Principles of Dependent Type Theory

Carlo Angiuli Daniel Gratzer
Indiana University Aarhus University
cangiuli@iu.edu gratzer@cs.au.dk

(2025-07-19)

This material will be published by Cambridge University Press as Principles of Dependent Type Theory by Carlo Angiuli and Daniel
Gratzer. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale, or use in
derivative works. © Carlo Angiuli and Daniel Gratzer 2024

mailto:cangiuli@iu.edu
mailto:gratzer@cs.au.dk

[Rake thudding against face]
Eeeuughhh

Robert Onderdonk Terwilliger Jr., Ph.D.
The Simpsons, Season 5 Episode 2, “Cape Feare”

This material will be published by Cambridge University Press as Principles of Dependent Type Theory by Carlo
Angiuli and Daniel Gratzer. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © Carlo Angiuli and Daniel Gratzer 2024

Changes

Below we summarize our major updates of this book.
2025-07-18

« Reformatted to Cambridge University Press specifications.

+ Added Preface.

+ Added Section 2.5.3 on coproduct types.

+ Revised Section 2.7 on propositions in extensional type theory.
« Revised Section 5.1 on propositional univalence.

« Revised Section 5.2 on homotopy type theory.

« Drafted Section 6.6 on canonicity for extensional type theory.
2025-04-30

« Removed a section from Chapter 5 on motivating univalence.
 Redrafted Section 2.7 on propositions in extensional type theory.

« Drafted Sections 6.1 to 6.5 on the semantics of type theory.
2024-08-29

+ Begin maintaining a change log.

+ Added Section 3.5 on the set model of extensional type theory.
+ Added solutions to selected exercises in Appendix B.

« Drafted Section 2.7 on propositions in extensional type theory.

« Drafted Chapter 5 on homotopy type theory.
2024-04-14

+ Added Chapter 1.

+ Added Chapter 2 on extensional type theory.

« Added Chapter 3 on metatheory and implementation.

+ Added Chapter 4 on intensional type theory.

+ Added Appendix A collecting the formal rules of type theory.

v0.2

v0.1

This material will be published by Cambridge University Press as Principles of Dependent Type Theory by Carlo
Angiuli and Daniel Gratzer. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © Carlo Angiuli and Daniel Gratzer 2024

Contents

Changes
Contents
Preface

1 Introduction
1.1 Uniform dependency: length-indexed vectors
1.2 Non-uniform dependency: computing arities
1.3 Proving type equations L.

2 Extensional type theory
2.1 The simply-typed lambda calculus
2.2 Towards the syntax of dependent type theory
2.3 The calculus of substitutions
2.4 Internalizing judgmental structure: IL, Y, Eq,Unit
2.5 Inductive types: Void, Bool, +,Nat
2.6 Universes: Uy, U, Uy, o o
2.7* Propositions and propositional truncation

3 Metatheory and implementation
3.1 A judgmental reconstruction of proof assistants
3.2 Metatheory for type-checking
3.3* A case study in elaboration: definitions
3.4 Models for metatheory
3.5* The set model of typetheory
3.6 Equality in extensional type theory is undecidable

4 Intensional type theory
4.1 Programming with propositional equality
4.2 Intensional identity types Lo oL
43 Limitations of the intensional identity type
4.4* Observational type theory (DRAFT)

5 Univalent type theories

iii

17
18
26
29
35
47
61
72

vi

A

B

Contents (2025-07-19)

5.1 Propositional univalence 164
5.2 Homotopy typetheory 172
5.3 Cubical type theory (DRAFT) 191
5.4* Computing with coercions and compositions (DRAFT) 209
Semantics of type theory (DRAFT) 221
6.1 Categories with families 223
6.2 Pullback squares and I, X, Eq, Unit 231
6.3 Orthogonality and Void, Bool, +,Nat 239
6.4 Cwfmorphisms and Up, Uy, Uy,o o000 256
6.5 Locally cartesian closed categories and coherence 266
6.6 Canonicityviagluing L o 0oL 287
6.7* A semantic definition of syntax 301
Martin-Lof type theory 303
Solutions to selected exercises 315

Bibliography 319

This material will be published by Cambridge University Press as Principles of Dependent Type Theory by Carlo
Angiuli and Daniel Gratzer. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © Carlo Angiuli and Daniel Gratzer 2024

Preface

Dependent type theory (henceforth just type theory) often appears arcane to outside
observers for a handful of reasons. First, as in the parable of the blind men and the
elephant, there are myriad perspectives on type theory. The family of languages in
this book, mutatis mutandis, can be accurately described as:

« the core language of assertions and proofs in proof assistants like Agda [Agda],
Rocq (formerly known as Coq) [Rocq], Lean [dMU21], and Nuprl [Con+85];

« a richly-typed functional programming language, as in Idris [Bral3] and Pie
[FC18], and the aforementioned proof assistants Agda [Stul6] and Lean [Chr23].

« an axiom system for reasoning synthetically in a number of mathematical set-
tings, including locally cartesian closed 1-categories [Hof95b], homotopy types
[Shu21], and Grothendieck co-topoi [Shu19];

« a structural [Tsel7], constructive [Mar82] foundation for mathematics as an
alternative to ZFC set theory [Alt23].

A second difficulty is that it is quite complex to even define type theory in a
precise fashion, for reasons we shall discuss in Section 2.2, and the relative merits
of different styles of definition—and even which ones satisfactorily define any object
whatsoever—have been the subject of great debate among experts over the years.

Third, much of the literature on type theory is highly technical—involving either
lengthy proofs by induction or advanced mathematical machinery—in order to account
for its complex definition and applications.

Finally, and perhaps most confusingly of all, dependent type theory is not a single
logic, language, axiom system, or foundation; it is a family of systems descended from
the 1971 work of philosopher Per Martin-L6f [Mar71],! whose notable members include
extensional type theory [Mar82], intensional type theory [Mar75], observational type
theory [AMS07; PT22], homotopy type theory [UF13; Rij22], and various cubical type
theories [CCHM18; Ang+21]. Indeed, every proof assistant and programming language
mentioned above is built atop a different core type theory.

In this book, we present a modern research perspective on the design of “full-
spectrum” dependent type theories, those descended from Martin-L6f’s 1971 theory.

Which of course has its own ancestors, including Russell’s doctrine of types [Rus03].

viii Preface (2025-07-19)

Our goal is to pose and begin to answer the following questions: What makes a good
type theory, and why are there so many? We focus on notions of equality in Martin-Lof
type theory as a microcosm of this broader question, studying how extensional, inten-
sional, observational, homotopy, and cubical type theories have provided increasingly
sophisticated answers to this deceptively simple question.

Although the design of type theory is inextricably linked to its applications (both
theoretical and practical), we stress that this book focuses only on the design of type
theory, as an object of study in its own right; there are many other resources for read-
ers interested in learning how to use type theory as a formal logic or programming
language. After studying this book, readers should be prepared to engage with con-
temporary research on type theory, and to understand the motivations behind various
extensions of Martin-L6f’s dependent type theory.

This book is in draft form. The authors welcome any feedback, includ-
ing typos and relevant citations.

How to use this book This book started as shared lecture notes for graduate courses
on dependent type theory taught simultaneously by the authors at Indiana University
and Aarhus University in Spring 2024. As such, it is designed to be read in a linear
fashion, with each chapter and section depending on many of the sections that come
before it, with a few exceptions as follows.

Sections marked with *, such as Section 2.7, are considered optional and are not
referenced until much later in the book if ever; these sections cover topics that we
consider important but nevertheless tangential to the immediate narrative. Smaller
tangents are confined to Remarks and Advanced Remarks, the latter requiring more
advanced mathematical prerequisites such as category theory. These often provide
useful context or intuition but are again not integral to the main narrative.

A one-semester graduate course should cover all of the non-optional material in
Chapters 1 to 4, which discuss extensional type theory, metatheory and implementation,
and intensional type theory. If taught at a brisk pace, this should leave a few weeks
for additional topics of the lecturer’s choice, which can be drawn from the remainder
of the book. Chapters 5 and 6 (on homotopy type theory and semantics, respectively)
depend on Chapters 1 to 4 but not on each other, and can be tackled in either order.
We expect that neither will fit in its entirety into the aforementioned one-semester
course, but we felt that the book would be incomplete without both present.

To the independent reader, we likewise strongly recommend reading the non-
optional sections of Chapters 1 to 4 in order, and seasoning to taste with some optional
sections and Chapters 5 and 6. Even the most targeted of reads should include a skim
of Chapter 2, which introduces the main ideas and notations used throughout.

(2025-07-19) ix

Figure 0.1: Dependency graph of sections.

For a more detailed account of cross-section dependencies, see Figure 0.1. Dashed
lines represent dependencies that are more superficial in nature; thick borders indicate
what we regard as the core sections of the book. Note that reading the book in textual
order satisfies all dependencies, but also that some sections can be safely deferred.

We end every chapter with a discussion of related literature, and encourage readers
to follow these pointers to learn about these topics in greater depth. We have also
attempted to include many references throughout the main body of the text, and the
lengthy bibliography should also be considered a useful resource for further study.

Finally, we have included some exercises throughout the text to reinforce important
concepts; for best results, the reader should work through at least some of these.
Solutions to selected exercises can be found in Appendix B.

Who is this book for? First and foremost, this book is intended as a resource for
early Ph.D. and advanced master’s students in computer science, mathematics, and
philosophy who wish to engage with current research in dependent type theory, such
as the syntax and semantics of homotopy, modal, and cubical type theories. We hope
that it also serves as a comprehensive resource for seasoned researchers in adjacent
areas, such as programming language theory or homotopy theory, who want to learn
about the technical principles guiding the design of type theories.

We have strived to minimize the book’s formal prerequisites besides a working
knowledge of basic discrete mathematics and, yes, the dreaded mathematical maturity.
We do not strictly assume prior familiarity with dependent type theory itself, but the
reader should ideally have a passing familiarity with using dependent type theory in
some proof assistant, as the book is light on background motivation.

In Chapter 1 we briefly motivate dependent types with a series of programming ex-
amples in Agda syntax which presuppose some basic familiarity with typed functional

X Preface (2025-07-19)

programming. Readers who lack this familiarity but have previously seen dependent
types should be able to safely skim Chapter 1 and start reading carefully at Chapter 2.

In Section 2.1 we assume the reader is familiar with judgments and inference
rules as a method of specifying simpler formal systems such as predicate logic or
the simply-typed lambda calculus. These topics are more than adequately covered
by a one-semester course on programming language theory or logic; by the first few
chapters of textbooks on programming language theory, such as Pierce [Pie02] or
Harper [Har16]; and by the first few chapters of many textbooks about using dependent
type theory, such as Rijke [Rij22].

Sections 3.1 to 3.3 discuss the implementation of type theory on computers, but
do not intend to assume much if any computer science expertise. Sections 3.2 and 3.6
make essential reference to computability and decidability but require only a very
superficial understanding of basic computability theory.

In Chapter 6 we revisit Chapters 2 and 3 using the language of category theory;
naturally, this chapter—and only this chapter—requires a working knowledge of basic
category theory as covered in a one-semester graduate course or the first four chapters
of Riehl [Rie16]. Readers without this prerequisite can simply skip Chapter 6, although
we hope that some will use this chapter as an invitation to learn category theory.

Notes to the expert We briefly remark on some editorial decisions that may surprise
experts in type theory. First, we emphasize that this book is about the design of type
theory, not how to use it. We therefore provide relatively few examples of working
within type theory, focusing instead on type theories qua mathematical objects in their
own right. This focus sets us apart from most textbooks on the subject, which take a
single theory for granted and explore its characteristics as a foundation of mathematics
and/or functional programming language.

In light of this focus, experts may be surprised to find that our presentation does
not explicitly rely on category theory. This was a difficult decision for the authors,
both of whom view type theory from a categorical perspective, but we believe it is
simply not feasible to insist that students begin their journey into type theory by first

(2025-07-19) xi

reading a book on category theory, and early attempts to simultaneously introduce
category theory and type theory felt unsatisfactory on both counts.

That said, we do not attempt in any way to hide the presence of categories, functors,
and naturality in the foundations of type theory. On the contrary, in Chapter 2 we define
various connectives by the functors they (co)represent, phrased in more elementary
language. We hope our exposition is accessible to readers encountering type theory
for the first time, but also plainly categorical in flavor to those with more mathematical
background. Moreover, Chapter 6 revisits many of the topics of Chapter 2 from a
purely categorical perspective.

Our perspective on type theory is deeply algebraic: we regard the judgments of
type theory as being indexed by well-formed contexts and types, all defined only up
to definitional equality. As a result, it is straightforward for us to introduce the notion
of a model of type theory in Section 3.4, of which syntax is the initial example.

Finally, we have aimed to confine the non-optional sections of this book to fit
within a semester of brisk lectures. For this reason we have elided numerous topics
of interest, including a systematic treatment of inductive types, more discussion of
elaboration, proofs of normalization, and countless interesting variations of type theory.
Particularly painful omissions include a discussion of quotient types in Chapter 2 and
an explanation of univalence as a universal property of the universe in Chapter 5.

Acknowledgements

We are grateful to Lars Birkedal for his comments and suggestions on drafts of this book,
and to Sam Tobin-Hochstadt for many insightful conversations with the first author
over lunch that helped us refine our narrative. We thank the students who participated
in Modern Dependent Types (CSCI-B619) at Indiana University and Modern Dependent
Type Theory at Aarhus University in Spring 2024—the courses which prompted us to
write this book—and the participants in an abbreviated lecture series given at Oxford
University by the second author during the 2024 Michaelmas term. We also thank
Evan Cavallo and Ana Bove for locating and scanning a physical copy of Tasistro’s
licentiate thesis [Tas93].

Many readers have suggested corrections and improvements to earlier drafts of
this book. We are particularly grateful to Thierry Coquand, who informed us of (and
scanned for us!) many lesser-known historical references, and Naim Favier, who gave
us detailed feedback on an early draft of Chapter 6. We also thank Madeleine Birchfield,
Nathan Corbyn, Fred Fu, Rasmus Kirk Jakobsen, Max Jenkins, Artem Iurchenko,
Sanad Kadu, Pavel Kovalev, Kwing Hei Li, Amélia Liao, Mathias Adams Mgller, Egor
Namakonov, Thomas Porter, June Roussea, Zixiu Su, Nicolas Wu, and Yafei Yang for

xii Preface (2025-07-19)

pointing out typos and other issues.

Finally, we thank the first author’s cat Hannah for diligently supervising many
critical video calls during the preparation of this book.

This material will be published by Cambridge University Press as Principles of Dependent Type Theory by Carlo
Angiuli and Daniel Gratzer. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © Carlo Angiuli and Daniel Gratzer 2024

Introduction

The other five chapters of this book define, motivate, and analyze a series of increasingly
complex dependent type theories from first principles. This chapter has a rather
different purpose: to introduce the basic concepts of full-spectrum dependent type
theory—type and term dependency, definitional equality, and propositional equality—
from the user’s perspective. After all, it is difficult to understand abstract concepts
without some awareness of how they may be applied.

For this task we must fix a perspective on dependent type theory, and for better
or for worse we choose to view it in this chapter as a typed functional programming
language, using Agda syntax [Agda]. Any choice has the effect of potentially alienating
some readers, but we hope that most readers are able to at least partially follow the
narrative. We assure you that the remainder of the book is rather different from this
chapter, and is quite self-contained albeit perhaps lacking in top-level motivation. In
particular, the remainder of the book does not assume familiarity with programming.

In this chapter In Section 1.1 we introduce dependent types through the traditional
example of length-indexed vectors. In Section 1.2 we turn our attention to full-spectrum
dependency and the role of definitional equality, studying a dependently-typed im-
plementation of sprintf. Finally, in Section 1.3 we discover that typing even simple
list-processing functions can require inductive equational reasoning, motivating us to
introduce propositional equality and the propositions as types correspondence between
typed functional programming and formal logic.

Goals of the chapter By the end of this chapter, you will be able to:

+ Give examples of full-spectrum dependency.

+ Explain the role of definitional equality in type-checking, and how and why it
differs from ordinary closed-term evaluation.

« Explain the role of propositional equality in type-checking.

2 Introduction (2025-07-19)

1.1 Uniform dependency: length-indexed vectors

What does it mean for a programming language to be typed? Throughout this book, we
will regard a language’s (static) type system as its grammar, not as one of many potential
static analyses that might be enabled or disabled.! Indeed, just as a parser may reject
as nonsense a program whose parentheses are mismatched, or an untyped language’s
interpreter may reject as nonsense a program containing unbound identifiers, a type-
checker may reject as nonsense the program 1 + "hi" on the grounds that—much like
the previous two examples—there is no way to successfully evaluate it.

A type system divides a language’s well-parenthesized, well-scoped expressions
into a collection of sets. The expressions of type Nat are those that “clearly” compute
natural numbers, such as literal natural numbers (0, 1, 120), arithmetic expressions
(1+1), and fully-applied functions that return natural numbers (fact 5, atoi "120"); the
expressions of type String are those that clearly compute strings ("hi", itoa 5); and
for any types A and B, the expressions of type A — B are those that clearly compute
functions that, when passed an input of type A, clearly compute an output of type B.

What do we mean by “clearly”? One typically insists that type-checking be fully
automated, much like parsing and identifier resolution. Given that determining the
result of a program is in general undecidable, any automated type-checking process will
necessarily compute a conservative underapproximation of the set of programs that
compute (e.g.) natural numbers. (Likewise, languages may complain about unbound
identifiers even in programs that can be evaluated without a runtime error!)

The goal of a type system is thus to rule out as many undesirable programs as
possible without ruling out too many desirable ones, where both of these notions
are subjective depending on which runtime errors one wants to rule out and which
programming idioms one wants to support. Language designers engage in the nev-
erending process of refining their type systems to rule out more errors and accept
more correct code. Full-spectrum dependent types can be seen as an extreme point in
this design space in the sense that they can capture highly sophisticated invariants of
functional programs, as we will see momentarily.

Every introduction to dependent types starts with the example of vectors, or lists
with specified length. We start one step earlier by considering lists with a specified
type of elements, a type which already exhibits a basic form of dependency.

Parameterizing by types One of the most basic data structures in functional pro-
gramming languages is the list, which is either empty (written []) or consists of an

IThe latter perspective is valid, but we wish to draw a sharp distinction between types qua (structural)
grammar, and static analyses that may be non-local, non-structural, or non-substitutive in nature.

(2025-07-19) Uniform dependency: length-indexed vectors 3

element x adjoined to a list xs (written x = xs). Typed languages typically require that
a list’s elements all have the same type, in order to track what operations they support.

The simplest way to record this information is to have a separate type of lists for
each type of element: a ListOfNats is either empty or a Nat adjoined to a ListOfNats,
a ListOfStrings is either empty or a String adjoined to a ListOfStrings, etc.

data ListOfNats : Set’ where
[] : ListOfNats
_=: Nat — ListOfNats — ListOfNats

data ListOfStrings : Set where
[] : ListOfStrings
u: String — ListOfStrings — ListOfStrings

This strategy clearly results in repetition at the level of the type system, but it
also causes code duplication because operations that work uniformly for any type
of elements (such as reversing a list) must be defined twice, once each for the two
apparently unrelated types ListOfNats and ListOfStrings.

In much the same way that functions—terms indexed by terms—promote code
reuse by allowing programmers to write a series of operations once and perform them
on many different inputs, we can solve both problems described above by allowing
types and terms to be uniformly parameterized by types. For example, we may consider
the types ListOfNats and ListOfStrings as two instances (List Nat and List String) of
a single family of types List as follows:

data List (A : Set) : Set where
[]:List A
2 :A—> List A —> List A

and any operation that works for all element types A, such as returning the first (or all
but first) element of a list, can be written as a family of operations:

head : (A : Set) — List A —» A
head A [] = error "List must be non-empty."
head A (x = xs) = x

tail : (A : Set) — List A — List A
tail A [] = error "List must be non-empty."
tail A (x = xs) = xs

2For the time being, the reader should understand — : Set as notation meaning “~ is a type.”

4 Introduction (2025-07-19)

By partially applying head to its type argument, we see that head Nat has type
List Nat — Nat and head String has type List String — String, and the expression
1+ (head Nat (1 = [])) has type Nat whereas 1+ (head String ("hi" = [])) is ill-typed
because the second input to + has type String.

Parameterizing types by terms The perfectionist reader may find the List A type
unsatisfactory because it does not prevent runtime errors caused by applying head
and tail to the empty list []. We cannot simply augment our types to track which lists
are empty, because 2 = 1 = [] and 1 = [] are both nonempty but we can apply tail Nat
twice to the former before encountering an error, but only once to the latter.
Instead, we parameterize the type of lists not only by their type of elements but
also by their length—a term of type Nat—producing the following family of types:*®

data Vec (A : Set) : Nat — Set where
[1:VecAO
::{n:Nat} - A— Vec An — Vec A (sucn)

Types parameterized by terms are known as dependent types.

Now the types of concrete lists are more informative—(2 = 1 = []) : Vec Int 2 and
(1= []) : Vec Int 1—but more importantly, we can give head and tail more informative
types which rule out the runtime error of applying them to empty lists. We do so by
revising their input type to Vec A (suc n) for some n : Nat, which is to say that the
vector has length at least one, hence is nonempty:

head : {A : Set} {n: Nat} — Vec A (sucn) —» A
-- head [] is impossible
head (x :: xs5) = x

tail : {A: Set} {n: Nat} — Vec A (sucn) — VecAn
-- tail [] is impossible
tail (x = xs) = xs

Consider now the operation that concatenates two vectors:
append : {A : Set} {n : Nat} {m : Nat} —» VecAn — VecAm — Vec A (n+m)

Unlike our previous examples, the output type of this function is indexed not by a
variable A or n, nor a constant Nat or 0, nor even a constructor suc —, but by an
expression n + m. This introduces a further complication, namely that we would like

3Curly braces {n : Nat} indicate implicit arguments automatically inferred by the type-checker; the
term suc n constructs the successor 1 + n of a natural number n : Nat.

(2025-07-19) Uniform dependency: length-indexed vectors 5

this expression to be simplified as soon as n and m are known. For example, if we apply
append to two vectors of length one (n = m = 1), then the result will be a vector of
length two (n+m =1+ 1 = 2), and we would like the type system to be aware of this
fact in the sense of accepting as well-typed the expression head (tail (append [I’))
for I and I’ of type Vec Nat 1.

Because head (tail x) is only well-typed when x has type Vec A (suc (suc n)) for
some n : Nat, this condition amounts to requiring that the expression append [I’ not
only has type Vec A ((suc 0) + (suc 0)) as implied by the type of append, but also type
Vec A (suc (suc 0)) as implied by its runtime behavior. In short, we would like the
two type expressions Vec A (1 + 1) and Vec A 2 to denote the same type by virtue of
the fact that 1+ 1 and 2 denote the same value. In practice, we achieve this by allowing
the type-checker to evaluate expressions in types during type-checking.

In fact, the length of a vector can be any expression whatsoever of type Nat.
Consider filter, which takes a function f : A — Bool and a list and returns the sublist
for which f returns true. If the input list has length n, what is the length of the output?

filter : {A: Set} {n: Nat} — (A — Bool) —» VecAn — Vec A |?

After a moment’s thought we realize the length is not a function of n at all, but rather
a recursive function of the input function and list:

filter : {A : Set} {n: Nat} — (f : A — Bool) — (I : Vec An) —
Vec A (filterLen fI)

filterLen : {A : Set} {n : Nat} —» (A — Bool) — Vec A n — Nat
filterLen f [] =0
filterLen f (x = xs) = if f(x) then suc (filterLen f xs) else filterLen f xs

As before, once f and [are known the type of filter f I : Vec A (filterLen f I) will
simplify by evaluating filterLen f [, but as long as either remains a variable we cannot
learn much by computation. Nevertheless, filterLen has many properties of interest:
filterLen f [is at most the length of [, filterLen (Ax — false) [is always 0 regardless
of I, etc. We will revisit this point in Section 1.3.

Remark 1.1.1. If we regard Nat and + as a user-defined data type and recursive
function on it, as type theorists are wont to do, then filter’s type using filterLen is
entirely analogous to append’s type using +. We wish to emphasize that, whereas one
could easily imagine natural numbers and addition being a privileged component of
the type system, filter demonstrates that type indices may need to contain arbitrary
user-defined recursive functions. o

6 Introduction (2025-07-19)

Another approach? If our only goal was to eliminate runtime errors from head
and tail, we might reasonably feel that dependent types have overcomplicated the
situation—we needed to introduce a new function just to write the type of filter! And
indeed there are simpler ways of keeping track of the length of lists, as follows.

First let us observe that a lower bound on a list’s length is sufficient to guar-
antee it is nonempty and thus that an application of head or tail will succeed; this
allows us to trade precision for simplicity by restricting type indices to be arithmetic
expressions. Secondly, in the above examples we can perform type-checking and
“length-checking” in two separate phases, where the first phase replaces every occur-
rence of Vec A n with List A before applying a standard non-dependent type-checking
algorithm. This is possible because we can regard the dependency in Vec A n as
expressing a computable refinement—or subset—of the non-dependent type of lists,
namely {/ : List A | length [= n}.

Combining these insights, we can by and large automate length-checking by
recasting the type dependency of Vec in terms of arithmetic inequality constraints
over an ML-style type system, and checking these constraints with SMT solvers and
other external tools. At a very high level, this is the approach taken by systems such
as Dependent ML [Xi07] and Liquid Haskell [Vaz+14]. Dependent ML, for instance,
type-checks the usual definition of filter at the following type, without any auxiliary
filterLen definition:

filter : VecAm — ({n:Nat | n < m} X Vec A n)

Refinement type systems like these have proven very useful in practice and continue
to be actively developed, but we will not discuss them any further for the simple reason
that, although they are a good solution to head/tail and many other examples, they
cannot handle full-spectrum dependency as discussed below.

1.2 Non-uniform dependency: computing arities

Thus far, all our examples of (type- or term-) parameterized types are uniformly
parameterized, in the sense that the functions List : Set — Set and Vec A : Nat — Set
do not inspect their arguments; in contrast, ordinary term-level functions out of Nat
such as fact : Nat — Nat can and usually do perform case-splits on their inputs. In
particular, we have not yet considered any families of types in which the head, or
top-level, type constructor (—, Vec, Nat, etc.) differs between indices.

A type theory is said to have full-spectrum dependency if it permits the use of
non-uniformly term-indexed families of types, such as the following Nat-indexed family:

(2025-07-19) Non-uniform dependency: computing arities 7

nary : Set — Nat — Set
nary A0=A
nary A (sucn) =A — nary An

Although Vec Nat and nary Nat are both functions Nat — Set, the latter’s head type
constructor varies between indices: nary Nat 0 = Nat but nary Nat 1 = Nat — Nat.

Using nary to compute the type of n-ary functions, we can now define not only
varadic functions but even higher-order functions taking variadic functions as input,
such as apply which applies an n-ary function to a vector of length n:

apply : {A: Set} {n:Nat} - naryAn— VecAn— A
apply x [] =x
apply f (x = xs) = apply (f x) xs

For A = Nat and n = 1, apply applies a unary function Nat — Nat to the head element
of a Vec Nat 1; for A = Nat and n = 3, it applies a ternary function Nat — Nat —
Nat — Nat to the elements of a Vec Nat 3:

apply suc (1 = []) : Nat -- evaluates to 2

apply _+_:Vec Nat 2 — Nat

apply _+_(1=2=[]):Nat --evaluatesto3

apply (Axyz > x+y+z) (1:2:3=][]):Nat --evaluatesto6

Although apply is not the first time we have seen a function whose type involves a
different recursive function—we saw this already with filter—this is our first example of
a function that cannot be straightforwardly typed in an ML-style type system. Another
way to put it is that nary An — Vec A n — A is not the refinement of an ML type
because nary A n is sometimes but not always a function type.

Remark 1.2.1. For the sake of completeness, it is also possible to consider non-
uniformly type-indexed families of types, which go by a variety of names including
non-parametric polymorphism, intensional type analysis, and typecase [HM95]. These
often serve as optimized implementations of uniformly type-indexed families of types;
a classic non-type-theoretic example is the C++ family of types std: :vector for
dynamically-sized arrays, whose std: :vector<bool> instance may be compactly
implemented using bitfields. 3

To understand the practical ramifications of non-uniform dependency, we will turn
our attention to a more complex example: a basic implementation of sprintf in Agda
(Figure 1.1). This function takes as input a String containing format specifiers such as
%u (indicating a Nat) or %s (indicating a String), as well as additional arguments of the

8 Introduction (2025-07-19)

data Token : Set where
char : Char — Token
intTok : Token
natTok : Token
chrTok : Token
strTok : Token

lex : List Char — List Token

lex [] =[]

lex (’%” =% = cs) = char ’%’ = lex cs
lex (’%’ = ’d’ = ¢s) = intTok = lex cs
lex ("%’ = ’u’ = ¢s) = natTok = lex cs
lex ("% = ’c’ = cs) = chrTok = lex cs
lex ("%’ = ’s’ = cs) = strTok = lex cs

lex (¢ :: ¢s) = char ¢ = lex cs

args : List Token — Set

args [] = String

args (char _ : toks) = args toks

args (intTok = toks) = Int — args toks
args (natTok = toks) = Nat — args toks
args (chrTok = toks) = Char — args toks
args (strTok = toks) = String — args toks

printf Type : String — Set
printf Type s = args (lex (toList s))

sprintf : (s : String) — printfType s
sprintf s = loop (lex (toList s)) ""
where
loop : (toks : List Token) — String — args toks
loop [] acc = acc
loop (char c = toks) acc = loop toks (acc ++ fromList (c = []))
loop (intTok = toks) acc = Ai — loop toks (acc ++ showlnt i)
loop (natTok = toks) acc = An — loop toks (acc ++ showNat n)
loop (chrTok = toks) acc = Ac — loop toks (acc ++ fromList (c = []))
loop (strTok = toks) acc = As — loop toks (acc ++ s)

Figure 1.1: A basic Agda implementation of sprintf.

(2025-07-19) Non-uniform dependency: computing arities 9

appropriate type for each format specifier present, and returns a String in which each
format specifier is replaced by the corresponding argument rendered as a String.

sprintf "%s %u" "hi" 2 : String -- evaluates to "hi 2"

sprintf "%s" : String — String

sprintf "nat %u then int %d then char %c" : Nat — Int — Char — String
sprintf "%u" 5 : String -- evaluates to "5"

sprintf "%u%% of %s%c" 3 "GD" 'P’ : String -- evaluates to "3% of GDP"

Our implementation uses various types and functions imported from Agda’s stan-
dard library, notably toList : String — List Char which converts a string to a list of
characters (length-one strings *x’). It consists of four main components:

« adata type Token which enumerates all relevant components of the input String,
namely format specifiers (such as natTok : Token for %u and strTok : Token for
%s) and literal characters (char ’x’ : Token);

« a function lex which tokenizes the input string, represented as a List Char, from
left to right into a List Token for further processing;

« a function args which converts a List Token into a function type containing the
additional arguments that sprintf must take; and

« the sprintf function itself.
Let us begin by convincing ourselves that our first example type-checks:
sprintf "%s %u" "hi" 2 : String -- evaluates to "hi 2"

Because sprintf : (s : String) — printfType s, the partial application sprintf "%s %u"
has type printf Type "%s %u". By evaluation, the type-checker can see that

printfType "%s %u" = args (strTok :: char ’ ’ = natTok = [])

= String — Nat — String

and thus sprintf "%s %u" : String — Nat — String; the remainder of the expression
type-checks easily.

Now let us consider the definition of sprintf, which uses a helper function loop :
(toks : List Token) — String — args toks whose first argument stores the Tokens yet
to be processed, and whose second argument is the String accumulated from printing
the already-processed Tokens. What is needed to type-check the definition of loop?
We can examine a representative case in which the next Token is natTok:

loop (natTok = toks) acc = An — loop toks (acc ++ showNat n)

10 Introduction (2025-07-19)

Note that toks : List Token and acc : String are (pattern) variables, and the right-hand
side ought to have type args (natTok : toks). We can type-check the right-hand
side—given that _++_ : String — String — String is string concatenation and
showNat : Nat — String prints a natural number—and observe that it has type
Nat — args toks by the type of loop.

Type-checking this clause thus requires us to reconcile the right-hand side’s ex-
pected type args (natTok = toks) with its actual type Nat — args toks. Although these
type expressions are quite dissimilar—one is a function type and the other is not—the
definition of args contains a promising clause:

args (natTok = toks) = Nat — args toks

As in our earlier example of Vec A (1 + 1) and Vec A 2 we would like the type
expressions args (natTok = toks) and Nat — args toks to denote the same type, but
unlike the equation 1+ 1 = 2, here both sides contain a free variable toks so we cannot
appeal to evaluation, which is a relation on closed terms (ones with no free variables).

One can nevertheless imagine some form of symbolic evaluation relation that
extends evaluation to open terms and can equate these two expressions. In this
particular case, this step of closed evaluation is syntactically indifferent to the value of
toks and thus can be safely applied even when toks is a variable. (Likewise, to revisit
an earlier example, the equation filterLen f [] = 0 should hold even for variable f.)

Thus we would like the type expressions args (natTok = toks) and Nat — args toks
to denote the same type by virtue of the fact that they symbolically evaluate to the same
symbolic value, and to facilitate this we must allow the type-checker to symbolically
evaluate expressions in types during type-checking. The congruence relation on
expressions so induced is known as definitional equality because it contains defining
clauses like this one.

Remark 1.2.2. Semantically we can justify this equation by observing that for any
closed instantiation toks of toks, args (natTok = toks) and Nat — args toks will
evaluate to the same type expression—at least, once we have defined evaluation of
type expressions—and thus this equation always holds at runtime. But just as (for
reasons of decidability) the condition “when this expression is applied to a natural
number it evaluates to a natural number” is a necessary but not sufficient condition
for type-checking at Nat — Nat, we do not want to take this semantic condition as
the definition of definitional equality. It is however a necessary condition assuming
that the type system is sound for the given evaluation semantics. (See Section 3.4.) ¢

Definitional equality is the central concept in full-spectrum dependent type theory
because it determines which types are equal and thus which terms have which types.

(2025-07-19) Proving type equations 11

In practice, it is typically defined as the congruence closure of the f-like reductions
(also known as 8¢ 1-reductions) plus y-equivalence at some types; see Chapter 2.

1.3 Proving type equations

Unfortunately, in light of Remark 1.2.2, there are many examples of type equations
that are not direct consequences of ordinary or even symbolic evaluation. On occasion
these equations are of such importance that researchers may attempt to make them
definitional—that is, to include them in the definitional equality relation and adjust
the type-checking algorithm accordingly [AMB13]. But such projects are often major
research undertakings, and there are even examples of equations that can be definitional
but are in practice best omitted due to efficiency or usability issues [Alt+01].
Let us turn once again to the example of filter from Section 1.1.

filter : {A: Set} {n: Nat} —» (f : A —> Bool) — (I : Vec An) —
Vec A (filterLen fI)

filterLen : {A : Set} {n : Nat} —» (A — Bool) — Vec An — Nat
filterLen f []1 =0
filterLen f (x = xs) = if f(x) then suc (filterLen f xs) else filterLen f xs

Suppose for the sake of argument that we want the operation of filtering an arbitrary
vector by the constantly false predicate to return a Vec A 0:

filterAll : {A : Set} {n: Nat} — VecAn — Vec A0
filterAll [= filter (Ax — false) I -- does not type-check

The right-hand side above has type Vec A (filterLen (Ax — false) [) rather than
Vec A 0 as desired, and here the expression filterLen (Ax — false) [cannot be simplified
by (symbolic) evaluation because filterLen computes by recursion on the vector, here
a variable [. However, by induction on the possible instantiations of [: Vec A n, either:

« [=[], in which case filterLen (Ax — false) [] is definitionally equal to (in fact,
evaluates to) 0; or

« I = x = xs, in which case we have the definitional equalities

filterLen (Ax — false) (x : xs)
= if false then suc (filterLen (Ax — false) xs) else filterLen (Ax — false) xs

= filterLen (Ax — false) xs

12 Introduction (2025-07-19)

for any x and xs. By the inductive hypothesis on xs, filterLen (Ax — false) xs =0
and thus filterLen (Ax — false) (x = xs) = 0 as well.

By adding a type of provable equations a = b to our language, we can represent
this inductive proof as a recursive function computing filterLen (Ax — false) [= 0:

= :{A:Set} > A— A — Set
refl : {A:Set} {x: A} > x=x

lemma : {A: Set} {n : Nat} — (I : Vec A n) — filterLen (Al — false) [=0
lemma [] = refl
lemma (x = xs) = lemma xs

The [] clause of lemma ought to have type filterLen (Al — false) [] = 0, which is
definitionally equal to the type 0 = 0 and thus refl type-checks. The (x = xs) clause
must have type filterLen (Al — false) (x = xs) = 0, which is definitionally equal to
filterLen (Al — false) xs = 0, the expected type of the recursive call lemma xs.

Now armed with a function lemma that constructs for any [: Vec A n a proof that
filterLen (Al — false) I = 0, we can justify casting from the type Vec A (filterLen (Al —
false) I) to Vec A 0. The dependent casting operation that passes between provably
equal indices of a dependent type (here Vec A : Nat — Set) is typically called subst:

subst: {A:Set} {xy: A} > (P:A— Set) > x=y — P(x) — P(y)

filterAll : {A : Set} {n: Nat} —» VecAn — Vec A0
filterAll {A} I = subst (Vec A) (lemma [) (filter (Ax — false) [)

Remark 1.3.1. The subst operation above is a special case of a much stronger principle
stating that the two types P(x) and P(y) are isomorphic whenever x = y: we can not
only cast P(x) — P(y) but also P(y) — P(x) by symmetry of equality, and both
round trips cancel. So although a proof x = y does not make the types P(x) and
P(y) definitionally equal, they are nevertheless equal in the sense of having the same
elements up to isomorphism. o

Uses of subst are very common in dependent type theory; because dependently-
typed functions can both require and ensure complex invariants, one must frequently
prove that the output of some function is a valid input to another.* Crucially, although
subst is an “escape hatch” that compensates for the shortcomings of definitional

4A more realistic variant of our lemma might account for any predicate that returns false on all the
elements of the given list, not just the constantly false predicate. Alternatively, one might prove that for
any s : String, the final return type of sprintf s is String.

(2025-07-19) Proving type equations 13

equality, it cannot result in runtime errors—unlike explicit casts in most programming
languages—because casting P(x) — P(y) requires a machine-checked proof that x = y.

The dependent type x = y is known as propositional equality, and it is perhaps
the second most important concept in dependent type theory because it is the source
of all non-definitional type equations visible within the theory. There are many
formulations of propositional equality; they all implement _=_, refl, and subst but
differ in many other respects, and each has unique benefits and drawbacks. We will
discuss propositional equality at length in Chapters 4 and 5.

To foreshadow the design space of propositional equality, consider that the subst
operator may itself be subject to various definitional equalities. If we apply filterAll
to a closed vector Is, then lemma Is will evaluate to refl, so filterAll Is is definitionally
equal to subst (Vec A) refl (filter (Ax — false) Is). At this point, filter (Ax — false) Is
already has the desired type Vec A 0 because filterLen (Ax — false) Is evaluates to 0,
and thus the two types involved in the cast are now definitionally equal. Ideally the
subst term would now disappear having completed its job, and indeed the definitional
equality subst P refl x = x does hold for many versions of propositional equality.

Programming and proving The propositional equality type a = b has a rather
different flavor than Nat, A — B, Vec A n, printfType s, and all the other types we
have seen so far. This is perhaps most evident in our choice of terminology: whereas
terms of the latter types all represent data or computations, terms of type a = b are
machine-checked proofs, intended not as computations but as justifications for casts.

Indeed, as the reader may already know, dependent type theory is not just a
typed functional programming language but also an expressive higher-order logic
implemented in many modern proof assistants such as Lean [dMU21] and Rocq [Rocq].
This is certainly convenient in practice; as we saw in filterAll, proving theorems quickly
becomes an important ingredient of dependently-typed programming.

What is surprising is not that programming and proving are in symbiosis, but that
they are in fact two sides of the same coin—terms are simultaneously programs and
proofs, and types are simultaneously program specifications and logical propositions—a
remarkable fact known by many names, including the propositions as types correspon-
dence, the proofs as programs correspondence, the Curry-Howard correspondence, and
the Brouwer—Heyting—Kolmogorov interpretation.

We have already witnessed the proofs as programs correspondence at work in
lemma, where we rendered a proof by induction on vectors as a recursive function

lemma : {A: Set} {n: Nat} — (I : Vec A n) — filterLen (Al — false) [=0

where type-checking the function’s clauses amounts to proof-checking the inductive
argument. We can go one step further: if lemma is a dependent function that given any

14 Introduction (2025-07-19)

input [: Vec A n produces a proof of filterLen (Al — false) [= 0, then it is also a proof
that for all | : Vec A n, filterLen (Al — false) I = 0. More generally, any dependent
function f : (x : A) — B(x) is simultaneously a proof of the proposition Vx : A. B(x).

Dependent function types are but one of the many types with a secret life as
a logical connective. As a second example, non-dependent function types A — B
correspond logically to implications A = B, as in the following proposition asserting
that for all m, n : Nat, if suc m = suc n, then m = n.

suclnjective : {m n: Nat} — (sucm=sucn) > m=n

Why? To know the antecedent suc m = suc n is to have a proof p : suc m = suc n, in
which case suclnjective p : m = n is a proof of the consequent m = n.

More examples will arise as we become acquainted with more types, but we provide
just one more for illustration. Given types A and B, expressions of product type A X B
are pairs (a,b) of a : A and b : B. Logically, product types A X B correspond to
conjunctions A A B, as to have a proof of a conjunction A A B is to have proofs of both
A and of B. Conversely, the first and second projection functions fst : (A X B) — A
and snd : (A X B) — B prove that A A B implies A and, separately, implies B.

Remark 1.3.2. There are several senses in which proofs correspond to programs and
propositions to types. The most straightforward but superficial correspondence is the
observation that the natural deduction rules governing (e.g.) logical implication are
formally identical to the typing rules governing functions [How80]. From a philo-
sophical perspective, the meaning explanations of Martin-L6f [Mar82] describe why,
following the tenets of intuitionism, programming and constructive proof can be seen
as one and the same activity. Finally, from a mathematical perspective, one can regard
type theory as a formal logic which admits an interpretation in computable functions
[Hyl82]. (See Section 3.4 for a brief discussion of the latter.) o

Although many types have clear interpretations as both program specifications
and logical propositions, we note that some types have an obvious bias toward only
one of the two readings. For example, Nat has a clear meaning in terms of data but
not as a proposition, whereas a = b has a clear meaning as a proposition but not as
data (see however Chapter 5!). We revisit this important point in Section 2.7; for now
we simply remark that the propositions as types correspondence has played a central
role in the advancement of both logic and programming languages.

(2025-07-19) Proving type equations 15

Further reading

Our four categories of dependency—types/terms depending on types/terms—are remi-
niscent of the lambda cube of generalized type systems in which one augments the
simply-typed lambda calculus (whose functions exhibit term-on-term dependency)
with any combination of the remaining three forms of dependency [Bar91]; adding all
three yields the full-spectrum dependent type theory known as the calculus of construc-
tions [CH88]. However, the technical details of this line of work differ significantly
from our presentation in Chapter 2.

The propositions as types correspondence exists in many forms and has been
extended by researchers over decades to encompass a wide range of logical and pro-
gramming constructs. Book-length expositions include Proofs and Types [GLT89] and
PROGRAM = PROOF [Mim20]. Despite its importance to type theory we will discuss it
only once more, in Section 2.7.

The code in this chapter is written in Agda syntax [Agda]. For more on dependently-
typed programming in Agda, see Verified Functional Programming in Agda [Stul6];
for a more engineering-oriented perspective on dependent types, see Type-Driven
Development with Idris [Bral7]. The sprintf example in Section 1.2 is inspired by the
paper Cayenne — A Language with Dependent Types [Aug99]. Conversely, to learn about
using Agda as a proof assistant for programming language theory, see Programming
Language Foundations in Agda [WKS22].

This material will be published by Cambridge University Press as Principles of Dependent Type Theory by Carlo
Angiuli and Daniel Gratzer. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © Carlo Angiuli and Daniel Gratzer 2024

Extensional type theory

In order to understand the subtle differences between modern dependent type theories,
we must first study the formal definition of a dependent type theory as a mathemat-
ical object. We will then be prepared for Chapter 3, in which we consider various
mathematical properties of type theory—particularly in connection to definitional
and propositional equality—and how they affect computer implementations of type
theory. In this chapter we therefore present the judgmental theory of Martin-Lof’s
extensional type theory [Mar82], one of the canonical variants of dependent type theory.
We strongly suggest following the exposition rather than simply reading the rules, but
the rules are collected for convenience in Appendix A (ignoring the rules marked with
arm), which are present only in intensional type theory).

To focus our discussion we do not attempt to give a comprehensive account of the
syntax of type theories, nor do we present any of the many alternative methods of
defining type theory, some of which are more efficient (but more technical) than the
one we present here. These questions lead to the fascinating and deep area of logical
frameworks which we must regrettably leave for a different course.

(See also Chapter 6. J

In this chapter In Section 2.1 we recall the concepts of judgments and inference
rules in the setting of the simply-typed lambda calculus. In Section 2.2 we consider
how to adapt these methods to the dependent setting, and in Section 2.3 we develop
these ideas into the basic judgmental structure of dependent type theory, in which
substitution plays a key role. In Section 2.4 we extend the basic rules of type theory
with rules governing dependent products, dependent sums, extensional equality, and
unit types. We argue that these connectives can be understood as internalizations of
judgmental structure, a perspective which provides a conceptual justification of these
connectives’ rules. In Section 2.5 we define several inductive types—the empty type,
booleans, coproducts, and natural numbers—and explain how and why these types do
not fit the pattern of the previous section. In Section 2.6 we discuss large elimination,
which is implicit in our examples of full-spectrum dependency from Section 1.2, and its
internalization via universe types. Finally, in Section 2.7 we reconsider the propositions
as types correspondence and argue that only certain types are logical propositions.

Goals of the chapter By the end of this chapter, you will be able to:

18 Extensional type theory (2025-07-19)

+ Define the core judgments of dependent type theory, and explain how and why
they differ from the judgments of simple type theory.

« Explain the role of substitutions in the syntax of dependent type theory.

« Define and justify the rules of the core connectives of type theory.

2.1 The simply-typed lambda calculus

The theory of typed functional programming is built on extensions of a core language
known as the simply-typed lambda calculus, which supports two types of data:

« functions of type A — B (for any types A, B): we write Ax.b for the function
that sends any input x of type A to an output b of type B, and write f a for the
application of a function f of type A — B to an input a of type A; and

« ordered pairs of type A X B (for any types A, B): we write (a,b) for the pair
of a term a of type A with a term b of type B, and write fst(p) and snd(p)
respectively for the first and second projections of a pair p of type A X B.

It can also be seen as the implication—conjunction fragment of intuitionistic propo-
sitional logic, or as an axiom system for cartesian closed categories.

In this section we formally define the simply-typed lambda calculus as a collec-
tion of judgments presented by inference rules, in order to prepare ourselves for the
analogous—but considerably more complex—definition of dependent type theory in
the remainder of this chapter. Our goal is thus not to give a textbook account of the
simply-typed lambda calculus but to draw the reader’s attention to issues that will
arise in the dependent setting.

Readers familiar with the simply-typed lambda calculus should be aware that our
definition does not reference the untyped lambda calculus (as discussed in Remark 2.1.2)
and considers terms modulo fr-equivalence (Section 2.1.2).

2. 1.1 Contexts, types, and terms

The simply-typed lambda calculus is made up of two sorts, or grammatical categories,
namely types and terms. We present these sorts by two well-formedness judgments:

« the judgment A type stating that A is a well-formed type, and

(2025-07-19) The simply-typed lambda calculus 19

« for any well-formed type A, the judgment a : A stating that a is a well-formed
term of that type.

By comprehension these judgments determine respectively the collection of well-
formed types and, for every element of that collection, the collection of well-formed
terms of that type. (From now on we will stop writing “well-formed” because we do
not consider any other kind of types or terms; see Remark 2.1.2.)

Remark 2.1.1. A judgment is simply a proposition in our ambient mathematics, one
which takes part in the definition of a logical theory; we use this terminology to
distinguish such meta-propositions from the propositions of the logic that is being
defined [Mar87]. Similarly, a sort is a type in the ambient mathematics, as distinguished
from the types of the theory being defined. We refer to the ambient mathematics (in
which our definition is being carried out) as the metatheory and the logic being defined
as the object theory.

