pre-type. ⋄

5.3.2 The interval and its structure

Let us make this discussion more formal. We introduce a new judgment Γ ⊢ 𝑟 I which
signifies that 𝑟 is an element of this interval “pre-type” and has the presupposition

⊢ Γ cx. We then introduce a new form a context stating that one may hypothesize over

elements of I. All told, the rules for this are given as follows:

⊢ Γ cx
⊢ Γ I cx

⊢ Γ cx
Γ I ⊢ p : Γ

⊢ Γ cx
Γ I ⊢ q I

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑟 I
Δ ⊢ 𝑟 [𝛾] I

5
We have already seen hints of this in Section 5.2.3 with the higher-inductive type for the interval
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Δ ⊢ 𝛾 : Γ Δ ⊢ 𝑟 I
Δ ⊢ p ◦ 𝛾 𝑟 = 𝛾 : Γ

Δ ⊢ 𝛾 : Γ Δ ⊢ 𝑟 I
Δ ⊢ q[𝛾 𝑟 ] = 𝑟 I

Δ ⊢ 𝛾 : Γ I

Δ ⊢ 𝛾 = (p ◦ 𝛾) q[𝛾] : Γ I

Γ1 ⊢ 𝛾2 : Γ2 Γ0 ⊢ 𝛾1 : Γ1 Γ2 ⊢ 𝑟 I
Γ0 ⊢ 𝑟 [𝛾2 ◦ 𝛾1] = 𝑟 [𝛾2] [𝛾1] I

Γ ⊢ 𝑟 I
Γ ⊢ 𝑟 [id] = 𝑟 I

We shall Γ ⊢ 𝑟 I as a dimension term and q as a dimension variable.

Notation 5.3.4. We write 𝛾 I for the analogous substitution to 𝛾 .𝐴.

Exercise 5.14. Define Int(Γ) to be the set {𝑟 | Γ ⊢ 𝑟 I}. Rephrase the above substitu-
tion rules and equalities using Int(Γ) and, in particular, isolate a mapping-in property

for Γ I.

Notation 5.3.5. The reader will notice that while context extension with an interval

is formally distinct from Γ.𝐴, the substitution calculus is the same around both. Con-

sequently, it is not difficult to adapt the translation from named variables to formal

syntax with explicit substitutions to account for interval “variables”. When we write

informal programs in cubical type theory, we shall therefore use essentially the same

notation for variables of I as we have for variables of a type𝐴. By convention, we shall

use the letters 𝑖, 𝑗, 𝑘 for these dimension variables.

All told then, I has been added to our theory such that it behaves more-or-less like

a type without any introduction or elimination rules and we can only hypothesize

variables of type I and pass them around. This is far less structure than the real

interval [0, 1], but it is already almost enough to realize our judgmental structure for

identifications: an identification in 𝐴 can simply be taken as an element Γ I ⊢ 𝑎 : 𝐴[p].
What we are missing is some means of stating what, precisely, is being identified

by such an 𝑎. In the topological case, an identification was a continuous function

𝑝 : [0, 1] → 𝑋 which identified 𝑝 (0) with 𝑝 (1). Accordingly, we now augment I with

two closed dimension terms 0, 1 and understand Γ I ⊢ 𝑎 : 𝐴[p] to be identifying 𝑎[id 0]
and 𝑎[id 1].

⊢ Γ cx
Γ ⊢ 0, 1 I

Lemma 5.3.6. For every Γ ⊢ 𝑎 : 𝐴 there is an identification of 𝑎 with itself.

Proof. Given such an 𝑎, the term 𝑝 = 𝑎[p] is an element of Γ I ⊢ 𝐴[p] type and it is

routine to check that 𝑝 [id 0] = 𝑎 = 𝑝 [id 1]. □



(2025-07-19) Cubical type theory (draft) 197

We have used I to recover the bespoke identification judgment from before and in

a less ad-hoc manner. Just as before, we may define a path type to internalize this new

structure directly:

Γ ⊢ 𝐴 type Γ ⊢ 𝑎, 𝑏 : 𝐴

Γ ⊢ Path(𝐴, 𝑎, 𝑏) type

Γ ⊢ 𝑎, 𝑏 : 𝐴 Γ I ⊢ 𝑝 : 𝐴[p] Γ ⊢ 𝑎 = 𝑝 [id 0] : 𝐴 Γ ⊢ 𝑎 = 𝑝 [id 1] : 𝐴

Γ ⊢ 𝜆 (𝑝) : Path(𝐴, 𝑎, 𝑏)

Γ ⊢ 𝑝 : Path(𝐴, 𝑎, 𝑏) Γ ⊢ 𝑟 I
Γ ⊢ papp(𝑝, 𝑟 ) : 𝐴

Γ ⊢ 𝑝 : Path(𝐴, 𝑎, 𝑏)
Γ ⊢ papp(𝑝, 0) = 𝑎 : 𝐴 Γ ⊢ papp(𝑝, 1) = 𝑏 : 𝐴

Γ ⊢ 𝑎, 𝑏 : 𝐴

Γ I ⊢ 𝑝 : 𝐴[p] Γ ⊢ 𝑎 = 𝑝 [id 0] : 𝐴 Γ ⊢ 𝑎 = 𝑝 [id 1] : 𝐴 Γ ⊢ 𝑟 I
Γ ⊢ papp(𝜆 (𝑝), 𝑟 ) = 𝑝 [id 𝑟 ] : 𝐴

Γ ⊢ 𝑝 : Path(𝐴, 𝑎, 𝑏)
Γ ⊢ 𝜆 (papp(𝑝 [p],q)) = 𝑝 : Path(𝐴, 𝑎, 𝑏)

Notice that, unlike an ordinary function type, a path type specifies the behavior

of its elements on 0 and 1. In particular if 𝑝 is an element of Path(𝐴, 𝑎, 𝑏) then we

have definitional equalities papp(𝑝, 0) = 𝑎 and papp(𝑝, 1) = 𝑏 to enforce the intuition

that 𝑝 is a path from 𝑎 to 𝑏. These equations are justified by the introduction rule

which requires additional boundary conditions ensuring that elements of Path(𝐴, 𝑎, 𝑏)
correspond not just to arbitrary elements of 𝐴 depending on I but to elements which

satisfying the necessary equations.

Exercise 5.15. Show that the above rules are precisely equivalent to requiring the

following mapping-in property for Path(𝐴, 𝑎, 𝑏):

Tm(Γ, Path(𝐴, 𝑎, 𝑏)) � {𝑝 ∈ Tm(Γ I, 𝐴[p]) | 𝑝 [id 0] = 𝑎 ∧ 𝑝 [id 1] = 𝑏}
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Exercise 5.16. Use Lemma 5.3.6 to define an element refl(𝑎) : Path(𝐴, 𝑎, 𝑎) for every
Γ ⊢ 𝑎 : 𝐴.

Notation 5.3.7. For expository purposes, it is also helpful to have a type Π(I, 𝐴) with
the following mapping-in property:

Tm(Γ,Π(I, 𝐴)) � Tm(Γ I, 𝐴)

We shall not regard this as part of our official definition of cubical type theory and

use it only for small informal examples. In these few occurrences of this “Π-type”, we
shall use the ordinary syntax for functions, using the observation above that we can

translate “named interval variables” into the formal substitution calculus for I.

5.3.3 Cultivating intuition for path types

Before proceeding to the other rules of cubical type theory, we take amoment to explore

the consequences of including the interval within type theory. For this, and in cubical

type theory more generally, it is helpful to use a small amount of topological intuition,

guided by the observation that a term 1 I . . . I ⊢ 𝑎 : 𝐴[p𝑛] which depends on 𝑛 copies

of I can be visualized as an 𝑛-dimensional cube in 𝐴. In low dimension, we therefore

have points in 𝐴, lines in 𝐴, squares in 𝐴, and cubes in 𝐴 for 𝑛 = 0, 1, 2, 3 respectively.

Let us illustrate the case where 𝑛 = 2 more thoroughly. Given 1 I I ⊢ 𝑎 : 𝐴[p2], the
two dimension variables serve as “axes” for this square and so we can “draw” 𝑎 as the

following square:

𝑎[id 0 0]

𝑎[id 0 1]

𝑎[id 1 0]

𝑎[id 1 1]

𝑎[id 0]

𝑎[id 0 I] 𝑎[id 1 I]

𝑎[id 1]

𝑎

The four closed terms one obtains by specializing 𝑎 with the four substitutions

1 ⊢ id 𝜖 𝜖′ : 1 I I are the vertices. Next, there are four substitutions from 1 to 1 I I
which implement the first or second I with a constant and the other I with q. Applying

each of these substitutions to 𝑎 yields the edges of the square. Finally, 𝑎 itself is the

entire square.

We have chosen to draw this square with the leftmost I in 1 I I as the horizontal axis
and the rightmost as the vertical axis. We further oriented the horizontal axis to grow to
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the right and the vertical axis to grow down. This convention is reasonably standard—it

matches the typical orientation of commutative diagrams in category theory—but it is

often helpful to disambiguate these diagrams by using named variables and labeling

axes. For instance, we might have written 𝑖 I, 𝑗 I ⊢ 𝑎(𝑖, 𝑗) : 𝐴 and depicted the above

square as follows:

𝑎(0, 0)

𝑎(0, 1)

𝑎(1, 0)

𝑎(1, 1)

𝑎(𝑖, 0)

𝑎(0, 𝑗) 𝑎(1, 𝑗)

𝑎(𝑖, 1)

𝑎

𝑖

𝑗

Remark 5.3.8. We note that in the above example we have assumed that 𝐴 does not

depend on either dimension variable but this restriction is not mandatory. We will

have occasion to study such heterogeneous squares at various points. ⋄

This schematic visualization highlights one of the major benefits of using I to

structure identifications compared to a direct judgment Γ ⊢ 𝛼 : 𝑎 = 𝑏 : 𝐴: we can now

seamlessly account for identifications between identifications simply by adding more

than one copy of I to the context. Moreover, path types between path types of 𝐴 are

really no more complex to manipulate than ordinary path types as both are simply

kinds of functions valued in 𝐴.

There is another major benefit to using I: we have no need to add further rules of

I to customize the behavior of path types in each connective. For instance, there is no

need for a rule that “identifications in a pair can be built from a pair of identifications”.

This fact is already derivable from those rules governing dependent sums generally.

In fact, path types enjoy a number of remarkable extensionality principles (including

function extensionality) without additional effort on our part.

This traces back to a subtle point: when we isolated identifications as a new

judgment, nothing connected it to the behavior of types or terms. Here, however,

we have smuggled identifications in through the existing apparatus of contexts and

substitutions and so the existing equations for types and terms automatically apply to

identifications.

For instance, the 𝜂 law for dependent sums states that Tm(Γ,Σ(𝐴, 𝐵)) is isomorphic

to

∑
𝑎∈Tm(Γ,𝐴) Tm(Γ, 𝐵 [id.𝑎]). If we choose Γ = Γ0 I and specialize to the case where

𝐵 = 𝐵0 [p] for simplicity, this immediately yields the following:
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Lemma 5.3.9. There is a natural bijection of the following shape:

Tm(Γ0, Path(Σ(𝐴, 𝐵0 [p]), 𝑥,𝑦))
� Tm(Γ0, Path(𝐴, fst(𝑥), fst(𝑦))) × Tm(Γ0, Path(𝐴, snd(𝑥), snd(𝑦)))

Exercise 5.17. Prove Lemma 5.3.9

Note that while we have specialized to the simpler case of non-dependent Σ-types,
it is only for notational convenience. Even more striking is the case for dependent

products.

Lemma 5.3.10. There is a natural bijection of the following shape:

Tm(Γ, Path(Π(𝐴, 𝐵), 𝑓 , 𝑔)) � Tm(Γ.𝐴, Path(𝐵, app(𝑓 [p], q), app(𝑔[p], q)))

In other words, function extensionality is automatically true for path types.

Proof. Let us begin by observing that, by the mapping-in property of path types, we

can rephrase our goal as the following:

{𝑝 ∈ Tm(Γ I,Π(𝐴, 𝐵) [p]) | . . . } � {Tm(Γ.𝐴 I, 𝐵 [p]) | . . . }

However, we can further apply the mapping-in property for Π-types to replace the

left-hand set with {𝑝 ∈ Tm(Γ I.𝐴[p], 𝐵 [p 𝐴]) | . . . }. The conclusion the follows

immediately from the isomorphism of contexts Γ I.𝐴[p] � Γ.𝐴 I (Exercise 5.18). □

Exercise 5.18. Prove that if Γ ⊢ 𝐴 type then there are mutually inverse substitutions

Γ I.𝐴[p] ⊢ 𝜏0 : Γ.𝐴 I and Γ.𝐴 I ⊢ 𝜏1 : Γ I.𝐴[p].

This has certainly improved on our earlier attempt which simply added a new

explicit judgment of identifications but the story cannot stop here. In particular, we

still have done nothing to address the link between Path(𝐴, 𝑎, 𝑏) and the actual ability

to substitute 𝑎 for 𝑏 in a type. That is, we have no operation like that of subst or, more

generally, J. As mentioned earlier, these operations do not come directly from the

interval or judgments upon it. Instead, we shall add them more-or-less as constants

to our theory and then, to preserve canonicity, add type-specific equations telling us

how they compute.

5.3.4 Coercing along paths

We now introduce the first and most fundamental operation of the two operations we

shall add to cubical type theory: coe𝐴 (short for coerce). Roughly, this operation ensures
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that, from the perspective of a type, all elements of the interval are interchangeable

and we shall see momentarily that this is precisely what is required to implement a

version of subst for Path(𝐴, 𝑎, 𝑏).
The addition of coe𝐴 also means a change in the status of I in our type theory.

While we have not added any sort of elimination principle for I, the reader may have

noticed that up till this point there was really nothing which distinguished it from

Bool; the rules we required of I were a strict subset of those for Bool. The coercion
operation firmly rules out the possibility that I = Bool: a type depending on Bool can
be quite different over true and false which is precisely the possibility excluded by

coe.
Specifically, if Γ I ⊢ 𝐴 type then 𝐴[id 𝑟 ] and 𝐴[id 𝑠] are equivalent for every

Γ ⊢ 𝑟, 𝑠 I. The typing rule for this constant is given as follows:

Γ I ⊢ 𝐴 type Γ ⊢ 𝑟, 𝑠 I Γ ⊢ 𝑎 : 𝐴[id 𝑟 ]
Γ ⊢ coe𝑟→𝑠𝐴 (𝑎) : 𝐴[id 𝑠]

Γ I ⊢ 𝐴 type Γ ⊢ 𝑟 I Γ ⊢ 𝑎 : 𝐴[id 𝑟 ]
Γ ⊢ coe𝑟→𝑟𝐴 (𝑎) = 𝑎 : 𝐴[id 𝑟 ]

A priori, coe may seem as though it does little to advance our goal of implementing

subst for Path(𝐴, 𝑎, 𝑏). However, suppose we are given a path Γ ⊢ 𝑝 : Path(𝐴, 𝑎, 𝑏)
along with a type Γ.𝐴 ⊢ 𝐶 type, applying the ordinary rule for substitution, we obtain

Γ I ⊢ 𝐶′ = 𝐶 [p.papp(𝑝,q)] type. Inspection reveals that instantiating 𝐶′ at 0 and 1

yields 𝐶 [id.𝑎] and 𝐶 [id.𝑏] and so coe yields the following operation:

Γ ⊢ 𝜆 (coe0→1

𝐶′ [p I] (q)) : 𝐶 [id.𝑎] → 𝐶 [id.𝑏]

In other words, coe can be used to define subst. The advantage to coe over subst
is that we can now set about equipping coe with a collection of definitional equalities

in order to recover canonicity. Unlike subst, there shall be no single rule for how coe
computes in general but, instead, coe𝐴 will compute depending on the form of 𝐴. For

example, for closed types such as Nat, U, or Bool, we constrain coe with the following:

Γ ⊢ 𝑟, 𝑠 I Γ ⊢ 𝑏 : Bool

Γ ⊢ coe𝑟→𝑠Bool (𝑏) = 𝑏 : Bool

Of course, this strategy only works in the simplest example: when the type con-

structor is closed and cannot depend on the interval in any meaningful way. Most

commonly, when 𝐴 is a type former e.g. Σ(𝐵0, 𝐵1), coe𝐴 will be defined in terms of

coe𝐵𝑖 . In the case of non-dependent case 𝐴 = 𝐵0 × 𝐵1, for instance, one must add a



202 Univalent type theories (2025-07-19)

definitional equality stating coe𝑟→𝑠
𝐴
(𝑎) = pair(coe𝑟→𝑠

𝐵0

(fst(𝑎)), coe𝑟→𝑠
𝐵1

(snd(𝑎))).6 In

Section 5.4, we shall see that while it is unfeasible to see how univalence ought to

compute relative to J, it is possible (if difficult) to describe its computation with respect

to coe.
Our strategy of defining coe𝐴 in terms of the constituents of 𝐴 is responsible for

another surprising feature of coe: if subst is defined by instantiating 𝑟 = 0 and 𝑠 = 1,

why do we bother to allow for arbitrary 𝑟, 𝑠? We shall see that in various situations we

require this additional flexibility in order to build up coe at more complex types from

simpler ones.

We will not detail the equations governing coe here, but do provide examples

in Section 5.4. Instead, we focus on the equation which leads to the next structure

necessary for core cubical type theory: coe in Path(𝐴, 𝑎, 𝑏). At present, we lack the

operations necessary to provide an equation specifying how coe𝑟→𝑠Path (𝐴,𝑎,𝑏 ) (𝑝) must

compute. It is worth sketching the problem informally, so as to properly situate the

solution. We wish to formulate a rule of the following shape:

Γ I ⊢ 𝐴 type Γ I ⊢ 𝑎, 𝑏 : 𝐴 Γ ⊢ 𝑟, 𝑠 I Γ ⊢ 𝑝 : Path(𝐴, 𝑎, 𝑏) [id 𝑟 ]
Γ ⊢ coe𝑟→𝑠Path (𝐴,𝑎,𝑏 ) (𝑝) = ? : Path(𝐴, 𝑎, 𝑏) [id 𝑠]

✎

This hole must be filled by a path in 𝐴 built from coe𝐴. The straightforward approach

is roughly to “compose” 𝑝 (the function from I to 𝐴[id 𝑟 ]) with coe𝐴 𝑟 𝑠 (a function
𝐴[id 𝑟 ] → 𝐴[id 𝑠]). However, the resulting term does not satisfy the necessary

boundary conditions to be an element of Path(𝐴, 𝑎, 𝑏) [id 𝑠]. Instead, we obtain an

element of the following:

Path(𝐴[id 𝑠], coe𝑟→𝑠𝐴 (𝑎[id 𝑟 ]), coe𝑟→𝑠𝐴 (𝑏 [id 𝑟 ]))

In other words, we are confronted by the fact that while there is a “line” interpolat-

ing between e.g., coe𝑟→𝑠
𝐴
(𝑎[id 𝑟 ]) and 𝑎[id 𝑠], they are not equal. This mismatch is

solved by the second operation for manipulating terms depending on I: homogeneous

composition or hcomp. To a first approximation, this operation allows us to take our

collection of three lines and compose them into a single path.

However, while the motivating example given above comes from stitching together

three sides of a square into a single line, our need to provide type-specific equations for

computing this operation in each type forces us to provide a more general composition

operator. In order to properly formulate hcomp in Section 5.3.6, we begin by extending

the judgmental apparatus with the necessary tools to support it.

6
This is often expressed by stating that coe is defined “by induction” on the type, but this is misleading.

After all, types do not come equipped with any sort of induction principle in general!
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5.3.5 Cofibrations and faces

Let us fix 1 I I ⊢ 𝑎 : 𝐴[p2] and recall the visualization of 𝑎 as a square:

𝑎[id 0 0]

𝑎[id 0 1]

𝑎[id 1 0]

𝑎[id 1 1]

𝑎[id 0]

𝑎[id 0 I] 𝑎[id 1 I]

𝑎[id 1]

𝑎

The edges and vertices in the above square are called the faces of 𝑎. More generally,

a face of a term 𝑝 is the result from specializing interval variables 𝑝 depends upon.

The hcomp operation which we use to compose paths does so by solving a more

general problem. It provides a uniform way to assemble certain collections of matching

faces into an entire 𝑛-cube. For instance, our earlier desire to combine three lines into

a single line can be rephrased into taking three terms representing three faces of a

square and extending them to a term representing the entire square.

In general, we should not expect that every matching collection of faces assembles

into a cube. For instance, the question of whether 𝑎 and 𝑏 are identifiable amounts

to asking if 𝑎 and 𝑏 are the 0 and 1 faces of some term 𝑝 . Since we do not expect (or

want!) all terms to be identifiable, clearly some subsets of cubes should not always be

extendable.

Heuristically, we should be allowed to extend subcubes which are suitably “con-

nected”, but this becomes subtle in higher dimensions. As isolating these well-behaved

subcubes is complex, it is helpful to have an judgmental apparatus for isolating par-

ticular faces of a given term or type. We do this by introducing a special grammar

of propositions which we call cofibrations. Informally, these are propositions built

from (1) comparing dimension terms for equality and (2) conjunction, disjunction, and

universal quantification of I. We realize this with a new judgment Γ ⊢ 𝛼 cof:
⊢ Γ cx

Γ ⊢ ⊤,⊥ cof
Γ ⊢ 𝜙,𝜓 cof

Γ ⊢ 𝜙 ∧𝜓, 𝜙 ∨𝜓 cof

Γ ⊢ 𝑟, 𝑠 I
Γ ⊢ 𝑟 = 𝑠 cof

Γ I ⊢ 𝜙 cof

Γ ⊢ ∀𝜙 cof

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝜙 cof

Δ ⊢ 𝜙 [𝛾] cof
Γ1 ⊢ 𝛾2 : Γ2 Γ0 ⊢ 𝛾1 : Γ1 Γ2 ⊢ 𝜙 cof

Γ0 ⊢ 𝜙 [𝛾2 ◦ 𝛾1] = 𝜙 [𝛾2] [𝛾1] cof

Γ ⊢ 𝜙 cof

Γ ⊢ 𝜙 [id] = 𝜙 cof



204 Univalent type theories (2025-07-19)

We have omitted the long but unsurprising list of rules shaping how substitutions

𝜙 [𝛾] interact with the various cofibration formers.

In keeping with their obvious relationship to propositions, we add another judg-

ment Γ ⊢ 𝜙 true which states that some cofibration 𝜙 holds in context Γ. For instance,
we require the following rules:

Γ ⊢ 𝑟 = 𝑠 I
Γ ⊢ 𝑟 = 𝑠 true

⊢ Γ cx
Γ ⊢ ⊤ true

Γ ⊢ 𝜙,𝜓 cof Γ ⊢ 𝜙 true

Γ ⊢ 𝜙 ∨𝜓,𝜓 ∨ 𝜙 true

Γ ⊢ 0 = 1 true

Γ ⊢ ⊥ true

Γ ⊢ 𝜙 true Δ ⊢ 𝛾 : Γ

Δ ⊢ 𝜙 [𝛾] true
Γ ⊢ ⊥ true Γ ⊢ 𝜙 cof

Γ ⊢ 𝜙 true

In order to fully given the full set of rules governing 𝜙 ∨𝜓 , we require the ability
to hypothesize the truth of a proposition just as we can presently hypothesize over

elements of a type. Explicitly, given cofibration Γ ⊢ 𝜙 cof, we also require a context

Γ 𝜙 governed by the following rules:

Γ ⊢ 𝜙 cof

⊢ Γ 𝜙 cx

Γ ⊢ 𝜙 cof

Γ 𝜙 ⊢ p : Γ

Γ ⊢ 𝜙 cof

Γ 𝜙 ⊢ 𝜙 [p] true

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝜙 cof Δ ⊢ 𝜙 [𝛾] true
Δ ⊢ 𝛾 ★ : Γ 𝜙

Γ ⊢ 𝜙 cof Δ ⊢ 𝛾 : Γ 𝜙

Δ ⊢ (p ◦ 𝛾) ★ = 𝜙 : Γ 𝜙

Γ ⊢ 𝜙 cof

Γ 𝜙 ⊢ p ★ = id : Γ 𝜙

It is helpful to understand Γ 𝜙 as an analog of Γ.𝐴 but where 𝜙 is an exceptionally

strict form of proposition rather than a full type. For instance, the substitution extension

rule for cofibrations𝛾 ★does not allow the user to supply alternative “proofs” or “terms”

witnessing that 𝜙 is true. Instead, it simply requires that the judgment Γ ⊢ 𝜙 true holds
and uses ★. In fact, the user is not responsible for providing any evidence whatsoever

in their term that Γ ⊢ 𝜙 true holds. In this way, the rule is reminiscent of the conversion

rule stating that definitionally equal terms may be exchanged without any explicit

instruction by the user: cofibrations may be judged true without the user having to

provide any explicit witness.

For this reason, it is apparent that wemustmaintain strict control over the judgment

Γ ⊢ 𝜙 true. If this judgment becomes too complex and, for instance, becomes sensitive to

what types are inhabited in a given context Γ, then it will surely become impossible for

our system to enjoy decidable type-checking. Fortunately, the grammar of cofibrations

is sufficiently simple that Γ ⊢ 𝜙 true is, in fact, decidable.
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Returning to our specification of Γ ⊢ 𝜙 true, we present the final rule around 𝜙 ∨𝜓
using Γ 𝜙 :

Γ ⊢ 𝜙 ∨𝜓 true Γ ⊢ 𝜉 cof Γ 𝜙 ⊢ 𝜉 [p] true Γ 𝜓 ⊢ 𝜉 [p] true
Γ ⊢ 𝜉 true

For brevity, we will not present all the rules of Γ ⊢ 𝜙 cof and choose to omit e.g.,
those governing 𝜙∧𝜓 and ∀𝜙 . The reader may trust that they are unsurprising versions

of the ordinary rules for propositional logic. We conclude our selection of the rules for

Γ ⊢ 𝜙 cof with the following pair:

Γ ⊢ 𝑟, 𝑠 I Γ ⊢ 𝑟 = 𝑠 true
Γ ⊢ 𝑟 = 𝑠 I

Γ ⊢ 𝜙,𝜓 cof Γ 𝜙 ⊢ 𝜓 [p] true Γ 𝜓 ⊢ 𝜙 [p] true
Γ ⊢ 𝜙 = 𝜓 cof

The first rule is reminiscent of equality reflection from Chapter 2 and the second is

akin to very strong propositional univalence principle for cofibrations. That is, the first

rule guarantees that if the proposition 𝑟 = 𝑠 holds then this can be ‘reflected’ to obtain

a definitional equality between 𝑟 and 𝑠 . The second rule states that cofibrations which

are inter-provable are definitionally equal such that, e.g., one may silently exchange

𝜙 ∨𝜓 and𝜓 ∨ 𝜙 in any term or type.

These last two rules imply that the truth of a cofibration can impact whether or

not a term or type is well-formed by, for instance, controlling whether two dimension

terms are equal. However, we will also add two principles which much more directly

allow cofibrations to influence terms, types, and substitutions. Namely, if Γ ⊢ 𝜙∨𝜓 true,
we will add a rule stating that to e.g., construct a type in Γ it suffices to give a type 𝐴𝜙
under the assumption of 𝜙 and one a second 𝐴𝜓 under the assumption of𝜓 such that

𝐴𝜙 = 𝐴𝜓 when 𝜙 ∧𝜓 is assumed. We require similar rules for terms and substitutions

and as well as a twin principle for ⊥ which simply states that all these judgments

collapse if Γ ⊢ ⊥ true. These rules are designed to ensure that Γ 𝜙 ∨𝜓 behaves like the

“union” of the contexts Γ 𝜙 and Γ 𝜓 . For reasons of space, we give the rules carefully
for only types and sketch those for terms:

Γ ⊢ 𝜙,𝜓 cof Γ ⊢ 𝜙 ∨𝜓 true
Γ 𝜙 ⊢ 𝐴𝜙 type Γ 𝜓 ⊢ 𝐴𝜓 type Γ 𝜓 ∧𝜓 ⊢ 𝐴𝜙 [p ★] = 𝐴𝜓 [p ★] type

Γ ⊢ [𝜙 ↩→ 𝐴𝜙 | 𝜓 ↩→ 𝐴𝜓 ] type

Γ ⊢ 𝜙1,𝜓2 cof Γ 𝜙1 ⊢ 𝐴𝜙1
type

Γ 𝜙2 ⊢ 𝐴𝜙2
type Γ 𝜙1 ∧ 𝜙2 ⊢ 𝐴𝜙1

[p ★] = 𝐴𝜙2
[p ★] type Γ ⊢ 𝜙𝑖 true

Γ ⊢ [𝜙1 ↩→ 𝐴𝜙1
| 𝜙2 ↩→ 𝐴𝜙2

] = 𝐴𝜙𝑖 [id ★] type
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Γ ⊢ 𝜙,𝜓 cof Γ ⊢ 𝜙 ∨𝜓 true Γ ⊢ 𝐴 type

Γ ⊢ [𝜙 ↩→ 𝐴[p] | 𝜓 ↩→ 𝐴[p]] = 𝐴 type

Γ ⊢ ⊥ true
Γ ⊢ Abort type

Γ ⊢ ⊥ true Γ ⊢ 𝐴 type

Γ ⊢ Abort = 𝐴 type

Γ ⊢ 𝜙,𝜓 cof Γ ⊢ 𝜙 ∨𝜓 true Γ ⊢ 𝐴 type
Γ 𝜙 ⊢ 𝑎𝜙 : 𝐴[p] Γ 𝜓 ⊢ 𝑎𝜙 : 𝐴[p] Γ 𝜓 ∧𝜓 ⊢ 𝑎𝜙 [p ★] = 𝑎𝜓 [p ★] : 𝐴[p ★]

Γ ⊢ [𝜙 ↩→ 𝑎𝜙 | 𝜓 ↩→ 𝑎𝜓 ] : 𝐴

Γ ⊢ ⊥ true Γ ⊢ 𝐴 type

Γ ⊢ abort : 𝐴

Γ ⊢ ⊥ true Γ ⊢ 𝑎 : 𝐴

Γ ⊢ abort = 𝑎 : 𝐴

Advanced Remark 5.3.11. More concisely, these conditions ensure that Γ 𝜙 ∨𝜓 is a

pushout of Γ 𝜙 and Γ 𝜓 over Γ 𝜙 ∧𝜓 and that the presheaves for terms, types, etc. carry
these pushouts to pullbacks. Similarly, they guarantee that Γ ⊥ is initial and that all

relevant presheaves carry this initial object to a terminal object. ⋄

From cofibrations to subcubes These rules finally allow us to deliver on an earlier

promise: we can now use cofibrations to isolate particular combinations of faces from

a term. Let us consider the context consisting of two dimension variables extended by

a cofibration stating either the first variable is 0 or the second is 1:

Γ = 1 I I (q = 1 ∨ q[p] = 0)

We know by the above rules for disjunction that giving a term Γ ⊢ 𝑎 : 𝐴[p3] is
equivalent to giving two terms 1 I I (q = 0) ⊢ 𝑎0 : 𝐴[p3] and 1 I I (q = 1) ⊢ 𝑎1 : 𝐴[p3]
which agree on the overlap. Next, one may use the equality reflection rule for q = 1

to show that e.g., the substitution 1 I I (q = 0) ⊢ p I ◦ p : 1 I is invertible. We may

therefore visualize 𝑎0 and 𝑎1 as lines in 𝐴 which share a common boundary:

𝑎[id 0 1] 𝑎[id 1 1]

𝑎[id 0 0]

𝑎0

𝑎1
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More generally, if 𝜙 is any cofibration then Γ 𝜙 ⊢ 𝑎𝜙 : 𝐴[p] will consist of some

coherent collection of faces in 𝐴. In other words, 𝜙 isolates some subset of the faces

of an 𝑛-cube, and the rule for splitting on disjunctions of cofibrations ensures that

𝑎𝜙 consists of a term for each face such that these terms agree on all overlaps. The
question of whether these faces can be stitched together into a single 𝑛-cube amounts

to asking whether or not there exists some Γ ⊢ 𝑎 : 𝐴 such that Γ 𝜙 ⊢ 𝑎[p] = 𝑎𝜙 : 𝐴[p].
This rephrasing in terms of cofibrations offers two important advantages. First, this

formulation has better behavior with respect to substitution: it is clear that any

extension in the above sense is stable under substitution and it also ensures that we

can sensibly discuss applying substitutions to collections of faces. Second, cofibrations

allow us to discuss more exotic faces like the line carved out by the cofibration 𝑖 = 𝑗

for two dimension variables 𝑖, 𝑗 . This corresponds to the diagonal of a square, rather
than any of its standard edges.

Notation 5.3.12. In Section 5.4, we will wish to manipulate cofibrations when working

informally with type theory. In general, like dimension variables the substitution

calculus ensures that we can largely pretend 𝜙 is a “type”, but the exceptionally strict

properties around cofibrations ensure that we need never actually pass one around.

When working informally, we shall therefore treat them in much the same way proof

assistants handle implicit arguments: abstracting over them with a bespoke function

type (the partial element type) but never needing to actually provide explicit terms to

apply these function types. We present only the mapping-in property for this type and

leave it to the reader to see how ordinary implicit function syntax may be translated

to this isomorphism:

Tm(Γ, 𝜙 → 𝐴) � Tm(Γ 𝜙,𝐴)

In the above, Γ ⊢ 𝜙 → 𝐴 type just when Γ 𝜙 ⊢ 𝐴 type. However, since we shall only
use this connective for informal explanations, we will not regard it as part of our

definition of cubical type theory and content ourselves with this sketch of its rules.

5.3.6 Composing and filling paths

We are now ready to describe the second operation for manipulating paths hcomp and

the final component of core cubical type theory. Recall that this operation is intended

to take collections of faces—a subset of an 𝑛-cube in 𝐴—and assemble them into single

𝑛-cube in 𝐴. As noted earlier, it is unsound to provide such an operation for arbitrary
subcubes, but with the apparatus of cofibrations to hand, it is possible to describe a

flexible class of shapes for which it is sound: given a term Γ ⊢ 𝑎0 : 𝐴 representing an

𝑛-cube in 𝐴 along with a cofibration Γ ⊢ 𝜙 cof and a “𝜙-partial line” Γ 𝜙 I ⊢ 𝑎𝜙 : 𝐴,
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which matches 𝑎0 appropriately, we may glue and extend them using hcomp to an

(𝑛 +1)-cube in𝐴. The formal rules are as follows with 𝑎0 and 𝑎𝜙 packaged into a single

partial term using disjunction of cofibrations:

Γ ⊢ 𝐴 type Γ ⊢ 𝑟, 𝑠 I Γ ⊢ 𝜙 cof
Γ I (q = 𝑟 [p] ∨ 𝜙 [p]) ⊢ 𝑎 : 𝐴[p2]

Γ ⊢ hcomp𝑟→𝑠𝐴 (𝜙, 𝑎) : 𝐴

Γ ⊢ 𝐴 type Γ ⊢ 𝑟, 𝑠 I Γ ⊢ 𝜙 cof Γ ⊢ 𝜙 true
Γ I (q = 𝑟 [p] ∨ 𝜙 [p]) ⊢ 𝑎 : 𝐴[p2]
Γ ⊢ hcomp𝑟→𝑠𝐴 (𝜙, 𝑎) = 𝑎[id 𝑠 ★] : 𝐴

Γ ⊢ 𝐴 type Γ ⊢ 𝑟 I Γ ⊢ 𝜙 cof
Γ I (q = 𝑟 [p] ∨ 𝜙 [p]) ⊢ 𝑎 : 𝐴[p2]
Γ ⊢ hcomp𝑟→𝑟𝐴 (𝜙, 𝑎) = 𝑎[id 𝑟 ★] : 𝐴

With hcomp to hand, we will be able to complete the necessary “programming

exercise” implementing coe in Path. Having added hcomp, however, we have unleashed
another avalanche of necessary programming exercises: we must discuss how hcomp
can be reduced for each type constructor. Fortunately, however, at this point we have

all the necessary tools to do this for every connective except the universe. We discuss

the rules governing hcomp for the non-universe connectives in Section 5.4, but they

are largely unsurprising.

The real complexity of hcomp comes in defining hcomp𝑟→𝑠U (𝜙,𝐴). The problem
is that, as an element of the universe, this composition is a code for a type and so

one must describe the type El(hcomp𝑟→𝑠U (𝜙,𝐴)). It not obvious, but the constraints
of hcomp mean that this type must be non-empty and so non-trivial introduction

and elimination rules must be given to govern this type. As with any other type we

must describe also the behavior of hcomp and coe in El(hcomp𝑟→𝑠U (𝜙,𝐴)) and these

“nested” composition problems are rather intricate.