In this book we will be relatively agnostic about our metatheory, which the reader
can imagine as “ordinary mathematics” However, one can often simplify matters by
adopting a domain-specific metatheory (a logical framework) well-suited to defining
languages/logics, as an additional level of indirection within the ambient metatheory.

o

Types We can easily define the types as the expressions generated by the following
context-free grammar:

Types A,B:= b|AXB|A—B

We say that the judgment A type (“A is a type”) holds when A is a type in the above
sense. Note that in addition to function and product types we have included a base
type b; without b the grammar would have no terminal symbols and would thus be
empty.

Equivalently, we could define the A type judgment by three inference rules corre-
sponding to the three production rules in the grammar of types:

Atype Btype Atype Btype

b type A X Btype A — Btype

Each inference rule has some number of premises (here, zero or two) above the
line and a single conclusion below the line; by combining these rules into trees whose
leaves all have no premises, we can produce derivations of judgments (here, the well-
formedness of a type) at the root of the tree. The tree below is a proof that (bxb) — b

20 Extensional type theory (2025-07-19)

is a type:

b type b type

b X b type b type
(bxb) — btype

Terms Terms are considerably more complex than types, so before attempting a
formal definition we will briefly summarize our intentions. For the remainder of this
section, fix a finite set I. The well-formed terms are as follows:

« for any i € I, the base term c; has type b;

pairing (a, b) has type Ax Bwhena:Aandb : B;

first projection fst(p) has type A when p : A X B;

second projection snd(p) has type B when p : A X B;

a function Ax.b has type A — B when b : B where b can contain (in addition to
the usual term formers) the variable term x : A standing for the function’s input;
and

« a function application f a has type Bwhen f : A — Band a: A.

The first difficulty we encounter is that unlike types, which are a single sort, there
are infinitely many sorts of terms (one for each type) many of which refer to one
another. A more significant issue is to make sense of the clause for functions: the
body b of a function Ax.b : A — B is a term of type B according to our original
grammar extended by a new constant x : A representing an indeterminate term of type
A. Because b can again be or contain a function Ay.c, we must account for finitely
many extensions x : A,y : B,....

To account for these extensions we introduce an auxiliary sort of contexts, or lists
of variables paired with types, representing local extensions of our theory by variable
terms.

Contexts The judgment + I' cx (“T is a context”) expresses that I' is a list of pairs
of term variables with types. We write 1 for the empty context and T, x : A for the
extension of I by a term variable x of type A. As a context-free grammar, we might
write:

Variables x,y:= x|y|z]|---
Contexts = 1|,x:A

(2025-07-19) The simply-typed lambda calculus 21

Equivalently, in inference rule notation:

F I cx Atype

F1cx FI,x:Acx

We will not spend time discussing variables or binding in this book because vari-
ables will, perhaps surprisingly, not be a part of our definition of dependent type
theory. For the purposes of this section we will simply assume that there is an infinite
set of variables x, 4,z ..., and that all the variables in any given context or term are
distinct.

Terms revisited With contexts in hand we are now ready to define the term judg-
ment, which we revise to be relative to a context I'. The judgment T + a : A (“a has
type A in context I'”) is defined by the following inference rules:

(x:A)eT iel F'ra:A F'+b:B FT'rp:AXB
F'rx:A IF'rci:b I'+(a,b):AXB I'+fst(p): A
I'rp:AXB I'x:A+b:B 'rf:A—>B F'ra:A
I'+snd(p): B F'rAx.b:A— B I'+fa:B

The rules for ¢;, pairing, projections, and application straightforwardly render our
text into inference rule form, framed by a context I' that is unchanged from premises to
conclusion. The lambda rule explains how contexts are changed: the body of a lambda
is typed in an extended context; and the variable rule explains how contexts are used:
in context T', the variables of type A in I' serve as additional terminal symbols of type
A.

Rules such as pairing or lambda that describe how to create terms of a given type
former are known as introduction rules, and rules describing how to use terms of a
given type former, like projection and application, are known as elimination rules.

Remark 2.1.2. An alternative approach that is perhaps more familiar to programming
languages researchers is to define a collection of preterms

Terms a,b:= «¢;|x]| (ab)]|fst(a)|snd(a)|Ax.a|ab

which includes ill-formed (typeless) terms like fst(Ax.x) in addition to the well-formed
(typed) ones captured by our grammar above, and the inference rules are regarded
as carving out various subsets of well-formed terms [Har16]. In fact, one often gives
computational meaning to all preterms (as an extension of the untyped lambda calculus)

22 Extensional type theory (2025-07-19)

and then proves that the well-typed ones are in some sense computationally well-
behaved.

This is not the approach we are taking here; to us the term expression fst(Ax.x) does
not exist any more than the type expression — X —.! In fact, in light of Section 2.1.2,
there will not even exist a “forgetful” map from our collections of terms to these
preterms. o

2.1.2 Equational rules

One shortcoming of our definition thus far is that our projections don’t actually project
anything and our function applications don’t actually apply functions—there is no
sense yet in which fst((a, b)) : A or (Ax.x) a : A “are” a : A. Rather than equip our
terms with operational meaning, we will quotient our terms by equations that capture
a notion of sameness including these examples. The reader can imagine this process
as analogous to the presentation of algebras by generators and relations, in which our
terms thus far are the generators of a “free algebra” of (well-formed but) uninterpreted
expressions.

Our true motivation for this quotient is to anticipate the definitional equality of
dependent type theory, but there are certainly intrinsic reasons as well, perhaps most
notably that the quotiented terms of the simply-typed lambda calculus serve as an
axiom system for reasoning about cartesian closed categories [Cro94, Chapter 4].

We quotient by the congruence relation generated by the following rules:

'rta:A I'+rb:B T'ta:A 'tb:B
I't+fst((a,b)=a:A I'+snd((a,b))=b:B
I'tp:AXB

I'tp=(fst(p),snd(p)) : AXB

I'x:A+b:B F'ra:A 'trf:A—B
I'+ (Ax.b) a=b[a/x]: B I'rf=Ax(fx):A—B

The equations pertaining to elimination after introduction (projection from pairs
and application of lambdas) are called f-equivalences; the equations pertaining to

IPerhaps one’s definition of context-free grammar carves out the grammatical expressions out of
arbitrary strings over an alphabet, but this process occurs at a different level of abstraction. The reader
should banish such thoughts along with their thoughts about terms with mismatched parentheses.

(2025-07-19) The simply-typed lambda calculus 23

introduction after elimination (pairs of projections and lambdas of applications) are
n-equivalences.

We emphasize that these equations are not a priori directed, and are not restricted
to the “top level” of terms; we genuinely take the quotient of the collection of terms
at each type by these equations, automatically inducing equations such as Ax.x =
Ax fst((x, x)).

The first two rules explain that projecting from a pair has the evident effect.
The third rule states that every term of type A X B can be written as a pair (of its
projections), in effect transforming the introduction rule for products from merely a
sufficient condition to a necessary one as well. Similarly, the fifth rule states that every
f : A — B can be written as a lambda (of its application).

The fourth rule explains that applying a lambda function Ax.b to an argument a is
equal to the body b of that lambda with all occurrences of the placeholder variable
x replaced by the term a. However, this equation makes reference to a substitution
operation b[a/x] (“substitute a for x in b”) that we have not yet defined.

Substitution We can define substitution b[a/x] by structural recursion on b:

cifc/x] = ¢
x[c/x] =¢
yle/x] =y (for x #y)
(a,b)[c/x] == (alc/x], blc/x])
fst(p)[c/x] := fst(p[c/x])
snd(p)[c/x] := snd(p[c/x])
(Ay.b)[c/x] == Ay.b[c/x] (for x # y and y ¢ FreeVariables(c))
(f a)le/x] = flc/x] ale/x]

In the case of substituting into a lambda (Ay.b)[c/x], we assume that the bound
variable y introduced by the lambda is different from the variable x being substituted
away and that y does not happen to occur freely in c. In practice both situations are
possible, in which case one must rename y (and all references to y in b) before applying
this rule. In any case, we intend this substitution to be capture-avoiding in the sense of
not inadvertently changing the referent of bound variables.

However, because we have quotiented our collection of terms by fn-equivalence,
it is not obvious that substitution is well-defined as a function out of the collection of
terms; in order to map out of the quotient, we must check that substitution behaves
equally on equal terms. (It is also not obvious that substitution is a function into the
collection of terms, in the sense of producing well-formed terms, as we will discuss
shortly.)

24 Extensional type theory (2025-07-19)

Consider the equation fst((a, b)) = a. To see that substitution respects this equa-
tion, we can substitute into the left-hand side, yielding:

(fst((a. b)) [c/x] = fst((a, b)[c/x]) = fst((alc/x], b[c/x]))

which is f-equivalent to a[c/x], the result of substituting into the right-hand side.
We can check the remaining equations in a similar fashion; the x # y condition on
substitution into lambdas is necessary for substitution to respect f-equivalence of
functions.

2.1.3 Who type-checks the typing rules?

Our stated goal in Section 2.1.1 was to define a collection of well-formed types (written
Atype), and for each of these a collection of well-formed terms (written a : A). Have
we succeeded? First of all, our definition of terms is now indexed by contexts I" and
written ' + a : A, to account for variables introduced by lambdas. This is no problem:
we recover the original notion of (closed) term by considering the empty context 1.
Nor is there any issue defining the collections of types Ty = {A | Atype} and contexts
Cx =A{T | + I cx} as presented by the grammars or inference rules in Section 2.1.1.

It is less clear that the collections of terms are well-defined. We would like to say
that the collection of terms of type A in context I', Tm(T, A), is the set of a for which
there exists a derivation of I + a : A, modulo the relation a ~ b <= there exists
a derivation of I' + a = b : A. Several questions arise immediately; for instance, is it
the case that whenever I' +- a : A is derivable, T is a context and A is a type? If not,
then we have some “junk” judgments that should not correspond to elements of some
Tm(T, A).

Lemma 2.1.3. IfT + a: A thent I cx and Atype.

To prove such a statement, one proceeds by induction on derivations of I' +- a : A.
If, say, the derivation ends as follows:

'rp:AXB
I'+fst(p): A
then the inductive hypothesis applied to the derivation of I' + p : A X B tells us that

F I cx and A X Btype. The former is exactly one of the two statements we are trying to
prove. The other, A type, follows from an “inversion lemma” (proven by cases on the

(2025-07-19) The simply-typed lambda calculus 25

— type judgment) that A type and B type is not only a sufficient but also a necessary
condition for A X Btype.

Unfortunately our proof runs into an issue at the base cases, or at least it is not
clear over what T’ the following rules range:

(x:A) el iel
F'rx:A I'tc;:b

We must either add premises to these rules stating I' cx, or else clarify that I' al-
ways ranges only over contexts (which will be our strategy moving forward; see
Notation 2.2.1).

Another question is the well-definedness of our quotient:

Lemma 2.14. IfT+a=b:AthenT +a:AandT' +b: A.
But because f-equivalence refers to substitution, proving this lemma requires:
Lemma 2.1.5 (Substitution). IfT,x : A+ b:BandT +a: AthenT + bla/x] : B.

We already saw that we must check that substitution b[a/x] respects equality of b,
but we must also check that it produces well-formed terms, again by induction on b.
Note that substitution changes a term’s context because it eliminates one of its free
variables.

If we resume our attempt to prove Lemma 2.1.4, we will notice that substitution
is not the only time that the context of a term changes; in the right-hand side of the
n-rule of functions, f is in context I, x : A, whereas in the premise and left-hand side
itisin I

'-f:A—B
I'rf=Ax.(fx):A—>B

And thus we need yet another lemma.
Lemma 2.1.6 (Weakening). IfT + b : B and Atype thenT,x : A+ b : B.

We will not belabor the point any further; eventually one proves enough lemmas
to conclude that we have a set of contexts Cx, a set of types Ty, and for every I' € Cx
and A € Ty a set of terms Tm(T, A). The complexity of each result is proportional to
the complexity of that sort’s definition: we define types outright, contexts by simple
reference to types, and terms by more complex reference to both types and contexts.
The judgments of dependent type theory are both more complex and more intertwined;
rather than enduring proportionally more suffering, we will adopt a slightly different
approach.

26 Extensional type theory (2025-07-19)

Finally, whereas all the metatheorems mentioned in this section serve only to
establish that our definition is mathematically sensible, there are more genuinely
interesting and contentful metatheorems one might wish to prove, including canonicity,
the statement that (up to equality) the only closed terms of b are of the form ¢; (i.e.,
Tm(1,b) = {c;}ier), and decidability of equality, the statement that for any T+ a : A
and ' + b : A we can write a program which determines whether ornotT'-a =5 : A.

2.2 Towards the syntax of dependent type theory

The reader is forewarned that the rules in this section serve to bridge the gap between
Section 2.1 and our “official” rules for extensional type theory, which start in Section 2.3.

As we discussed in Chapter 1, the defining distinction between dependent and
simple type theory is that in the former, types can contain term expressions and even
term variables. Thus, whereas in Section 2.1 a simple context-free grammar sufficed to
define the collection of types and we needed a context-sensitive system of inference
rules to define the well-typed terms, in dependent type theory we will find that both
the types and terms are context-sensitive because they refer to one another.

Types and contexts When is the dependent function type (x : A) — B well-formed?
Certainly A and B must be well-formed types, but B is allowed to contain the term
variable x : A whereas A is not. In the case of (n : Nat) — Vec String (suc n), the
well-formedness of the codomain depends on the fact that suc n is a well-formed term
of type Nat (the indexing type of Vec String), which in turn depends on the fact that n
is known to be an expression (in particular, a variable) of type Nat.

Thus as with the term judgment of Section 2.1, the type judgment of dependent
type theory must have access to the context of term variables, so we replace the
Atype judgment (“A is a type”) of the simply-typed lambda calculus with a judgment
[+ Atype (“A is a type in context I'”). This innocuous change has many downstream
implications, so we will be fastidious about the context in which a type is well-formed.

The first consequence of this change is that contexts of term variables, which
we previously defined simply as lists of well-formed types, must now also take into
account in what context each type is well-formed. Informally we say that each type
can depend on all the variables before it in the context; formally, one might define the
judgment + I cx by the following pair of rules:

F I ex I' - Atype

F1cx FI,x:Acx

(2025-07-19) Towards the syntax of dependent type theory 27

Notice that the rules defining the judgment - I' cx refer to the judgment I' A type,
which in turn depends on our notion of context. This kind of mutual dependence will
continue to crop up throughout the rules of dependent type theory.

Notation 2.2.1 (Presuppositions). With a more complex notion of context, it is more
important than ever for us to decide over what I' the judgment I' + Atype ranges.
We will say that the judgment I' - A type is only well-formed when r I cx holds, as
a matter of “meta-type discipline,” and similarly that the judgment T + a : A is only
well-formed when I' + A type (and thus also F T cx).

One often says that + I cx is a presupposition of the judgment I" + A type, and that
the judgments + I'cx and I + A type are presuppositions of I' - a : A. We will globally
adopt the convention that whenever we assert the truth of some judgment in prose or
as the premise of a rule, we also implicitly assert that its presuppositions hold. Dually,
we will be careful to check that none of our rules have meta-ill-typed conclusions.

Now that we have added a term variable context to the type well-formedness
judgment, we can explain when (x : A) — B is a type: it is a (well-formed) type in T
when AisatypeinI and Bis atype in T, x : A, as follows.

I' - Atype I'x:AF Btype
'k (x:A) > Btype

Rules like this describing how to create a type are known as formation rules, to
parallel the terminology of introduction and elimination rules.

We can now sketch the formation rules for many of the types we encountered in
Chapter 1. Dependent types like _=_ and Vec are particularly interesting because they
entangle the I' + A type judgment with the term well-formedness judgmentI' + a : A.

F T cx I+ Atype I'+n:Nat I'ta:A I'rb:A
I' + Nat type I' + Vec A ntype I'+a=btype

Note that the convention of presuppositions outlined in Notation 2.2.1 means that
the second and third rules have an implicit + I' cx premise, and the third rule also
has an implicit I' + Atype premise. To see that the conclusions of these rules are
meta-well-typed, we must check that + T cx holds in each case; this is an explicit
premise of the first rule and a presupposition of the premises of the second and third
rules.

The formation rule for propositional equality _=_ in particular is a major source
of dependency because it singlehandledly allows arbitrary terms of arbitrary type to
occur within types. In fact, this rule by itself causes the inference rules of all three
judgments + I'cx, I' - Atype, and I' + a : A to all depend on one another pairwise.

28 Extensional type theory (2025-07-19)

Exercise 2.1. Attempt to derive that (n : Nat) — Vec String (suc n) is a well-formed
type in the empty context 1, using the rules introduced in this section thus far. Several
rules are missing; which judgments can you not yet derive?

The variable rule Let us turn now to the term judgment I' - a : A, and in particular
the rule stating that term variables in the context are well-formed terms. For simplicity,
imagine the special case where the last variable is the one under consideration:

_1?
Ix:Arx:A

This rule needs considerable work, as neither of the conclusion’s presuppositions,
F (Ix : A)cx and I',x : A + Atype, currently hold. We can address the former
by adding premises - I'cx and I' + Atype to the rule, from which it follows that
F (T,x : A)cx.? As for the latter, note that T + Atype does not actually imply
I',x : A+ Atype—this would require proving a weakening lemma (see Lemma 2.1.6)
for types! (Conversely, if the rule has the premise I' + A type, then we cannot establish
well-formedness of the context.)

There are several ways to proceed. One is to prove a weakening lemma, but given
that the well-formedness of the variable rule requires weakening, it is necessary to
prove all our well-formedness, weakening, and substitution lemmas by a rather heavy
simultaneous induction. A second approach would be to add a silent weakening rule
stating that I', x : A + Btype whenever I' Btype; however, this introduces ambiguity
into our rules regarding the context(s) in which a type or term is well-formed.

We opt for a third option, which is to add explicit weakening rules asserting the
existence of an operation sending types and terms in context I to types and terms in
context I, x : A, both written —[p]. (This notation will become less mysterious later.)

I' + Btype '+ Atype '+b:B I'+ Atype
I,x: A+ Blp] type Ix:Arblp]: Blp]

Note that the type weakening rule is needed to make sense of the term weakening
rule.

We can now fix the variable rule we wrote above: using —[p] to weaken A by itself,
we move A from context I" to I', x : A as required in the conclusion of the rule.

FIcx I'+ Atype
Ix:Arx:Alp]

20f course one could just directly add the premise + (T,x : A) cx, but our short-term memory is
robust enough to recall that our next task is to ensure that A is a type.

(2025-07-19) The calculus of substitutions 29

To use variables that occur earlier in the context, we can apply weakening repeat-
edly until they are the last variable. Suppose that 1 - Atype and x : A + Btype, and
in the context x : A,y : B we want to use the variable x. Ignoring the y : B in the
context for a moment, we know that x : A + x : A[p] by the last variable rule; thus
by weakening we have x : A,y : B+ x[p] : A[p][p]. In general, we can derive the
following principle:

I'+ Atype I'x: AF Bytype ILx:Avy;:By,... - B,ytype

I,x:Avy;:By,...,yn: By x[p]...[p] : Alp]-..[p]
——— S————
n times n+ 1 times

This approach to variables is elegant in that it breaks the standard variable rule
into two simpler primitives: a rule for the last variable, and rules for type and term
weakening. However, it introduces a redundancy in our notation, because the term
x[p]" encodes in two different ways the variable to which it refers: by the name x as
well as positionally by the number of weakenings n.

A happy accident of our presentation of the variable rule is thus that we can delete
variable names altogether; in Section 2.3 we will present contexts simply as lists of
types A.B.C with no variable names, and adopt a single notation for “the last variable in
the context,” an encoding of the lambda calculus known as de Bruijn indexing [dBru72].
Conceptual elegance notwithstanding, this notation is very unfriendly to the reader
in larger examples® so we will continue to use named variables outside of the rules
themselves; translating between the two notations is purely mechanical.

Remark 2.2.2. The first author wishes to mention another approach to maintaining
readability, which is to continue using both named variables and explicit weakenings
[Gra09]; this approach has the downside of requiring us to explain variable binding,
but is simultaneously readable and precise about weakenings. o

2.3 The calculus of substitutions

Weakening is one of two main operations in type theory that moves types and terms
between contexts, the other being substitution of terms for variables. For the same
reasons that we want to present weakening as an explicit type- and term-forming
operation, we will also formulate substitution as an explicit operation subject to
equations explicating how it computes on each construct of the theory.

3According to Conor McBride, “Bob Atkey once memorably described the capacity to put up with de
Bruijn indices as a Cylon detector” (https://mazzo.li/epilogue/index.html%3Fp=773.html)

https://mazzo.li/epilogue/index.html%3Fp=773.html

30 Extensional type theory (2025-07-19)

However, rather than axiomatizing single substitutions and weakenings, we will
axiomatize arbitrary compositions of substitutions and weakenings. In light of the
fact that substitution shortens the context of a type/term and weakening length-
ens it, these composite operations—called simultaneous substitutions (henceforth just
substitutions)—can turn any context I' into any other context A.

We thus add one final judgment to our presentation of type theory, A+ y : I (“y is
a substitution from A to I'”), corresponding to operations that send types/terms from
context I' to context A. (Not a typo; we will address the “backwards” notation later.)

Notation 2.3.1. Type theory has four basic judgments and three equality judgments:
1. + I' cx asserts that T is a context.

2. A+ y:T,presupposing + A cx and + T cx, asserts that y is a substitution from A
toT.

3. T+ Atype, presupposing F I' cx, asserts that A is a type in context I'.

4. T+ a: A, presupposing + I'cx and T + A type, asserts that a is an element/term
of type A in context T

2. Ary=y :T,presupposing A+ y:T and A+ y’ : T, asserts that y, y’ are equal
substitutions from A to T

3’. T+ A= A’type, presupposing I' - Atype and I - A’ type, asserts that A, A" are
equal types in context I'.

4. Tra=da : A presupposing' - a: AandT + @' : A, asserts that q, a’ are equal
elements of type A in context I'.

Notation 2.3.2. We write Cx for the set of contexts, Sb(A, T') for the set of substitutions
from A to T, Ty(T') for the set of types in context T', and Tm(T, A) for the set of terms
of type A in context I'.

This presentation of dependent type theory is known as the substitution calculus
[Mar92; Tas93]. Perhaps unsurprisingly, we must discuss a considerable number of
rules governing substitutions before presenting any concrete type and term formers;
we devote this section to those rules, and cover the main connectives of type theory in
Section 2.4.

(2025-07-19) The calculus of substitutions 31

Contexts The rules for contexts are as in Section 2.2, but without variable names:

F I cx I'+ Atype

F1cx FT.Acx

Although there is no context equality judgment, note that two contexts can be
equal without being syntactically identical. If 1 + A = A" type then 1.A and 1.A’ are
equal contexts on the basis that, like all operations of the theory, context extension
respects equality in both arguments. We have omitted the - I = IV cx judgment for
the simple reason that there would be no rules governing it: the only reason why two
contexts can be equal is that their types are pairwise equal.

Substitutions The purpose of a substitution A + y : T is to shift types and terms
from context I" to context A:

Ary:T '+ Atype Ary:T 'ra:A
A+ Aly] type A+ aly] : Aly]

Unlike the substitution operation of Section 2.1, which was a function on terms
defined by cases, these rules define two binary type- and term- forming operations
that take a type (resp., term) and a substitution as input and produce a new type (resp.,
term). Note also that, despite sharing a notation, type and term substitution are two
distinct operations.

The simplest interesting substitution is weakening, written p:*

I' - Atype
r'Avrp:r

In concert with the substitution rules above we can recover the weakening rules from
the previous section, e.g., if ' + Btype and T’ + Atype then T, x : A + B[p] type.

Because substitutions A + y : T encode arbitrary compositions of context-shifting
operations, we also have rules that close substitutions under nullary and binary com-
position:

F I cx Lty Iy by To

F'rid:T LrFyoy: I
These operations are unital and associative as one might expect:

AI-}/ZF rgl-}/zirz I“gkylzl“l 1“1%)/0:1“0

Atryoid=idoy=y:T Gryo(rior)=Gioy)oye: Lo
4This mysterious name can be explained by the fact that weakening corresponds semantically to a
projection map; p can thus be pronounced as either “weakening” or “projection”.

32 Extensional type theory (2025-07-19)

We can summarize the rules above by stating that there is a category whose objects
are contexts and whose morphisms are substitutions.

We have already seen that substitutions shift the contexts of types and terms by
—[y]; they also shift the context of other substitutions by precomposition. Later we
will have occasion to discuss all three context-shifting functions between sorts that
are induced by substitutions, as follows.

Notation 2.3.3. Given a substitution A + y : T', we write y* for the following functions:
« £ Eoy:SH(T,E) — Sb(A,E),
« A Aly] : Ty(T) — Ty(A), and
e« a> aly] : Tm(T,A) — Tm(A, Aly]).

Composite substitutions introduce a possible redundancy into our rules: what
is the difference between substituting by y, and then by y; versus substituting once
by yo © y1? We add equations asserting that substituting by id is the identity and
substituting by a composite is composition of substitutions:

I' - Atype 'ra:A
I'+ A[id] = Atype F'ralid]=a:A

F2|—y1:F1 rll-)/giro Io I—Atype
L+ Alyo o1l = Alyol[y1] type

rzl-)/lirl rll-)/oir() Ipra:A

L+ alyo o y1l = alyol[y1] : Alyo o y1l

We can summarize the rules above by stating that the y* operations respect identity
and composition of substitutions, or more compactly, that the collections of types and
terms form presheaves Ty(—) and . 4. (—) Tm(—, A) on the category of contexts, with
restriction maps given by substitution (a perspective which inspires the notation y*).

Before moving on, it is instructive to once again convince ourselves that the rules
above are meta-well-typed. In particular, the conclusion of the second rule is only
sensible if T + a[id] : A, but according to the rule for term substitution we only have
I' + a[id] : A[id]. To make sense of this rule we must refer to the previous rule
equating the types A[id] and A. A consequence of this type equation is that terms of
type A[id] are equivalently terms of type A,” and thus I - a[id] : A as required. This

5In some presentations of type theory this principle is explicit and is known as the type conversion
rule. For us it is a consequence of the judgments respecting equality, i.e., Tm(T, A[id]) = Tm(T, A) as
sets.

(2025-07-19) The calculus of substitutions 33

is a paradigmatic example of the deeply intertwined nature of the rules of dependent
type theory; in particular, we cannot defer equations to the end of our construction the
way we did in Section 2.1 because many rules are only sensible after imposing certain
equations.

The variable rule revisited As in the previous section, the variable rule is restricted
to the last entry in the context, which we (unambiguously) always name q.°
I' - Atype
IA+q:Alp]

Writing p” for the n-fold composition of p with itself (with p® = id), the following
rule is derivable from other rules (notated =) and thus not explicitly included in our
system:

'+ Atype I''A+ By type e I''A.By ...+ B, type
=
T.A.B;...B,rq[p"] : A[p™*]

Thus a variable in our system is a term of the form q[p"], where n is its de Bruijn
index.

Terminal substitutions Our notation A + y : T for substitutions is no accident;
it is indeed a good mental model to think of such substitutions as “terms of type I’
in context A” To understand why, let us think back to propositional logic. A term
1.B + ¢ : C can be seen as a proof of C under the hypothesis B, i.e., a proof that
B = C. Given a substitution 1.A + b : 1.B we can obtain a term 1.A + ¢[b] : C[b],
or a proof that A = C. This suggests that substituting corresponds logically to a
“cut,” and b to a proof that A = B.

Returning to the general case, contexts are lists of hypotheses, and a substitution
A+ y : T states that we can prove all the hypotheses of T using the hypotheses of A.
Thus anything that is true under the hypotheses I' is also true under the hypotheses
A—hence the contravariance of the substitution operation.

More concretely, the idea is that a substitution A + y : 1.A; ... A, is an n-tuple of
terms ay, ..., a, of types Ay, ..., A,, all in context A, and applying the substitution y
has the effect of substituting a; for the first variable, a, for the second variable, ...and
a, for the last variable. The final subtlety is that each type A; is in general dependent
on all the previous A; for j < i, so the type of a; is not just A, but “Az[a;/x1].” so to
speak, all the way through “a, : A,[a1/x1,...,an-1/%n-1]"

This mysterious name is chosen to pair well with the name p that we gave weakening; q can thus
be pronounced as either “variable” or “qariable”.

34 Extensional type theory (2025-07-19)

If all of this sounds very complicated, well...at any rate, the remaining rules
governing substitution define such n-tuples in two cases, 0 and n + 1. The nullary case
is fairly simple: any substitution I' - § : 1 into the empty context (a length-zero list of
types) is necessarily the empty tuple (), which we spell !.

F T cx F'rd:1
'r!:1 'r!'=6:1

These rules state that 1 is a terminal object in the category of contexts, a perspective
which inspires the notations 1 and !.

Substitution extension The other case concerns substitutions A + — : T".A into a
context extension. Recall that T'.A is an (n + 1)-tuple of types when T is an n-tuple
of types, and suppose that A + y : ', which is to say that y is an n-tuple of terms (in
context A) whose types are those in T'. To extend this n-tuple to an (n + 1)-tuple of
terms whose types are those in I'.A, we simply adjoin one more term a in context A
with type A[y], where this substitution plugs the n previously-given terms into the
dependencies of A.

Avry:T '+ Atype Ava:Aly]
Arya:TA

The final three rules of our calculus are equations governing this substitution
former:

Ary:T I'+ Atype Avra:Aly]
Arpo(ya)=y:T

Ary:T T+ Atype Avra:Aly] I+ Atype Ary:T.A

A+ qly.a] =a:Aly] Ary=(pey)qly]:T.A
Imagining for the moment that I' = x; : Ay, ..., x, : Apand y = [a1/x1, ..., an/Xn],
the second rule states that x,[a{/x1, ..., an/x,] = an, in other words, that substitut-

ing into the last variable x,, replaces that variable by the last term a,. The first rule
states in essence that substituting into a type/term that does not mention (is weak-
ened by) x, is the same as dropping the last term a, /x, from the substitution, i.e.,
[ai/x1, ..., an-1/Xn-1].

Finally, the third rule states that every substitution y into the context I'.A is of the
form yy.a, where a is determined by the behavior of y on the last variable, and y is
determined by the behavior of y on the first n variables. (See Exercise 2.5.)

(2025-07-19) Internalizing judgmental structure: I1, ¥, Eq, Unit 35

All of these rules in this section determine a category (of contexts and substitutions)
with extra structure, known collectively as a category with families [Dyb96]. We will
refer to any system that extends this collection of rules as a Martin-Ldf type theory.

Exercise 2.2. Show that substitutions I I y : I".A satisfying p o y = id are in bijection
with terms ' F a : A.

Exercise 2.3. Show that (y.a) 0§ = (y 0 §).a[4].

Exercise 2.4. Given A + y : T'and T' + Atype, construct a substitution that we will
name y.A, satisfying A.A[y] + y.A: T.A.

Exercise 2.5. Suppose that ' - Atype and F A cx. Show that substitutions A + y : T.A
are in bijection with pairs of a substitution A + yy : T and aterm A + a : A[y].

2.4 Internalizing judgmental structure: I1, X, Eq, Unit

With the basic structure of dependent type theory finally out of the way, we are
prepared to define standard type and term formers, starting with the best-behaved
connectives: dependent products, dependent sums, extensional equality, and the unit
type. Unlike inductive types (Section 2.5), each of these connectives can be described
concisely as internalizing judgmental structure of some kind.

2.4.1 Dependent products

We start with dependent function types, also known as dependent products or I1-types.
The formation rule is as in Section 2.2, but without variable names:’

I'+ Atype I''A+ Btype
I' + II(A, B) type

Remark 2.4.1. The Il notation and terminology is inspired by this type corresponding
semantically to a set-indexed product of sets [[,c4 Bs. Indexed products generalize
ordinary products in the sense that [],c (12, Ba = B1 X Ba. ©

Remarkably, the substitution calculus ensures that these rules are almost indis-
tinguishable from the introduction and elimination rules of simple function types in

"We have switched our notation from (x : A) — B because it is awkward without named variables.

36 Extensional type theory (2025-07-19)

Section 2.1, with some minor additional bookkeeping to move types to the appropriate
contexts:

I'+ Atype l'Av+b:B F'ra:A I''AF Btype '+ f:1I(A B)
I'+ A(b) : TI(A, B) T +app(f,a) : Blid.a]

There continue to be a few notational shifts: As no longer come with variable names,
and we write app(f, a) rather than f a just to emphasize that function application
is a term constructor. The reader should convince themselves that in the final rule,
I' + B[id.a] type; this substitutes a for the last variable in B, leaving the rest of the
context unchanged.

Next we must specify equations not only on the introduction and elimination
forms, but on the type former itself. There are two groups of equations we must
impose; the first group explains how substitutions act on all three of these operations:

Ary:T I' Atype I''A+ Btype
A +TI(A, B)[y] = II(Aly], B[y.A]) type

Avry:T I' - Atype I'Av+b:B
A+ A(b)[y] = A(bly.A]) : TI(A, B)[y]

Ary:T F'ra:A F.AI—Btype I'r f:1II(A B)
A+ app(f.a)ly] = app(flyl.alyl) : Bly.alyl]

Roughly speaking, these three rules state that substitutions commute past each
type and term former, but B and b are well-formed in a larger context (I'.A) than the
surrounding term (T'), requiring us to “shift” the substitution so that it leaves the bound
variable of type A unchanged while continuing to act on all the free variables inI'. (The
“shifted” substitution y.A in these rules is the derived form defined in Exercise 2.4.)

Once again we should pause and convince ourselves that these rules are meta-
well-typed. Echoing the phenomenon we saw in Section 2.3 with T’ + a[id] : A, we
need to use the substitution rule for IT(A, B)[y] to see that the right-hand side of the
substitution rules for A(b)[y] and app(f, a)[y] are well-typed.

Exercise 2.6. Check that the substitution rule for app (f a)[y] is meta-well-typed; in
particular, show that both app(f, a)[y] and app(f[y].,aly]) have the type B[y.a[y]].

This pattern will continue: every time we introduce a new type or term former 6, we
will add an equation 8(ay, . ..,an)[y] = 0(a1[y1l,. .., anlyn]) stating that substitutions
push past 0, adjusted as necessary in each argument. These rules are quite mechanical
and can even be automatically derived in some frameworks, but they are at the heart of

(2025-07-19) Internalizing judgmental structure: I1, ¥, Eq, Unit 37

type theory itself. From a logical perspective, they ensure that quantifier instantiation
is uniform. From a mathematical perspective, as we will see in Section 2.4.2, they
assert the naturality of type-theoretic constructions. And from an implementation
perspective, these rules can be assembled into a substitution algorithm, ensuring that
substitutions can be computed automatically by proof assistants.

Remark 2.4.2. The difference between this approach to substitution and the one
outlined in Section 2.1 is one of derivability vs admissibility. In the simply-typed
setting, the fact that all terms enjoy substitution is not part of the system but rather
must be proven (and even constructed in the first place) by induction over the structure
of terms, and so adding new constructs to the theory may cause substitution to fail.
In the substitution calculus, we assert that all types and terms enjoy substitution
as basic rules of the theory, and later add equations specifying how substitution
computes; thus any extension of the theory is guaranteed to enjoy substitution. Because
substitution is a crucial aspect of dependent type theory, we find this latter approach
more ergonomic. o

The second group of equations is the - and 5-rules introduced in Section 2.1,
completing our presentation of dependent product types.

F'ra:A 'A+b:B
I' +app(A(b),a) = b[id.a] : B[id.a]

I+ Atype A+ Btype '+ f:1I(A B)
I'+ f = Alapp(flpl.q)) : T1(A, B)

Exercise 2.7. Carefully explain why the n-rule above is meta-well-typed, in particular
why A(app(f[p],q)) has the right type. Explicitly point out all the other rules and
equations (e.g., IT-introduction, IT-elimination, weakening) to which you refer.

Exercise 2.8. Show that using II-types we can define a non-dependent function type
whose formation rule states that if I' - Atype and T + Btype thenT + A — Btype.
Then define the introduction and elimination rules from Section 2.1 for this encoding,
and check that the - and n-rules from Section 2.1 hold. (Hint: it is incorrect to define
A — B:=T1I(A, B).)

38 Extensional type theory (2025-07-19)

Exercise 2.9. As discussed in Section 2.3, two contexts that are not syntactically
identical may nevertheless be equal. Give an example.

2.4.2 Dependent products internalize hypothetical judgments

With one type constructor, two term constructors, and five equations, it is natural to
wonder whether we have written “enough” or “the correct” rules to specify I-types.
One may also wonder whether there is an easier way. We now introduce a methodology
for making sense of this collection of rules, and show how we can use this methodology
to more efficiently define the later connectives. In short, we will view connectives
as internalizations of judgmental structure, and I' + — : II(A, B) in particular as an
internalization of the hypothetical judgment I"'A + — : B.

Remark 2.4.3. 1In this book we limit ourselves to a semi-informal discussion of this
perspective, which can be made fully precise with the language of category theory.
For instance, using the framework of natural models, Awodey [Awo018] shows that
the rules above exactly capture that Il-types classify the hypothetical judgment in a
precise sense. o

Analyzing context extension To warm up, let us begin by recalling Exercise 2.5,
which establishes the following bijection of sets for every A, T, and A:

{vyIAry:TA}={(yo,a) | Aryo: TAAFa:Alyl}
Using Notation 2.3.2 we equivalently write:

iara : Sb(AT.A) = 3 cspar) Tm(A, Aly])

where) ,c 4 Bg is our notation for the set-indexed coproduct of sets [[,c4 Ba-

As stated, the bijections iar 4 and ia/ 17 4- may be totally unrelated, but it turns out
that this collection of bijections is actually natural (or “parametric”) in A in the sense
that the behavior of i1z, 1.4 and ia, 1 4 are correlated when we have a substitution from
Ag to Aq.

Because these bijections have different types, to make this idea precise we must find
a way to relate their differing domains Sb(A¢, I'.A) and Sb(A;,T.A) with one another,
as well as their codomains 3, csp(a,r) TM(Ao, Aly]) and X cspa, ry) Tm(A1 Afy]).

We have already seen the former in Notation 2.3.3: every substitution Ag - § : A
induces a function 8" : Sb(A{,T.A) — Sb(A, T'.A). We leave the latter as an exercise:

(2025-07-19) Internalizing judgmental structure: I1, ¥, Eq, Unit 39

Exercise 2.10. Given A¢ + § : Ay, use 6" (Notation 2.3.3) to define the following
function:

20"t Yyesnia,r) TM(ALA[Y]) = Xy esbanr) Tm(Ao, Aly])

Proof. Define (}.s5: 6%)(y,a) = (6*y,8%a) = (y o 8, a[d]). O

With these functions in hand we can now explain precisely what we mean by
the naturality of 1_ 4. Fix a substitution Ay + § : A;. We have two different ways
of turning a substitution A; + y : T.A into an element of }, csp(a,,r) TM(Ao, Alyo]),
depicted by the “right then down” and “down then right” paths in the diagram below:

IA JT,A
Sb(A1,T.A) 1 Y yesviar) Tm(AL Aly])
5 g 5
Sb(Ao,rA) AT ZyESb(Ao,F) Tm(Ao,A[Y])
0515

Going “right then down” we obtain

y ———— ia,1.ay)

I

(X 67) (tarr.a(y))

and going “down then right” we obtain y - y 0 § — 1, r.a(y © 9).

We say that the family of isomorphisms A +— a1 4 is natural when these two
paths always yield the same result, i.e., when (35 §*)(1a,r,4(y)) = ta,r,a(y 0 8) for
every Ao + 0 : Ay and y. In other words, ia,r.4 and ia, r4 “do the same thing” as soon
as you correct the mismatch in their types by pre- and post-composing the appropriate
maps.

Exercise 2.11. Prove that ¢ is natural, i.e., that the following maps are equal:

2o 0" 0ua 1A = 1p 1A 00" SB(ALT.A) = X\ csh(a,r) TM(Ao, Aly])

Proof. Suppose y € Sb(A1,T.A). Unfolding the solutions to Exercises 2.5 and 2.10,
(Zs) (ta,ra(¥) = (s 6°) (P o v, qly]) = ((p o y) © 6, q[y][5])
10, 1,4(8°(y)) = ta,r.a(y 0 6) = (po (y 0 d),q[y o 6]

which are equal by the functoriality of substitution. O

40 Extensional type theory (2025-07-19)

The terminology of “natural” comes from category theory, where i_ 1 4 is known
as a natural isomorphism, but we will prove and use naturality conditions without
referring to the general concept. One useful consequence of naturality is the following:

Exercise 2.12. Without unfolding the definition of i, show that the naturality of ; and
the fact that inr 4 and 1} . , are inverses together imply that ;™" is natural, i.e., that

Ipora © X 65 =8 0 L D esh(ar) Tm(A1, Aly]) — Sb(Ao,T.A)

Proof. Apply ‘Kol,r, 400 ‘Kll,r, , to both sides of the naturality equation for : and cancel:

-1 * -1 —_ ,—1 * -1
IpgTA © 26+ 07 Ol LA O Ly 1 g = Uy 1 g OLAGLACO O Ly py

-1 % Qk -1
‘AO,F,A025*5 =6 Olxra O

Exercise 2.13. For categorically-minded readers: argue that : is a natural isomorphism
in the standard sense, by rephrasing Exercises 2.10 and 2.11 in terms of categories and
functors.

Rather than defining context extension by the collection of rules in Section 2.3 and
then characterizing it in terms of : after the fact, we can actually define it directly as “a
context I'.A for which Sb(—,I'.A) is naturally isomorphic to ¥, esp(—r) Tm(— Aly]),
which unfolds to all of the relevant rules.

In addition to its brevity, the true advantage of such characterizations is that they
are less likely to “miss” some important aspect of the definition. Zooming out, this
definition states that substitutions into I'.A are dependent pairs of a substitution y
into I and a term in A[y], which is exactly the informal description we started with in
Section 2.3.

With that in mind, our program for justifying the rules of type theory is as follows:

Slogan 2.4.4. A connective in type theory is given by (1) a natural type-forming operation
and (2) a natural isomorphism relating that type’s terms to judgmentally-determined
structure.

We must unfortunately remain vague here about the meaning of “judgmentally-
determined structure,” but it refers to sets constructed from the sorts Sb(A,T), Ty(T),
and Tm(I', A) using natural operations such as dependent products and dependent
sums—operations that are implicit in the meaning of inference rules. To make this more
precise requires a formal treatment of the algebra of judgments via logical frameworks.

In addition, although this slogan will make quick work of the remainder of Sec-
tion 2.4, we will need to revise it in Sections 2.5 and 2.6.

(2025-07-19) Internalizing judgmental structure: I1, ¥, Eq, Unit 41

II-types The rules in Section 2.4.1 precisely capture the existence of an operation

Or : (Xaeryr) Ty(IA)) — Ty(D)

natural in I' (that is, one which commutes with substitution) along with the following
family of isomorphisms also natural in I':

ir.ap : Tm(T,TI(A, B)) = Tm(T.A, B)

The first point expresses the formation rule and I1(A, B) [y] = II(A[y], B[y.A]).
We focus on the second point, which characterizes the remaining rules in Section 2.4.1.

The reverse map 1;,114,3 : Tm(T.A,B) — Tm(T,II(A, B)) is the introduction rule,
which sends terms I'.A + b : B to A(b). The forward map is slightly more involved, but
we can guess that it should correspond to elimination. In fact it is application to a fresh
variable, or a combination of weakening and application—given I + f : IT(A, B), we
weakento'A + f[p] : II(A, B) [p] and then apply to q, obtaining I'.A + app(f[pl,q) :
B.

To complete this natural isomorphism we must check that it is an isomorphism,

and that it is natural. We begin with the isomorphism: for all - I"cx, I' A type, and
I''A + Btype,

lr_,i\,B(lr,A,B(f)) =f

lr,A,B(lqu, p(b) =b

Unfolding definitions, we see that this isomorphism boils down essentially to § and 7.

i p(ras(f)

= Aapp(flpl.q))
=f by the 5 rule

lr,A,B(lqu,B(b))

=app(A(b)[pl.q@)

= app(A(b[p-A]),q) A(—=) commutes with substitution
=b[p.Aocid.q] by the f rule

=b[p.q] by Exercise 2.14 below

= b[id]

=b

42 Extensional type theory (2025-07-19)

Exercise 2.14. Using the definition of p.A from Exercise 2.4, prove the substitution
equality needed to complete the equational reasoning above.

As for the naturality of the isomorphisms ¢, as before we must first explain how to
relate the types of ir 4 g and ip a[,1,B[y.4] given a substitution A + y : T'. In this case,
the comparison functions are the following:

Yy : Tm([,I1(A, B)) — Tm(A, II(A[y], Bly.A]))
y.A" : Tm(T.A, B) — Tm(A.A[y], B[y.A])
Naturality therefore states that “right then down” and “down then right” are equal

in the following diagram. (By the reader’s argument in Exercise 2.12, naturality of
automatically implies the naturality of 1™.)

IT AB
Tm(T,I1(A, B)) Tm(T.A, B)
v y.A*
Tm(A, TI(Aly], By.A])) Tm(A.Aly], B[y.A])

LA, Aly1.Bly.Al

Fixing I' + f : II(A, B), we show i1 4 8(f)[y-Al = taa[y),8[y.4] (f[y]) by comput-
ing:

ir,a,B(f)[y-Al
=app(f[p q) y Al
= app(f(p] ,qly-AlD) app(—, —) commutes with substitution

=app(f[p o yA q)
=app(flyopl.q@

LA A[y].B[y.Al (flyD
=app(f[yllpl.q)
=app(flyopl.q@

Thus all of the rules of TI-types are summed up by a natural operation Iy (formation
and its substitution law) along with a natural isomorphism ir 4 g : Tm(T,II(A, B)) =
Tm(T.A, B) where :~! and : are introduction and elimination, the round-trips are f
and 7, and naturality is the remaining substitution laws.

(2025-07-19) Internalizing judgmental structure: I1, ¥, Eq, Unit 43

An alternative eliminator There is a strange asymmetry in the two maps ¢ and (™!
underlying our natural isomorphism: the latter is literally the introduction rule, but
the former combines elimination with weakening and the variable rule. It turns out
that there is an equivalent formulation of IT-elimination more faithful to our current
perspective:

'+ f:1I(A B)

- =
IF'ArA(f):B

Such a presentation replaces the current app(—, —), f, and 5 rules with the above
rule along with new versions of and 5 stating simply that A"}(A(b)) = b and
A(A7Y(f)) = f respectively. We recover ordinary function application via app(f, a) :=
A7 (f)[id.a].

Although in practice our original formulation of function application is much more
useful than anti-A, the latter is more semantically natural. A variant of this argument
is discussed by Gratzer et al. [Gra+22], because in the context of modal type theories
one often encounters elimination forms akin to A~!(-) and it can be far from obvious
what the corresponding app (—, —) operation would be.

Exercise 2.15. Verify the claim that A7'(—) and its and 7 rules do in fact imply our
original elimination, 8, and 7 rules.

2.4.3 Dependent sums

We now present dependent pair types, also known as dependent sums or X-types. In a
reversal of our discussion of II-types, we will begin by defining dependent sums as an
internalization of judgmental structure before unfolding this into inference rules.

The ¥ type former behaves just like the IT type former: a natural family of types
indexed by pairs of a type A and an A-indexed family of types B,

Zr: (Zaerym) Ty(T4)) — Ty(D)
or in inference rule notation,
'+ Atype I''A+ Btype Ary:T '+ Atype I''A+ Btype
I' - X(A, B) type A+Z(A B)[y]l =2Z(Aly], Bly.A]) type

(Recall that we write), yety () Ty(I'.A) for the indexed coproduct [[sety(ry Ty(IA).)

Where X-types and II-types differ is in their elements. Whereas T + II(A, B) type
internalizes terms with a free variableI"A + b : B, the typeI" + X (A, B) type internalizes
pairsof terms T+ a: Aand T + b : B[id.a], naturally in T

irap : TM(L,2(A, B)) = X petmr,a) Tm(T, B[id.a])

44 Extensional type theory (2025-07-19)

Remarkably, the above line completes our definition of dependent sum types, but in
the interest of the reader we will proceed to unfold this natural isomorphism into
inference rules in three stages. First, we will unfold the maps ir 4 g and t;jq’B
three term formers; second, we will unfold the two round-trip equations into a pair of
equational rules; and finally, we will unfold the naturality condition into three more

equational rules.

into

Exercise 2.16. Just as in Exercise 2.8, show that using X-types we can define a non-
dependent pair type whose formation rule states that if I' - Atype and I' + B type then
I' + A X Btype. Then define the introduction and elimination rules from Section 2.1
for this encoding, and check that the - and n-rules from Section 2.1 hold.

Remark 2.4.5. There is an unfortunate terminological collision between simple types
and dependent types: although IT-types seem to generalize simple functions, they are
called dependent products, and although X-types seem to generalize simple products
because their elements are pairs, they are called dependent sums.