This complexity, however, is the essential tool by which cubical type theory sup-

ports a computational account of univalence. We will return to this topic in Section 5.4,

so we provide only the intuition here. Recall that the univalence axiom provides an

inverse to a certain map Path(U, 𝐴, 𝐵) → El(𝐴) ≃ El(𝐵). The domain of this map

now consists of certain lines in the universe—codes of types depending on I—and so

to interpret univalence, it suffices to define a family of types depending 𝐴, 𝐵 : U, an

equivalence 𝑒 : El(𝐴) ≃ El(𝐵) and a dimension term 𝑟 : I. This type is typically written

V(𝑟, 𝐴, 𝐵, 𝑒) (as in univalence).
The idea is that this type must collapse to𝐴when the interval variable is specialized

to 0 and to 𝐵 when it is specialized with 1. This type, by definition, is a path in the
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universe Path(U, 𝐴, 𝐵). As with any other type, one must describe composition and

coercion in this line of types and it is here that the invertibility of the given map

El(𝐴) ≃ El(𝐵) is crucial: it is this map which is used to supply coercions from one end

of V to the other.

While this sketch omits a great many details—even simplifying the shape of V
slightly—this is the crucial idea and payoff for recasting identity types as path types.

By forcing identity types in the universe to take this more flexible form, we can define

novel type formers which themselves implement the novel identifications mandated by

univalence. The details vary greatly between presentations, but this general strategy

is ubiquitous: (1) using an interval to encode identity types as path types, (2) adding

additional operations to all types to force these path types to be symmetric, transitive,

etc. and (3) implementing univalence by a specific type family depending on the

interval.

The reward for the complexity of cubical type theory is the following theorem.

Theorem 5.3.13. Cubical type theory enjoys consistency, canonicity, and normalization.

These theorems were established over several years, for several different variations

of cubical type theory. The consistency of the theory was proven in the first papers

on cubical type theory [CCHM18; AFH17]. Canonicity was established by Huber

[Hub18] and Angiuli, Hou (Favonia), and Harper [AFH17]. Normalization was proven

by Sterling and Angiuli [SA21].

5.4★ Computing with coercions and compositions
(draft)

Section 5.3 presented the core aspects of cubical type theory, but with many rules and

details elided. In this section, we endeavor to fill in a few of these gaps by explaining

some of the rules governing the computation of hcomp and coe in various types. Even

in a dedicated section, however, we will not provide all of these rules. A complete set

can be found in e.g., Angiuli et al. [Ang+21].
Fortunately, the remaining rules do not introduce new judgmental structure. In-

stead, they are more akin to programming exercises and show how to build e.g.,
hcompΠ (𝐴,𝐵) in terms of composition and coercion in 𝐴 and 𝐵. Accordingly, while the

previous section was replete with rules and substitutions, we shall see far fewer of

these in this section. Instead, we shall focus on these “programming exercises” and

often write out the resulting terms for computing composition and coercion in more

informal type-theoretic notation. We will present a few examples for how these are
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turned into actual formal rules to be added to cubical type theory but thereafter leave

this mechanical task to the reader.

Notation 5.4.1. In order to facilitate writing informal terms with coe and hcomp, we
shall treat them as closed elements of the following types:

coe : (𝐴 : I→ U) (𝑖, 𝑗 I) → 𝐴(𝑖) → 𝐴( 𝑗)
hcomp𝜙 : (𝐴 : U) (𝑖, 𝑗 I) (𝑎 : (𝑘 I) → (𝑖 = 𝑘 ∨ 𝜙) → 𝐴) → 𝐴

5.4.1 coe for Π and Σ

We begin by describing coercion for dependent products and sums. These two examples

contain all the interesting structure one finds in the definitions of coe for the types of

base Martin-Löf type theory and so we give them a fair bit of attention.

We begin by specifying the right-hand side of the following definitional equality:

Γ I ⊢ 𝐴 type Γ I.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑟, 𝑠 I Γ ⊢ 𝑝 : Σ(𝐴, 𝐵) [id 𝑟 ]
Γ ⊢ coe𝑟→𝑠Σ (𝐴,𝐵) (𝑝) = ? : Σ(𝐴, 𝐵) [id 𝑠]

✎

This is one of the many, many “programming exercises” in cubical type theory.

Our goal shall be to produce a term using coe for 𝐴 and 𝐵 which has the appropriate

type to fit into the above rule, subject to the additional condition that when 𝑟 = 𝑠

then this term is equal to 𝑝 . This last point is not strictly necessary for the rule to be

well-formed, but it is an important sanity check. After all, the definitional equality for

coe𝑟→𝑟Σ (𝐴,𝐵) (𝑝) will force this to be true by transitivity and so it makes sense to ensure

that this forced equality is sensible.

We shall divide this process up into two steps. First, we present this term using

informal type theory and second, we shall list out the formal term in proper notation.

Lemma 5.4.2. Fix 𝐴 : I → U, 𝐵 : (𝑖 I) → 𝐴(𝑖) → U, 𝑟, 𝑠 I, and 𝑝 :

∑
𝑎:𝐴𝑟 𝐵 𝑟 𝑎.

Using coe for 𝐴 and 𝐵, we can construct type coe (𝜆𝑖 → ∑
𝑎:𝐴𝑖 𝐵 𝑖 𝑎) 𝑟 𝑠 𝑝 :

∑
𝑎:𝐴𝑠 𝐵 𝑠 𝑎

which is definitional equal to 𝑝 if 𝑟 = 𝑠 .

Proof. By the 𝜂 law for dependent sums, this term must be of the form (𝑎, 𝑏) for some

element of 𝐴𝑠 and of 𝐵 𝑠 𝑎. In fact, it is straightforward to find the first component of

this pair: 𝑎 = coe𝐴𝑟 𝑠 fst(𝑝).
The second component of the pair is more complex. Naïvely, one might hope that

one could mirror the construction for 𝑎 and use coe𝐵 in some manner. However, this

is not well-typed! After all, 𝐵 is not in the correct shape for coe: it is an element of

(𝑖 I) → 𝐴 𝑖 → U and not the required I → U. Accordingly, to apply coe we must
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choose some element of 𝐴 with which to specialize 𝐵. In fact, the situation is more

fraught than this: 𝐴 itself depends on I and so if we wish to obtain a specialization of

𝐵 with the type I→ U, we will require an element of 𝑎 : (𝑖 I) → 𝐴 𝑖 . Given such an

𝑎, however, We can then use coe with 𝐵𝑎 = 𝜆𝑖 → 𝐵 𝑖 (𝑎 𝑖) to attempt to construct 𝑏.

We can further narrow things down with this in mind. After all, our goal is to

set 𝑏 = coe𝐵𝑎 𝑟 𝑠 snd(𝑝) and if this is to be type-correct we must have 𝑎 𝑟 = fst(𝑝).
Moreover, since we wish to have 𝑏 : 𝐵 𝑎 𝑠 we must have 𝑎 𝑠 be 𝑎 = coe𝐴𝑟 𝑠 fst(𝑝).

In order to obtain 𝑎, we take advantage of the flexibility of coe to coerce from 𝑟 to

a variable dimension, rather than 0 or 1. Specifically, we define 𝑎 as follows:

𝑎 := 𝜆𝑖 → coe𝐴𝑟 𝑖 𝑎

With 𝑎 to hand, we choose 𝑏 B coe𝐵𝑎 𝑟 𝑠 snd(𝑝), completing the required term. We

leave it to the reader to check the required definitional equality holds when 𝑟 = 𝑠 . □

Rendering the above term in formal notation, the rule can be completed to the

following:

Γ I ⊢ 𝐴 type Γ I.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑟, 𝑠 I Γ ⊢ 𝑝 : Σ(𝐴, 𝐵) [id 𝑟 ]
Γ ⊢ coe𝑟→𝑠Σ (𝐴,𝐵) (𝑝) = pair(coe𝑟→𝑠𝐴 (fst(𝑝)), coe𝑟→𝑠

𝐵 [id .coe𝑟 [p]→q
𝐴 [p I] (𝑎[p] ) ]

(snd(𝑝))) : Σ(𝐴, 𝐵) [id 𝑠]

While the translation is largely mechanical, the reader can hopefully appreciate

that the informal term is far more legible than the formal cousin!

We now turn to the case of dependent products. The process is mostly similar and

we use the coercion operations on 𝐴 and 𝐵 to specify how coeΠ (𝐴,𝐵) ought to compute.

Our goal is once more to fill in the right-hand side of the following equality:

Γ I ⊢ 𝐴 type Γ I.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑟, 𝑠 I Γ ⊢ 𝑓 : Π(𝐴, 𝐵) [id 𝑟 ]
Γ ⊢ coe𝑟→𝑠Π (𝐴,𝐵) (𝑓 ) = ? : Π(𝐴, 𝐵) [id 𝑠]

✎

Lemma 5.4.3. Fix 𝐴 : I→ U, 𝐵 : (𝑖 I) → 𝐴(𝑖) → U, 𝑟, 𝑠 I, and 𝑝 : (𝑎 : 𝐴𝑟 ) → 𝐵 𝑟 𝑎.
Using coe for 𝐴 and 𝐵, we can construct type coe (𝜆𝑖 → (𝑎 : 𝐴 𝑖) → 𝐵 𝑖 𝑎) 𝑟 𝑠 𝑝 : (𝑎 :

𝐴𝑠) → 𝐵 𝑠 𝑎 which is definitional equal to 𝑝 if 𝑟 = 𝑠 .

Proof. Our goal is to construct an element of (𝑎 : 𝐴(𝑠)) → 𝐵 𝑠 𝑎 and, accordingly, we

fix 𝑎 : 𝐴(𝑠) and set about constructing 𝐵 𝑠 𝑎. We begin by defining 𝑎𝑟 = coe𝐴𝑠 𝑟 𝑎 such
that we obtain 𝑏𝑟 = 𝑓 (𝑎𝑟 ) : 𝐵 𝑟 𝑎𝑟 . We would like to coerce 𝑏𝑟 to obtain our desired

element of 𝐵 𝑠 𝑎, but along what type should this coercion occur? We must find some

𝑎 : (𝑖 I) → 𝐴(𝑖) such that 𝑎(𝑟 ) = coe𝐴𝑠 𝑟 𝑎 and 𝑎(𝑠) = 𝑎. Capitalizing on the fact

that coe𝐴𝑠 𝑠 𝑎 = 𝑎, we choose 𝑎 to be 𝜆𝑘 → coe𝐴𝑠 𝑘 𝑎. The full term then becomes

the following:

𝜆𝑎 → coe (𝜆𝑘 → 𝐵 𝑘 (coe𝐴𝑠 𝑘 𝑎)) 𝑟 𝑠 (𝑓 (coe𝐴𝑠 𝑟 𝑎))
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Once again, we leave it to the intrepid reader to confirm that if 𝑟 = 𝑠 then this term is

simply equivalent to 𝑓 . □

For the final time, we provide a translation of this informal definition into formal

notation. Hereafter, we shall leave this mechanical (if tedious) process to the reader:

Γ I ⊢ 𝐴 type Γ I.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑟, 𝑠 I Γ ⊢ 𝑓 : Π(𝐴, 𝐵) [id 𝑟 ]

Γ ⊢ coe𝑟→𝑠Π (𝐴,𝐵) (𝑓 ) = 𝜆 (coe𝑟 [p ]→𝑠 [p ]
𝐵 [p q.coe𝑠 [p ]→I

𝐴 [ (p◦p) I] (q [p] ) ]
(app(𝑓 [p], coe𝑠 [p ]→𝑟 [p ]

𝐴[p q] (q)))) : Π(𝐴, 𝐵) [id 𝑠]

Undeniably, these rules are complicated.
7
They are, however, really just a sequence

of programming exercises and share many characteristics and so describing the first

few cases is the most painful.

The next novelty, as already mentioned, comes in the definition of coe for path

types. We turn to this next and, consequently, shift our attention to the second operator

we must define for every type: hcomp.

5.4.2 Working with the homogeneous composition operator

A common challenge when one begins to study cubical type theory is to “visualize”

hcomp. While coe matched closely enough with the already familiar subst operator,
the homogeneous composition operator is quite different than any of the combinators

one typically encounters in intensional type theory. Prior to using it to compute

coercion in path types, we give a few simple worked examples of hcomp to help

demystify this operator.

Composing two paths using hcomp Let us begin cultivating intuition for hcomp
by showing how we can use it to compose two paths 𝑝1 : Path(𝐴, 𝑎, 𝑏) and 𝑝2 :

Path(𝐴,𝑏, 𝑐). We shall do this using hcomp𝐴, so it remains only to choose (1) the

𝑟 → 𝑠 direction we wish to compose along and (2) the cofibration 𝜙 to restrict along.

To visualize this situation, let us briefly fix two dimension variables 𝑖, 𝑗 I and

7
Indeed, the reader may wonder how the authors managed to get these complicated terms correct.

The answer is simple: they did not. They found numerous typos in the process of editing this section.
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instantiate 𝑝1 with 𝑖 and 𝑝2 with 𝑗 . We can draw the situation as follows:

𝑎

𝑎

𝑏

𝑐

𝑝1(𝑖)

𝑎 𝑝2( 𝑗)

𝑖

𝑗

In anticipation of what is to come, we have added a “degenerate” edge correspond-

ing to reflexivity along 𝑎. In order to construct the composite of our two edges, it

suffices to find a line which joins the bottom two vertices. It is here we invoke hcomp.
Since our goal is to fill “down” in the 𝑗 direction, e.g., to push the top edge along the

two vertical edges, we shall apply hcomp from 0 to 1. The cofibration shall be used to

isolate the two sides in this direction we possess so 𝜙 B 𝑖 = 0 ∨ 𝑖 = 1.

Let us put these pieces of intuition together into a term. Our goal is to construct a

path in 𝐴, so we will begin by binding a dimension variable 𝑖 I. We then define the

composite path as follows:

(𝑝2•𝑝1) 𝑖 = hcomp𝜙 𝐴 0 1 (𝜆𝑘, _→ [𝑘 = 0 ↩→ 𝑝1 𝑖 | 𝜙 ↩→ [𝑖 = 0 ↩→ 𝑎 | 𝑖 = 1 ↩→ 𝑝2 𝑘]])

Exercise 5.19. Argue that 𝑝2 • 𝑝1 has the expected boundary i.e. that (𝑝2 • 𝑝1) 0 = 𝑎

and that (𝑝2 • 𝑝1) 1 = 𝑐 .

What if we wish to obtain not just the bottom edge of the square, but the entire

2-dimensional term? Just as we could produce lines by using coe with a variable

dimension as the target, we can “hcomp to the middle” using a dimension variable to

obtain the entire square. We represent this with the following diagram:

𝑎

𝑎

𝑏

𝑐

hcomp𝜙 𝐴 0 𝑗 𝜆𝑘, _→

𝑘 = 0 ↩→ 𝑝1 𝑖

𝑖 = 0 ↩→ 𝑎

𝑖 = 1 ↩→ 𝑝2 𝑘



𝑝1(𝑖)

𝑎 𝑝2( 𝑗)

(𝑝2 • 𝑝1) 𝑖

𝑖

𝑗
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Exercise 5.20. Check that this 2-dimensional term has the relevant boundary condi-

tions. In particular, if 𝑗 = 0 check it collapses to 𝑝1 𝑖 .

Inverting a path using hcomp For a second example, suppose we are given 𝑝 :

Path(𝐴, 𝑎, 𝑏). We showhow hcompmay be used to construct an inverse path Path(𝐴,𝑏, 𝑎).
Once more, we shall fill a square involving 𝑝 alongside two degenerate paths.

To visualize this situation, let us fix 𝑖, 𝑗 I and consider the following three lines:

𝑎

𝑏

𝑎

𝑎

𝑎

𝑝 (𝑖) 𝑎

𝑖

𝑗

In order to compose paths, we have already shown how to use hcomp to complete

these three edges to a square. The same general procedure applies, though the result

is now the inverse to 𝑝 . In particular, we have the following:

𝑝−1 𝑖 B hcomp𝜙 𝐴 0 1 𝜆𝑘, _→

𝑘 = 0 ↩→ 𝑎

𝑖 = 0 ↩→ 𝑝 (𝑖)
𝑖 = 1 ↩→ 𝑎


In fact, with further effort we could use hcomp to construct higher paths witnessing

e.g., a path between 𝑝 • 𝑝−1
and a constant path. Rather than pursuing this more fully,

however, we return to the original example which prompted this detour.

Coercion in path types from hcomp We can now complete the loop that motivated

this detour and show how to implement coercion in Path. Crucially, this requires both
coe and hcomp working in concert.

Lemma 5.4.4. Fix 𝐴 : I → U, 𝑎, 𝑏 : (𝑖 I) → 𝐴(𝑖) alongside 𝑟, 𝑠 I and 𝑝 :

Path(𝐴(𝑟 ), 𝑎(𝑟 ), 𝑏 (𝑟 )). Using hcomp and coe for 𝐴, there exists a term of the following
type:

coe (𝜆𝑖 → Path(𝐴(𝑖), 𝑟 (𝑖), 𝑠 (𝑖))) 𝑟 𝑠 𝑝 : Path(𝐴(𝑠), 𝑎(𝑠), 𝑏 (𝑠))

Moreover, this term is definitionally equal to 𝑝 when 𝑟 = 𝑠 .

Proof. As before, let us fix 𝑘 I such that it now suffices to define an element of 𝐴(𝑠)
which specializes to 𝑎(𝑠) and 𝑏 (𝑠) when 𝑘 = 0 or 𝑘 = 1. This latter condition is the sort
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of problem well-addressed by hcomp𝜙 where 𝜙 B 𝑘 = 0∨𝑘 = 1: one of the definitional

equalities governing the construction precisely allows us to guarantee these equations.

It remains to work out the direction in which we ought to apply hcomp𝜙 as well as

the “top” of the square we are filling. Let us revisit the drawing of the situation we

encountered when first attempting to construct coe in Path:

coe𝐴𝑟 𝑠 (𝑎 𝑟 )

𝑎 𝑠

coe𝐴𝑟 𝑠 (𝑏 𝑟 )

𝑏 𝑠

coe𝐴𝑟 𝑠 (𝑝 𝑘)
𝑘

Here, we have depicted the vertical lines as “wavy” since they do not actually form a

path with the top corresponding to 0 and the bottom to 1. Instead, they represent lines

in 𝐴(𝑠) such that e.g., when specialized with 𝑟 become coe𝐴𝑟 𝑠 (𝑏 𝑟 ) and at 𝑠 become

𝑏 𝑠 . This, however, is precisely what we require if we use composition from 𝑟 to 𝑠 ,

rather than from 0 to 1. All told then, we arrive at the following term:

coe𝐴𝑟 𝑠 𝑝 B 𝜆𝑖 → hcomp𝑖=0∨𝑖=1
(𝐴𝑠) 𝑟 𝑠 𝜆𝑘, _→


𝑘 = 𝑟 ↩→ coe𝐴𝑟 𝑠 (𝑝 𝑖)
𝑖 = 0 ↩→ coe𝐴𝑘 𝑠 (𝑎 𝑘)
𝑖 = 1 ↩→ coe𝐴𝑘 𝑠 (𝑏 𝑘)


We leave it to the reader to confirm that all three of the branches of the disjunction

match as required on their overlaps and that when 𝑟 = 𝑠 this term collapses to 𝑝 . □

5.4.3 Unfolding hcomp in various type constructors

While we have discussed the core rules governing coe at this point, it remains to

do so for hcomp. Just as with coercion, for specifying core connectives amounts to

a sequence of programming exercises and we give the details only for dependent

products and path types.

Lemma 5.4.5. Fix a cofibration 𝜙 , types 𝐴 : U, 𝐵 : 𝐴→ U, dimension terms 𝑟, 𝑠 I, and
a term 𝑓 : (𝑖 I) → (𝑖 = 𝑟 ∨ 𝜙) → (𝑎 : 𝐴) → 𝐵(𝑎). There exists hcomp𝜙 ((𝑎 : 𝐴) →
𝐵 𝑎) 𝑟 𝑠 𝑓 of type (𝑎 : 𝐴) → 𝐵(𝑎) built from composition in 𝐵 satisfying the expected
definitional equalities.
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Proof. Let us fix 𝑎 : 𝐴 such that we must build 𝑏 : 𝐵(𝑎) such that if either 𝑟 = 𝑠 or 𝜙

holds then 𝑏 = 𝑓 𝑠 𝑎. To this end, we shall use composition in 𝐵(𝑎):

𝑏 = hcomp𝜙 (𝐵 𝑎) 𝑟 𝑠 𝜆𝑖, _→ 𝑓 𝑖 _𝑎

It is routine to see that this gives rise to the required term using the boundary conditions

of hcomp𝜙 (𝐵 𝑎) 𝑟 𝑠 . □

Lemma 5.4.6. Fix a cofibration 𝜙 , a type 𝐴 : U, elements 𝑎, 𝑏 : 𝐴, dimension terms
𝑟, 𝑠 I, and a partial term 𝑝 : (𝑖 I) → (𝑖 = 𝑟 ∨ 𝜙) → Path(𝐴, 𝑎, 𝑏). There exists a
term hcomp𝜙 (Path(𝐴, 𝑎, 𝑏)) 𝑟 𝑠 𝑝 : Path(𝐴, 𝑎, 𝑏) built from composition and coercion in
𝐴 satisfying the expected definitional equalities.

Proof. The required term is an application of hcomp in𝐴. Since we intend to construct

a path, we fix 𝑖 I such that 𝜆 𝑗 → 𝑝 𝑗 _ 𝑖 : ( 𝑗 I) → 𝑗 = 𝑟 ∨ 𝜙 → 𝐴 is a partial element

suitable as input for hcomp.
This is almost sufficient, but we must also ensure that the resulting extended term

satisfies the boundary condition necessary to form an element of Path(𝐴, 𝑎, 𝑏). To fix

these boundaries, we extend 𝜙 with faces to govern the behavior of this term when

𝑖 = 0 or 𝑖 = 1. The final term is given as follows:

hcomp𝜙 (Path(𝐴, 𝑎, 𝑏)) 𝑟 𝑠 𝑝 B 𝜆𝑖 → hcomp𝜙∨𝑖=0∨𝑖=1
𝐴𝑟 𝑠 𝜆 𝑗, _→


𝜙 ∨ 𝑗 = 𝑟 ↩→ 𝑝 𝑗 _ 𝑖

𝑖 = 0 ↩→ 𝑎

𝑖 = 1 ↩→ 𝑏


We once more leave it to the reader to check that this satisfies the necessary boundary

conditions. □

5.4.4 V and univalence

Finally, we turn to the rules necessary to animate both hcomp in U and univalence.

The crucial idea behind both is the same: paths in the universe are, by definition, codes

which depend on I and so to implement either hcomp or univalence, it suffices to

define new types. We shall focus largely on the new type necessary to implement

univalence V, but much of the process transfers to hcomp.
Suppose we are given 𝐴, 𝐵 : U along with 𝑒 : 𝐴 ≃ 𝐵. We wish to construct a path

ua 𝑒 : Path(U, 𝐴, 𝐵) or, equivalently, a map 𝑝 : I→ U such that 𝑝 0 = 𝐴 and 𝑝 1 = 𝐵.

We intend for ua to be inverse to the canonical map idToEquiv : Id(U, 𝐴, 𝐵) → 𝐴 ≃ 𝐵
which, in this setting, amounts to requiring that coe𝑝 0 1 : 𝐴→ 𝐵 is equal to 𝑒 .
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Remark 5.4.7. The reader may wonder whether we need an additional constraint

ensuring that ua(coe𝑝 0 1) can be identified with 𝑝 . As we remarked in Section 5.2,

this direction holds automatically. ⋄

Our goal shall be to define a new type V(𝐴, 𝐵, 𝑒, 𝑟 ) and to set ua 𝑒 B 𝜆𝑖 →
V(𝐴, 𝐵, 𝑒, 𝑖). We begin with the (provisional) formation rule for V:

Γ ⊢ 𝐴, 𝐵 type Γ ⊢ 𝑒 : 𝐴 ≃ 𝐵 Γ ⊢ 𝑟 I
Γ ⊢ V(𝐴, 𝐵, 𝑒, 𝑟 ) type

We note that this definition is sensitive to the precise realization of equivalence we

choose. However, any of the notions presented in Section 5.2 suffice and so we shall

ignore this detail. Moreover, we must ensure that our universe is closed under V in

order to actually carry out the definition of ua. It is more convenient to specify rules

for the type V rather than the code, however, and so we shall focus on that.

The above set of constraints on ua and path types generally translate into the

following requirements for V(𝐴, 𝐵, 𝑒, 𝑟 ):

• We must have definitional equalities V(𝐴, 𝐵, 𝑒, 0) = 𝐴 and V(𝐴, 𝐵, 𝑒, 1) = 𝐵.

• It must be the case that coe (𝜆𝑖 → V(𝐴, 𝐵, 𝑒, 𝑖)) 0 1 = 𝑒 .

• We must be able to implement hcomp and coe for V.

Of course, 𝜆𝑖 → V(𝐴, 𝐵, 𝑒, 𝑖) is always fully constrained up to equivalence: it

is the unique inhabitant of Path(U, 𝐴, 𝐵) sent to 𝑒 by coe. In this way, it is largely

unimportant how precisely V is realized. What matters is only that such a type can

exist and satisfy the list of required properties. To this end, these constraints are useful

for nailing down the particular rules which define V more precisely and, unfortunately,

we must give new rules. V cannot be defined by a clever combination of existing type

formers because of the first requirement; we presently have no means of defining

a type which degenerates to two distinct types depending on the endpoints of an

interval.

In fact, given all these constraints there are precious few valid choices for the intro-

duction and elimination rules of V. The difficulty is that it is not obvious whether any

given choice of rules will suffice until one carefully checks each condition. Accordingly,

we will present the correct rules below and only then discuss some of the subtleties:

Γ ⊢ 𝐴, 𝐵 type Γ ⊢ 𝑒 : 𝐴 ≃ 𝐵
Γ ⊢ V(𝐴, 𝐵, 𝑒, 0) = 𝐴 type Γ ⊢ V(𝐴, 𝐵, 𝑒, 1) = 𝐵 type
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Γ ⊢ 𝐴, 𝐵 type Γ ⊢ 𝑒 : 𝐴 ≃ 𝐵 Γ ⊢ 𝑟 I
Γ 𝑟 = 0 ⊢ 𝑎 : 𝐴[p] Γ ⊢ 𝑏 : 𝐵 Γ 𝑟 = 0 ⊢ app(𝑒 [p], 𝑎) = 𝑏 [p] : 𝐵 [p]

Γ ⊢ Vin(𝑎, 𝑏, 𝑟 ) : V(𝐴, 𝐵, 𝑒, 𝑟 )
Γ 𝑟 = 0 ⊢ Vin(𝑎, 𝑏, 𝑟 ) [p] = 𝑎 : 𝐴[p] Γ 𝑟 = 1 ⊢ Vin(𝑎, 𝑏, 𝑟 ) [p] = 𝑏 : 𝐵 [p]

Γ ⊢ 𝐴, 𝐵 type Γ ⊢ 𝑒 : 𝐴 ≃ 𝐵 Γ ⊢ 𝑟 I Γ ⊢ 𝑣 : V(𝐴, 𝐵, 𝑒, 𝑟 )
Γ ⊢ Vout(𝑣) : 𝐵

Γ 𝑟 = 0 ⊢ Vout(𝑣) = app(𝑒, 𝑣) : 𝐵 [p] Γ 𝑟 = 1 ⊢ Vout(𝑣) = 𝑣 : 𝐵 [p]

Γ ⊢ 𝐴, 𝐵 type Γ ⊢ 𝑒 : 𝐴 ≃ 𝐵 Γ ⊢ 𝑟 I
Γ 𝑟 = 0 ⊢ 𝑎 : 𝐴[p] Γ ⊢ 𝑏 : 𝐵 Γ 𝑟 = 0 ⊢ app(𝑒 [p], 𝑎) = 𝑏 [p] : 𝐵 [p]

Γ ⊢ Vout(Vin(𝑎, 𝑏, 𝑟 )) = 𝑏 : 𝐵

Γ ⊢ 𝐴, 𝐵 type Γ ⊢ 𝑒 : 𝐴 ≃ 𝐵 Γ ⊢ 𝑟 I Γ ⊢ 𝑣 : V(𝐴, 𝐵, 𝑒, 𝑟 )
Γ ⊢ Vin(𝑣 [p],Vout(𝑣), 𝑟 ) = 𝑣 : V(𝐴, 𝐵, 𝑒, 𝑟 )

In total then, an element of V(𝐴, 𝐵, 𝑒, 𝑟 ) contains a partial element of 𝐴 and a full

element of 𝐵 which match up according to 𝑒 when both are defined. The introduction

and elimination rules (along with their 𝛽 and 𝜂 principles) are then nearly routine

from this perspective. The complexity comes from the various rules which apply if

𝑟 = 0 or 𝑟 = 1.

These are a consequence of having V(𝐴, 𝐵, 𝑒, 𝑟 ) collapse definitionally to 𝐴 and

𝐵. We have not encountered rules similar to this with other type formers and they

impose a number of unique constraints on the rules around V if we are to avoid having

terms of V(𝐴, 𝐵, 𝑒, 𝑟 ) polluting 𝐴 and 𝐵. For instance, we must add rules ensuring that

Vin(𝑎, 𝑏,) correctly equates to 𝑎 or 𝑏 where this is required. Similarly, Vout(𝑣) cannot
come only with a 𝛽 rule to govern its behavior, as it must account for the situations

where 𝑣 becomes an ordinary element of 𝐴 and 𝐵.

To illustrate the delicacy of these rules, imagine a simple possible replacement:

instead of requiring Γ 𝑟 = 0 ⊢ app(𝑒 [p], 𝑎) = 𝑏 [p] : 𝐵 [p], what if we required that

app(𝑒−1, 𝑏) was definitionally equal to 𝑎? While this is seemingly innocuous, 𝑒 and 𝑒−1

are inverses only up to a path and not necessarily definitionally inverses. Consequently,

this exchange would make it impossible to properly specify the behavior of Vout(𝑣)
when 𝑟 = 0; depending on the order in which rules were applied one could obtain

distinct (but path equal!) terms.

Another mysterious aspect of these rules is the asymmetry between 𝐴 and 𝐵. Why

𝑎 is required to be a partial element whereas 𝑏 is total as opposed to defined only when

𝑟 = 1 holds. What matters is not so much whether 𝑎 or 𝑏 is partial, but merely that

one of the two is fully defined and one is not. If neither is fully defined, it becomes
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impossible to state that 𝑎 and 𝑏 are equated by 𝑒 . More subtly, if both are fully defined

it becomes impossible to specify coe in V.
The definitions of hcomp and coe in V are complex and we will not attempt to

detail them here. The interested reader should consult Appendix B of Angiuli [Ang19]

for precise account of V.
Finally, we note that the same chain of reasoning that leads to this definition

of V can be used to produce the type implementing hcomp𝑟→𝑠U (𝜙,𝐴). We can once

more list out the various definitional equalities which such a type must satisfy as

well as what types it must be equivalent to. Unfurling these, we determine that

elements of hcomp𝑟→𝑠U (𝜙,𝐴) are essentially smaller formal composition problems, just

as elements of V were “suspended coercions along 𝑒”. Unfortunately, the details and

bookkeeping around such formal composition problems (and composition problems of
formal composition problems) is taxing. A curious reader should once again consult

Angiuli [Ang19].
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Further reading

Write this section, including papers on the semantics of HoTT, applications

of HoTT to homotopy theory, and pointers for each topic mentioned in Sec-

tion 5.2.4. Discuss “Univalent Foundations” vs HoTT?

Again, see the “HoTT Book” [UF13] and Introduction to Homotopy Type Theory
[Rij22]. See also one of the many formalization projects based on HoTT [VAG+20;

Bau+17; Esc+10; Rij+21].

Descent: Anel [Ane19]
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Semantics of type theory (draft) 6
In Chapter 2, we formulated the syntax of (extensional) type theory via rules inductively

defining sets of contexts, substitutions, types, and terms. In Chapter 3, we introduced

the notion of a general model of type theory (Definition 3.4.2) by observing that those

rules could alternatively be seen as a signature imposing various closure conditions

on four arbitrary sets of contexts, etc., recovering the notion of syntax as a free or

initial model. Although we defined the set model of type theory in Section 3.5 and

discussed the groupoid model in Section 4.3, our focus throughout this book has been

on syntactic models of type theory. In this chapter, we systematically consider models

of type theory.

Many readers may have encountered the phrase “categorical semantics” in discus-

sion of models of type theory. We have chosen to eschew the adjective “categorical”

in the title of this chapter because, fundamentally, there is nothing categorical about

the definition of model given in Definition 3.4.2. It is much closer in spirit to models

in classical universal algebra such as groups, rings, or modules: a collection of sets

together with operations and equations. Of course, a model of dependent type theory

requires some of these sets to be indexed by elements of others, making it more general

than an algebraic theory (more precisely, it is a generalized algebraic theory [Car86;

Dyb96; KKA19]; see Section 6.7).

In fact, the connection to category theory is much more pedestrian than one might

assume: it so happens that the definition of a category is hiding within the definition

of a model of type theory. Accordingly, every model of type theory can be seen as

a category equipped with additional properties and structures. Thus, in a very real

sense, we have been using the categorical semantics of type theory since Chapter 3.

Starting in this chapter however, we shall take advantage of this observation to

repackage the definition of a model into a smaller and more tractable form. This

process is a more exaggerated form of the simplification of replacing the fully unfolded

definition of a ring with the more compact “an abelian group equipped with a multipli-

cation operation · satisfying . . . ”. Mathematically, very little has changed but it is often

practically easier to construct examples after this reorganization since we can reuse

categorical intuitions.

Warning 6.0.1. With this in mind, for this chapter only we shall assume that the reader

has a working knowledge of category theory. In particular, we shall assume familiarity

with categories, functors, natural transformations, presheaves, the Yoneda embedding,
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and adjunctions to the level of, for instance, the first four chapters of Riehl [Rie16] or

the first nine chapters of Awodey [Awo10].

Remark 6.0.2. The reader without exposure to category theory may find this chapter

useful motivation to begin studying category theory in its own right. Indeed, while it

is perhaps not mandatory, a working knowledge of category theory is an invaluable

tool for engaging with contemporary literature on type theory. For a reader ready to

take the plunge, we recommend either of the two aforementioned books. ⋄

In this chapter In Sections 6.1 to 6.4 we reorganize the definition of a model of

type theory given in Section 3.2 into the concise notion of a category with families
(cwf) [Dyb96]. We observe how the natural isomorphisms used in Chapter 2 to

define connectives can be repurposed to give a succinct and efficient definition. We

systematically use a more modern reformulation of cwfs as natural models as put
forward by Awodey [Awo18].

In Section 6.5 we set out to connect cwfs to locally cartesian closed categories

(LCCCs). We describe the slogan originating with Seely [See84] that LCCCs are models

are extensional type theory and illustrate how various coherence issues complicate this

fact. We also describe at some length the local universes coherence construction [LW15;

Awo18] and how it resolves these issues to construct a cwf on top of an arbitrary

LCCC.

Section 6.6 is devoted to proving a claim from Chapter 3: extensional type theory

satisfies canonicity. We do this by constructing a particular model of type theory based

on a gluing construction and deriving canonicity from this model together with the

fact that syntax organizes into the initial model.

Finally, in Section 6.7, we show how the apparatus of cwfs can be leveraged to give

a conceptual description of the syntax of type theory itself. In particular, we follow

Bezem et al. [Bez+21] and use categories with families as the foundation for a definition

of generalized algebraic theories from which we recover the initiality results claimed in

Section 3.4.

Remark 6.0.3. Throughout this chapter, we focus on extensional type theory. We

emphasize, however, that none of this material is specific to ETT. The curious reader

may refer to e.g., Awodey [Awo18] for a treatment of the intensional identity type. ⋄

Goals of this chapter By the end of this chapter, you will be able to:

• Explain the definition of a cwf and why it constitutes a model of type theory.

• Explain how the locally cartesian closed category (LCCC) relates to a cwf.
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• Use the local universes construction to construct a cwf from an LCCC.

• Prove metatheorems of type theory using semantic methods.

Glossary of category theory

Accumulate notations/etc here; later expand into a short section.

Here is the category theory we need. We will briefly recall definitions as we go,

but not enough for a first exposure.

• homC (𝑐, 𝑑)

• Pr(C)

• C/𝑐

• 𝑓 ∗ : Pr(C) Pr(D)

• 𝑓 ∗ : C/𝐶 C/𝐷

• 𝑓∗ : C/𝐶 C/𝐷

• y

• 𝑋 ×𝑌 𝑍

• ⌜−⌝

• “Gap map”

• “Locally cartesian closed”

And here is a list of category theory concepts that we will explain more care-

fully.

6.1 Categories with families

We begin by reformulating the definition of a model of extensional type theory from

Chapter 3 into a more palatable form. Our starting point is the following observation:
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Lemma 6.1.1. IfM is a model of ETT (Definition 3.4.2), then CxM is a category where
the hom-sets homCxM (Γ,Δ) are given by SbM (Γ,Δ).

Proof. This is very nearly a tautology. We must construct a composition operation

for morphisms along with an identity arrow and show that the satisfy the expected

properties. However, the composition operation for substitutions ◦M and the identity

substitution idM are defined so as to precisely fit this specification. □

The immediate pay-off of this observation is that we may collapse 7 points in

Definition 3.4.2 (two sets, two operations, and three equations) into a single structure.

What is less obvious—though more important—is that a good number of the other

points of Definition 3.4.2 can also be rephrased and compacted in this manner. In

particular, category theory is designed for naturality and therefore is exceptionally

well-suited to capturing the aspects of type theory based on naturality:

workshop this phrasing

Slogan 6.1.2. Re-expressing the connectives of type theory using category theory allows
us to automatically obtain concise descriptions which bake in naturality requirements.

We shall split up the process of formulating these categorical versions this and the

following three sections (Sections 6.1 to 6.4), roughly mirroring the progression found

in Sections 2.3 to 2.6.

6.1.1 Contexts and substitutions

We begin by reformulating the portions of Definition 3.4.2 that do not involve specific

connectives into more categorical terms. In so doing, we shall arrive at the defini-

tion of a category with families [Dyb96]—or, rather, the equivalent notion of natural
model [Awo18]. Coincidentally, this discussion closely parallels the path taken by

Dybjer [Dyb96] when he introduced the notion, but many of the concrete results are

due to Awodey [Awo18].

Lemma 6.1.3. The operations and equations for the empty context 1M are precisely
equivalent to the requirement that CxM possess a chosen terminal object.

Proof. Recall that a terminal object 𝑋 : C is one such that homC (𝑌,𝑋 ) � {★} for all
objects 𝑌 . Inspecting the rules governing 1M , we see that !M furnishes an inverse to

the unique map homCxM (Γ, 1M) → {★}. □

In order to consolidate other aspects of M, we must deal with TyM (−) and
TmM (−,−). Fortunately, these too admit clean categorical descriptions:
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Lemma 6.1.4. The family of sets TyM (−) and the operations and equations for applying
substitutions to types −[−]M are precisely equivalent to a presheaf over CxM .

Proof. Let us recall that a presheaf 𝑋 : Cop → Set consists of (1) a family of sets 𝑋 (𝑐)
for each 𝑐 : C, (2) a collection of functions 𝑋 (𝑓 ) : 𝑋 (𝑐′) → 𝑋 (𝑐) for each 𝑓 : 𝑐 𝑐′,
(3) equations stating that 𝑋 (id) is the identity function and 𝑋 (𝑓 ◦ 𝑔) = 𝑋 (𝑔) ◦ 𝑋 (𝑓 ).
Reviewing the operations and equations for TyM (−) and −[−]M , we find a perfect

match. □

A similar story can be told for TmM (−,−) and substitution on terms, but one must

work slightly harder: since terms are indexed over both context and types, TmM (−,−)
is not a presheaf over CxM but instead over the category of elements

∫
Γ:CxM

TyM (Γ):

Definition 6.1.5. If C is a category and 𝑋 : Pr(C), the category of elements

∫
C 𝑋 is

defined as following:

• Objects are pairs (𝑐 : C, 𝑥 : 𝑋 (𝑐)).

• Amorphism (𝑐, 𝑥) (𝑑,𝑦) consists of a morphism 𝑓 : 𝑐 𝑑 such that𝑋 (𝑓 ) 𝑦 =

𝑥 .

• Composition and identity are defined using the corresponding operations from

C.

See Riehl [Rie16, Section 2.4] for more details.

To gain intuition, let us consider

∫
Γ:CxM

TyM (Γ). Its objects are pairs of a context Γ
and a type𝐴 : TyM (Γ) and morphisms (Δ, 𝐵) (Γ, 𝐴) are substitutions𝛾 : SbM (Δ, Γ)
such that 𝐵 = 𝐴[𝛾]. Such pairs and substitutions are precisely the inputs to TmM (−,−)
and so we conclude the following:

Lemma 6.1.6. The family of sets TmM (−,−) and the operations and equations for apply-
ing substitution to terms−[−]M are precisely equivalent to a presheaf over

∫
Γ:CxM

TyM (Γ).

A digression: slicing presheaf categories A classical result in category theory

is that there exists an equivalence between Pr(C)/𝑋 and Pr(
∫
C 𝑋 ); most often, this is

used to prove that the slice category of a presheaf category is itself a presheaf category.

For our purposes it is often vital to pass between these perspectives when studying

TmM (−,−) and so we include both a sketch of this proof and note its specialization to

TmM (−,−).
Surely there is a reference for this somewhere?
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First, we define the functor 𝑈 sending Pr(C)/𝑋 to Pr(
∫
C 𝑋 ). This functor sends

𝜎 : 𝑌 𝑋 to the following presheaf over

∫
C 𝑋 :

𝑈 (𝜎) (𝑐, 𝑥) = {𝑦 : 𝑌 (𝑐) | 𝜎𝑐 (𝑦) = 𝑥}

Given 𝛼 : homPr(C)/𝑋 (𝜎, 𝜏), the functorial action𝑈 (𝛼) is defined as follows:

𝑈 (𝛼) (𝑐, 𝑥) 𝑦 = 𝛼 𝑐 𝑦

In particular, since 𝜏 ◦ 𝛼 = 𝜎 and 𝜎𝑐 (𝑦) = 𝑥 by definition of 𝑈 (𝜎), we must have

𝜏 𝑐 (𝛼 𝑐 𝑦) = 𝑥 so that this definition is well-typed.

Exercise 6.1. Check that𝑈 satisfies the equations necessary to be a functor.

Exercise 6.2. Argue that𝑈 is fully faithful.

In light of Exercise 6.2, to check that𝑈 is an equivalence, it suffices to check that

it is essentially surjective. That is, we must show that if 𝑌 : Pr(
∫
C 𝑋 ) then there exists

𝜎 : 𝑌0 𝑋 such that𝑈 (𝜎) � 𝑌 . Fixing 𝑌 : Pr(
∫
C 𝑋 ), we define 𝜎 and 𝑌0 as follows:

𝑌0 𝑐 =
∑
𝑥 :𝑋 (𝑐 ) 𝑌 (𝑐, 𝑥) 𝜎 𝑐 = 𝜋1

We leave it to the reader to carry out the routine verification that 𝑌0 is functorial and

𝜎 is natural. We may now compute𝑈 (𝜎):

𝑈 (𝜎) (𝑐, 𝑥) = {(𝑥0, 𝑦) :

∑
𝑥0:𝑋 (𝑐 ) 𝑌 (𝑐, 𝑥0) | 𝑥0 = 𝑥} � 𝑌 (𝑐, 𝑥)

It is routine to check that these bijections organize into the required natural isomor-

phism. All told, we conclude the following:

Theorem 6.1.7. 𝑈 is an equivalence.

We may specialize this discussion to TyM : Pr(CxM) and TmM : Pr(
∫
CxM

TyM):

Corollary 6.1.8. The family of sets TmM (−,−) and the operations and equations for ap-
plying substitution to terms −[−]M are precisely equivalent to an object in Pr(CxM)/TyM .

We denote the induced object of the slice category 𝜋 : Tm•M TyM and it is

explicitly given as follows:

Tm•M Γ =
∑
𝐴:TyM (Γ) TmM (Γ, 𝐴) 𝜋 Γ = 𝜋1
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The categorical formulation of context extension With Tm•M to hand, we

reformulate one final piece of Definition 3.4.2 before taking stock: context extensions.

This definition is a bit more complex since it mixes together all four of contexts,

substitutions, terms and types. However, our discussion of the mapping-in property of

context extension in Section 2.4.2 should lead us to guess that it too can be expressed

categorically.

Definition 6.1.9. If 𝛼 : 𝑋 𝑌 where𝑋,𝑌 : Pr(C), we say 𝛼 is representablewhenever
the pullback y(𝑐) ×𝑌 𝑋 is representable for every y(𝑐) 𝑌 .

In other words, a natural transformation is representable if for every 𝑦 : y(𝑐) 𝑌

there exists some 𝑐𝑦 : C along with morphisms 𝑝𝑦 : 𝑐𝑦 𝑐 and 𝑞𝑦 : y(𝑐𝑦) 𝑋 such

that the following diagram is a pullback:

y(𝑐𝑦)

y(𝑐)

y(𝑝𝑦)

𝑋

𝑌

𝑞𝑦

𝛼

𝑦
(6.1)

We call a particular choice of triples (𝑐𝑦, 𝑝𝑦, 𝑞𝑦) a representability structure on 𝛼 . Rep-
resentability structures are all suitably uniquely isomorphic to one another, but need

not be equal (in much the same way that limits are determined only up to unique

isomorphism).

Lemma 6.1.10. The operations and equations around context extension (including the
variable term and the weakening substitution) inM are precisely equivalent to requiring
a representability structure on 𝜋 : Tm•M TyM .

Proof. Let us begin by unfolding what is involved in a representability structure on

𝜋 and, in particular, what the universal property of Diagram 6.1 determines when

specialized to 𝜋 . First note that a morphism 𝐴 : y(Γ) TyM is equivalent by Yoneda

to a type 𝐴 : TyM (Γ). Accordingly, a representability structure is an assignment of

every Γ and 𝐴 : TyM (Γ) to a triple (Γ𝐴 : CxM, 𝑝𝐴 : Γ𝐴 Γ, 𝑞𝐴 : y(Γ𝐴) Tm•M) such
that the following square commutes and is a pullback:

y(Γ𝐴)

y(Γ)

y(𝑝𝐴)

Tm•M

TyM

𝑞𝐴

𝜋

𝐴
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Let us apply the Yoneda lemma once more to see that 𝑞𝐴 is equivalent to a pair

𝐴′ : TyM (Γ𝐴), 𝑞 : TmM (Γ𝐴, 𝐴′). Moreover, by the naturality of the Yoneda lemma and

the commutation of the above square, we conclude that 𝜋 Γ𝐴 (𝐴′, 𝑎) = 𝐴[𝑝𝐴]M and so,

unfolding the left-hand side of this equality, 𝐴′ = 𝐴[𝑝𝐴]M . Accordingly, the data of

the commuting square corresponds to Γ.M𝐴, qM , and pM .

What’s left is to analyze the universal property of this pullback square. As a general

matter, a square in a presheaf category has the universal property of a pullback square

just when it has the correct universal property with respect to representable presheaves.
There are several ways to prove this, but perhaps the simplest is to recall that (co)limits

in presheaves are computed pointwise and to apply the Yoneda lemma.

Accordingly, the fact that the above commuting square is a pullback amounts to the

following: for every (Δ : CxM, y(Δ) y(Γ), y(Δ) Tm•M) fitting into the below

diagram, there is a unique dashed arrow making the diagram commute:

y(Γ𝐴)

y(Γ)

Tm•M

TyM

𝑞𝐴

𝜋

𝐴

y(Δ)

Applying the Yoneda lemma, we see that the maps y(Δ) TyM and y(Δ) Tm•M
correspond to a substitution 𝛾 : SbM (Δ, Γ) and a term 𝑎 : Tm(Δ, 𝐴[𝛾]M). Finally, we
see that the dashed arrow encodes 𝛾 .M𝑎 and the commutation of the diagram and the

unicity of the dashed arrow correspond to the equations around 𝛾 .M𝑎, completing the

proof. □

We emphasize that while the reshuffling was more involved to relate representabil-

ity structures and context extensions, the two notions are completely equivalent. The

purpose of this reformulation is not to favor one over the other, but to have both

available for when the representability structure notion is easier (e.g., in Section 6.5)

and for when the ((−.M−), pM, qM) is easier (eg, in Section 6.6).
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Exercise 6.3. Suppose that Δ, Γ : CxM and that𝐴 : TyM (Γ) and 𝛾 : SbM (Δ, Γ). Show
that the following is a pullback diagram:

Δ.M𝐴[𝛾]M

Δ

pM

Γ.M𝐴

Γ

𝛾 .M𝐴

pM

𝛾

(Hint: there is a slick proof based on the 3-for-2 lemma for pullbacks and Lemma 6.1.10.)

The definition of a cwf Collecting all these reformulations together, we arrive at

the definition of a cwf [Dyb96] or, more precisely, a cwf recast into the language of

natural models [Awo18]:

Definition 6.1.11. A category with families (cwf) consists of the following data:

• A category C

• A chosen terminal object 1 : C

• A pair of presheaves and a natural transformation 𝜋C : Tm•C TyC

• A representability structure on 𝜋C

Standardize terminology around “bare type theory” and cwf (not natural model).

Theorem 6.1.12. A category with families is equivalent to a model of type theory
without any connectives.

Remark 6.1.13. Different authors package the data of a model (or a cwf) in different

ways. Since they are all equivalent these differences are fundamentally unimportant.

However, they can be useful in different situations and it is important to feel comfort-

able passing between a fully unfolded definition of a model (Definition 3.4.2) or a more

compressed variant (Definition 6.1.11). Not only because many variations appear in

the literature, but because often one formulation is more perspicacious in a particular

situation. ⋄

We refer to a model of type theory without connectives as a model of base type
theory. Our goal is to now explore how to reformulate the specification of various

connectives from Definition 3.4.2 on top of the definition of a cwf. Since we will have
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Connective Unfolded structure Categorical version

The unit type (Unit) Structure 6.2.2 Lemma 6.2.5

The equality type (Eq) Structure 6.2.6 Lemma 6.2.9

Dependent products (Π) Structure 6.2.18 Lemma 6.2.20

Dependent sums (Σ) Exercise 6.9 Lemma 6.2.21

Booleans (Bool) Structure 6.3.2 Lemma 6.3.6

Coproducts (+) Structure 6.3.7 Lemma 6.3.12

The empty type (Void) Structure 6.3.14 Lemma 6.3.15

The natural numbers (Nat) Structure 6.3.16 Lemma 6.3.25

A single universe (U0) Structure 6.4.17 Theorem 6.4.22

A universe hierarchy (U𝑖 ) Exercise 6.15 Lemma 6.4.23

Figure 6.1: Table of categorical reformulation of the connectives of type theory

a great deal of data to manipulate when discussing equipping models of base type

theory with connectives, we take a moment to discuss the global structure of this

process. Essentially every subsection of Sections 6.2 to 6.4 will deal with one a single

connective and in each we will follow the same process. First, we begin by recalling

the relevant portion of Definition 3.4.2 and then work to reformulate them into a more

concise categorical definition. The final result will be a statement of the form “a model

of base type theory supports an interpretation of the connective Θ just when it comes

equipped with the following categorical structures”. For ease of reference, we have

gather a table describing where each structure is introduced and the result where it is

reformulated in Figure 6.1.

As in Chapter 2, once the substitution calculus is in place the connectives of type

theory are essentially orthogonal may be introduced in any order. An exception to

this pattern is U, as the closure conditions required of the universe are of course

sensitive to the other connectives available within the theory. When dealing with

individual connectives, it is frequently convenient to consider models of type theory

which support only a specific subset of connectives. In particular, we may define a

model of type theory with e.g., only Π and Unit as a base model together with the

structures in Definition 3.4.2 specifically related to e.g., Π and Unit. The main result of

the following sections may be summarized by the following “theorem schema”:

Theorem 6.1.14. A model of type theory with any set of connectives consists of (1)
a category with families (Definition 6.1.11) and (2) the categorical reformulation of
structures pertaining to each of those connectives.

In particular, a model of type theory with Π and Unit consists of Definition 6.1.11

satisfying the additional requirements described in Lemmas 6.2.5 and 6.2.20.
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6.2 Pullback squares and Π, Σ, Eq, Unit

We now continue our quest to reformulate Definition 3.4.2 in more categorical terms

by turning our attention to connectives with mapping-in specifications: Π, Unit, Σ,
and Eq. As with contexts and substitutions, our goal is to find equivalent “repackaged”

definitions which consolidate the operations and equations for each connective.

Notation 6.2.1. In the previous section, wewere careful to subscript TyM (−), TmM (−,−),
etc. withM to emphasize that they were part of the data of some modelM. However,

in this section the notational burden of subscripting virtually every operation with

M outweighs the benefits of being explicit. Accordingly, within this section we fix a

modelM and write e.g. Ty rather than TyM .

6.2.1 The unit type

We begin with Unit, as it is the simplest case. Let us begin with by recalling the

relevant portions of Definition 3.4.2 which are required to interpret the rules of the

Unit (Section 2.4):

Structure 6.2.2. A unit type structure onM consists of the following:

• An operation Unit : {Γ : Cx} → Ty(Γ)

• For every substitution 𝛾 : Sb(Δ, Γ) an equation Unit = Unit [𝛾]

• A collection of isomorphisms 𝜄 : (Γ : Cx) → Tm(Γ,Unit) � {★}

• For every substitution 𝛾 : Sb(Δ, Γ) an equation 𝜄Δ ◦ 𝛾∗ = 𝜄Γ .1

Let us begin by noting that our prior intuition that these equations enforced

naturality was justified:

Lemma 6.2.3. Unit and the associated equations form a natural transformation Unit :

1 Ty.

To recast 𝜄 into a natural transformation, we note that there is a presheaf sending

Γ to Tm(Γ,Unit). In fact, one can construct this functor by pulling back Tm• Ty
along the map Unit : 1 Ty. In light of this, we denote this presheaf by Unit∗Tm•.

1
This requirement is vacuous since both sides are maps into {★}, but we include it for consistency.
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Exercise 6.4. Check that Tm• ×Ty 1 � Tm(−,Unit −).

Lemma 6.2.4. 𝜄 and its equations form a natural isomorphism Unit∗Tm• � 1.

All told, we can replace our original four points with two:

• a natural transformation Unit : 1 Ty,

• a natural isomorphism Unit∗Tm• � 1.

In fact, we can bundle these two points into one:

Lemma 6.2.5 (Categorical reformulation of Unit). A unit type structure on M is
equivalent to a choice of pullback of the following shape:

1

1

Tm•

Ty

𝜋

(6.2)

Proof. The natural transformation Unit : 1 Ty is precisely what is required to

construct the base of this pullback and the natural isomorphism ensures is equivalent

to the data of the top map together with the property that it forms a pullback. □

This result leads us to a reformulation of our slogan for specifying types with a

mapping-in universal property: they ought to be determined by a pullback square

involving 𝜋 . Before crystallizing this slogan, we consider a slightly less trivial example

to see the pattern more clearly.

6.2.2 The extensional equality type

We next turn our attention to the extensional equality type. Once more, we begin by

isolating the subset of Definition 3.4.2 required to interpret the rules of Eq given in

Section 2.4.4.

Structure 6.2.6. An equality structure onM consists of the following operations and

equations:

• An operation

Eq : {Γ : Cx}(𝐴 : Ty(Γ)) → Tm(Γ, 𝐴) → Tm(Γ, 𝐴) → Ty(Γ)
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• For every substitution 𝛾 : Sb(Δ, Γ) along with 𝐴 : Ty(Γ) and 𝑎, 𝑏 : Tm(Γ, 𝐴), an
equation

Eq(𝐴[𝛾], 𝑎[𝛾], 𝑏 [𝛾]) = Eq(𝐴, 𝑎, 𝑏) [𝛾]

• A collection of isomorphisms

𝜄 : (Γ : Cx) (𝐴 : Ty(Γ)) (𝑎, 𝑏 : Tm(Γ, 𝐴)) → Tm(Γ, Eq(Γ, 𝐴, 𝑎, 𝑏)) � {★ | 𝑎 = 𝑏}

• For every substitution𝛾 : Sb(Δ, Γ) and𝐴 : Ty(Γ) and𝑎, 𝑏 : Tm(Γ, 𝐴), an equation

𝜄Δ (𝐴[𝛾], 𝑎[𝛾], 𝑏 [𝛾]) ◦ 𝛾∗ = 𝜄Γ (𝐴, 𝑎, 𝑏)

Once more, we wish to parlay these operations and equations into natural trans-

formations into Ty and Tm•. However, this time there is non-trivial formation data:

𝐴 along with 𝑎, 𝑏. Accordingly, the domain of natural transformation Eq is not 1 like

with Unit, but instead a presheaf whose value at Γ is

∑
𝐴:Ty (Γ) Tm(Γ, 𝐴) × Tm(Γ, 𝐴).

We can construct this presheaf out of Ty and Tm•:

Exercise 6.5. Show (Tm• ×Ty Tm•)Γ �
∑
𝐴:Ty (Γ) Tm(Γ, 𝐴) × Tm(Γ, 𝐴).

In light of the above exercise, the following is nearly a tautology.

Lemma 6.2.7. The operation Eq and the equations around it are equivalent to a natural
transformation Tm• ×Ty Tm• Ty.

We next turn to the isomorphism 𝜄. This step requires some creativity, as both

Tm(Γ, Eq(𝐴, 𝑎, 𝑏)) and {★ | 𝑎 = 𝑏} depend on Γ,𝐴, 𝑎, and𝑏. Accordingly, 𝜄 is a family of

isomorphisms between objects indexed not just over the context but on the formation

data as well; it consists not merely a natural isomorphism in Pr(Cx) but instead in

Pr(
∫
Cx Tm

•×Ty Tm•). Accordingly, we are asking for a natural transformation between

the following two presheaves:

𝑋 (Γ, 𝐴, 𝑎, 𝑏) = Tm(Γ, Eq(𝐴, 𝑎, 𝑏)) 𝑌 (Γ, 𝐴, 𝑎, 𝑏) = {★ | 𝑎 = 𝑏}

Lemma 6.2.8. 𝜄 organizes into an isomorphism 𝑋 � 𝑌 in Pr(
∫
Cx Tm

• ×Ty Tm•).

Our final step is to use the equivalence Pr(
∫
Cx Tm

• ×Ty Tm•) ≃ Pr(Cx)/Tm•×TyTm• to
present this isomorphism in Pr(Cx).
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Exercise 6.6. Under the above equivalence, show that 𝑋 is isomorphic to the left hand

vertical map of the following diagram:

Eq∗Tm•

Tm• ×Ty Tm•

Tm•

Ty
Eq

(6.3)

Exercise 6.7. Under the above equivalence, show that 𝑌 is isomorphic to the diagonal

map Tm• Tm• ×Ty Tm•.

Accordingly, 𝜄 determines a natural isomorphism between Eq∗Tm• � Tm• fitting
into a commuting triangle:

Tm• Eq∗Tm•

Tm• ×Ty Tm•

Let us recall that this top map has a recognizable name: it is the natural transformation

corresponding to refl. If we paste this commuting triangle onto the end of Diagram 6.3,

we arrive at the following characterization of extensional equality types:

Lemma 6.2.9 (Categorical reformulation of Eq). An equality structure onM is equiva-
lent to a a choice of pullback square of the following form:

Tm•

Tm• ×Ty Tm•

𝛿

Tm•

Ty

refl

𝜋

Eq

In fact, here we can see all the key elements of the equality type at play: the domain

and codomain of the left map is the introduction and formation data of Eq with the top

and bottom horizontal maps encoding the introduction and formation rules. Finally,

the fact that the square is a pullback encodes the elimination principle (along with its

𝛽 and 𝜂 equations). All told, we arrive at a categorical version of Slogan 2.4.4:
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Slogan 6.2.10. A connective Θ with a mapping-in universal property is determined by a
choice of pullback of the following shape:

𝐼Θ

𝐹Θ

Tm•

Ty

introΘ

𝜋

formΘ

Here 𝐹Θ encodes the formation data of Θ, 𝐼Θ the introduction data, and the top and bottom
maps the introduction and formation operations, respectively. The elimination rule along
with all the equations are handled by naturality and the universal property of a pullback.

6.2.3 An interlude: polynomial functors

Our next goal will be to apply Slogan 6.2.10 to Π and Σ, but these types are substantially
more complicated that Eq and Unit. The wrinkle is the formation and introduction

data involve premises which hypothesize over variables. For instance, the formation

data of both Π and Σ are presheaves of the following shape:

Γ ↦→ ∑
𝐴:Ty (Γ) Ty(Γ.𝐴)

We now show that, remarkably, operations like these—those which hypothesize over a

variable—also admit an elegant description within Pr(Cx). First, we lay some ground-

work. We begin with the following result (see, for instance, Awodey [Awo10, Corollary

9.17]).

Lemma 6.2.11. If 𝑓 : C D then 𝑓 ∗ : Pr(D) Pr(C) has a right adjoint 𝑓∗.

Theorem 6.2.12. The pullback functor 𝑓 ∗ : Pr(C)/𝑌 Pr(C)/𝑋 admits a right adjoint
𝑓∗.

Proof. Passing along the equivalences Pr(C)/𝑋 ≃ Pr(
∫
𝑋 ) and Pr(C)/𝑌 ≃ Pr(

∫
𝑌 ), we

must show that the precomposition functor (
∫
C 𝑓 )

∗
: Pr(

∫
𝑌 ) → Pr(

∫
𝑋 ) has a right

adjoint. We now apply Lemma 6.2.11. □

We now show that we can model “a type or term in an extended context” using 𝜋∗.

Notation 6.2.13. We write 𝑋 ∗ for the pullback functor 𝑋 1 or, equivalently, the

functor 𝑌 ↦→ 𝑋 × 𝑌 . Furthermore, we write 𝑌! for the forgetful functor C/𝑌 C (the

left adjoint to 𝑌 ∗).
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Definition 6.2.14. If 𝑓 : 𝑋 𝑌 is a map in Pr(C) the polynomial functor over 𝑓
P𝑓 : Pr(C) Pr(C) is defined as follows:

P𝑓 = 𝑌! ◦ 𝑓∗ ◦ 𝑋 ∗

Lemma 6.2.15 (Awodey [Awo18, Proposition 6]). There is an isomorphism between
P𝜋 (Ty) Γ and sets of pairs

∑
𝐴:Ty (Γ) Ty(Γ.𝐴).

Proof. We prove this through the Yoneda lemma:

P𝜋 (Ty) Γ � homPr(C) (y(Γ), P𝜋 (Ty))

Let us break homPr(C) (y(Γ), P𝜋 (Ty) = Ty
!
𝜋∗(Tm•)∗Ty) into two halves: a mor-

phism𝐴 : y(Γ) Ty (equivalently, an element of Ty(Γ)) and amorphismhomPr(Cx )/Ty (𝐴, 𝜋∗(Tm•)∗Ty).
Let us further investigate the second morphism:

homPr(C)/Ty (𝐴, 𝜋∗Ty)
� homPr(C)/Tm• (y(Γ) ×Ty Tm

•, (Tm•)∗Ty)
� homPr(C) (y(Γ.𝐴), Ty)
� Ty(Γ.𝐴) □

We can replay exactly this proof with Tm• to obtain this following:

Lemma 6.2.16. P𝜋 (Tm•) Γ �
∑
𝐴:Ty (Γ)

∑
𝐵:Ty (Γ.𝐴) Tm(Γ.𝐴, 𝐵).

One last result is necessary: wewish to find a presheaf which encodes the formation

data for a Σ-type: ∑
𝐴:Ty (Γ)

∑
𝐵:Ty (Γ.𝐴)

∑
𝑎:Tm (Γ,𝐴) Tm(Γ, 𝐵 [id.𝑎])

This is slightly more complex (Awodey [Awo18] uses the internal language to give a

succinct description of this presheaf). The most straightforward approach is define

such a presheaf manually:

𝑃 (Γ) = ∑
𝐴:Ty (Γ)

∑
𝐵:Ty (Γ.𝐴)

∑
𝑎:Tm (Γ,𝐴) Tm(Γ, 𝐵 [id.𝑎])
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Exercise 6.8. Define the functorial action of 𝑃 using substitution.

We note—more for completeness than necessity—that it is possible to build this

presheaf just using P𝜋 and other purely categorical constructs:

Lemma 6.2.17 (Awodey [Awo18, Remark 13],Uemura [Uem21, Lemma 6.2.1]). There
is a canonical square of the following form and, moreover, it is a pullback:

𝑃

P𝜋 (Ty) ×Ty Tm•

Tm•

Ty

𝜋

𝜖
(6.4)

Here 𝜖 is the counit of the adjunction 𝜋∗ ⊣ 𝜋∗.

Proof. For concision, we write 𝑋 = P𝜋 (Ty) ×Ty Tm• within this proof. First, we note

that the canonical square is defined using the evident projections from 𝑃 . To show that

this square is a pullback, we use the Yoneda lemma to characterize𝑋×TyTm• whereby it
will be clear that the unique induced map 𝑃 𝑋 ×Ty Tm• is an equivalence. To do this,
we apply the Yoneda lemma such that it suffices to characterize hom(y(Γ), 𝑋 ×Ty Tm•).
By universal property, this consists of the following:

• an element of hom(y(Γ), Tm•) or, equivalently, 𝐵𝑎 : Ty(Γ) and 𝑏 : Tm(Γ, 𝐵𝑎).

• an element of hom(y(Γ), P𝜋 (Ty) ×Ty Tm•) or, equivalently, 𝐴 : Ty(Γ) and 𝐴 :

Tm(Γ, 𝐴) along with 𝐵 : Ty(Γ.𝐴) (the latter by Lemma 6.2.15)

• an equality 𝐵 [id.𝑎] = 𝐵𝑎 . □

We define 𝜋 ⊗ 𝜋 : 𝑃 P𝜋 (Ty) to be the composite:

𝑃 P𝜋 (Ty) ×Ty Tm• P𝜋 (Ty)

Hereafter we refer to 𝑃 as dom(𝜋 ⊗ 𝜋). This map projects (𝐴, 𝐵, 𝑎, 𝑏) onto (𝐴, 𝐵).

6.2.4 Dependent products and sums

Having expended the effort to calculate the effect of these polynomial functors in

Pr(Cx), it requires only a little more effort to apply Slogan 6.2.10 to dependent products

and sums.

We begin with dependent products. In the now familiar routine, we begin by

isolating the structure on a model needed to interpret dependent products.
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Structure 6.2.18. A dependent product structure onM consists of the following

operations and equations:

• An operator Π : {Γ : Cx}(𝐴 : Ty(Γ)) → Ty(Γ.𝐴) → Ty(Γ)

• For every 𝛾 : Sb(Δ, Γ) along with 𝐴 : Ty(Γ) and 𝐵 : Ty(Γ.𝐴), an equality

Π(𝐴, 𝐵) [𝛾] = Π(𝐴[𝛾], 𝐵 [𝛾 .𝐴])

• A family of isomorphisms:

𝜄 : {Γ : Cx}(𝐴 : Ty(Γ)) (𝐵 : Ty(Γ.𝐴)) → Tm(Γ,Π(𝐴, 𝐵)) � Tm(Γ.𝐴, 𝐵)

• For every 𝛾 : Sb(Δ, Γ) along with 𝐴 : Ty(Γ) and 𝐵 : Ty(Γ.𝐴), an equality

𝜄 (𝐴[𝛾], 𝐵 [𝛾 .𝐴]) ◦ 𝛾∗ = 𝛾∗ ◦ 𝜄 (𝐴, 𝐵)

In light of Lemma 6.2.15, we can bundle together Π into a natural transformation:

Lemma 6.2.19. Π and its equation organize into a map P𝜋 (Ty) Ty.

Moreover, by the same reasoning as we applied in the case of Eq, the isomorphism

𝜄 is equivalent to a natural isomorphism P𝜋 (Tm•) � Π∗Tm• fitting into the following

commuting triangle:

P𝜋 (Tm•) Π∗Tm•

P𝜋 (Tm•)

All told, we arrive at the following:

Lemma 6.2.20 (Categorical reformulation of Π). A dependent product structure onM
is equivalent to a choice of pullback square of the following shape:

P𝜋 (Tm•)

P𝜋 (Ty)

P𝜋 (𝜋)

Tm•

Ty

𝜋

The bottom morphism of this pullback square corresponds to Π while the top corresponds
to the introduction form 𝜆 (−).
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Finally, we content ourselves with providing “the answer” for dependent sums and

leaving it to the intrepid reader to fill in the details:

Exercise 6.9. Isolate the operations and equations in the style of Definition 3.4.2

necessary to interpret the rules of dependent sums (Section 2.4.3).

Lemma 6.2.21 (Categorical reformulation of Σ). M supports dependent sums if and
only if it is equipped with a choice of pullback square of the following shape:

dom(𝜋 ⊗ 𝜋)

P𝜋 (Ty)

𝜋 ⊗ 𝜋

Tm•

Ty

𝜋

The bottom morphism of this pullback square corresponds to Σ while the top corresponds
to the introduction form pair.

6.3 Orthogonality and Void, Bool, +, Nat

We next turn to connectives without a mapping-out property and, in particular, to

Void, Bool, +, and Nat. Following the notation of Section 6.2, we fix a modelM for

this section and systematically reformulate the requirements forM to support these

connectives into more categorical terms. As before, we will avoid subscripting each

operation withM as it is the only model we discuss in this section.

In light of Section 2.5, it should come as no surprise that to explain these connec-

tives, we cannot merely rely on Slogan 6.2.10. In fact, we can give a crisp explanation

of why this slogan is doomed to failure for Void:

Exercise 6.10. Show that there can be no pullback diagram of the following shape:
2

0

1

Tm•

Ty

(Hint: use the representability of 𝜋 .)

2
The authors once ran headlong into this fact as part of a project with Jonathan Sterling in 2019. The

result was an extremely elegant construction which sadly only applied under unsatisfiable hypotheses.
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Fortunately, the failure of Slogan 6.2.10 to account for types with mapping-out

universal properties provides us with an excuse to introduce the categorical theory of

orthogonality. Roughly, we shall find that while the above square fails to be a pullback,

the degree to which this fails is “invisible” to 𝜋 . This concretizes an intuition presented

in Section 2.5: from the perspective of other types, Void is always empty.

Warning 6.3.1. Mirroring Section 2.5, we will start by giving specifications of these

types that explicitly include their 𝜂 laws. In Section 6.3.4 we will show how to modify

these specifications to omit 𝜂 laws, as required in intensional type theory. (Recall from

Section 2.5.5 that in extensional type theory, 𝜂 principles for inductive types can be

derived from Eq-types.)

6.3.1 Orthogonality and Bool

We will work our way towards a definition of orthogonal maps by investigating Bool.
We start with Bool over the simpler Void as the latter is a bit too simple (both trivial

formation data and no introduction rules) which makes it difficult to see some of parts

of the story. Let us begin by recalling the operations and equations governing this

type:

Structure 6.3.2. A boolean structure on M consists of the following operations,

equations, and properties:

• An operator Bool : {Γ : Cx} → Ty(Γ)

• An equation Bool [𝛾] = Bool for every 𝛾 : Sb(Δ, Γ).

• A pair of operators true, false : {Γ : Cx} → Tm(Γ,Bool)

• Equations true [𝛾] = true and false [𝛾] = false for every 𝛾 : Sb(Δ, Γ).

Finally, we require that the following maps are bijections for all Γ and𝐴 ∈ Ty(Γ.Bool):

(−[id.true],−[id.false]) : †
Tm(Γ.Bool, 𝐴) � Tm(Γ, 𝐴[id.true]) × Tm(Γ, 𝐴[id.false])

We will refer to the final point in this list as Property † as it will bear the brunt of our
scrutiny.
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Inspecting the rules and equations for Bool, true, and false, we see that they all

organize into natural transformations e.g.,

1 Tm•

Ty

true

Bool

Here, the commutativity expresses the fact that true has the expected type. We can

place true and false in the same diagram by using 1 ⊔ 1 in Pr(Cx):

1 ⊔ 1

1

Tm•

Ty

[true, false]

Bool
(6.5)

Just as we have seen in Exercise 6.10, this square is never a pullback square. We

can ‘measure’ the failure of Diagram 6.5 to be a pullback by studying the induced

map 𝑖 : 1 ⊔ 1 1 ×Ty Tm• = Bool∗Tm•; the square is a pullback if and only if 𝑖 is an

isomorphism.