The reason is twofold: first, the elements of indexed coproducts (known to pro-
grammers as “tagged unions”) are actually pairs (“pairs of a tag bit with data”), whereas
the elements of indexed products (“n-ary pairs”) are actually functions (sending n to
the n-th projection). Secondly, both concepts generalize simple finite products: the
product B; X By is both an indexed product [,c (1) Bs and an indexed coproduct of a
constant family ». ¢p, Ba. o

To unpack the natural isomorphism, we note first that the forward direction
irap 2 TM(I,2(A B)) = Yaetmr,a) TM(T, Blid.a]) sends terms T' + p : 3(A, B) to
(meta-)pairs of terms, so we can unfold this map into a pair of term formers with the
same premises:

I+ Atype I A+ Btype I'tp:X(AB)

T+ fst(p): A

I'+ Atype I'.A+ Btype T'rp:2(AB)
[+snd(p) : Blid.fst(p)]

The map 11?}43 : Yaetm(r,a) Tm(T, B[id.a]) — Tm(T,X(A, B)) sends a pair of
terms to a single term of type X (A, B), so we unfold it into one term former with two
term premises:

l'ra:A I''A+ Btype I'+b:Blid.a]
T + pair(a,b) : (A, B)

Unlike in our judgmental analysis of dependent products, the standard introduction
and elimination forms of dependent sums correspond exactly to the maps :~! and 1, so

(2025-07-19) Internalizing judgmental structure: I1, ¥, Eq, Unit 45

the two round-trip equations are exactly the standard f and 7 principles:

'+ta:A A+ Btype I'+b: B[id.a]
T + fst(pair(a,b)) =a: A I' + snd(pair(a, b)) = b : Blid.a]

I'+ Atype I''A+ Btype I'tp:X(AB)
T + p = pair(fst(p),snd(p)) : Z(A, B)

It remains to unpack the naturality of i, which as we have seen previously, en-
codes the fact that the term formers commute with substitution. The reader may be
surprised to learn, however, that the substitution rule for pair(—, —) actually implies
the substitution rules for fst(—) and snd(—) in the presence of f and 5. (Categorically,
this is the fact that naturality of ;™! implies naturality of 1, as we saw in Exercise 2.12.)
Given the rule

Ary:T F'ta:A I.AF+ Btype '+ b:Blid.q]
A+ pair(a, b)[y] = pair(a[y], b[y]) : Z(A B)[y]

fix a substitution A+ y : T and aterm T + p : X (A, B). Then

fst(p)[y]

= fst(pair (fst(p) [y], snd(p)[y])) by the S rule

= fst(pair(fst(p), snd(p))[y]) by the above rule
= fst(p[y]) by the # rule

and the calculation for snd (—) is identical. Nevertheless it is typical to include substi-
tution rules for all three term formers: there is nothing wrong with equating terms
that are already equal, and even in type theory, discretion can be the better part of
valor.

Exercise 2.17. Check that the substitution rule for pair above is meta-well-typed, in
particular the second component b[y]. (Hint: use Exercise 2.3.)

Exercise 2.18. Show that the substitution rule for A~!(-) follows from the substitu-
tion rule for A(—) and the equations A(A7!(f)) = f and A"*(A(b)) = b.

2.4.4 Extensional equality

We now turn to the simplest form of propositional equality, known as extensional
equality or Eq-types. As their name suggests, Eq-types internalize the term equality

46 Extensional type theory (2025-07-19)

judgment. They are defined as follows, naturally in I':

Eqr : (ZAeTy(l“) Tm(r, A) X Tm(F, A)) — Ty(r)
iraab i TM(ILEq(A a,b)) = {x | a=b}
In other words, Eq(A, a,b) isatype whenT' a: AandT F b : A, and has a unique

inhabitant exactly when the judgment T - a = b : A holds (otherwise it is empty). The
inference rules for extensional equality are as follows:

I'tab:A Ary:T F'tab:A
I+ Eq(A, a,b) type A+ Eq(A ab)[y] =Eq(Aly]. aly]. bly]) type
I'ta:A I'tab:A I'tp:Eq(Aab)
T+ refl : Eq(A, a,a) F'ta=b:A

F'tab:A I'tp:Eq(Aab)
I'tp=refl : Eq(A a,b)

The penultimate rule is known as equality reflection, and it is somewhat unusual
because it concludes an arbitrary term equality judgment from the existence of a
term. This rule is quite strong in light of the facts that (1) judgmentally equal terms
can be silently exchanged at any location in any judgment, (2) the equality proof
I' v p : Eq(A a,b) is not recorded in those exchanges, and (3) p could even be a
variable, e.g., in context T.Eq(A4, a, b).

Type theories with an extensional equality type are called extensional. The conse-
quences of equality reflection will be the primary motivation behind the latter half of
this book, but for now we simply note that these rules are a very natural axiomatization
of an equality type as the internalization of equality.

Exercise 2.19. Explain how these inference rules correspond to our Eq; and ir 4 4
definition.

Exercise 2.20. Where are the substitution rules for term formers? (Hint: there are
two equivalent answers, in terms of either the natural isomorphism or the inference
rules.)

(2025-07-19) Inductive types: Void, Bool, +, Nat 47

2.4.5 The unit type

We conclude our tour of the best-behaved connectives of type theory with the simplest
connective of all: the unit type.

Unitr S Ty(F)
ir : Tm(T, Unit) = {x}

This unfolds to the following rules:

F I cx Ary:T
T + Unit type A + Unit[y] = Unit type
F T cx I'+a: Unit
I' - tt : Unit ' a=tt:Unit

Exercise 2.21. Where is the elimination principle? Where are the substitution rules
for term formers? (Hint: what would these say in terms of the natural isomorphism?)

2.5 Inductive types: Void, Bool, +, Nat

We now turn our attention to inductive types, data types with induction principles.
Unlike the type formers in Section 2.4, which are typically “hard coded” into type
theories,® inductive types are usually specified as extensions to the theory (data type
declarations) via inductive schemas [Dyb94; CP90], or in theoretical contexts, encoded
as well-founded trees known as W-types [Mar82; Mar84b]. These schemas can be
extended ad infinitum to account for increasingly complex forms of inductive definition,
including indexed induction [Dyb94], mutual induction, induction-recursion [Dyb00],
induction-induction [NS12], quotient induction-induction [KKA19], and so forth.

For simplicity we restrict our attention to four specific types—the empty type,
booleans, coproducts, and natural numbers—that illustrate the basic issues that arise
when specifying inductive types in type theory. Unfortunately, we will immediately
need to refine Slogan 2.4.4.

8This is an oversimplification: in practice, £ and Unit are usually obtained as special cases of
dependent record types [Pol02], n-ary X-types with named projections.

48 Extensional type theory (2025-07-19)

2.5.1 The empty type

We begin with the empty type Void, a “type with no elements.” Logically, this type
corresponds to the false proposition, so there should be no way to construct an element
of Void (a proof of false) except by deriving a contradiction from local hypotheses.
The type former is straightforward: naturally in T, a constant Voidr € Ty(T'), or

F I cx Avry:T
T + Void type A + Void[y] = Void type

As for the elements of Void, an obvious guess is to say that the elements of the
empty type at each context are the empty set, i.e., naturally in T,

ir : Tm(T, Void) = 0 (17

This cannot be right, however, because Void does have elements in some contexts—the
variable rule alone forces ¢ € Tm(T'.Void, Void), and other type formers can populate
Void even further, e.g., app(q, tt) € Tm(I'.II(Unit, Void), Void).

Interlude: mapping in, mapping out To see how to proceed, let us take a brief
sojourn into set theory. There are several ways to define the product A X B of two sets,
for example by constructing it as the set of ordered pairs {(a,b) | a € AAb € B} or
even more explicitly as the set {{{a},{a,b}} | a € A A b € B}. However, in addition
to these explicit constructions, it is also possible to characterize the set A X B up to
isomorphism, as the set such that every function X — A X B is determined by a pair
of functions X — A and X — B and vice versa.

Similarly, we can characterize one-element sets 1 as those sets for which there is
exactly one function X — 1 for all sets X. In fact, both of these characterizations are
set-theoretical analogues of Slogan 2.4.4, where X plays the role of the context I'.

After some thought, we realize that the analogous characterization of the zero-
element (empty) set 0 is significantly more awkward: there is exactly one function
X — 0 when X is empty, and no functions X — 0 when X is non-empty. As it turns
out, in this case it is more elegant to consider the functions out of 0 rather than the
functions into it: a zero-element set 0 has exactly one function 0 — X for all sets X.

Exercise 2.22. Suppose that Z is a set such that for all sets X there is exactly one
function Z — X. Show that Z is isomorphic to the empty set.

Void revisited Recall from Section 2.3 that terms correspond to “dependent func-
tions from I' to A” In Section 2.4 we considered only type formers T that are easily
characterized in terms of the maps into that type former from an arbitrary context I':

(2025-07-19) Inductive types: Void, Bool, +, Nat 49

in each case we defined maps/terms Tm(I', T) as naturally isomorphic to the data of
T’s introduction rule.

To characterize the maps out of Void into an arbitrary type A, we cannot leave the
context fully unconstrained; instead, we characterize the maps/terms Tm(I'.Void, A)
for all + T' cx and T'.Void + Atype, recalling that—by the rules for II-types—these are
equivalently the dependent functions out of Void in context I', i.e., I' + f : II(Void, A).

Advanced Remark 2.5.1. Writing C for the category of contexts and substitutions,
terms Tm(T, A) are “dependent morphisms” from I to A in the sense of being ordinary
morphisms I' — T'.A in the slice category C/I" by Exercise 2.2. Thus, for right adjoint
type operations G—those in Section 2.4—it is easy to describe Tm(T', G(A)) directly.
For left adjoint type operations F, the situation is more fraught. Type theory
is fundamentally “right-biased” because its judgments concern maps from arbitrary
contexts into fixed types, but not vice versa. Thus to discuss dependent morphisms
F(X) — A we must speak about elements of Tm(I'.F(X), A), quantifying not only
over the ambient context/slice I" but also the type A into which we are mapping.
Confusingly, we encountered no issues defining X-types, despite dependent sum
being the left adjoint to pullback. This is because X is also the right adjoint to the
functor C — C™ sending A + idg4, and it is the latter perspective that we axiomatize.
The left adjoint axiomatization makes an appearance in some systems, notably in
programming languages with existential types, phrased as let (a,b) = p in x. o

Putting all these ideas together, we define Void as the type for which, naturally in
T, there is exactly one dependent function from Void to A for any dependent type A:

pr.a : Tm(I'.Void, A) = {x}

To sum up the difference between the incorrect definition Tm(T, Void) = 0 and
the correct one above, the former states that Tm(T, Void) is the smallest set (in the
sense of mapping into all other sets), whereas the latter states that in any context, Void
is the smallest type. More poetically, at the level of judgments we can see that Void is
not always empty, but at the level of types, every type “believes” that Void is empty.

Unwinding pr 4 into inference rules, we obtain:

F T cx I'.Void + Atype F T cx I'Voidra: A
ESY ESY
I'.Void + absurd’ : A I'.Void + absurd’ =a: A

We have marked these rules with & to indicate that they are provisional; in
practice, as we previously discussed for A7!(-), it is awkward to use rules whose
conclusions constrain the shape of their context. But just as with app(—, —), it is more
standard to present an equivalent axiomatization absurd(b) := absurd’[id.b] that

50 Extensional type theory (2025-07-19)

“builds in a cut™

I'rb:Void I'.Void + Atype Ary:T I'+b:Void I'.Void + Atype
I + absurd(b) : A[id.b] A+ absurd(b)[y] = absurd(b[y]) : Aly.b[y]]

I'+b: Void IF'Voidta:A
I + absurd(b) = a[id.b] : A[id.b]

AN

The term absurd(—) is known as the induction principle for Void, in the sense that
it allows users to prove a theorem for all terms of type Void by proving that it holds
for each constructor of Void, of which there are none.

In light of our definition of Void, we update Slogan 2.4.4 as follows:

Slogan 2.5.2. A connective in type theory is given by (1) a natural type-forming operation
Y and (2) one of the following:

2.1. a natural isomorphism relating Tm(T,Y) to judgmentally-determined structure, or

2.2. forallT.X v Atype, a natural isomorphism relating Tm(T'.Y, A) to judgmentally-
determined structure.

The final rule for absurd (—), the 7 principle, implies a very strong equality principle
for terms in an inconsistent context (Exercise 2.26) which we derive in the following
sequence of exercises. For this reason, and because this rule is derivable in the presence
of extensional equality (Section 2.5.5), we consider it provisional ® for the time being.

Exercise 2.23. Show that if " + by, b; : Void then T + by = b; : Void.

Exercise 2.24. Fixing A + y : T, prove that there is at most one substitution A + :
I'.Void satisfyingp oy =y.

Exercise 2.25. Let I'.Void + Atype and T + a : A[id.b]. Show that T'.Void + A[id.b o
pl = Atype, and therefore that I".Void + a[p] : A.

Exercise 2.26. Derive the following rule, using the previous exercise and the 7 rule.

T'+b:Void I'.Void + Atype I'ta:Alid.b]
I+ a=absurd(b) : A[id.b]

=

(2025-07-19) Inductive types: Void, Bool, +, Nat 51

Exercise 2.27. We have included the rule A + absurd(b)[y] = absurd(b[y]) :
Aly.b[y]] but it is in fact derivable using the 5 rule. Prove this.

Exercise 2.28. In Remark 2.5.1, we claimed that -types admit both a “mapping in”
characterization (as in Section 2.4.3) and a “mapping out” characterization. Show that
naturally in T, there is an isomorphism

Tm(T.XZ(A, B),C) = Tm(T.A.B, C[p®.pair(q[p].q)])

2.5.2 Booleans

We turn now to the booleans Bool, a “type with two elements.” Once again the type
former is straightforward: Boolr € Ty(T') naturally in T, or

Ary:T
I' - Bool type A + Bool[y] = Bool type

It is also clear that we want two constructors of Bool, true and false, natural in I':

T + true : Bool I' + false : Bool
Ary:T Ary:T
A F true = true[y] : Bool A + false = false[y] : Bool

Keeping Slogan 2.5.2 in mind, there are two possible ways to complete our axioma-
tization of Bool. As with Void it is tempting but incorrect to define : : Tm(T, Bool) =
{*, x"}; although the natural transformation ;™! is equivalent to our rules for true and
false, : does not account for variables of type Bool or other indeterminate booleans
that arise in non-empty contexts.” Thus we must instead characterize maps out of
Bool by giving a family of sets naturally isomorphic to Tm(I".Bool, A).

So, what should terms I'.Bool + a : A be? By substitution, such a term clearly de-
termines a pair of terms I' + a[id.true] : A[id.true] and I + a[id.false] : A[id.false].
Conversely, if true and false are the “only” booleans, then such a pair of terms should
uniquely determine elements of Tm(I".Bool, A) in the sense that to map out of Bool, it
suffices to explain what to do on true and on false.

9Even if variables x : Bool stand for one of true or false, x itself must be an indeterminate boolean
equal to neither constructor; otherwise the identity Ax.x : Bool — Bool would be a constant function.

52 Extensional type theory (2025-07-19)

To formalize this idea, let us write ((id.true)”, (id.false)*) for the function which
sends a € Tm(T'.Bool, A) to the pair (a[id.true], a[id.false]). We complete our speci-
fication of Bool by asking for this map to be a natural isomorphism; that is, naturally
in T, we have:

Boolr € Ty(T)
truer, falser € Tm(T, Bool)
((id.true)”, (id.false)™) : Tm(I'.Bool, A) = Tm(T, A[id.true]) x Tm(T, A[id.false])

This definition is remarkable in several ways. For the first time we are asking not
only for the existence of some natural isomorphism, but for a particular map to be
a natural isomorphism; moreover, because this map is defined in terms of true and
false, these must be asserted prior to the natural isomorphism itself. We update our
slogan accordingly:

Slogan 2.5.3. A connective in type theory is given by (1) a natural type-forming operation
Y and (2) one of the following:

2.1. a natural isomorphism relating Tm(T, Y) to judgmentally-determined structure, or

2.2. a collection of natural term constructors for Y which, for allT'Y + Atype, determine
a natural isomorphism relating Tm(I'.Y, A) to judgmentally-determined structure.

In the case of Void there were no term constructors to specify, and because there
is at most one (natural) isomorphism between anything and {*}, it was unnecessary
to specify the underlying map. In general, however, we emphasize that it is essential
to specify the map; doing so ensures that when we define a function “by cases” on
true and false, applying that function to true or false recovers the specified case and
not something else. On the other hand, because we have specified the underlying map,
it being an isomorphism is a property rather than additional structure: there is at most
one possible inverse.

Zooming out, our definition of Bool has a similar effect to our definition of Void
from Section 2.5.1: Tm(T, Bool) is not the set {true, false} at the level of judgments, but
every type “believes” that it is. This is the role of type-theoretic induction principles.

Advanced Remark 2.5.4. From the categorical perspective, option 2.2 in Slogan 2.5.3
asserts that the inclusion map of Y’s constructors into Y’s terms is left orthogonal to
all types. Maps which are left orthogonal to a class of objects and whose codomain
belongs to that class are known as fibrant replacements; in this sense, we have defined
Tm(—, Void) and Tm(—,Bool) as fibrant replacements of the constantly zero- and
two-element presheaves. This perspective is crucial to early work in homotopy type
theory [AW09] and the formulation of the intensional identity type in natural models
[Awo18]. o

(2025-07-19) Inductive types: Void, Bool, +, Nat 53

It remains to unfold our natural isomorphism into inference rules. There are no
additional rules for the forward map, which is substitution by id.true and id.false. As
the reader may have already guessed, the backward map is essentially’’ dependent if:

I'.Bool + Atype T+ a;: Alid.true] ['+ay: Alid false] '+ b:Bool
[+ if (as, ar, b) : Alid.b]

I'Bool + Atype T'ra :A[id.trl?e; " FF Fag : Alid false] I'+b:Bool
A+if(ar,ar, b)[y] =if (ac[yl arly]. bly]D) : Aly.blyl]
The fact that if is an inverse to ((id.true)”, (id.false)*) expresses the § and n laws:
I'.Bool + Atype I+ a;: Alid.true] ['+ay: Alid false]
[+if(as, ar, true) = a; : Alid.true] [+if (as, ay, false) = ay : A[id.false]

I''Bool + Atype I'BoolrFa:A I'+b:Bool
SN
I + if (a[id.true], a[id.false], b) = a[id.b] : A[id.b]

The f laws—the first two equations—are perhaps more familiar than the 7 law,
which effectively asserts that any two terms dependent on Bool are equal if (and only
if) they are equal on true and false. (The 7 rule is sometimes decomposed into a
“local expansion” and a collection of “commuting conversions.”) Although semantically
justified, it is typical to omit judgmental 5 laws for all inductive types because they are
not syntax-directed and thus challenging to implement, and because they are derivable
in the presence of extensional equality (Section 2.5.5).

Exercise 2.29. Give rules axiomatizing the boolean analogue of absurd’, and prove
that these rules are interderivable with our rules for if (a;, ar, b).

2.5.3 Coproducts

Our next example is the coproduct type A + B, the “disjoint union of A and B.” This
inductive type former follows the same pattern as the booleans but introduces one
important subtlety. Like II-types, X-types, and Eq-types, the + type former takes
parameters, in this case a pair of types in the same context:

I' - Atype I' - Btype Avry:T '+ Atype I' - Btype
'+ A+ Btype A+ (A+ B)[y] = Aly] + Bly] type

19The inverse directly lands in T.Bool and not T, but as with absurd’ (Section 2.5.1) we adopt a more
standard presentation in which all conclusions have a generic context; see Exercise 2.29.

54 Extensional type theory (2025-07-19)

Like Bool, A + B has two constructors; unlike Bool, its constructors are unary
(rather than nullary) operations whose arguments have types A and B respectively:

I'ta:A I' + Btype I'+tb:B I'+ Atype
I'tinl(a): A+ B I'+inr(b): A+ B
Ary:T F'+ta:A I' + Btype Ary:T '+b:B I'+ Atype

A+ inl(a)[y] = inl(a[y]) : Aly] + Bly] ~ Arinr(b)[y] =inr(b[y]) : Aly] + Bly]

The names inl and inr are customary, abbreviating the left injection and right injection
of the types A and B into the coproduct A + B. The type A + B is a disjoint union in
the sense that these injections are distinguished even in the case that A = B.

Following the pattern established with Bool, we assert that maps out of A + B are
uniquely determined by their behavior on its two constructors inl(-) and inr(-). In
this case, because the inl(—) constructor has type “A — (A + B),” the condition of
“being determined by one’s behavior on inl(a) : A + B” is properly stated relative to a
variable a : A (and analogously with inr(b) and a variable b : B).

The mapping-out property for A + B thus involves the two substitutions

(p-inl(q))* : Tm(T.(A + B),C) — Tm(T.A, C[p.inl(q)])
(p-inr(q))* : Tm(T.(A+ B),C) — Tm(T'.B,C[p.inr(q)])

the first of which sends ¢ € Tm(T'.(A + B), C) to c[p.inl(q)] € Tm(T.A, C[p.inl(q)]),
in essence precomposing the input map of type “(A + B) — C” with the left injection
“A — (A+ B)” (except that C depends on A + B, and everything in sight depends on T).
Other than these substitutions not landing in context T', the specification of A + B
mirrors that of Bool. Naturally in I', we have the formation and introduction rules

+r : (Ty(T) X Ty(I')) — Ty(T)
inlp 4 g : Tm(T, A) —» Tm(T, A+ B)
inrr 4B : Tm(F, B) — Tm(F,A + B)

and we assert that for allI'.(A+B) + C type, the following map is a natural isomorphism:

((p-inl(q))”, (p-inr(q))”) :
Tm(T.(A+ B),C) = Tm(T.A,C[p.inl(q)]) X Tm(T.B,C[p.inr(q)])

(2025-07-19) Inductive types: Void, Bool, +, Nat 55

Unfolding the reverse direction of this natural isomorphism and building in a cut,
we obtain the following “case distinction” eliminator and substitution rule:

I' F Atype I' F Btype I'.(A+ B) + Ctype
T.AF ¢ :Clp.inl(q)] T.Bt ¢, : C[p.inr(q)] F'rp:A+B

' + case(cy, ¢r, p) : Clid.p]

Ary:T I'+ Atype I' + Btype I'.(A+ B) + Ctype
T.AF ¢ : Clp.inl(q)] T.Bt ¢, : Clp.inr(q)] F'rp:A+B

A ¥ case(cr,cr, p)[y] = case(ci[y-Al. ¢, [y.Bl. ply]) : Cly.plyl]

with the two f laws:

I'ra:A I' v Btype
I'.(A+ B) + Ctype I'AF ¢ : Clp.inl(q)] I'BFc, : Clp.inr(q)]

I + case(cy, ¢p, inl(a)) = ¢;[id.a] : C[id.inl(a)]

I'+b:B I' - Atype
I'.(A+ B) + Ctype T.AF ¢ : Clp.inl(q)] I.Bt ¢, : C[p.inr(q)]

I + case(cy, ¢y, inr(b)) = ¢, [id.b] : C[id.inr(b)]

and the often omitted n law:

T.(A+B)rCtype T.(A+B)rc:C Trp:A+B
I + case(c[p.inl(q)], c[p.inr(q)], p) = c[id.p] : C[id.p]

ESN

Exercise 2.30. We could now redefine Bool as the coproduct Unit + Unit.

(Write this exercise.)

2.5.4 Natural numbers

Our final example of an inductive type is the type of natural numbers Nat, the “least
type closed under zero : Nat and suc(—) : Nat — Nat.” The natural numbers are
conceptually similar to Bool and +, but the recursive nature of suc(—) complicates the

56 Extensional type theory (2025-07-19)

situation significantly. The formation and introduction rules remain straightforward:

I'+n:Nat
I' - Nat type I' + zero : Nat I' + suc(n) : Nat
Avry:T Ary:T
A+ Nat[y] = Nat type A+ zero[y] = zero : Nat

Ary:T I'Fn:Nat
[+ suc(n)[y] = suc(n[y]) : Nat

As with Bool and +, we might imagine asking for maps out of Nat to be determined
by their behavior on zero and suc(-), i.e., for the substitutions

(id.zero)” : Tm(I'.Nat, A) — Tm(T, A[id.zero])
(p-suc(q))* : Tm(T'.Nat, A) — Tm(I.Nat, A[p.suc(q)])

to determine for every I".Nat + A type a natural isomorphism

((id.zero)", (p.suc(q))”) :
Tm(T'.Nat, A) = Tm(T, A[id.zero]) X Tm(I'.Nat, A[p.suc(q)]) (')

This turns out not to be the correct definition, but first, note that the first substitu-
tion moves us from I'.Nat to I because the zero constructor is nullary, whereas the
second substitution moves us from I'.Nat also to I'.Nat because the suc(—) constructor
has type “Nat — Nat”; if the argument of suc(—) was of type X rather than Nat, then
the latter substitution would be I'. X I p.suc(q) : I".Nat.

But given that suc(—) is recursive—taking Nat to Nat—we now for the first time
are defining a judgment by a natural isomorphism whose right-hand side also has
the very same judgment we are trying to define, namely Tm(I'.Nat, .. .), i.e,, terms in
context I"."Nat. This natural isomorphism is therefore not so much a definition of its
left-hand side as it is an equation that the left-hand side must satisfy—in principle, this
equation may have many different solutions for Tm(T'.Nat, A), or no solutions at all.

Interlude: initial algebras This equation asserts in essence that the natural num-
bers are a set N satisfying the isomorphism N = {*} U N,'! where the reverse map
equips N with a choice of “implementations” of zero € N and suc(—) : N — N. The

\Why? In algebraic notation and ignoring dependency, the equation states that ATXN = AT x ATXN,
which simplifies to (I' X N) = T U (T' X N) and thus N = {x} LU N.

(2025-07-19) Inductive types: Void, Bool, +, Nat 57

set of natural numbers N with zero := 0 and suc(n) := n+1 are a solution, but there are
infinitely many other solutions as well, such as NU {co} with zero := 0, suc(n) := n+1,
and suc(o0) := oo.

Nevertheless one might imagine that (N, 0, — + 1) is a distinguished solution in
some way, and indeed it is the “least” set N with a point z € N and endofunction
s : N — N—here we are dropping the requirement of (z, s) being an isomorphism—in
the sense that for any (N, z, s) there is a unique function f : N — N with f(0) = z
and f(n+1) = s(f(n)). Such triples (N, z, s) are known as algebras for the signature
N — {x} Ll N, structure-preserving functions between algebras are known as algebra
homomorphisms, and algebras with the above minimality property are initial algebras.

The above definitions extend directly to dependent algebras and homomorphisms:
given an ordinary algebra (N, z,s), a displayed algebra over (N, z,s) is a triple of an

N-indexed family of sets {N }nen, an element zZ € N,, and a function § : (n:N) —
N, — Ns(n) [KKA19]. Given any displayed algebra (N, z, §) over the natural number
algebra (N, 0, — + 1), there is once again a unique function f : (n : N) — N, with
f(0) =z and f(n+1) =5(n, f(n)). The reader is likely familiar with the special case
of displayed algebras over N valued in propositions rather than sets:

VP :N — Prop. P(0) = (Vn.P(n) = P(n+1)) = Vn.P(n)

Advanced Remark 2.5.5. The data of a displayed algebra over (N, z, s) is equivalent
to the data of an algebra homomorphism into (N, z, s), where the forward direction of
this equivalence sends the family {N, },en to the first projection (3,cnx Nn) — N. A
displayed algebra over the natural number algebra is thus a homomorphism N — N;
the initiality of N implies this map has a unique section homomorphism, which unfolds
to the dependent universal property stated above. o

Natural numbers revisited Coming back to our specification of Nat, our formation
and introduction rules axiomatize an algebra (Nat, zero, suc(—)) for the signature
N — {x} U N, but our proposed +-style natural isomorphism does not imply that
this algebra is initial. The solution is to simply axiomatize that any displayed alge-
bra over (Nat, zero, suc(—)) admits a unique displayed algebra homomorphism from
(Nat, zero, suc(—)).

Unwinding definitions, we ask that naturally in T, and for any A € Ty(I'.Nat), a, €
Tm(T, A[id.zero]), and a; € Tm(T".Nat.A, A[p®.suc(q[p])]), we have an isomorphism:

PrAa..a, : 14 € Tm(I'.\Nat, A) | a, = a[id.zero] A as[p.q.a] = a[p.suc(q)]} = {x}

The type of as is easier to understand with named variables: it is a term of type
A(suc(n)) in context I', n : Nat, a : A(n).

58 Extensional type theory (2025-07-19)

Remark 2.5.6. This is the third time we have defined a connective in terms of a natural
isomorphism with {x}. In Section 2.4.5, we used such an isomorphism to assert that
Unit has a unique element in every context; in Section 2.5.1, we asserted dually that
every dependent type over Void admits a unique dependent function from Void. The
present definition is analogous to the latter, but restricted to algebras: every displayed
algebra over Nat admits a unique displayed algebra homomorphism from Nat. o

Advanced Remark 2.5.7. In light of Remark 2.5.4 and Remark 2.5.6, we have defined
Nat as the fibrant replacement of the initial object in the category of (1LI—)-algebras. ¢

In rule form, the reverse direction of the natural isomorphism states that any
displayed algebra (A, a,, as) over Nat gives rise to a map out of Nat,

I' - n:Nat
I''Nat + Atype I'+a,: Alid.zero] I'Nat.A + a, : A[p®.suc(q[p])]

T + rec(ay, as, n) : Alid.n]

which commutes with substitution,

Avry:T I'+n:Nat
I'Nat + Atype I'ta,: Alid.zero] I'Nat.A + a, : A[p®.suc(q[p])]

Ak rec(az, as, n)[y] = rec(a:[y], as[y Nat.A], n[y]) : Aly.n[y]]

and is a displayed algebra homomorphism, which is to say that the map sends zero to
a, and suc(n) to as(n,rec(n)):

I''Nat + Atype I'+a,: Alid.zero] I'Nat.A + a, : A[p®.suc(q[p])]

I + rec(ay, as, zero) = a, : Alid.zero]

I' - n:Nat
I''Nat + Atype I'ta,:Alid.zero] I'Nat.A r a, : A[p®.suc(q[p])]

T + rec(ay, as, suc(n)) = as[id.n.rec(a,, as, n)] : Alid.suc(n)]

Finally, the 5 rule of Nat, which is again typically omitted, expresses that there is
exactly one displayed algebra homomorphism from Nat to (A, a,, as): if .Nat + a : Ais
a term that sends zero to a, and suc(n) to as(n, a[id.n]), then it is equal to rec(a, as, q).

I''Nat + Atype I'Nattra:A I'-n:Nat
I+ a,: Alid.zero] I'+ a, = a[id.zero] : A[id.zero]
I'Nat.A F a, : A[p®.suc(q[p])]

I''Nat + as[p.q.a] = a[p.suc(q)] : A[p.suc(q)]

I + rec(ay, a5, n) = alid.n] : Alid.n]

(2025-07-19) Inductive types: Void, Bool, +, Nat 59

Exercise 2.31. Rewrite the first rec rule using named variables instead of p and q,
and convince yourself that it expresses a form of natural number induction.

Exercise 2.32. Define addition for Nat in terms of rec. We strongly recommend
solving Exercise 2.31 prior to this exercise in order to use standard named syntax.

Inductive types are initial algebras Our definition of Nat is more similar to Void,
Bool, and + than it may first appear. In fact, all four types are initial algebras for
different signatures, although the absence of recursive constructors allowed us to
sidestep this machinery until now. The empty type Void is the initial algebra for the
signature X +— 0: a (displayed) 0-algebra is just a (dependent) type with no additional
data, so initiality asserts that any I'.Void + A type admits a unique displayed algebra
homomorphism—a dependent function with no additional conditions—from Void.
Likewise, (Bool, true, false) is the initial algebra for X +— {x} LI {x}. A displayed
({x} U {x})-algebra over Bool is a type I".Bool + Atype and two terms I" + a; :
Alid.true] and T + ay : A[id.false]; initiality states that for any such displayed algebra
there is a unique displayed algebra homomorphism (Bool, true, false) — (A, a;, ar):

praa.as * {a € Tm(I'.Bool, A) | a; = a[id.true] A ar = a[id.false]} = {x}

Coproduct types are more complicated because their signature involves types that
may depend on the context, but setting this aside, (A + B, inl(—), inr(-)) is the initial
algebra for X — A U B.

We refrain from restating Slogan 2.5.3 in terms of initial algebras because the
general theory of displayed algebras and homomorphisms for a given signature is too
significant a detour; we hope the reader is convinced that a general pattern exists.

Exercise 2.33. In Section 2.5.2, our definition of Bool roughly asserted a natural
isomorphism between a € Tm(T'.Bool, A) and pairs of terms (a[id.true], a[id.false]).
Prove that this definition is equivalent to the pr a4,,q, characterization above.

2.5.5 Unicity via extensional equality

In this section we have defined the inductive types Void, Bool, +, and Nat by equipping
them with constructors and asserting that dependent maps out of them are judgmentally
uniquely determined by where they send those constructors. That is, a choice of where
to send the constructors determines a map via elimination, and any two maps out of
an inductive type are judgmentally equal if they agree on the constructors.

This unicity condition is incredibly strong. First of all, it implies the substitution
rule for eliminators, because e.g. if (a;, ar, q)[y.Bool] and if (a;[y], ar[y], q) agree on

60 Extensional type theory (2025-07-19)

true and false (see Exercise 2.27). More alarmingly, in the case of Void, it states that
all terms in contexts containing Void are equal to one another (see Exercise 2.26).

It turns out that these unicity principles—the 7 rules of inductive types—are deriv-
able from the other rules of inductive types in the presence of equality reflection
(Section 2.4.4), the other suspiciously strong rule of extensional type theory.

Theorem 2.5.8. The following rule (n for Void) can be derived from the other rules for
Void in conjunction with the rules for Eq.

I't b: Void I'Voidtra: A
I + absurd(b) = a[id.b] : A[id.b]

s

Proof. Suppose T + b : Void and I'.Void + a : A. By equality reflection (Section 2.4.4),
it suffices to exhibit an element of Eq(A[id.b], absurd(b), a[id.b]), which we obtain
easily by Void elimination:

I + absurd(b) : Eq(A[id.b], absurd(b), a[id.b]) O

In Chapter 3 we will see that all of these suspicious rules are problematic from
an implementation perspective, leading us to replace extensional type theory with
intensional type theory (Chapter 4), which differs formally in only two ways: it replaces
Eq-types with a different equality type that does not admit equality reflection, and it
deletes the 7 rules from Void, Bool, +, and Nat.

In light of the fact that the latter rules are derivable from the former, we—as is
conventional—simply omit the 7 rules for inductive types from the official specification
of extensional type theory. (These rules were all marked as provisional ®.) Note that
this does not apply to the # rules for IT, %, or Unit, which remain in both type theories.

Semantically, deleting these 1 rules relaxes the unique existence to simply existence.
An algebra which admits a (possibly non-unique) algebra homomorphism to any
other algebra is known as weakly initial instead of initial. Rather than asking for the
collection of algebra homomorphisms to be naturally isomorphic to {*x}, we ask for
the map from algebra homomorphisms to {*x} to admit a natural section (right inverse).

Advanced Remark 2.5.9. Recalling Remark 2.5.4, Theorem 2.5.8 corresponds to the fact
that a class of morphisms £ which is weakly orthogonal to R is in fact orthogonal to R
when R is closed under relative diagonals (X — Y € R implies X — X Xy X € R). ¢

Exercise 2.34. Prove that the 7 rule for Bool can be derived from the other rules for
Bool in conjunction with the rules for Eq, by mirroring the proof of Theorem 2.5.8.

(2025-07-19) Universes: Uy, Uy, U,, . .. 61

2.6 Universes: Uy, Uy, Uy, ...

We are nearly finished with our definition of extensional type theory, but what’s
missing is significant: our theory is still not full-spectrum dependent in the sense
described in Section 1.2! That is, we have still not introduced the ability to define
a family of types whose head type constructor differs at different indices, such as a
Bool-indexed family of types which sends true to Nat and false to Unit. A more subtle
but fatal flaw with our current theory is that—despite all the logical connectives at our
disposal—we cannot prove that true and false are different, i.e., we cannot exhibit a
term 1 + p : II(Eq(Bool, true, false), Void).

It turns out that addressing the former will solve the latter en passant, so in
this section we will discuss two approaches for defining dependent types by case
analysis. In Section 2.6.1 we introduce large elimination, which equips inductive types
with a second elimination principle targeting type-valued algebras (which send each
constructor to a type), in addition to their usual elimination principle targeting algebras
valued in a single dependent type (which send each constructor to a term of that type).

Unfortunately we will see that large elimination has some serious limitations, so
it will not be an official part of our definition of extensional type theory. Instead, in
Section 2.6.2, we introduce type universes, connectives which internalize the judgment
I' + Atype modulo “size issues.” By internalizing types as terms of a universe type,
universes reduce the problem of computing types by case analysis to the problem of
computing terms by case analysis, which we solved in Section 2.5. That said, universes
are a deep and complex topic that will bring us one step closer to our discussion of
homotopy type theory in Chapter 5.

2.6.1 Large elimination

In Section 2.5 we discussed elimination principles for inductive types such as Bool,
which allow us to define dependent functions out of inductive types by cases on
that type’s constructors. A direct but uncommon way of achieving full-spectrum
dependency is to equip each inductive type with a second elimination principle, large
elimination, which allows us to define dependent families of types by cases [Smi89].!?

12 arge elimination maps Bool into the collection of all types, which is “large” (in the sense of being
“the proper class of all sets”) rather than the collection of terms of a single type, which is “small” (“a set”).

62 Extensional type theory (2025-07-19)

In the case of Bool, large elimination is characterized by the following rules:

I' - A; type [+ Aftype I'+b:Bool
I'+1If(As, Af, b) type

RSN

Ary:T I+ A type [+ Aftype T+ b:Bool
A+ (A, Ap, b)[y] = (Ac[y], Arly]. bly]) type

I' - Astype ['+ Aftype
[+ If (As, Ap, true) = A, type [+ If (As, Ay, false) = Ar type

™

If we compare these to the rules of ordinary (“small”) elimination,

I'Bool + Atype 't a;: Alid.true] I'+ayr: Alid false] I'+b:Bool
[+ if(as, ar, b) : Alid.b]

I'Bool + Atype I+ a;: Alid.true] [+ ayr: Alid false]
I +if(as, ar, true) = a; : Alid.true] [+if(as, ay, false) = ar : A[id false]

we see that the large eliminator If is exactly analogous to the small eliminator if
“specialized to A := type” Note that this statement is nonsense because the judgment
“type” is not a type, but the intuition is useful and will be formalized momentarily.
(Indeed, for this reason we cannot formally obtain If as a special case of if.) Continuing
on with the metaphor, the rule for If is simpler than the rule for if because it has a
fixed codomain “type” which is moreover not dependent on Bool: it makes no sense
to ask for “T v A; type[id.true]”

It is even more standard to omit the 1 rule for large elimination than for small elim-
ination (which is itself typically omitted), but such a rule would state that dependent
types indexed by Bool are uniquely determined by their values on true and false:

I'.Bool - Atype I'+b:Bool
ESKSY
I'+ A[id.b] = If (A[id.true], A[id.false], b) type

If we include the 7 rule, then the rules for If would express that instantiating a
Bool-indexed type at true and false, i.e. ((id.true)”, (id.false)*), has a natural inverse:

((id.true)”, (id.false)) : Ty(T.Bool) = Ty(T') x Ty(T)
Again, compare this to our original formulation of small elimination for Bool:

((id.true)”, (id.false)*) : Tm(I'.Bool, A) = Tm(T, A[id.true]) X Tm(T, A[id.false])

(2025-07-19) Universes: Uy, Uy, U,, . .. 63

When we elide 7, large elimination instead states that this map has a section (a
right inverse), which is to say that a choice of where to send true and false determines
a family of types via If, but not uniquely. This follows the discussion in Section 2.5.5,
except that we cannot derive the 7 rule for large elimination from extensional equal-
ity because there is no type “Eq(type, —, —)” available to carry out the argument in
Theorem 2.5.8.

Remark 2.6.1. Large elimination only applies to types defined by mapping-out prop-
erties such as inductive types; there is no corresponding principle for mapping-in
connectives like IT(A, B) because these do not quantify over any target, whether “small”
or “large” o

Remark 2.6.2. If we have both small and large elimination for Bool, then we can
combine them into a derived induction principle for Bool that works for any a, : A;
and ar : Ay, using large elimination to define the type family into which we perform a
small elimination.

N>

T'ta;: A ['kar:Af I'+b:Bool
T +if(asapb) : If (A, Af, b) | o

With large elimination—or a related feature, type universes—we can prove the
disjointness of the booleans. (Although the proof below uses equality reflection, the
same theorem holds in intensional type theory for essentially the same reason.) Our
claim that we cannot prove disjointness without these features is a (relatively simple)
independence metatheorem requiring a model construction; see The Independence of
Peano’s Fourth Axiom from Martin-Lof’s Type Theory Without Universes [Smi88].

Theorem 2.6.3. Using the rules for If, there is a term
1 + disjoint : II(Eq(Bool, true, false), Void)

Proof. We informally describe the derivation of disjoint. By II-introduction we may
assume Eq (Bool, true, false) and prove Void. In order to do this, consider the following
auxiliary family of types over Bool:

1.Eq(Bool, true, false).Bool + P := If (Unit, Void, q) type
Then

1.Eq(Bool, true, false) + Unit
= P[id.true] by B for If
= P[id.false] by equality reflection on q
= Void type by B for If

64 Extensional type theory (2025-07-19)

and therefore 1.Eq(Bool, true, false) + tt : Void. In sum, we define disjoint := A(tt).
O

As for other inductive types, the large elimination principle of Void is:

I'+a:Void
ESN
T + Absurd(a) type

Unfortunately, we run into a problem when stating large elimination for Nat.

[+ n:Nat [+ A, type I'Nat.“type” + A type
1?
I + Rec(A, As, n) type

In the ordinary eliminator, the branch for suc(—) has two variables m : Nat,a : A(m)
binding the predecessor m and (recursively) the result a of the eliminator on m. When
“A := type” the recursive result is a type, meaning that the suc(—) branch ought to bind
a type variable, a concept which is not a part of our theory. This is a serious problem
because recursive constructions of types were a major class of examples in Section 1.2.

Exercise 2.35. There is however a non-recursive large elimination principle for Nat
which defines a type by case analysis on whether a number is zero. This principle
follows from the rules in this section along with the other rules of extensional type
theory; state and define it.

Exercise 2.36. Although it is highly non-standard, it is possible to consider a substi-
tution calculus that includes rules for extending contexts by type variables:

F I ex

+ I'.type cx

Write the remaining rules governing this new form of context extension. (Hint: substi-
tutions A + y : T.type should be in bijection with a certain set.)

2.6.2 Universes

Although large elimination is a useful concept, it sees essentially no use in practice.
We have just seen one reason: large eliminators cannot be recursive. The standard
approach is instead to include universe types, which are “types of types,” or types which
internalize the judgment I" + A type. Using universes, we can recover large elimination
as small elimination into a universe; we are also able to express polymorphic type
quantification using dependent functions out of a universe.

(2025-07-19) Universes: Uy, Uy, U,, . .. 65

A universe is a type with no parameters, so its formation rule is once again a
natural family of constants Ur € Ty(T), or

Ary:T
I'+ Utype A+rU=U[y] type

As for its terms, the most straightforward definition would be to stipulate a natural
isomorphism between terms of U and types:

1: Tm(I,U) = Ty(I) (7N

Note that just as we did not ask for terms of II-types to literally be terms with an extra
free variable, we cannot ask for terms of U to literally be types: these are two different
sorts!

In inference rules, the forward map of the isomorphism would introduce a new
type former E1(—)"® which “decodes” an element of U into a genuine type. The reverse
map conversely “encodes” a genuine type as an element of U. These intuitions lead us
to often refer to elements of U as codes for types.

I'ta:U Ary:T 'ra:U
T + El(a) type A+ El(a)[y] = El(a[y]) type
I'+ Atype o '+ Atype ” I'tc:U o
T+ code(A):U T + El(code(A)) = Atype T+ code(El(c)) =c:U

Unfortunately we can’t have nice things, as the last three rules above—the ones
involving code—are unsound. In particular they imply that U contains (a code for) U,
making it a “type of all types, including itself” and therefore subject to a variation on
Russell’s paradox known as Girard’s paradox [Coq86], as outlined in Section 2.6.4.

2.6.2.1 Populating the universe

Returning to our definition of universe types, it is safe to postulate a type U of type-
codes which decode via El into types. (Indeed, with large elimination it is even
possible to define such a type manually, e.g. U := Bool with El(true) := Unit and
El(false) := Void.)

Ur € Ty(I')
El : Tm(T,U) — Ty(T)

13This name is not so mysterious: it means “elements of;” and is pronounced “ell” or, often, omitted.

66 Extensional type theory (2025-07-19)

Our first attempt at populating Tm(T', U) was to ask for an inverse to El, but that
turns out to be inconsistent. Instead, we will simply manually equip U with codes
decoding to the type formers we have presented so far, but crucially not with a code
for U itself. This approach is somewhat verbose—for each type former we add an
introduction rule for U, a substitution rule, and an equation stating that El decodes
it to the corresponding type—but it allows us to avoid Girard’s paradox while still
populating U with codes for (almost) every type in our theory.

Unfortunately, this means that universe types do not follow our slogan; see
however Remark 2.6.9.

For example, to close U under dependent function types we add the following
rules:

IF'+ta:U TEl(a)+b:U Ary:T F'ta:U TEl(a)+b:U
I'+pi(ab):U A Fpi(a,b)[y] =pi(aly],bly.El(a)]) : U

I'ta:U FEl(a) +b:U
I' + El(pi(a, b)) = II(El(a), E1(D)) type

The third rule states that pi(a, b) is the code in U for the type II(El(a), E1(])).
Note that the context of b in the introduction rule for pi(a,) makes reference to El(a),
mirroring the dependency structure of II-types. Although this move is forced, it means
that the definitions of U and El each reference the other—the type of a constructor
of U mentions El, and the type of El itself mentions U—so U and El must be defined
simultaneously. In fact, this is the paradigmatic example of an inductive-recursive
definition, an inductive type that is defined simultaneously with a recursive function
out of it [Dyb00].

It is no more difficult to close U under dependent pairs, extensional equality, the
unit type, and inductive types. These rules quickly become tedious, so we write only
their introduction rules below, leaving the remaining rules to Appendix A.

I'ta:U T'El(a)+b:U IF'+ta:U T+ x,y:El(a)
T +sig(ab) :U I'+teq(axy):U
I+unit: U I'+void : U I'+bool : U IF'tnat:U
T'tab:U

I+ coprod(a,b) : U

We can now recover the large elimination principles of Section 2.6.1 in terms of
small elimination into the type U. Moreover, because we can perfectly well extend

(2025-07-19) Universes: Uy, Uy, U,, . .. 67

the context by a variable of type U, we can now also construct types by recursion on
natural numbers:

I+ n:Nat I'ta,:U I'Nat.Utra,:U

I + Rec(a,, as, n) := El(rec(a, as, n)) type

Notation 2.6.4. In general, we will refer to a pair (B, E) of atype I' + Btype and a type
family T'.B + E type over it as a universe whenever it is appropriate to think of B as a
collection of codes for types and E as a decoding function. For example, we can regard
Nat as a universe of (codes of) finite types when equipped with the recursively-defined
type family sending each n to the coproduct of n copies of Unit. We will encounter
more examples of universes in Sections 2.7 and 5.2.

Remark 2.6.5. Proof assistant users are very familiar with universes, so such readers
may be wondering why they have never seen El before. Indeed, proof assistants such
as Rocq and Agda treat types and elements of U as indistinguishable. Historically,
much of the literature calls such universes—for which Tm(T',U) C Ty(I')—universes a
la Russell, in contrast to our universes d la Tarski, but we find such a subset inclusion
to be meta-suspicious.

Instead, we prefer to say that Rocq and Agda programs do not expose the notion
of type to the user at all, instead consistently referring only to elements of U. This
obviates the need for the user to ever write or see El, and the necessary calls to El can
be inserted automatically by the proof assistant in a process known as elaboration. <

Remark 2.6.6. Another more semantically natural variation of universes relaxes the
judgmental equalities governing El to isomorphisms El(pi(a, b)) = I1(El(a), E1(b)),
producing what are known as weak universes a la Tarski. However, our strict formula-
tion is more standard and more convenient. o

Advanced Remark 2.6.7. Universes in type theory play a similar role to Grothendieck
universes and their categorical counterparts in set theory and category theory. We
often refer to types encoded by U as small or U-small, and ask for small types to be
closed under various operations. As a result, universes in type theory roughly have
the same proof-theoretical strength as strongly inaccessible cardinals. Note, however,
that the lack of choice and excluded middle in type theory (see Section 2.7.4) precludes
a naive comparison between it and ZFC or similar theories; see Section 3.5.1. o

2.6.3 Hierarchies of universes

Our definition of U is perfectly correct, but the fact that U lacks a code for itself means
that we cannot recursively define types that mention U. In addition, although we can

68 Extensional type theory (2025-07-19)

quantify over “small” types with TI(U, —), we cannot write any type quantifiers whose
domain includes U. We cannot fix these shortcomings directly, but we can mitigate
them by defining a second universe type U; closed under all the same type codes as
before as well as a code for U, but no code for Uy itself. The same problem occurs one
level up, so we add a third universe U, containing codes for U and U; but not Uy, and
so forth.