Unfolding definitions, 𝑖 is the map which includes true, false into Tm(Γ,Bool).
This will never be an isomorphism (think of variable elements of Bool) but it should
be an isomorphism “from the perspective of other types”. This is the force of the

final property in the list governing booleans. We begin by restructuring this property

slightly to see how it is really a fact about 𝑖 .

First, we note that Tm(Γ.Bool, 𝐴) is equivalent to the set of sections of the weaken-
ing map Γ.Bool.𝐴 Γ.Bool. For Tm(Γ, 𝐴[true]) and Tm(Γ, 𝐴[true]), we can com-

bine the above remark about sections with Exercise 6.3. In particular, a pair of elements

from Tm(Γ, 𝐴[true]) and Tm(Γ, 𝐴[true]) corresponds a choice of dotted top arrow of

the following diagram:

y(Γ) ⊔ y(Γ)

y(Γ.Bool)

[
y(id .true ),
y(id .false )

] y(Γ.Bool.𝐴)

y(Γ.Bool)
id
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Note that we must express this diagram in Pr(Cx) via the Yoneda embedding be-

cause there is no guarantee that Cx will have enough coproducts. Let us denote

[y(id.true), y(id.false)] by ∇Γ in what follows.

In light of these observations, the Property † is equivalent to requiring that for all

Γ and 𝐴 ∈ Ty(Γ), whenever there is a commuting square of the following shape, there

is a unique dashed map making it commute:

y(Γ) ⊔ y(Γ)

y(Γ.Bool)

∇Γ

y(Γ.Bool.𝐴)

y(Γ.Bool)
id

We can give a more conceptual description of ∇Γ by “factoring out” the Γ. In par-

ticular, note that y(Γ) ⊔ y(Γ) � y(Γ) × (1 ⊔ 1) and y(Γ.Bool) � y(Γ) × Bool∗Tm•.
Accordingly, ∇Γ = y(Γ) × ∇1. In fact, we have already encountered ∇1: this is the map

𝑖 : 1 ⊔ 1 Bool∗Tm• which measures the failure of Diagram 6.5 to be a pullback. We

therefore rewrite the above diagram to the following equivalent:

y(Γ) ⊔ y(Γ)

y(Γ.Bool)

y(Γ) × 𝑖

y(Γ.Bool.𝐴)

y(Γ.Bool)
id

Our next goal is to link this property to the following definition from category

theory:

Definition 6.3.3. If 𝑖 : 𝐴 𝐵 and 𝑓 : 𝑋 𝑌 are morphisms in C, we say that 𝑖 ⋔ 𝑓
(𝑖 is orthogonal to 𝑓 ) if every commuting square of the following shape has a unique

diagonal map making it commute:

𝐴

𝐵

𝑖

𝑋

𝑌

𝑓

We also say that 𝑖 is left orthogonal to 𝑓 and 𝑓 is right orthogonal to 𝑖 .
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Remark 6.3.4. One should interpret 𝑖 ⋔ 𝑓 as 𝑓 “believing” that 𝑖 is an isomorphism

(or, dually, that 𝑖 believes 𝑓 is an isomorphism). This viewpoint is foundational in

homotopical algebra, where one systematically studies orthogonality and weaker

notions thereof. ⋄

Property † as we have presented it above then almost that y(Γ) × 𝑖 is orthogonal
to p. However, there is a slight mismatch: we have unique lifts only when the bottom

map is id, while orthogonality requires arbitrary maps. The following result clarifies

this distinction:

Exercise 6.11. Show that if 𝑖 : 𝐴 𝐵 and 𝑓 : 𝑋 𝑌 are morphisms in C then 𝑖 ⋔ 𝑓
if and only if each 𝑔0 : 𝐵 𝑌 and 𝑔1 : 𝐴 𝐵 ×𝑌 𝑋 , the following diagram has a

unique diagonal map:

𝐴

𝐵

𝑖

𝑋 ×𝑌 𝐵

𝐵
id

We now observe that weakening maps Γ.Bool.𝐴 Γ.Bool are precisely the pull-

backs 𝜋 along a map Γ.Bool Ty. Combining this with the above exercise, we

conclude the following:

Lemma 6.3.5. Property † is equivalent to requiring y(Γ) × 𝑖 ⋔ 𝜋 for every Γ.

Putting this together, we conclude the following:

Lemma 6.3.6 (Categorical reformulation of Bool). A boolean structure onM is equiv-
alent to a choice of Diagram 6.5 such that the gap map 𝑖 satisfies y(Γ) × 𝑖 ⋔ 𝜋 for every
Γ : Cx.

Exercise 6.12. Given 𝐹 : 𝐼 C→ such that 𝐹 (𝑖) ⋔ 𝑔 for all 𝑖 : 𝐼 , show that lim−−→𝑖
𝐹 (𝑖) ⋔

𝑔. Conclude that Property † holds if and only if 𝑋 × 𝑖 ⋔ 𝜋 for every 𝑋 : Pr(Cx).

Before we introduce a refinement of Slogan 2.5.3, we replay this story for coproduct

types to see an example with non-trivial formation data.
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6.3.2 Coproducts

As before, we begin by collecting together the operations and equations necessary for

a model to support coproducts:

Structure 6.3.7. A coproduct structure onM consists of the following operations,

equations, and properties:

• An operator + : {Γ : Cx} → Ty(Γ) → Ty(Γ) → Ty(Γ)

• An equation (𝐴 + 𝐵) [𝛾] = 𝐴[𝛾] + 𝐵 [𝛾] for every 𝛾 : Sb(Δ, Γ) and 𝐴, 𝐵 : Ty(Γ).

• A pair of operators

inl : {Γ : Cx}(𝐴, 𝐵 : Ty(Γ)) → Tm(Γ, 𝐴) → Tm(Γ, 𝐴 + 𝐵)
inr : {Γ : Cx}{𝐴, 𝐵 : Ty(Γ)} → Tm(Γ, 𝐵) → Tm(Γ, 𝐴 + 𝐵)

• Equations inl(𝑎) [𝛾] = inl(𝑎[𝛾]) and inr(𝑏) [𝛾] = inr(𝑏 [𝛾]) and for every 𝛾 :

Sb(Δ, Γ), 𝐴, 𝐵 : Ty(Γ), 𝑎 : Tm(Γ, 𝐴) and 𝑏 : Tm(Γ, 𝐵).

• Proofs that the following maps are bijections for all Γ and 𝐴, 𝐵 ∈ Ty(Γ) and
𝐶 ∈ Ty(Γ.𝐴 + 𝐵)

(−[p .inl(q)],−[p .inr(q)]) :

Tm(Γ.𝐴 + 𝐵,𝐶)
� Tm(Γ.𝐴,𝐶 [p .inl(q)]) × Tm(Γ.𝐵,𝐶 [p .inr(q)])

We once more refer to this final property as Property † and, just as before, note
that we can use coproducts in Pr(Cx) to capture the first four items with a single

commuting diagram in Pr(Cx):

(Tm• × Ty) ⊔ (Ty × Tm•)

Ty × Ty

[𝜋 × id, id × 𝜋]

Tm•

Ty

[inl, inr]

𝜋

+ (6.6)
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We now turn our attention to Property † and connecting it with orthogonality. As

before, Diagram 6.6 induces a map 𝑖 : (Tm• × Ty) ⊔ (Ty × Tm•) +∗Tm•:

+∗Tm•

Ty × Ty

Tm•

Ty

𝜋

+

(Tm• × Ty) ⊔ (Ty × Tm•)
𝑖

In fact, more is true. Since the above diagram commutes, we know that 𝑖 induces

a morphism in Pr(Cx)/Ty×Ty between [𝜋 × id, id × 𝜋] and 𝜋1. Something similar

was also true for Bool but there it was trivial: 𝑖 induced a morphism in the slice

category of 1 which is simply equivalent to Pr(Cx). This is a reflection of the fact

that the type of coproducts—unlike that of booleans—has non-trivial formation data.

Consequently, the introduction operation sending e.g., an element of 𝐴 to an element

of𝐴+𝐵 is parameterized not just by the context but also by the two types𝐴 and 𝐵. This

additional parameterization gives rise to a natural transformation in Pr(
∫
Cx Ty × Ty)

or, equivalently, Pr(Cx)/Ty×Ty.
To get a better understanding of 𝑖 , let us calculate a little with it. Fix a pair of types

𝐴, 𝐵 : y(Γ) Ty and consider the pullback functor (𝐴, 𝐵)∗ : Pr(Cx)/Ty×Ty Pr(Cx)/y(Γ) .
Applying this to 𝑖 , we obtain the following morphism in Pr(Cx)/y(Γ) :

𝐴∗Tm• ⊔ 𝐵∗Tm• (𝐴, 𝐵)∗ +∗ Tm•

y(Γ)

Exercise 6.13. Carefully check that (𝐴, 𝐵)∗(𝑖) has the required form.

We can further simplify this by noting that 𝐴∗Tm• � y(Γ.𝐴) and 𝐵∗Tm• � y(Γ.𝐵).
Moreover, more-or-less by definition of + : Ty × Ty Ty there is an isomorphism

(𝐴, 𝐵)∗ +∗ Tm• � y(Γ.𝐴 + 𝐵). All told then, (𝐴, 𝐵)∗(𝑖) gives, up to isomorphism, the

following map over y(Γ):

∇Γ,𝐴,𝐵 : y(Γ.𝐴) ⊔ y(Γ.𝐵) y(Γ.𝐴 + 𝐵)

Following our intuitions from the boolean case, we arrive at the following lemma:
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Lemma 6.3.8. Property † is equivalent to requiring ∇Γ,𝐴,𝐵 ⋔ 𝜋 for all Γ : Cx and
𝐴, 𝐵 : Ty(Γ).

Proof. Recall that ∇Γ,𝐴,𝐵 ⋔ 𝜋 holds if and only if for each 𝐶 : y(Γ.𝐴 + 𝐵) Ty
(equivalently, a type 𝐶 : Ty(Γ.𝐴 + 𝐵)), every diagram of the following shape has

a unique diagonal map:

y(Γ) ⊔ y(Γ)

y(Γ.𝐴 + 𝐵)

∇Γ,𝐴,𝐵

y(Γ.𝐴 + 𝐵.𝐶)

y(Γ.𝐴 + 𝐵)

p

id

Unfolding and using the full and faithfulness of y, this is equivalent to Property †. □

Our final step is to state the relationship between ∇Γ,𝐴,𝐵 and 𝑖 in a slightly tidier

form. To this end, we recall a basic fact about limits in slice categories:

Lemma 6.3.9. If 𝑓 : 𝐴 𝐶 and𝑔 : 𝐵 𝐶 are objects of C/𝐶 then the product 𝑓 ×𝑔 : C/𝐶
is given by the composite 𝐴 ×𝐶 𝐵 → 𝐴→ 𝐶 (or, equivalently, 𝐴 ×𝐶 𝐵 → 𝐵 → 𝐶).

Let us write 𝑈𝐶 for the forgetful functor C/𝐶 C. We have already seen that (up

to isomorphism)𝑈y(Γ) ((𝐴, 𝐵)∗(𝑖)) = ∇Γ,𝐴,𝐵 whenever 𝐴, 𝐵 : y(Γ) Ty. In light of the

above, however, we could equivalently say that𝑈Ty×Ty((𝐴, 𝐵) × 𝑖) = ∇Γ,𝐴,𝐵 where we

now regard (𝐴, 𝐵) as an object of Pr(Cx)/Ty×Ty.

Lemma 6.3.10. Property † holds if and only if 𝑈 ((𝐴, 𝐵) × 𝑖) ⋔ 𝜋 for every 𝐴, 𝐵 :

y(Γ) Ty.

Let us note that 𝑈𝐶 : C/𝐶 C has a right adjoint whenever C has products:

𝑋 ↦→ 𝐶 × 𝑋 . Moreover, for any adjunction 𝐿 ⊣ 𝑅 we have the following:

Exercise 6.14. Fix 𝐿 : C D such that 𝐿 ⊣ 𝑅, if 𝑖 : 𝐴 𝐵 : C and 𝑓 : 𝑋 𝑌 : D
then 𝐿(𝑖) ⋔ 𝑓 if and only if 𝑖 ⋔ 𝑅(𝑓 ).

Accordingly, we may rephrase Property † one last time:

Lemma 6.3.11. Property † holds if and only if (𝐴, 𝐵) × 𝑖 ⋔ (Ty × Ty) × 𝜋 for every
𝐴, 𝐵 : y(Γ) Ty.

In light of Exercise 6.12 along with the fact that Pr(Cx)/Ty×Ty is generated under

colimits by objects of the form y(Γ) Ty × Ty, we may replace the above condition

with the requirement that𝑈 (𝑋 × 𝑖) ⋔ 𝜋 for every 𝑋 : Pr(Cx)/Ty×Ty.
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Lemma 6.3.12 (Categorical reformulation of +). A coproduct structure onM is equiv-
alent to a choice of commuting square (Diagram 6.6) such that the gap map 𝑖 satisfies
(𝑋 × 𝑖) ⋔ (Ty × Ty) × 𝜋 for every 𝑋 : Pr(Cx)/Ty×Ty.

Start the Void section here (so readers can find it).

We may consolidate this into an extension of Slogan 6.2.10 which accounts for

non-recursive inductive types:

Slogan 6.3.13. A non-recursive inductive type Υ is specified by a commuting square:

𝐼Υ

𝐹Υ

Tm•

Ty

introΥ

formΥ

Where formΥ is the formation map and introΥ is the introduction operation. Moreover,
if 𝑖 : 𝐼 form∗ΥTm

• in Pr(Cx)/𝐹 is the gap map, we require that 𝑋 × 𝑖 ⋔ 𝐹 × 𝜋 for all
𝑋 : Pr(Cx)/𝐹 .

We can apply this slogan to quickly reformulate the specification of Void:

Structure 6.3.14. An empty type structure on a modelM consists of the following

operations, equations, and properties:

• An operator Void : {Γ : Cx} → Ty(Γ)

• An equation Void [𝛾] = Void for every 𝛾 : Sb(Δ, Γ).

Finally, we require that the following uniquemap is a bijection all Γ and𝐴 ∈ Ty(Γ.Void):
Tm(Γ.Void, 𝐴) → {★}

Lemma 6.3.15 (Categorical reformulation of Void). An empty type structure on a model
is equivalent to a the following:

• A commuting square of the following form:

0

1

Tm•

Ty
Void

• The gap map 𝑖 : 0 Void∗Tm• satisfies 𝑋 × 𝑖 ⋔ 𝜋 for every 𝑋 : Pr(Cx).
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6.3.3 Natural numbers

Just as in Section 2.5, the type of natural numbers proves to be more difficult than Void,
Bool, or +. As before, the complexity is a result of the recursive nature of Nat which
means we cannot consider just an orthogonality condition to describe Nat; we must

also have some categorical account of (initial) algebras as introduced in Section 2.5.4.

We begin by recalling the specification of Nat inM:

Structure 6.3.16. A natural number structure on a modelM consists of the following:

• An operation Nat : {Γ : Cx} → Ty(Γ).

• Equations Nat [𝛾] = Nat for all 𝛾 : Sb(Δ, Γ).

• An operation zero : {Γ : Cx} → Tm(Γ,Nat).

• Equations zero [𝛾] = zero for all 𝛾 : Sb(Δ, Γ).

• An operation suc : {Γ : Cx} → Tm(Γ,Nat) → Tm(Γ,Nat).

• Equations (suc(𝑛)) [𝛾] = suc(𝑛[𝛾]) for all 𝛾 : Sb(Δ, Γ) and 𝑛 : Tm(Γ,Nat).

• Given a type 𝐴 : Ty(Γ.Nat) along with terms 𝑎𝑧 : Tm(Γ, 𝐴[id.zero]) and
𝑎𝑠 : Tm(Γ.Nat.𝐴,𝐴[p2.suc(q [p])]), there is a unique term 𝑎 : Tm(Γ.Nat, 𝐴)
satisfying the following two equations:

𝑎[id.zero] = 𝑎𝑧
𝑎[p.suc(q)] = 𝑎𝑠 [id.𝑎]

As before, we refer to the final point as Property †.

The first six points can be compactly expressed using natural transformations in

Pr(Cx) as we have seen already. They are precisely equivalent to the following two

pieces of data:

• A morphism Nat : 1 Ty.

• A morphism 𝛼 : 1 ⊔ Nat∗Tm• Nat∗Tm•.
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Initial algebras, categorically In fact, the morphism 𝛼 can be said to shape

Nat∗Tm• into an algebra for a certain functor. To state this more precisely, we recall

the definition of an algebra:

Definition 6.3.17. If 𝐹 : C C is a functor, an 𝐹 -algebra is an object 𝐶 along with a

morphism 𝑎 : 𝐹 (𝐶) 𝐶 .

Definition 6.3.18. A homomorphism between 𝐹 -algebras 𝑎 : 𝐹 (𝐶) 𝐶 and 𝑏 :

𝐹 (𝐷) 𝐷 is a morphism 𝑓 : 𝐶 𝐷 such that 𝑓 ◦ 𝑎 = 𝑏 ◦ 𝐹 (𝑓 ):

𝐹 (𝐶)

𝐶

𝐹 (𝐷)

𝐷

𝐹 (𝑓 )

𝑓

We write Alg(𝐹 ) for the category of 𝐹 -algebras.

With a category to hand, it is easy to define the initial 𝐹 -algebra for any functor 𝐹 :

it is the initial object of Alg(𝐹 ) provided such an object exists. Our goal shall be to use

this definition to replay the intuition that Nat is an initial algebra of sorts. To this end,

we shall eventually require the analog of a dependent algebra from Section 2.5.4 so we

record a succinct definition of here:

Definition 6.3.19. The category of dependent 𝐹 -algebras over an 𝐹 -algebra𝑎 : 𝐹 (𝐶) 𝐶

is the slice category Alg(𝐹 )/(𝐶,𝑎) .

Lemma 6.3.20. Aside from Property †, a model supports a type of natural numbers
precisely when there is a natural transformation Nat : 1 Ty along with a choice of 𝛼
of (− ⊔ 1)-algebra structure on Nat∗Tm•.

What remains, as ever, is to account for Property †. In this case, we do not require

an orthogonality condition. We need to record the fact that Nat∗Tm• is, in some sense,

the initial (− ⊔ 1)-algebra among types.

To begin with, we note the following:

Lemma 6.3.21. If Γ : Cx then y(Γ.Nat) � y(Γ) × Nat∗Tm• supports the structure of a
(− ⊔ 1)-algebra given up to isomorphism by y(Γ) × 𝛼 .

Lemma 6.3.22. If 𝐴 : Ty(Γ.Nat) then 𝑎𝑧 , and 𝑎𝑠 as given in Property † are equivalent
to structuring y(Γ.Nat.𝐴) as a dependent algebra over y(Γ.Nat) via a map:

𝜒𝑎𝑧 ,𝑎𝑠 : y(Γ.Nat.𝐴) ⊔ 1 y(Γ.Nat.𝐴)



250 Semantics of type theory (draft) (2025-07-19)

Lemma 6.3.23. If 𝐴 : Ty(Γ.Nat), 𝑎𝑧 , and 𝑎𝑠 are as given in Property †, the unique
existence of a term 𝑎 corresponds to existence of a unique algebra homomorphism
1 Γ.Nat.𝐴 in Alg(− ⊔ 1)/y(Γ.Nat ) .

This suggests that y(Γ.Nat) ought to be the initial object in Alg(− ⊔ 1)/y(Γ.Nat ) ,
but this is not quite correct. We only have initiality with respect to those dependent

algebras of the form Γ.Nat.𝐴 Γ.Nat for some 𝐴.

Definition 6.3.24. Given an 𝐹 -algebra (𝑌, 𝛼), a representable dependent 𝐹 -algebra
𝑋 𝑌 is a dependent algebra over 𝑌 such that 𝑋 𝑌 is a pullback of 𝜋 .

Lemma 6.3.25. A natural number structure on a model of type is equivalent to a
natural transformation Nat : 1 Ty along with a (− ⊔ 1)-algebra structure 𝛼 on
Nat∗𝜋 such that for all Γ : Cx, if one restricts the category of dependent algebras over
(y(Γ) × Nat∗𝜋, y(Γ) × 𝛼) to the full subcategory of representable dependent algebras,
y(Γ) × 𝛼 is initial.

Can we simplify this further? Feels a little half-baked. Can we return to this

with the internal language to give a slick definition that way?

6.3.4 Weak orthogonality and types without 𝜂 laws

Recall that our official definition of ETT in Chapter 2 did not include 𝜂 principles for

inductive types. In particular, we chose to omit rules such as the following from our

specification of e.g., Bool:

⊢ Γ cx Γ.Bool ⊢ 𝑎 : 𝐴

Γ.Bool ⊢ 𝑎 = if (q, 𝑎[p.true], 𝑎[p.false]) : 𝐴

We justified this choice with two observations:

• These rules, much like equality reflection, make it vastly harder or even impos-

sible to construct a normalization algorithm for type theory.

• All of these 𝜂 principles are derivable from the corresponding 𝛽 rules in the

presence of equality reflection.

Accordingly, we reasoned that it was more efficient to have a single rule which

compromised decidability of type-checking (equality reflection) to ensure that the

transition from ETT to ITT was concentrated within a single connective (Eq).
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In this subsection we pay attention to specifying mapping-out types without as-
suming an 𝜂 law. IfM supports Eq, these new descriptions are equivalent to those we

have already given. However, if we wished to adapt this discussion from ETT to ITT,

it is once again beneficial to specify mapping-out types without a unicity principle:

the difference in models once more comes down to whether we include Eq or Id in the

model. As a bonus, by investing some effort in describing mapping-out types without

an 𝜂 law, we are able to give a categorical description of when a model supports Id
with no additional effort.

However, the inclusion of the 𝜂 principles in our cwf reformulation of a model

has actually allowed us to simplify various structures. In particular, the 𝜂 rule ensures

that the terms witnessing the elimination rules of various inductive connectives are

actually unique. Accordingly, we were able to recast these elimination principles as

various orthogonality properties: we showed that the elimination rule for e.g., booleans
could be recast as requiring some a dotted map fitting into a commuting square:

y(Γ) ⊔ y(Γ)

y(Γ.Bool)

∇Γ

y(Γ.Bool.𝐴)

y(Γ.Bool)

[𝑎𝑡 , 𝑎𝑓 ]

id

𝑎

The commutativity of this diagram corresponds to the 𝛽 equalities of the elimination

form: it states that when 𝑎 is specialized to true or false, it collapses appropriately
to 𝑎𝑡 and 𝑎𝑓 . The unicity of 𝑎 accounts for the 𝜂 law. If we remove the 𝜂 law from

booleans, therefore, we can no longer expect 𝑎 to exist uniquely.

6.3.4.1 Booleans without a unicity principle

Let us recall the weakened notion of Property † used in Section 2.5.5. M supports

booleans without the 𝜂 law when in addition to the operations Bool, true, and false,
it enjoys the following:

• An operation

if : {Γ : Cx}{𝐴 : Ty(Γ.Bool)}
→ Tm(Γ, 𝐴[id.true]) × Tm(Γ, 𝐴[id.false]) → Tm(Γ.Bool, 𝐴)

• Equations if (𝑎𝑡 , 𝑎𝑓 ) [id.true] = 𝑎𝑡 and if (𝑎𝑡 , 𝑎𝑓 ) [id.false] = 𝑎𝑡
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• Equations if (𝑎𝑡 , 𝑎𝑓 ) [𝛾 .Bool] = if (𝑎𝑡 [𝛾], 𝑎𝑓 [𝛾]) whenever 𝛾 : SbM (Δ, Γ).

These properties combined are weaker than Property †, which essentially stated

that if was unique among operations satisfying the second point (which, in particular,

automatically causes it to satisfy the third point). Our goal is to discuss how this

weaker set of properties can be recast categorically. Let us begin by fitting if into a

lifting diagram.

Fixing Γ : Cx, 𝐴 : Ty(Γ), 𝑎𝑡 : Tm(Γ, 𝐴[id.true]), and 𝑎𝑓 : Tm(Γ, 𝐴[id.false]),
we see that the existence of if and the first pair of equations governing it can be

summarized by the following commuting diagram:

y(Γ) ⊔ y(Γ)

y(Γ.Bool)

∇Γ

y(Γ.Bool.𝐴)

y(Γ.Bool)

[𝑎𝑡 , 𝑎𝑓 ]

id

if (𝑎𝑡 , 𝑎𝑓 )

However, we are no longer requiring that this diagonal lift exists uniquely, merely

that some particular chosen lift exists. To integrate the third equation, suppose we are

given a substitution 𝛾 : Sb(Δ, Γ). We require that the following diagram commute:

y(Γ) ⊔ y(Γ)

y(Γ.Bool)

y(Γ.Bool.𝐴)

y(Γ.Bool)

[𝑎𝑡 , 𝑎𝑓 ]

id

if (𝑎𝑡 , 𝑎𝑓 )

y(Δ) ⊔ y(Δ)

y(Δ.Bool)

y(𝛾) ⊔ y(𝛾)

y(𝛾 .Bool)

if (𝑎𝑡 [𝛾],
𝑎 𝑓 [𝛾])

(6.7)

In particular, the third equation ensure that more than merely requiring that there

are some collections of lifts to various commuting squares, the choice of lifts are suitably

coherent: the chosen solution to lifting problem for 𝑎𝑡 and 𝑎𝑓 when restricted along

y(𝛾 .Bool) must match the solution to the lifting problem for 𝑎𝑡 [𝛾] and 𝑎𝑓 [𝛾].
We summarize this discussion with the following:
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Lemma 6.3.26. M supports if and 𝛽 laws if there is a choice of lifting for all diagrams
of the following shape:

y(Γ) ⊔ y(Γ)

y(Γ.Bool)

∇Γ

y(Γ.Bool.𝐴)

y(Γ.Bool)

[𝑎𝑡 , 𝑎𝑓 ]

id

if (𝑎𝑡 , 𝑎𝑓 )

Furthermore, if satisfies the final equation just when Diagram 6.7 commutes for all
𝛾 : Δ Γ.

A digression: stable weak orthogonality structures This is a halfway point

between “the lift is unique” and “there merely exists some lift”. We have encountered

the categorical incarnation of the former (orthogonality). The later is sometimes called

weak orthogonality and the halfway point between these two notions needed to encode
booleans is termed stable weak orthogonality. Note that unlike (weak) orthogonality,

stable weak orthogonality is a structure: we must provide an explicit choice of maps

which satisfy some properties. This is in contrast to (weak) orthogonality, where these

maps are merely required to exist (uniquely or not).

Definition 6.3.27. An incoherent stableweak orthogonality structure 𝑠 : (𝑖 : 𝐴 𝐵) ⋔wk
(𝑓 : 𝑋 𝑌 ) in a category C is an assignment of objects 𝐶 and pairs of maps

𝑥 : 𝐶 ×𝐴 𝑋 and 𝑦 : 𝐶 × 𝐵 𝑌 satisfying 𝑓 ◦ 𝑥 = 𝑦 ◦ (𝐶 × 𝑖) to a map 𝑠𝐶,𝑥,𝑦
fitting into the following:

𝐶 ×𝐴

𝐶 × 𝐵

𝐶 × 𝑖

𝑋

𝑌

𝑥

𝑓

𝑦

𝑠𝐶,𝑥,𝑦

We say that 𝑠 is coherent—or, more concisely, a stable weak orthogonality structure

𝑠 : 𝑖 ⋔st 𝑓—if it further satisfies the condition that for any 𝑐 : 𝐷 𝐶 , the following
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diagram commutes:

𝐶 ×𝐴

𝐶 × 𝐵

𝑋

𝑌

𝑥

𝑓

𝑦

𝑠𝐶,𝑥,𝑦

𝐷 ×𝐴

𝐷 × 𝐵

𝑐 ×𝐴

𝑐 × 𝐵

𝑠𝐷,𝑥◦(𝑐×
𝐴),𝑦◦(𝑐×

𝐵)

We recall a characterization of stable orthogonality structures due to Awodey

[Awo18]:

Lemma 6.3.28. Supposing C has finite products and exponentials, the stable orthogo-
nality structure 𝑖 : 𝐴 𝐵 ⋔st 𝑓 : 𝑋 𝑌 is equivalent to a section to the canonical map
𝑝 : 𝑋𝐵 𝑋𝐴 ×𝑌𝐴 𝑌𝐵 .

Proof. By the Yoneda lemma, to construct a map 𝑠 : 𝑋𝐴 ×𝑌𝐴 𝑌𝐵 𝑋𝐵 such that

𝑝 ◦𝑠 = id, it suffices to construct a section y(𝑋𝐴 ×𝑌𝐴 𝑌𝐵) y(𝑋𝐵) to y(𝑝). Unfolding
the data of a natural transformation in this case, for each 𝐶 : C, we must construct an

assignment hom(𝐶,𝑋𝐴 ×𝑌𝐴 𝑌𝐵) hom(𝐶,𝑋𝐵) which is natural in 𝐶 . Let us use the

universal properties of pullbacks and exponentials to simplify this:

hom(𝐶,𝑋𝐵) � hom(𝐶×𝐵,𝑋 ) hom(𝐶,𝑋𝐴×𝑌𝐴𝑌𝐵) � hom(𝐶×𝐴,𝑋 )×hom (𝐶×𝐴,𝑌 )hom(𝐶×𝐵,𝑌 )

In particular, an element of hom(𝐶,𝑋𝐴 ×𝑌𝐴 𝑌𝐵) corresponds to commuting square

while elements hom(𝐶,𝑋𝐵) corresponds to commuting squares with a chosen lift:

𝐶 ×𝐴

𝐶 × 𝐵

𝐶 × 𝑖

𝑋

𝑌

𝑓

In other words, a section y(𝑋𝐴 ×𝑌𝐴 𝑌𝐵) y(𝑋𝐵) corresponds precisely to an assign-

ment of commuting squares to lifts and the condition naturality of this assignment is

exactly the equation distinguishing a stable weak orthogonality structure from a weak

orthogonality structure. □

By similar reasoning to Exercise 6.11, we obtain the following lemma:

Lemma 6.3.29. An incoherent stable weak orthogonality structure 𝑠 : (𝑖 : 𝐴 𝐵) ⋔wk
(𝑓 : 𝑋 𝑌 ) is equivalent to an assignment of objects 𝐶 and maps 𝑦 : 𝐶 × 𝐵 𝑋 and
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𝑥 : 𝐶 ×𝐴 𝑋 ×𝑌 (𝐶 × 𝐵) satisfying 𝜋2 ◦ 𝑥 = (𝐶 × 𝑖) to a map 𝑠𝐶,𝑥,𝑦 fitting into the
following:

𝐶 ×𝐴

𝐶 × 𝐵

𝐶 × 𝑖

(𝐶 ×𝐴) ×𝐶×𝐵 𝑋

𝐶 × 𝐵

⟨id, 𝑥⟩

𝜋2

id

𝑠𝐶,𝑥,𝑦

𝑠 is coherent if for all 𝑐 : 𝐷 𝐶 then 𝑠𝐶,𝑥,𝑦◦(𝑐×𝐵) = ((𝑖×𝐴)×𝑖×𝐵𝑋 )◦𝑠𝐷,𝑥◦(𝑐×𝐴),𝑦◦(𝑐×𝐵) .

Finally, just as done with orthogonality, we can combine Lemma 6.3.26 with

the observations that (1) maps y(Γ.Bool.𝐴) y(Γ.Bool) are precisely the pullbacks

of 𝜋 along maps y(Γ.Bool) Ty and (2) ∇Γ � y(Γ) × 𝑖 where 𝑖 is the gap map

1 ⊔ 1 Bool∗Tm• to obtain the following:

Lemma 6.3.30. M supports if and its attendant equations just when there is a stable
orthogonality structure 𝑖 ⋔st 𝜋 .

In total then,M supports booleanswithout an𝜂 law just when there is a commuting

square Diagram 6.5 along with a stable weak orthogonality structure 𝑖 ⋔st 𝜋 . The
revised version of Slogan 6.3.13 for types without an 𝜂 law is given as follows:

Slogan 6.3.31. The formation and introduction rules of a non-recursive inductive type Υ
are specified by a commuting square:

𝐼Υ

𝐹Υ

Tm•

Ty

introΥ

formΥ

Where form describes the formation operation and intro the introduction. The elimination
rule without an 𝜂 principle is given by the data of a stable weak orthogonality structure
𝑖 ⋔ 𝐹Υ × 𝜋 where 𝑖 : 𝐼 form∗Tm• in Pr(Cx)/𝐹 is the gap map.

6.3.4.2 Intensional identity types

Finally, we note an important instance of Slogan 6.3.31: the intensional identity type.

Here we reap the rewards of some of our effort in this section, as we are able to give a

concise specification of intensional identity types with essentially no additional effort:
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Lemma 6.3.32. M supports an intensional identity type just when it comes equipped
with the following pieces of data:

• A commuting square of the following shape:

Tm•

Tm• ×Ty Tm•

Tm•

Ty

refl

Id

• A stable orthogonality structure Tm• Id∗Tm• ⋔st (Tm• ×Ty Tm• × 𝜋) in
Pr(Cx)/Tm•×TyTm• .

To model intensional rather than extensional identity types, it is therefore only

necessary to swap out the requirement thatM supports Eq to instead require Id and

to use Slogan 6.3.31 rather than Slogan 6.3.13 when specifying inductive types (as they

are no longer equivalent).

6.4 Cwf morphisms and U0,U1,U2, . . .

The final step in our process of converting Definition 3.4.2 to a more categorically

acceptable form is to consider universes. We shall take this as an opportunity to also

elaborate on the notion of a homomorphism of models (Definition 3.4.3) to give an

slick—if indirect—characterization of universes as sub-models of type theory.

6.4.1 Homomorphisms of models

The definition of a homomorphism of models of type theory follows the same template

as any algebraic structure: we have maps between all the (families of) sets which we

require commute with all of the operations these sets are closed under.

Example 6.4.1. To see an example of this process in miniature, recall that a group

(𝐺, 0, +,−) consists of (1) a set 𝐺 and (2) three operations 0 : 𝐺 , + : 𝐺 ×𝐺 → 𝐺 and

− : 𝐺 → 𝐺 satisfying a handful of equations. We can ‘read off’ the definition of a

morphism 𝑓 : (𝐺, 0𝐺 , +𝐺 ,−𝐺 ) (𝐻, 0𝐻 , +𝐻 ,−𝐻 ) from this description. It consists of a



(2025-07-19) Cwf morphisms and U0,U1,U2, . . . 257

function of sets 𝑓0 : 𝐺 𝐻 such that the following equations hold:

𝑓0(0𝐺 ) = 0𝐻 𝑓0(𝑎 +𝐺 𝑏) = 𝑓0(𝑎) +𝐻 𝑓0(𝑏) 𝑓0(−𝐺𝑎) = −𝐻 𝑓0(𝑎)

We have already given a definition morphisms of models in Definition 3.4.3 but

since there are vastly more sets and operations for models of ETT than for groups, the

definition is rather unwieldy. Our goal is to repackage this definition just as was done

for that of models into a more concise and categorical framework.

Morphisms of models of base type theory

To this end, let us begin by considering type theory without any connectives and

models consisting of only the operations described in Section 6.1 (e.g., plain categories

with families). Let us recall Definition 3.4.3 for this base type theory:

Definition 6.4.2. IfM and N are models of base type theory, a homomorphism 𝐹

fromM to N consists of the following data:

• A function 𝐹Cx : CxM CxN

• A family of functions 𝐹Sb (−,−) : (Δ, Γ : CxM) → SbM (Δ, Γ) → SbN (𝐹Cx (Δ), 𝐹Cx (Γ))

• A family of functions 𝐹Ty (−) : (Γ : CxM) → TyM (Γ) → TyN (𝐹Cx (Γ))

• A family of functions

𝐹Tm (−,−) : (Γ : CxM) (𝐴 : TyM (Γ)) → TmM (Γ, 𝐴) → TmN (𝐹Cx (Γ), 𝐹Ty (Γ) (𝐴))

Moreover, we require that these functions commute with 1, −.−, !, id, ◦, p, q, and
substitution on types and terms. For instance, we the following equations:

𝐹Cx (1M) = 1N 𝐹Sb (Γ,1M ) (!M) = !N

We can reformulate homomorphisms using the description of models given in

Definition 6.1.11. As a first step, we note the following:

Lemma 6.4.3. If 𝐹 :M N then the data of 𝐹Cx and 𝐹Sb (−,−) together with the require-
ments that these functions preserve ◦, id, and 1 is equivalent to a functor CxM CxN
which preserves the chosen terminal objects of these two categories.



258 Semantics of type theory (draft) (2025-07-19)

Lemma 6.4.4. If 𝐹 :M N , the families of functions 𝐹Ty (−) and 𝐹Tm (−,−) together
with the properties that they commute with substitution are equivalent to a choice of
commuting square:

TmM

TyM

𝐹 ∗TmN

𝐹 ∗TyN

𝐹Tm

𝐹Ty

Here we denote the functor between categories of context induced by 𝐹 as 𝐹 .

Proof. Unfolding the definition of natural transformation and 𝐹 ∗, the conclusion follows
immediately, e.g., 𝐹Ty sends an element 𝐴 ∈ TyM (Γ) to 𝐹Ty (Γ) (𝐴). □

These two requirements—a functor 𝐹 between the categories of contexts preserving

1 and a commuting square between the presheaves of types and terms—record almost

all of the requirements of Definition 6.4.2. The only outstanding requirement is the

preservation of context extension. This is somewhat difficult to give a purely categorical

phrasing of because it necessitates preserving particular choices of objects defined with
universal properties.

Lemma 6.4.5. A morphism of models 𝐹 :M N consists of the following:

• A functor 𝐹 :M N which preserves 1 on-the-nose.

• A commuting square of the following shape:

TmM

TyM

𝐹 ∗TmN

𝐹 ∗TyN

𝐹Tm

𝐹Ty

Such that for all Γ : CxM and 𝐴 : TyM (Γ), we have 𝐹 (Γ.M𝐴) = 𝐹 (Γ).N𝐹Ty (Γ) (𝐴)
along with 𝐹 (pM) = pN and 𝐹Tm (Γ.M𝐴,𝐴[pM ] ) (qM) = qN .

Remark 6.4.6. One could also imagine requiring that morphisms between cwfs pre-

serve the empty context and context extension only up to canonical isomorphism.
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This viewpoint is systematically developed by e.g., Clairambault and Dybjer [CD14]

and Uemura [Uem21] constructs a further generalization of generalized algebraic

theories which ensures that these morphisms are the default obtained by the logical

framework. ⋄

Say this defines a category

Dealing with connectives in morphisms of models

Thus far we have only discussed morphisms of type theory without any connectives.

To extend our description of morphisms to full ETT, we must also specify how a

morphism of models interacts with e.g., Π, Σ, and so on. Notably, since a connective

extends the theory of type theory with new operations and equations but no new sorts,

to extend our definition of morphism requires only that we add more conditions rather

than imposing any new data.

We once more recall a specialized version of Definition 3.4.3 dealing only with

Unit:

Definition 6.4.7. A morphism 𝐹 : M N of models of type theory with Unit
consists of a morphism of models of base type theory of 𝐹 : M N such that 𝐹

satisfies the following equations:

𝐹Ty (Γ) (UnitM) = UnitN 𝐹Tm (Γ,UnitM ) (ttM) = ttN

The following is a direct rephrasing of these equations:

Lemma 6.4.8. If 𝐹 :M N is a morphism of models of base type theory andM and
N are both equipped with a choice of unit types, 𝐹 extends to a morphism of models with
Unit just when the following diagram commutes:

TmM

TyM

𝐹 ∗TmN

𝐹 ∗TyN

𝐹 ∗(1) � 1

𝐹 ∗(1) � 1

ttM

UnitM

𝐹 ∗(ttN)

𝐹 ∗(UnitN)
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For a general connective Θ, we can specify the commutation of 𝐹 with the opera-

tions of Θ using a diagram based on the commuting square specifying the formation

and introduction data of a connective (Slogans 6.2.10 and 6.3.13). In particular, we have

no need to specify that the elimination operator is also preserved, as this follows for

free.

Remark 6.4.9. Note that if we instead used Slogan 6.3.31, we would have to impose

additional requirements to make sure that 𝐹 commuted appropriately with the chosen

weak stable orthogonality structure. ⋄

However, some care is required. In the case of Unit, we took advantage of the

fact that 𝐹 ∗ preserves 1 and therefore that we could relate the formation data for

UnitM to that of UnitN . We will not have an isomorphism 𝐹 ∗(𝐹ΘN ) � 𝐹ΘM for each

connectiveΘ, but we are always able to construct a canonical map 𝐹ΘM 𝐹 ∗(𝐹ΘN ) for
the connectives of ETT. For instance, since 𝐹 ∗ preserves limits and colimits and there are

maps TyM 𝐹 ∗TyN and TmM 𝐹 ∗TmN , there are canonical (but non-invertible!)
maps relating the formation data of Eq, Bool, and Void.

The cases of Π and Σ are slightly more complex, as they involve polynomial

functors. We illustrate this principle for Π in detail and leave it to the reader to

extrapolate the principle to other connectives.

Definition 6.4.10. A morphism of models of base type theory 𝐹 :M N extends

to a morphism of models of type theory with Π if it satisfies the following equations

for all Γ : CxM , 𝐴 : TyM (Γ), 𝐵 : TyM (Γ.M𝐴), and 𝑏 : TmM (Γ.M𝐴, 𝐵):

𝐹Ty (Γ) (ΠM (𝐴, 𝐵)) = ΠM (𝐹Ty (Γ) (𝐴), 𝐹Ty (Γ.M𝐴) (𝐵))
𝐹Tm (Γ,ΠM (𝐴,𝐵) ) (𝜆M (𝑏)) = 𝜆N (𝐹Tm (Γ.M𝐴,𝐵) (𝑏))

Notice that we have not included any equations governing app. This is because
the desired equation holds automatically thanks to those equations governing 𝜆 along

with the 𝛽 and 𝜂 laws for Π-types:

Lemma 6.4.11. If 𝐹 : M N is a morphism of models with Π-types then the fol-
lowing holds for all Γ : CxM , 𝐴 : TyM (Γ), 𝐵 : TyM (Γ.M𝐴), 𝑎 : TmM (Γ, 𝐴), and
𝑓 : TmM (Γ,ΠM (𝐴, 𝐵)):

𝐹Tm (Γ,𝐵 [idM .M𝑎]M ) (appM (𝑓 , 𝑎)) = appM (𝐹Tm (Γ,ΠM (𝐴,𝐵) ) (𝑓 ), 𝐹Tm (Γ,𝐴) (𝑎))
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Proof. This is a consequence of the 𝛽 and 𝜂 laws:

𝐹Tm (Γ,𝐵 [idM .M𝑎]M ) (appM (𝑓 , 𝑎))
= 𝐹Tm (Γ,𝐵 [idM .M𝑎]M ) (appM (𝑓 [pM], qM) [idM .M𝑎])
= 𝐹Tm (Γ,𝐵) (appM (𝑓 [pM], qM)) [idN .N𝐹Tm (Γ,𝐴) (𝑎)]
= appN (𝜆N (𝐹Tm (Γ,𝐵) (appM (𝑓 [pM], qM))), 𝐹Tm (Γ,𝐴) (𝑎))
= appN (𝐹Tm (Γ,ΠM (𝐴,𝐵) ) (𝜆M (appM (𝑓 [pM], qM))), 𝐹Tm (Γ,𝐴) (𝑎))
= appN (𝐹Tm (Γ,ΠM (𝐴,𝐵) ) (𝑓 ), 𝐹Tm (Γ,𝐴) (𝑎)) □

Remark 6.4.12. This proof is essentially a combination of the inter-derivability be-

tween app and 𝜆−1
along with the observation that natural transformations which are

pointwise isomorphisms are natural isomorphisms. ⋄

We will now reformulate the equational presentation of Definition 6.4.10 into a

less symbol-heavy diagrammatic formulation as was done for Unit. To start with, we

must specify the canonical maps between the formation and introduction data of ΠM
and ΠN .

Lemma6.4.13. If 𝐹 :M N then there is a canonicalmap𝛼 : P𝜋MTyM 𝐹 ∗(P𝜋NTyN).

Proof. This is easiest to show using Lemma 6.2.15: if Γ : CxM then P𝜋MTyM (Γ) consists
of pairs

∑
𝐴:TyM (Γ) TyM (Γ.M𝐴). Similarly, 𝐹 ∗(P𝜋NTy𝑁 ) (Γ) �

∑
𝐴:TyN (𝐹 (Γ) ) TyM (𝐹 (Γ).N𝐴).

We now use 𝐹Ty while taking advantage of the fact that 𝐹 (Γ.M𝐴) = 𝐹 (Γ) .N𝐹Ty (Γ) (𝐴):

𝛼 Γ (𝐴, 𝐵) = (𝐹Ty (Γ) (𝐴), 𝐹Ty (Γ.M𝐴) (𝐵))

We leave it to the reader to check that this assignment is natural. □

Lemma6.4.14. If 𝐹 :M N then there is a canonicalmap𝛼 : P𝜋MTmM 𝐹 ∗(P𝜋NTmN).

Lemma 6.4.15. If 𝐹 :M N is a morphism of models of base type theory, 𝐹 extends to
a morphism of models of type theory with Π just when the following diagram commutes:

P𝜋M (TmM)

P𝜋M (TyM)

TmM

TyM

𝐹 ∗(P𝜋N (TmN))

𝐹 ∗(P𝜋N (TmN))

𝐹 ∗(TmN)

𝐹 ∗(TyN)
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Proof. Note that the front, back, left, and right faces commute for an arbitrary mor-

phism of models of base type theory. It therefore suffices to show that extending

to a morphism to support Π is equivalent to the commutation of the top and bot-

tom squares. Unfolding, the commutation of the bottom square is equivalent to the

following equation for all Γ : CxM , 𝐴 : TyM (Γ), and 𝐵 : TyM (Γ.M𝐴):

𝐹Ty (Γ) (ΠM (𝐴, 𝐵)) = ΠN (𝐹Ty (Γ) (𝐴), 𝐹Ty (Γ.M𝐴) (𝐵))

Similarly, the bottom square is equivalent to the following equation for all Γ : CxM ,

𝐴 : TyM (Γ), 𝐵 : TyM (Γ.M𝐴), and 𝑏 : TmM (Γ.M𝐴, 𝐵):

𝐹Tm (Γ,ΠM (𝐴,𝐵) ) (𝜆M (𝐴, 𝐵,𝑏)) = 𝜆N (𝐹Ty (Γ) (𝐴), 𝐹Ty (Γ.M𝐴) (𝐵), 𝐹Tm (Γ.M𝐴,𝐵) (𝑏))

These exactly correspond to the requirements ensuring that 𝐹 preserve Π. □

Remark 6.4.16. We can re-express the above 3-dimensional diagram into a square in

Pr(CxM)→:
P𝜋M (𝜋M)

𝐹 ∗(P𝜋N (𝜋N))

𝜋M

𝐹 ∗𝜋N ⋄

In total then, a morphism 𝐹 :M N of models of type theory with some set of

connectives consists of a morphism of base type theory which satisfies the additional

properties required to commute with all relevant connectives.

6.4.2 Universes as sub-models

We now reap the rewards of our effort investigating morphisms of models of type

theory, as it allows us to give a concise definition of when a modelM supports a

hierarchy of universes. For this subsection, let us fix a modelM and we will once

more suppressM as a subscript, instead simply writing e.g., Ty or Π.

Structure 6.4.17. A universe structure on a model of type theoryM consists of the

following:

• A typeU0,Γ : TyM (Γ) for every Γ : CxM and a family of types El0,Γ : TyM (Γ.U0,Γ).

• Equations U0,Γ [𝛾] = U0,Δ and El0,Γ (𝑐) [𝛾] = El0,Δ (𝑐 [𝛾]) for every 𝛾 : SbM (Δ, Γ)
and 𝑐 : TmM (Γ,U0,Γ)
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• For each of Π, Σ, Eq, Unit, Bool, +, Void, Nat, there is an operation pi, sig,
eq, unit, bool, coprod, void, nat e.g., pi(𝑐0, 𝑐1) : TmM (Γ,U0) whenever 𝑐0 :

TmM (Γ,U0) and 𝑐1 : TmM (Γ.El0(𝑐0),U0).

• For each of the connectives above, an equation stating that the operator com-

mutes with substitution e.g., pi(𝑐0, 𝑐1) [𝛾] = pi(𝑐0 [𝛾], 𝑐1 [𝛾 .El(𝑐0)]) whenever
𝛾 : SbM (Δ, Γ), 𝑐0 : TmM (Γ,U0) and 𝑐1 : TmM (Γ.El0(𝑐0),U0).

• For each of the connectives above, an equation stating that El commutes with

the operation e.g., El0(pi(𝑐0, 𝑐1)) = pi(El0(𝑐0), El0(𝑐1)).

As is routine, the first two points are equivalent to a pair of natural transformations:

Lemma 6.4.18. The operators U0,Γ and El0,Γ and the substitution equations on them are
equivalent to a pair of natural transformations

U0 : 1 Ty El0 : U∗
0
Tm• Ty

The challenge is to reformulate the final three points. While it is possible to specify

operators such as pi, sig, and so on individually, this is rather laborious. Instead we

opt for a different approach. We begin by observing the following:

Lemma 6.4.19. The projection y(p) : y(1.U0.El0) y(1.U0) obtains a canonical
representability structure from 𝜋 .

Proof. Since y(p) : y(1.U0.El0) y(1.U0) is a pullback of 𝜋 , the left-hand square in

the following diagram is a pullback:

y(1.U0.El0)

y(1.U0)

Tm•

Ty

y(Γ.El0(𝑐))

y(Γ)
y(!.𝑐)

In particular, we may use y(Γ.El0(𝑐)) as the chosen pullback for the representability

structure on y(p). □

Corollary 6.4.20. CxM and y(p) : y(1.U0.El0) y(1.U0) is a model of base type
theory U0. Moreover, the identity functor and the following commuting square then
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induce a morphism of models 𝐼 : U0 M:

y(1.U0.El0)

y(1.U0)

Tm•

Ty

Lemma 6.4.21. The remaining structure specifying a universe inM is equivalent to the
data equippingU0 with all the connectives of type theory such that 𝐼 induces a morphism
of models.

Proof. We describe this explicitly for Void and Unit, as the remaining connectives are

identical but more notationally cumbersome. In the case of Unit, to equipU0 with a

unit type such that 𝐼 is a morphism of models is equivalent to choosing a left-hand

square in the following diagram:

y(1.U0.El0)

y(1.U0)

Tm•

Ty

1

1

ttU0

UnitU0

tt

Unit

Since both squares are required to be pullbacks, a choice of the left-hand diagram is

fully determined by a morphism UnitU0
: 1 y(1.U0) such that the bottom triangle

commutes. This precisely corresponds to the data closing U0 under Unit inM.

For Void, the procedure is similar. Equipping y(p) with an interpretation of Void
such that 𝐼 is a morphism of models corresponds to picking a left-hand square in the
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following diagram, subject to an orthogonality condition:

y(1.U0.El0)

y(1.U0)

Tm•

Ty

0

1
VoidU0

Void

The orthogonality condition states that the map 𝑋 × 0 𝑋 × Void∗U0

y(1.U0.El0) is
orthogonal to y(p). Since the right-hand square is a pullback, the left-hand map is

equivalent to 𝑋 × 0 𝑋 × Void∗Tm• and since y(p) is a pullback of 𝜋 , this condition

is automatic.

In particular, the only requirement in the choice of such a left-hand square is the

map VoidU0
: 1 y(1.U0) subject to the commuting triangle above. This is equivalent

to the data closing U0 under Void inM as required. □

Theorem 6.4.22 (Categorical reformulation of U). A universe structure onM is equiv-
alent to the following:

• A choice of natural transformations U0 : 1 Ty and El0 : U∗
0
Tm• Ty

• An interpretation of the connectives Π, Σ, Unit, Eq, Void, Bool, Nat, and + into
the model U0 = (CxM, y(1.U0.El0) y(1.U0)) such that the canonical map
𝐼 : U0 M is a morphism of models with all of these connectives.

Hierarchies of universes With Theorem 6.4.22, it is straightforward to describe

the requirement that M supports a hierarchy of universes. Given the amount of

data that is required to describe such a hierarchy in an unfolded fashion, we will

present the categorical repackaging and leave it to the diligent reader to compare with

Definition 3.4.2.

Lemma 6.4.23 (Categorical reformulation of a hierarchy). M supports a cumulative
hierarchy of universes just when it is equipped with the following:

• For each 𝑖 : N, a choice of natural transformations U𝑖 : 1 Ty and El𝑖 :

U∗𝑖 Tm
• Ty
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• For each 𝑖 , an interpretation of the connectives Π, Σ, Unit, Eq, Void, Bool, Nat, +,
and U𝑗 for all 𝑗 < 𝑖 into the modelU𝑖 = (CxM, y(1.U𝑖 .El𝑖) y(1.U𝑖)) such that
the canonical mapU𝑖 M is a morphism of models.

• For each 𝑖 , a natural transformation lift : y(1.U𝑖) y(1.U𝑖+1) such that the outer
square commutes and the left-hand square in following diagram is a pullback:

y(1.U𝑖+1.El𝑖+1)

y(1.U𝑖+1)

Tm•

Ty

1.U𝑖+1.El𝑖+1

y(1.U𝑖+1)
lift

Moreover, we require that left-hand square induce amorphism ofmodelsU𝑖 U𝑖+1.

Exercise 6.15. Isolate the necessary operations and equations on a model for sup-

porting a hierarchy of universes and argue that this structure is equivalent to the

requirements of Lemma 6.4.23.

6.5 Locally cartesian closed categories and coherence

Thus far in this chapter, we have spent a considerable amount of effort investigating

the definition of a model of type theory. Despite this effort, we have only met two

examples of models: the syntactic model (Theorem 3.4.5) and the set model (Section 3.5).

In general, constructing a model of type theory is hard work because of all the data

that must be chosen and the properties that must be checked. Our goal is to ease

this process by constructing a technique in this theorem which takes any category

satisfying certain properties (e.g., finitely cocomplete and locally cartesian closed) and

producing a model of type theory (Theorem 6.5.35). This is particularly convenient as

we have a large stock of such well-behaved categories (e.g., Pr(C) for any C) and we

therefore a whole supply of models.

Rather than proceeding straight to this coherence theorem, we actually begin by

studying the reverse question: given a well-behaved model of type theoryM, what

structure does CxM possess? We shall see that a number of type-theoretic connectives

correspond directly to recognizable categorical structures. In particular, we shall show
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that for well-behaved models, the category of contexts is finitely complete, locally

cartesian closed and possesses finite coproducts and a natural number object. Despite

this connection, we will find a fundamental mismatch of strictness between locally

cartesian closed categories and models of type theory. This sets the stage for our

coherence theorem which papers over the difference and shows that any category C
satisfying these properties can be realized as the category of contexts of a model of type

theory. In reality, even more is true: one can set up a (bi)-equivalence of (2-)categories

showing that the two procedures are inverses [CD14].

6.5.1 From models to locally cartesian closed categories

In this subsection, we will fix a model of type theoryM which we will assume to be

democratic. Roughly, our goal is to analyze CxM as a category and so it is useful to

know that the behavior of CxM is fully controlled by types. That is, to assume that

every context is built from the empty context by repeatedly extending with types. Note

that while this is true for the syntactic model T , it need not hold in arbitrary models.

Definition 6.5.1. A modelM is democratic if for every context Γ : CxM there exists

a type 𝐴 : TyM (1M) along with an isomorphism Γ � 1M .M𝐴.

Lemma 6.5.2. The syntactic model T is democratic.

Proof. While this may seem obvious, a modicum of effort is required to apply the

induction principle for the syntactic model (Theorem 3.4.5) and we spell out some of

the details here to illustrate the process.

We will construct a model of type theory T0 along with a homomorphism 𝑖 :

T0 T and we will further arrange for contexts in T0 to be syntactic contexts Γ for

which there exists a closed type 𝐴 and isomorphism 1.𝐴 � Γ. The map 𝑖 will then send

Γ in T0 to Γ in 𝑇 . By initiality, there is a unique model homomorphism ! : T T0 and
(by initiality once more) we must have 𝑖 ◦ ! = id. Consequently, 𝑖 is a split epimorphism

and so every Γ : CxT is in the image of 𝑖—precisely what we were attempting to prove.

It remains, therefore, only to construct T0 and 𝑖 . Let us take the category of contexts
CxT0 for T0 to be the full subcategory of T spanned by contexts Γ for which there

exists an isomorphism Γ � 1.𝐴 for some closed type 𝐴. The chosen terminal object of

CxT lands in this full subcategory: 1 � 1.Unit. We write 𝑖 for the inclusion functor

T0 T . The presheaves of types and terms over CxT0 are given by restricting those

from T :

TyT0 = 𝑖
∗(TyT) = TyT ◦ 𝑖 Tm•T0 = 𝑖

∗(Tm•T) = Tm•T ◦ 𝑖 𝜋T0 = 𝑖
∗(𝜋T) = 𝜋T ◦ 𝑖
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To show that𝜋T0 is representable, recall that (1) 𝑖
∗
preserves (co)limits and (2) 𝑖∗y(𝑖 (Γ)) �

y(Γ) since 𝑖 is fully-faithful. It therefore suffices to show if Γ : CxT0 and 𝐴 ∈ TyT0 (Γ)
then 𝑖 (Γ) .T𝐴 lies in the image of 𝑖 . By construction, there must be some 𝐵 such that

𝑖 (Γ) � 1.𝐵 and so 1.Σ(𝐵,𝐴) � 𝑖 (Γ) .𝐴 as required.

Finally, we must show that T0 is closed under all the connectives of type theory and
that 𝑖 extends to a homomorphism of models. There is a conceptual reason for this: all

connectives may be defined using finite limits and polynomial functors P𝑓 where 𝑓 is a
morphism built from pullbacks, composites, and 𝜋 . One may check that 𝑖∗ preserves all
of these operations—for polynomials, one uses Lemma 6.2.15—and therefore applying

𝑖∗ to structure closing T under each connective yields the appropriate structure in

T0. Moreover, one obtains a morphism of models extending 𝑖 using id : 𝜋T0 𝑖∗𝜋T
(Lemma 6.4.5) which commutes with all connectives more-or-less tautologically.

However, a much less sophisticated though more tedious approach suffices: one

may simply show that each operation listed in Definition 3.4.2 can be defined on T0
using the appropriate operation on T . For instance, for Π wemust define the following:

ΠT0 : (Γ : CxT0) (𝐴 : TyT0 (Γ)) (𝐵 : TyT0 (Γ.T0𝐴)) → TyT0 (Γ)

We choose ΠT0 = ΠT which is well-formed because 𝑖 (Γ.T0𝐴) = 𝑖 (Γ).T𝐴 by definition.

The same procedure and argument works for every other operation. □

We have observed all the way back in Chapter 2 that the terms of a type𝐴 ∈ Ty(Γ)
can be recovered from Cx through the weakening substitution p : Γ.𝐴 Γ. More

generally, if 𝐴, 𝐵 ∈ Ty(Γ) then there is an isomorphism between functions Tm(Γ, 𝐴→
𝐵) and homCx/Γ (Γ.𝐴 Γ, Γ.𝐵 Γ). We shall use this to produce a more convenient

description of the slice category Cx/Γ using terms of types and terms in context Γ. We

begin by showing that each substitution is isomorphic to a weakening substitution:

Lemma 6.5.3. If 𝛿 : Γ Δ then there exists p𝐴 : Δ.𝐴 Δ along with an isomorphism
𝛿 � p𝐴 in Cx/Δ.

Proof. By democracy, we know that Γ � 1.𝐴0 and Δ � 1.𝐵 for some 𝐵. Without loss of

generality, we may replace Γ by 1.𝐴0 and Δ by 1.𝐵 such that 𝛿 : Γ Δ is of the form

!.𝑏 where 𝑏 ∈ Tm(1.𝐴0, 𝐵 [p]).
We then choose 𝐴 ∈ Ty(Δ) to be Σ(𝐴0 [!], Eq(𝐵 [!], q [p], 𝑏 [!.𝐴0])). In informal

notation: 1, 𝑥 : 𝐵 ⊢ ∑𝑎:𝐴0

Eq(𝐵,𝑏 (𝑎), 𝑥) type. Next, we must construct an isomorphism

𝛿 � p𝐴. For this, we choose 𝑓0 = 𝛿.pair(q, refl) : 𝛿 p𝐴 for one direction and

𝑓1 = !.fst(q) : p𝐴 𝛿 for the other. For the latter, note that we must use equality

reflection to ensure that 𝛿 ◦ 𝑓1 = p as required of a morphism in Cx/Δ. We leave it to

the reader to check that these are inverses using the 𝛽 and 𝜂 laws for Σ and Eq. □
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Advanced Remark 6.5.4. Homotopy-theoretic readers may observe that there is some

similarity between the replacement of Γ → Δ by p𝐴 and the factorization of a map of

spaces 𝑓 : 𝑋 → 𝑌 into a trivial cofibration followed by a fibration𝑋 → 𝑋×𝑌𝑌 [0,1] → 𝑌 .

This would be particularly evident if we replaced Eq with Id and used the dictionary

between intensional type theory and homotopy theory explored in Chapter 5. In fact,

this same factorization exists for intensional identity types and can be used to structure

the category of contexts of a model of ITT into a fibration category [GG08; AKL15]. In

the case of Eq, the first map is a genuine isomorphism so this factorization system is

trivial. ⋄

Corollary 6.5.5. There is an equivalence of categories between Cx/Γ and the category of
types Ty(Γ) whose morphisms hom(𝐴, 𝐵) are given by functions Tm(Γ, 𝐴→ 𝐵).

Remark 6.5.6. We emphasize that types in context Γ are viewed as maps into Γ. This is
a curious reversal from both the notation Γ ⊢ 𝐴 type and Section 6.1 where Γ behaves

like a domain of some function in both. This trick of viewing maps into an object as

families indexed by that object is common in category theory and geometry; it allows

us to define families even in the absence of an “object of objects”. More concretely,

Ty : Pr(Cx) is not representable and so we must express dependent types (maps

y(Γ) Ty) more indirectly. We shall analyze the extent to which this process can be

reversed in Section 6.5.2 ⋄

The pullback functors 𝛾∗ : Cx/Γ Cx/Δ for each 𝛾 : Δ Γ also admit a familiar

description when transported along the equivalence constructed in Lemma 6.5.3. By

Exercise 6.3, pulling back Γ.𝐴 Γ along 𝛾 yields Δ.𝐴[𝛾] Δ and the reader may

compute that it sends a morphism p.𝑏 : Γ.𝐴 Γ.𝐵 to p.𝑏 [𝛿.𝐴]. In other words, when

translating between slice categories and terms and types in context, the pullback

operation between contexts is realized by substitution on terms and types.

With all of this effort, we can quickly rattle of a list of categorical properties

satisfied by Cx by leveraging corresponding types. This discussion closely tracks the

structure of Chapter 2: types with mapping-in properties correspond to limits and

right adjoints, those with mapping out properties to left adjoints and colimits, and

finally universes occupy an uneasy position of their own.

Types with mapping-in properties As ever, we begin with those types with

mapping-in characterizations.

Lemma 6.5.7. Every slice category Cx/Γ has finite products. Consequently, Cx has all
finite limits.
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Proof. Every slice category has terminal objects—in the form of idΓ—and so it suffices

to show that Cx/Γ has binary products. Passing to considering Ty(Γ) in context Γ, we
claim the product of 𝐴, 𝐵 ∈ Ty(Γ) is given by 𝐴 × 𝐵 (the non-dependent version of Σ).

To prove this, we must complete a programming exercise. We must argue that

if 𝐶 ∈ Ty(Γ) and 𝑓 ∈ Tm(Γ,𝐶 → 𝐴) and 𝑔 ∈ Tm(Γ,𝐶 → 𝐵) then there is a unique

function ⟨𝑓 , 𝑔⟩ ∈ Tm(Γ,𝐶 → 𝐴 × 𝐵) such that fst ◦ ⟨𝑓 , 𝑔⟩ = 𝑓 and snd ◦ ⟨𝑓 , 𝑔⟩ = 𝑔:

𝐴 × 𝐵 𝐵𝐴

𝐶

We define ⟨𝑓 , 𝑔⟩ = 𝜆𝑐 → pair(𝑓 (𝑐), 𝑔(𝑐)) and the commutation of the diagram

along with its uniqueness are then consequences of the 𝛽 and 𝜂 laws for Σ. □

Lemma 6.5.8. If 𝛾 : Δ Γ then 𝛾∗ : Cx/Γ Cx/Δ commutes with finite products.

Proof. It suffices to check this problem for Ty(Γ) and Ty(Δ) where it is an immediate

consequence of the stability of ×, fst, snd, and pair under substitution. □

Exercise 6.16. Show that Cx/Γ has exponentials and these are preserved by 𝛾∗.

Lemma 6.5.9. Cx is locally cartesian closed.

Proof. This is a general consequence of the observation that Cx has a terminal object

and the fact that each slice category is cartesian closed and this structure is preserved

by pullback functors. □

For the sake of completeness (and because the result is recognizable), we can give

an explicit description of the right adjoint to pullback: 𝛾∗ : Cx/Δ Cx/Γ . We begin

by replacing Δ and 𝛾 by p𝐴 : Γ.𝐴 Γ. In this case, the right adjoint to p∗ is given as

follows:

𝐵 ∈ Ty(Γ.𝐴) ↦→ Π(𝐴, 𝐵)
To show this, it suffices to construct an isomorphism of the following shape natural in

𝐶:

Tm(Γ,𝐶 → Π(𝐴, 𝐵)) � Tm(Γ.𝐴,𝐶 [p] → 𝐵)
Using the mapping-in characterization of Π, we may replace the left and right sides

of this isomorphism with Tm(Γ.𝐶.𝐴[p], 𝐵 [p.𝐴]) and Tm(Γ.𝐴.𝐶 [p], 𝐵 [p]). These are
naturally isomorphic by exchange.
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Exercise 6.17. 𝛾∗ also has a left adjoint given by post-composition by 𝛾 (this holds

whenever 𝛾∗ exists). Reformulate this left adjoint into another recognizable type-

theoretic operation.

Types with mapping-out properties Taking stock, thus far we have used Π, Σ,
Eq, and Unit (the last being a necessary consequence of democracy). What structure

do the other connectives of dependent type theory induce? Following our noses from

Section 6.3, we guess that the coproduct types + and the empty type Void suffice to

close Cx under finite coproducts and Nat induces an initial algebra for (1 ⊔ −).

Lemma 6.5.10. Cx has finite coproducts.

Proof. Considering the equivalent category Ty(1), we represent binary coproducts

𝐴 ⊔ 𝐵 using the coproduct type, 𝐴 + 𝐵. The rules governing this type are precisely

those necessary for universal property. Similarly, we realize the initial object with

Void. □

Lemma 6.5.11. Cx/Γ has an initial (1 ⊔ −)-algebra (Definition 6.3.17) and pullback
functors preserve this initial algebra.

Remark 6.5.12. For the second claim to be well-formed, we must convince ourselves

that 𝛾∗ : Cx/Γ Cx/Δ induces a functor Alg(1Cx/Γ ⊔ −) Alg(1Cx/Δ ⊔ −). This

follows from the observation pullback commutes with both limits and colimits in a

locally cartesian closed category. ⋄

Proof. The initial (1 ⊔ −)-algebra in Ty(Γ) is given by Nat and the terms zero ∈
Tm(Γ,Nat) and suc : Tm(Γ,Nat → Nat). To prove initiality, let us fix 𝐴 along with

𝑎 ∈ Tm(Γ, 𝐴) and 𝑠 ∈ Tm(Γ, 𝐴 → 𝐴). The unique algebra morphism 𝛼 : Nat → 𝐴

is given by the following function (written in informal notation for clarity): 𝜆𝑛 →
rec(𝑛, 𝑎, 𝑠). This organizes into an algebra morphism because of the 𝛽 laws of Nat and
it is unique with this property by the 𝜂 law.

The commutation of these initial algebras with the pullback functor is then a

consequence of the stability of Nat and the attendant operators under substitution. □

Clearly this collection of initial algebras is fully determined by the initial algebra

for 1 ⊔ − in Cx. We shall call this algebra a stably initial (1 ⊔ −)-algebra.

Corollary 6.5.13. Cx has a stably initial (1 ⊔ −)-algebra.
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Identifying universes in the category of contexts It remains to discuss how the

hierarchy of universes U𝑖 fit into this story. Here the answer is somewhat messier

because, unfortunately, universes in extensional type theory lack any clean description

through universal properties. Indeed, we shall see in Section 6.5.5 that universe

hierarchies can be a particular challenge when modeling type theory categorically.

We shall roughly follow the approach proposed by Streicher [Str05]. To begin with,

we recall the following definitions which roughly axiomatize the collection of maps

isomorphic to p : Γ.El(𝑐) Γ where 𝑐 ∈ Tm(Γ,U):

Definition 6.5.14. If C is a category with finite limits a bare universe is a collection of

morphisms 𝑆 in C which is stable under pullback; if 𝜋 ∈ 𝑆 then 𝑓 ∗𝜋 ∈ 𝑆 for all 𝑓 :

𝐴 ×𝐵 𝐸

𝐴

𝑆 ∋ 𝑓 ∗𝜋

𝐸

𝐵

𝜋 ∈ 𝑆

𝑓

Notation 6.5.15. Each universe induces a full subcategory 𝑆/𝑌 of 𝐶/𝑌 whose objects

are those maps 𝑓 : 𝑋 𝑌 ∈ 𝑆 . Closure under pullback ensures that pullback functors

𝑦∗ : C/𝑌1
C/𝑌0

restrict to 𝑆/𝑌𝑖 . We say 𝑆 contains an object 𝐶 if 𝐶 1 ∈ 𝑆 .

Obviously not much can be said about a bare categorical universe, but we can

refine this definition to impose conditions matching the existence of El along with the

closure properties of U. In other words, we insist that as a class of maps, 𝑆 is generated

by pulling back (applying a substitution to) a single map (1.U.El(q) 1.U) and is

closed under all of the categorical structures induced by type-theoretic connectives.

Definition 6.5.16. Consider C is a locally cartesian closed category with finite co-

products and a stably initial (1 ⊔ −)-algebra and suppose further that 𝑆 is a bare

universe in C. We shall call a bare universe 𝑆 a universe if it comes with a chosen

map 𝜏 : 𝑈 • 𝑈 ∈ 𝑆 such that every map in 𝑓 : 𝑋 𝑌 ∈ 𝑆 can be presented 𝑥∗𝜏 for
some 𝑥 : 𝑌 𝑈 (𝜏 is generic for 𝑆) and such that it satisfies the following additional

properties:

1. 𝑆 contains all isomorphisms.

2. 𝑆 is closed under composition.

3. If 𝑓 : 𝑋 𝑌 and 𝑔 : 𝑌 𝑍 are in 𝑆 then 𝑓∗𝑔 ∈ 𝑆 .

4. If 𝑓 : 𝑋 𝑌 ∈ 𝑆 then Δ : 𝑋 𝑋 ×𝑌 𝑋 ∈ 𝑆 .
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5. 𝑆/𝑌 is closed under coproducts and contains the initial (1 ⊔ −)-algebras in C/𝑌 .

Lemma 6.5.17. Each U𝑖 induces a universe 𝑉𝑖 = {𝑓 | ∃𝑐 ∈ Tm(Γ,U𝑖). 𝑓 � p :

Γ.El(𝑐) Γ}.

Proof. As stated above, the generic map 𝜋 is give by 1.U.El(q) 1.U. To verify this,

fix p : Γ.El(𝑐) Γ with Tm(Γ,U𝑖). The following diagram is a pullback:

Γ.El(𝑐)

Γ

1.U.El(q)

1.U
!.𝑐

To verify properties (1–5), we use the closure of U𝑖 under various connectives: Unit for
(1), Σ for (2), Π for (3), Eq for (4), and +, Void, and Nat for (5). All of these properties
are proven by essentially the same argument, so we illustrate the pattern by proving

(3). Fix 𝑓 : Γ0 Γ1 and 𝑔 : Γ1 Γ2 such that 𝑓 , 𝑔 ∈ 𝑆 . We must show that 𝑔∗(𝑓 ) ∈ 𝑆 .
First, since 𝑓 , 𝑔 ∈ 𝑆 , we may replace them with isomorphic weakening maps and

reduce to considering 𝑓 = p : Γ.El(𝑐0) .El(𝑐1) Γ.El(𝑐0) and 𝑔 = p : Γ.El(𝑐0) Γ.
Above, we showed that if Γ = 1 then 𝑔∗ 𝑓 could be realized by Γ.Π(El(𝑐0), El(𝑐1)) Γ.
The same argument applies to a general Γ and so it suffices to argue that

Γ.Π(El(𝑐0), El(𝑐1)) Γ ∈ 𝑆

Since U𝑖 is closed under Π, this map is equal to Γ.El(pi(𝑐0, 𝑐1)) Γ and the conclusion
is now immediate. □

Definition 6.5.18. A hierarchy of universes 𝑆0, 𝑆1, . . . in a category C consists of a

collection of universes 𝑆𝑖 such that 𝑆𝑖 ⊆ 𝑆𝑖+1 and such that 𝑆𝑖+1 contains𝑈𝑖 .