In practice, nearly all applications of type theory require only a finite number of
universes, but for uniformity and because this number varies between applications, it
is typical to ask for a countably infinite (alternatively, finite but arbitrary) tower of
universes each of which contains codes for the smaller ones. (For uniformity we write
Uy := U.) This collection of U; is known as a universe hierarchy.

To define an infinite number of types and terms, we must now write rule schemas,
collections of rules that must be repeated for every (external, not internal) natural
number i > 0. Each of these rules follows the same pattern in U, with one new feature:
U; contains a code uni; ; for U; whenever j is strictly smaller than i.

I'ra:U; Fka,b:Ui
I' + U; type I + El;(a) type I' + coprod;(a,b) : U;
I'ra:U; F.Eli(a)l—b:Ui I'ra:U; Fl—x,y:Eli(a)
I'+pi;(ab):U; I'+sig;(a,b) : U; I'+eq;(axy):U;

Jj<i
I' + unit; : U; 'k VOidl’ : U; I'r bOOli :U; I' + nat; : U; Tk llIlii‘j : U;

Again for uniformity we write pi,(a, b) := pi(a,b), etc., and we omit the associated
substitution rules and the type equations explaining how each El; computes on codes,
such as El;(eq;(a, x,y)) = Eq(El;(a), x,y) and El;(uni; ;) = U;.

It is easy to see that the rules for U;,; are a superset of the rules for U;: the only
difference is the addition of the code uni;;q; : Uj;; and codes that mention this code,
such as pi;,; (uni;;; ;, uni;;1 ;) : Usq. Thus it should be possible to prove that every
closed code of type U; has a counterpart of type U, that decodes to the same type, that
is, “U; € U4 However, this fact is not visible inside the theory. We have no induction
principle for the universe, so we cannot define an “inclusion” function f : U; — Uy
much less prove that it satisfies El;41(f(a)) = El;(a). And there is simply no way,
external or otherwise, to “lift” a variable of type U; to the type Uj,.

We thus equip our universe hierarchy with one final operation: a lifting operation
that includes elements of U; into U;;4, which is compatible with El and sends type
codes of U; to their counterparts in U;y. Such a strict lifting operation allows users to

(2025-07-19) Universes: Uy, Uy, U,, . .. 69

generally avoid worrying about universe levels, because small codes can always be
hoisted up to their larger counterparts when needed.

T'ktc:U; Ary:T I'ra:U;
T+ it (0) Up A+ 1ifty(@)[y] = lifty(aly]) - U
I'ta:U;

I+ Eliyi (lift; (a)) = Eli(a) type

The last rule above states that a code and its lift both encode the same type.
Recalling that the entire point of a universe hierarchy is to get as close as possible to
“U : U” without being inconsistent, it makes sense to treat lifts as a clerical operation
that does not affect the type about which we speak. In addition, this equation is actually
needed to state that lift commutes with codes, such as pi (other rules omitted):

I'ra:U; FEll(a) I-b:Ui
T+ lift; (pi,(a, b)) = pi,,, (lift; (a), lift; (b)) : Upry

Remark 2.6.8. 'We say a universe hierarchy is (strictly) cumulative when it is equipped
with lift operations that commute (strictly) with codes. Historically the term “cumu-
lativity” often refers to material subset inclusions Tm(T, U;) € Tm(T, U;) but once
again such conditions are incompatible with our perspective. o

Remark 2.6.9. There is an equivalent presentation of universe hierarchies known as
universes d la Coquand in which one stratifies the type judgment itself, and the ith
universe precisely internalizes the ith type judgment [Coq13; Coq19; Gra+21; FAM23].
That is, we have sorts Ty,;(T') for i € N U {T} with Ty(I') := Ty, (T), and natural
isomorphisms Ty;(I') = Tm(T, U;) for i € N mediated by El;/code;. This presentation
essentially creates a new judgmental structure designed to be internalized by U, and
has the concrete benefit of unifying type formation and universe introduction into a
single set of rules. o

Exercise 2.37. Check that the equational rule lift; (pi;(a, b)) = pi;,, (lift;(a), lift;(b))
above is meta-well-typed. (Hint: you need to use El;;; (lift;(a)) = El;(a).)

Exercise 2.38. We only included lifts from U; to U4, rather than from U; to U for
every i < j. Show that the latter notion of lift is derivable for any concrete i < j and
that it satisfies the expected equations.

70 Extensional type theory (2025-07-19)

2.6.4 Girard’s paradox

We close our discussion of universes by substantiating our claim in Section 2.6.2 that
it is inconsistent for U to contain a code for itself, a fact commonly known as Girard’s
paradox; specifically, we present a simplified argument due to Hurkens [Hur95].'
The details of this paradox are not relevant to any later material in this book, so the
reader may freely skip the rest of this section. In this subsection alone, we adopt the
(inconsistent) rules of Section 2.6.2 pertaining to code.

At a high level, the fact that U contains a code for itself means that we can
construct a universe © that admits an embedding from its own double power set
P (P ©); from this we can define a “set of all ordinals” and carry out a version of
the Burali-Forti paradox. The details become somewhat involved, in part because the
standard paradoxes of set theory rely on comprehension and extensionality principles
not available to us in type theory. Indeed, historically it was far from clear that “U : U”
was inconsistent, and in fact Martin-Lo6f’s first version of type theory had this very
flaw [Mar71].

P:U—>U
P A =code(El(A) — U)

P2.U—>U
PZA=P (P A
0:U

© = code((A : U) — (EI(P? A) — El(A)) — EI(P? A))
Lemma 2.6.10 (Powerful universe). The universe ® admits maps

7:El(P?O) - ©
o: 0 — El(P? 0)

such that
(C:El(P?©)) = (0 (1C) = A(¢ : EI(P ©)) = C(poro00))
Proof. We define:

7 : E1(P? ©) — E1(0)

14An Agda formalization of Hurkens’s paradox is available at https://github.com/agda/agda/
blob/master/test/Succeed/Hurkens. agda; formalizations in other proof assistants are readily avail-
able online.

https://github.com/agda/agda/blob/master/test/Succeed/Hurkens.agda
https://github.com/agda/agda/blob/master/test/Succeed/Hurkens.agda

(2025-07-19) Universes: Uy, Uy, U,, . .. 71

7 (®:El(P?0)) (A:U) (f : EI(P? A) — EI(A)) (y : EI(P A)) =
O (A(0:0) = x (f (0AS))

o : El(®) — El(P? ©)
cf=00r1

We leave the equational condition to Exercise 2.39. O

Exercise 2.39. Show that the above definitions of 7 and ¢ satisfy the necessary equa-
tion.

As an immediate consequence of Lemma 2.6.10, we have:
oc(t(cx)=AM¢:El(PB)).ox(poroo) (2.1)

One way to understand the statement of Lemma 2.6.10 is that, regarding ¥ as a functor
whose action on f : E1(Y) — El(X) is precomposition f* : E1(# X) — EI(P Y), the
equational condition is equivalent to 0 o 7 = (7 0 0)*".

We derive a contradiction from Lemma 2.6.10 by constructing ordinals within ©:

-y < x (“y € x”) when each f in o x contains y
(<) :El(®) - El(®) -> U
y <x=code((f:El(P ©)) - El(cx f) > El(fy))

- f is inductive if for all x, if f isin o x then x isin f
ind:El(# ®) - U
ind f = code((x : E1(©)) — El(c x f) — EI(f x))

-- x is well-founded if it is in every inductive f
wf:El(®) > U
wf x = code((f : E1(# ©)) — El(ind f) — EI(f x))

Specifically, we consider Q := 7 (Af — ind f), the collection of all inductive
collections. Using Lemma 2.6.10 we argue that Q is both well-founded and not well-
founded.

Lemma 2.6.11. Q is well-founded.

Proof. Suppose f : E1(# ©) is inductive; we must show EI(f Q). By the definition of
ind, for this it suffices to show El(o Q f). Unfolding the definition of Q and rewriting
by the equation in Lemma 2.6.10 with C := ind, it suffices to show that f o 7 o ¢ is
inductive.

72 Extensional type theory (2025-07-19)

Thus suppose we are given x : E1(©) such that El(¢ x (f o 7 0 0)); we must show
El(f (r (0 x))). By rewriting El(o x (f o 7 0 ¢)) along Equation (2.1), we conclude
that El(o (7 (0 x)) f). However, by our assumption that f is inductive, this implies
El(f (7 (o x))), which is what we wanted to show. O

To prove that Q is not well-founded, we start by showing that the collection of “sets
not containing themselves” ¢ := Ay — code(El(r (0 y) < y) — Void) is inductive.

Lemma 2.6.12. ¢ is inductive.

Proof. Suppose we are given x such that El(o x ¢); we must show El(r (0 x) <
x) — Void. Thus suppose El(7 (¢ x) < x), which is to say that for any f such that
El(o x f), we have EI(f (7 (0 x))). Using our hypothesis we may set f := ¢, from
which we conclude El(z (¢ (7 (0 x))) < 7 (0 x)) — Void. We derive the required
contradiction by proving that El(z (¢ (7 (0 x))) < 7 (¢ x)) holds, by El(7 (o x) < x)
and Exercise 2.40. O

Exercise 2.40. Show that El(x < y) implies El(7r (0 x) < 7 (0 y)).
Theorem 2.6.13. There is a closed term of type Void.

Proof. Because Q is well-founded and ¢ is inductive, we have El(z (¢ Q) < Q) — Void.
To derive a contradiction, it suffices to show El(7 (o Q) < Q), which is to say that for
any f such that El(o Q f), we have E1(f (7 (¢ Q2))). By the definition of Q, El(c (Q f))
implies that f o 7 o ¢ is inductive; combining this with the fact that Q is well-founded,
we obtain EI(f (7 (o Q))) as required. O

2.7% Propositions and propositional truncation

Throughout this chapter we have considered types as indexed collections (of functions,
pairs, natural numbers, codes for other types, etc.) but types can also be regarded, by
the famed propositions as types correspondence [How80], as logical propositions in
an intuitionistic higher-order logic, as discussed in Section 1.3. In short:

Slogan 2.7.1 (Propositions as types). Type theory has a logical interpretation in which
types are logical propositions, and terms of a given type are proofs of that proposition.

Definition 2.7.2. We say I' + Atype is inhabited if there exists a term I' +- a : A. Thus
under Slogan 2.7.1 types are propositions and inhabited types are true propositions.

(2025-07-19) Propositions and propositional truncation 73

As the reader may be aware, the propositions as types correspondence extends
far beyond the basic type and term judgments: contexts are local hypotheses, Unit
is the true proposition, Void is the false proposition, non-dependent Il-types (—,
see Exercise 2.8) are implication, non-dependent X-types (X, see Exercise 2.16) are
conjunction, and II-types are universal quantification.

To formally substantiate this correspondence, we observe that the rules for Unit,
Void, —-types, and X-types exactly match the corresponding rules of propositional
logic when we replace type-theoretic judgments by logical judgments. For example,
the rules governing implication in propositional logic exactly match the formation,
introduction, and elimination rules of non-dependent IT-types:

p prop q prop I,p+qtrue I'+p—qtrue '+ ptrue

p — qprop I'tp — qtrue I'+ qtrue

This perfect formal correspondence starts to break down for Il-types, because
predicate logic consists of two distinct syntactic classes—the logical propositions and
predicates on the one hand, and the domains of quantification, or sorts, on the other—
whereas in type theory both the propositions and the domains of quantification are
drawn from a single syntactic class of types. Worse yet, extensional type theory lacks
connectives corresponding to logical disjunction and existential quantification!

In this section we will take a closer look at the logical content of type theory,
paying close attention to the distinction between propositions and sorts, a distinction
which clarifies both of the problems described above. In Section 2.7.1 we propose
a refinement to the naive propositions as types correspondence of Slogan 2.7.1. In
Section 2.7.2 we discover a minor but fatal discrepancy between the behaviors of
existential quantification (resp., disjunction) in logic and X-types (resp., coproduct
types) in type theory. In Section 2.7.3 we consider a new type former, propositional
truncation, which allows us to recover disjunction and existential quantification. Finally,
in Section 2.7.4 we discuss the constructive nature of type theory’s higher-order logic.

Warning 2.7.3. Although propositional truncation (Section 2.7.3) is well established
in the setting of extensional type theory [Hof97; AB04], we—and in our estimation,
most authors—do not consider it one of the “canonical” connectives of extensional
type theory. The reader may safely skip to Chapter 3 and return to this section in
advance of reading Section 5.1.

(Not sure who to cite for propositional truncation in this section...]

74 Extensional type theory (2025-07-19)

2.7.1 Propositions as some types

In predicate logic, universal quantification Vx : 7. ¢(x) is a proposition when ¢ is a
proposition with a free variable x of sort 7. Sorts are the collections over which the
quantifiers range, and they are grammatically distinct from propositions.

Remark 2.7.4. “Predicate logic” often refers to single-sorted predicate logic in which
all quantifiers range over a single (anonymous) collection, but one can equally well
consider many-sorted predicate logics including “typed” logics whose sorts are the
types of the simply-typed lambda calculus [LS88]. For example, ordinary (ZFC) set
theory is formally a collection of axioms in single-sorted predicate logic with a binary
relation symbol €, where the single sort is the collection of sets. o

Under the propositions as types correspondence, types serve both roles: as propo-
sitions whose terms are proofs (p : Eq(A, a, b) is a “proof” of a = b) and as sorts whose
terms are elements (n : Nat is an “element” of the collection of natural numbers). When
we translate the logical proposition Vx : N. x = x into the type IT(Nat, Eq(Nat, q, q)),
we think of Nat as a sort and Eq(Nat, q, q) as a proposition, but type theory does not
make any such distinction. Indeed both arguments of a Il-type are just types, and it is
no less valid to consider the II-type IT(Eq(Nat, zero, zero), Nat) whose domain is the
equality “proposition” and whose codomain is the natural number “sort.”

So how can we tell whether a type is a proposition or a sort? Many types are
intrinsically biased toward one of these interpretations. The types Unit, Bool, and
Nat are all inhabited and thus “true propositions,” but Bool and Nat have multiple
inhabitants whereas Unit does not. For this reason, rendering the judgment I'
b : Bool as “Bool is true” loses valuable information (which b?), but rendering I +
a : Unit as “Unit is true” does not, suggesting that Unit tends toward a proposition
whereas Bool and Nat tend toward sorts. Unfortunately, other connectives are less
straightforward; the IT-type II(Nat, Eq(Nat, q, q)) is the “proposition” that all natural
numbers are equal to themselves, but IT(Nat, Nat) is the “sort” of functions N — N.

Following the intuition that a proposition should be a type without multiple
inhabitants, we formally define propositions in type theory as types whose terms are
all equal to one another:

Definition 2.7.5. A propositionisatypel + Atype for which the judgment . A.A[p] +
q[p] = q : A[p?] holds.

Propositions are also known as mere propositions to emphasize that they lack
information beyond inhabitation, and as subsingletons because they have at most one
element. We can revise Slogan 2.7.1 accordingly, at the expense of its catchiness:

(2025-07-19) Propositions and propositional truncation 75

Slogan 2.7.6 (Propositions as some types). Type theory has a logical interpretation in
which the logical propositions are types whose terms are all equal, and proofs of a given
proposition are terms of the corresponding type (which are unique if they exist).

Exercise 2.41. Show that Unit and Void are propositions.

Warning 2.7.7. The type I' + Atype being a proposition is not equivalent to the
cardinality of the set Tm(T', A) being at most one. Instead, I' - A type is a proposition
if and only if for all substitutions A+ y : T, [Tm(A, Aly])| < 1.

For a counterexample, let us take on faith for the moment that type theory is
consistent (Theorem 3.4.8) in the sense that there are no terms 1 + a : Void. Then there
are no terms of type 1.U + El(q) type, because such a term 1.U + b : El(q) would
induce a term 1 + b[id.void] : Void. But 1.U + El(q) type is not a proposition; if it
were, every type encoded in U would have to be a proposition, again contradicting
consistency via the disjointness of Bool (Theorem 2.6.3).

Using Il-types and Eq-types we can internalize the property of being a proposition.
For any T' + A type we define isProp(A) := (a b : A) — Eq(A4, a, b), or more formally:

T+ isProp(A) = IL(A, TI(A[p], Eq(A[p*], q[p]. q))) type

Exercise 2.42. Show that I' - Atype is a proposition in the sense of Definition 2.7.5
if and only if T + isProp(A) type is inhabited.

Exercise 2.43. Show that Bool and Nat are not propositions, in the sense that the
types I' +- isProp(Bool) — Void type and I +- isProp(Nat) — Void type are inhabited.
(Hint: adapt the proof of Theorem 2.6.3.)

Our third source of propositions after the true proposition Unit and the false
proposition Void will be Eq-types. In extensional type theory, equalities are sometimes
true and sometimes false but are always propositions, due to the 5-rule stating that all
terms of type Eq(A, g, b) are judgmentally equal to refl.

Lemma 2.7.8. IfT' + a,b: A thenT + Eq(A, a, b) type is a proposition.

Proof. We must show I'.Eq(4, a, b).Eq(A, a,b)[p] + q[p] = q : Eq(A, a,b)[p?]. The
n-rule for Eq-types states that all terms of Eq-type are equal to refl; in particular, both
q[p] and q are equal to refl and thus to each other. O

Remark 2.7.9. 'What does it mean for a proposition to be false? Given that a proposi-
tion T + A type is true if it is inhabited, one might imagine that a proposition is false if
Tm(T, A) is empty—but then no proposition can be false, as even the so-called false
proposition Void is inhabited in some contexts. Recalling from Section 2.5.1 that Void

76 Extensional type theory (2025-07-19)

is the “smallest type,” it is also the “falsest proposition” in the sense that in any context
where Void is inhabited, so is every other proposition (by absurd(—)). The correct
notion of a proposition I' A type being false is therefore that I' - A — Void type is
inhabited, or equivalently that A <= Void.

It is not a coincidence that the correct notions of being a proposition, being true,
and being false are all preserved by substitution and expressible internally in type
theory, whereas the incorrect notions of Tm(T, A) having cardinality < 1,=1,and = 0
satisfy neither of these properties. (See Warning 2.7.7 and Exercise 2.42.) o

Whereas Eq(A, a, b) is a proposition for any A, a, b, the types I1(A, B) and X (A, B)
may or may not be propositions depending on what A, B are; returning to our earlier
example, IT(Nat, Nat) has multiple inhabitants but IT(Nat, Eq(Nat, q, q)) does not.

Lemma 2.7.10. IfT' + Atype,I".A + Btype, and B is a proposition, then their dependent
product T + II(A, B) type is a proposition.

Proof. Unfolding Definition 2.7.5, we must show
T.TI(A, B).TI(A, B)[p] + q[p] = q : TI(A, B)[p’]

By the natural isomorphism defining II-types, this condition is equivalent to the two
functions being equal when applied to a new variable of type A:

T TI(A, B).I1(A, B)[p].A[p"] + app(q[p*].9) = app(q[p].q) : B[p’.q]
which follows from our assumption that B, hence any B[y], is a proposition. O
Corollary 2.7.11. For anyT + Atype, I + isProp(A) type is a proposition.
Proof. We must show that
I+ TI(A TI(A[p], Eq(A[p’]. q[p].9))) type

is a proposition. Applying Lemma 2.7.10 twice, it suffices to show that

I.A.Alp] - Eq(A[p’].q[p]. @) type
is a proposition, which is immediate by Lemma 2.7.8. O

The requirements for X (A, B) to be a proposition are more severe than for IT(A, B):
both A and B must be propositions. Worse yet, A + B may not be a proposition even
when both A and B are propositions!

(2025-07-19) Propositions and propositional truncation 77

Exercise 2.44. Find propositions I' - Atype and I' + Btype such that A+ Bis not a
proposition, in the sense that I' isProp(A + B) — Void type is inhabited. Can you
find an additional condition on A and B that ensures A + B is a proposition?

Exercise 2.45. Show that if I - Atype, I''A Btype, and both A and B are proposi-
tions, then their dependent sum I + X (A, B) type is a proposition.

Exercise 2.46. Find a type I' + Atype and a proposition I"'A + Btype such that T +
X (A, B) type is not a proposition, in the sense that I - isProp(Z (A, B)) — Void type
is inhabited.

In the case that I'.A - Btype is a proposition and I' - A type is not, X (A4, B) is not
a proposition but rather the subtype of A on which the predicate B holds, because its
elements are pairs of an element a : A and a proof b : B[id.a] that B holds on a.

Exercise 2.47. Suppose that I' Atype, A + Btype, and B is a proposition. Show
that “X (A, B) is the subtype of A on which B holds” in the sense that internally to type
theory, (1) there is an injective function X (A, B) — A, and (2) B(a) holds if and only if
a : A is in the image of that function. What happens if B is not a proposition?

We may summarize our results as follows:

Corollary 2.7.12. The “propositions as some types” interpretation of type theory (Slo-
gan 2.7.6) supports the following logical connectives:

e Unit is the true proposition.

Void is the false proposition.

Eq(A, a, b) is the proposition a = b for sort A.

* If B is a proposition then I1(A, B) is the proposition Vx : A. B(x) for sort A.

If A and B are propositions then A — B is the proposition A = B.

If A and B are propositions then A X B is the proposition A A B.
* If A is a proposition then A — Void is the proposition —A.

Proof. Each bullet point above asserts both that the given type is a proposition in the
sense of Definition 2.7.5, and that its rules match those of a particular logical connective.
We have proven most of these claims above and leave the rest to the reader. O

78 Extensional type theory (2025-07-19)

Although Corollary 2.7.12 spans most of the connectives of predicate logic, it
omits two connectives, namely disjunction and existential quantification. Coproduct
types are a natural candidate for logical disjunction: by +-introduction, if either A
or B are inhabited then A + B is inhabited, and by +-elimination, given functions
A — Cand B — C we may construct a function A + B — C. Likewise X-types are a
natural candidate for existential quantification: by Z-introduction, if a : A and B(a) is
inhabited then X (A, B) is inhabited, and by X-elimination, if X (A, B) is inhabited then
there is an a : A for which B(a) is inhabited.

Unfortunately, these types are not propositions; as we have seen in Exercises 2.44
and 2.46, it is neither the case that A + B is a proposition whenever A and B are
propositions, nor that X (A, B) is a proposition whenever B is a proposition. We are
faced with two possibilities: is “propositions as some types” too restrictive, or it is
genuinely incorrect to use X-types (resp., coproduct types) as existential quantifiers
(resp., disjunction)? We will find in Section 2.7.2 that it is the latter.

Universes of propositions On a more positive note, in light of Corollary 2.7.11 we
can use X-types to define a hierarchy of universes of propositions Prop; as the subtypes
of U; (Exercise 2.47) spanned by codes of propositions:

F I cx I' + p : Prop;
= =
' + Prop; := X(U;, isProp(El(q))) : Uiy T + Prf;(p) := El(fst(p)) type

Note that each (Prop;, Prf;(—)) is a universe in the sense of Notation 2.6.4.
To close Prop; under logical connectives we simply combine the closure conditions
of U; from Section 2.6 with the closure conditions of propositions in Corollary 2.7.12.

Exercise 2.48. Provide definitions of bot;, and;(a, b), and forall;(a, b) satisfying:

F T cx F T cx
— = =
I' + bot; : Prop; I + Prf;(bot;) = Void type
I'+a,b: Prop; I'+a,b: Prop;
= =
I' + and;(a, b) : Prop; I + Prf;(and;(a, b)) = Prf;(a) X Prf;(b) type

F'ra:U; I'.El;(a) + b : Prop;
I' + forall(a, b) : Prop;

I'+ta:U; I'.El;(a) + b : Prop;
=
T + Prf;(forall(a, b)) = II(El;(a), Prf;(b)) type

(2025-07-19) Propositions and propositional truncation 79

Notation 2.7.13. Mirroring our notation for type universes, we write Prop := Prop,,
and Prf (—) := Prfy(—). We will also suppress universe levels when they are immaterial
to the point at hand.

As with U, having a type of propositions allows us to formulate logical notions
and principles that quantify over or otherwise refer to propositions. For example,
we will say that a predicate over the type A is a function P : A — Prop, and a binary
relation over A and B is a function R : A X B — Prop. Because quantification over
Prop may be nested arbitrarily deeply, the logical interpretation of type theory extends
automatically to higher-order logic.

Remark 2.7.14. It is worth asking whether one really needs a hierarchy of universes
of propositions. On the one hand, such a hierarchy Prop,, Prop,, ... falls out naturally
from our definition of each Prop; as a subtype of U;. On the other hand, recall that we
introduced the hierarchy Uy, Uy, ... in the first place to approximate the idea that U is
a “type of all types, including itself” without falling victim to Girard’s paradox; but
Prop should not include itself for the much simpler reason that it is not a proposition!

In stark contrast to the situation with type universes, it is perfectly consistent to
have a single type Prop containing codes for all propositions regardless of their universe
level; these single universes are known as impredicative universes of propositions,
in contrast to the predicative hierarchy described above. Although they constitute
an extension to the type theories discussed in this book, they are widely (but not
universally) accepted, appearing for instance in the Coq and Lean proof assistants. We
will discuss them in more depth in Section 5.1. 3

2.7.2 The illusion of choice

Although ¥ (A, B) appears to satisfy the logical rules governing existential quantifica-
tion, it is not a proposition in the sense of Definition 2.7.5 and thus cannot be part of
the “propositions as some types” interpretation of type theory. We now illustrate why
it is problematic that X (A, B) is not a proposition when B is a predicate, by considering
a naive type-theoretic translation of the axiom of choice using X-types as existentials.

One formulation of the axiom of choice is that for any one-to-many binary relation
R between sorts 7 and o, there exists a function f : ¢ — o satisfying Vx : 7. R(x, f(x)).
Such a function is often called a choice function, in the sense that it chooses for each
x : 7 one of the (possibly many) y : ¢ to which x must be related.

Definition 2.7.15. In typed higher-order logic, the axiom of choice is the proposition

80 Extensional type theory (2025-07-19)

that for any sorts 7, o and any predicate R over 7 X o,
(Vx:7.3y:0.R(x,y)) = (If : 7 > 0.Yx : . R(x, f(x)))

Suppose we follow the logical interpretation of type theory described in Corol-
lary 2.7.12, and moreover interpret X (A, B) as dx : A. B(x). The result is a type which
states that for all types A, B and for all relations P : A X B — Prop,

NaiveChoice := ((a: A) — Y.z Prf(P(a,b))) —
(Xfp.ampla:A) — Pri(P(a, f(a))))

Note that the types A and B correspond respectively to the sorts 7 and ¢ in Defini-
tion 2.7.15, and are not assumed to be propositions. As a result, neither the antecedent
nor the consequent of NaiveChoice is in general a proposition.

Lemma 2.7.16. NaiveChoice is inhabited in type theory.

Proof. Suppose that F : (a : A) — .5 Prf(P(a,b)). We must construct a term of
type 2 r.a—p(a : A) — Prf(P(a, f(a))). By Z-introduction, it suffices to exhibit a term
f :+ A — B, for which we choose f(a) = fst(F(a)), as wellasatermg: (a: A) —
Prf(P(a, f(a))), for which g(a) = snd(F(a)) is sufficient. Putting it all together,

AF — ((Aa — fst(F a)), (Aa — snd(F a))) : NaiveChoice O

Traditionally, the force of the axiom of choice is that from the mere fact—the
logical proposition—that for every x there exists some y with R(x, y), one can obtain an
actual function—data in the sort ¢ — o—that concretely chooses one such y for each
x. Regardless of how one feels about the axiom of choice, it is clear that the proof of
Lemma 2.7.16 is doing something altogether different: it directly extracts the choice of
b : B from the “proof” of the antecedent F : (a : A) — ;.5 Prf(P(a, b)) by sending
each a : A to the first projection of F(a).

In other words, our proof of NaiveChoice relies essentially on the fact that we can
extract non-trivial data from the “proof” F(a) of an existential. Rereading Lemma 2.7.16,
NaiveChoice simply states that from a pair-valued function a — (b, p) we can obtain
a pair of functions a — b and a — p—hardly the axiom of choice!

Remark 2.7.17. The type NaiveChoice is sometimes known as the type-theoretic axiom
of choice despite being neither an axiom nor a choice principle. We concede however
that it is type-theoretic. o

What has gone wrong? The antecedent of NaiveChoice is much stronger than the
antecedent of the axiom of choice: from a term of type }’;.5 Prf (P(a, b)) we can project
out an element b of sort B, whereas in higher-order logic, knowing the proposition

(2025-07-19) Propositions and propositional truncation 81

3b : B. P(a, b) does not license one to obtain a concrete witness of sort B. In logic, one
can assume that such a b : B exists, but only in service of proving another proposition.
Put simply, inhabitation of ;.5 Prf(P(a, b)) in type theory is too informative. It
contains too much data; it is not a proposition.

2.7.3 Truncating types to propositions

Now that we have seen why X-types are not existential quantifiers, we turn to the
problem of correctly capturing existential quantification in type theory. After deriv-
ing a “mapping out” characterization of existentials, we will present a simpler but
equally expressive connective known variously as propositional truncation, squash types,
or bracket types [UF13; Hof97; Con+85; AB04] which we will consider an optional
extension to the extensional type theory defined in this chapter.

2.7.3.1 Existentials in type theory

In Section 2.7.2 we identified two key discrepancies between X-types and existential
quantification. First, X (A, B) is not a proposition even when B is a proposition. Sec-
ondly, given a proof of 3x : A. B(x), the witness (first projection) of sort A should be
accessible only for purposes of inhabiting other propositions, not sorts.

Recalling Slogan 2.5.3, to specify an existential quantification type 3(A, B) in
type theory we must first decide whether to characterize the maps in or out of that
type. The second discrepancy above suggests that we need to restrict the maps out of
existentials—what one can do with a term of type 3(A, B)—so we will start there.

The formation rule for 3(A, B) is identical to that of X (A, B). Naturally in T,

3r : (Zaetyr) Ty(T.A)) = Ty(I) (%)

As for the mapping out property, implications 3(A, B) — C should correspond to
proofs of C under the assumption that there is a witness of sort A and an inhabitant of
B at that witness. Phrased as a natural isomorphism, we require that naturally in T
and for every I' - Atype, I''A + Btype, and I' - C type where C is a proposition,

pr.asc : Tm(I.3(A, B),C[p]) = Tm(T.A.B,C[p*]) ()

Note that p is exactly the (non-dependent case of the) mapping out property satisfied
by X (A, B) as shown in Exercise 2.28, the only difference being that for 3-types we
restrict C to be a proposition. In particular, this restriction prevents us from setting
C = A and thence deriving a first projection map (A, B) — A.

82 Extensional type theory (2025-07-19)

Remark 2.7.18. The naturality requirement above is superfluous; the family of iso-
morphisms pr 4 g c is necessarily natural because C is a proposition and thus all maps
into Tm(T.A.B, C[p?]) must be equal. o

Now that we have suitably restricted the maps out of 3-types, we complete our
specification by requiring that 3(A, B) is a proposition for every A, B, for example by
asserting that any two terms of type 3(A, B) are equal.

I+ Atype I.A+ Btype T'Fp,q:3(AB)
)
Trp=q:3(AB)

Given all the type formers now at our disposal, one might wonder whether there is
some clever way to encode 3-types in terms of X-types and perhaps other connectives
from this chapter. Swan [Swa25] has shown recently that the answer is no. There are
however quite a few different and reasonable extensions to extensional type theory
which allow one to define a type satisfying the specification of 3-types, including of
course the provisional rules for 3(A, B) themselves, or an impredicative universe of
propositions (Remark 2.7.14), or our next topic of discussion, propositional truncation.

Exercise 2.49. Following the pattern of 3-types, write a set of rules for disjunction
types AV B. The type A V B should be similar to A + B except that, like 3-types, it is a
proposition and its mapping out property is restricted to maps into propositions.

Deriving introduction and dependent elimination Our specification of 3-types
departs from Slogan 2.5.3 in several important ways: we did not specify any intro-
duction rules, the elimination principle only describes non-dependent maps out of
(A, B), and the elimination principle does not state that a particular substitution map
is an isomorphism. For the curious reader, we now explain how all of these properties
follow from our more compact specification of 3-types.

We start with the introduction rule. Setting C := 3(A, B) in our mapping out
property, we have a natural isomorphism:

pas3aas) : Tm(I.3(A,B),3(A B)[p]) = Tm(T.A.B,3(A, B)[p*])

The unique element of the left-hand side is the variable ¢ € Tm(I'.3(A, B), 3(A, B)[p]).
s0 papaap) (q) must be the unique element of Tm(T.A.B,3(A, B)[p?]), which by
substitution induces a function

epair : (2 etm(r.a) TM(T, B[id.a])) — Tm(T, 3(A, B))

corresponding to the introduction rule for 3-types. Note that there is a unique such
function because T' + 3 (A, B) type is a proposition.

(2025-07-19) Propositions and propositional truncation 83

The full elimination principle is more challenging. We must show that for any
proposition I'.3(A, B) + C type, the following map is a natural isomorphism:

(pz.epair(q[p],q))* : Tm(T'.3(A, B),C) = Tm(F.A.B,C[pz.epair(q[p],q)])

As before, because C is a proposition this is the only such function, so we can forget
about the particular choice of map and construct any such isomorphism whatsoever.

To reduce this principle to the non-dependent principle stated earlier, we observe
that all possible dependencies on a proposition (in this case, I' + (A, B) type) are
equal to one another. That is, for any type I'.P + C type depending on a proposition
I' F Ptype, we have isomorphisms

Tm(T.P.P[p],C[p*.q[p]]) = Tm(I'.P.P[p],C[p*.q]) = Tm(I'.P,C)

We may therefore replace the dependency of C on the copy of (A, B) in the
context with a “local” dependency introduced on the right-hand side by a X-type:

Tm(T.3(A,B),C) = Tm(I'.3(A, B),2(3(A, B),C)[p])
and similarly remove the dependency in the codomain of (p?.epair(q[p],q))*:
Tm(T.A.B, C[p®.epair(q[p],q)]) = Tm(I.A.B,%(3(A, B),C)[p*])

We complete the argument by composing the above isomorphisms with the isomor-
phism p4 3 (3(B).c), noting that I' v £(3(A, B), C)[p?] type is a proposition.

Exercise 2.50. Complete this argument by defining the omitted isomorphisms and
checking that they compose to an isomorphism between the required sets.

2.7.3.2 Propositional truncation

The rules for 3-types differ from the rules of X-types in two essential ways: they
assert that 3(A, B) is a proposition, and they restrict the mapping out property to
propositions. It turns out to be useful to isolate the process of replacing any type A
with a proposition that maps out into only other propositions. We call this type the
propositional truncation of A, it is, in a precise sense, the proposition that most closely
approximates the type A.

We notate the propositional truncation of A as Trunc(A), although other popular
notations include [A] [AB04] and ||A|| [UF13]. Its formation rule is straightforward:

I' - Atype Ary:T I' - Atype
™
I + Trunc(A) type A + Trunc(A)[y] = Trunc(A[y]) type

84 Extensional type theory (2025-07-19)

The remaining rules for Trunc(A) are similar to those of 3-types but stripped of
any resemblance to X-types. First, for every a : A we have a term seal(a) : Trunc(A).
Secondly, Trunc(A) is a proposition. Finally, for every proposition T + C type, we
have an isomorphism Tm(T.Trunc(A), C[p]) = Tm(T.A,C[p]).

I'+ Atype IF'ta:A I+ Atype T'Fp,q:Trunc(A)
SN SN
T + seal(a) : Trunc(A) I+ p=gq:Trunc(A)

'+ Atype '+ Ctype
I.C.C[p] + qlp]l = q: C[p?] I't+a:Trunc(A) I'AFc:Clp]

ES
I+ open(a,c):C

Exercise 2.51. Why does the open(—, —) rule give rise to an isomorphism
Tm(T.Trunc(A),C[p]) = Tm(T.A,C[p])

for every proposition I' + C type, and not just a map in the reverse direction? Where
are the f§ and 5 principles? And where are the substitution rules for term formers?

If we take Trunc-types as primitive, we can use them to define a type 3'(A, B)
satisfying the rules of 3-types from Section 2.7.3.1:

3’ (A, B) := Trunc(X (A, B))

Clearly 3’ (A, B) is a proposition and has the correct natural formation rule. As for the
mapping out property of 3-types, suppose I' - C type is a proposition. Then:

Tm(I.Z'(A, B),C[p])
= Tm(T'.2(A B),C[p]) by mapping out for Trunc-types
= Tm(T.A.B,C[p?*]) by mapping out for X-types

Exercise 2.52. Conversely, if we take 3-types as primitive, we can define a type
Trunc’ (A) satisfying the rules of Trunc(A), namely Trunc’(A) := 3(A, Unit). Show
that Trunc’(A) satisfies the same mapping out property as Trunc(A), using only the
mapping out property of 3-types.

(2025-07-19) Propositions and propositional truncation 85

Exercise 2.53. If we take Trunc-types as primitive, we may also define disjunction
types as A V B := Trunc (A + B). Show that this definition satisfies the rules proposed
in Exercise 2.49.

Although it is beyond the scope of this book, we note that one can develop a
considerable amount of theory about Trunc-types [AB04]. For example, they provide
us with yet another characterization of propositions, namely as the types A for which
A and Trunc (A) are isomorphic (internally to type theory). In fact:

Lemma 2.7.19. The type A is a proposition if and only if there exists a retraction of
seal(—) : A — Trunc(A), i.e, a function f : Trunc(A) — A such that seal(—) followed
by f is the identity A — A. In this case f is necessarily an isomorphism.

It follows that Trunc(Trunc(A)) is isomorphic to Trunc(A), and in fact that propo-
sitional truncation forms an idempotent monad.

Finally, if we take Trunc-types as primitive, it is natural to also close each type
universe U; under propositional truncation with the following rules:

I'ra:U; Ary:T I'ra:U;
SN
I + trunc;(a) : U; A+ trunc;(a)[y] = trunc;(a[y]) : U;
T'ta:U;

A
T + El;(trunc;(a)) = Trunc(ElL;(a)) type

T'ta:U;
I + lift; (trunc;(a)) = trunc;, (lift;(a)) : Uy

Recalling that we defined the universes of propositions Prop; as the subtypes of
U; spanned by codes of propositions, the above rules imply that each Prop; is closed
under propositional truncation of types in U; and thus induce a map U; — Prop;
sending each type in U; to its propositional truncation in Prop;. By replaying our
earlier constructions at the level of codes, they also imply that every Prop,; is closed
under existential quantification and disjunction in the appropriate sense.

Advanced Remark 2.7.20. If we regard U; and Prop; as categories, then the aforemen-
tioned propositional truncation map U; — Prop; is the left adjoint to the inclusion
functor from propositions to types, and thus that propositional truncation exhibits
Prop; as a reflective subcategory of U;. The substitution rules for Trunc-types ensure
that this reflection extends to each slice and commutes with pullbacks.

Chasing this thread further, the condition of a type theory admitting Trunc-types is
a syntactic analogue of its category of closed types being regular, in the sense of having

86 Extensional type theory (2025-07-19)

a stable factorization system of effective epimorphisms followed by a monomorphism.
The reader may consult Awodey and Bauer [AB04] for further discussion, including the
connection between intuitionistic predicate logic and type theory with Trunc-types. ¢

2.7.4 The logic of type theory

We close our exploration of propositions in extensional type theory by returning to the
discussion of choice principles from Section 2.7.2. Suppose that we add Trunc-types to
extensional type theory and properly formulate the axiom of choice in terms of “mere
existence” (3-types or truncated X-types):

Choice := (AB:U) — (P : EI(A) X EI(B) — Prop) —
((a: El(A)) — Trunc(Xpp () Prf(P(a,b)))) —
Trunc(Y r.4_p5(a: A) — Prf(P(a, f(a))))

Is Choice inhabited in type theory?

Theorem 2.7.21. The proposition Choice is independent of extensional type theory
with Trunc-types, in the sense that neither Choice nor Choice — Void is inhabited.

Remark 2.7.22. We will not prove Theorem 2.7.21 or any of the other independence
theorems in this section; however, in Section 6.5 we will discuss how these theorems
can be derived from models of type theory in various topoi. o

Theorem 2.7.21 demonstrates that extensional type theory with Trunc-types does
not agree with the higher-order logic of classical sets, in which the axiom of choice
holds. In fact, type theory is a constructive logic, in the sense that it does not admit
(nor does it refute) several notable principles of classical logic'® such as the axiom of
choice, the law of excluded middle (LEM), and double-negation elimination (DNE):

LEM := (P : Prop) — (Prf(P) v (Prf(P) — Void))
DNE := (P : Prop) — ((Prf(P) — Void) — Void) — Prf(P)

Theorem 2.7.23. The propositions LEM and DNE imply one another, and are indepen-
dent of extensional type theory with Trunc-types.

Surprisingly, type theory is also consistent with some principles that are false in
classical logic, such as the principle that every function Nat — Nat is computable.

I5Note that there are several distinct senses in which a logic may be constructive; see Remark 2.7.25.

(2025-07-19) Propositions and propositional truncation 87

Theorem 2.7.24. Fix some Godel numbering of Turing machines, and let Church’s
thesis be the proposition that for every f : Nat — Nat, there merely exists some n : Nat
such that the Turing machine encoded by n computes the function f. Church’s thesis is
independent of type theory.

Church’s thesis is incompatible with the law of excluded middle. Using excluded
middle one can easily define a function f : Nat — Nat that sends every Turing
machine code to 0 if the encoded machine halts and 1 otherwise; by the standard
halting argument, f cannot be computed by a Turing machine.

The flexibility of type theory to be extended by a wide range of axioms, both
classical and anti-classical, allows mathematicians to use it as a powerful domain-
specific logic for reasoning synthetically about certain classes of objects that are
difficult to manipulate explicitly. In Section 5.2 we will encounter examples of synthetic
reasoning in homotopy type theory.

Remark 2.7.25. Constructivity in the sense of omitting classical principles—and thus
being compatible with a range of classical and anti-classical axioms—is sometimes
known as neutral constructivism. Constructivity can also refer to more opinionated
reasoning systems, including Brouwerian intuitionism, in which (for instance) all
functions from the real numbers to the real numbers are continuous, and Russian
constructivism, which admits recursion-theoretic principles such as Church’s thesis. ¢

88 Extensional type theory (2025-07-19)

Further reading

The literature on type theory is unfortunately neither notationally nor conceptually
coherent, particularly regarding syntax and how it is defined. We summarize a number
of important references that most closely match the perspective outlined in this book;
note however that many references will agree in some ways and differ in others.

Historical references Nearly all of the ideas in this chapter can be traced back in
some form to the philosopher Per Martin-Lof, whose collected works are available
in the GitHub repository michaelt/martin-1lof. Over the decades, Martin-Lof has
considered many different variations on type theory; the closest to our presentation
are his notes on substitution calculus [Mar92] and the “Bibliopolis book” presenting
what is now called extensional type theory [Mar84b]. For a detailed philosophical
exploration of the judgmental methodology that types internalize judgmental structure,
see his “Siena lectures” [Mar96]. Finally, the book Programming in Martin-Lof’s Type
Theory [NPS90] remains one of the best pedagogical introductions to type theory as
formulated in Martin-Lof’s logical framework.

Syntax of dependent type theory The presentation of type theory most closely
aligned to ours can be found in the second author’s Ph.D. thesis [Gra23, Chapter 2].
Another valuable reference is Hofmann’s Syntax and Semantics of Dependent Types
[Hof97, Sections 1 and 2], which as the title suggests, presents the syntax of type
theory and connects it to semantical interpretations. Hofmann is very careful in his
definition of syntax, but the technical details of capture-avoiding substitution and
presyntax have largely been supplanted by subsequent work on logical frameworks,
so we suggest that readers gloss over these technical details.

Logical frameworks In this book we have attempted to largely sidestep the question
of what constitutes a valid collection of inference rules. The mathematics of syntax
can and has occupied entire books, but in short, the natural families of constants and
isomorphisms considered in this chapter can be formulated precisely in systems known
as logical frameworks. A good introduction to logical frameworks is the seminal work
of Harper, Honsell, and Plotkin [HHP93] on the Edinburgh Logical Framework, in
which object-level judgments can be encoded as meta-level types.

For logical frameworks better suited to defining dependent type theory in particular,
we refer readers to the generalized algebraic theories of [Car86] (or the tutorial on
this subject by Sterling [Ste19]), or to quotient inductive-inductive types [AK16; Dij17;
KKA19; Kov22]. For logical frameworks specifically designed to accomodate the

https://github.com/michaelt/martin-lof/

(2025-07-19) Propositions and propositional truncation 89

binding and substitution of dependent type theory, we refer the reader to the Ph.D.
theses of Haselwarter [Has21] and Uemura [Uem21].

This material will be published by Cambridge University Press as Principles of Dependent Type Theory by Carlo
Angiuli and Daniel Gratzer. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © Carlo Angiuli and Daniel Gratzer 2024

Metatheory and implementation

In Chapter 2 we carefully defined Martin-Lo6f type theory as a formal mathematical
object: a kind of “algebra” of indexed sets (of types and terms) equipped with various
operations. We believe this perspective is essential to understanding both the what
and the why of type theory, providing both a precise definition that can be unfolded
into inference rules, as well as an explanation of what these rules intend to axiomatize.

This perspective is not, however, how most users of type theory interact with
it. Most users of type theory interact with proof assistants, software systems for
interactively developing and verifying large-scale proofs in type theory. Even when
type theorists work on paper rather than on a computer, many of the conveniences
of proof assistants bleed into their informal notation. Indeed, in Chapter 1 we used
definitions, implicit arguments, data type declarations, and pattern matching without
a second thought.

Although this book focuses on theoretical rather than practical considerations, it is
impossible to discuss the design space of type theory without discussing the pragmatics
of proof assistants, as these have exerted a profound influence on the theory. Our goal
in this chapter is to explain how to square our mathematical notion of type theory with
(idealized) implementations' of type theory, and to discover and unpack the substantial
constraints that the latter must place on the former.

In this chapter InSection 3.1 we axiomatize the core functionality of proof assistants
in terms of algorithmic elaboration judgments, and outline a basic implementation. In
Section 3.2 we continue to refine our implementation, taking a closer look at how the
equality judgments of type theory impact elaboration, and the metatheoretic properties
we need equality to satisfy. In Section 3.3 we consider how to extend our elaborator to
account for definitions. In Section 3.4 we discuss other metatheorems of type theory
and their relationship to program extraction. In Section 3.5 we construct a set-theoretic
model of extensional type theory and explore some of its metatheoretic consequences—
including a counterexample to one of the properties discussed in Section 3.2. Finally,
in Section 3.6 we disprove a second important metatheoretic property, leading us to
consider alternatives to extensional type theory (Chapter 2) in Chapters 4 and 5.

LAt the end of this chapter, we provide some pointers to literature and implementations specifically
geared to readers interested in learning how to actually implement type theory.

92 Metatheory and implementation (2025-07-19)

Goals of the chapter By the end of this chapter, you will be able to:

« Explain why and how we define type-checking in terms of elaboration.

+ Define the consistency, canonicity, normalization, and invertibility metatheo-
rems, and identify why each is important.

« Explain which metatheorems are disrupted by extensional equality, and sketch
why.

3.1 A judgmental reconstruction of proof assistants

What exactly is the relation between Agda code (or the code in Chapter 1) and the type
theory in Chapter 2? Certainly, Rocq and Agda—even without extensions—include
many convenience features that the reader would not be surprised to see omitted
in a theoretical description of type theory: implicit arguments, typeclasses/instance
arguments, libraries, reflection, tactics... For the moment we set aside not only these
but even more fundamental features such as data type declarations, pattern matching,
and the ability to write definitions, in order to consider the simplest possible “Agda”: a
type-checker. That is, our idealized Agda takes as input two expressions e and 7 and
accepts in the case that e is a closed term of closed type 7, and rejects if not.

Slogan 3.1.1. Proof assistants are fancy type-checkers.

Remark 3.1.2. For the purposes of this book, “proof assistant” refers only to proof
assistants in the style of Rocq, Agda, and Lean. In particular, we will not discuss
LCF-style systems [GMW?79] such as Nuprl [Con+85] and Andromeda [Bau+21], or
systems not based on dependent type theory, such as Isabelle [NPW02] or HOL Light
[Har09]. o

Convenience features of proof assistants are generally aimed at making it easier
for users to write down the inputs e and 7, perhaps by allowing some information to
be omitted and reconstructed mechanically, or even by presenting a totally different
interface for building e and 7 interactively or from high-level descriptions. We start our
investigation with the most generous possible assumptions—in which e and 7 contain
all the information we might possibly need, including type annotations—and will find
that type-checking is already a startlingly complex problem.

Remark 3.1.3. The title of this section is an homage to A judgmental reconstruction of
modal logic [PDO01], an influential article that reconsiders intuitionistic modal logic
under the mindset that types internalize judgmental structure. o

(2025-07-19) A judgmental reconstruction of proof assistants 93

Pretypes tu= (Pirr)|(Sigmarr)|Unit|Uni| (Ele)|---
Preterms e == (vari)|(lamzre)|(apprree)| (paircree)|(fstrre)]|---
Indices iz= 0]1]2]---

Figure 3.1: Syntax of pretypes and preterms.

3.1.1 Type-checking as elaboration

In Section 2.1 we emphasized that we do not assume that the types and terms of
type theory are obtained as the “well-formed” subsets of some collections of possibly-
ill-formed pretypes or preterms, nor do we even assume that they are obtained as
“Pn-equivalence classes” of well-formed-but-unquotiented terms.

Instead, types and terms are just the elements of the sets Ty(I') and Tm(T, A), which
are defined in terms of each other and the sets Cx and Sb(A, T'). When we write e.g.
A(b), we are naming a particular element of a particular set Tm(T, II(A, B)) obtained
by applying the “IT-introduction” map to b € Tm(T'.A, B); in particular, the values of
I', A, B should be regarded as implicitly present, as they are in Appendix A where we
write AI‘,A,B (b)

In Chapter 2 we reaped the benefits of this perspective, but it has come time to
pay the piper: what, then, is a type-checker supposed to take as input? We certainly
cannot say that a type-checker is given “a type A and a term a” because this assumes
that A and a are well-formed. Type-checking cannot be a membership query; instead, it
is a partial function from concrete syntax to the sets of genuine types and terms. For
an input expression to “type-check” means that it names a type/term, not that it “is”
one (which is a meta-type error, as types/terms are mathematical objects, and input
expressions are strings).

For simplicity we assume that the inputs to type-checkers are not strings but
abstract syntax trees (or well-formed formulas) conforming to the simple grammar in
Figure 3.1.> We call these semi-structured input expressions pretypes r and preterms
e, and write them as teletype s-expressions. In programming language theory, the
process of mapping semi-structured input expressions into structured core language
terms is known as elaboration.

Slogan 3.1.4. Type-checkers for dependent type theory are elaborators.

Remark 3.1.5. What is the relationship between features of the concrete syntax of a
proof assistant, and features of the core syntax? According to Slogan 3.1.4, the concrete
syntax should be seen as “instructions” for building core syntax. These instructions

%In other words, we only consider input expressions that successfully parse; expressions that fail to
parse (e.g., because their parentheses are mismatched) automatically fail to type-check.

94 Metatheory and implementation (2025-07-19)

may be very close to or very far from that core syntax, but in either case, new user-
facing features should only induce new core primitives when they cannot be (relatively
compositionally) accounted for by the existing core language. o

Algorithmic judgments Elaborators are partial functions that recursively consume
pretypes and preterms (abstract syntax trees) and produce types and terms. In a
real proof assistant, types and terms are of course not abstract mathematical entities
but elements of some data type, but for our purposes we will imagine an idealized
elaborator that outputs elements of Ty(I') and Tm(T, A). We present this elaborator not
as functional programs written in pseudocode, but as algorithmic judgments defined
by inference rules. Unlike the rules in Chapter 2, these rules are intended to define
an algorithm, so we will take care to ensure that any given elaboration judgment
can be derived by at most one rule. (In other words, we define our elaborator as a
deterministic logic program.)

We have already argued that pretype elaboration should take as input a pretype
7 and output a type A, but what about contexts? Just as well-formedness of closed
types (1 + II(A, B) type) refers to well-formedness of open types (1.A + Btype), it
is perhaps unsurprising that elaborating closed pretypes requires elaborating open
pretypes. However, we note that we do not need or want “precontexts”; we will only
descend under binders after successfully elaborating their pretypes. For example, to
elaborate (Pi 7y 1) we will first elaborate 7, to the closed type A, and only then in
context 1.A elaborate 7; to B.

Thus our two main algorithmic elaboration judgments are as follows:

1. T + rtype ~» A asserts that elaborating the pretype 7 relative to T' cx succeeds
and produces the type I' - A type.

2. T F e : A~ aasserts that elaborating the preterm e relative to + T cx and
I' + Atype succeeds and produces the term I' + a : A.

In pseudocode, the first judgment corresponds to a partial function elabTy(T, 7) =
A with the invariant that if + I' cx and elabTy terminates successfully, then T' +
Atype. Likewise, the second judgment is a partial function elabTm(I', A, e) = a whose
successful outputs are terms I' + a : A.

Elaborating pretypes TherulesforI + rtype ~» A are straightforward translations
of the type-well-formedness rules of Chapter 2. (When it is necessary to contrast
algorithmic and non-algorithmic rules, the latter are often referred to as declarative.)

(2025-07-19) A judgmental reconstruction of proof assistants 95

I'k1otype w A A+ 7y type ~» B 't 7otype w A I'A+ 7 type ~ B
I+ (Pi g 1) type ~» I1(A, B) I'+ (Sigma 1y 71) type ~» X(A, B)

I're:U~mwa

I+ Unittype ~» Unit I+ Unitype ~» U T+ (ELl e) type ~» El(a)

3.1.2 Elaborating preterms: the problem of type equality

Elaborating preterms is significantly more fraught. But first, let us remind ourselves
of the process of type-checking (lam 7y 7; e) : 7. First, we attempt to elaborate the
pretype 1 + type ~» C; if this succeeds, we then attempt to elaborate the preterm
1+ (lam g 7y e) : C ~» c. If this also succeeds, then the type-checker reports success,
having transformed the input presyntax to a well-formed term 1 + ¢ : C.

Since lam is our presyntax for A, elaborating lamvia 1 + (lamry 71 e) : C ~»> ¢
should produce a term ¢ := A4 4 g(b) for some A, B, b determined by 7y, 71, e respectively.
We determine these by a series of recursive calls to the elaborator: first I" + 75 type ~» A,
then I''A + 71 type ~» B, and finally I"A I e : B ~» b. Note that these steps must be
performed sequentially and in this order, because each step uses the outputs of the
previous steps as inputs: we elaborate 7; in a context extended by A, the result of
elaborating), and we elaborate e at type B, the result of elaborating ;.

At the end we obtain I''A + b : B, and thence by Il-introduction a term 1 r
M.ap(b) : II; (A, B) that should be the elaborated form of e. But the elaborated form
of e is supposed to have type C—the result of elaborating 7! Thus before returning
A.4.5(b) we need to check that 1 + C = II(A, B) type. This is where “type-checking”
actually happens: we have seen that 7 determines a real type and that e determines a
real term, but until this point we have not actually checked whether “e has type 7

In pseudocode, we can define elaboration of (lam 7y 71 e) as follows:

elabTm(T, C, (lam 7y 71 €)) =
let A =elabTy(T, 1) in
let B=elabTy(l'.A,7;) in
let b =elabTm(T.A, B,e) in
if (I' - C =1Ir (A, B) type) then return Ar 4 5(b) else error

96 Metatheory and implementation (2025-07-19)

or equivalently, in algorithmic judgment notation:

I'k1otype w» A
I''Ar 7y type ~ B [LAre:B~b I' - C =II(A B) type

T+ (lam o0 T1 e) :Cw AF,A,B(b)

This will be the only rule that concludes T + e : C ~» ¢ for e := (lam 7y 77 e),
ensuring that this rule “is the 1am clause of elabTm,” so to speak. Elaboration of other
introduction forms will follow a similar pattern.

Exercise 3.1. Write the algorithmic rule for elaborating the preterm (pair 7y 7y e €1).

Let us pause to make several remarks. First, note that our algorithm needs to check
judgmental equality of types I' C = Il (A, B) type. This step is, at least implicitly,
part of all type-checking algorithms for all programming languages: if we define a
function of type A — B that returns e, we have to check whether the type of e matches
the declared return type B. Sometimes this is as simple as checking the syntactic
equality of two type expressions, but often this is non-trivial, perhaps a subtyping
check.

In our present setting, checking type equality is extremely non-trivial. Suppose that
C = El(c) and so we are checking I" + El(c) = II(A, B) type for T + c : U. This type
equality depends on the entire equational theory of terms: we may need to “rewrite
along” arbitrarily many term equations before concluding I' + ¢ = pi(co, ¢1) : U; this
only reduces the problem to T + II(El(co), El(¢;)) = IT1(A, B) type for which it suffices
to check T + El(¢y) = Atype and I".A + El(c;) = Btype, each of which may once again
require arbitrary amounts of computation. We will revisit this point in Section 3.2.1.

Secondly, note that we have assumed for now that the preterm (lam 7y 7; e)
contains pretype annotations 7y, 7; telling us the domain and codomain of the IT-type.
In practice, a type-checker is essentially unusable unless it can reconstruct (most of)
these annotations; we describe this reconstruction process in Section 3.2.2.

Remark 3.1.6. Naively, one might think that including these annotations is the source
of our problem, because it forces us to compare the type C computed from 7 to the
type I1(A, B) computed from the annotations 7y, 7. This is not the case. If we omit
70, 71, then to elaborate e we must recover A and B from C, which upgrades “does
[+ C =TI(A, B) type?” to the strictly harder question “do there exist A, B such that
I' - C =II(A, B) type?” In addition, we will need to wonder whether this existence is
unique: otherwise, it could be that I''A + e : B ~» b for some choices of A, B but not
others. o

Elaborating elimination forms is not much harder than elaborating introduc-
tion forms. To elaborate (app) 71 €y €1), we elaborate the pretype annotations

(2025-07-19) Metatheory for type-checking 97

I' v otype ~ Aand I''A + 7y type ~» B in sequence, then the function I' + ¢y :
IT(A, B) ~ f and its argument T + e; : A ~» g in either order, before finally checking
that the type of the computed term appy , 3(f, a), namely B[id.a], agrees with the
expected type C.

I'+rotype v A I''AF 7y type ~» B
I'tey:II(AB) w f F'te:A~wa [+ C = BJid.a] type

[+ (app 70 71 €9 1) : C ~» appr 4 p(f, a)

Elaboration of other elimination forms follows a similar pattern. The only remain-
ing case is term variables (var i), which we have chosen to represent as de Bruijn
indices. To elaborate (var i) we check that the context has length at least i + 1; if

so, then it remains only to check that the type of the variable q[p’] agrees with the
expected type.

I =T'"ALA1.--.Ay TrC=Ap™"]type
T+ (vari):C ~ q[p']

In the above rule, our algorithm needs to check judgmental equality of contexts,
and to project I and A from I'.A. Unlike for type equality, we have no rules generating
non-trivial context equalities, so structural induction on contexts is perfectly well-

defined.

Remark 3.1.7. It is straightforward to extend our concrete syntax to support named
variables: in our elaboration judgments, we replace I' with an environment © that is
a list of pairs of genuine types with the “surface name” of the corresponding term
variable. Every environment determines a context by forgetting the names; in the
variable elaboration rule, we simply look up the de Bruijn index corresponding to the
given name. o

Exercise 3.2. Write the algorithmic rules for elaborating (fst 7y 71 e) and (snd 7; 77 e).

3.2 Metatheory for type-checking

In Section 3.1 we saw that we can reduce type-checking to the problem of deciding
the equality of types (at least, assuming that our input preterms have all type annota-
tions). Deciding the equality of types in turn requires deciding the equality of terms,
particularly in the presence of universes (Section 2.6.2). It is far from obvious that
these relations are decidable—in fact, as we will see in Section 3.6, they are actually

98 Metatheory and implementation (2025-07-19)

undecidable for the theory presented in Chapter 2—and proving their decidability relies
on a difficult metatheorem known as normalization. In this section, we continue our
exploration of elaboration with an emphasis on normalization and other metatheorems
necessary for type-checking.

Remark 3.2.1. Recall from Section 2.1 that a metatheorem is just an ordinary theorem
in the ambient metatheory, particularly one concerning the object type theory. o

Before we can discuss computability-theoretic properties of the judgments of type
theory, however, we must fix an encoding. We have taken pains to treat the rules
of type theory as defining abstract sets Ty(I') and Tm(T, A) equipped with functions
(type and term formers) satisfying various equations (f and 1 laws), which is the
right perspective for understanding the mathematical structure of type theory. But to
discuss the computational properties of type theory it is essential to exhibit an effective
encoding of types and terms that is suitable for manipulation by a Turing machine or
other model of computation: Turing machines cannot take mathematical entities as
inputs, and whether equality of types is decidable can depend on how we choose to
encode them!

This is analogous to the issue that arises in elementary computability theory when
formalizing the halting problem: we must agree on how to encode Turing machines as
inputs to other Turing machines, and we must ensure that this encoding is suitably
effective. It is possible to pick an encoding of computable functions that trivializes the
halting problem, at the expense of this encoding itself necessarily being uncomputable.

Returning to type theory, derivation trees of inference rules (e.g., as in Appendix A)
turn out to be a perfectly suitable encoding. That is, when discussing computability-
theoretic properties of types, terms, and equality judgments, we shall assume that each
of these is encoded by equivalence classes of closed derivation trees; for example, we
encode Ty(T') by the set of derivation trees with root T' A type for some A. (Just as
there are many Turing machines realizing any given function N — N, there will be
many derivation trees encoding any given type A € Ty(T').) When we say “equality of
types is decidable,” what we shall mean is that “it is decidable whether two derivations
encode the same type.” But having fixed a convention, we will avoid belaboring the
point any further.

3.2.1 Normalization and the decidability of equality

To complete the pretype and preterm elaboration algorithms presented in Section 3.1,
it remains only to show that type and term equality are decidable, which is equivalent
to the following normalization condition.

(2025-07-19) Metatheory for type-checking 99

Remark 3.2.2. Type and term equality are automatically semidecidable because deriva-
tion trees are recursively enumerable. That is, to check whether two types A, B € Ty(T')
are equal, we can enumerate every derivation tree of type theory, terminating if we en-
counter a derivation of T' - A = B type. Obviously, this is not a realistic implementation
strategy. o

Definition 3.2.3. A normalization structure for a type theory is a pair of computable,
injective functions nfTy : Ty(T') — N and nfTm: Tm(T, A) — N.

Definition 3.2.4. A type theory enjoys normalization if it admits a normalization
structure.

The reader may find these definitions surprising: where did N come from, and
where is the rest of the definition? We have chosen N because it is a countable set with
decidable equality, but any other such set would suffice. In practice, one instead defines
two sets of abstract syntax trees TyNf, TmNf with discrete equality, and constructs a pair
of computable, injective functions nfTy : Ty(T') — TyNf and nfTm : Tm(T, A) — TmNf.
It is trivial to exhibit computable, injective Godel encodings of TyNf and TmNf, which
when composed with nfTy, nfTm exhibit a normalization structure in the sense of
Definition 3.2.3.

As for Definition 3.2.3 being sufficient, the force of normalization is that it gives us
a decision procedure for type/term equality as follows: given A, B € Ty(I'), A and B are
equal if and only if nfTy(A) = nfTy(B) in N. Asking for these maps to be computable
ensures that this procedure is computable; injectivity ensures that it is complete in the
sense that nfTy(A) = nfTy(B) implies A = B. The soundness of this procedure—that
A = B implies nfTy(A) = nfTy(B)—is implicit in the statement that nfTy is a function
out of Ty(T'), the set of types considered modulo judgmental equality.

Warning 3.2.5. In Section 3.6 we shall see that extensional type theory does not admit
a normalization structure, but we will proceed under the assumption that the theory
we are elaborating satisfies normalization. In Chapter 4 we will see how to modify our
type theory to substantiate this assumption.

Assuming normalization, we can define algorithmic type and term equality judg-

ments

1. T+ A & Btypeassertsthatthe typesT' + AtypeandT r Btype are judgmentally
equal according to some decision procedure.

2.Tra o b:Aasserts that thetermsI' - a: Aand I' + b : A are judgmentally
equal according to some decision procedure.

100 Metatheory and implementation (2025-07-19)

as follows:
nfTy(A) = nfTy(B) nfTm(a) = nfTm(b)
'+ A © Btype 'raeb:A

We notate algorithmic equality differently from the declarative equality judgments
I' - A=BtypeandT F a = b : Ato stress that their definitions are completely different,
even though (by our argument above) two types/terms are algorithmically equal if and
only if they are declaratively equal. We thus complete the elaborator from Section 3.1
by replacing the “calls” to T + C = II(A, B) type with calls to T + C & II(A, B) type.

Remark 3.2.6. It may seem surprising that normalization is so difficult; why can’t
algorithmic equality just orient each declarative equality rule (e.g., fst(pair(a, b)) ~»
a) and check whether the resulting rewriting system is confluent and terminating?
Unfortunately, while this strategy suffices for some dependent type theories such as
the calculus of constructions [CH88], it is very difficult to account for judgmental 5
rules. (What direction should p «v pair(fst(p), snd(p)) go? What about the 7 rule
of Unit, a «» tt?) These rules require a type-sensitive decision procedure known
as normalization by evaluation, whose soundness and completeness for declarative
equality is nontrivial [ACDO07; Abe13]. o

Exercise 3.3. We argued that the existence of a normalization structure implies
that judgmental equality is decidable. In fact, this is a biimplication. Assume that
definitional equality is decidable, and construct from this a normalization structure.
(Hint: some classical reasoning is required, such as Markov’s principle or the law of
excluded middle.)

Exercise 3.4. We have sketched how to use normalization to obtain a type-checking
algorithm. This, too, is a biimplication. Using Exercise 3.3, show that the ability to
decide type-checking implies that normalization holds.

3.2.2 Injectivity and bidirectional type-checking

We have seen how to define a rudimentary elaborator for type theory assuming that
normalization holds, but the preterms that we can elaborate (Figure 3.1) are quite
verbose, making our proof assistant more of a proof adversary. For instance, function
application (app 1y 71 ey 1) requires annotations for both the domain and codomain
of the Il-type.

These annotations are highly redundant, but it is far from clear how many of them
can be mechanically reconstructed by our elaborator, nor if there is a consistent strategy

(2025-07-19) Metatheory for type-checking 101

Pretypes tu= (Pirr)|(Sigmarr)|Unit|Uni| (Ele)|---
Preterms e = (vari)|(chker)| (lame) | (appee) | (pairee) | (fste)]|---

Figure 3.2: Syntax of pretypes and preterms for a bidirectional elaborator.

for doing so. Users of typed functional programming languages like OCaml or Haskell
might imagine that virtually all types can be inferred automatically; unfortunately,
this is impossible in dependent type theory, for which type inference is undecidable
[Dow93].

It turns out there is a fairly straightforward, local, and usable approach to type
reconstruction known as bidirectional type-checking [Coq96; PT00; McB18; McB19].
The core insight of bidirectional type-checking is that for some preterms it is easy to
reconstruct or synthesize its type (e.g., if we know a function’s type then we know the
type of its applications), but for other preterms we must be given a type at which to
check it (e.g., to type-check a function we need to be told the type of its input variable).

By explicitly splitting elaboration into two mutually-defined algorithms—type-
checking and type synthesis—we can dramatically reduce type annotations. In fact, in
Figure 3.2 we can see that our new preterm syntax has no type annotations whatsoever
except for a single annotation form (chk e 7) that we will use sparingly. The ebb and
flow of information between terms and types—between checking and synthesis—leads
to the eponymous bidirectional flow of information that has proven easily adaptable
to new type theories. But when should we check, and when should we synthesize?

Slogan 3.2.7. Types are checked in introduction rules, and synthesized in elimination
rules.

We replace our two algorithmic elaboration judgments I' + rtype ~» A and
I' + e: A~ awith three algorithmic judgments as follows:

1. T+ 7 & type ~» A (“check 77) asserts that elaborating the pretype 7 relative to
F I' cx succeeds and produces the type I' + A type.

2. T+ e & A~ a(“check e against A”) asserts that elaborating the (unannotated)
preterm e relative to + I' cx and a given type I' - A type succeeds with ' a : A.

3. T'+ e = A w a (“synthesize A from e”) asserts that elaborating the (unanno-
tated) preterm e relative to I' cx succeeds and produces both T' + A type and
'rFa:A.

The first two judgments, I' + 7 < type ~» Aand T' + e & A ~» q, are similar to
our previous judgments; when elaborating a preterm we are given a context and a

102 Metatheory and implementation (2025-07-19)

type at which to check that preterm. In the third judgment, ' - e = A ~» g, we are
also given a preterm and a context, but we output both a term and its type. The arrows
are meant to indicate the direction of information flow: when checking e < A we are
given A and using it to elaborate e, but when synthesizing e = A we are producing A
from e.

The rules for I' + 7 & type ~w» A are the same as those for I' + 7type v A,
except that they reference the new checking judgment I' e & A ~» a instead of
I'+e:A ~ a ButforeacholdT r e : A » a rule, we must decide whether this
preterm should be checked or synthesized, and if the latter, how to reconstruct the
type.

The easiest case is the variable (var i). Elaboration always takes place with respect
to a context which records the types of each variable, so it is easy to synthesize the
variable’s type. Notably, unlike in our previous variable rule, we do not need to check
type equality!

I= F’.Ai.Ai_l. e .Ao

T+ (vari) = A;[p™'] w q[p']

Next, let us consider the rules for Il-types. According to Slogan 3.2.7, the introduc-
tion form (lam e) should be checked. As in Section 3.1, to check T’ + (lame) & C ~»
A(b) we must recursively check the body of the lambda, T.A + e & B ~» b. But where
do A and B come from? (Last time, we elaborated them from lam’s annotations.) We
might imagine that we can recover A and B from the given type C,

't C & II(A, B) type FT'Are&s=Bwb
I't (lame) & C > A(b)

1?

but this rule does not make sense as written; I' - C & D type is an algorithm which
takes two types and returns “yes” or “no”, and we cannot use it to invent the types A
and B.

Worse yet, as foreshadowed in Remark 3.1.6, even if we can find A and B such that
I' + C & TI(A, B) type, there is no reason to expect this choice to be unique. That
is, it could be that ' C & II(A, B) type and I + C & II(A’, B’) type both hold, but
A # A’ (or alternatively, A = A’ and B # B’). If so, it is possible that e elaborates with
respect to one of these choices but not the other, i.e, A e & B ~» b succeeds but
A’ + e & B’ ~» | ? fails; even if both succeed, they will necessarily elaborate two
different terms! We must foreclose these possibilities in order for elaboration to be
well-defined.

Definition 3.2.8. A type theory has injective II-types if T + TI(A, B) = I1(A’, B’) type
implies '+ A = A" type and A + B = B’ type.

(2025-07-19) Metatheory for type-checking 103

Definition 3.2.9. A type theory has invertible I1-types if it has injective II-types and
admits a computable function which, given I' + Ctype, either produces the unique
I'+ Atype and T.A + Btype for which T + C = TI(A, B) type, or determines that no
such A, B exist.

Remark 3.2.10. That is, a type theory has injective Il-types if the type former Iy :
(Zaetyr) Ty(T.A)) — Ty(T) is injective. A type theory has invertible IT-types if the
image of IIr is decidable and ITy admits a (computable) partial inverse IT" : Im(IIr) —

(Zaerym) Ty(T.A)). o

Particularly in light of Remark 3.2.10, one can easily extend the terminology of
injectivity and invertibility to non-II type formers.

Definition 3.2.11. If all the type constructors of a type theory are injective (resp.,
invertible), we say that the type theory has injective (resp., invertible) type constructors.

Having injective or invertible type constructors does not follow from normalization.
(A type theory in which all empty types are equal may be normalizing but will not
satisfy injectivity.) In practice, however, having invertible type constructors is almost
always an immediate consequence of the proof of normalization. As we mentioned in
Section 3.2.1, normalization proofs generally construct abstract syntax trees TyNf, TmNf
of “p-short, n-long” types and terms for which equality is both syntactic as well as
sound and complete for judgmental equality. Given a type I' + C type, we invert its
head constructor by computing nfTy(C) € TyNf, checking its head constructor in
TyNf, and projecting its arguments.

Injectivity and invertibility are very strong conditions; function types in set theory
are not injective, nor are Il-types injective in extensional type theory.

Exercise 3.5. Give an example of three sets X, Y, Z such that X # Y, but the set of
functions X — Z is equal to the set of functions Y — Z.

Exercise 3.6. We will see in Section 3.5 that type theory admits an interpretation in
which closed types are sets. Exercise 3.5 shows that sets do not have injective IT-types,
but these two facts together do not imply that type theory lacks injective IT-types.
Why not?

Warning 3.2.12. In Section 3.5 we shall see that extensional type theory does not have
injective type constructors, due to interactions between equality reflection and large
elimination or universes (Theorem 3.5.19). We will proceed under the assumption that
the theory we are elaborating has invertible type constructors, and in Chapter 4 we
will see how to modify our type theory to substantiate this assumption.

104 Metatheory and implementation (2025-07-19)

Completing our elaborator The force of having invertible IT-types is to have an
algorithm unPi which takes I' + C type and returns the unique pair of types A, B for
which T' + C = II(A, B) type, or raises an exception if this pair does not exist. Using
unPi we can repair our earlier attempt at checking (1am e), and define the synthesis
rule for (app e e;):

unPi(C) = (A,B) T.AreeB~b
'+ (lame) & C s A(b)

F'rey=C~ f unPi(C) = (A, B) T'rege&=Awa

T+ (app ey e1) = B[id.a] ~» app(f,a)

This is the only elaboration rule for (1am e); in particular, there is no synthesis rule
for lambda, because we cannot elaborate e without knowing what type A to add to
the context. On the other hand, to synthesize the type of (app e, e1), we synthesize
the type of eo; if it is of the form IT(A, B), we then check that e; has type A and then
return B, suitably instantiated. Putting these rules together, the reader might notice
that we cannot type-check (app (lam ey) e;), because this would require synthesizing
(lam ep). In fact, bidirectional type-checking cannot type-check S-redexes in general
for this reason.

For this reason, we have included a type-annotation preterm (chk e 7) which
allows users to explicitly annotate a preterm with a pretype. The type of this preterm is
trivially synthesizable: it is the result of elaborating 7! In order to synthesize (chk e 7),
we simply check e against 7, and if successful, return that type.

't <typew A l'tre=A~wa
I'+(chker) => A~ a

In particular, we can type-check the f-redex from before, as long as we annotate the
lambda with its intended type: (app (chk (1ameg) (Pi 79 71)) e1).

The above rule allows us to treat a checkable term as synthesizable. The converse
is much easier: to check the type of a synthesizable term, we simply compare the
synthesized type to the expected type.

I're=>B~wa I' - A & Btype

Tree=Awa

As written, the above rule applies to any checking problem because its conclusion
is unconstrained. In our elaboration algorithm, we should only apply this rule if no
other rule matches. It is the final “catch-all” clause for situations where we have not

(2025-07-19) A case study in elaboration: definitions 105

one but two sources of type information: on the one hand, we can synthesize €’s
type directly, and on the other hand, we are also given the type that e is supposed to
have. Interestingly, this is the only rule where our bidirectional elaborator checks type
equality I' + A & Btype.

Exercise 3.7. For each of (pair e e;), (fst e), and (snd e), decide whether this
preterm should be checked or synthesized, then write the algorithmic rule for elabo-
rating it. (Hint: you must assume that X-types are invertible.)

3.3% Acase study in elaboration: definitions

To round out our discussion of elaboration, we sketch how to extend our concrete
syntax and type-checker to account for definitions, a key part of any proof assistant.
The input to a proof assistant is typically not a single term e : 7 but a sequence of
definitions

defl T =€
defz P Ty =€
def, : 7, = e,

where every e; and 7; can mention def; for i < j.

To account for this cross-definition dependency, we might imagine elaborating
each definition one at a time, adding a new (nameless) variable to the context for each
successful definition. Such a strategy might proceed as follows:

1. elaborate 1 + 17 < type ~» A; and 1 + e; & Ay v ay; if successful,
2. elaborate 1.A; + 75 < type ~» A; and 1.A; e; & Ay ~ ay; if successful,
3. continue elaborating each 7; and e; in context 1.A;..... A;_1 as above.

Unfortunately this algorithm is too naive: if we treat def; as a variable of type A;,
the type-checker will not have access to the definition def; = a;. Consider:

const : Nat
const = 2

proof : const = 2
proof = refl

106 Metatheory and implementation (2025-07-19)

Here const will successfully elaborate in the empty context to suc(suc(zero)) : Nat,
but the elaboration problem for proof will be 1.Nat + refl < q = suc(suc(zero)) ~»
? , which will fail: an arbitrary variable of type Nat is surely not equal to 2!

Remark 3.3.1. For readers familiar with functional programming, we summarize the
above discussion as “let is no longer A,” in reference to the celebrated encoding of
(let x = a in b) as ((Ax. b) a) often adopted in Lisp-family languages. This slogan
is not unique to dependent type theory; users of ML-family languages may already
be familiar with this phenomenon in light of the Hindley-Milner approach to typing
let. 3

To solve this problem, we must somehow instrument our elaborator with the ability
to remember not only the type of a definition but its definiens as well. There are several
ways to accomplish this; one possibility is to add a new form of definitional context
extension “T.(q := a : A)” in which the variable is judgmentally equal to a given term
a [McB99; SP94]. We opt for an indirect but less invasive encoding of this idea: taking
inspiration from Section 2.6.2, wherein we encoded “extending the context by a type
variable” by adding a new type U whose terms are codes for types, we will add a new
type former, singleton types, whose terms are elements of A judgmentally equal to a.

Singleton types The singleton type of T + a : A, written I' Sing (A, a) type, is a
type whose elements are in bijection with the elements of Tm(T, A) that are equal to
a, namely the singleton subset {a} [Asp95; SH06]. That is, naturally in T,

Singr : (X aeryr) Tm(I,A)) — Ty(I)
iraq: Tm(T,Sing(A, a)) = {b € Tm(T,A) | b = a}

In inference rules,

F'ta:A F'ta:A I'ts:Sing(A a)
T + Sing (A, a) type I +in(a) : Sing(A, a) T+ out(s): A
I'+s:Sing(A a) T'ta:A I'+s:Sing(A a)
I'+out(s)=a:A I' +in(out(s)) = s : Sing(A, a)

This definition may seem rather odd, but note that a variable of type Sing(A, a)
determines a term out(q) : A[p] that is judgmentally equal to a[p], thereby allowing
us to extend contexts by “defined variables.”

Remark 3.3.2. In extensional type theory, we can define singleton types as pairs of an
element of A and a proof that this element equals a, i.e., Sing (A, a) := Z(A, Eq(A[p], q.a[p]))

(2025-07-19) A case study in elaboration: definitions 107

with in(a) := pair(a, refl) and out(s) := fst(s). This encoding makes essential use of
equality reflection, but singleton types can also be added as a primitive type former to
type theories without equality reflection, without disrupting normalization. o

Extending our elaborator We begin by introducing concrete syntax for lists of
e : T pairs, which we call declarations:

Declarations ds == (decls (e; 1) ...)
Pretypes THu= ..o
Preterms e =

We extend our bidirectional elaborator as follows. First, we parameterize all our
judgments by a second context ® that keeps track of which variables in I are ordinary
“local” variables (introduced by types/terms such as IT or 1), and which variables refer
to declarations. We write © as a list 1.decl.decl.local.... with the same length as
I' =1.A1.A3.A;. ..., to indicate in this case that only the variable of type As is local.
We will replace the variable rule shortly; the remaining elaboration rules do not interact
with © except to extend © by local whenever a new variable is added to the context T.

Secondly, we introduce a new algorithmic judgment I'; ® + ds ok which type-
checks a list of declarations ds by elaborating the first declaration (e; 71) in context
I'; © into the term a; : Aj, and then elaborating the remaining declarations in context
I'.Sing (A4, a;); ©.decl.

IO F 1 & type w Ay I''Ore A w a
I'.Sing (A1, a1); ©.decl + (decls (e; 72) ...) ok
I';0 + (decls) ok I;0 + (decls (e; 11) (e2 12) ...) ok

Finally, we must edit our variable rule to account for whether a variable is an
ordinary local variable or refers to an earlier declaration; in the latter case, we must
insert an extra out(—) around the variable so it has the correct type A rather than
Sing (A, a).

F = F'.Ai.Ai_l. et .A()
[=T"ApAi_1.- A © =@ .decl.xj_;. -+ .xg
© = @' .local.x;_1. - .xg unSing(A;) = (A, a)

;0 k (var i) = A;[p™'] ~ q[p'] I;0 + (var i) = A[p™*'] w out(q[p'])

In the second rule above, the rules of singleton types ensure that the elaborated
term out(q[p’]) is judgmentally equal to a[p'*!], where a is the previously-elaborated
definiens of the corresponding declaration. Putting everything together, to check an in-
putfile (decls (e; 71) (€2 72) ...) we attempt to derive 1;1 + (decls (e; 71) (e 72) ...) ok.

108 Metatheory and implementation (2025-07-19)

To sum up, we emphasize once again that although this book focuses on the core
calculi of proof assistants, it is impossible to have a satisfactory understanding of this
topic without paying heed to their surface languages as well; often, the best way to
understand a new surface language feature is to add a new feature in the core language
to accommodate it. Ideally, our alterations to the core language will be minor but will
significantly simplify elaboration.

3.4 Models for metatheory

Our focus on type-checking has led us to normalization (Definition 3.2.4) and invertible
type constructors (Definition 3.2.11) as metatheorems essential to the implementation
of type theory. Notably, these metatheorems are stated with respect to types and terms
in arbitrary contexts; in this section, we will discuss two more important metatheorems
that concern only terms in the empty context 1, namely consistency and canonicity.
Neither of these properties is needed to implement a type-checker, but as we will
see, they are essential to the applications of type theory to logic and programming
languages respectively.

Definition 3.4.1. A type theory is consistent if there is no closed term 1 a : Void.

Consistency is the lowest bar that a type theory must pass in order to function
as a logic. When we interpret types as logical propositions, Void corresponds to the
false proposition. By the rules of Void (Section 2.5.1), the existence of a closed term
1+ a: Void (an assumption-free proof of false) implies that every closed type has at
least one closed term 1 + absurd(a) : A, or in other words, that every proposition has
a proof. Thus Definition 3.4.1 corresponds to logical consistency in the traditional
sense.

At this point we pause to sketch the model theory of type theory. In Chapter 2 we
were careful to formulate the judgments of type theory as (indexed) sets, and the rules
of type theory as (dependently-typed) operations between these sets and equations
between these operations. As a result we can regard this data as a kind of generalized
algebra signature, in the sense of Section 2.5.4; in particular, we obtain a general notion
of “implementation” of, or algebra for, this signature—more commonly known as a
model of type theory.

Definition 3.4.2. A model of type theory M consists of the following data:
1. a set Cxpq of M-contexts,

2. for each A, T € Cxyy, a set Sbp((A,T') of M-substitutions from A toT,

(2025-07-19) Models for metatheory 109

3. for each ' € Cxy, a set Ty 5 (T') of M-types inT, and

4. for each ' € Cxpq and A € Ty »(T), a set Tmp((T', A) of M-terms of A inT,
5. an empty M-context 1p1 € Cxpy,

6. for eachT" € Cxy(and A € Ty ((T'), an M-context extension I'. pyA € Cx py,

7. forT' € Cxp, A € Ty (), and B € Ty o((T'. pA), an M-IT type ITp (A, B) €

8. and every other context, substitution, type, and term forming operation described
in Appendix A, all subject to all the equations stated in Appendix A.

Definition 3.4.3. Given two models of type theory M, N, a homomorphism of models
of type theory f : M — N consists of the following data:

1. afunction Cxs : Cxpr — Cxy,
2. foreach A,T' € Cxy, afunction Sb¢(A,T') : Sba((A,T') — Sby(Cxs(A), Cxp(I)),
3. for each T € Cxy, a function Tyf(T) : Ty p(T) = Ty o (Cxp(T)), and

4. for eachT' € Cxp and A € Ty y((T), a function Tm¢(T, A) : Tm (T, A) —
T (Cxp(T), Ty £(T) (4),

5. such that Cxz (1) = 1x,

6. and every other context, substitution, type, and term forming operation of M is
also sent to the corresponding operation of N in a similar fashion.

Definition 3.4.4. The sets Cx, Sb(A,T), Ty(T), and Tm(T, A), equipped with the
context, substitution, type, and term forming operations described in Appendix A,
tautologically form a model of type theory 7~ known as the syntactic model.

Theorem 3.4.5. The syntactic model T is the initial model of type theory; that is, for
any model of type theory M, there exists a unique homomorphism of models T~ — M.

The notions of model and homomorphism are quite complex, but they are me-
chanically derivable from the rules of type theory as presented in Appendix A, viewed
as the signature of a quotient inductive-inductive type (QIIT) [KKA19] or general-
ized algebraic theory (GAT) [Car86]. The initiality of the syntactic model expresses
the fact that type theory is the “least” model of type theory, in the sense that it—by
definition—satisfies all the rules of type theory and no others; this mirrors the sense
in which initiality of N with respect to (1 U —)-algebras expresses that the natural

110 Metatheory and implementation (2025-07-19)

numbers are generated by zero and suc(—). The reader curious to learn more about
how GATs/QIITs are defined and to see a proof of Theorem 3.4.5 is encouraged to
consult Bezem et al. [Bez+21] or Kaposi, Kovacs, and Altenkirch [KKA19].

Remark 3.4.6. Theorem 3.4.5 should be regarded as stating the soundness and com-
pleteness of type theory with respect to this notion of model. The homomorphism
T — M expresses soundness: the syntax of type theory can be interpreted into
any model M. Conversely, the fact that the syntax constitutes a model 7~ expresses
completeness: any result that holds for all models must in particular hold for 7 and
thence for the syntax.

We note that Definitions 3.4.2 and 3.4.3 were carefully chosen so as to make
soundness and completeness nearly tautological, and indeed, this is evidenced by the
fact that these definitions and theorems can be mechanically derived by the general
machinery of quotient inductive-inductive types or generalized algebraic theories.
Unimpressed readers may commiserate with Girard’s “broccoli logic” critique of such
semantics [Gir99]. o

While the definition of a model does not lend much insight into type theory on its
own, the model theory of type theory is an essential tool in the metatheorist’s toolbox;
to prove any property of the syntactic model 7°, we simply produce a model of type
theory M such that Theorem 3.4.5 implies the property in question. In the case of
consistency, it suffices to exhibit any non-trivial model of type theory whatsoever.

Theorem 3.4.7. Suppose there exists a model of type theory M such that Tm 5((1 pq, Void 5/)
is empty; then type theory is consistent.

Proof. We must show that from the existence of M and a term a € Tm(1, Void) we can
derive a contradiction. By Theorem 3.4.5, there is a homomorphism of models f : 7~ —
M, and in particular a function Tm¢(1, Void) : Tm(1, Void) — Tm (1, Void p();
applying this function to a produces an element of Tm (14, Void »(), an empty
set. a

In Section 3.5 we will see that there is a “standard” set-theoretic model S of
extensional type theory in which contexts are sets, types are families of sets indexed
by their context, and each type former is interpreted as the corresponding construction
on indexed sets. As a trivial corollary of this model and Theorem 3.4.7, we obtain the
consistency of extensional type theory. We postpone further details of the set-theoretic
model to Section 3.5; interested readers may also consult Castellan, Clairambault, and
Dybjer [CCD21] and Hofmann [Hof97] for tutorials on the categorical semantics of
type theory.

Theorem 3.4.8 (Martin-L6f [Mar84b]). Extensional type theory is consistent.

(2025-07-19) Models for metatheory 111

Note that while an inconsistent type theory is useless as a logic, it may still be
useful for programming; indeed, many modern functional programming languages
include some limited forms of dependent types despite being inconsistent.

Exercise 3.8. Consider an unrestricted fixed-point operator fix : (A — A) — A, ie,

I'+ Atype I'Atra:Alp]
T+ fix(a): A

Show that adding such a rule results in an inconsistent type theory.

In fact, our final metatheorem is directly connected to the interpretation of type
theory as a programming language, although the connection may not be immediately
apparent.

Definition 3.4.9. A type theory enjoys canonicity if for every closed 1 + b : Bool
either 1 + b = true : Bool or 1 + b = false : Bool, but not both.

Remark 3.4.10. Another common statement of canonicity is that for every closed
1+ n: Nat either 1 + n = zero : Nat or 1 + n = suc(m) : Nat where 1 + m : Nat.
This statement is not equivalent to Definition 3.4.9 in general, but in practice one only
considers type theories that satisfy both or neither, and proofs of one also imply the
other en passant. o

Remark 3.4.11. Consistency states that Tm(1, Void) = (), whereas canonicity states
that Tm(1,Bool) = {*, %"} and Tm(1, Nat) = N. As discussed at length in Section 2.5,
none of these properties hold in I because variables can produce noncanonical terms
at any type; however, there are indeed no noncanonical closed terms of type Void,
Bool, or Nat. S

Theorem 3.4.12. Extensional type theory enjoys canonicity.
Proof. See Section 6.6. O

Frustratingly, although Theorem 3.4.12 was certainly known to researchers in the
1970s and 1980s, we are unable to locate a precise reference from that time period.

Like consistency, normalization, and invertibility of type constructors, canonicity
can be established by constructing a model of type theory, although the proofs of the
latter three metatheorems are considerably more involved than the proof of consistency.
As we will see in Section 6.6, canonicity models interpret the contexts, substitutions,
types, and terms of type theory as pairs of that syntactic object along with additional
data which explains how that object may be placed in canonical form [Fre78; LS88;
MS93; Cro94; Fio02; AK16; Coq19; KHS19]. Such models can be seen as displayed

112 Metatheory and implementation (2025-07-19)

models of type theory over the syntactic model, and are called gluing models in the
categorical literature.

Exercise 3.9. In light of Remark 3.4.11, we might imagine that canonicity follows
from the existence of a model of type theory M for which Tm (1 s, Bool »¢) has
exactly two elements. This is not the case; why? (Why can’t we mimic the proof of
Theorem 3.4.7?)

The force of canonicity is that it implies the existence of an “evaluation” algorithm
that, given a closed boolean 1 - a : Bool, reports whether a is equal to true or to false.
There are two ways to obtain such an algorithm; the first is to prove canonicity in a
constructive metatheory, so that the proof itself constitutes such an algorithm. The
second is to appeal to Markov’s principle: because derivation trees are recursively enu-
merable, a classical proof of canonicity implies that the naive enumeration algorithm
will terminate.

In a direct sense, such an algorithm is indeed an interpreter for closed terms of type
theory. But canonicity also produces a much richer notion of computational adequacy
for type theory; giving this theory its due weight would take us too far afield, but we
will briefly sketch the highlights. By results in categorical realizability [Jac99; vOo0s08],
essentially every model of computation gives rise to a highly structured and well-
behaved category known as a realizability topos; these categories support models of
dependent type theory in which terms of type Bool are (equivalence classes of) boolean
computations in some idealized model of computation. For instance, in the effective
topos [Hyl82], closed terms of type Bool are equivalence classes of Turing machines
modulo Kleene equivalence (i.e., two machines are equivalent if they coterminate with
the same value).

Because models of type theory in realizability topoi interpret terms in concrete
(albeit theoretical) notions of computation such as Turing machines or combinator
calculi, they can be regarded abstractly as compilers for type theory. Alternatively,
they serve to justify the program extraction mechanisms found in proof assistants such
as Rocq and Agda, which associate to each term an OCaml or Haskell program whose
observable behavior is compatible with the definitional equality of type theory.

From this perspective, canonicity guarantees that definitional equality fully con-
strains the observable behaviors of extracted programs: for any closed boolean 1
b : Bool, every possible extract for b must evaluate to (the extract of) either true or
false, as predetermined by whether b = true or b = false. Note that it is still possible
for two different extracts of b to have very different execution traces; canonicity only
constrains their observable behavior, considered modulo some appropriate notion of
observational equivalence.

Remark 3.4.13. The above discussion may clarify why canonicity is harder to prove

(2025-07-19) The set model of type theory 113

than consistency: consistency implies the existence of a non-trivial model of type
theory, whereas canonicity places a constraint on all models of type theory. o

We emphasize once more that, unlike normalization and invertibility of type con-
structors, neither consistency nor canonicity is required to implement a bidirectional
type-checker for type theory. However, it seems safe to assume that anybody writing
such a type-checker is interested in type theory’s applications to logic or programming
or both, in which case consistency and canonicity are relevant properties. In addition,
failures of canonicity often indicate a paucity of definitional equalities that can have a
negative effect on the usability of a type theory even as a logic.

3.5% The set model of type theory

We now spell out the details of the set-theoretic model S of extensional type theory
alluded to in Section 3.4 [Hof97]. The remainder of this book will not depend on
this section, but it may nevertheless be valuable to readers interested in better under-
standing the model theory of type theory or how type theory relates to traditional
mathematics.

In short, S interprets the contexts of type theory as sets, substitutions as functions,
dependent types as indexed families of sets, terms as indexed families of elements,
and every type- and term-forming operation as its “standard” mathematical coun-
terpart. For example, the S-interpretation of the closed functions from Nat to Nat,
Tmgs(1s,IIs(Natg, Natg)), is (isomorphic to) the set of ordinary mathematical func-
tions N — N.

The main subtlety in defining § is that we would like the set Cxs of S-contexts to
be “the collection of all sets,” but this collection is unfortunately not a set: by Russell’s
paradox, having a “set of all sets including itself” leads to contradiction. To properly
circumvent this issue we must introduce the notion of Grothendieck universes, the
set-theoretic cousins of the type-theoretic universes introduced in Section 2.6.

3.5.1 Grothendieck universes

Grothendieck universes are sets that resemble a “set of all sets” without falling victim
to Russell’s paradox. Roughly speaking, they are collections of sets that are closed
under all the operations of set theory: they contain () and are closed under formation
of powersets, unions, set comprehensions, and so forth.

114 Metatheory and implementation (2025-07-19)

Definition 3.5.1. A Grothendieck universe V is a set satisfying the following condi-
tions:

1.O0eV.

2. Transitivity: If X € Vand Y € X, thenY € V.

3. Closure under powersets: If X € V then P(X) € V.

4. Closure under indexed unions: If X € V and f : X — V, then U, cx f(x) € V.

5. N € V. (This condition is omitted by many authors.)

We admit that Definition 3.5.1 may seem somewhat mysterious; unfortunately,
thoroughly justifying these axioms is beyond the scope of this book. We refer the
reader to Shulman [Shu08] for a reference which assumes relatively little set-theoretic
background.

For our purposes, the axioms of Grothendieck universes satisfy three important
properties. First, all the closure properties of Grothendieck universes are closure
properties of sets: replacing X € V with “X is a set,” it is true that @ and N are sets,
and that sets are transitive and closed under powersets and indexed unions. In other
words, the collection of all sets looks like a Grothendieck universe—except that a
Grothendieck universe must be a set, which the collection of all sets is not.

Secondly, these closure conditions imply all the other usual closure conditions
of sets. For example, V is also closed under subsets, products, and function spaces,
defined by their standard set-theoretic encodings. We prove a number of these closure
conditions below, noting that these are not intended to be exhaustive.

Lemma 3.5.2. Every Grothendieck universeV is closed under the following constructions:
1. Subsets: If X € VandY C X, thenY € V.
2. Binary unions: IfX,Y € V then X UY € V.
3. Products: If X,Y € V then X XY € V.
4. Function spaces: If X,Y € V thenX — Y € V.
5. Indexed coproducts: If X € V and f : X — V, then },.cx f(x) € V.
6. Indexed products: If X € V and f : X — V, then [ex f(x) € V.
Proof.

1. This follows directly from Y € P(X) € V and transitivity.

(2025-07-19) The set model of type theory 115

2. We obtain binary unions as a special case of indexed unions, using the fact
that the two-element set P(£(0)) = {0,{0}} is an element of V. Let f :
P(P(0)) — V be the function sending 0 to X and {0} to Y; then we define
XUY = Uyex f(x) € V.

3. Following the usual set-theoretic construction, we define X X Y to be the subset
of P(P(X UY)) consisting of ordered pairs (x,y) with x € X and y € Y, where
(x,y) = {{x}, {x,y}}. We observe that X X Y € V by the closure of V under
binary unions, powersets, and subsets.

4. Functions f : X — Y are in bijection with subsets S € X X Y satisfying the
condition that for all x € X, there exists a unique y € Y such that the ordered
pair (x,y) is in S. We may therefore take the collection of all such S—a subset
of P(X X Y) and thus an element of V—as the definition of the function space
X —Y.

5. We define the indexed disjoint union 3, .y f(x) as the subset of X X [, cx f(x)
consisting of ordered pairs (x, y) for which y € f(x).