Lemma 6.5.19. The collection 𝑉0,𝑉1, · · · defined in Lemma 6.5.17 organizes into a
hierarchy of universes.

We summarize all of the insights of this discussion into the following theorem:

Theorem 6.5.20. IfM is a democratic model of type theory thenCxM is locally cartesian
closed and has finite coproducts, a stably initial algebra for 1 ⊔ −, and a hierarchy of
universes.

With additional effort, we could enhance Theorem 6.5.20 to the following theorem:
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Theorem 6.5.21. The mapM ↦→ CxM induces a functor CwFdem LCC from the full
subcategory of democratic models to the category of locally cartesian closed categories.

Wewill not attempt to prove this theorem as we are not showing any sort of categorical

equivalence between democratic models and locally cartesian closed categories (indeed,

we would need to enhance locally cartesian closed categories to account for Bool, Nat,
etc.). For further on discussion on this point, see Clairambault and Dybjer [CD14].

The remainder of this section is devoted to the converse question: given such a

well-behaved category C, can we find a (democratic) model of type theoryM such

that CxM ≃ C. As the reader may infer from the length of this section, the question is

not as straightforward as one might hope.

6.5.2 The strictness problem

In this subsection, let us fix C to be a category satisfying the conclusions of Theo-

rem 6.5.20: local cartesian closure, existence of finite coproducts, etc. Our goal is to
study whether C can be realized as the category of contexts of some modelM of type

theory. Running down the list of requirements of a model, we start with CxM = C,
and we see easily that C has a terminal object (it is locally cartesian closed). We run

into trouble, however, with the very next piece of data: what should the presheaf of

types TyM be?

Our goal is to “reverse” Theorem 6.5.20 and so we can start by asking a related

question: given a democratic model of type theory N , how can one recover TyN from

CxN? One plausible approach is suggested by Lemma 6.5.3. This result shows that since

N is democratic, every substitution Δ Γ is isomorphic to a weakening substitution

Γ.𝐴 Γ with𝐴 ∈ TyN (Γ). Consequently, there is a tight relationship between TyN (Γ)
and CxN/Γ given by sending 𝐴 ∈ TyN (Γ) to p : Γ.𝐴 Γ. Accordingly, we begin to

search for a suitable definition of TyM in terms of C/− .
Some caution is required, however, because even in the case of a democratic model

N the aforementioned correspondence is not a bijection. In fact, it is neither necessarily

injective nor surjective! Distinct types can be sent to the same context and there is no

guarantee that every morphism Δ Γ is equal to one of the form Γ.𝐴 Γ. What is

present is an equivalence of groupoids:

Lemma 6.5.22. Write C� for groupoid core of C: the wide subcategory which discards
all non-invertible morphisms. There is an equivalence TyN (Γ)� ≃ CxN�/Γ .

Proof. The equivalence of categories restricts to an equivalence of groupoids as every

functor preserves isomorphisms. □
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Exercise 6.18. Show that if 𝐹 : C D is an equivalence of groupoids, then 𝐹 induces

a bijection of sets C/∼ D/∼ where𝐶0 ∼ 𝐶1 if there exists an isomorphism𝐶0 � 𝐶1.

What does this imply in the case of Lemma 6.5.22?

Exercise 6.19. Show that while CxN does not suffice to recover TyN , both of them

together fully determine TmN . In other words, once TyM is chosen TmM is forced.

Fortunately, this complication is not as major a problem as it might seem. After all,

our goal in the section was only to defineM such that CxM = C. We are therefore

not overly concerned with whether TyM is determined uniquely, just with whether

there is any TyM such that the induced groupoid TyM (𝐶)� is C�/𝐶 . Motivated by this

line of thought, we therefore arrive at the following guess for a “functor” TyM :

TyM (𝐶) = Ob(C/𝐶 ) (?!)

Unfortunately, this definition fails even the most basic test: this is not even a functor!

Indeed, while each 𝑓 : 𝐶 𝐷 induces a pullback function 𝑓 ∗ : Ob(C/𝐷 ) Ob(C/𝐶 ),
these are only truly well-defined up to isomorphism. Once we choose particular

representatives, we cannot expect that id∗ = id or that 𝑓 ∗ ◦ 𝑔∗ = (𝑔 ◦ 𝑓 )∗. In fact, it

is not guaranteed that sucha choice is even possible: Lumsdaine [Lum17] shows that

certain subcategories of Set can fail to have this property.

Exercise 6.20. Recall the standard explicit description of pullbacks 𝐴 ×𝐶 𝐵 in Set as
subsets of the cartesian product 𝐴×𝐵, convince yourself that the maps Set/𝑌 Set/𝑋
induced by this realization of pullbacks are not functorial.

Once more, the situation improves slightly if we consider categories (or even

groupoids) rather than just sets: one can show that C/− : Cop → CAT is a pseudofunc-
tor ; 𝑓 ∗ ◦ 𝑔∗ � (𝑔 ◦ 𝑓 )∗ and these isomorphisms are suitably coherent. The same is true

of the restriction of this functor to groupoids C�/− : Cop → Grpd.
This is mismatch of equality versus coherent isomorphism is commonly referred

to as the coherence problem for dependent type theory and was famously overlooked

by Seely [See84]. Our task is then to find a suitable functor which approximates the

merely pseudo-functorial C�/− . There are two distinct approaches to this problem:

1. We can capitalize on some special feature of C which enables us to give a

functorial presentation of C�/− to bypass this issue.

2. We can give a much more involved replacement of this pseudofunctor which

uses comparatively minimal information about C but then work harder to build

the rest of the model with this more intricate definition of TyM .
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Wewill focus on the second approach: more complicated replacements forOb(C/−)
which apply with fewer assumptions based on C. We will discuss two such construc-

tions in the following two subsections.

Remark 6.5.23. For completeness, we note an important example of (1). Recall from

Section 6.1 that there is a canonical equivalence Pr(C0)/𝑋 ≃ Pr(
∫
𝑋 ). While we do not

prove it, this equivalence is pseudofunctorial in 𝑋 such that the following diagrams

commute up to (coherent) isomorphisms for all 𝑓 : 𝑋 𝑌 :

Pr(C0)/𝑌

Pr(
∫
𝑌 )

Pr(C0)/𝑋

Pr(
∫
𝑋 )

Moreover, the assignment of 𝑋 ↦→
∫
𝑋 and C ↦→ Pr(C) are both functorial and so

the following gives a functorial replacement of Ob(C/−) when C = Pr(C0):

TyM (𝑋 ) = Ob(Pr(
∫
𝑋 ))

This definition is used by Hofmann [Hof97] to give an interpretation of type theory

into Pr(C0) and we refer the reader there for more information on this model. ⋄

6.5.3 The universe construction

In this subsection, we present our first and simplest solution to the coherence problem,

modulo the additional assumption that our input category C has an additional universe.

We refer to this model asU(C).
The core idea behind the construction ofU(C) is simple enough: we will take the

additional universe 𝑉 in C (Definition 6.5.16) and use it as the basis for a workable

approximation of Ob(C/−). More specifically, 𝑉 must come equipped with a generic

map 𝜋 : 𝐸 𝐵 and we argue that y(𝐵) is a sufficient definition for TyU(C) . We

emphasize that this is a necessarily imperfect approximation: y(𝐵) (𝐶) consists of
maps 𝐶 𝐵 which, by assumption, correspond to 𝑉 -small families over 𝐶 . This is

only a subset of Ob(C/𝐶 ), but the raison d’être of universes was that this subset of

families was closed under all the operations of type theory so that we could pretend it

was complete.

Warning 6.5.24. Strictly speaking this coherence construction does not meet our goals:

the model induced on C is not democratic. By choosing 𝑉 to be a sufficiently large

universe, however, this has little impact in practice.
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The astute reader might recognize both this argument and this idea from Section 3.5.

Indeed, while we motivated our use of Grothendieck universes purely in terms of

size considerations, it was also used to give a definition of presheaves of types and

terms. This construction is more-or-less a reprise of the set model construction from

earlier but with the salient properties of Set now axiomatized. To that end, let us fix a

category C and assume the following properties:

• C is locally cartesian closed,

• has finite coproducts,

• has a stably initial algebra for 1 ⊔ −,

• and C has an (𝜔 + 1)-indexed hierarchy of universes 𝑆0, . . . , 𝑆𝜔 .

In particular, we assume that C has an additional universe compared with Theo-

rem 6.5.20 which contains the hierarchy of universes already specified. We will not

use this largest universe to interpret U𝑖 for some universe level 𝑖 . Instead, this final

universe will serve form the basis for our strictly functorial TyU(C) :

CxU(C) = C
SbU(C) (Γ,Δ) = hom(Γ,Δ)
TyU(C) (Γ) = hom(Γ,𝑈𝜔 )
TmU(C) (Γ, 𝐴 : Γ 𝑈𝜔 ) = {𝑎 : Γ 𝑈 •𝜔 | 𝜋𝜔 ◦ 𝑎 = 𝐴}

In other words, we take 𝜋U(C) : Tm•U(C) TyU(C) to be y(𝜏𝜔 ) : y(𝑈 •𝜔 ) y(𝑈𝜔 ).
Compare these definitions to Section 3.5 to see how Definition 6.5.16 serves as our

replacement for Grothendieck universes.

Exercise 6.21. Show that y(𝜏𝜔 ) is a representable natural transformation.

What remains is to show that 𝜋U(C) is closed under the various connectives. One

might fear that this process will be difficult. Fortunately, that difficulty has been shifted

into showing that C has an (𝜔 + 1)-indexed hierarchy of universes. Having assumed

this, the requirement that 𝜋U(C) is closed under all the connectives of type theory is

more-or-less true by definition. In particular, (1) ensures that 𝜋U(C) can be equipped

with the requisite structure for Unit, (2) handles Σ, (3) handles Π, (4) handles Eq,
and (5) handles +, Bool, and Nat. We will go through the details for Π and Bool for
completeness.
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Lemma 6.5.25. There exists a pullback square of the following shape in Pr(CxU(C) ):

P𝜋Tm•

P𝜋Ty

Ty

Tm•

Proof. We will construct this pullback square in two steps. First, we will construct the

corresponding square in C itself and second we will argue that y commutes will all the

relevant operations and functors involved. Accordingly, since the Yoneda embedding

preserves pullback square (along with all other limits) the desired square in Pr(CxU(C) )
arises from the C version.

In more detail, recall that P𝜋 was defined as the composite of three functors:

Pr(C) Pr(C)/Tm• Pr(C)/Ty Pr(C)
(Tm•)∗ 𝜋∗ Ty

!

All three of these categories and functors have counterparts in C and the Yoneda

embedding then induces the following commutative diagram of functors where each

square commutes up to isomorphism:

Pr(C) Pr(C)/Tm• Pr(C)/Ty Pr(C)
(Tm•)∗ 𝜋∗ Ty

!

C C/𝑈 •𝜔 C/𝑈𝜔 C
(𝑈 •𝜔 )∗ (𝜏𝜔 )∗ (𝑈𝜔 )!

y y y y

The main thing that must be checked in this diagram is the commutativity of the

inner square. This is a consequence of the more general fact that y ◦ 𝑓∗ � y(𝑓 )∗ ◦ y
whose verification we leave to the reader—it is a slightly more complex version of

the argument that the Yoneda embedding preserves exponentials. This shows that

P𝜋 (y(𝑋 )) � y(P𝜏𝜔 (𝑋 )) and so we are reduced to constructing the following square in

C:
P𝜏𝜔𝑈

•
𝜔

P𝜋𝑈𝜔

𝑈 •𝜔

𝑈𝜔
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Since 𝜏𝜔 is generic for 𝑆𝜔 , to construct this pullback square it suffices to show P𝜏𝜔 (𝜏𝜔 ) ∈
𝑆𝜔 . Examining the definition of P𝜏𝜔 , we note that all three of the relevant functors
preserve elements of 𝑆𝜔 and so the conclusion follows. □

This proof methodology is a useful trick: since each of the operations involved in

defining various connectives (e.g., those given by Slogans 6.2.10 and 6.3.13) are available
in any locally cartesian closed category and preserved by any locally cartesian closed

functor. In particular, the Yoneda embedding commutes with all of these operations

and so we can transfer these structures from C to Pr(C) using y. We go through

another example of this with Bool. Here we must work slightly harder to rephrase

our requirements in the language of locally cartesian closed categories.

Lemma 6.5.26. There exists a commutative square of the following form in Pr(C):

1 ⊔ 1

1

Tm•

Ty
BoolU(C)

Moreover, the gap map 𝑔 : 1 ⊔ 1 Tm• ×Ty 1 = Bool∗U(C)𝜋 is left orthogonal to 𝜋 .

Proof. Let us recall that 𝑔 ⋔ 𝜋 is equivalent to requiring that the following canonical

map is an isomorphism:

(Tm•)Bool∗U(C)𝜋 (Tm•)1
∐

1 ×Ty1
∐

1 TyBool∗U(C)𝜋

As it stands, neither this requirement nor the commuting diagram above are formulated

in the language of locally cartesian closed categories as both mention a coproduct: 1⊔1.
In particular, even if we formulate such a square in C, it is not automatic that it will be

preserve by the Yoneda embedding. Fortunately, we can replace all occurrences of ⊔
with appropriate products as 1 ⊔ 1 is used only in the domains of various functions.

We may reformulate our goal as constructing (1) a map BoolU(C) : 1 Ty and
(2) a pair of maps trueU(C) , falseU(C) : 1 Bool∗U(C)Tm

•
such that the following

canonical map is an isomorphism:

(Tm•)Bool∗U(C)𝜋 (Tm• × Tm•) ×Ty×Ty TyBool∗U(C)𝜋
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This can then be recast into C. By assumption, 𝑆𝜔 is closed under isomorphisms

and coproducts and so we obtain a pullback square of the following shape:

1 ⊔ 1

1

𝑈 •𝜔

𝑈𝜔

From this, this contains the required maps and the induced gap map is invertible by

construction. □

We may stitch these two lemmas, along with other similar arguments, together to

conclude the following:

Theorem 6.5.27. C supports a model of type theoryU(C) with all connectives except
universes.

The poor behavior of universe hierarchies Unfortunately, the story around

universes is not nearly so simple. While a version of a universe hierarchy may be

interpreted into this model, it will not satisfy cumulativity nor any of the other defini-

tional equalities imposed on codes in Section 6.4. For example, neither the equations

lift(pi(𝑐0, 𝑐1)) = pi(lift(𝑐0), lift(𝑐1)) nor El(pi(𝑐0, 𝑐1)) = Π(El(𝑐0), 𝑐1) will automat-

ically hold. The latter can be replaced with an isomorphism i.e., there is a pair of

mutually inverse functions between these types in the model but the latter may simply

fail to hold.

What do we want to say here? Weak universes? Discuss GSS22/realignment?

6.5.4 Presheaf models of type theory

While not strictly speaking necessary, it is too tempting to not go through the con-

struction of a hierarchy of universes in Pr(C) due to Hofmann and Streicher [HS97].

In light of the previous subsection, this construction also yields a model of type theory

in arbitrary presheaf topoi. The goal of this section is to prove the following:

Theorem 6.5.28. If 𝑉 is a Grothendieck universe (Definition 3.5.1) and C is a 𝑉 -small
category, then following set of morphisms in Pr(C) forms a universe:

𝑆 = {𝑓 : 𝑋 𝑌 | ∀𝐶 : C, 𝑦 ∈ 𝑌 (𝐶) . 𝑓 −1(𝑦) is 𝑉 -small}

We say that 𝑓 is fiberwise 𝑉 -small.
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Exercise 6.22. Show that 𝑆 is a bare universe i.e. that fiberwise small morphisms are

stable under pullback.

The heart of Theorem 6.5.28 is to construct the generic map for 𝑆 , so we will begin

by showing that 𝑆 is satisfies (1–5) of Definition 6.5.16.

Lemma 6.5.29. 𝑆 is contains all isomorphisms, is closed under composition, pushforward,
diagonals, coproducts, and contains a stably initial (1 ⊔ −)-algebra.

Proof. All of these calculations are of a similar flavor. For instance, to show that 𝑆 is

stable under composition, it suffices to show that if 𝑓 : 𝑋 𝑌 and 𝑔 : 𝑌 𝑍 are both

fiberwise𝑉 -small then so too is 𝑔 ◦ 𝑓 . Fix 𝑧 ∈ 𝑍 (𝐶) for some𝐶 such that it now suffices

to argue that 𝑋 = (𝑔 ◦ 𝑓 )−1(𝑧) is 𝑉 -small. We may decompose 𝑋 into the disjoint

union

∑
𝑥0∈𝑔−1 (𝑧 ) 𝑓

−1(𝑥0). The conclusion then follows by assumption together with

the observation that 𝑉 -small sets are closed under 𝑉 -small indexed disjoint unions.

Note that for dependent products, matters are slightly complicated by the fact that

if 𝐶 : C and 𝑧 : 𝑍 (𝐶) then (𝑔∗ 𝑓 )−1(𝑧) is realized as follows:

(𝑔∗ 𝑓 )−1(𝑧) = ∏
𝑐 :𝐶′→𝐶

∏
𝑦∈𝑔−1 (𝑧 ) 𝑓

−1(𝑦)

Here we must use the fact that C is𝑉 -small to ensure that

∏
𝑐 :𝐶′→𝐶 is not too large. □

Proof of Theorem 6.5.28. It remains only to show that 𝑆 has a generic family. Let us

write Pr𝑉 (D) for the full subcategory of Pr(D) spanned by those objects 𝑋 : Pr(D)
such that 𝑋 (𝐷) ∈ 𝑉 for every 𝐷 : D. It is important here that we have required that

𝑋 (𝐷) is literally a member of 𝑉 , rather than merely being 𝑉 small as it ensures that

Pr𝑉 (D) is a small category whenever D is small. We then consider the following

presheaf:

𝐵(𝐶) = Ob(Pr𝑉 (C/𝐶 ))

𝐵 is strictly functorial: we send 𝑓 : 𝐶0 𝐶1 to the action on objects associated with

the functor 𝐹 ∗ : Pr(C/𝐶1
) Pr(C/𝐶0

) where 𝐹 = 𝑓! : C/𝐶0
C/𝐶1

. This presheaf will

serve as the base of our generic family. The total family is given as follows:

𝐸 : Pr(C)
𝐸 (𝐶) = ∑

𝑋 :Ob(Pr𝑉 (C/𝐶 ) ) 𝑋 (𝐶, id)

𝜋 : 𝐸 → 𝐵

𝜋𝐶 (𝑋, _) = 𝑋

As an aside, both 𝜋 and 𝐸 can be specified as a presheaf over

∫
C 𝐵 (Theorem 6.1.7):

𝐸 (𝐶,𝑋 ) = 𝑋 (𝐶, id)
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Note that 𝜋 ∈ 𝑆 as 𝜋−1(𝐶,𝑋 ) = 𝑋 −1(𝐶, id) is 𝑉 -small because 𝑋 : Pr𝑉 (C/𝐶 ).
Fix 𝑓 : 𝑋 𝑌 ∈ 𝑆 . It remains to show that there exists a pullback of the following

shape:

𝑋

𝑌

𝐸

𝐵
𝛽

Since 𝑓 is fiberwise𝑉 -small, for each𝐶 : C and 𝑦 ∈ 𝑌 (𝐶) there exists an element 𝑣 ∈ 𝑉
such that 𝑣 � 𝑓 −1(𝑦). Using the axiom of choice, we assemble these into a function

˜𝑓

and we define a natural transformation 𝛽 : 𝑌 𝐵 as follows:

𝛽𝐶 (𝑦) = 𝜆𝑐 : 𝐶′ → 𝐶. ˜𝑓 (𝐶′, 𝑦 · 𝑐)

We leave it to the reader to verify that this indeed natural. Moreover, if 𝐶 : C then

(𝑌 ×𝐵 𝐸) (𝐶) is then equivalent to

∑
𝑦:𝑌 (𝑐 ) ˜𝑓 (𝐶,𝑦) which, in turn, is equivalent to∑

𝑦:𝑌 (𝐶 ) 𝑓
−1(𝑦). It follows that 𝛽 then fits into the required pullback diagram. □

talk about how HS are super flexible and we can use them to get a strictly

cumulative hierarchy much as in Section 3.5.

6.5.5 The local universes construction

We now turn to the coherence construction introduced by Lumsdaine and Warren

[LW15] and Awodey [Awo18]. For the sake of expediency, we present only a special

case of this construction and refer the reader to Awodey [Awo18] and Shulman [Shu19,

Appendix A] for more thorough treatments which deal with e.g., intensional type
theory and the non-democratic models one frequently encounters in the semantics of

homotopy type theory.

As in Section 6.5.3, let us fix a locally cartesian closed category C equipped with

coproducts, a stably initial (1 ⊔ −)-algebra, a hierarchy of universes, etc. Unlike

previously, however, we do not insist on a top universe𝑈𝜔 and instead we work a bit

harder to define TyL(C) and TmL(C) .
The key idea of the local universes construction is to compensate for the lack of𝑈𝜔

by choosing 𝜋L(C) to be the sum of all possible choices; no single choice of universe

will necessarily suffice for every situation, but we shall show that in every situation
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there is at least one suitable universe:

𝜋L(C) =
∑
𝜏 :𝐸→𝐵 y(𝜏) : TmL(C) TyL(C)

Explicitly, a type 𝐴 ∈ TyL(C) (Γ) is a pair of (1) a ‘local universe’ 𝜏 : 𝐸 𝐵 and (2)

a ‘type in this universe’ 𝑓 : Γ 𝐵. A term of type 𝐴 in context Γ then consists of a

section of 𝐴:

Γ 𝐵

𝐸

𝑓

𝜏

Notation 6.5.30. We have deliberately chosen to use 𝐸, 𝐵 rather than Δ, Γ for the

(co)domain of a local universe in an attempt to disambiguate between morphisms in C
qua universes versus morphisms qua substitutions.

If we imagine that there is a single master universe then this definition collapses

to that of Section 6.5.3, but this definition allows the universe of types to change

between types. Before giving further intuition, we note that 𝜋 is a representable

natural transformation.

Lemma 6.5.31. 𝜋L(C) is a representable natural transformation.

Proof. Consider the following pullback diagram:

𝑃

y(Γ)

TmM

TyM

By the Yoneda lemma, hom(y(Γ),∑𝜏 :𝐸→𝐵 y(𝐵)) is equivalent to∑𝜏 :𝐸→𝐵 hom(y(Γ), y(𝐵)),
so we may factor the above diagram into two pullback squares for some 𝜏 : 𝐸 𝐵:

y(𝐸)

y(𝐵)

y(𝜏)

TmM

TyM

𝑃

y(𝐶)

In particular, 𝑃 � y(𝐸 ×𝐵 𝑋 ) and so 𝜋 is representable. □
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Let us suppose Γ is a context in this nascent model (an object of C) and 𝐴 = (𝜏 :

𝐸 𝐵, 𝑓 : Γ 𝐵) ∈ TyL(C) (𝐶). Unfolding the above proof, we see that Γ.𝐴 is given

by 𝐵 ×𝐸 Γ and the p is the projection 𝐵 ×𝐸 Γ Γ. Consequently, there are many

distinct 𝐴 = (𝜏, 𝑓 ) which give rise to isomorphic maps 𝐵 ×𝐸 Γ Γ and therefore

many distinct types 𝐴, 𝐵 ∈ TyL(C) (Γ) such that Γ.𝐴 � Γ.𝐵.
Our earlier observation was the groupoid TyL(C) (Γ) ought to be equivalent to C�/Γ ,

but this redundancy tells us that TyL(C) as a set is very far from being in bijection

with Ob(C/𝐶 ). This is vital: the many distinct representations of a given type is what

ensures that TyL(C) is strictly functorial.

For instance, we can construct two types which give rise to the same extended

context by taking a type 𝐴 realized by (𝜏, 𝑓 ) in context Γ and a substitution 𝛾 : Γ0 Γ.
The type 𝐴[𝛾] = (𝜏, 𝑓 ◦ 𝛾) induces an isomorphic context to the distinct type (𝑓 ∗𝜏,𝛾).
Intuitively, the local universes model ‘delays’ implementing substitution by pullback

to ensure functoriality at the cost of many redundant representations of each types.

Fortunately, this duplication does not really impact the construction. All that matters

is that every such family 𝑓 ∈ C�/𝐶 can be realized by at least one type (say, (𝑓 , id)) and
that TyL(C) is strictly functorial.

Exercise 6.23. Show that 𝜋L(C) is democratic (Definition 6.5.1).

Closure under type connectives The heart of the local universes construction

is to close 𝜋L(C) under the operations of type theory. This is more difficult than

Section 6.5.3 because we must describe how to form a Π-type when, for instance, the

two types are drawn from separate universes. Many of these arguments are formally

similar and so we shall detail only three connectives: Unit, Bool, and Π. We refer the

reader to Awodey [Awo18] or Lumsdaine and Warren [LW15] for other basic types

and to Appendix A of Shulman [Shu19] for universes.
3

Lemma 6.5.32. 𝜋L(C) supports unit types i.e., there exists a pullback square of the
following shape:

1

1

TmL(C)

TyL(C)UnitL(C)

Proof. A map UnitL(C) : 1 TyL(C) consists of a local universe 𝜏 : 𝐸 𝐵 and a

map 𝑓 : 1 𝐵. We take 𝜏 = id : 1 1 and 𝑓 = id : 1 1. By our earlier discussion,

3
Just as with the universes construction, the universes obtained in this manner satisfy fewer equations

than the theory described Chapter 2.
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we know that the pullback Unit∗L(C)TmM—the extension of the empty context by

UnitL(C)—is given by 𝐸 ×𝐵 1 i.e. 1 as required. □

Lemma 6.5.33. 𝜋L(C) supports booleans i.e., there exists a square of the following shape
whose gap map is orthogonal to 𝜋L(C) :

1 ⊔ 1

1

TmL(C)

TyL(C)BoolL(C)

Proof. We start by defining BoolL(C) : 1 TyL(C) as the local universe 1 ⊔ 1 1 to-

gether with type id. Direct calculation then shows that the pullback Bool∗L(C)TmL(C)
is given by y(1 ⊔ 1). It then suffices to show that 1 ⊔ 1 y(1 ⊔ 1) is orthogonal to 𝜋 .
This follows from the representability of 𝜋L(C) and we leave this calculation to the

reader. □

Lemma 6.5.34. 𝜋L(C) is closed underΠ i.e., there exists a pullback square of the following
shape:

P𝜋L(C) (TmL(C) )

P𝜋L(C) (TyL(C) )

TmL(C)

TyL(C)ΠL(C)

Proof. We begin by defining ΠL(C) . The input to ΠL(C) consists of the following:

• a context Γ : C,

• a type 𝐴 ∈ TyL(C) (Γ) given by a local universe 𝜏𝐴 : 𝐸𝐴 𝐵𝐴 and a map

𝑓𝐴 : Γ 𝐵𝐴,

• a type in 𝐵 ∈ TyL(C) (Γ.𝐴) given by a local universe 𝜏𝐵 : 𝐸𝐵 𝐵𝐵 and a map

𝑓𝐵 : Γ ×𝐵𝐴 𝐸𝐴 𝐵𝐵 ,

We must construct a local universe in along with a map into this universe. Just as

with the prior two examples, we choose a local universe which suitably ‘encodes’ the

dependent product. Drawing inspiration from Section 6.2, we define 𝜏 : 𝐸 𝐵 to be

P𝜏𝐴 (𝜏𝐵) : P𝜏𝐴 (𝐸𝐵) P𝜏𝐴 (𝐵𝐵)
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Under this definition, a map 𝐶 𝐵 consists of (1) a map 𝐶 𝐵𝐴 along with (2) a

map 𝐸𝐴 ×𝐵𝐴 𝐶 𝐵𝐵 . We therefore obtain the required map 𝑓 : Γ 𝐵 precisely

from (𝑓𝐴, 𝑓𝐵). The reader may verify directly that ΠL(C) ((𝜏𝐴, 𝑓𝐴), (𝜏𝐵, 𝑓𝐵)) = (𝜏, 𝑓 )
assembles into the required natural transformation.

It remains to show that ΠL(C) fits into the desired pullback square. We begin by

calculating a term of ΠL(C) (𝐴, 𝐵) with 𝐴, 𝐵 as above. Unfolding definitions, a term is

a map 𝑡 : Γ P𝜏𝐴 (𝐸𝐵) fitting into the appropriate commuting triangle:

Γ

P𝜏𝐴 (𝐸𝐵)

P𝜏𝐴 (𝐵𝐵)(𝑓𝐴, 𝑓𝐵)

P𝜏𝐴 (𝜏𝐵)

By universal properties of P𝜏𝐴 (𝐸𝐵) and P𝜏𝐴 (𝜏𝐵), 𝑡 corresponds to (1) a map 𝑡0 : Γ 𝐵𝐴
and (2) a map 𝑡1 : 𝐸𝐴 ×𝐵𝐴 Γ 𝐸𝐵 . The commuting triangle above forces Γ 𝐵𝐴 to be

𝑓𝐴 and further ensures that 𝜏𝐵 ◦ 𝑡1 = 𝑓𝐵 . In other words, an element of ΠL(C) (𝐴, 𝐵) is
precisely determined by an element of 𝐵 in the context Γ.L(C)𝐴. The reader may check

that this equivalence is natural in order to obtain the required pullback square. □

The final result One can proceed as we have done in Lemmas 6.5.32 to 6.5.34 to

show that the model based on local universes is closed under all the connectives of type

theory (sans universes). With further effort, one can also account universes [Shu19,

Appendix A] to some extent in this theory, though as of writing this construction is

not known to support cumulative universes.
Putting these pieces together, one arrives at the following result:

Theorem 6.5.35. If C satisfies the conclusion of Theorem 6.5.20 then 𝜋L(C) extends
to a democratic model of type theory with all connectives whose category of contexts is
precisely L(C).

To close out this lengthy section, let us list a few potential applications of Theo-

rem 6.5.35 and, more generally, the connection it implies between locally cartesian

closed categories and type theory.

Broadly, there are two classes of applictions:

1. We can now use locally cartesian closed categories to construct exotic models of

type theory
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2. We can now use type theory to reason about exotic locally cartesian closed

categories.

We content ourselves with only a few examples in the literature of each, as these

two classes of applications contain a large swathe of modern type theory.

For the first application, a number of independence results are now readily available

and, in particular, we may use Theorem 6.5.35 with various topoi to delivering on some

of the independence results promised in Section 2.7. One may use the model of type

theory in Pr({0 ≤ 1}) = Set→ to show the independence of both the law of the excluded

middle and the axiom of choice from ETT. Exchanging presheaf topoi for sheaf topoi,

one can falsify Markov’s principle [CM16]
4
and various other constructive taboos.

Using instead various realizability topoi [vOos08], one can show the consistency

of Church’s thesis with extensional type theory. More recently, Andrew Swan has

announced a proof that not all quotient types are definable in ETT using similar

methods [Swa25].

In the second direction, one may use the model of extensional type theory available

in Pr(𝐶) to give a succinct account of all of the structures defined in Sections 6.1 to 6.4.

In particular, the interpretation of dependent products in Pr(𝐶) yields a semantic

version of higher-order abstract syntax [Hof99] and this maneuver is already present

in Awodey [Awo18]. More strikingly, the same model of type theory in cubical sets

can be used to succinctly construct a model of cubical type theory [OP16]. The same

approach applied to categories arising fromArtin gluingmay be used to give conceptual

arguments for the normalization of various type theories [SA21; Ste21; Gra22].

This is a very random assortment of references. Try and systematize this (even

when limited to working with extensional type theory which pars down the list

quite a lot).

6.6 Canonicity via gluing

In Section 3.4, we discussed how various metatheorems of type theory can be reduced

to questions about models of dependent type theory. In this section, we follow one

such reduction to deliver on a result promised earlier. We will construct a particular

model of extensional type theory and from it conclude that extensional type theory

satisfies canonicity (Definition 3.4.9). In addition to showing the validity of a crucial

4
Coquand and Mannaa opt for a more elaborate approach to deal with the relatively poor behavior

(particularly in constructive metatheory) of hierarchies of universes which we have largely ignored in

this section. See Gratzer, Shulman, and Sterling [GSS22] for more discussion on this point
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property, this argument exemplifies the style of gluing argument which has become

widely used technique in dependent type theory.

The basic outline for all arguments of this style breaks down into three steps:

1. We construct a particular model G.

2. We exhibit a morphism of models 𝜋 : G T from this freshly constructed

model to the syntactic model.

3. Using the initiality of syntax, we conclude that 𝜋 has a section 𝑖 : G T where

initiality tells in particular that 𝜋 ◦ 𝑖 = id.

The goal is to arrange the first and second steps in such a way a section to G T
yields the desired theorem. For instance, in this section we wish to prove canonicity at

Bool. Accordingly, we will arrange matters such that TmG (1G,BoolG) � {0, 1} and
the map 𝜋TmG (1G,BoolG ) sends 0 to true and 1 to false. With these two assumptions

to hand, it is only a short argument to conclude canonicity. Indeed, we note that if

𝑏 ∈ TmT (1,Bool) the equation 𝜋 ◦ 𝑖 = id ensures the following:

𝑏 = 𝜋TmG (1G,BoolG ) (𝑖TmT (1,Bool ) (𝑏))

By assumption, the image of 𝜋TmG (1G,BoolG ) is {true, false} and so we know that 𝑏 =

true or 𝑏 = false, as required.
The heart of the argument is therefore contained in the first two steps. In fact,

they often happen somewhat simultaneously—one usually constructs the model G
in such a way that the definition of 𝜋 is immediate. We shall how this holds true of

canonicity, where the actual derivation of canonicity (Theorem 6.6.14) is quite short

compared with the construction of the model and homomorphism which both take

place in Sections 6.6.1 and 6.6.2.

The canonicitymodel This leads us to the next question: where does G come from?

We know what this model must provide: we must have TmG (1G,BoolG) � {0, 1}.
With just this constraint, however, it is far from obvious where such a model ought

to come from. We have met one model with TmG (1G,BoolG) � {0, 1}: the set model

S (Section 3.5). However, there is no suitable morphism 𝜋 : S T , so we cannot

simply take the set model off the shelf. We have something of the opposite problem

with syntactic model T where it is easy to obtain a morphism 𝜋 , but where we cannot

directly establish TmT (1,Bool) � {0, 1}.
In fact, G will be a somewhat odd model and, in some formal sense, a mixing of

both T and S (see Section 6.6.4). Each sort in G will be interpreted a Σ type pairing

an element 𝑋 ◦ of the appropriate sort from T with some additional data 𝑋 • specific to
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proving canonicity. Projecting out the first component 𝑋 ◦ will then give rise to the

homomorphism G T . The complexity of dependent type theory means that the

additional data 𝑋 • is hard to summarize concisely, but its role is precisely to ensure

that an element of TmG (1G,BoolG) will consist of a closed boolean term 𝑏◦ along
with a proof that either 𝑏◦ = true or 𝑏◦ = false. The data contained in 𝑋 • becomes

more complex to account for open terms and terms of other types, but this complexity

is precisely what is required to show that every closed boolean can be appropriately

equipped with the canonicity data just described.

Gluing (specifically, Artin gluing [AGV72]) enters the picture as a conceptual way

to structure all of this additional data. It is a categorical construction which pastes

together two categories along a functor and, in this case, we shall find we can gluing

together the syntactic model and the set model appropriately to obtain the model.

While geometrical considerations motivated the original construction, its application

to proving metatheorems can be traced to Freyd [Fre78]. Since then, the methodology

has been applied and adapted to a wide variety of different systems and metatheorems.

We begin with the definition of Artin gluing in its most general form:

Definition 6.6.1. If C and D are categories and 𝐹 : C D then the gluing category

Gl(𝐹 ) is defined such that:

• an object 𝑋 : Gl(𝐹 ) consists of a triple (𝐷 : D,𝐶 : C, 𝑓 : 𝐷 𝐹 (𝐶)),

• a morphism 𝑔 : (𝐷0,𝐶0, 𝑓0) (𝐷1,𝐶1, 𝑓1) consists of a pair of morphisms 𝑔0 :

𝐷0 𝐷1 and 𝑔1 : 𝐶0 𝐶1 fitting into the following commutative diagram:

𝐷0

𝐹 (𝐶0)

𝑓0

𝐷1

𝐹 (𝐶1)

𝑔0

𝑓1

𝐹 (𝑔1)

Generally, if C and D enjoy some categorical properties (e.g., C and D are locally

cartesian closed) and 𝐹 is sufficiently well-behaved (e.g., preserves finite limits) then

(1) Gl(𝐹 ) will inherit these properties and (2) 𝜋1 : Gl(𝐹 ) C will preserve them. For

instance, Freyd [Fre78] capitalize on the fact that Gl(𝐹 ) forms an (elementary) topos

in certain situations and 𝜋1 is a logical morphism in those cases. See Lambek and Scott

[LS88] for a textbook account of this proof together with the argument connecting it

to Freyd’s result.

We shall be interested in the case where C and D are the categories of contexts

associated to a pair of models and 𝐹 preserves “enough” of this structure—in particular,
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when 𝐹 is a pseudo-morphism of models [KHS19]. Under these assumptions, we may

equip Gl(𝐹 ) with the structure of a model of type theory and upgrade the functor

𝜋1 : Gl(𝐹 ) C to a morphism of models. By carefully choosing C, D, and 𝐹 , we may

use this procedure to procure the required model G and homomorphism 𝜋 discussed

above. While one could construct gluing models at this of generality, we will focus

on the more concrete case arising from proving canonicity and return to the general

result only after carrying out this proof.

In particular, we shall focus on case where C is the syntactic model, D is the

set model, and 𝐹 is the global sections functor ΓC = hom(1,−) : C Set.5 In this

situation, we may unfold to see that objects of Gl(Γ) are pairs of (1) an object Γ◦ of
Cx along with (2) a family of sets 𝑋𝛾 indexed by 𝛾 ∈ hom(1, Γ◦). We shall view these

families of sets as proof-relevant predicates on global elements of Γ◦ and often write

the collection as Γ• : hom(1, Γ◦) → Set.
The definition of TyG we build on top of Gl(Γ) and the interpretations of each

connective shall ensure that whenever 𝛾◦ ∈ Sb(1, Γ◦), the elements of Γ•(𝛾◦) provide
information on how to place each term ‘contained’ within 𝛾 into canonical form. For

instance, if Γ◦ = Γ◦
0
.𝐴 then each 𝛾• ∈ Γ•(𝛾◦) will (1) describe how to place q [𝛾◦] into

canonical form as well as (2) contain an element of Γ•(p ◦ 𝛾◦).
Substitutions in this nascent model are ordinary syntactic substitutions 𝛾◦ ∈

Sb(Δ◦, Γ◦) together with a function assigning to each pair 𝛿◦ ∈ Sb(1,Δ◦) and 𝛿• ∈
Δ•(𝛿◦) an element of Γ•(𝛾◦ ◦ 𝛿◦). In other words, a syntactic substitution together

with a procedure ensuring that this substitution preserves canonicity evidence.

Remark 6.6.2. To those familiar with logical relations, we note that models based on

gluing are a method of categorically reconstructing this technique. See, for instance,

Mitchell and Scedrov [MS93]. ⋄

We have thus far been deliberately vague about what canonicity evidence shall

mean precisely and this vagueness shall persist for a while longer yet; it will be

formally specified only when we close G under various connectives. We note, however,

we shall require more information than just the fact that a term can be placed into

canonical form. For instance, for elements of the universe 𝑐 we shall require not just

the canonical form 𝑐 but also a description of the canonicity evidence associated with

El(𝑐). In particular, accounting for the universe makes it vital for us to consider general

proof-relevant data for canonicity rather than merely having a predicate.

Assumption 6.6.3. we shall assume a hierarchy of Grothendieck universes𝑉0 ∈ 𝑉1 · · · ∈
𝑉𝜔 as in Section 3.5.

5
Note that we have not said “global sections homomorphism”, as Γ is not a homomorphism of models.

It does not, for instance, preserve dependent products.
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6.6.1 The bare cwf structure of the gluing model

We begin by constructing a model of bare type theory G expanding on the earlier

intuition given above. As mentioned above, we shall take CxG to be Gl(ΓCx), so it

remains only to define the empty context, TyG , TmG , and to define context extension

and the attendant structure.

The empty context—the terminal object in CxG—may be constructed directly:

1G = (1T, 𝜆_→ {★})

Exercise 6.24. Prove that 1G is actually a terminal object.

We now turn to the construction of terms and types. Prior to doing so, it pays to

start fixing some notation to allow definitions to be more compact and readable.

Notation 6.6.4. By convention, we shall superscript variables ranging over elements

of T by ◦ and families of proof-relevant predicates or witnesses by •. Accordingly, a
G-context Γ is a pair (Γ◦, Γ•). We shall also use overload these superscripts to denote

projections; if Γ : CxG we write Γ• for 𝜋2(Γ) and likewise with Γ◦.

With all of this notation, we may now define the presheaf of types in G:

TyG : Pr(CxG)
TyG (Γ) =

∑
𝐴◦∈Ty(Γ◦ )

∏
𝛾◦∈Sb(1,Γ◦ ) Γ

•(𝛾◦) → Tm(1, 𝐴◦ [𝛾◦]) → 𝑉𝜔

Exercise 6.25. We have specified the action of TyG on objects of CxG but not mor-

phisms. Give the functorial action and check that it satisfies the functor laws.

In other words, a G-type consists of a syntactic type 𝐴 together with a family of

proof-relevant predicates. We would like to consider a single proof-relevant predicate

on the closed elements of 𝐴 but this makes no sense in dependent type theory since 𝐴

itself may be open. Accordingly, we must instead consider the more complex family of

proof-relevant predicates indexed by closing substitutions 𝛾◦ ∈ Sb(1, Γ◦) paired with

𝛾• ∈ Γ•(𝛾◦).
This is our first encounter with an unfortunate truth: the amount of indices and

dependence in gluing models can be quite overwhelming (already we have three indices

to the predicate). Let us take a moment to compress this definition slightly. If Γ : CxG
we observe that the dependent sum

∑
𝛾◦∈Sb(1,Γ◦ ) Γ

•(𝛾◦) is equivalent to hom(1G, Γ).
We shall often suppress this isomorphism, such that TyG (Γ) may be written as follows:∑

𝐴∈Ty(Γ◦ )
∏
𝛾 ∈hom (1G,Γ) Tm(1, 𝐴[𝛾◦]) → 𝑉𝜔
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Just as with contexts, we shall use 𝐴◦ and 𝐴• to denote the first and second

projections from an G type and we shall continue to use these superscripts as part

of a variable names on occasion to emphasize that a particular variable ranges over

syntactic types or proof-relevant predicates. We now define the presheaf of terms:

TmG : Pr(
∫
CxG

TyG)

TmG (Γ, 𝐴) =
∑
𝑎◦∈Tm(Γ◦,𝐴◦ )

∏
𝛾 ∈hom (1G,Γ) 𝐴

•(𝛾, 𝑎◦ [𝛾◦])

Finally, context extension is defined (as always) by something akin to a Σ-type. As
will become common, the first component of Γ.G𝐴 is realized by the syntactic version

of context extension. The associated proof-relevant predicate is less obvious, but pairs

together a witness for predicate Γ• with one for 𝐴• more or less as promised earlier:

− .G− : (Γ ∈ CxG) → TyG (Γ) → CxG

Γ.G𝐴 = (Γ◦.𝐴◦, 𝜆𝛾◦ → ∑
𝛾•

0
∈Γ• (p◦𝛾◦ ) 𝐴

•(p ◦ 𝛾◦, 𝛾•
0
, q [𝛾]))

While both the syntactic half and family of proof-relevant predicates were relatively

short in this case, later as both components become larger it will be convenient to

specify them separately. Accordingly, we will frequently specify an G operation by

writing two lines: one defining the syntactic half and one defining the predicate:

− .G− : {Γ ∈ CxG}{𝐴 ∈ TyG (Γ)} → CxG

𝜋1(Γ.G𝐴) = Γ◦.𝐴◦

𝜋2(Γ.G𝐴) = 𝜆𝛾◦ →
∑
𝛾•

0
∈Γ• (p◦𝛾◦ ) 𝐴

•(p ◦ 𝛾,𝛾•
0
, q [𝛾])

We now turn to the weakening substitution and variable terms for this operation:

pG : {Γ ∈ CxG}{𝐴 ∈ TyG (Γ)} → SbG (Γ.G𝐴, Γ)
𝜋1(pG) = p

𝜋2(pG) = 𝜆(𝛾◦, 𝛾•) → 𝜋1(𝛾•)

qG : {Γ ∈ CxG}{𝐴 ∈ TyG (Γ)} → TmG (Γ.G𝐴,𝐴[pG])
𝜋1(qG) = q

𝜋2(qG) = 𝜆(𝛾◦, 𝛾•) → 𝜋2(𝛾•)

Lemma 6.6.5. qG and pG induce an isomorphism of the following shape:

𝜆𝛾 → (pG ◦ 𝛾, qG [𝛾]) : SbG (Δ, Γ.G𝐴) �
∑
𝛾 ∈SbG (Δ,Γ) TmG (Δ, 𝐴[𝛾])

Proof. We construct an inverse to this operation. Given (𝛾, 𝑎) ∈ ∑𝛾0∈SbG (Δ,Γ) TmG (Δ, 𝐴[𝛾]),
we must construct a unique 𝛾 ∈ SbG (Δ, Γ.G𝐴) such that pG ◦ 𝛾 = 𝛾0 and qG [𝛾] = 𝑎.
Let us observe that, by definition, a substitution SbG (Δ, Γ.G𝐴) which lies over 𝛾0 and

𝑎 consists of the following data:
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1. A (syntactic) substitution𝛾◦ ∈ Sb(Δ◦, Γ◦.𝐴◦) such that p◦𝛾◦ = 𝛾◦
0
and q [𝛾◦] = 𝑎◦,

2. A set-theoretic function of the following type:

𝛾• : (𝛿 ∈ hom(1,Δ)) → ∑
𝛾•∈Γ• (𝛾◦

0
◦𝛿◦ ) 𝐴

•((𝛾◦
0
◦ 𝛿◦, 𝛾•), q [𝛾◦])

such that 𝜋1 ◦ 𝛾• = 𝛾•0 and 𝜋2 ◦ 𝛾• = 𝑎•.

Examining these constraints, we find that 𝛾◦ and 𝛾• are both uniquely determined (as

𝛾◦
0
.𝑎◦ and 𝜆𝛿 → (𝛾•

0
(𝛿), 𝑎•(𝛿))). The conclusion then follows. □

Theorem 6.6.6. With the above definitions, G is a model of type theory without connec-
tives.

Before moving on to close G under connectives, let us recall that we also must

construct a homomorphism of models 𝜋 : G T . We already have the functor

between categories of contexts defined by projection CxG = Gl(Γ) Cx. We may

extend this to a morphism of models as follows:

𝜋TyG (Γ) (𝐴
◦, 𝐴•) = 𝐴◦

𝜋TmG (Γ,𝐴) (𝑎◦, 𝑎•) = 𝑎◦

We have defined operations like pG and −.G− so that these operations strictly preserve
the operations of bare type theory, so we arrive at the following:

Theorem 6.6.7. There is a morphism of models 𝜋 : G T given by projecting out the
syntactic components of each sort of G.

As we proceed to close G under various connectives, we shall also ensure that 𝜋

extends to a homomorphism of models closed under these connectives (recalling that

this is merely a property from now on).

6.6.2 Closing the gluing model under connectives

The majority of the work in constructing G—indeed, constructing any model—is

showing that it is closed under all the connectives of dependent type theory. We have

already encountered this process several times now (Sections 3.5 and 6.5) and, just

as with those cases, the process quickly becomes repetitive. Accordingly, we shall

focus on a few representative connectives and leave it to the reader to extrapolate the

process to the other connectives of dependent type theory. In particular, we shall deal

with Unit, Π, Eq, U0, and (of course), Bool. Since the heart of the canonicity theorem

centers around Bool, let us start with this case.
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Lemma 6.6.8. G is closed under booleans and 𝜋 preserves them.

Proof. Let us recall from Structure 6.3.2 that closing G under booleans requires pro-

viding several pieces of data. First, and most important, we must construct an BoolG :

{Γ ∈ CxG} → TyG (Γ):

BoolG : {Γ ∈ CxG} → TyG (Γ)
𝜋1(BoolG) = Bool
𝜋2(BoolG) = 𝜆𝛾 𝑏 → {0 | 𝑏 = true} ∪ {1 | 𝑏 = false}

We must check that BoolG is stable under substitution. That is, if 𝛾 ∈ SbG (Δ, Γ)
then BoolG [𝛾] = BoolG . It suffices to check that 𝜋𝑖 (BoolG [𝛾]) = 𝜋𝑖 (BoolG) with
𝑖 ∈ {1, 2}. For 𝑖 = 1, this is immediate from the stability of Bool under substitution in T .
For 𝑖 = 2, one calculates to see that these two predicates agree for each 𝛿 ∈ SbG (1,Δ)
and 𝑏 ∈ Tm(Δ◦,Bool):

𝜋2(BoolG [𝛾]) (𝛿, 𝑏)
= {0 | 𝑏 = true} ∪ {1 | 𝑏 = false}
= 𝜋2(BoolG) (𝛿, 𝑏)

It remains to construct trueG and falseG and to verify the orthogonality condition

as well as the naturality equations. We begin with the two additional operations:

𝜋1(trueG) = true
𝜋2(trueG) = 0

𝜋1(trueG) = false
𝜋2(trueG) = 1

We leave it to the reader to check that these two operations are natural in Γ. To verify

the orthogonality condition, let us fix 𝐴 ∈ TyG (Γ.GBoolG). We may break apart the

map TmG (Γ.GBoolG, 𝐴) to TmG (Γ, 𝐴[id.trueG]) ×TmG (Γ, 𝐴[id.falseG]) into several
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steps, each of which are isomorphisms:

TmG (Γ.GBoolG, 𝐴)
�
∑
𝑎◦∈Tm(Γ◦ .Bool,𝐴◦ )

∏
𝛾 ∈SbG (1,Γ.GBoolG ) 𝐴

•(𝛾, 𝑎◦ [𝛾◦])
�
∑
𝑎◦∈Tm(Γ◦ .Bool,𝐴◦ )

∏
𝛾0∈SbG (1,Γ),𝑏∈TmG (1,BoolG ) 𝐴

•(𝛾0.G𝑏, 𝑎◦ [𝛾◦.𝑏◦])
�
∑
𝑎◦∈Tm(Γ◦ .Bool,𝐴◦ )

∏
𝛾0∈SbG (1,Γ),𝑏◦∈Tm(1,Bool ),𝑏•∈Bool•G (𝛾0,𝑏 )

𝐴•(𝛾0.G (𝑏◦, 𝑏•), 𝑎◦ [𝛾◦.𝑏◦])
�
∑
𝑎◦∈Tm(Γ◦ .Bool,𝐴◦ )

∏
𝛾0∈SbG (1,Γ)

𝐴•(𝛾0.GtrueG, 𝑎◦ [𝛾◦.true]) ×𝐴•(𝛾0.GfalseG, 𝑎◦ [𝛾◦.false])
�
∑
𝑎◦𝑡 ∈Tm(Γ◦,𝐴◦ [id .true ] )

∑
𝑎◦
𝑓
∈Tm(Γ◦,𝐴◦ [id .false ] )

∏
𝛾0∈SbG (1,Γ)

𝐴•(𝛾0.GtrueG, 𝑎◦𝑡 ) ×𝐴•(𝛾0.GfalseG, 𝑎◦𝑓 )
� TmG (Γ, 𝐴[id.trueG]) × TmG (Γ, 𝐴[id.falseG])

Finally, we must check that 𝜋 preserves booleans. That is, we must show that

𝜋TyG (Γ) (BoolG) = Bool along with similar equations for true and false. However,
since 𝜋 acts on types and terms by projecting out the syntactic half of each, these

equations are immediate consequences of our definitions of these operations. □

Lemma 6.6.9. We can close G under unit types such that 𝜋 extends to a morphism of
models of type theory with Unit.

Proof. We must construct two pieces of data to close G under Unit:

UnitG : {Γ ∈ CxG} → TyG (Γ)
𝜄UnitG : {Γ ∈ CxG} → TmG (Γ,UnitG) � {★}

In addition, we must verify that both of these operations are suitably natural in Γ (a

condition which trivializes for 𝜄UnitG ).

We begin by defining UnitG . As with contexts, it is convenient to break this

down into specifying the syntactic component first and the family of proof-relevant

predicates after the fact:

UnitG : {Γ ∈ CxG} → TyG (Γ)
𝜋1(UnitG) = Unit
𝜋2(UnitG) = 𝜆𝛾 𝑡 → {★}

In other words, the syntactic component is Unit and the proof-relevant predicates

are all trivial. Strictly speaking, one must verify that UnitG is stable under substitution

but we leave this calculation to the reader.
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Next, we construct the required isomorphism. For this, let us calculate:

TmG (Γ,UnitG)
�
∑
𝑡 ∈Tm(Γ◦,Unit )

∏
𝛾 ∈SbG (1,Γ) Unit•G (𝛾, 𝑡)

� Tm(Γ◦,Unit) Unit•G is trivial.

� {★} Using the 𝜂 law on T .

In particular, the unique map TmG (Γ,UnitG) → {★} is a bijection as required.

Finally, we must check that 𝜋 commutes with all of this new structure. For UnitG ,
this is immediate by construction: 𝜋 projects out the syntactic component and we have

defined this to beUnit. For 𝜄 it is automatic; there is only onemap from Tm(Γ◦,Unit) →
{★} and inverses are unique when they exist, so both must be preserved by 𝜋 . □

Lemma 6.6.10. G is closed under extensional equality types and 𝜋 preserves them.

Proof. As with Unit, we have two pieces of data to implement:

EqG : {Γ ∈ CxG}(𝐴 ∈ TyG (Γ)) → TmG (Γ, 𝐴) → TmG (Γ, 𝐴) → TyG (Γ)
𝜄EqG : {Γ ∈ CxG}(𝐴 ∈ TyG (Γ)) (𝑎 𝑏 ∈ TmG (Γ, 𝐴))

→ TmG (Γ, EqG (𝐴, 𝑎, 𝑏)) � {★ | 𝑎 = 𝑏}

As in Lemma 6.6.9, we must check that EqG is natural and preserved by 𝜋 , while both

of these conditions hold automatically for 𝜄.

We once more break down the construction of EqG into its syntactic component

and family of proof-relevant predicates:

𝜋1(EqG (𝐴, 𝑎, 𝑏)) = Eq(𝐴, 𝑎, 𝑏)
𝜋2(EqG (𝐴, 𝑎, 𝑏)) = 𝜆𝛾 𝑧 → {★ | 𝑎•(𝛾) = 𝑏•(𝛾)}

For the canonicity data, we note that to compare 𝑎•(𝛾) to 𝑏•(𝛾), we must know that

𝑎◦ [𝛾◦] = 𝑏◦ [𝛾◦]. However, we know that 𝑧 is an inhabitant ofEq(𝐴◦ [𝛾◦], 𝑎◦ [𝛾◦], 𝑏◦ [𝛾◦])
and so, by equality reflection in T , we have 𝑎◦ [𝛾◦] = 𝑏◦ [𝛾◦]. The reader may directly

check that EqG is natural and that it is preserved by 𝜋 .

To substantiate the necessary isomorphism, we once more calculate:

TmG (Γ, EqG (𝐴, 𝑎, 𝑏))
�
∑
𝑡 ∈Tm(Γ◦,Eq (𝐴◦,𝑎◦,𝑏◦ ) )

∏
𝛾 ∈SbG (1,Γ) Eq•G (𝛾, 𝑡)

� Tm(Γ◦, Eq(𝐴◦, 𝑎◦, 𝑏◦)) × {★ | 𝑎• = 𝑏•}
� {★ | 𝑎◦ = 𝑏◦} × {★ | 𝑎• = 𝑏•} Using the 𝜂 law on T .
� {★ | 𝑎 = 𝑏} □
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Lemma 6.6.11. G is closed under dependent products and 𝜋 preserves them.

Proof. To close G under dependent products (Structure 6.2.18), it suffices to exhibit

operations pieces (satisfying suitable naturality equations):

ΠG : {Γ ∈ CxG}(𝐴 ∈ TyG (Γ)) → TyG (Γ.G𝐴) → TyG (Γ)
𝜄ΠG : {Γ ∈ CxG}(𝐴 ∈ TyG (Γ)) (𝐵 ∈ TyG (Γ.G𝐴))

→ TmG (Γ,ΠG (𝐴, 𝐵)) � TmG (Γ.G𝐴, 𝐵)

We begin by defining ΠG :

𝜋1(ΠG (𝐴, 𝐵)) = Π(𝐴◦, 𝐵◦)
𝜋2(ΠG (𝐴, 𝐵)) = 𝜆𝛾 𝑓 →

∏
𝑎∈TmG (1,𝐴[𝛾 ] ) 𝐵

•(𝛾 .G𝑎, app(𝑓 , 𝑎◦))

We leave the routine calculations that this is natural to the reader along with the proof

that this is preserved by 𝜋 . It remains to construct 𝜄. For this, we calculate:

TmG (Γ,ΠG (𝐴, 𝐵))
�
∑
𝑓 ◦∈Tm(Γ◦,Π (𝐴◦,𝐵◦ ) )

∏
𝛾 ∈SbG (1,Γ) ΠG (𝐴, 𝐵)•(𝛾, 𝑓 ◦ [𝛾◦])

�
∑
𝑓 ◦∈Tm(Γ◦,Π (𝐴◦,𝐵◦ ) )

∏
𝛾 ∈SbG (1,Γ),𝑎∈TmG (1,𝐴[𝛾 ] ) 𝐵

•(𝛾 .G𝑎, app(𝑓 , 𝑎◦))
�
∑
𝑓 ◦∈Tm(Γ◦ .𝐴◦,𝐵◦ )

∏
𝛾 ∈SbG (1,Γ.G𝐴) 𝐵

•(𝛾 .G𝑎, 𝑓 ◦ [𝛾◦.𝑎◦])
� TmG (Γ.G𝐴, 𝐵)

The reader may check directly that this chain of isomoprhisms is natural and that it is

sent by 𝜋 to the natural bijection given as part of T . □

Lemma 6.6.12. G is closed under U0 and its attendant operations and 𝜋 preserves them.

Proof. Closing G under a universe is a somewhat arduous process as universes (in

extensional type theory) do not have a simple universal property. For this reason,

we shall describe the interpretation of U and El carefully but content ourselves with

merely sketching how to close it under all connectives.

The crucial idea of UG is to store not just the canonical form of an element in

the associated canonicity data, but also the canonicity data of the small type encoded

by that element. Accordingly, we first introduce an auxiliary definition stating that

𝑐 ∈ Tm(1,U) is in canonical form:

Canonical(𝑐) =
{0 | 𝑐 = unit} ∪ {1 | 𝑐 = void} ∪ {2 | 𝑐 = bool} ∪ {3 | 𝑐 = nat}
∪ {4 | ∃𝑐′, 𝑎, 𝑏. 𝑐 = eq(𝑐′, 𝑎, 𝑏)}
∪ {5 | ∃𝑐0, 𝑐1. 𝑐 = pi(𝑐0, 𝑐1)}
∪ {5 | ∃𝑐0, 𝑐1. 𝑐 = sig(𝑐0, 𝑐1)}
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We now define UG as follows:

𝜋1(UG) = U0

𝜋2(UG) = 𝜆𝛾 𝑐 → Canonical(𝑐) × (Tm(1, El(𝑐◦)) → 𝑉0)

Notice that 𝜋2(UG) is our first predicate which is necessarily proof-relevant. Pre-

viously one could by with 𝐴•(𝛾, 𝑡) being a mere proposition for each 𝛾 and 𝑡 , but

the same is not true for UG . In particular, since 𝜋2(UG) (𝛾, 𝑐) contains an element

of Tm(1, El(𝑐◦)) → 𝑉0 it will frequently contain at least as many elements as 𝑉0! In

fact, the universe is the sole connective we encounter in extensional type theory with

this property. Note to that we have used the fact that 𝑉𝜔 (used to define TyG (Γ))
contains the Grothendieck universe 𝑉0. This is similar to the situation encountered in

Section 3.5 where an (𝑛 + 1)-hierarchy of Grothendieck universes was used to interpret
a hierarchy of 𝑛-universes.

We note, however, that the other half the computability data for U is somewhat

spurious. Since there is no elimination form for U0, we do not technically need to

specify Canonical(𝑐) for closed elements. Its inclusion, however, will allow us to prove

a slightly stronger canonicity theorem that also specifies elements of the universe.

The second component of the computability data (Tm(1, El(𝑐◦)) → 𝑉0), the one that
actually forces this to be proof-relevant, is mandatory; we need it to define ElG :

𝜋1(ElG (𝑐)) = El(𝑐◦)
𝜋2(ElG (𝑐)) = 𝜆𝛾 𝑎 → 𝜋2(𝑐•(𝛾)) (𝑎)

We once more leave the naturality conditions for both UG and ElG to the reader.

Closing this universe under various connectives is a procedure analogous to the

problem faced by the set model (Section 3.5). Since 𝑉0 is large enough to be closed

in 𝑉𝜔 under all relevant operations, we can replay the construction of e.g., BoolG to

define boolG :

𝜋1(boolG) = bool
𝜋2(boolG) = 𝜆𝛾 → (2, 𝜆𝑏 → {0 | 𝑏 = true} ∪ {1 | 𝑏 = false})

Routine calculation then shows that ElG (boolG) = BoolG . The remaining connectives

follow the same pattern, so we leave the reader to handle those cases. □

We may collect this series of lemmas into the main result of this section:

Theorem 6.6.13. G is a model of type theory closed under all the connectives and 𝜋 is a
morphism of such models.
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6.6.3 Deriving canonicity

With Theorem 6.6.13 to hand, we can prove canonicity for extensional type theory

following exactly the argument outlined at the beginning of this section.

Theorem 6.6.14. Suppose 𝑏 ∈ Tm(1,Bool) then 𝑏 = true or 𝑏 = false.

Proof. By Theorem 3.4.5 and Theorem 6.6.13, we know that there is a morphism of mod-

els 𝑖 : T G and that𝜋◦𝑖 = id. Consequently, we know that𝑏 = 𝜋TmG (1,BoolG ) (𝑖Tm(1,Bool ) (𝑏)).
Let us then consider what data is contained in

¯𝑏 = 𝑖Tm(1,Bool ) (𝑏) ∈ TmG (1,BoolG). As
a term in G, we know that

¯𝑏 is a pair. We analyze the two components separately.

The first component 𝜋1( ¯𝑏) is an element of Tm(1,Bool). Moreover, since we have

already noted that 𝑏 = 𝜋TmG (1,BoolG ) ( ¯𝑏), we in fact know that 𝜋1( ¯𝑏) = 𝑏. The second
component 𝜋2( ¯𝑏) is an element of the following set:∏

𝛾 ∈SbG (1,1) Bool•G (𝛾, 𝑏 [𝛾◦])

However, since 1 is terminal, we must know that SbG (1, 1) consists of a single element:

the identity substitution. Consequently, the data in 𝜋2( ¯𝑏) collapses to an element of

Bool•G (id, 𝑏 [𝛾◦]). Unfolding the definition of Bool•G from Lemma 6.6.8, we see that this

amounts to an element of 𝑏 = true ⊔ 𝑏 = false. The conclusion is now immediate. □

In fact, the additional properties of G allow us to deduce a more refined result than

merely characterizing closed booleans.

Exercise 6.26. Modify the argument given in Theorem 6.6.14 to prove the following:

if 𝑐 ∈ Tm(1,U0) then one of the following conditions must hold:

• 𝑐 = unit, 𝑐 = void, or 𝑐 = bool,

• there exists 𝑐′ ∈ Tm(1,U0) and 𝑎, 𝑏 ∈ Tm(1, El(𝑐′)) such that 𝑐 = eq(𝑐′, 𝑎, 𝑏),

• there exists 𝑐0 ∈ Tm(1,U0) and 𝑐1 ∈ Tm(1.El(𝑐0),U0) such that 𝑐 = pi(𝑐0, 𝑐1),

• or there exists 𝑐0 ∈ Tm(1,U0) and 𝑐1 ∈ Tm(1.El(𝑐0),U0) such that 𝑐 = sig(𝑐0, 𝑐1),

Similar statements may be proven for Void and Nat (that there are no closed

elements or a closed element is equal to suc𝑚 (zero) for some numeral𝑚, respectively).

The reader may wish to carefully work out the definitions of NatM for themselves to

confirm that this is indeed the case. We note that doing so for Void provides another

proof of the consistency of ETT.
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6.6.4 Variations on gluing arguments

In this section, we have constructed G to prove canonicity. Along the way, the reader

may have noticed similarities in how various operations were defined and wondered if

there might be a more conceptual argument available. For instance, how much of this

construction really depends on our choice to use T instead of some other model? To

what extent was the model we constructed in Section 3.5 really used? Could we have

hidden some of the indices in this proof which caused so much bureaucracy in this

proof? Fortunately, the answer to all of these questions is affirmative. In fact, these

questions have motivated a great deal of recent work in dependent type theory [AK16;

Shu15; KHS19; Coq19]. Roughly, this work attempts to improve on the style of gluing

argument we have detailed above in two distinct ways:

• They axiomitize the precise requirements needed on T , S, and Γ to allow this

argument to be repurposed for closely related systems and proofs.

• They capitalize on the models of type theory in the various categories being

manipulated (such as Pr(Cx)) to alleviate the bookkeeping and ensure that these
constructions are easier to follow.

For the first point, for instance, Kaposi, Huber, and Sattler [KHS19] introduce the

notion of a pseudo-morphism of models of type theory. Roughly, while a morphism

of models insists that every connective and operation of type theory be preserved, a

pseudo-morphism of models requires only that context extension, the empty context

and their attendant substitutions are preserved up to (canonical) isomorphism. In

particular, there is no requirement that various type formers be preserved. The authors

show that this suffices to carry out a version of the gluing model we described above.

For instance, ifM andN are models and 𝐹 :M N is a pseudo-morphism between

them, one can define a model G(𝐹 ) whose category of contexts is again Gl(𝐹 ) and
whose presheaf of types is given as follows:

TyG(𝐹 ) ((Γ0, Γ1, 𝛾) : Gl(𝐹 )) = ∑
𝐴∈TyM (Γ0 ) TyN (Γ1.N𝐹TyM (Γ0 ) (𝐴) [𝛾])

In other words, a type in the glued model is a type 𝐴 fromM together with a family

of types in N parameterized by elements of 𝐹 (𝐴). The reader may confirm that these

agrees with our definition of TyG (Γ) in the case whereM = T , N = S and 𝐹 = Γ. In
fact, all of our definitions could have been replayed in this more general setting and

we could have derived the following result:

Theorem 6.6.15 (Kaposi, Huber, and Sattler [KHS19]). IfM andN are models of type
theory closed under all connectives and 𝐹 is a pseudo-morphism between them, then Gl(𝐹 )



(2025-07-19) A semantic definition of syntax 301

supports a model of type theory closed under all connectives and 𝜋1 : Gl(𝐹 ) CxM
extends to a homomorphism of models.

Even with this additional generality, for certain gluing models (e.g., those arising in
proofs of normalization) the model itself is complex enough to warrant more abstract

arguments in its construction. To this end, Sterling and Harper [SH21] and Sterling

and Angiuli [SA21] observed that much of the construction of G could be done fully

within dependent type theory by extending extensional type theory with a handful

of constants and interpreting the theory into a certain presheaf category. Working

with dependent type theory to carry out these constructions meant that many of the

naturality obligations we left to the reader would become automatic. Even better, for

a number of constructions e.g., the construction of Π-types, one many constructions

become remarkably short and simple. While for canonicity proofs this is less of an issue,

as the gluing model becomes more complex these naturality requirements become

increasingly tedious and difficult to manage. We refer the reader to Sterling [Ste21]

for an exposition of these style of gluing arguments (as well as a complete proof of

normalization for cubical type theory as introduced in Section 5.3).

What follows is not ready for comments

6.7★ A semantic definition of syntax
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Martin-Löf type theory A
This appendix presents a substitution calculus [Mar92; Tas93; Dyb96] for several

variants of Martin-Löf’s dependent type theory. Martin-Löf type theories are systems

admitting the rules in sectionContexts and substitutions; the rules specific to extensional
type theory, those axiomatizing extensional equality types, are marked (ETT); the rules

specific to intensional type theory, those axiomatizing intensional equality types, are
marked (ITT).

Judgments

Martin-Löf type theory has four basic judgments:

1. ⊢ Γ cx asserts that Γ is a context.

2. Δ ⊢ 𝛾 : Γ, presupposing ⊢ Δ cx and ⊢ Γ cx, asserts that 𝛾 is a substitution from Δ
to Γ (i.e., assigns a term in Δ to each variable in Γ).

3. Γ ⊢ 𝐴 type, presupposing ⊢ Γ cx, asserts that 𝐴 is a type in context Γ.

4. Γ ⊢ 𝑎 : 𝐴, presupposing ⊢ Γ cx and Γ ⊢ 𝐴 type, asserts that 𝑎 is an element/term

of type 𝐴 in context Γ.

The presuppositions of a judgment are its meta-implicit-arguments, so to speak.

For instance, the judgment Γ ⊢ 𝐴 type is sensible to write (is meta-well-typed) only

when the judgment ⊢ Γ cx holds. We adopt the convention that asserting the truth of a

judgment implicitly asserts its well-formedness; thus asserting Γ ⊢ 𝐴 type also asserts

⊢ Γ cx.
As we assert the existence of various contexts, substitutions, types, and terms, we

will simultaneously need to assert that some of these (already introduced) objects are

equal to other (already introduced) objects of the same kind.

1. Δ ⊢ 𝛾 = 𝛾 ′ : Γ, presupposing Δ ⊢ 𝛾 : Γ and Δ ⊢ 𝛾 ′ : Γ, asserts that 𝛾,𝛾 ′ are equal
substitutions from Δ to Γ.

2. Γ ⊢ 𝐴 = 𝐴′ type, presupposing Γ ⊢ 𝐴 type and Γ ⊢ 𝐴′ type, asserts that 𝐴,𝐴′ are
equal types in context Γ.
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3. Γ ⊢ 𝑎 = 𝑎′ : 𝐴, presupposing Γ ⊢ 𝑎 : 𝐴 and Γ ⊢ 𝑎′ : 𝐴, asserts that 𝑎, 𝑎′ are equal
elements of type 𝐴 in context Γ.

Two types (resp., contexts, substitutions, terms) being equal has the force that it

does in standard mathematics: any expression can be replaced silently by an equal

expression without affecting the meaning or truth of the statement in which it appears.

One important example of this principle is the “conversion rule” which states that if

Γ ⊢ 𝐴 = 𝐴′ type and Γ ⊢ 𝑎 : 𝐴, then Γ ⊢ 𝑎 : 𝐴′.
In the rules that follow, some arguments of substitution, type, and term formers

are typeset as gray subscripts; these are arguments that we will often omit because

they can be inferred from context and are tedious and distracting to write.