6. Similarly, we define the indexed product [[,cx f(x) as the subset of X —
Uyex f(x) consisting of the functions g for which g(x) € f(x) forallx e X. O

Finally and most importantly, although the existence of Grothendieck universes is
independent from the axioms of ordinary (ZFC) set theory, it is consistent to assume
that they exist,” and the resulting theory is well-understood albeit stronger than ZFC.

Advanced Remark 3.5.3. In fact, assuming the existence of a Grothendieck universe
V is exactly the same as assuming the existence of a strongly inaccessible cardinal.
This is fairly modest as far as large cardinal axioms are concerned, but it is strong
enough that ZFC+V proves Con(ZFC). Indeed, V is a model of ZFC! o

Remark 3.5.4. As we will see in Section 3.5.4, one consequence of the set-theoretic
model of type theory is the consistency of type theory. By Godel’s incompleteness
theorem, constructing this model must require a metatheory stronger than extensional
type theory. Although ZFC and extensional type theory are not exactly aligned in
strength, we should not be surprised that plain ZFC is too weak. In fact, if we augment
extensional type theory with an impredicative universe of propositions (Section 2.7)
and a few axioms, it becomes exactly as strong as ZFC with a universe hierarchy
[Wer97]. o

In the remainder of Section 3.5, we will rely on an ambient assumption that there is
a (w + 1)-indexed hierarchy of nested Grothendieck universes, in the following sense.

3In particular, it does not follow from the axioms that V contains itself.

116 Metatheory and implementation (2025-07-19)

Definition 3.5.5. For a partial order I, an I-hierarchy of Grothendieck universes (V;);er
is a family of Grothendieck universes V; such that V; € V; whenever i < j.

Axiom 3.5.6. There exists an (w+1)-hierarchy of Grothendieck universesVy € --- € V,,.

Intuitively, Axiom 3.5.6 states that V}, contains all the sets that exist in ZFC, V;
contains all the sets of ZFC+V,, V; contains all the sets of ZFC+Vy+V}, and so forth.
One often refers to the sets of ZFC as small sets for emphasis, and in general for a
Grothendieck universe V we say that a set X is V-small if X € V. Thus Axiom 3.5.6
equivalently states that small sets are V;-small and V; is V;-small for all i < j.

3.5.2 The substitution calculus of sets

Exhibiting a model M of type theory (Definition 3.4.2) requires an enormous amount
of data, but we can break the process down into three steps:

1. First, one must define the sets of M-contexts Cx (1, M-substitutions Sb (-, —),
M-types Ty (), and M-terms Tm p((—,).

2. Next, one must provide the M-interpretations of the rules of the substitution
calculus (Section 2.3), the core structure of type theory governing variables and
substitutions, and verify that these satisfy the associated equations.

3. Finally, for each connective (II-types, Void, U, etc.) one provides M-interpretations
of the associated rules, and again verifies the associated equations.

The steps must be performed in this order, because the choice of sets (e.g., Cx ()
in the first step affects the interpretation of the substitution calculus (e.g., p () in the
second step, which in turn affects the interpretation of every connective. However,
the interpretations of non-U connectives do not depend on one another and can be
added in any order, because we were careful in Chapter 2 to avoid mentioning (e.g.)
II-types in the rules for X-types.

We will now carry out the first two steps of defining the set model S. By the end of
this subsection, we will have a model of a dependent type theory with no connectives,
mirroring the situation at the end of Section 2.3.

The basic sets With the machinery of Grothendieck universes (Definition 3.5.1)
under our belt, we can now define the basic sets of the S-interpretation of type theory:
the S-contexts, S-substitutions, S-types, and S-terms. Rather than defining the set
of S-contexts Cxg to be the nonexistent “set of all sets,” we will define it to be a

(2025-07-19) The set model of type theory 117

Grothendieck universe, a set of some sets which is closed under all the set-forming
operations of set theory. For reasons that will become clear later, we choose the set of
S-contexts to be V,,, the largest Grothendieck universe asserted by Axiom 3.5.6.

CXS = (Vw

For any two S-contexts A,I" € Cxg, the set of S-substitutions from A to I is simply
the set of ordinary functions from A to T':

Sbs(A,T):=A—>T (A, T € Cxg)

Notation 3.5.7. Throughout this section, the variables T, y, A, q,... range over S-
contexts, substitutions, types, and terms, not syntactic contexts, substitutions, types,
and terms as they generally have throughout this book. We believe this notation is the
least confusing in the long run, but the reader should proceed cautiously.

Intuitively, an S-type A in S-context I' should be a family of sets indexed by the
set T, i.e., a choice of set A(x) for each x € T. As in our definition of Cxg, we can
obtain a set of such families by restricting all the sets A(x) to be elements of V,,:

Tyg(l) =T — YV, (T € Cxg)

Finally, given an S-context I € V,, and an S-type A : I' — V, in that context, an
S-term a € Tmg (T, A) should be a family of elements of each A(x) for each x € T. In
other words, a should be a dependent function (x : I') — A(x), where a(x) € A(x) for
all x € T'. Set-theoretically, such functions are more commonly understood as elements
of the I'-indexed product of the sets A(—); see Remarks 2.4.1 and 2.4.5.

TmS(r’A) = erl" A(x) (r € CXS’A € TYS(F))

Summing up, we define S-contexts as (V,,-small) sets, S-substitutions as functions,
S-types as indexed families of (V,,-small) sets, and S-terms as indexed families of
elements.

The category of substitutions Having now defined the basic sets underlying
the S-interpretation of type theory, our next task is to define the operations of the
substitution calculus (collected in the first section of Appendix A), starting with the
identity and composition of substitutions.

For every S-context I' € Cxg, we must define an identity S-substitution id g in
Sbs(T,T). Unfolding the definitions of Cxs and Sbg (T, T'), this is for every ' € V,, a
function I' — T', which we can simply take to be the identity function:

ids : [Ireq, T =T
dsTx:=x

118 Metatheory and implementation (2025-07-19)

Next, given any I, I1,I; € Cxg, y1 € Sbs(In,I4), and yy € Sbs(I}, I;) we must
define the composite S-substitution yy os y; € Sbs(I3, I;), namely by function com-
position:

os: [T rnecxs Sbs(I1, Io) — Sbs(Iz, I1) — Sbs (T2, Tp)
(Yo 05 ¥1)(x) = yo(y1(x))

Notation 3.5.8. Starting with the above definition, we suppress unambiguous argu-
ments for clarity: in this case, the S-contexts Iy, I, I,.

In the substitution calculus, identity and composition satisfy various equations,
namely that composition is associative with identity as a left and right unit. We must
therefore verify that our definitions of S-identity and S-composition validate the same
equations:

Exercise 3.10. Verify the following equations:
« Forally € Sbg(A,T),idsosy=y=yosids.

« Forally; € Sbs(I3,), y1 € Sbs(Iy, 1), and yo € Sbs(Iy, Ty), yo o5 (y1 08 y2) =
(Yo os 1) 08 Y2-

The empty context Next we define the empty S-context 15 € Cxs and the terminal
S-substitution ! g € Sbg(T, 1) for every I' € Cxgs. Notably, although we call 1 the
empty context, it is in fact interpreted as a one-element set.

1s €V,

1g = {*}
Remark 3.5.9. We write {x} to emphasize that it does not matter which one-element

set in V,, we choose. The most natural concrete choice of one-element set is perhaps
{0}, which we note is an element of V,, by axioms (1), (2) and (3) of Definition 3.5.1. ¢

Exercise 3.11. In light of the definition of 15 above, show that closed S-types are
just sets and closed S-terms are just elements of those sets. To be precise, construct
isomorphisms 1 : Tyg(1s) = V,, and k4 : Tmgs(1s,A) = 1(A) forall A € Tyg(1s).

The terminal S-substitution into 15 is the constant function returning x.
ls : [Trecxs SPs(I 1s)
ls(x) =%

We have one equation to check before moving on.

(2025-07-19) The set model of type theory 119

Lemma 3.5.10. Forall 5 € Sbg(I',15),6 =!s.

Proof. Unfolding definitions, we see that ¢ and ! g are both functions I' — {*}. There
is only one such function, so they must be equal. O

Applying substitutions Applying an S-substitution A — T to an S-type (resp.,
S-term) in context I must produce an S-type (resp., S-term) in context A:

_[]s s Tarecxs [yesps(ar) Tys(I) — Tys(A)
_[1s s ITarecxs [yesbs(ar) [aetygr Tms(I,A) = Tms (A, Alyls)

Thankfully, the types of these operations are significantly more intimidating than
their definitions. Unfolding definitions in the first line, we must take a function
y : A — T and a function A : I' — V,, and produce a function A — V,,, which is
easily accomplished by composing A and y. Substitution on terms is identical:

Alyls =Aoy
alyls =aoy

The substitution calculus includes a number of equations governing _[_], namely
that substituting by id is the identity and substituting by a composite substitution is the
same as a composition of substitutions; checking these for S is again straightforward.

Exercise 3.12. Verify the following, whereT' € Cxs, A € Tyg(T'),and a € Tmg(T, A):
« Alidg]s = A.
o alidg]s =a.
« If y1 € Sbs(I3, T1) and yo € Sbs (I3, T), then Alyo os y1ls = Alyolslyils-

« If y; € Sbs(Iy, I) and yy € Sbs(I3,T), then a[yy os y1ls = alyol slyils-

Extending contexts The remaining operations of the substitution calculus are
context extension I'.A, substitution extension y.a, the weakening substitution p, and
the variable term q. We must start by defining the S-interpretation of context extension,
because it occurs in the types of all the other operations.

Recall from Sections 2.3 and 2.4.2 that substitutions into I'.A are roughly “pairs of a
substitution into I and a term of type A” More precisely, there is a natural isomorphism
between substitutions y € Sb(A,T.A) and pairs (yo € Sb(A,T),a € Tm(A, Alyol)).
Unfolding S-interpretations and setting A = 1g, in light of Exercise 3.11 we see that

120 Metatheory and implementation (2025-07-19)

elements of the set I'. A must be in bijection with pairs (xy € T, a € A(xy)), and so
we might as well take this as the definition of T'. gA.

S HrerS Tys(I) — Cxs
[sA:= err A(x)
We must be careful to check that this set is actually an element of Cxs = V,,

which follows from the closure of Grothendieck universes under indexed coprod-
ucts (Lemma 3.5.2).

Once again, to define pg, q5, and _.s_ we must unfold their types, which will
turn out to be significantly more intimidating than their definitions. Weakening, for
example, is simply the first projection from }:

Ps : [lrew, [Maer—v, (Zxer A(x)) = T
ps(x,a) =x

Similarly, variables and substitution extension are respectively the second projec-
tion and pairing operations of). Forany AT € V,and AeT — V,;:

45 Tpe(zieram) APs(P)
qs(x,a) =a

_s_t [yeasr(TTyea Ay (y)) = A = Yier A(x)
(y-sa)(y) = (y(y),a(y))

Exercise 3.13. Check that the types given above for p 5, q g, and _.s_ match the types
given in Section 2.3, by unfolding the S-interpretations given throughout this section.

The S-interpretations of context extension, substitution extension, weakening,
and variables as };, pairing, first projection, and second projection may in fact clarify
the meaning of these operations in the substitution calculus. At any rate, it is straight-
forward to verify the necessary equations, which correspond to the f- and 5-laws of

>

Lemma 3.5.11. IfA,T € Cxs and A € Ty ('), then:
e Ify € Sbs(A,T) anda € Tmgs(A, Alyls), thenpg os (y.sa) =y.
e Ify € Sbs(A,T) anda € Tmgs(A, Alyls), thenqgly.sa] = a.

e Ify € Sbs(A,T.sA) theny = (psos y)-s(qslylg)-

(2025-07-19) The set model of type theory 121

Proof. These all follow essentially by definition. For the first equation, fixy : A - T
and a € [[ep A(y(y)); we must show 7 o (Ay — (y(y),a(y))) = y. Because both
sides are functions, it suffices to check that they agree on all y € A, and indeed both
produce y(y) when applied to y. For the second equation we must show 7, o (ly —
(y(y),a(y))) = a, which again follows by applying both sides to y € A.
For the third equation, fixy : A — >, cr A(x) andshowy = Ay — (m1(y(y)), m2(y(v))).

This follows by applying both sides to y € A and noting that y(y) € X, A(x) is by
definition of the form (xo, a). O

The reader should now verify that we have provided an S-interpretation of every
rule of the substitution calculus, covering the first section of Appendix A.

Notation 3.5.12. We note that we can safely reuse notations from Chapter 2 for their S
counterparts. In particular, following Exercise 2.4, we write y.sAfor (y os pg).s(q) 5-

3.5.3 The type-theoretic connectives of sets

Now that we have defined the S-interpretation of the basic structure of type theory,
we can extend S with any connectives of our choice. Unlike the operations considered
in Section 3.5.2, the connectives of type theory are (generally) defined independently
of one another, allowing us to model them in a modular fashion. We consider some
representative cases, namely, the S-interpretations of Il-types, Eq-types, Void, Bool,
and U,.

II-types Taking advantage of the compact representation of the rules of Il-types
introduced in Section 2.4.2, the S-interpretation of II-types consists of an S-type-
forming operation and a family of isomorphisms of sets:

s : [Trecxs (Zaetyg(r) Tys(T.s4)) — Tyg(T)
18 t [Irecxs [Taetygry [Betyg(r.sa) Tms(IILs I (A, B)) = Tmg(I'.sA, B)

subject to the following equations expressing their naturality in T' € Cxg:

(Ils T (A, B))[yls =Ils A (Aly]s, Bly.sAls) (y € Sbs(A,T))
(ts TAB f)[y.sAls =1s A (Alyls) (Bly.sAls) (flyls) (y € Sbs(A,T))

To get a handle on the situation, let us consider the types of Ils and s when
specialized to the empty context 1, and simplified along the isomorphisms of Exer-

122 Metatheory and implementation (2025-07-19)

cise 3.11:
s 1s: (ZAGVM(A - Vy) =V,
15 1s : [laey, [1peasy, s 1s (A, B) = [[,e4 B(a)

That is, in the empty context, for any A € V,, and B : A — V,, we must choose a
set g 15 (A, B) € V, to serve as the S-TI-type of A and B, and this set must be
isomorphic to the set-theoretic indexed product [[,c 4 B(a).

The situation for arbitrary contexts is essentially the same, except that all three of
A, B, and their S-TI-type are additionally indexed by a set I. We define I1s as follows:

HS r (A: B) X = HaeA(x) B(x: a) (x € r)

noting that B : (3 ,cr A(x)) — V, by the definition of I'.sA in Section 3.5.2. Finally,
we must verify that our definition [],c4(x) B(x,a) € V,,, which indeed holds by
Lemma 3.5.2.

Lemma 3.5.13. Il is natural inT, ie., (IIs T (A B))[yls =IIs A (Alyls, Bly-sAls)
inTyg(A) foranyy € Sbs(A,T).

Proof. Unfolding the operations of the substitution calculus, we must show:

(Ils T' (A,B)) oy =I5 A (Aoy, A(y,a) — B(y(y),a))
These are both functions A — V,,, so it suffices to check that they agree on all y € A:
((IIs T (A, B)) o y)(y)
=Ils T (A, B) (y(y))
= [lacai(y) By(v), @)
= [Tae(aop) (y) (A(y, @) = B(y(y), a))(y,a)
=Ils A (Aoy, Ay, a) = B(y(y).a) y =

As for the isomorphism s, unfolding definitions we must construct:

1s ¢ [rea, [aer—v, ey, ate)) v, Ulxer [aeax) B(x. @) = [1pe(s..o acx)) B(p)

Fixing T, A, B, this isomorphism is simply the dependent (un)currying isomorphism
(x:T) > (a:A(x)) = B(x,a) = (p: X,r A(x)) — B(p), defined as follows:

IsTABf (x,a):=fxa
tgernga:=g(x,a)

(2025-07-19) The set model of type theory 123

Exercise 3.14. Verify that 1s and 131 are inverses.

Exercise 3.15. Verify that 1g is natural in I'. (Hint: show that

(tsTABf)o(Ay,a) = (y(y).a) =1s A (Aoy) (A(y,a) = B(y(y).a)) (foy)

for any f € [1yer [Taea(x) B(x,a) and y € Sbs(A,T), by showing that they agree on
all (y,a) € Xyen Ay (v)).)

Eq-types The S-interpretation of extensional equality types is analogous to that of
II-types. Following Section 2.4.4, we must define an S-type-forming operation and a
family of isomorphisms of sets, both natural in I':

Eqg : Hrech (ZAeTyS(F) Tmgs (T, A) X Tmg(T, A)) — Tyg(T)
18 : [recxs [Taetysr) [apermgra) Tms(ILEqg I (A, a,b)) = {x | a = b}

We define Eqg T’ (4, a,b) to be the I'-indexed family of sets that maps x € ' to a
one-element set when a(x) = b(x) € A(x), and an empty set otherwise.

EqgT (A a,b) x :=={x|a(x) =b(x)}

To define 15, we note that S-terms e € Tmg(I',Eqg I' (A, a,b)) are constant
functions sending every x € I to the unique element . In particular, the existence
of such an e implies that a(x) = b(x) for all x € T, and any two such terms e, ¢’ must
agree on all x € T and thus be equal. Thus:

isTAabe:=x%
lgerab*x::*

Exercise 3.16. Verify that 15 and 151 are inverses.

Exercise 3.17. State and prove the naturality equations for Eq g and ts. (Hint: refer-
ence the naturality equations in Section 2.4.4, and unfold definitions.)

The empty type Our next type Void is defined not by a mapping-in property but a
mapping-out property. However, as discussed in Section 2.5.1, it can nevertheless be
axiomatized as a natural type-forming operation with a natural family of isomorphisms:

Voids : [Trecy, Tys(T)
ps : Irecxs [Taetyg(r.svoids) Tms(T.sVoids, A) = {x}

124 Metatheory and implementation (2025-07-19)

Given that Void is called the empty type, it is perhaps unsurprising that S interprets
it as the empty set, regarded as a constant family over I' € V,, and x € T

Voidg T'x:=0

Elements of the S-context I'.sVoid s are pairs of x € T and y € Void s x, but the
latter set is defined to be empty, so no such pairs exist and I'. sVoid s = 0. Accordingly,
S-terms f € Tmg(I'.sVoidgs, A) are (dependent) functions out of an empty set. As
discussed in Section 2.5.1, there is exactly one such function for every A, and this is
precisely the content of the isomorphism ps.

psT Aa:=x%

Exercise 3.18. Complete the S-interpretation of Void: verify that ps is an isomor-
phism, and prove the naturality equations for Void s and ps, following Section 2.5.1.

Booleans Like Void, the booleans are also defined by a mapping-out property.
Recalling Section 2.5.2, the specification of Bool has three components, the first two
being a natural type-former and two natural term-formers:

Bools : HFerS Tys(T)
trueg, falses : [r.cxg Tms(I, Bools)

The third component is once again a natural isomorphism, but unlike the previous
examples in which the two directions of the isomorphism encode introduction and
elimination, here the forward map is fixed by the choice of true g and false g, and
the reverse map expresses the principle that maps out of Bool are determined by
their instantiations at true and false. Writing p I’ A for the map which sends a €
Tmg(T.sBoolg, A) to the pair of S-terms (a[ids.strueg]s, a[ids.sfalses]s), we
require p to be an isomorphism.

P+ Hrecxs [aetyg(r.sBools) TMs(I.sBools, A) =
Tmg(T, Alids.strueg]s) X Tmg (T, Alid 5. sfalse 5] s)
pT Aa:=(alids.strues]s, alids.sfalses]s)
We can define Bool s to be any fixed two-element set {true g, false 5}, regarded as

a constant family over I € V,, and x € T..

Boolg I' x := {0,1}

trueg ' x =1

falses I'x =0

(2025-07-19) The set model of type theory 125

Exercise 3.19. State and prove the naturality equations for Bool g, true g, and false g.
It remains only to check that p I' A is indeed an isomorphism.

Lemma 3.5.14. The map a — (alids.strueg]s, a[ids.sfalses]s) is an isomorphism
Tmg(T.sBoolg, A) = Tmg(T, Alids.strues]s) X Tmg (T, A[id 5. sfalse 5] s)

Proof. Unfolding definitions, the S-context I'.sBoolg is the set I' X {0,1}, so S-
types A € Ty g(I'.sBoolg) are families of sets I' x {0,1} — V,,, and S-terms a €
Tms(I.sBool s, A) are dependent functions [],erx 0,13 A(p). But

HpeFX{O,l} A(p)
= [lyer Hbe{o,l} A(x,b)
= Jlier Alx, 1) X A(x,0)
(ITxer A(x, 1)) X (ITxer A(x, 0))

where the forward composite map is a — ((Ax — a(x, 1)), (Ax — a(x,0))). Unfolding
definitions, this is precisely the map we wanted to show is an isomorphism. O

IR

Universes The final connective we discuss is U, a “type of types” whose terms
I' + a: U decode to types T + El(a) type. As we saw in Section 2.6, universe types
require far more rules than the other connectives: type theory has a countably infinite
hierarchy of universes U = Uy : U; : Uy : ..., each closed under codes for every type-
former and satisfying definitional equalities involving El, with lift operations between
these universes commuting with all the aforementioned operations. In addition, the
S-interpretation of U as a “set of sets” will force us to confront some set-theoretic
technicalities.

The good news is that all of this structure will fall quite neatly into place. The
astute reader may have noticed that Axiom 3.5.6 postulates an infinite hierarchy of
Grothendieck universes ‘V € - - - € V,, of which we have only used V,, thus far; the
remaining V; serve as the S-interpretations of the type-theoretic universe hierarchy.

Let us begin by defining (Up)s = Us and (Ely) s = Els:

Us : [Trew, Tys(T)

US I'x:= (Vo
ElsTc:=¢

To make sense of the last definition, we note that Elg T : (I — V,) — (I = V,,). By
our hypothesis V; € V,, and Lemma 3.5.2, V;, € V,,, so in particular (I' — V) C
(' = Vo).

126 Metatheory and implementation (2025-07-19)

Exercise 3.20. State and prove the naturality equations for Ug and Elg.

Following Section 2.6.2, the S-interpretation of U must include codes for IT-types:

Pis : [Trecks (Zaetmg(rug) TMs(T.sEls(A),Us)) = Tms(T, Us)

satisfying a naturality equation as well as the following equation in I' — V,,:
Els T (pigT (A,B)) =IIs T (ElsT A Els T B)

Because Elg T is just the inclusion (I' — V;) € (I' — V,,), we can simply take
the above equation as a definition—setting pig I' (A, B) :=IIs I (A, B)—as long as we
prove that the right-hand side lands inside of ' — 9V}, when A and B are pointwise
Vy-small.

Lemma 3.5.15. IfT € V,,AeT —» V,, andB € (3 cr A(x)) = Vo, then

(erl" HaeA(x) B(x, a)) Er—-N

Proof. Note that this statement refines a similar observation in our construction of
S-Il-types, in which all the V} are replaced by V,,. The proof is identical: because
V4 is a Grothendieck universe, Lemma 3.5.2 implies that [[,c 4(x) B(x,a) € V; for all
x eT. O

The naturality equation for pig then follows immediately from the naturality of
ITs. The codes for other connectives proceed identically, using the fact that V} is
closed under every relevant construction. For the remainder of the universe hierarchy,
we define (U;)s T’ x := V; and check that (El;)s and (lift;) s are subset inclusions.

3.5.4 Using the set model

We finally arrive at the main result of this section.
Theorem 3.5.16. S is a model of extensional type theory.

Although extensional type theory is often considered an alternative to set theory,
the fact that S allows us to reduce questions about type theory to questions about
sets makes the set model one of the most powerful tools for studying the properties of
type theory. In Section 3.6, we appeal to S in two proofs that equality in extensional
type theory is undecidable; in the remainder of this section, we will quickly rattle
off several other corollaries of Theorem 3.5.16, starting with the consistency of type
theory (Theorem 3.4.8).

(2025-07-19) The set model of type theory 127

Proof of Theorem 3.4.8. To show that type theory is consistent, by Theorem 3.4.7 it
suffices to exhibit a model M in which Tm (1 ¢, Void /) is empty. Choosing M = S,
by Exercise 3.11 we have Tmg(1s, Voidg) = Voidg 15 * := 0. O

More generally, S tells us that any term in extensional type theory—that is, in its
syntactic model 7 (Definition 3.4.4)—gives rise to a corresponding function of sets.
On the one hand, this lets us construct functions on sets by writing down terms in
type theory; on the other hand, we can disprove the existence of terms by showing
that their image under the S-interpretation does not exist, as we just did in the proof
of consistency.

Lemma 3.5.17. Within type theory, there are no injective functions (Nat — Nat) —
Nat; that is, there are no closed terms of type

2. f:(Nat—Nat)—Nat (91, 92 : Nat — Nat) — f(g1) = f(g2) = g1 = g2

Proof. Unfolding definitions, the image of such a term under S is a pair whose first
projection is an ordinary set-theoretic function f : (N — N) — N, and whose second
projection is a three-argument function that takes two functions g, g, : N — N and
x € {x | f(g1) = f(g2)}, and returns {x | g; = g»}. In particular, although the second
projection is unique when it exists, it exists only when f is injective. But N — N is
uncountable, so there can be no injective functions from it to N. O

Remark 3.5.18. This argument does not go through if we restrict attention to the
syntactic model, because the set Tm(1, ITI(Nat, Nat)) of closed terms of type Nat —
Nat is countable: it is a quotient of a subset of finite derivation trees, which are
countable. o

Theorem 3.5.19. Extensional type theory does not have injective Il-types (Defini-
tion 3.2.8).

Proof. Using equality reflection and universes, the following judgment holds:
1.Eq (U, pi(unit, void), pi(bool, void)) + IT(Unit, Void) = I1(Bool, Void) type
If extensional type theory had injective I1-types, this would imply:
1.Eq(U, pi(unit, void), pi(bool, void)) + Unit = Bool type

This implies in particular that true and false are elements of Unit in this context.
By the 7 rule for Unit this implies that true = false in this context, and hence by
Theorem 2.6.3,

1.Eq (U, pi(unit, void), pi(bool, void)) * tt : Void

128 Metatheory and implementation (2025-07-19)

The S-interpretation of the above context is a set with one element if [T (Unit g, Void 5)
IIs(Boolgs, Void g) are equal sets, which is indeed the case because both are 0. Thus
the S-interpretation of the above term must be a function from a one-element set to 0,
which does not exist. We conclude that there is no such term, and thus extensional
type theory does not have injective II-types. O

Finally, recall that all of the constructions in this section have assumed an (o + 1)-
hierarchy of Grothendieck universes V, € --- € V,, (Axiom 3.5.6): we use V,, to
model contexts and types, and smaller V; to model U;. In general, we need n + 1
Grothendieck universes to model a type theory with n universes.

Theorem 3.5.20. An (n + 1)-hierarchy of Grothendieck universes Vy € --- € V,
suffices to construct a set-theoretic model of extensional type theory with n universes
U()I"'iUn_l.

3.6 Equality in extensional type theory is undecidable

In this section we present two proofs that term equality in extensional type theory
is undecidable, and hence extensional type theory does not admit a normalization
structure by Exercise 3.3. The first proof, due to Castellan, Clairambault, and Dybjer
[CCD17], is conceptually straightforward but requires an appeal to the set-theoretic
model (Section 3.5). The second proof, due to Hofmann [Hof95a], requires only the
assumption that extensional type theory is consistent (Theorem 3.4.8), but is more
complex, requiring the machinery of recursively inseparable sets. Both of these ideas
arise with some frequency in the metatheory of type theory, so we cover both proofs
in some detail.

3.6.1 The first proof: deciding equality of SK terms

The strategy of our first proof is to exhibit a context I'sx and an encoding [-] of terms
of the SK combinator calculus into type-theoretic terms in context I'sk, such that two
SK terms are convertible if and only if their encodings are judgmentally equal. Because
convertibility of SK terms is undecidable, judgmental equality is as well.

Recall that the SK combinator calculus is an extremely minimal Turing-complete
language generated by application and two combinators named S and K:

Combinators x:= S|K|xx

(2025-07-19) Equality in extensional type theory is undecidable 129

Combinators compute according to the following rewriting system . We say
that two combinators are convertible, written x ~ y, if they are related by the reflexive,
symmetric, and transitive closure of .

x - x y—y

Sxyzr (x2)(y2) Kxym x xy— x'y xy xy
We define the following context, written in Agda-style notation:

Isk =1,
A:U,
o A5 A A
S:A,
k:A,
e;:(ab:A) - Eq(A (kea)eb,a),
ey:(abc:A) > Eq(A, ((sea)eb)ec,(aec)e (bec))

Writing A for the set of SK combinator terms, we can straightforwardly define
a function [-] : A — Tm(Tsk, A) by sending application, S, and K to e, s, and k
respectively, and this function respects convertibility of combinators.

Lemma 3.6.1. There is a function [-] : A — Tm(Tsk, A) such thatx ~y = [[x] =

[y

Exercise 3.21. The context I'sg only includes two of the four generating rules of .
Why haven’t we included the other two, or reflexivity, symmetry, or transitivity?

Lemma 3.6.1 implies that term equality is sound for an undecidable problem, but
this does not yet imply that term equality is undecidable; it is possible, for example,
that all terms in the image of [-] are equal. To complete our proof, we must observe
that term equality is also complete for convertibility; we argue this by using the set-
theoretic model of type theory to recover the convertibility class of x from the term

[x]-

Theorem 3.6.2. If[[x] = [y] thenx ~ y.

Proof. Let us write f : 7 — S for the homomorphism from the syntactic model 7~ to
the set-theoretic model S. This homomorphism interprets syntactic contexts I as sets
Cxs(T), syntactic types A € Ty(I') as Cxs(I')-indexed families of sets, and syntactic
context extensions as indexed coproducts of those families. (See Section 3.5 for more
details.)

130 Metatheory and implementation (2025-07-19)

Unwinding definitions, elements of Cxy(I'sg) are “SK-algebras,” or dependent
tuples of a set along with application, S, and K operations satisfying the convertibility
axioms. Combinators modulo convertibility form such an algebra in the evident way;
writing [x] for the convertibility equivalence class of x € A, we have

ysk = (A~ (Alx] [y] = [x y]), [s]. [k]. %, %) € Cx¢(Tsk)

Homomorphisms of models respect equality, so from [x] = [[y] € Tm(Tsk, A) we
see that these terms are interpreted in S as equal dependent functions [[4).cx F(Tsk) Ao
and in particular, applying these functions to ysx produces two equal elements of A/~.
We can prove by induction on combinators that for any z € A this procedure recovers
z up to convertibility (i.e., sends [z] to [z]) and thus [x] = [y] as required. O

Theorem 3.6.3. Equality of terms a, b € Tm(Tsk, A) is undecidable.

Proof. Suppose it were decidable; then for any x,y € A we can decide the equality
of [x],[y] € Tm(Tsk, A). By Lemma 3.6.1 and Theorem 3.6.2, [x] = [[y] if and
only if x ~ y, so we can in turn decide the convertibility of SK-combinators, which is
impossible. O

3.6.2 The second proof: separating classes of Turing machines

In the first proof we reduce an undecidable problem to the judgmental equality of open
terms, but establishing the completeness of this reduction requires appealing to the
set-theoretic model of type theory. Our second proof relies only on the consistency of
extensional type theory, showing that deciding judgmental equality of closed functions
would allow us to algorithmically separate two recursively inseparable subsets of N.

Notation 3.6.4. Fix a standard, effective Godel encoding of Turing machines, in which
the standard operations on Turing machines are definable by primitive recursion. We
write ¢, for the partial function induced by the Turing machine encoded by n.

Theorem 3.6.5 (Rosser [Ros36], Trakhtenbrot [Tra53], and Kleene [Kle50]). Consider
the following two subsets of the natural numbers:

A ={n eN | ¢,(n) terminates with result 0}
B ={n e N | ¢,(n) terminates with result 1}

There is no Turing machine which terminates on all inputs and separates A from B.

(2025-07-19) Equality in extensional type theory is undecidable 131

Proof. Suppose we are given a Turing machine e which always terminates with value 0
or 1, such that e(n) = 0 when n € A and e(n) = 1 when n € B. Consider the algorithm

Fln) = halt(1) e(n)=0
VT halt(0) e(n) =1

Because e terminates on all inputs, so does F. Note that e(F(n)) # e(n) by construc-
tion: if e(F(n)) = 1 then e(n) = 0 and vice versa. By the second recursion theorem,
there exists a Turing machine f realizing F applied to its own Godel number. However,
e(f) can be neither 0 nor 1 as e(f) = e(F(f)) by definition, but e(f) # e(F(f)). O

We will show that the existence of a normalization structure for extensional type
theory contradicts the above theorem. First, we observe that we can write a “small-
step interpreter” for Turing machines in type theory. Let us write TM and State for
Nat to indicate that we are interpreting a natural number as a Turing machine or
Turing machine state respectively, as encoded by ¢. Then we can define the following
functions in type theory by primitive recursion:

« init : TM — Nat — State
+ hasHalted : State — ;5001 if (Nat, Unit, b)
 step : State — State

Using these operations, we can run a Turing machine for an arbitrary but finite
number of steps on any input, determine whether it has halted, and if so, extract the
result. We can therefore define the following function:

-- returns true iff Turing machine n halts on n with result 1 in fewer than ¢ steps
returnOne : TM — Nat — Bool
returnOne nt = go (initnn) ¢

where

go : State — Nat — Bool

go s zero = false

gos (sucn) =

if fst (hasHalted s) then isOne (snd (hasHalted s)) else go (step s) n

Let Hy € N be the encoding of a Turing machine which immediately halts with re-
sult 0 regardless of its input. Then, writing 1 for the element of Tm(1, Nat) correspond-
ing to m € N, we will show that returnOne(#), returnOne(Hy) € Tm(1,TI(Nat, Bool))
are equal (resp., unequal) when n is a Turing machine which halts with result 0 (resp.,

1).

132 Metatheory and implementation (2025-07-19)

Lemma 3.6.6. Ifn € N is such that ¢,(n) = 0, then
1+ returnOne 7 = returnOne H, : IT(Nat, Bool).
Proof. By the n rule for Il-types, it suffices to show
1,t : Nat + returnOne 7 t = returnOne Hy t : Bool
By equality reflection, this follows from:
1,t : Nat + P, : Eq(Bool, returnOne 7 t, returnOne Hy t)

In Exercise 3.22 the reader will establish this by Nat elimination on t. Note that
by ¢, (n) = 0, there exists some number ¢ such that the Turing machine encoded by n
halts in ¢ steps on n with result 0. Thus we must in essence construct the following
terms:

1,t : Nat + P, : Eq(Bool, returnOne fi zero, returnOne H; zero)

1,t : Nat + P; : Eq(Bool, returnOne 71 (suc zero), returnOne H, (suc zero))

1,¢ : Nat + P,y : Eq(Bool, returnOne 7 (suc’*! t), returnOne Hy (suc’™*! t))

In the above, we write suc’*!(t) for the (¢ + 1)-fold application of suc(-) to t.
When i < ¢ it is straightforward to construct P;, as both sides equal false. For Py,
we note that returnOne m (suck t) = false when m encodes a machine which halts in
fewer than k steps with a result other than 1, completing the proof. O

Exercise 3.22. Fill in the gap in the above argument using the elimination principle
for Nat.

The remaining condition is easier to show.

Lemma 3.6.7. Ifn € N is such that ¢,,(n) = 1, then if the equality
1+ returnOne 7 = returnOne H, : IT1(Nat, Bool)

holds, extensional type theory is inconsistent.

Proof. Because ¢, (n) terminates, there is some number of steps ¢ for which returnOnent =
true. On the other hand, returnOne H, t = false for every ¢, so by applying both of
these equal functions to ¢t we conclude that 1 true = false : Bool. By Theorem 2.6.3
this implies extensional type theory is inconsistent. O

(2025-07-19) Equality in extensional type theory is undecidable 133

Theorem 3.6.8. The judgmental equality1 + returnOne 7i = returnOne H, : I1(Nat, Bool)
cannot be decidable for alln € N.

Proof. By Lemma 3.6.6, this equation holds if ¢,(n) = 0; by Lemma 3.6.7 and Theo-
rem 3.4.8, it does not hold if ¢, (n) = 1. If this equation were decidable, we would be
able to define a terminating algorithm which separates the subsets of n € N for which
¢n(n) = 0 and ¢, (n) = 1, contradicting Theorem 3.6.5. O

134 Metatheory and implementation (2025-07-19)

Further reading

There are a number of excellent pedagogical resources on type-checkers for depen-
dent type theory that we encourage our implementation-inclined readers to explore.
Coquand [Coq96] describes algorithms for bidirectional type-checking and deciding
equality along with a proof sketch of correctness. Loh, McBride, and Swierstra [LMS10]
include additional exposition and a complete Haskell implementation that extends
a type-checker for a simply-typed calculus that is also described in the paper. The
Mini-TT tutorial by Coquand et al. [Coq+09] includes a Haskell implementation of a
type theory which is unsound (allowing arbitrary fixed-points) but supports data type
declarations and basic pattern matching.

In addition to the aforementioned papers, there are numerous online resources,
including a tutorial by Christiansen [Chr19] on the normalization by evaluation algo-
rithm for deciding equality, and the elaboration-zoo of Kovacs [Kov16] which is an
excellent resource for more advanced implementation techniques.

This material will be published by Cambridge University Press as Principles of Dependent Type Theory by Carlo
Angiuli and Daniel Gratzer. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © Carlo Angiuli and Daniel Gratzer 2024

Intensional type theory

In Chapter 3 we outlined several key properties of type theories: consistency states that
type theory can be viewed as a logic, canonicity states that type theory can be viewed as
a programming language, normalization allows us to define a type-checking algorithm,
and invertibility of type constructors improves that algorithm. Unfortunately, we
also saw in Section 3.6 that extensional type theory does not satisfy the latter two
properties due to the equality reflection rule of its Eq-types (Section 2.4.4).

If we remove Eq-types from extensional type theory then it will satisfy all four
metatheorems above, but it becomes unusably weak. A foreseeable consequence is
that type theory would no longer have an equality proposition; a more subtle issue
is that many equations stop holding altogether, judgmentally or otherwise. This is
because inductive types are characterized by maps into other types only, so what
properties they enjoy depends on what types exist. Indeed we have already seen that
Eq-types allow us to prove their n-rules and universes allow us to prove disjointness
of their constructors; without Eq-types their 5-rules will no longer be provable, and
disjointness cannot even be stated!

We are left asking: how should we internalize judgmental equality as a type, if
not Eq? This question has preoccupied type theorists for decades and—fortunately
for their continued employment—has no clear-cut answer. We will find that deleting
equality reflection causes equality types to become underconstrained, and their most
canonical replacement, intensional identity types, lack several important reasoning
principles. The decades-long quest for a suitable identity type has resulted in many
subtle variations as well as some major innovations in type theory, as we will explore in
Chapter 5. But first we turn our attention to intensional type theory, or type theory with
intensional identity types, the system on which most type-theoretic proof assistants
are based.

Notation 4.0.1. We adopt the common acronyms ETT and ITT for extensional type
theory and intensional type theory respectively.

In this chapter In Section 4.1 we explore the basic properties that any propositional
equality connective must satisfy, and show that a small set of primitive operations
suffice to recover many of the positive consequences of equality reflection while
allowing for normalization. In Section 4.2 we formally define the intensional identity
type according to the framework of inductive types outlined in Section 2.5, and show

136 Intensional type theory (2025-07-19)

that this type precisely satisfies the properties of equality outlined above. In Section 4.3
we compare extensional and intensional identity types, noting that the latter lacks
several important principles, but by adding two axioms to it we can recover all the
reasoning principles of extensional type theory in a precise sense. Finally, in Section 4.4,
we summarize a line of research on observational type theory [AMS07], which attempts
to improve intensional identity types without sacrificing normalization.

Goals of the chapter By the end of this chapter, you will be able to:

« Define subst and contractibility of singletons, use them to prove other properties
of equality, and implement them using intensional identity types.

« Explain how intensional identity types fit into the framework of internalizing
judgmental structure that we developed in Chapter 2.

» Discuss the relationship and tradeoffs between intensional and extensional
equality.

« Informally describe observational type theory, and explain how it addresses the
shortcomings of intensional and extensional type theory.

4.1 Programming with propositional equality

In this section we will informally consider what properties should be satisfied by
any “type of equations” Recall from Section 1.3 that such a propositional (or typal, or
internal) notion of equality is important for proving equations between types that type-
checkers cannot handle automatically, and that such type equations allow us to cast
(coerce) between the types involved. In Section 3.1 we discussed how type-checkers
automatically handle definitional (judgmental) type equalities; one can therefore think
of propositional type equalities as “verified casts” that users manually insert into terms.

Our starting point will be the type theory described in Chapter 2 but without Eq-
types. Instead we will add an identity type Id" with the same formation (and universe
introduction) rule but no other properties yet:

F'+ta:A T'rb:A I'ta:U; I'+x:El(a) I'+y:El(a)

I'-1d(A a b) type I'+tid(a, x,y) : U;
I + El(id(a, x,y)) = Id(El(a), x, y) type

I Although beyond the scope of this book, we expect the Superego connective to internalize the
rules of type theory; arguably singleton types internalize the self and thus serve as the Ego.

(2025-07-19) Programming with propositional equality 137

The primary way to use a proof of Id(A, a,a’) is in concert with an A-indexed
family of types b : A — U; namely, we conclude that the a and a’ instances of this
family are themselves equal in the sense that we have a proof of Id(U, b a,b a’), and as
a result we are able to cast between the types El(b a) and E1(b a”). Notably, because
type equality is central to this story, universes will play a major role in this section.

Notation 4.1.1. What should we call terms of type Id(A4, a,b)? This type will no
longer precisely internalize the equality judgment so it can be misleading to call them
equalities between a and b. On the other hand, calling them “proofs of equality between
a and b” is too cumbersome. We will refer to them as identifications between a and b.

Notation 4.1.2. In the remainder of this section we will return to the informal notation
of Chapter 1; in particular, we omit El1(—), thereby suppressing the difference between
types and terms of type U. We resume our more rigorous notation in Section 4.2.

4.1.1 Constructing identifications

Following the discussion above, we can already formulate two necessary conditions
on Id (A, a, b). First, we must have some source of identifications between terms. As
with Eq-types we choose reflexivity; in concert with definitional equality, this allows
us to prove any terms are identified as long as they differ only by f, 1, and expanding
definitions:

refl : {A:U} — (a: A) > 1d(A,a,a)

Secondly, given an identification Id(A, a, a’) and a dependent type B : A — U, we
must be able to convert terms of type B(a) to B(a’), a process (confusingly) known as
substitution:

subst : {A: U} {aa : A} > (B:A—>U) >1d(A,a,d’) > Ba— Bd

Remark 4.1.3. The subst function did not emerge in our discussion of Eq-types for
the simple reason that equality reflection trivializes it: subst B p b = b. Indeed, all
of the operations we discuss in this section are trivial in the presence of equality
reflection. o

By assuming that Id-types satisfy refl and subst we are off to a good start, but a
priori these are only two of the many combinators that we expect to be definable for
Id (A, a, b); for starters, as an equality relation, identifications ought to be not only
reflexive but also symmetric and transitive. Fortunately and somewhat surprisingly, it
turns out that both symmetry and transitivity are consequences of refl and subst.

138 Intensional type theory (2025-07-19)

Lemma 4.1.4. Using refl and subst, we can prove symmetry of identifications, i.e.,
sym:{A:U}{ab:A} - 1d(Aab) — Id(A Db, a)

Proof. Fix A:Uandab: Aandp :1d(A, a, b). To construct a term of type Id (A4, b, a),
we simply choose a clever B at which to instantiate subst:

B:A—>U
Bx =id(A, x, a)

In particular, note that B(a) = Id(A, g, a) is easily proven by refl, and B(b) =
Id(A, b, a) is our goal; thus subst B p is a function B(a) — B(b) and our goal follows
soon after:

sym:{A:U}{ab:A} - 1d(Aab) > 1d(A Db, a)
sym {A a b} p = subst (Ax — id(A, x, a)) p (refl a) O

Lemma 4.1.5. Using refl and subst, we can prove transitivity of identifications, i.e.,
trans: {A: U} {abc:A} > 1d(A a,b) - Id(A b,c) — Id(A, a,c)

Proof. Fix A: U,abc: A p:1d(Aab), and q : Id(A, b,c). To construct a term of
type Id(A, a, ¢), we again choose a clever instantiation of subst, in this case B(x) =
Id (A, a, x). Once again, B(b) is easily proven by our assumption p, and B(c) is our
goal. Substituting along q : Id (A, b, ¢) completes our proof:

trans: {A:U}{abc:A} - 1d(A ab) - Id(A b,c) — Id(A a,c)
trans {Aab c} p g =subst (Ax — id(A,a,x)) g p O

Exercise 4.1. Provide an alternative proof trans’ of Lemma 4.1.5 which substitutes
along p rather than g, using a slightly different choice of B.

In fact, refl and subst also allow us to prove that identifications are a congru-
ence, in the sense that given Id(A, a,a’) and f : A — B, we obtain an identification

Id(B,fa fa).
Lemma 4.1.6. Using subst, we can prove congruence of identifications, i.e.,

cong: {AB:U}{aad :A} - (f:A— B) »Id(Aaad) > 1d(B, fa fd)
Proof. The proof strategy remains the same, so we proceed directly to the term:

cong:{AB:U}{ad :A} > (f:A— B) > 1ld(A,a,a’) > Id(B,f a f d)
cong {ABaa'} fp=subst (Ax = id(B, f a, f x)) p (refl (f a)) O

(2025-07-19) Programming with propositional equality 139

Finally, we must consider how subst ought to compute. Because subst can produce
terms of any type, including Bool and Nat, we must impose some definitional equalities
on it if our type theory is to satisfy canonicity (Section 3.4). One equation springs
to mind immediately: if we apply subst B to refl a, the resulting coercion Ba — B a
has the type of the identity function, so it is reasonable to ask for it to be the identity
function. That is, we ask for the following definitional equality:

subst B (refla) b=b:Ba

4.1.2 Constructing identifications of identifications

Although refl and subst go quite a long way, they do not suffice to derive all the prop-
erties of identifications we might expect; we start encountering their limits as soon as
we consider identifications between elements of Id (4, a, b) itself. These identifications
of identifications arise very naturally in practice. Quite often we must use subst when
constructing a dependently-typed term in order to align various type indices; if we ever
construct a type that depends on such a term, we will very quickly be in the business
of proving that two potentially distinct sequences of subst casts are themselves equal.

For the sake of concreteness, consider the following pair of operations that “rotate”
a Vector (a list of specified length, as defined in Chapter 1):

append : {A: U} {nm:Nat} - VecAn — VecAm — Vec A (n+m)
comm : {nm:Nat} — Id(Nat,n+m,m +n)

rot1: {A: U} {n:Nat} »> VecAn — VecAn

rot1 [] =[]
rot1 {A (sucn)} (x = xs) = subst (Vec A) (comm n 1) (append xs (x = []))

rot2: {A: U} {n:Nat} - VecAn—> VecAn

rot2 [] =[]
rot2 (x = []) =x =[]
rot2 {A (suc(sucn))} (xp = x1 = x5) =
subst (Vec A) (comm n 2) (append xs (xo = x1 = []))

We expect to be able to prove that rot1 twice is the same as rot2:
{A:U}{n:Nat} — (xs: VecA (2+n)) — Id(Vec A (2+n), rot1 (rot1 xs), rot2 xs)

However, this will not be possible with our current set of primitives. In our definitions
of rot1 and rot2 we were forced to include various applications of subst to correct

140 Intensional type theory (2025-07-19)

mismatches between the indices (n+1), (1+n) and (n+2), (2+n), and these subst terms
will get in our way as we try to establish the above identification. If we proceed by
induction on xs, for instance, we will get stuck attempting to construct a identification
between

subst (Vec A) (commn 1)
(append (subst (Vec A) (comm n 1) (append xs (xo = []))) (x1 = []))

and
subst (Vec A) (comm n 2) (append xs (xo = x1 = []))

of type Vec A (2 + n). Unfortunately, because n is a variable, neither comm n 1 nor
comm n 2 are the reflexive identification, so we can make no further progress.

The above example is a bit involved, but there are many smaller (albeit more con-
trived) examples of identifications that are beyond our reach; for example, given a vari-
able p : Id(A, a, b) we cannot construct an identification Id (Id (A, a, b), p, sym (sym p)).

Our “API” for identity types is thus missing an operation that allows us to prove
identifications between two identifications. To hit upon this operation, we introduce
the concept of (propositional) singleton types (in contrast to the “definitional singleton
types” of Section 3.3). Given a type A and a term a : A, the singleton type [a] is defined
as follows:

[a] = Zb:A Id(A’ a, b)

That is, [a] is the type of “elements of A that can be identified with a” Intuitively,
there should only be one such element, namely a itself—or to be more precise, (a, refl a).
But this, too, is not yet provable. Certainly, given an arbitrary element (b, p) : [a] we
can see that (by p) their first projections a and b are identified, but we have no way of
identifying their second projections refl a and p.

In fact, most of our “coherence problems” of identifying identifications can be
reduced to the problem of identifying all elements of [a]: this is in some sense the
ur-coherence problem. Intuitively this is because being able to identify arbitrary (b, p)
with (a, refl a) allows us to transform subst terms involving the arbitrary identification
p into subst terms involving the distinguished identification refl g, the latter of which
“compute away.”

Lemma 4.1.7. Suppose we are given some A : U and a : A such that all elements of [a] are
identified; then for any b : A and p : Id(A, a,b) we haveld(1d(A, a, b), p, sym (sym p)).

Proof. Fixing A, a, b, and p, we notice that (a, refl a), (b, p) : [a] by definition, and
thus by assumption we have an identification q : Id([a], (a, refl a), (b, p)). As before,
we shall choose a clever B for which subst B solves our problem, namely:

(2025-07-19) Programming with propositional equality 141

B:[a] - U
B (bo, po) = id(id (A, a, by), po, sym (sym py))

Inspecting our definition of Lemma 4.1.4, we see that sym (refl x) = refl x defini-
tionally, and thus the following definitional equalities hold:

B (a, refl a) = Id(Id (A, a, a), refl a, sym (sym (refl a)))
=1d(I1d(A, a, a), refl a, sym (refl a))
=Id(Id(A, a, a), refl a, refl a)
B (b,p) =1d(Id(A, a, b), p, sym (sym p))

It is easy to produce an element of the former type (namely, refl (refl a)), the latter
type is our goal, and q is an identification between the two indices. Thus:

symsym: {A:U}{ab: A} — (p:1d(A a, b)) — Id(Id(A, a, b), p, sym (sym p))
symsym {A a b} p = subst

(A(bo, po) — 1d(id (A, a, by), po, sym (sym py)))

?:1d([a], (a,refl @), (b,p)) -~ by assumption

(refl (refl a)) |

We substantiate the assumption of Lemma 4.1.7 with a new primitive operation on
identity types, uniq, that identifies (a, refl a) with arbitrary elements of [a]. (By sym
and trans, it follows that any two arbitrary elements of [a] are also identified.) As with
subst, we also assert that a certain definitional equality holds when uniq is supplied
with the reflexive identification. This operation is often called singleton contractibility
[Coq14; UF13], and it will feature prominently in Chapter 5.

uniq: {A:U} {a: A} - (x: [a]) — Id([a], (a,refl a),x)
uniq (a, refl a) = refl (q, refl a)

Exercise 4.2. Like subst, uniq is definable in extensional type theory; show this.

Exercise 4.3. Recalling trans (Lemma 4.1.5) and trans’ (Exercise 4.1), use subst and
uniq to construct a term of the following type:

{A:U}{abc:A} - (p:1d(A a, b)) = (q:1d(A b, c)) —
Id(Id(A, a,c), trans p g, trans’ p q)

142 Intensional type theory (2025-07-19)

4.1.3 Intensional identity types

To summarize Sections 4.1.1 and 4.1.2, we have asked for Id(A, a, b) to support the
following three operations subject to two definitional equalities:

refl : {A:U} - (a: A) > 1d(A,a,a)
subst : {A:U} {aa : A} > (B:A—>U) >1d(A,a,d’) >Ba— Bd
uniq: {A: U} {a: A} — (x: [a]) — Id([4a], (a,refl a), x)

subst B (refla) b=1b
uniq (a, refl a) = refl (a, refl a)

Definition 4.1.8. An intensional identity type is any type Id (A, a, b) equipped with
the three operations above satisfying the two definitional equalities above.

Intensional identity types were introduced by Martin-Lo6f [Mar75] and have been
the “standard” formulation of propositional equality in type theory for most of the
intervening years, although various authors have presented them via different but
equivalent sets of primitive operations and equations [CP90; PP90; Pau93; Str93;
Coq14].? Our presentation most closely follows Coquand [Coq14] which, to our
knowledge, was first proposed by Steve Awodey in 2009. In Sections 4.3 and 4.4 we
will also consider related but non-equivalent presentations endowing Id (A4, a, b) with
more properties [Str93; Hof95a; AMSO07].

Let us be clear, however, that this broad agreement in the literature is not an
indication of happiness. On the contrary, most type theorists have many complaints
about intensional identity types: there are several important properties that they do
not satisfy, and they can be frustrating in practice for a number of reasons. They have
persisted for so long because of a relative lack of compelling alternatives that also
satisfy the two crucial properties of:

1. Capturing the most important properties of equality—reflexivity, symmetry,
transitivity, congruence, substitutivity, etc.—thus enabling a wide range of con-
structions.

2. Their inclusion in a type theory is compatible with all the metatheorems dis-
cussed in Chapter 3, especially—unlike Eq-types—normalization.

In Section 4.3 we will discuss the shortcomings of Id-types in more detail, but
it will turn out that these shortcomings can be mostly overcome by adding several

2The equivalence between the presentations of Martin-L&f [Mar75] and Paulin-Mohring [Pau93] is
due to Hofmann [Str93, Addendum].

(2025-07-19) Intensional identity types 143

axioms (postulated terms, or in essence, free variables) to type theory. Adding such
axioms causes canonicity to fail, but as discussed in Section 3.4, type theories without
canonicity are merely frustrating (requiring more manual reasoning by identifications),
whereas type theories without normalization are essentially un-type-checkable. As
a result, many users of type theory opt to work with Id-types with some additional
axioms.

But before we get ahead of ourselves, we proceed by formally defining Id-types
and thus the type theory known as intensional type theory.

4.2 Intensional identity types

In this section we formally define intensional identity types, or Id-types, returning to
the style of definition adopted throughout Chapter 2. Although it is possible to add
Id-types to extensional type theory, we are primarily interested in defining intensional
type theory, which is obtained by replacing certain rules of ETT by the rules in this
section. Specifically, we remove from the theory of Chapter 2 all rules pertaining to
Eq-types; in Appendix A those rules are annotated €r1), and the rules added in this
section are annotated arT).

Although the rules for Id-types appear complicated and unmotivated at first, it
will turn out that they arise naturally from our methodology that types internalize
judgmental structure. Recalling Slogan 2.5.3, connectives in type theory are specified
by a natural type-forming operation whose terms are either defined by a mapping-in
property (a natural isomorphism with judgmentally-defined structure) or a mapping-
out property (an algebra signature for which the type carries a weakly initial algebra).

The formation rule of Id(A, a, b) is identical to that of Eq(A4, a, b):

I'ra:A F'rb:A Ary:T F'ra:A I'rb:A
['+1d(A, a,b) type Avr1d(A a b)[y] =Id(A[y],aly]. bly]) type

Or equivalently, the following type-forming operation natural in I':
Idr : (Xaery(r) Tm(I, A) X Tm(L, 4)) — Ty(T)

We must now decide whether to define Id(A4, a, b) by a mapping-in property or a
mapping-out property. In Chapter 2 we saw that mapping-in properties are generally
both simpler and better-behaved, but we already defined Eq-types by the mapping-in
property of internalizing judgmental equality (i.e., Tm(T,Eq(A, a, b)) = {x | a = b}),
and it is unclear what other structure we could ask for Id-types to internalize.?

3Cubical type theory in fact invents a new judgmental structure for propositional equality to inter-
nalize, but we will return to this point in Section 5.3.

144 Intensional type theory (2025-07-19)

Faced with no other options, we are forced to consider a mapping-out property
instead. Per the discussion in Sections 2.5.2 to 2.5.4, such a property starts with a
collection of natural term constructors of Id(A, g, b), in this case only reflexivity:

F'ra:A Ary:T 'ra:A
T+ refl : Id(A, a, a) A+ refl[y] =refl : Id(Aly], aly], aly])

Or equivalently, the following term-forming operation natural in I':
reflr 4, € Tm(T,1d(A, a, a))

Whereas the mapping-in property of Eq-types asserts that refl is their only inhab-
itant, the mapping-out property of Id-types will assert that every type believes that
refl is their only inhabitant, in just the same way that every type “believes” that true
and false are the only elements of Bool, namely that to map out of Bool it suffices to
explain how to behave on true and false.

Remark 4.2.1. Like the induction principles of inductive types, the subst and uniq
primitives of Section 4.1 are both maps out of Id (A, a, b) that have prescribed behavior
on the constructor refl. We will see shortly that both subst and uniq are definable
via the Id-elimination principle we are about to present, and remarkably, that Id-
elimination can conversely be recovered as a combination of subst and uniq!
Compared to subst and uniq, Id-elimination is more clearly motivated by general
considerations (mapping-out properties), more self-contained (not requiring X-types),
and even often more ergonomic in practice. But subst and uniq are nevertheless very
important combinators that certainly merit special discussion. o

Luckily refl is not a recursive constructor, so we can avoid the displayed algebras
of Section 2.5.4 and return to the simpler characterization of mapping-out properties
in Sections 2.5.3 and 2.5.5 as a section (right inverse) to substitution of constructors.

Suppose we have a dependent type over an identity type:

T.A.A[pl.1d(A[p’], q[p].q) + Ctype
Into any term of the above type we can substitute refl:
(id.q.refl)* : Tm(T.A.A[p].Id(A[p?]. q[p].q), C) — Tm(T.A, C[id.q.refl])

The elimination principle for Id-types is precisely a section of the above map.
Let us unpack this a bit. First, we rewrite the above map using named variables:

[a/b,refl /p] :
Tm(T,a:Ab:Ap:1d(A ab),C(ab,p)) —» Tm(T,a: A C(a,a refl(a)))

(2025-07-19) Intensional identity types 145

A section to this map tells us that to construct an element of C(a, b, p) for any a,b : A
and p : Id(A, a,b), it suffices to say what to do on a, g, refl (i.e.,, provide a term of
type C(a, a, refl)). Compared to our definition of if in Section 2.5.2, the context on the
left is more complex because the domain of a dependent type C : Id(A,a,b) — U is
itself dependent on a, b : A, and the context on the right is more complex because the
constructor refl is dependent on a : A.

Remark 4.2.2. From a more nuts-and-bolts perspective, imagine that we asked for C
not to depend on all three of a,b,pasT,a: A b: A p:1d(A ab) + C(a, b, p) type, but
only on p,ie., T, p:Id(A, a,b) + C(p) type for some fixed a, b : A. Then we would not
even be able to even state what it means to substitute refl for p, because refl only has
type Id (A, a, b) when a and b are definitionally equal. Instead, we ask for all of a, b, p
to be variables, and consider the substitution of g, a, refl for a, b, p. o

Unfolding the above section into inference rules, we once again “build in a cut”
by applying the stipulated term in context I'.A.A[p].Id(A[p?],q[p].q) to arguments
a:Ab: A andp : 1d(A, a,b) all in context T'. The first rule below is the section
map itself, the second rule is naturality of the section map, and the third states that
applying the section map followed by (id.q.refl)* is the identity:

F'ra:A F'+b:A T'tp:1d(Aab)
T AA[pl.Id(A[p®],q[p].q) + Ctype I'AFc:Clid.q.refl]

T'+J(e,p):Clid.a.b.p]

Ary:T F'ra:A F'rb:A IF'rp:1d(Aab)
T AA[p]Id(A[p®l.q[p].q) - Ctype T.Ar c:C[id.q.refl]

ArJ(ep)ly] =J(c[(yop)al.ply]) : Cly.alyl-blyl.plyl]

F'ta:A T AA[pl.Id(A[p*].q[p].q) + Ctype I''AFc:Clid.q.refl]
I'+J(c refl) = c[id.a] : C[id.a.a.refl]

These rules complete our definition of Id-types and thus of intensional type theory.
As with the eliminators of Void, Bool, and Nat, it can be helpful to think of J(c, p)
as somehow “pattern-matching on p” with clause c.

match (a, b, p) with
(a,a,refl) > ca

From this perspective, the definitional equality J(c, refl) = c[id.a] states that the entire
match expression reduces to ¢ when (a, b, p) is indeed of the form (a, a, refl).

146 Intensional type theory (2025-07-19)

Remark 4.2.3. The name of J for Id-elimination dates back to Martin-L6f [Mar84a], in
which Martin-L6f notates Id-types as I, and he seems to have chosen J simply because
it is the next letter of the alphabet. At any rate, unlike Identity or reflexivity, it has no
obvious meaning as the initial letter of pre-existing mathematical terminology.

For readers who might find this notational choice to be singularly arbitrary, we
recall Scott’s story of mailing Church a postcard asking why A was chosen as the symbol
for function abstraction in his lambda calculus, and receiving the same postcard with
the annotation “eeny, meeny, miny, moe” [Sco18]. o

Like extensional type theory, intensional type theory satisfies consistency and
canonicity; unlike extensional type theory, it also satisfies the metatheorems on open
terms discussed in Chapter 3 and is therefore exceptionally well-behaved from the
perspective of both theory and implementability.

Theorem 4.2.4 (Martin-Lof [Mar71; Mar75] and Coquand [Coq91]). Intensional type
theory satisfies consistency, canonicity, normalization, and has invertible type constructors.

One typically deduces all of these properties from the proof of normalization:
given that normalization amounts to concretely characterizing the sets Tm(T, A) for
all T, A, consistency and canonicity amount to verifying that these characterizations
of Tm(1, Void) and Tm(1,Bool) contain zero and two elements respectively, and
invertibility of IT-types amounts to inverting the induced I1(—, —) map on normal
forms. There are many proofs of normalization for intensional type theory and minor
variations on it, some relying on semantic model constructions [AK16; Coq19; Ste21]
and others more closely connected to algorithms used in real implementations [ACDO07;
Abe13; AOV17].

From] to subst and uniq We close this section by showing that J is interprovable
with the combination of subst and uniq, first that both subst and uniq are instances of

J.

Notation 4.2.5. Our J(b, p) notation is not well-suited to informal constructions with
named variables, because b silently binds a variable of type A, and moreover, the type C
can be hard to infer by inspection. In our informal notation we will therefore wrap J as a
function with the following type, satisfying the definitional equality j Bba arefl = b a.

j:{A:U}(C:(ab:A) > 1d(A,a,b) > U) > ((a:A) > Caarefl) —
(ab:A)(p:1d(Aab)) > Cabp

Likewise we introduce the functions pi,sig : (A : U) (B: A — U) — U as
wrappers for the codes pi(—, —) and sig(—, —) respectively.

(2025-07-19) Intensional identity types 147

Exercise 4.4. Use the elimination principle J to define the function j above, and check
that your definition of j satisfies the stipulated definitional equality.

The flexibility and complexity of J come from the fact that the motive [McB02] C
can depend not only on the two elements of A but also the identification itself, both in

arbitrary ways; many principles fall immediately out of J given a sufficiently clever
choice of C.

Lemma 4.2.6. Using j we can define subst, i.e., a term of type
subst: {A:U}{aa :A} - (B:A—U) -1d(A,aa) —>Ba— Bd
satisfying the definitional equality subst refl b = b.

Proof. We will apply j to the same a,a’ : A and p : Id(A, a,a’) as subst, choosing a
motive such that the type of the fully-applied j will be Ba — B a’:

Cxy_=pi(Bx)(A_—>By)

We have Caa’ p=Ba— Ba asdesired, and it remains only to exhibit a term of
type (a: A) > Caarefl = (a: A) — B a — B a, which is easy to do. In total:

subst : {A:U} {aad : A} - (B:A—>U) >1Id(A,a,d’) >Ba— Bd
subst {Aad'}Bp=j(Axy_—opi(Bx) (A_—>By)) (A_x—>x)aad p

The reader can verify that the stipulated definitional equality holds.]

Exercise 4.5. Check that the above definition of subst satisfies the required equation.

Lemma 4.2.7. Using j we can define uniq, i.e., a term of type
uniq: {A: U} {a: A} - (x: [a]) = Id([a], (a refl), x)
satisfying the definitional equality uniq (a, refl) = refl.

Proof. Writing A : U, a: A, and x := (b, p) : Dp.4 Id(A, a, b) for the arguments of unigq,
we will apply j to a, b, p with a motive that allows us to reduce the general case of
a, b, p to the particular and easy case of a, a, refl:

Cxyp' =id(sigA (Az — id(A, x, 2)), (x,refl), (y,p’))

Then C a b p = Id([a], (a,refl), (b, p)), and it remains only to exhibit a term of
type (a: A) » Caarefl = (a: A) — Id([a], (a,refl), (a,refl)), which is again easy:

uniq: {A: U} {a: A} - (x: [a]) — 1d([a], (a,refl), x)

148 Intensional type theory (2025-07-19)

uniq {A a} (b,p) =j (Ax y p’ — id(sig A (Az — id(A, x, 2)), (x, refl), (v, p")))
(Ax —> refl(, ren)) a b p

The reader can again verify that the stipulated definitional equality holds.

Note that unlike the motive we used in Lemma 4.2.6, the motive here depends not
only on x,y : A but also the identification p’ : Id(A, x, y). Note also that the motive
actually generalizes our goal: rather than proving that for a fixed a : A we can identify
(a,refl) and (b, p) : [a], we prove that for any x,y : A we can identify (x, refl) and
(3. p") : [x]. o

Exercise 4.6. Check that the above definition of uniq satisfies the required equation.

And back again Conversely, using subst and uniq it is also possible to define a term
j satisfying the required definitional equality. We leave most of the construction to the
reader in the following series of exercises. In these exercises we fix the arguments of
jasA:U,C:(ab:A) (p:1d(Aab)) > U,c:(a:A) > (Caarefl),ab: A, and
p :1d(A, a,b), and we define the following “partially uncurried” type family:

Ci:(x:[a]) > U
C,x=Ca (fst x) (snd x)

Exercise 4.7. Define a term ¢, : C, (a, refl).
Exercise 4.8. Without using J, define a term q : Id([a], (a, refl), (b, p)).
Exercise 4.9. Using c, and g but not J, define a term ¢ : C, (b, p).

Exercise 4.10. Show that the type of ¢, is equal to C a b p, and use this to combine
the previous three exercises into a definition of j that uses subst and uniq but not J.

Exercise 4.11. Check that your solution to Exercise 4.10 satisfies jC ca arefl = c a.

Exercise 4.12. We have seen in Remark 4.1.3 and Exercise 4.2 that subst and uniq
are definable for Eq-types in ETT; from Exercise 4.10 it follows that j is also definable
in ETT for Eq-types. Give an explicit definition of j for Eq-types in ETT. (Hint: you
can combine the above results, but it is also fairly straightforward to arrive at the
definition independently.)

Although it is perhaps easier to wrap one’s head around subst and uniq rather
than J, as we noted in Remark 4.2.1 it is often more straightforward in practice to use J

(2025-07-19) Limitations of the intensional identity type 149

directly. Consider for instance the function cong (Lemma 4.1.6) which we really ought
to have stated for dependent functions:

decong: {A:U}{B:A—> U} (f:(a:A) > Ba){ad : A} (p:1d(A aa)) —
Id(B a’,subst Bp (f a), f a’)

Defining dcong in terms of subst and uniq is a headache, because one must use both
simultaneously to handle the occurrence of p in the type. It is, however, straightforward
to define with J:

dcong f=j(Aaa p — 1d(Ba’,subst Bp (f a),f a’)) (Aa — refly(,))

4.3 Limitations of the intensional identity type

We have now seen that the rules for Id-types are well-motivated from a theoretical
perspective as the mapping-out formulation of equality, and that they support the
operations of subst and uniq presented in Section 4.1, which in turn imply many
properties including the symmetry, transitivity, and congruence of equality. We have
also seen that ITT is more well-behaved than ETT (Theorem 4.2.4), and that all the
rules of Id-types are validated by the Eq-types of ETT (Exercise 4.12).

Have we even lost anything at all by moving from ETT to ITT? Well, yes; the entire
point of moving to ITT was to remove equality reflection from our theory, in light of
its undecidability (Section 3.6). Removing equality reflection does come at a cost: in
ETT whenever we can prove p : Eq(A, a, a”) we can freely use terms of type B a at type
B a’, but in ITT we must explicitly appeal to the proof p with subst Bp : Ba — Bda’.

So then are types and terms of ITT simply more bureaucratic than those of ETT,
or does ITT actually “prove fewer statements” than ETT in some meaningful sense?
This is an excellent question, and one that requires some care to set up precisely.

Given that closed types (of a consistent type theory) can be seen as logical propo-
sitions and their terms as their proofs, we might naively wonder is every non-empty
closed type of ETT also non-empty in ITT? This question does not make sense as posed
because, by equality reflection, well-formed types in ETT need not be well-formed in
ITT. Consider for instance the following closed type of ETT:

(p : Eq(Bool, true, false)) — Eq(Eq(Bool, true, false), refl, p)

On the other hand, closed types of ITT do correspond to closed types of ETT in
a more-or-less straightforward way, because their rules differ only in their choice of
equality type, and the Eq-types of ETT satisfy all the rules of the Id-types of ITT (and
more); to make this translation precise we once again turn to model theory.

150 Intensional type theory (2025-07-19)

Definition 4.3.1. We define a model of ITT, a homomorphism of models of ITT, and
the syntactic model Tyrr of ITT following Definitions 3.4.2 to 3.4.4, but replacing the
structure corresponding to Eq-types with that of Id-types; as in Theorem 3.4.5, 777 is
the initial model of ITT. For clarity we rename the concepts defined in Definitions 3.4.2
to 3.4.4 to model of ETT, homomorphism of models of ETT, and syntactic model TgrT of
ETT.

Theorem 4.3.2. The underlying sets of the syntactic model of ETT support a model of
ITT

Proof. Intuitively, this means that the syntax of ETT “satisfies the rules of ITT.” For-
mally, we construct a model M of ITT whose contexts are the contexts of the syntax of
ETT, Cx = Cxq;,; whose substitutions are the substitutions of the syntax of ETT,
Sba(A,T) :== Sbg;,. (A, T); and likewise for types and terms. For all the rules of ITT
that are also present in ETT, we choose the corresponding structure, e.g., 15 = 1z,

The only subtlety is how to define the Id-types of M, and for this we choose the
Eq-types of Tgrr, i.e., Idp (A, a, b) = Eqr.. (A, a,b) and refl 5 := refl ... The reader
has already verified in Exercise 4.12 that the J eliminator is definable in ETT. O

Corollary 4.3.3. There is a function [—]| that sends contexts (resp., substitutions, types,
terms) of ITT to contexts (resp., substitutions, types, terms) of ETT.

Proof. By Theorem 4.3.2 and the initiality of the syntactic model of ITT, there is a
unique homomorphism f : 7rrr — M of models of ITT, and thus in particular there
are functions Cxys : Cxg;; — Cxp = Cxgg;, and likewise for substitutions, types,
and terms. O

By construction, this translation [—] of ITT to ETT “does nothing” except at
Id-types, where [Id(A, a,b)]| = Eq([A]. [a], [2])- Intuitively, this is possible because
Eq-types are defined to have only refl as elements, which is strictly stronger than the
definition of Id-types as “appearing to other types to have only refl as elements”

Exercise 4.13. Using Corollary 4.3.3, describe how any model of ETT induces a model
of ITT. Conclude that the set model of ETT described in Section 3.5 induces a model
of ITT which we will call the set model of ITT.

Exercise 4.14. Prove that intensional type theory is consistent. (Hint: use Exercise 4.13
and adapt the proof of Theorem 3.4.8.)

We can now ask a more precise question:

Question 4.3.4. Suppose that 1 + Atype in ITT, and that in ETT there is a term
1+ a: [A]. Then does there necessarily exist a term 1+ a’ : A in ITT?

(2025-07-19) Limitations of the intensional identity type 151

Remark 4.3.5. Types containing at least one term are said to be inhabited (Defi-
nition 2.7.2), so Question 4.3.4 equivalently asks, “if [A] is inhabited in ETT, is A
inhabited in ITT?” 3

By focusing only on types that are well-formed in ITT, this formulation avoids the
pitfalls discussed earlier. Perhaps the converse of Question 4.3.4 is more intuitive: do
there exist types that can be formed without equality reflection, but that can only be
inhabited with equality reflection? Unfortunately, such types do exist, and thus the
answer to Question 4.3.4 is no; even worse, the counterexamples are ones that users of
type theory are likely to encounter frequently in practice.

Independence The famed propositions-as-types correspondence (Section 2.7) states
that types can be read as logical propositions and terms as proofs. Under this reading,
counterexamples to Question 4.3.4 are propositions that are independent of intensional
type theory, i.e., propositions A for which neither A nor A — Void are provable.*

Lemma 4.3.6. If1 + Atype is a counterexample to Question 4.3.4, then A is independent
of intensional type theory.

Proof. By definition, there must existaterm 1+ a: [A] in ETT, butnoterm 1+ a’ : A
inITT. Thus A is by definition not provable in ITT, so it suffices to show that A — Void
is also not provable in ITT. Suppose that there were aterm 1 + f : A — Void in ITT;
then there would also be a term 1 + [[f] : [A] — Void in ETT, but this would
mean there is a closed proof [f](a) of Void in ETT, contradicting its consistency
(Theorem 3.4.8). O

Of course, there are other kinds of independent propositions too; as a sufficiently
strong formal system, ITT is subject to Godel’s incompleteness theorem and thus
one can construct independent propositions roughly corresponding to “the type of
consistency proofs of ITT” But for now we restrict our attention to counterexamples
to Question 4.3.4, exploring two in particular: function extensionality and uniqueness
of identity proofs.

4.3.1 Function extensionality

The principle of function extensionality states that for any two functions f,g : (a :
A) — B(a), if f(a) and g(a) are equal for all a : A, then f and g are equal. We

4For the purposes of this section we refer only to the naive reading of all types as propositions
(Slogan 2.7.1), ignoring for the moment any issues related to mere propositions (Sections 2.7 and 5.1).

152 Intensional type theory (2025-07-19)

reproduce the formal statement of funext below, along with its non-dependent special
case funext’:

Funext=(A:U) > (B:A—>U) > (fg:(a:A) > Ba) —>
((a:A) »Id(Ba,fa,ga)) > 1d((a: A) »> Ba,f,9)

Funext' =(AB:U) - (fg: A— B) —
((a:A) - 1d(B,f a,ga)) - Id(A — B, f,9)

Both of these are counterexamples to Question 4.3.4 and thus independent of ITT.
First, we check that [[Funext] is provable in ETT.

Exercise 4.15. Construct a closed term of type [Funext] in extensional type theory.

Next, we must check that Funext is not provable in intensional type theory. As
with consistency (Theorem 3.4.7), it suffices to exhibit a model of ITT in which the
set of closed terms of type Funext is empty. However, it is surprisingly difficult to
do so!” One such model is—tautologically—the syntax of ITT itself, or 7777; however,
showing that this is the case is precisely what we are already trying to prove. A more
useful observation is that the models used to prove normalization contain concrete
characterizations of Tm(T, A) for all T, A and thus it is possible to unfold such a
model and explicitly verify that there are no normal forms—and hence no elements
whatsoever—of Tm(1, Funext) [Hof95a].

Remark 4.3.7. The latter approach is tantamount to the proof-theoretic technique of
showing that a formula is not derivable by proving cut elimination for a calculus and
then checking by induction that the formula has no cut-free proofs. o

One can also imagine more “mathematical” (and non-initial) models that refute
function extensionality. An early example of such a model based on realizability
and gluing was given by Streicher [Str93, Chapter 3]; a more recent example is the
(categorical) “polynomial” model of von Glehn [vGle14]. In both cases the model con-
struction is somewhat involved but checking that they refute Funext is comparatively
straightforward. In any case, any of these arguments allows us to conclude:

Theorem 4.3.8. There is no closed term of type Funext in intensional type theory.

The authors are uncertain to whom this result should be attributed. Turner [Tur89]
suggests that it was known to Martin-Lo6f and it was certainly known to type theorists

There are many simple “countermodels of function extensionality” which fail to validate the 5-rule
of TI-types and are therefore not models of ITT as we have defined it. They are, however, models of the
calculus of inductive constructions, which lacks 7 for IT-types.

(2025-07-19) Limitations of the intensional identity type 153

in the 1980s, but the earliest explicit discussion of the independence of Funext we have
located is the countermodel of Streicher [Str93].

There are many examples of function extensionality arising in practice. For in-
stance, in ITT we can prove (n m : Nat) — Id(Nat, n + m, m + n) but not Id(Nat —
Nat — Nat, (+), (+) o flip). Similarly, although mergeSort, bubbleSort : List Nat —
List Nat agree on all inputs, we cannot prove they are equal functions. This has real
consequences in practice: if we write a function that calls bubbleSort, is it equal to the
same function where these calls have been replaced by calls to mergeSort? If function
extensionality held this would follow immediately from cong; as it stands, one must
manually argue that the text of the function respects swapping subroutines in this
way—even though it is impossible to define a function that doesn’t!

We view the independence of function extensionality as perhaps the greatest failing
of intensional type theory, as it frequently causes problems with no benefit,” and it is
therefore common to simply postulate Funext when working in ITT, that is, to add a

rule

F I cx
ESN

I' + funext : Funext

Postulating an axiom in this way is equivalent to prepending every context by
a variable of type Funext, and it therefore preserves normalization (a property of all
contexts) while disrupting canonicity (a property of the empty context, which is “no
longer empty”).

Exercise 4.16. Argue that postulating Funext causes canonicity to fail. That is, pro-
duce a closed term of type Bool in ITT adjoined with the above rule that appears to
be judgmentally equal to neither true nor false. (You do not need to formally prove
this fact.)

4.3.2 Uniqueness of identity proofs

Our second counterexample to Question 4.3.4 is the principle of uniqueness of identity
proofs (UIP), which states that any two identifications between the same two terms are
themselves identified.

UP=(A:U) > (ab:A) > (pq:1d(A ,a b)) » Id(Id(A a b),p,q)

There are occasions where one may wish to not identify all pointwise-equal procedures, e.g.,
when studying the runtime of algorithms, but we stress that ITT also does not allow us to distinguish
pointwise-equal functions; studying runtime in this way requires other axioms and, likely, the removal

of f-rules.

154 Intensional type theory (2025-07-19)

In short, UIP asserts that identifications are unique: up to identification, there is
at most one proof of Id(A, a, b) for any a, b : A. Types with at most one element are
called (homotopy) propositions (Section 5.1), so we might equivalently phrase UIP as the
principle that propositional equality is a proposition.” Like Funext, UIP is independent
of ITT. On the one hand, it holds in ETT and thus cannot be refuted by ITT:

Exercise 4.17. Construct a closed term of type [[UIP] in extensional type theory.

To see that UIP is not provable in ITT, it again suffices to exhibit a countermodel, a
model of ITT in which the set of closed terms of type UIP is empty. The original such
countermodel, the groupoid model of type theory of Hofmann and Streicher [HS98], is
both instructive and historically significant as a precursor to homotopy type theory
(Chapter 5), so unlike the countermodels of Funext we will sketch it in some detail.

The groupoid model is similar to the set-theoretic model of type theory (Section 3.5)
except that it replaces sets with groupoids, sets equipped with additional structure:

Definition 4.3.9. A groupoid X = (|X|,R,id, (=)~1,0) consists of a set | X|, a family
of sets R indexed over |X| X |X|, and dependent functions:

o id : {x : [X[} - R(x,x),
« ()i {xy: X1} > R(x,y) > R(y,x), and
« () {xyz: X[} - R(y,2) = R(x,y) - R(x,2),
such thatido f= f = foid, fo f'=id,id=f"'o f,and fo(goh) =(fogq)oh.

Definition 4.3.10. Given two groupoids X, Y, a homomorphism of groupoids F : X —
Y is a pair of functions Fy : |X| — [|Y]| and F; : {x x" : |X|} — Rx(x,x") —
Ry (Fy(x), Fy(x")) for which F; commutes with the groupoid operations, i.e.,

. Fi(id) = id,
« F(fY) =F(f)" and
« Fi(go f) = Fi(g) o Fi(f).

"The terminology of “propositional equality” is perhaps ill-advised.

(2025-07-19) Limitations of the intensional identity type 155

Exercise 4.18. For categorically-minded readers: argue that a groupoid is exactly the
same as a category all of whose morphisms are isomorphisms, and a homomorphism
of groupoids is exactly a functor.

Advanced Remark 4.3.11. The name “groupoid” comes from the perspective that these
are a weaker notion of group in which the multiplication is a partial operation. o

We can think of a groupoid as equipping its underlying set with a “proof-relevant
notion of equality” which like ordinary equality is reflexive, symmetric, transitive,
and respected by functions (groupoid homomorphisms), but unlike ordinary equality
“can hold in more than one way.” Following this intuition, we will model closed types
A € Ty(1) not as sets X but as groupoids (|X|,R,...), closed terms a € Tm(1,A)
as elements of |X|, and closed identifications p € Tm(1,1d(A, a,b)) as elements of
R(a,b).

Before outlining the model itself, we give a few examples of groupoids.

Example 4.3.12. Every set A can be regarded as a discrete groupoid AA in which
Raa(x,y) = {x | x = y}. The remaining structure is uniquely determined: id = *,
*71 = %, etc.

Example 4.3.13. Given two groupoids X, Y, the set of groupoid homomorphisms X — Y
(Definition 4.3.10) admits a natural groupoid structure in which

Rx-y(F,G) =
{T : (x:|X]) = R(Fy x,Go x) | Vf : R(x,y). G1(f) o T(x) = T(y) o F1(f)}

In light of Exercise 4.18, categorically-minded readers might observe that T is exactly
a natural transformation from F to G. We leave the remaining structure as an exercise.

Example 4.3.14. For an explicit example of a groupoid that is not discrete, consider
the groupoid traditionally called B(Z/2), whose underlying set is the singleton {x},
Rp(z/2) (k. %) = Z/2 = {0, 1}, and the remaining structure is as follows:

id=0

xoy=x+y mod 2

xT=x
The reader can check that these operations satisfy the necessary equations. (Hint: this
is equivalent to checking that Z/2 with the above id, o, and (—)~! forms a group.)

Example 4.3.15. There is a “large” groupoid S of all “small” sets, where Rs(X,Y) is the
set of bijections between the sets X and Y, and the operations are the identity, inverse,
and composition of bijections. This groupoid is not discrete because there can be more
than one bijection between a pair of sets, e.g., id, swap € Rg({*, %"}, {*,x’}).

156 Intensional type theory (2025-07-19)

Example 4.3.16. There is a “large” groupoid G of all “small” groupoids, whose underly-
ing collection is the proper class of all groupoids, and for which Rg(X,Y) is the set
of all groupoid isomorphisms (invertible homomorphisms, or homomorphisms for
which Fy and each F; are bijections) from X to Y. The groupoid S from Example 4.3.15
embeds into G, so G is also not discrete.

As in the set-theoretic model of type theory, groupoids and groupoid-indexed
families of groupoids form a model of type theory. Writing G for the groupoid model
of (intensional) type theory and f : 7;r7 — G for the homomorphism from the syn-
tactic model to G, f interprets syntactic contexts I' as groupoids Cxz(T'), the closed
context 1 as the one-element, one-identification groupoid, syntactic substitutions as
groupoid homomorphisms, and syntactic types A € Ty(I') as Cx¢(I')-indexed families
of groupoids (Ty¢(T')(A))yecx,(r). Such a family assigns to each groupoid element
y € Cx¢(T') a groupoid (Tyf(F) (A))y, and to each identification a € R, () (v, ¥') 2
homomorphism (Tyf(F) (A))y — (Ty f(r) (A)), in a manner compatible with identity
and composition. (Using Example 4.3.16, we can repackage the data of such a family
quite simply as a groupoid homomorphism Cx¢(I') — G.) Finally, f interprets syntac-
tic terms a € Tm(T', A) as dependent functions assigning to each element y € Cxz(I')
of the context an element of the groupoid (Tyf(F) (A)), in a manner that respects
identifications. (We can again phrase this condition as a groupoid homomorphism, but
we will not pursue the details further.)

Most of the structure of the groupoid model of type theory mirrors that of the
set-theoretic model, with some added complication to account for identifications; for
example, rather than interpreting the universe as the large set of all small sets, we
interpret it as the large groupoid G of all small groupoids (Example 4.3.16). The key
departure is in the interpretation of Id-types: for closed A € Tyg(1g) and a,b €
Tmg(1g,A), the G-identity type Idg (A, a, b) is chosen to be (the discrete groupoid on)
the set of identifications in the groupoid A between a and b, namely AR4(a, b).

It is not at all obvious that such an interpretation supports J, but this is the force
of the groupoid model: because all types and terms respect identifications, it is in fact
the case that dependent functions from Id-types into any G-type are generated by the
data of where to send refl. Interested readers can find these and all the other details in
the paper of Hofmann and Streicher [HS98].

Theorem 4.3.17 (Hofmann and Streicher [HS98]). There is no closed term of type UIP
in intensional type theory.

Proof. This follows immediately from the fact that the groupoid model interprets UIP
as the empty groupoid, whose proof we sketch below. Recall that:

UP=(A:U) > (ab:A) - (pq:1d(Aa b)) - 1d(Id(A a b),p,q)

(2025-07-19) Limitations of the intensional identity type 157

A term of this type in G would be a dependent function out of the interpretation
of U, which is the groupoid of groupoids G. Suppose that such a function exists; then
we could apply it to the groupoid B(Z/2) € G defined in Example 4.3.14, then twice
to the unique element x € |B(Z/2)| of that groupoid, and then to the two distinct
identifications 0,1 € Rp(z/2) (%, %). The result would have to be a proof that 0 = 1,
which is false. O

4.3.2.1 Towards homotopy type theory

The busy reader may wish to skip this section initially. The groupoid model demon-
strates that Id-types support richer interpretations than merely equations: identifica-
tions can be any data that is respected by all the constructs of type theory.

Although the groupoid model provides us with interesting examples of identity
types, we note that the identity types of any groupoid X, ARx (x, y), are always discrete
groupoids with no interesting identifications of their own. Thus the groupoid model
does validate the “uniqueness of identity proofs of identity proofs”™:

UIPIP=(A:U) > (ab:A) — (pq:1d(A a b)) —
(¢ p:1d(Id(A a,b),p,q)) — Id(Id(Id(A, a, b), p, q), a,)

Like UIP, this principle is also independent of ITT, and we can construct a coun-
termodel in 2-groupoids, which contain a second level of “2-identifications” R*(p, q)
between any pair of identifications p, g € R(a, b) between elements a, b. Although we
will not define these precisely, we note that the passage from groupoids to 2-groupoids
is analogous to the passage from sets to groupoids; for instance, every groupoid can
be regarded as a discrete 2-groupoid with the same elements and 1-identifications but
with trivial 2-identifications.

The story once again repeats for the 2-groupoid model of type theory, and in fact
for any n: there is a model of ITT in which closed types are interpreted as n-groupoids,
and this model refutes U(IP)" but validates U(IP)™*!. In fact, this suggests correctly
that ordinary groupoids ought to be thought of as 1-groupoids and sets as 0-groupoids;
indeed, the set (0-groupoid) model of type theory validates U(IP)!. Looking downward,
the large 0-groupoid of (—1)-groupoids is the set of propositions {0, {x}}.

But what about for all n? Is it possible to construct a model that simultaneously
refutes U(IP)" for every n € N? Intuitively, such a model would have to interpret
closed types as “co-groupoids” with countably infinite towers of identifications. The
answer is yes [War08, Corollary 4.26], and in fact Voevodsky’s simplicial model of
homotopy type theory [KL21] can be seen as precisely such a model [KS15].

158 Intensional type theory (2025-07-19)

4.3.3 Hofmann’s conservativity theorem

We have generated an infinite stream of counterexamples to Question 4.3.4, or propo-
sitions that are provable in ETT but not ITT, namely Funext and U(IP)" for n > 1.
Is there a third class of counterexamples? Surprisingly, no: all counterexamples to
Question 4.3.4 are generated by Funext and UIP in a precise sense. (Note that UIP
implies U(IP)" for n > 1.)

To state this claim more precisely, let us write

Tax =1, funext : Funext, uip : UIP

for the ITT context containing two variables, one of type Funext and one of type UIP;
types and terms of ITT in context I}, are in bijection with closed types and terms
of intensional type theory extended by two rules postulating Funext and UIP. Then,
Hofmann’s celebrated conservativity result states that:

Theorem 4.3.18 (Hofmann [Hof95a]). Suppose that T, + Atype in ITT, and [Tox]| +
a: [A] in ETT; then there exists a term Ty +a’ : AinITT.

In Exercises 4.15 and 4.17 the reader has constructed proofs 1 + p : [Funext] and
1+ q : [UIP] of function extensionality and UIP in ETT, so we can discharge the
hypotheses of [T,] to obtain the following corollary:

Corollary 4.3.19. IfT,, + Atype in ITTand 1 + a : [A]|[p/funext, g/ uip] in ETT, then
there existsaterm T Fa’ : AinITT.

Corollary 4.3.19 is great news: although ITT is weaker than ETT, it is weaker
by exactly two principles, namely function extensionality and uniqueness of identity
proofs. We are led naturally to wonder whether there is a “best of both worlds:

Question 4.3.20. Can we extend intensional type theory (with new terms and/or equa-
tions) in such a way that Funext and UIP are derivable, and the resulting type theory
enjoys both canonicity and normalization?

If we are satisfied with only one of canonicity or normalization, note that ETT is
such an extension of ITT satisfying canonicity (Theorem 3.4.12) but not normalization
(Section 3.6); on the other hand, extending ITT with axioms for Funext and UIP trivially
makes these provable and satisfies normalization (Theorem 4.2.4) but not canonicity
(Exercise 4.16).

Remark 4.3.21. Such tradeoffs are common in the design of type theory: canonicity
says that a type theory has “enough” equations, whereas normalization generally
requires that there not be “too many”; it can be hard to find the right balance. o

(2025-07-19) Limitations of the intensional identity type 159

Type theorists have considered Question 4.3.20 since the 1990s, and there is some
good news to report. If we are content for the moment to solve only the problem of
UIP (ignoring Funext), there is in fact a rather modest extension of ITT that satisfies
canonicity and normalization and in which UIP is provable.

For this, it will help us to consider an equivalent formulation of UIP due to Streicher
[Str93] known as Axiom K:*

K=(A:U) - (a:A) - (p:1d(A aa)) — Id(Id(A, a, a), p, refl)

It is easy to see that K follows from UIP, as it is the special case of UIP in which a
and b are the same and one of the identity proofs is refl. The other direction of the
biimplication is more subtle, but follows from a careful application of J, or identity
elimination.

Exercise 4.19. Prove that K implies UIP in ITT.

As with subst and uniq, there is a sensible definitional equality with which to equip
k : K, namely k A a refl = refl, and we can even rephrase k as a “second elimination
principle” of Id-types as follows:

I'ra:A
T'tp:1d(Aa a) I'AId(A[p]l,q,q) + Btype I''A+ b: Blid.refl]

I'+K(b,p) : Blid.a.p]

F'ra:A I AId(A[pl,q,q) + Btype T.Av b : Blid.refl]
'+ K(b,refl) = b[id.a.refl] : B[id.a.refl]

Ary:T F'ra:A
T'tp:1d(Aa a) I'AId(A[p]l,q,q) + Btype I A+ b: Blid.refl]

A+K(b,p)[y] =K([(yop)ql.ply]) : Bly-aly]l-ply]]

It is instructive to compare the rules for K to those of J, whose motives

.A.A[p]1d(A[p°],q[p].q) F Ctype

quantify over both sides of the identification. Although J may seem superficially more
general, neither J nor K imply the other. On the one hand, K is equivalent to UIP,
which is independent of ITT; on the other hand, we needed the additional flexibility
of J to define subst (Lemma 4.2.6), and we invite the reader to attempt this definition
with K alone.

8In light of Remark 4.2.3, perhaps the reader can guess where the name K comes from.

160 Intensional type theory (2025-07-19)

Although adding the above rules for K to intensional type theory breaks the pattern
of inductive types we established in Section 2.5, the resulting theory continues to enjoy
all the good properties of intensional type theory.

Theorem 4.3.22. Intensional type theory plus the above rules for K satisfies consistency,
canonicity, normalization, has invertible type constructors, and also validates UIP.

In fact, K was originally introduced not to restore extensionality to ITT but in the
study of dependent pattern-matching, where early formulations of pattern-matching
for dependent type theory [Coq92] were found to derive K and were thus stronger
than the standard rules of ITT. Although researchers have subsequently formulated
a weaker notion of pattern-matching that does not derive K [CDP14], many proof
assistants such as Agda still include K by default, often via pattern-matching.

Unfortunately it is significantly more challenging to add function extensionality
to ITT in a satisfactory (canonicity-preserving) fashion, either in tandem with or
independently of K/UIP. There are a number of type theories that admit function
extensionality and satisfy all the relevant metatheorems, most notably observational
type theories (Section 4.4, which also validate UIP) and cubical type theories (Chapter 5,
which intentionally do not validate UIP), but these systems are quite a bit more complex
than ITT and have not supplanted it.

Thus, despite its shortcomings, many practitioners choose to work in ITT extended
by an axiom for function extensionality and either an axiom for UIP or a version of
dependent pattern-matching that validates K.

4.4* Observational type theory (DRAFT)

(2025-07-19) Observational type theory (DRAFT) 161

Further reading

We have mentioned previously that proof assistants decide equality of terms using a
type-sensitive algorithm known as normalization by evaluation (NbE). Proofs of the
normalization metatheorem for intensional type theory proceed by establishing that
NbE is sound and complete for the equational theory of ITT, using a proof technique
known as Kripke logical relations. There are many papers dedicated to proving normal-
ization for variants of ITT; Abel [Abe13] includes a lengthy exposition starting with
the non-dependent case, Abel, Ohman, and Vezzosi [AOV17] formalize their proof in
Agda, and Coquand [Coq19] and Sterling [Ste21] present semantic formulations of
NbE that are significantly less technical but require more mathematical sophistication.

As for the independence and conservativity theorems discussed in Section 4.3,
the theses of Streicher [Str93] and Hofmann [Hof95a] remain excellent references;
however, a more modern account is available in the thesis of Winterhalter [Win20], and
recent advances in semantics have enabled much shorter albeit sophisticated proofs of
conservativity [KL25].

The independence of function extensionality from ITT has led to a cottage industry
of observational type theories as discussed in Section 4.4; the authors are biased but
recommend Sterling, Angiuli, and Gratzer [SAG22, Section 1] for a brief history of
equality in type theory. On the other hand, the independence of UIP has spawned
an entire subdiscipline, homotopy type theory (Chapter 5). Models of homotopy type
theory, such as Voevodsky’s simplicial model [KL21], can be seen as vast generalizations
of the groupoid model of Hofmann and Streicher [HS98].

This material will be published by Cambridge University Press as Principles of Dependent Type Theory by Carlo
Angiuli and Daniel Gratzer. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © Carlo Angiuli and Daniel Gratzer 2024

Univalent type theories

In Chapter 4 we saw that replacing Eq-types with Id-types allows type theory to enjoy
normalization and other properties needed for practical implementation, at the cost of
losing two of extensional type theory’s reasoning principles: function extensionality
and uniqueness of identity proofs (UIP). We then considered how one may restore
these principles to type theory, both with and without sacrificing canonicity.

In this chapter we consider a radically different extension of intensional type the-
ory known as homotopy type theory (HoTT). Rather than attempting to restore UIP to
type theory, homotopy type theory extends ITT with a reasoning principle known as
univalence, which in fact refutes UIP in a vast generalization of the groupoid counter-
model discussed in Section 4.3.2. Univalence is a rather subtle principle that is difficult
to even state properly, so we will begin by considering univalence for propositions
before moving on to the full univalence principle and its many consequences.

Univalence is traditionally stated as an axiom which breaks the canonicity property
of intensional type theory. As a result, although its repercussions are vastly different
from those of UIP, it has the same drawbacks from the perspective of implementation.
In the second half of this chapter we turn our attention to cubical type theory, which
extends the judgmental structure of type theory and reimagines the Id-types of homo-
topy type theory as defined by a mapping in property. The result is a type theory that
admits the principles of univalence and function extensionality while simultaneously
enjoying the properties of canonicity, normalization, and decidability of type-checking.

This chapter brings the reader up to present-day research in type theory. The
univalence principle was first proposed in 2010 by Voevodsky [Voe10], and much of our
current understanding of its consequences was developed in 2013 in the book Homotopy
Type Theory: Univalent Foundations of Mathematics [UF13]. The first cubical type
theories emerged around 2016 [CCHM18; Ang+21], and the first proof of normalization
was given in 2021 [SA21]. Univalent type theories remain far from settled; at the time
of writing, researchers continue to grapple with the semantics and consequences of
univalence, and are even developing successors to cubical type theory [Shu22].

In this chapter In Section 5.1 we revisit universes of propositions (Section 2.7) in the
setting of intensional type theory, and define the axioms of propositional univalence
and resizing. In Section 5.2 we formulate the full univalence axiom and give a whirlwind
tour of homotopy type theory, including homotopy levels, higher inductive types, and

164 Univalent type theories (2025-07-19)

some applications and consequences of univalence. In Section 5.3 we introduce the
novel judgmental structure of cubical type theory and use it to define a “mapping in”
variation of intensional identity types known as Path-types. Finally, in Section 5.4, we
explain how the cubical apparatus allows us to define a univalent type theory which
enjoys the canonicity property.