Contexts and substitutions

⊢ 1 cx
cx/emp

⊢ Γ cx Γ ⊢ 𝐴 type

⊢ Γ.𝐴 cx
cx/ext

⊢ Γ cx
Γ ⊢ idΓ : Γ

sb/id

Γ2 ⊢ 𝛾1 : Γ1 Γ1 ⊢ 𝛾0 : Γ0

Γ2 ⊢ 𝛾0 ◦Γ2,Γ1,Γ0
𝛾1 : Γ0

sb/comp

Δ ⊢ 𝛾 : Γ

Δ ⊢ idΓ ◦ 𝛾 = 𝛾 : Γ

Δ ⊢ 𝛾 : Γ

Δ ⊢ 𝛾 ◦ idΔ = 𝛾 : Γ

Γ3 ⊢ 𝛾2 : Γ2 Γ2 ⊢ 𝛾1 : Γ1 Γ1 ⊢ 𝛾0 : Γ0

Γ3 ⊢ 𝛾0 ◦ (𝛾1 ◦ 𝛾2) = (𝛾0 ◦ 𝛾1) ◦ 𝛾2 : Γ0

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴 type

Δ ⊢ 𝐴[𝛾]Δ,Γ type
ty/sb

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : 𝐴

Δ ⊢ 𝑎[𝛾]Δ,Γ : 𝐴[𝛾]
tm/sb

Γ ⊢ 𝐴 type

Γ ⊢ 𝐴[idΓ] = 𝐴 type

Γ ⊢ 𝑎 : 𝐴

Γ ⊢ 𝑎[idΓ] = 𝑎 : 𝐴

Γ2 ⊢ 𝛾1 : Γ1 Γ1 ⊢ 𝛾0 : Γ0 Γ0 ⊢ 𝐴 type

Γ2 ⊢ 𝐴[𝛾0 ◦ 𝛾1] = 𝐴[𝛾0] [𝛾1] type

Γ2 ⊢ 𝛾1 : Γ1 Γ1 ⊢ 𝛾0 : Γ0 Γ0 ⊢ 𝑎 : 𝐴

Γ2 ⊢ 𝑎[𝛾0 ◦ 𝛾1] = 𝑎[𝛾0] [𝛾1] : 𝐴[𝛾0 ◦ 𝛾1]
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⊢ Γ cx
Γ ⊢ !Γ : 1

sb/emp

Γ ⊢ 𝛿 : 1

Γ ⊢ !Γ = 𝛿 : 1

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴 type Δ ⊢ 𝑎 : 𝐴[𝛾]
Δ ⊢ 𝛾 .Δ,Γ,𝐴𝑎 : Γ.𝐴

sb/ext

Γ ⊢ 𝐴 type

Γ.𝐴 ⊢ pΓ,𝐴 : Γ
sb/wk

Γ ⊢ 𝐴 type

Γ.𝐴 ⊢ qΓ,𝐴 : 𝐴[pΓ,𝐴]
var

Δ ⊢ 𝛾 : Γ Δ ⊢ 𝑎 : 𝐴[𝛾]
Δ ⊢ pΓ,𝐴 ◦Γ.𝐴 (𝛾 .𝑎) = 𝛾 : Γ

Δ ⊢ 𝛾 : Γ Δ ⊢ 𝑎 : 𝐴[𝛾]
Δ ⊢ qΓ,𝐴 [𝛾 .𝑎] = 𝑎 : 𝐴[𝛾]

Δ ⊢ 𝛾 : Γ.𝐴

Δ ⊢ 𝛾 = (pΓ,𝐴 ◦Γ.𝐴 𝛾) .(qΓ,𝐴 [𝛾]) : Γ.𝐴

Π-types

Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type
Γ ⊢ ΠΓ (𝐴, 𝐵) type

pi/form

Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝑏 : 𝐵

Γ ⊢ 𝜆Γ,𝐴,𝐵 (𝑏) : Π(𝐴, 𝐵)
pi/intro

Γ ⊢ 𝑎 : 𝐴 Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑓 : Π(𝐴, 𝐵)
Γ ⊢ appΓ,𝐴,𝐵 (𝑓 , 𝑎) : 𝐵 [idΓ .𝑎]

pi/elim

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type
Δ ⊢ ΠΓ (𝐴, 𝐵) [𝛾] = ΠΔ (𝐴[𝛾], 𝐵 [(𝛾 ◦ pΔ,𝐴[𝛾 ]).qΔ,𝐴[𝛾 ]]) type

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝑏 : 𝐵

Δ ⊢ 𝜆 (𝑏) [𝛾] = 𝜆 (𝑏 [(𝛾 ◦ p) .q]) : Π(𝐴, 𝐵) [𝛾]

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : 𝐴 Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑓 : Π(𝐴, 𝐵)
Δ ⊢ app(𝑓 , 𝑎) [𝛾] = app(𝑓 [𝛾], 𝑎[𝛾]) : 𝐵 [(idΓ .𝑎) ◦ 𝛾]

Γ ⊢ 𝑎 : 𝐴 Γ.𝐴 ⊢ 𝑏 : 𝐵

Γ ⊢ app(𝜆 (𝑏), 𝑎) = 𝑏 [id.𝑎] : 𝐵 [id.𝑎]

Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑓 : Π(𝐴, 𝐵)
Γ ⊢ 𝑓 = 𝜆 (app(𝑓 [pΓ,𝐴], qΓ,𝐴)) : Π(𝐴, 𝐵)
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Σ-types

Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type
Γ ⊢ ΣΓ (𝐴, 𝐵) type

sigma/form

Γ ⊢ 𝑎 : 𝐴 Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑏 : 𝐵 [idΓ .𝑎]
Γ ⊢ pairΓ,𝐴,𝐵 (𝑎, 𝑏) : Σ(𝐴, 𝐵)

sigma/intro

Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑝 : Σ(𝐴, 𝐵)
Γ ⊢ fstΓ,𝐴,𝐵 (𝑝) : 𝐴

sigma/elim/fst

Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑝 : Σ(𝐴, 𝐵)
Γ ⊢ sndΓ,𝐴,𝐵 (𝑝) : 𝐵 [idΓ .fst(𝑝)]

sigma/elim/snd

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type
Δ ⊢ ΣΓ (𝐴, 𝐵) [𝛾] = ΣΔ (𝐴[𝛾], 𝐵 [(𝛾 ◦ p) .q]) type

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : 𝐴 Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑏 : 𝐵 [id.𝑎]
Δ ⊢ pair(𝑎, 𝑏) [𝛾] = pair(𝑎[𝛾], 𝑏 [𝛾]) : Σ(𝐴, 𝐵) [𝛾]

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑝 : Σ(𝐴, 𝐵)
Δ ⊢ fst(𝑝) [𝛾] = fst(𝑝 [𝛾]) : 𝐴[𝛾]

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑝 : Σ(𝐴, 𝐵)
Δ ⊢ snd(𝑝) [𝛾] = snd(𝑝 [𝛾]) : 𝐵 [(id.fst(𝑝)) ◦ 𝛾]

Γ ⊢ 𝑎 : 𝐴 Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑏 : 𝐵 [id.𝑎]
Γ ⊢ fst(pair(𝑎, 𝑏)) = 𝑎 : 𝐴

Γ ⊢ 𝑎 : 𝐴 Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑏 : 𝐵 [id.𝑎]
Γ ⊢ snd(pair(𝑎, 𝑏)) = 𝑏 : 𝐵 [id.𝑎]

Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑝 : Σ(𝐴, 𝐵)
Γ ⊢ 𝑝 = pair(fst(𝑝), snd(𝑝)) : Σ(𝐴, 𝐵)
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Extensional equality types

Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑏 : 𝐴

Γ ⊢ EqΓ (𝐴, 𝑎, 𝑏) type
eq/form (ETT)

Γ ⊢ 𝑎 : 𝐴

Γ ⊢ reflΓ,𝐴,𝑎 : Eq(𝐴, 𝑎, 𝑎)
eq/intro (ETT)

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑏 : 𝐴

Δ ⊢ EqΓ (𝐴, 𝑎, 𝑏) [𝛾] = EqΔ (𝐴[𝛾], 𝑎[𝛾], 𝑏 [𝛾]) type
(ETT)

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : 𝐴

Δ ⊢ refl [𝛾] = refl : Eq(𝐴, 𝑎, 𝑎) [𝛾]
(ETT)

Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑏 : 𝐴 Γ ⊢ 𝑝 : Eq(𝐴, 𝑎, 𝑏)
Γ ⊢ 𝑎 = 𝑏 : 𝐴

(ETT)

Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑏 : 𝐴 Γ ⊢ 𝑝 : Eq(𝐴, 𝑎, 𝑏)
Γ ⊢ 𝑝 = refl : Eq(𝐴, 𝑎, 𝑏)

(ETT)

Unit type

⊢ Γ cx
Γ ⊢ UnitΓ type

unit/form

⊢ Γ cx
Γ ⊢ ttΓ : Unit

unit/intro

Δ ⊢ 𝛾 : Γ

Δ ⊢ UnitΓ [𝛾] = UnitΔ type

Δ ⊢ 𝛾 : Γ

Δ ⊢ ttΓ [𝛾] = ttΔ : Unit

Γ ⊢ 𝑎 : Unit

Γ ⊢ 𝑎 = tt : Unit

Empty type

⊢ Γ cx
Γ ⊢ VoidΓ type

empty/form

Γ ⊢ 𝑏 : Void Γ.Void ⊢ 𝐴 type

Γ ⊢ absurdΓ,𝐴 (𝑏) : 𝐴[id.𝑏]
empty/elim

Δ ⊢ 𝛾 : Γ

Δ ⊢ VoidΓ [𝛾] = VoidΔ type

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑏 : Void Γ.Void ⊢ 𝐴 type

Δ ⊢ absurd(𝑏) [𝛾] = absurd(𝑏 [𝛾]) : 𝐴[𝛾 .𝑏 [𝛾]]
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Boolean type

⊢ Γ cx
Γ ⊢ BoolΓ type

bool/form

⊢ Γ cx
Γ ⊢ trueΓ : Bool

bool/intro/true

⊢ Γ cx
Γ ⊢ falseΓ : Bool

bool/intro/false

Γ ⊢ 𝑏 : Bool
Γ.Bool ⊢ 𝐴 type Γ ⊢ 𝑎𝑡 : 𝐴[id.true] Γ ⊢ 𝑎𝑓 : 𝐴[id.false]

Γ ⊢ ifΓ,𝐴 (𝑎𝑡 , 𝑎𝑓 , 𝑏) : 𝐴[id.𝑏]
bool/elim

Δ ⊢ 𝛾 : Γ

Δ ⊢ BoolΓ [𝛾] = BoolΔ type

Δ ⊢ 𝛾 : Γ

Δ ⊢ trueΓ [𝛾] = trueΔ : Bool

Δ ⊢ 𝛾 : Γ

Δ ⊢ falseΓ [𝛾] = falseΔ : Bool

Δ ⊢ 𝛾 : Γ
Γ ⊢ 𝑏 : Bool Γ.Bool ⊢ 𝐴 type Γ ⊢ 𝑎𝑡 : 𝐴[id.true] Γ ⊢ 𝑎𝑓 : 𝐴[id.false]

Δ ⊢ if (𝑎𝑡 , 𝑎𝑓 , 𝑏) [𝛾] = if (𝑎𝑡 [𝛾], 𝑎𝑓 [𝛾], 𝑏 [𝛾]) : 𝐴[𝛾 .𝑏 [𝛾]]

⊢ Γ cx Γ.Bool ⊢ 𝐴 type Γ ⊢ 𝑎𝑡 : 𝐴[id.true] Γ ⊢ 𝑎𝑓 : 𝐴[id.false]
Γ ⊢ if (𝑎𝑡 , 𝑎𝑓 , true) = 𝑎𝑡 : 𝐴[id.true]

⊢ Γ cx Γ.Bool ⊢ 𝐴 type Γ ⊢ 𝑎𝑡 : 𝐴[id.true] Γ ⊢ 𝑎𝑓 : 𝐴[id.false]
Γ ⊢ if (𝑎𝑡 , 𝑎𝑓 , false) = 𝑎𝑓 : 𝐴[id.false]
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Coproduct types

Γ ⊢ 𝐴 type Γ ⊢ 𝐵 type
Γ ⊢ 𝐴 +Γ 𝐵 type

plus/form

Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝐵 type
Γ ⊢ inlΓ,𝐴,𝐵 (𝑎) : 𝐴 + 𝐵

plus/intro/inl

Γ ⊢ 𝑏 : 𝐵 Γ ⊢ 𝐴 type

Γ ⊢ inrΓ,𝐴,𝐵 (𝑏) : 𝐴 + 𝐵
plus/intro/inr

Γ ⊢ 𝐴 type Γ ⊢ 𝐵 type Γ.(𝐴 + 𝐵) ⊢ 𝐶 type
Γ.𝐴 ⊢ 𝑐𝑙 : 𝐶 [p.inl(q)] Γ.𝐵 ⊢ 𝑐𝑟 : 𝐶 [p.inr(q)] Γ ⊢ 𝑝 : 𝐴 + 𝐵

Γ ⊢ caseΓ,𝐴,𝐵,𝐶 (𝑐𝑙 , 𝑐𝑟 , 𝑝) : 𝐶 [id.𝑝]
plus/elim

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴 type Γ ⊢ 𝐵 type
Δ ⊢ (𝐴 +Γ 𝐵) [𝛾] = 𝐴[𝛾] +Δ 𝐵 [𝛾] type

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝐵 type
Δ ⊢ inl(𝑎) [𝛾] = inl(𝑎[𝛾]) : 𝐴[𝛾] + 𝐵 [𝛾]

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑏 : 𝐵 Γ ⊢ 𝐴 type

Δ ⊢ inr(𝑏) [𝛾] = inr(𝑏 [𝛾]) : 𝐴[𝛾] + 𝐵 [𝛾]

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴 type Γ ⊢ 𝐵 type Γ.(𝐴 + 𝐵) ⊢ 𝐶 type
Γ.𝐴 ⊢ 𝑐𝑙 : 𝐶 [p.inl(q)] Γ.𝐵 ⊢ 𝑐𝑟 : 𝐶 [p.inr(q)] Γ ⊢ 𝑝 : 𝐴 + 𝐵
Δ ⊢ case(𝑐𝑙 , 𝑐𝑟 , 𝑝) [𝛾] = case(𝑐𝑙 [𝛾 .𝐴], 𝑐𝑟 [𝛾 .𝐵], 𝑝 [𝛾]) : 𝐶 [𝛾 .𝑝 [𝛾]]

Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝐵 type
Γ.(𝐴 + 𝐵) ⊢ 𝐶 type Γ.𝐴 ⊢ 𝑐𝑙 : 𝐶 [p.inl(q)] Γ.𝐵 ⊢ 𝑐𝑟 : 𝐶 [p.inr(q)]

Γ ⊢ case(𝑐𝑙 , 𝑐𝑟 , inl(𝑎)) = 𝑐𝑙 [id.𝑎] : 𝐶 [id.inl(𝑎)]

Γ ⊢ 𝑏 : 𝐵 Γ ⊢ 𝐴 type
Γ.(𝐴 + 𝐵) ⊢ 𝐶 type Γ.𝐴 ⊢ 𝑐𝑙 : 𝐶 [p.inl(q)] Γ.𝐵 ⊢ 𝑐𝑟 : 𝐶 [p.inr(q)]

Γ ⊢ case(𝑐𝑙 , 𝑐𝑟 , inr(𝑏)) = 𝑐𝑟 [id.𝑏] : 𝐶 [id.inr(𝑏)]
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Natural number type

⊢ Γ cx
Γ ⊢ NatΓ type

nat/form

⊢ Γ cx
Γ ⊢ zeroΓ : Nat

nat/intro/zero

Γ ⊢ 𝑛 : Nat

Γ ⊢ sucΓ (𝑛) : Nat
nat/intro/suc

Γ.Nat ⊢ 𝐴 type
Γ ⊢ 𝑎𝑧 : 𝐴[id.zero] Γ.Nat.𝐴 ⊢ 𝑎𝑠 : 𝐴[p2.suc(q [p])] Γ ⊢ 𝑛 : Nat

Γ ⊢ recΓ,𝐴 (𝑎𝑧, 𝑎𝑠 , 𝑛) : 𝐴[id.𝑛]
nat/elim

Δ ⊢ 𝛾 : Γ

Δ ⊢ NatΓ [𝛾] = NatΔ type

Δ ⊢ 𝛾 : Γ

Δ ⊢ zeroΓ [𝛾] = zeroΔ : Nat

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑛 : Nat

Δ ⊢ sucΓ (𝑛) [𝛾] = sucΔ (𝑛[𝛾]) : Nat

Δ ⊢ 𝛾 : Γ Γ.Nat ⊢ 𝐴 type
Γ ⊢ 𝑎𝑧 : 𝐴[id.zero] Γ.Nat.𝐴 ⊢ 𝑎𝑠 : 𝐴[p2.suc(q [p])] Γ ⊢ 𝑛 : Nat

Δ ⊢ rec(𝑎𝑧, 𝑎𝑠 , 𝑛) [𝛾] = rec(𝑎𝑧 [𝛾], 𝑎𝑠 [(𝛾 ◦ p2) .q [p] .q], 𝑛[𝛾]) : 𝐴[𝛾 .𝑛[𝛾]]

Γ.Nat ⊢ 𝐴 type Γ ⊢ 𝑎𝑧 : 𝐴[id.zero] Γ.Nat.𝐴 ⊢ 𝑎𝑠 : 𝐴[p2.suc(q [p])]
Γ ⊢ rec(𝑎𝑧, 𝑎𝑠 , zero) = 𝑎𝑧 : 𝐴[id.zero]

Γ.Nat ⊢ 𝐴 type
Γ ⊢ 𝑎𝑧 : 𝐴[id.zero] Γ.Nat.𝐴 ⊢ 𝑎𝑠 : 𝐴[p2.suc(q [p])] Γ ⊢ 𝑛 : Nat

Γ ⊢ rec(𝑎𝑧, 𝑎𝑠 , suc(𝑛)) = 𝑎𝑠 [id.𝑛.rec(𝑎𝑧, 𝑎𝑠 , 𝑛)] : 𝐴[id.suc(𝑛)]
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Intensional equality types

Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑏 : 𝐴

Γ ⊢ IdΓ (𝐴, 𝑎, 𝑏) type
id/form (ITT)

Γ ⊢ 𝑎 : 𝐴

Γ ⊢ reflΓ,𝐴,𝑎 : Id(𝐴, 𝑎, 𝑎)
id/intro (ITT)

Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑏 : 𝐴 Γ ⊢ 𝑝 : Id(𝐴, 𝑎, 𝑏)
Γ.𝐴.𝐴[p] .Id(𝐴[p2], q [p], q) ⊢ 𝐶 type Γ.𝐴 ⊢ 𝑐 : 𝐶 [p.q.q.refl]

Γ ⊢ JΓ,𝐴,𝑎,𝑏,𝐶 (𝑐, 𝑝) : 𝐶 [id.𝑎.𝑏.𝑝]
id/elim (ITT)

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑏 : 𝐴

Δ ⊢ IdΓ (𝐴, 𝑎, 𝑏) [𝛾] = IdΔ (𝐴[𝛾], 𝑎[𝛾], 𝑏 [𝛾]) type
(ITT)

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : 𝐴

Δ ⊢ refl [𝛾] = refl : Id(𝐴[𝛾], 𝑎[𝛾], 𝑎[𝛾])
(ITT)

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑏 : 𝐴 Γ ⊢ 𝑝 : Id(𝐴, 𝑎, 𝑏)
Γ.𝐴.𝐴[p] .Id(𝐴[p2], q [p], q) ⊢ 𝐶 type Γ.𝐴 ⊢ 𝑐 : 𝐶 [p.q.q.refl]

Δ ⊢ J(𝑐, 𝑝) [𝛾] = J(𝑐 [(𝛾 ◦ p) .q], 𝑝 [𝛾]) : 𝐶 [𝛾 .𝑎[𝛾] .𝑏 [𝛾] .𝑝 [𝛾]]
(ITT)

Γ ⊢ 𝑎 : 𝐴 Γ.𝐴.𝐴[p] .Id(𝐴[p2], q [p], q) ⊢ 𝐶 type Γ.𝐴 ⊢ 𝑐 : 𝐶 [p.q.q.refl]
Γ ⊢ J(𝑐, refl) = 𝑐 [id.𝑎] : 𝐶 [id.𝑎.𝑎.refl]

(ITT)

Universes

⊢ Γ cx
Γ ⊢ UΓ,𝑖 type

uni/form

Γ ⊢ 𝑎 : U𝑖
Γ ⊢ ElΓ,𝑖 (𝑎) type

el/form

Γ ⊢ 𝑐0 : U𝑖 Γ.El𝑖 (𝑐0) ⊢ 𝑐1 : U𝑖
Γ ⊢ pi𝑖,Γ (𝑐0, 𝑐1) : U𝑖

pi/code

Γ ⊢ 𝑐0 : U𝑖 Γ.El𝑖 (𝑐0) ⊢ 𝑐1 : U𝑖
Γ ⊢ sig𝑖,Γ (𝑐0, 𝑐1) : U𝑖

sig/code

Γ ⊢ 𝑐 : U𝑖 Γ ⊢ 𝑥,𝑦 : El𝑖 (𝑐)
Γ ⊢ eq𝑖,Γ (𝑐, 𝑥,𝑦) : U𝑖

eq/code (ETT)
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Γ ⊢ 𝑐 : U𝑖 Γ ⊢ 𝑥,𝑦 : El𝑖 (𝑐)
Γ ⊢ id𝑖,Γ (𝑐, 𝑥,𝑦) : U𝑖

id/code (ITT)

Γ ⊢ 𝑐0 : U𝑖 Γ ⊢ 𝑐1 : U𝑖
Γ ⊢ coprod𝑖,Γ (𝑐0, 𝑐1) : U𝑖

plus/code

⊢ Γ cx
Γ ⊢ unit𝑖,Γ : U𝑖

unit/code

⊢ Γ cx
Γ ⊢ void𝑖,Γ : U𝑖

empty/code

⊢ Γ cx
Γ ⊢ bool𝑖,Γ : U𝑖

bool/code

⊢ Γ cx
Γ ⊢ nat𝑖,Γ : U𝑖

nat/code

⊢ Γ cx 𝑗 < 𝑖

Γ ⊢ uniΓ,𝑖, 𝑗 : U𝑖
uni/code

Γ ⊢ 𝑐 : U𝑖
Γ ⊢ lift𝑖,Γ (𝑐) : U𝑖+1

Δ ⊢ 𝛾 : Γ

Δ ⊢ UΓ,𝑖 [𝛾] = UΔ,𝑖 type

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : U𝑖
Δ ⊢ El𝑖 (𝑎) [𝛾] = El𝑖 (𝑎[𝛾]) type

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑐0 : U𝑖 Γ.El𝑖 (𝑐0) ⊢ 𝑐1 : U𝑖
Δ ⊢ pi(𝑐0, 𝑐1) [𝛾] = pi(𝑐0 [𝛾], 𝑐1 [(𝛾 ◦ p) .q]) : U𝑖

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑐0 : U𝑖 Γ.El𝑖 (𝑐0) ⊢ 𝑐1 : U𝑖
Δ ⊢ sig(𝑐0, 𝑐1) [𝛾] = sig(𝑐0 [𝛾], 𝑐1 [(𝛾 ◦ p) .q]) : U𝑖

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑐 : U𝑖 Γ ⊢ 𝑥,𝑦 : El𝑖 (𝑐)
Δ ⊢ eq(𝑐, 𝑥,𝑦) [𝛾] = eq(𝑐 [𝛾], 𝑥 [𝛾], 𝑦 [𝛾]) : U𝑖

(ETT)

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑐 : U𝑖 Γ ⊢ 𝑥,𝑦 : El𝑖 (𝑐)
Δ ⊢ id(𝑐, 𝑥,𝑦) [𝛾] = id(𝑐 [𝛾], 𝑥 [𝛾], 𝑦 [𝛾]) : U𝑖

(ITT)

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑐0 : U𝑖 Γ ⊢ 𝑐1 : U𝑖
Δ ⊢ coprod(𝑐0, 𝑐1) [𝛾] = coprod(𝑐0 [𝛾], 𝑐1 [𝛾]) : U𝑖

Δ ⊢ 𝛾 : Γ

Δ ⊢ unit [𝛾] = unit : U𝑖

Δ ⊢ 𝛾 : Γ

Δ ⊢ void [𝛾] = void : U𝑖

Δ ⊢ 𝛾 : Γ

Δ ⊢ bool [𝛾] = bool : U𝑖

Δ ⊢ 𝛾 : Γ

Δ ⊢ nat [𝛾] = nat : U𝑖

Δ ⊢ 𝛾 : Γ 𝑗 < 𝑖

Δ ⊢ uni𝑗 [𝛾] = uni𝑗 : U𝑖

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑐 : U𝑖
Δ ⊢ lift(𝑐) [𝛾] = lift(𝑐 [𝛾]) : U𝑖+1
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Γ ⊢ 𝑐0 : U𝑖 Γ.El𝑖 (𝑐0) ⊢ 𝑐1 : U𝑖
Γ ⊢ El𝑖 (pi(𝑐0, 𝑐1)) = Π(El𝑖 (𝑐0), El𝑖 (𝑐1)) type

Γ ⊢ 𝑐0 : U𝑖 Γ.El𝑖 (𝑐0) ⊢ 𝑐1 : U𝑖
Γ ⊢ El𝑖 (sig(𝑐0, 𝑐1)) = Σ(El𝑖 (𝑐0), El𝑖 (𝑐1)) type

Γ ⊢ 𝑐 : U𝑖 Γ ⊢ 𝑥,𝑦 : El𝑖 (𝑐)
Γ ⊢ El𝑖 (eq(𝑐, 𝑥,𝑦)) = Eq(El𝑖 (𝑐), 𝑥,𝑦) type

(ETT)

Γ ⊢ 𝑐 : U𝑖 Γ ⊢ 𝑥,𝑦 : El𝑖 (𝑐)
Γ ⊢ El𝑖 (id(𝑐, 𝑥,𝑦)) = Id(El𝑖 (𝑐), 𝑥,𝑦) type

(ITT)

Γ ⊢ 𝑐0 : U𝑖 Γ ⊢ 𝑐1 : U𝑖
Γ ⊢ El𝑖 (coprod(𝑐0, 𝑐1)) = El𝑖 (𝑐0) + El𝑖 (𝑐1) type Γ ⊢ El𝑖 (unit) = Unit type

Γ ⊢ El𝑖 (void) = Void type Γ ⊢ El𝑖 (bool) = Bool type

Γ ⊢ El𝑖 (nat) = Nat type

𝑗 < 𝑖

Γ ⊢ El𝑖 (uni𝑗 ) = U𝑗 type

Γ ⊢ 𝑐 : U𝑖
Γ ⊢ El𝑖+1(lift(𝑐)) = El𝑖 (𝑐) type
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Solutions to selected exercises B
Solution 2.2. Any substitution 𝛾 into Γ.𝐴 is of the form (p ◦ 𝛾) .q [𝛾], which by our

hypothesis is equal to id.q [𝛾]. We can apply this substitution to a variable, obtaining

the term Γ ⊢ q [id.q [𝛾]] = q [𝛾] : 𝐴[id] as required. Conversely, any term Γ ⊢ 𝑎 : 𝐴

determines a substitution Γ ⊢ id.𝑎 : Γ.𝐴 that satisfies p ◦ (id.𝑎) = id. One round-trip
follows from the previously noted equation, and the other from q [id.𝑎] = 𝑎.

Solution 2.3. To show

Ξ ⊢ 𝛿 : Δ Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴 type Δ ⊢ 𝑎 : 𝐴[𝛾]
Δ ⊢ (𝛾 .𝑎) ◦ 𝛿 = (𝛾 ◦ 𝛿) .𝑎[𝛿] : Γ.𝐴

⇒

we calculate as follows:

(𝛾 .𝑎) ◦ 𝛿 = (p ◦ (𝛾 .𝑎) ◦ 𝛿) .(q [(𝛾 .𝑎) ◦ 𝛿])
= (𝛾 ◦ 𝛿) .(q [𝛾 .𝑎] [𝛿])
= (𝛾 ◦ 𝛿) .(𝑎[𝛿])

Solution 2.4. We define𝛾 .𝐴 := (𝛾◦p) .q, i.e., the extension of the substitution Δ.𝐴[𝛾] ⊢
𝛾 ◦ p : Γ by the variable Δ.𝐴[𝛾] ⊢ q : 𝐴[𝛾 ◦ p].

Solution 2.5. In the forward direction, we send Δ ⊢ 𝛾 : Γ.𝐴 to the pair of p ◦ 𝛾 and

q [𝛾]; in the reverse direction, we send pairs of 𝛾0 and 𝑎 to the substitution 𝛾0.𝑎. One

round-trip follows from 𝛾 = (p ◦ 𝛾) .q [𝛾] and the other from p ◦ (𝛾0.𝑎) = 𝛾0 and

q [𝛾0.𝑎] = 𝑎.

Solution 2.8. Below are the formation, introduction, and elimination rules for non-

dependent functions, along with their definitions in terms of Π-types:

Γ ⊢ 𝐴 type Γ ⊢ 𝐵 type
Γ ⊢ 𝐴→ 𝐵 := Π(𝐴, 𝐵 [p]) type

Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝑏 : 𝐵 [p]
Γ ⊢ 𝜆q.𝑏 := 𝜆 (𝑏) : 𝐴→ 𝐵

Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝐵 type Γ ⊢ 𝑓 : 𝐴→ 𝐵

Γ ⊢ 𝑓 𝑎 := app(𝑓 , 𝑎) : 𝐵
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Note that 𝐵 must be weakened, and the elimination rule is meta-well-typed because

𝐵 [p ◦ (id.𝑎)] = 𝐵. The 𝛽- and 𝜂-rules are immediate.

Solution 2.17. The only non-trivial presupposition to check is Δ ⊢ pair(𝑎[𝛾], 𝑏 [𝛾]) :

Σ(𝐴, 𝐵) [𝛾]. By the substitution rule for Σ, we have Σ(𝐴, 𝐵) [𝛾] = Σ(𝐴[𝛾], 𝐵 [𝛾 .𝐴]).
The first component of the pair is thus well-typed by Δ ⊢ 𝑎[𝛾] : 𝐴[𝛾]. For the

second component, we must show Δ ⊢ 𝑏 [𝛾] : 𝐵 [𝛾 .𝐴] [id.𝑎[𝛾]]. By applying 𝛾 to

the typing premise for 𝑏 we obtain Δ ⊢ 𝑏 [𝛾] : 𝐵 [id.𝑎] [𝛾], so it suffices to show

(𝛾 .𝐴) ◦ (id.𝑎[𝛾]) = (id.𝑎) ◦ 𝛾 :
(𝛾 .𝐴) ◦ (id.𝑎[𝛾])
= ((𝛾 ◦ p).q) ◦ (id.𝑎[𝛾]) by Exercise 2.4

= (𝛾 ◦ p ◦ (id.𝑎[𝛾])).q [id.𝑎[𝛾]] by Exercise 2.3

= (𝛾 ◦ id) .𝑎[𝛾]
= (id ◦ 𝛾) .𝑎[𝛾]
= (id.𝑎) ◦ 𝛾 by Exercise 2.3

Solution 2.18. The substitution rule is somewhat odd:

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑓 : Π(𝐴, 𝐵)
Δ.𝐴[𝛾] ⊢ 𝜆−1(𝑓 [𝛾]) = 𝜆−1(𝑓 ) [𝛾 .𝐴] : 𝐵 [𝛾 .𝐴]

We prove it as follows:

𝜆−1(𝑓 [𝛾])
= 𝜆−1(𝜆 (𝜆−1(𝑓 )) [𝛾]) by 𝑓 = 𝜆 (𝜆−1(𝑓 ))
= 𝜆−1(𝜆 (𝜆−1(𝑓 ) [𝛾 .𝐴])) by substitution for 𝜆

= 𝜆−1(𝑓 ) [𝛾 .𝐴] by 𝜆−1(𝜆 (. . . )) = . . .

Solution 2.21. The elimination principle corresponds to the forwardmap 𝜄Γ : Tm(Γ,Unit) →
{★}. This tells us that from Γ ⊢ 𝑎 : Unit we can obtain an element of {★}, a prin-

ciple which contains no useful information. The substitution rule for tt states that
Δ ⊢ tt [𝛾] = tt : Unit, but this follows already from the 𝜂 principle. Equivalently, in

terms of the natural isomorphism, the forward maps 𝜄Γ are natural “for free” because

all elements of {★} are equal; thus the backward maps 𝜄−1

Γ (which determine tt) are
also automatically natural.
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Solution 3.1.

Γ ⊢ 𝜏0 type⇝ 𝐴 Γ.𝐴 ⊢ 𝜏1 type⇝ 𝐵

Γ ⊢ 𝑒0 : 𝐴⇝ 𝑎 Γ ⊢ 𝑒1 : 𝐵 [id.𝑎] ⇝ 𝑏 Γ ⊢ 𝐶 = Σ(𝐴, 𝐵) type
Γ ⊢ (pair 𝜏0 𝜏1 𝑒0 𝑒1) : 𝐶 ⇝ pairΓ,𝐴,𝐵 (𝑎, 𝑏)

Solution 3.7. By Slogan 3.2.7, we check (pair 𝑒0 𝑒1) and synthesize (fst 𝑒) and
(snd 𝑒).

unSigma(𝐶) = (𝐴, 𝐵) Γ ⊢ 𝑒0 ⇐ 𝐴⇝ 𝑎 Γ ⊢ 𝑒1 ⇐ 𝐵 [id.𝑎] ⇝ 𝑏

Γ ⊢ (pair 𝑒0 𝑒1) ⇐ 𝐶 ⇝ pair(𝑎, 𝑏)

Γ ⊢ 𝑒 ⇒ 𝐶 ⇝ 𝑝 unSigma(𝐶) = (𝐴, 𝐵)
Γ ⊢ (fst 𝑒) ⇒ 𝐴⇝ fst(𝑝)

Γ ⊢ 𝑒 ⇒ 𝐶 ⇝ 𝑝 unSigma(𝐶) = (𝐴, 𝐵)
Γ ⊢ (snd 𝑒) ⇒ 𝐵 [id.fst(𝑝)] ⇝ snd(𝑝)

In the above rules, unSigma is an algorithm that inverts Σ-types: given Γ ⊢ 𝐶 type
it returns the unique pair of types 𝐴, 𝐵 for which Γ ⊢ 𝐶 = Σ(𝐴, 𝐵) type, if they exist.

Solution 3.8. The fixed-point of the identity function Void → Void is a closed proof

of Void:
1 ⊢ Void type 1.Void ⊢ q : Void

1 ⊢ fix(q) : Void

Solution 3.9. Suppose there is a modelM for which TmM (1M,BoolM) has exactly
two elements. By Theorem 3.4.5 there is a function Tm𝑓 (1,Bool) : Tm(1,Bool) →
TmM (1M,BoolM), but this does not allow us to conclude that Tm(1,Bool) has exactly
two elements!

In Theorem 3.4.7, the existence of a function 𝑋 → ∅ allowed us to observe that

𝑋 = ∅, but the existence of a function 𝑋 → {★,★′} does not imply 𝑋 has exactly two

elements.

Solution 4.7. Define 𝑐𝑎 = 𝑐 𝑎.
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Solution 4.8. Define 𝑞 = uniq (𝑎1, 𝑝).

Solution 4.9. Define 𝑐𝑏 = subst 𝐶𝑎 𝑞 𝑐𝑎 .

Solution 4.10. We have 𝑐𝑏 : 𝐶𝑎 (𝑏, 𝑝) but 𝐶𝑎 (𝑏, 𝑝) = 𝐶 𝑎 𝑏 𝑝 by definition. We define

j as follows:

j : {𝐴 : U} (𝐶 : (𝑎 𝑏 : 𝐴) → Id(𝐴, 𝑎, 𝑏) → U) → ((𝑎 : 𝐴) → 𝐶 𝑎 𝑎 refl) →
(𝑎 𝑏 : 𝐴) (𝑝 : Id(𝐴, 𝑎, 𝑏)) → 𝐶 𝑎 𝑏 𝑝

j {𝐴} 𝐶 𝑐 𝑎 𝑏 𝑝 = subst (𝜆𝑥 → 𝐶 𝑎 (fst 𝑥) (snd 𝑥)) (uniq (𝑏, 𝑝)) (𝑐 𝑎)

Solution 4.11.

j 𝐶 𝑐 𝑎 𝑎 refl
= subst (𝜆𝑥 → 𝐶 𝑎 (fst 𝑥) (snd 𝑥)) (uniq (𝑎, refl)) (𝑐 𝑎) by Exercise 4.10

= subst (𝜆𝑥 → 𝐶 𝑎 (fst 𝑥) (snd 𝑥)) refl (𝑐 𝑎) by uniq def.eq.

= 𝑐 𝑎 by subst def.eq.

Solution 5.2. From 𝐵 : 𝐴→ HProp we have ℎ : (𝑎 : 𝐴) (𝑏0 𝑏1 : 𝐵 𝑎) → Id(𝐵 𝑎,𝑏0, 𝑏1).
Suppose 𝑓0, 𝑓1 : (𝑎 : 𝐴) → 𝐵 𝑎. We must construct an identification between them,

which is given by funext (𝜆𝑎 → ℎ 𝑎 (𝑓0 𝑎) (𝑓1 𝑎)).
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