Goals of the chapter By the end of this chapter, you will be able to:

 Define universes of propositions in intensional type theory, and state proposi-
tional univalence and propositional resizing.

« State the univalence axiom, including the notion of equivalence.

« Explain several core concepts of homotopy type theory, including homotopy
levels and higher inductive types.

« Discuss the goals of cubical type theory, and explain how the interval, coercion,
and composition address these goals.

5.1 Propositional univalence

In Section 4.3 we identified two principles of ETT absent from ITT, function extensional-
ity and UIP, which characterize the identity types of II-types and Id-types respectively.
One can understand the univalence principle (Section 5.2.1) as yet another absent
principle which characterizes the identity type of U;, but univalence is significantly
harder to motivate because it is not a principle of ETT—in fact, it contradicts UIP—and
because type universes are already the most complex connective of type theory.
Before presenting the full univalence principle in Section 5.2 we will warm up
with a discussion of propositional univalence, the univalence principle restricted to
universes of propositions Prop; (Section 2.7). Propositional univalence simplifies full
univalence in several ways: it is easier to state, is consistent with UIP, and is in a
certain sense validated by the set model (Section 3.5). On top of these pedagogical
advantages, propositional univalence is an important reasoning principle in its own
right, especially when coupled with the related principle of propositional resizing.

Notation 5.1.1. Throughout this section we return to the informal notation for
intensional type theory used in Chapter 1 and Section 4.1.

Assumption 5.1.2. In order to avoid annoying technicalities, we work in ITT extended
by the function extensionality axiom funext : Funext as defined in Section 4.3.

(2025-07-19) Propositional univalence 165

5.1.1 Homotopy propositions

Before stating propositional univalence, we must adapt the notion of proposition
introduced in Section 2.7 from ETT to ITT. Recall that propositions are “types whose
terms are all equal” or “types with at most one element” More formally, we said that a
type A is a proposition in ETT if one of these equivalent conditions holds:

1. any two terms a, b : A are judgmentally equal (Definition 2.7.5), or
2. the type isProp(A) := (a b : A) — Eq(A, a, b) is inhabited (Exercise 2.42).

In intensional type theory we must replace the Eq-type in (2) with an Id-type, at
which point it becomes clear that these conditions are no longer equivalent because
Id-types—by design!—lack equality reflection.

2’. the type IsHProp(A) := (a b : A) — Id(A, a, b) is inhabited.

As a result, ITT has two natural notions of proposition: (1) types with one term up to
definitional equality, known as strict propositions, and (2’) types with one term up to
propositional equality (identification), known as homotopy propositions.

Both notions have their advantages and disadvantages. Strict propositions are
more convenient because definitional equality is silent, avoiding the need for subst
casts; unfortunately, very few types are strict propositions in ITT. (Not even Void is a
strict proposition, due to its lack of #-rule!) In contrast, homotopy propositions are
less convenient but much more common.

Exercise 5.1. Show that IsHProp(Void) is inhabited.

Another important advantage of homotopy propositions is that the property of
being a homotopy proposition can be stated internally (IsHProp; : U; — U;), so we
can define a hierarchy of universes of propositions HProp; as the subtypes of each U;
spanned by homotopy propositions, as in Section 2.7.1:

HProp; : Uiy
HProp; = X 4, IsHProp;(A)

For these reasons, and because they play a central role in Section 5.2, we will focus
exclusively on homotopy propositions in the remainder of this book.

Notation 5.1.3. Mirroring our notation for Prop;, we will suppress the indices on
HProp; and IsHProp; when they are immaterial. We will also collapse the distinction

IThere is nothing yet intrinsically “homotopical” about homotopy propositions. We will soon see
that they are part of a more comprehensive taxonomy of types known as homotopy levels (Section 5.2.2).

166 Univalent type theories (2025-07-19)

between elements of HProp and types A : U for which IsHProp (A) is inhabited, by
treating the projection HProp — U as silent and writing A : HProp when A : U and A
is a homotopy proposition. (In Exercise 5.9 we will see that it is safe to suppress the
choice of proof p : IsHProp (A) because IsHProp (A) is itself a homotopy proposition.)

Homotopy propositions in ITT are closed under many of the same connectives
as propositions in ETT (Corollary 2.7.12) with a few notable exceptions. In particular,
Id(A, a,) is not in general a homotopy proposition. (Uniqueness of identity proofs is
precisely the statement that all identity types are propositions!) More frustratingly,
one needs function extensionality to show that propositions are closed under IT-types.

Exercise 5.2. Show that if B: A — HProp then (a : A) — B(a) : HProp.

5.1.2 Propositional univalence

When are two homotopy propositions—henceforth just “propositions”—identified in
intensional type theory? Unfortunately not very often, given that HProp is defined in
terms of U, which is in turn defined as a collection of codes for (i.e., names of) types.

For the third time, we have found a type of identifications lacking. In Section 4.3.1,
we saw that Id(II(A, B), f, g) is underspecified in ITT and proposed that, as in ETT,
such identifications should be given by pointwise identifications of f(a) and g(a) for
all a : A. In Section 4.3.2, we saw that Id (Id (4, a, b), p, q) is underspecified in ITT and
proposed that, as in ETT, this type should always be inhabited. This time, it is not
so clear what Id (HProp, A, B) should or even could be. We cannot look to ETT for
inspiration, because the ETT type Eq(Prop, A, B) is just as underspecified!

After some thought, we notice that from any identification Id (HProp, A, B) we can
obtain (by subst and symmetry) a pair of functions A — B and B — A, which is to
say that A &= B. Our desired characterization of Id(HProp, A, B) should therefore
imply, or at least be compatible with, the propositions A and B being interprovable.

We further note that the converse implication holds in an analogous scenario in set
theory. Suppose we have two propositions (predicates) ¢, i over a set X. These induce
a pair of subsets of X, {x € X | ¢(x)} and {x € X | (x)}, which by the extensionality
axiom of set theory are equal if and only if the predicates ¢ and i are interprovable.

Emboldened by these observations, we introduce the principle of propositional
univalence: interprovable propositions are identified.

& : HProp — HProp — HProp
A& B=(A— B)x(B— A)

HProplsUnivalent : U

(2025-07-19) Propositional univalence 167

HProplsUnivalent = (A B : HProp) — (A & B) — Id(HProp, A, B)

Exercise 5.3. Show that if A, B : HProp then (A & B) : HProp.

Warning 5.1.4. Although HProplsUnivalent is a correct statement of propositional
univalence, in Section 5.1.3 we will propose a more abstract formulation which—unlike
the above statement—is validated by the set model of type theory (Theorem 5.1.8).

The axiom HProplsUnivalent is quite a bit stronger than it may first appear.

Theorem 5.1.5. For any propositions A and B, HProplsUnivalent A B is an isomorphism
between (A < B) and Id(HProp, A, B).

Proof. That is, we must define a map inv : Id(HProp, A, B) — (A & B) such that both
round trips cancel up to identification. The map itself is a direct consequence of subst:
inv p := (subst id p, subst id (sym p)). The first round trip

(x: A e B) > Id(A & B, inv (HProplsUnivalent A B x), x)
is immediate from Exercise 5.3. For the second round trip
(p : Id(HProp, A, B)) — Id(Id(HProp, A, B), HProplsUnivalent A B (inv p), p)
we note that the composite
i := (HProplsUnivalent A B) o inv : Id(HProp, A, B) — Id(HProp, A, B)

is idempotent in the sense that (by the first round trip) there is an identification between
ioiand i. We complete the proof in Exercise 5.4 by showing that all idempotent maps
Id(A, a,b) — Id(A, a, b) are the identity function. O

Exercise 5.4. Show the following result due to Escardé [Esc14]: ifi : {a b : A} —
Id(A ,a,b) — 1d(A, a,b) is idempotent then it is, up to identification, the identity
function. (Hint: start by identifying i p and trans (i refl) p for all p using identity
elimination, then identify trans (i refl) (i refl) and (i refl).)

Corollary 5.1.6. Propositional univalence holds if and only if the canonical map
Id(HProp, A, B) — (A < B) induced by subst is an isomorphism.

Given that our statement of propositional univalence took inspiration from set
theory, one might wonder whether it holds in the set model of ITT (Exercise 4.13); if it
did, we would conclude not only that HProplsUnivalent is consistent but also that it is
compatible with UIP. Sadly this is not the case given how we have defined HProp.

168 Univalent type theories (2025-07-19)

Lemma 5.1.7. The set model of ITT interprets HProplsUnivalent as the empty set.

Proof. Recall that we construct the set model of ITT by interpreting ITT into ETT
(Corollary 4.3.3) and further interpreting ETT into sets (Section 3.5). The first interpre-
tation simply translates Id-types into Eq-types:

[HProplsUnivalent] = (A B : Prop) — (A & B) — Eq(Prop, A, B)

It remains to show that Tmg(1s, [HProplsUnivalent] s) = @ where S is the set
model of ETT. Unfolding the S-interpretations of Il-types, Eq-types, and U-types, it
suffices to exhibit a pair of elements A, B € Prop g = {X € V; | Vx,y € X. x = y} such
that the following set is empty:

((A—> B)x(B— A)) » {x| A=B}

In other words, we must find a pair of subsingleton sets A # B for which there are
functions A — B and B — A. For this we can exhibit any pair of unequal one-element
sets, such as A := {x} and B := {{x}}. O

Zooming out, because HProp is defined as the subtype of U spanned by types
with at most one element, it is interpreted in the set model as the collection of all
sets with at most one element—and certainly not all one-element sets are equal! We
note that there are set-theoretic representations of “the set of all propositions” that are
propositionally univalent, most notably the two-element set { T, L}. However, in order
to formally connect this set to propositional univalence, we must come up with a more
abstract notion of a “univalent universe of propositions” for which it is a valid model.

5.1.3 Abstracting propositional univalence

Recall from Notation 2.6.4 that a “universe” is any pair of a type U with a function
sending elements of U to types. Following this logic, a “universe of propositions”
should be any type Q equipped with a decoding function f : Q — U subject to the
additional condition that f(x) is a proposition for every x : Q. If we bundle the
latter two conditions into a single map dec : Q — HProp and add universe levels, we
conclude that abstract universes of (U;-small) propositions are elements of the X-type

PropUniverse; = 3..,,, (Q — HProp,)

The “concrete” universe of propositions HProp; is of course one such universe, when
paired with the trivial decoding id : HProp; — HProp;,.

The statement of propositional univalence for HProp, HProplsUnivalent, immedi-
ately generalizes to abstract universes of propositions.

(2025-07-19) Propositional univalence 169

IsUnivalent; : PropUniverse; — U;;
IsUnivalent; (Q,dec) = (x y : Q) — (dec(x) & dec(y)) — Id(Q, x,y)

We say that an abstract universe of propositions (Q, dec) is univalent if the type
IsUnivalent (Q, dec) is inhabited, and we note that HProplsUnivalent is precisely the
statement that (HProp, id) is univalent.

One important difference between HProp and an arbitrary universe of propositions
(Q, dec) is that the former has many inhabitants (Unit, Void, A — Void, etc.) because
it contains all the propositions in U, whereas the latter need not be inhabited at all.

Exercise 5.5. Show that (Void, absurd(—)) and (Unit, A_ — Unit) are univalent uni-
verses of propositions.

There are several ways we might rule out these trivial examples. One is to require
our universes of propositions to be closed under a variety of logical operations (true,
false, implication, etc.). Instead, we will require that our universe contains a code for
every proposition in HProp up to interprovability. We say that an abstract universe of
U;-small propositions (€, dec) is adequate if there is a map enc : HProp; — Q such
that dec(enc(A)) & A for all A : HProp;, a condition clearly satisfied by (HProp;, id).

IsAdequate; : PropUniverse; — U4
IsAdequate; (€, dec) = Xenc:Hprop, 0 (A : HProp;) — dec(enc(4)) & A

We may then ask whether it is consistent to assume that ITT has an adequate,
univalent universe of U;-small propositions for every i, or in other words, whether it
is consistent to postulate an axiom of the following type:

PropositionalUnivalence; = Y.x.propuniverse, IsUnivalent;(X) X IsAdequate; (X)

Note that if (Q, dec) is univalent, then IsAdequate;(€, dec) can be rephrased as
the condition that dec : Q@ — HProp; has a left inverse.

Theorem 5.1.8. The set model of ITT extends to a model of ITT with the axioms
PropositionalUnivalence; for every i.

Proof. Constructing such a model amounts to choosing an element of the set
Tmgs(1s, [PropositionalUnivalence; | s)

for each i, where S is the set model of ETT and []| is the translation of ITT into ETT.

Unfolding definitions, we must choose an element of Tmg(1s, [PropUniverse;)
and verify that it is univalent (by checking an equation) and adequate (by constructing
a map satisfying some condition). Elements of Tmgs(1s, [[PropUniverse;]) are in turn

170 Univalent type theories (2025-07-19)

pairs of a set Q € V;;; and a map dec : Q — V; such that |dec(x)| < 1 for all x € Q.
We choose Q := {T, L} with dec(T) := {x} and dec(L) := 0.

To see that (Q, dec) is univalent, we must show that for all x,y € Q, if there are
functions dec(x) — dec(y) and dec(y) — dec(x) then x = y. This is immediate by
case analysis: whenever x # y, dec(x) and dec(y) are {x} and 0 (or vice versa), in
which case there are no functions {x} — 0.

Finally, to see that (Q, dec) is adequate, we must construct a function

enc: {XeV;||X|<1} - Q

along with, for every X € YV satisfying |X| < 1, a choice of maps X — dec(enc(X))
and dec(enc(X)) — X. We take enc to be the function that sends @ to L and all
one-element sets to T. We leave it to the reader to verify that the required maps exist
uniquely in both cases. o

Corollary 5.1.9. Intensional type theory is consistent with the axioms Funext, UIP, and
PropositionalUnivalence; for all i.

Propositional resizing The proof of Theorem 5.1.8 establishes a stronger result
than the theorem statement: the set model supports a single univalent universe of
propositions {T, L} that is simultaneously adequate for U;-small propositions of ev-
ery universe level i. To make this statement precise, we observe that elements of
PropUniverse; can be “lifted” to PropUniverse;,; by using the lift operations between
type universes U; — Ujy4 stipulated in Section 2.6.3.

Exercise 5.6. Define functions lift; : PropUniverse; — PropUniverse;_, for every i, in
terms of the operators lift;(—) : U; — Ujy;.

Notation 5.1.10. We suppress applications of lift; and lift;(—) in our informal notation.
Instead, we write (HProp,, id) for both the element of PropUniverse, and its image
under lift) in PropUniverse,.

We conclude that the proof of Theorem 5.1.8 shows that the set model of ITT is
consistent with axioms stating that (1) there is a universe (Q, dec) : PropUniverse,
such that (2) IsUnivalent,(Q, dec) holds, and (3) IsAdequate; (€, dec) holds for all i.

Before moving on, we simplify this axiomatization by rephrasing axiom schema
(3) so as to not refer to the univalent universe stipulated in axioms (1) and (2). Indeed,
the salient point of (3) is simply that it is possible to fit all of the propositions of type
theory into a single universe of propositions, a property introduced in Remark 2.7.14
under the name of impredicativity.

To rephrase axiom schema (3), we note that it implies IsAdequate; (HProp,, id)
for all i, where the necessary encoding maps HProp, — HProp, are obtained by

(2025-07-19) Propositional univalence 171

composing enc; : HProp; — Q with dec : Q — HProp,. These encoding maps are
often called “resize” because they take any large proposition HProp; to an equivalent
small proposition HProp, (i.e., one for which resize(A) & A), and the corresponding
axiom schema expressing impredicativity is known as propositional resizing:

PropositionalResizing; = IsAdequate; (HProp,)

Corollary 5.1.11. Intensional type theory is consistent with the axioms Funext, UIP,
PropositionalUnivalence, and PropositionalResizing; for all i.

Exercise 5.7. Show that the axioms of Corollary 5.1.11 imply the axioms (1), (2), and
(3) mentioned above. Conclude that they imply PropositionalUnivalence; for all i.

Remark 5.1.12. In category theory, univalent and impredicative universes of propo-
sitions are known as subobject classifiers. Subobject classifiers play a central role in
elementary topoi, the categorical axiomatization of the category of sets, and type
theory extended by the axioms listed in Corollary 5.1.11 is a common “type-theorist’s
substitute” for set theory. o

Remark 5.1.13. The set model of ITT factors through the set model of ETT, so from
the model constructions above we may deduce that ETT is consistent with the axioms
[PropositionalUnivalence, || and [PropositionalResizing; | for all i. o

What are these principles good for? Because propositional univalence characterizes
the otherwise underspecified identity type of HProp,, it upgrades many properties
of HProp,, from holding only morally to holding literally. For example, propositions
should form a meet-semilattice under conjunction, but in ITT (and even ETT) this
holds only up to interprovability unless we assume propositional univalence.

The real power, however, appears when we combine univalence with resizing.
Readers familiar with category theory may know that subobject classifiers (along with
some other connectives of type theory) suffice to construct finite colimits such as
booleans, coproducts, and even quotients. Even resizing by itself lets us construct
previously out-of-reach connectives such as propositional truncation.

Lemma 5.1.14. Assuming PropositionalResizing; for all i, propositional truncation (in
the sense of Section 2.7.3) is definable.

Proof. Using propositional resizing, we define propositional truncation as follows:

Trunc : U; — HProp,
Trunc(A) = resize((X : HProp,) — (A — X) — X)

172 Univalent type theories (2025-07-19)

By construction, Trunc(A) is a proposition. To establish the mapping out property,
it suffices to show that (A — B) & (Trunc(A) — B) for all propositions B; by
resizing, it moreover suffices to consider the case where B : HProp,,. In the forward
direction, given f : A — B we send p : Trunc(A) to p B f : B. In the reverse direction,
given g : Trunc(A) —» Bwesenda: Atog (AC f — fa) : B. O

From propositional truncation we also obtain disjunction and existential quantifi-
cation, as discussed in Section 2.7.3. We conclude that the set models of ITT and ETT
extend to models of all three of these connectives; we can moreover show that ITT
and ETT are consistent with the law of excluded middle as defined in Section 2.7.4.

Exercise 5.8. Show that ITT is consistent with the law of excluded middle. (Hint:
first observe that the set model of ITT extends a model of ITT with the axiom
IsAdequate;(Bool, Ab — if (Unit, Void, b)), then show that this axiom implies LEM.)

5.2 Homotopy type theory

Having warmed up with propositional univalence, we now turn our attention to the
full univalence principle of Voevodsky [Voe10]. Just as function extensionality, UIP,
and propositional univalence respectively characterize the identity types of II-types,
Id-types, and universes of propositions, the univalence principle characterizes the
identity types of Uj;, the universes of arbitrary types.

Recall from Section 5.1 that a universe of propositions is univalent if interprov-
able propositions in that universe are identified. To generalize this condition to type
universes, we assert roughly that isomorphic types in U are identified, but we must im-
mediately add a caveat: unlike propositional univalence, there are many nonequivalent
ways one might state this principle formally, and many of them are inconsistent!

Compounding our difficulties, there is often more than one isomorphism between
pairs of isomorphic types A, B : U—even Bool is isomorphic to itself in two distinct
ways—so the assertion that isomorphisms induce identifications Id (U, A, B) is incom-
patible with UIP. As a result, we can no longer model types as sets; in fact, models of
univalence require mathematical machinery far outside the scope of this book [KL21].

In Section 5.2.1 we precisely state and then analyze the univalence principle. In
Section 5.2.2 we will show that univalence refutes every possible variation U(IP)" of
uniqueness of identity proofs as introduced in Section 4.3.2.1. We then reintroduce
these principles on a type-by-type basis as homotopy levels, one of the most important
concepts in homotopy type theory (intensional type theory extended by univalence).
In Section 5.2.3 we introduce higher inductive types, a generalization of inductive

(2025-07-19) Homotopy type theory 173

types suggested by the failure of UIP. Finally, in Section 5.2.4 we briefly survey a few
interesting applications of homotopy type theory.

Remark5.2.1. Homotopy type theory (HoTT) is a new and active subfield of dependent
type theory, and we cannot possibly do it justice in this section. We strongly encourage
interested readers to seek out other resources, such as the community-written “HoTT
Book” [UF13] and Rijke’s Introduction to Homotopy Type Theory [Rij22]. Throughout
this section we will reference the HoT T Book for a number of workhorse lemmas; the
same results can be found in Part II of Rijke [Rij22]. o

Notation 5.2.2. Throughout this section we continue in the informal notation for
intensional type theory used in Chapter 1 and Sections 4.1 and 5.1.

Assumption 5.2.3. We continue to work in ITT extended by the function extensionality
axiom funext : Funext as defined in Section 4.3.

5.2.1 The univalence principle

In order to state the univalence principle we must first present a series of strange
auxiliary definitions; we assure the reader that a lengthy discussion will follow. First,
we observe that whenever we have an identification Id (U, A, B) between types, we
can use subst to obtain a “cast” (or “coercion”) function A — B.

coe: {AB:U} > 1d(U,AB) > A— B
coe p = subst id p

In fact, using Id-elimination we can show that coe p is always an isomorphism.
(We will prove this momentarily, but note that the inverse map to coe p is coe (sym p),
or coercion along the reverse identification.) There are several ways of stating that a
map is an isomorphism, and we will insist on a slightly peculiar one: amap f : A — B
is an equivalence, written IsEquiv(f), if every b : B has a unique preimage f~'(b) in A.

IsContr(X) = Y ,.x(y: X) » Id(X, x,y)
IsEquiv(f) = (b : B) — IsContr(} .4 Id(B, b, f(a)))
Here IsContr(X) (“X is contractible”) is the statement that the type X has a unique

element—there is a choice of x : X such that every y : X is the same as x—and thus
IsEquiv(f) states that for all b : B there is a unique a : A such that b is f(a).”

2The type 3,4 Id(B, b, f(a)) is known as the (homotopy) fiber of f at b. Using this terminology, f is

an equivalence if all of its fibers are contractible.

174 Univalent type theories (2025-07-19)

To prove that coe p is an equivalence, we can use the Id-eliminator j (Exercise 4.4)
to consider only the case where p is refl. Coercion along refl is definitionally equal
to the identity function (by coe refl = subst id refl = id) so it suffices to show that
forall X : U and x : X, the type 2 ,.x Id(X, x,y) is contractible. This type is clearly
inhabited by (x, refl); the statement that all elements of Zy:X Id(X, x, y) are identified
with (x, refl) is precisely singleton contractibility (uniq from Section 4.1.2).

coeisequiv: (AB:U) — (p:Id(U, A, B)) — IsEquiv(coe p)
coeisequiv = j (AA B p — IsEquiv(coe p)) (AX x — ((x, refl), uniq))

We can bundle coe and coeisequiv into a single map idtoequiv; from identifications
Id(U;, A, B) to equivalences A ~ B, i.e., pairs of a function f : A — B and a proof of
IsEquiv(f). Simply put, identifications of types induce equivalences.

~ U
A= B= 2 raplsEquiv(f)

idtoequiv; : (AB:U;) - I1d(U;,A,B) > A=~B
idtoequiv; A B p = (coe p, coeisequiv A B p)

The univalence principle is the assertion that idtoequiv; A B is an equivalence for
all A, B : U;. That is, not only do identifications of types in U; induce equivalences, but
equivalences of types in U; conversely induce identifications!

Univalence; = (A B : U;) — IsEquiv(idtoequiv; A B)

We emphasize that univalence asserts that a particular map Id(U;, A,B) > A~ B
is an equivalence, not just that there exists a map A ~ B — Id(U;, A, B) going in
the opposite direction. As we have previously seen e.g. in the definition of Bool
(Section 2.5.2), such conditions let us deduce not only the existence of a map in the
opposite direction but also how that map must behave on certain inputs.

Remark 5.2.4. The name of univalence for this property is due to Voevodsky, who
explained in a 2014 lecture [Voe14] that he intended it to evoke the not-quite universal
property satisfied by univalent universes, namely that every family of types has exactly
one “classifying map” into U—unless the family is too large, in which case there is
no such map. Voevodsky also attributes the term in part to a translation quirk in
the Russian edition of Boardman and Vogt [BV73], in which faithful functor was
translated as univalent functor (univalentnyj funktor), perhaps in reference to the
univalent functions from complex analysis. o

Definition 5.2.5. Homotopy type theory, or HoTT, is intensional type theory extended
by axioms funext : Funext and univalence; : Univalence; for every i.

(2025-07-19) Homotopy type theory 175

Remark 5.2.6. Homotopy type theory refers both to a particular formal system (Defi-
nition 5.2.5) and to the entire subfield of type theory concerned with the univalence
principle and related topics. When there is possibility for confusion, we will use the
phrase Book HoTT (as in, “HoTT as formulated in the HoTT Book [UF13]”) to refer
unambiguously to the formal system. o

Univalence is not validated by the set model; unlike in Section 5.1, there is no way
to get around the fact that isomorphic sets are not equal. In fact, for reasons that will
become clear in Section 5.2.2, it is quite difficult to construct any model of HoTT. The
first and “standard” model of HoTT is due to Voevodsky [KL21] and interprets types
as Kan complexes, a common definition of co-groupoid (Section 4.3.2.1). Perhaps the
most important consequence of this model is:

Theorem 5.2.7 (Kapulkin and Lumsdaine [KL21]). Homotopy type theory is consistent.

As discussed in Section 4.3.1, adding axioms to ITT preserves the properties of
normalization and decidable type-checking but generally—including in the case of
univalence—disrupts canonicity. In Sections 5.3 and 5.4 we will present an alternative
to Book HoTT known as cubical type theory, which admits the univalence principle
while also enjoying the metatheoretic properties of canonicity, normalization, etc.

The statement of univalence is rather involved and has likely raised more questions
than it has answered, including why we have introduced this particular definition of
equivalence, and how univalence relates to propositional univalence. It is difficult to
fully answer these questions without first developing considerable machinery—for
which we again recommend that the reader consult a more comprehensive resource—
but we will nevertheless attempt some explanations.

On equivalences Our definition of IsEquiv is likely unfamiliar to the reader, so we
start our discussion by exploring its properties. First and foremost, amap f: A — B
is an equivalence if and only if it has an inverse B — A in the usual sense:

Haslnverse(f) = X.3,a(Id(A — A, go f,ida)) X (Id(B — B, f o g, idp))

Lemma 5.2.8 (Sections 4.1 to 4.4 [UF13]). Forall f : A — B, IsEquiv(f) is inhabited if
and only if HasInverse(f) is inhabited.

Proof sketch. In the forward direction we are given p : IsEquiv(f) and must construct
a function g : B — A. For any b : B we note that p(b) : IsContr(},.4 Id(B, b, f(a))),
so fst(p(b)) : 2,4 Id(B, b, f(a)) is a pair of an element of A and a proof that f sends
that element to b up to identification. We therefore define g := Ab — fst(fst(p b));
the round trip identifications follow from function extensionality, the aforementioned
identity proof, and the proof of contractibility.

176 Univalent type theories (2025-07-19)

In the reverse direction we are giveng : B — A, « : Id(A — A,go f,ids), and
B :1d(B — B, f o g,idg) and must construct a proof of IsEquiv(f). In particular, for
every b : B we must exhibit an element a : A such that Id(B, b, f(a)). (In fact we must
show that the type 3,4 Id(B, b, f(a)) is contractible, but we leave that part of the
proof to the HoTT Book.) For the element of A, we choose g(b); the identification
Id(B, b, f(g(b))) follows by applying f to b in an appropriate sense (Remark 5.2.14). O

If f: A — Bis an equivalence if and only if it has an inverse, then why did we
introduce the notion of equivalence at all? The definition of IsEquiv(f) satisfies one
critical property that Haslnverse(f) does not: IsEquiv(f) is a homotopy proposition.

Lemma 5.2.9 (Lemma 3.11.4 [UF13]). For any type X, IsContr(X) is a proposition.
Corollary 5.2.10. Forall f : A — B, IsEquiv(f) is a proposition.
Proof. Immediate from Exercise 5.2 and Lemma 5.2.9. O

In fact, if we change the statement of univalence to refer to Haslnverse instead of
IsEquiv, the resulting axiom is actually inconsistent with ITT!

idtohasinv; : (A B : U;) — 1d(U;, A, B) — X 1.4, Haslnverse(f)
idtohasinv; A B p = (coe p,...)

Ambivalence; = (A B : U;) — Haslnverse(idtohasinv A B) (1?)
Theorem 5.2.11. ITT extended by Funext and Ambivalence; for all i is inconsistent.

Proof sketch. We obtain a contradiction by using Ambivalence to (1) construct a type
Aand a : Id(A — A,idya,ida) such that Id(Id(A — A,idg,ida), o, refl) — Void,
and (2) prove that Id(Id(A — A, idy, idy4), a, refl). We note that (2) is the source of
inconsistency here; (1) also holds in HoTT as a consequence of univalence.

To establish claim (1) it suffices to exhibit a type A for which (a : A) — 1d(A, a, a) is
not a homotopy proposition. The simplest such constructions rely on higher inductive
types (Section 5.2.3) such as the circle S' (Section 5.2.3.1) or propositional truncation
(as shown explicitly in the HoTT Book [UF13, Theorem 4.1.3]), but the latter argument
can be adapted to ITT with two nested univalent or ambivalent universes.

For claim (2) we first prove an intermediate lemma. Suppose f : A — B, (¢, B,y) :
Haslnverse(f), and a : A. There are two ways to identify f(g(f(a))) and f(a): by
using f to cancel go f (i.e., cong f (f a)) and by using y to cancel fog (i.e., cong (Ax —
x (f a)) y). These two identifications need not be related but Ambivalence allows us
to construct an identification between them (and in fact to prove that Haslnverse(f) is
a proposition for all f : A — B). We obtain (2) by setting f,g = id, f = a, and y = refl.

As for the lemma we recall that by Ambivalence,

(2025-07-19) Homotopy type theory 177

idtohasinv A B : 1d(U, A, B) — 3. r.4_, HasInverse(f)

is an isomorphism, so (f, (g, 8,v)) : X r.a—p HasInverse(f) must be identified with
idtohasinv A B p for some p : 1d(U, A, B). By Id-elimination it suffices to consider
p = refl, in which case f = g = id4, § = refl, y = refl, and the result is immediate. O

That said, there are many suitable alternatives to IsEquiv in the statement of
univalence. The reader can find several such definitions along with an extensive
discussion in Chapter 4 of the HoTT Book [UF13].

We remark that equivalences appear twice in the statement of univalence—once in
the codomain of idtoequiv and once in the assertion that idtoequiv is an equivalence—
and the foregoing discussion applies only to the former (“inner”) occurrence. As a
trivial consequence of Lemma 5.2.8, the following statement is interprovable with
Univalence; and thus a perfectly acceptable formulation of the univalence principle:

Univalence] = (A B : U;) — Haslnverse(idtoequiv; A B)

As observed by Licata [Lic16], Univalence; is also interprovable with the even
simpler statement that for all A, B : U; there is a map ua : A ~ B — Id(U;, A, B) such
that for all equivalences (f,p) : A ~ B, there is an identification—often called uaf
because it resembles a f-rule—between the functions coe (ua (f,p)) and f.

Univalence; = (AB: U;) —
Yua(A=B)—1d(U;AB) ((e : A= B) — Id(A — B, coe (uae),fst(e)))

Comparison to other principles A good starting point for understanding uni-
valence is to compare it to the other principles we have considered adding to ITT:
function extensionality, UIP, propositional univalence, and propositional resizing.

The relationship between univalence and function extensionality is straightforward
albeit surprising: univalence actually implies function extensionality [UF13, Section
4.9]! As a result, our assumption of Funext throughout this section and in the defi-
nition of homotopy type theory (Definition 5.2.5) is actually redundant; however, by
separately asserting Funext we were able to avoid some technicalities in the discussion
of alternative definitions of IsEquiv and Univalence.

As their names suggest, univalence also implies propositional univalence.

Lemma 5.2.12 (Theorem 2.7.2 [UF13]). Foranyx,y : }.,.4 B(a) there is an equivalence

1d(XaaB(a), x,y) = Xpud(afst (x)fst(y)) 1d(B(y), subst B p snd(x), snd(y))

Lemma 5.2.13. Univalence for U; implies HProplsUnivalent for HProp;.

178 Univalent type theories (2025-07-19)

Proof. Recall that HProp; = 'y, IsHProp;(X), and suppose (A, ha), (B, hg) : HProp;
and (f,g) : A & B; we must show Id(HProp;, (A, ha), (B, hp)). By Lemma 5.2.12 it
suffices to exhibit p : Id(U;, A, B) such that Id (IsHProp;(B), subst IsHProp; p ha, hp).
To construct p we observe that by univalence and Lemma 5.2.8 it suffices to exhibit
a pair of mutually inverse maps A — B and B — A. By function extensionality and
the fact that A and B are propositions, the given maps f : A — Band g : B — A are
necessarily mutually inverse. Finally, the required identification between proofs of
IsHProp;(B) is automatic from the fact that IsHProp; is a proposition (Exercise 5.9). O

One consequence of Lemma 5.2.13 is that all models of HoT T validate our original
statement of propositional univalence for HProp;, whereas in Section 5.1 we only
produced a model of the “abstract” version of propositional univalence introduced
in Section 5.1.3. A large class of models of HoTT additionally validate propositional
resizing between all pairs of universes of propositions HProp;, HProp; [Shu19], but
this principle is known to be independent of univalence [Uem19].

While we are discussing propositional univalence, it is worth understanding why
the statement of HProplsUnivalent is so much simpler than that of univalence. There
are two major differences between the statements besides the universes in question.
First, univalence refers to equivalences) r.4_,p IsEquiv(f) whereas propositional
univalence refers to pairs of maps (A — B) X (B — A). But in the case where A
and B are propositions, these two types are equivalent (in fact, IsEquiv(f) ~ B —
A)! Secondly, univalence states that (a version of) coe is an equivalence whereas
HProplsUnivalent simply asserts a map going in the opposite direction; we have
already seen in Corollary 5.1.6 that these conditions are interprovable for HProp.

Remark 5.2.14. Surprisingly, function extensionality is yet another case in which a
canonical map is an equivalence if and only if there is a map in the opposite direction.
Let A,B : Uand f,g : A — B, and recall from Section 4.3.1 that (non-dependent)
function extensionality posits a map ((a : A) — Id(B, f(a),g(a))) — Id(A — B, f,9)
which takes pointwise identifications to identifications of functions.

Although we did not note it at the time, in ITT one can always define a map which
takes identifications of functions to pointwise identifications:

happly : 1d(A — B, f,g) — (a: A) = 1d(B, f(a),g(a))
happly ha = cong (Ax = xa) h

The function extensionality map implies that happly is an equivalence [Lum11]. ¢

Our final comparison is the most interesting: how does univalence relate to UIP?
As we will now see, HoTT’s hierarchy of univalent universes refutes not only the
uniqueness of identity proofs but also the “uniqueness of identity proofs of identity
proofs” and all of its further iterations as introduced in Section 4.3.2.1.

(2025-07-19) Homotopy type theory 179

5.2.2 Homotopy levels and the failure of UIP

Perhaps the most significant consequence of univalence is that it refutes UIP, the state-
ment that for all types A and elements a, b : A, all identity proofs p, q : Id(A, a, b) are
identified. In fact, no matter how deeply we nest Id-types Id(Id(Id(. . ., a, b), p, q), &,)
in HOTT, there is no point at which identifications necessarily trivialize.

Do not however confuse the failure of a global property with the global failure
of a property: there are many types in HoT T that do satisfy UIP “locally,” and many
others that satisfy U(IP)" for some n > 1. Reformulated as a Nat-indexed family of
predicates over types, U(IP)” will turn out to be a crucial measure of the “homotopical
complexity” of a type known as its homotopy level or h-level.

We begin by rephrasing UIP and UIPIP from Section 4.3 as predicates.

HasUIP: U - U
HasUIPA=(ab:A) - (pq:1d(A a b)) - Id(Id(A a,b),p,q)

HasUIPIP : U — U
HasUIPIPA= (ab:A) — (pq:1d(A a b)) — (a f:1d(Id(A, a,b),p,q)) —
Id(Id(Id(A, a, b), p, q), @, B)

Our original statement of UIP is precisely that every type satisfies HasUIP, i.e., UIP =
(A:U) — HasUIP(A) and similarly for UIPIP.

It remains to generalize HasUIP and HasUIPIP to HasU(IP)". Extending ton > 2is
straightforward as soon as we notice HasUIPIP(A) = (a b : A) — HasUIP(Id(A, a, b)).
But we can also extend the hierarchy downward:

HasU(IP)°: U - U
HasU(IP)° A= (ab: A) — 1d(A, a,b)

We have already seen this definition in Section 5.1: this is exactly IsHProp(A), the
statement that A is a homotopy proposition! And although it may seem that the
hierarchy stops here, in light of Lemma 5.2.15 we may take one final step downward:

HasU(IP)"!: U —- U
HasU(IP)"! A = IsContr A

Lemma 5.2.15 (Lemma 3.11.10 [UF13]). For all A : U, IsHProp(A) if and only if
IsContr((ab:A) — Id(A,a,D)).

Following the convention introduced by Voevodsky [VAG+20], we may define a
Nat-indexed family of predicates IsOfHLevel with the base case IsContr at n = 0:

IsOfHLevel : Nat - U - U

180 Univalent type theories (2025-07-19)

Homotopy levels | HasU(IP)" n-types Common name
IsOfHLevel 0 HasU(IP)~! | (=2)-type | contractible
IsOfHLevel 1 HasU(IP)? (—1)-type | proposition
IsOfHLevel 2 HasUIP 0-type h-set

IsOfHLevel 3 HasUIPIP 1-type 1-groupoid
IsOfHLevel (n+2) | HasU(IP)"™*! | n-type n-groupoid

Figure 5.1: Competing terminologies for homotopy levels.

IsOfHLevel 0 A = IsContr A
IsOfHLevel (sucn) A= (ab:A) — IsOfHLevel n (Id(A, a, b))

It is natural (pun intended) to start numbering h-levels at 0, although this has the
unfortunate consequence of disagreeing with our numbering scheme for HasU(IP)"
which starts at —1. Worse yet, mathematicians have yet a third numbering scheme for
homotopy levels, called homotopy n-types;® see Figure 5.1 for reference.

Remark 5.2.16. The h-level numbering scheme is common in homotopy type theory
but nowhere else; as far as we know, the HasU(IP)"” numbering scheme is unique to
our book, where it is introduced purely for pedagogical reasons. For most purposes
we strongly recommend following the standard numbering of homotopy n-types. ¢

The theory of h-levels contains many of the most important lemmas in homotopy
type theory. We will briefly sketch some of the main results and direct the reader to
Chapter 7 of the HoT T Book [UF13] or Chapter 12 of Rijke [Rij22] for more information.

Exercise 5.9. Show that IsOfHLevel n A is a proposition for all A, and conclude that
IsHProp (A) is a proposition. (Hint: use induction, Lemma 5.2.9, and Exercise 5.2.)

Exercise 5.9 suggests that we can define universes of types of h-level n as the
subtypes of each U; spanned by types satisfying [sOfHLevel n. A particularly important
example is the universe of types with HasUIP (i.e., of h-level 2), also known as h-sets.

HSeti : Ui+1
HSeti = ZA:U,— HasUlP(A)

In Corollary 2.7.12 we showed that propositions in ETT are closed under various
connectives. Generalizations of those statements hold for h-levels in HoTT:

« IsOfHLevel 0 Unit, IsOfHLevel 1 Void, and IsOfHLevel 2 Bool.

3As discussed in Section 4.3.2.1, types satisfying UIPIP correspond to 1-groupoids, and types satisfying
UIP correspond to 0-groupoids or ordinary sets, suggesting that contractible types are (—2)-groupoids.

(2025-07-19) Homotopy type theory 181

IsOfHLevel n (Id(A, a, b)) if IsOfHLevel (suc n) A.

IsOfHLevel n ((a : A) — B(a)) if (a : A) — IsOfHLevel n (B(a)).

« IsOfHLevel n (3,4 B(a)) if IsOfHLevel n A and (a : A) — IsOfHLevel n (B(a)).

IsOfHLevel (suc n) A if IsOfHLevel n A.

Exercise 5.10. Show that HSet; is closed under IT-types and X-types. Is it also closed
under Id-types? Why or why not?

Refuting UIP We have seen now that many types in HoTT satisfy HasUIP, but a
direct consequence of univalence is that Uy is not one of them.

Theorem 5.2.17. Uy is not an h-set, i.e., HasUIP(Uy) — Void is inhabited.

Proof. Suppose ¢ : HasUIP(Uy), and recall from Section 5.2.1 that the univalence
principle for Uy implies—in fact, is interprovable with—the statement

(AB:Up) = Xuw(a~B)—1d(UpaB) (e : A=~ B) — Id(A — B, coe (uae), fst(e)))

In particular, every equivalence (f,pf) : Bool =~ Bool induces an identification
ua (f, pf) : Id(Uy, Bool, Bool) such that coe (ua (f, pf)) is identified with f.
Applying the above to the two equivalences idgol, Not : Bool — Bool, the latter
being the map sending true to false and vice versa (which can be shown to be an
equivalence), we obtain identifications p, g : Id (Uy, Bool, Bool) for which Id (Bool —
Bool, coe p, idpoo1) and Id (Bool — Bool, coe g, not).
On the other hand, by ¢ : HasUIP(U,) we have an identification between p and ¢:

a : 1d(1d (U,, Bool, Bool), p, q)
a = fst(¢ Bool Bool p q)

Thus cong coe « is an identification between coe p and coe ¢, and by symmetry and
transitivity we obtain an identification § : Id(Bool — Bool, idgeol, not). But then
happly f true : Id(Bool, true, false), from which we derive a contradiction. O

The above argument is not specific to Bool, but it does require that U, contain
at least one type with provably distinct elements—that is, that Uy contain a non-
proposition. (Indeed, the univalent universe HProp is an h-set!) Similarly, given that
Uj contains the type Uy which is not an h-set, by a more sophisticated version of this
argument due to Kraus and Sattler [KS15], one can show that U is not a 1-groupoid.
Iterating this process, for any i € N the type U; does not have h-level i + 2.

182 Univalent type theories (2025-07-19)

Theorem 5.2.18 (Kraus and Sattler [KS15]). For every external natural numberi € N,
the type 1sOfHLevel (suc'*?(zero)) U; — Void is inhabited in HoTT.

Corollary 5.2.19. HoTT does not validate the axiom U(IP)" for any n.

One consequence of Theorem 5.2.18 is that every type in HoTT is equipped with a
infinite tower of non-trivial Id-types. These identifications are symmetric and transitive,
but groupoid laws such as symsym (Lemma 4.1.7) and associativity hold only weakly,
or up to higher identifications. Remarkably, such “infinite dimensional” towers of
identifications—which in type theory exist as a consequence of J without UIP—are
known in mathematics as co-groupoids, where they were introduced to abstract the
structure of arbitrary-dimensional paths in topological spaces [Por21]. (See Sections
2.1-2.4 of the HoTT Book [UF13] for more on this perspective.)

Remark 5.2.20. The branch of mathematics devoted to co-groupoids and their gener-
alizations is known as homotopy theory, and co-groupoids are also known as homotopy
types. The name “homotopy type theory” is a pun in which “type” refers both to
homotopy types and to type theory. o

Advanced Remark 5.2.21. The homotopical perspective on type theory sheds light on
many mysterious aspects of Id-types. In particular, people often struggle to reconcile
Id-elimination—which states that maps outof a: A, b : A, p : Id(A, a, b) are controlled
by their behavior on refl —with the existence of provably non-refl identifications. In
homotopy theoretic terms, Id-elimination expresses that the inclusion of A into its path
space PA = .4 Id(A, a, D) is a trivial cofibration, which is perfectly compatible with
A having non-trivial paths, whereas UIP expresses that the free loop space fibration
QA — A s a trivial fibration, which holds only when A is a discrete space (set). o

5.2.3 Higher inductive types

Although the behavior of identifications in HoTT mirrors the behavior of paths in
topological spaces, univalent universes are thus far the only source of non-trivial paths
(or non-h-sets) in the theory. To take more advantage of the connection between
Id-types and topology, most users of HoTT consider a further extension of type theory
known as higher inductive types (HITs), a form of inductive type generated not only
by (ordinary) “point” constructors but also “path” constructors, freely-added elements
of their Id-types. HITs allow us to axiomatize many important topological spaces in
HoTT, although we note that they do increase the strength of the theory: the HITs in
this section allow us to construct types with no finite h-level (i.e., >, 4.y (n : Nat) —
IsOfHLevel n A — Void) which is not possible with only univalence [KS15].

(2025-07-19) Homotopy type theory 183

As in Section 2.5 we will define several representative HITs, namely the circle,
suspensions, and set truncations, and make no attempt to develop a general schema
for higher inductive definitions [CH19].

5.2.3.1 The circle type

Our first example of a HIT is S', the type “generated by a point pt : S' and a path
loop : Id(S', pt, pt).” If we depict paths as arrows between points, S' is a circle:

bt o loop

As in Section 2.5, it is clear that postulating the circle must involve postulating the
type former S' itself along with its two constructors pt and loop:

ST:U
pt: S!
loop : Id(S', pt, pt)

and the difficulty lies entirely in specifying its elimination principle, which captures
the idea that S' is in some sense “generated” or “determined” by pt and loop.

Of course, unlike in Section 2.5, the loop constructor of S has type I1d(S', pt, pt)
rather than S' itself. We make sense of this by thinking of identifications in S as part
of the higher structure of S itself rather than as elements of some unrelated type, even
though we can only “access” these identifications with Id-types.

Remark 5.2.22. We already saw in Section 2.5 that ordinary inductive types have terms
that are not constructors, such as variables q € Tm(I'.Bool, Bool). Path constructors
further complicate this situation: by applying Id-type operations such as sym and
trans to loop, we can obtain infinitely many elements of Id(S', pt, pt)—even in the
empty context—that are provably not identified with loop! For this reason we say S' is
generated by pt and loop, as even internally one can see that it has non-loop paths. ¢

As with ordinary inductive types, the introduction data allows us to define a
canonical evaluation map which applies any function S' — A to the constructors:

evalgi : {A: U} = (S' > A) —» X, 41d(A a,a)
evalgi f = (f pt, cong f loop)

with the caveat that “applying” f : S' — A to loop : Id(S', pt, pt) requires cong. The
(non-dependent) elimination principle expresses that maps S' — A are determined by
their behavior on constructors, which we formalize by asking for a section to evalg::

184 Univalent type theories (2025-07-19)

recg1 : {A: U} —» Y 4 1d(A a,a) — (S" — A)
recgilsSection : Id((X .4 Id(A, a,a)) — (2,4 Id(A, g, a)), evalg o recgs, id)

Unfolding the above, recg: is a “recursion principle” for S which states that for any
type A, maps S' — A are defined by a choice of point a : A and path p : Id(A, a, a), and
recsilsSection states that we have two “f-rule” identifications: between recsi(a, p) pt
and a, and (roughly) between cong (recsi(a, p)) loop and p.

It is natural to wonder whether these “f-rules” should be definitional equalities
rather than just identifications. It is certainly more convenient to make them defini-
tional; in the absence of a definitional equality recsi(a, p) pt = a, the left-hand side of
the second fS-rule, cong (recsi(a, p)) loop, actually has type

Id (A, recsi(a, p) pt, recsi(a, p) pt)

whereas the right-hand side has type Id (A, a, a), so subst is required to even state the
second f-rule. On the other hand, it would be quite strange to include a definitional
equality that mentions cong—a user-defined function that exists independently of
S'—and moreover the intended models of higher inductive types often do not validate
the second fS-rule definitionally [LS19].

There is no fully satisfactory solution to this problem in Book HoTT, but the
standard compromise is to assert f-rules on points as definitional equalities, and f-
rules on paths as holding only up to identification [UF13]. For simplicity, we will
continue treating all f-rules of HITs as holding only up to identification.

Stating the dependent elimination principle for S' requires us to generalize the
evaluation map to dependent functions out of S':

devalgi : (A:S" - U) — ((x:S") = Ax) = Y,y Id(A pt, subst A loop a, a)
devalsi A f = (f pt,dcong f loop)

Before arriving at the eliminator, we can simplify matters slightly by recalling that
in Section 2.5.5 we showed that 5-rules for inductive types hold whether or not they
are added explicitly. That argument took place in ETT and used equality reflection
to derive judgmental n-rules, but in HoTT one can replay a prefix of that argument
and conclude that asking for a family of sections to devalgs: is the same as asking for
devalg to be an equivalence; in both cases, the second round trip is automatic.

Summing up, our specification of the circle HIT therefore consists of a type S' : U,
constructors pt : S and loop : Id(S', pt, pt), and the following elimination principle:

Eliminationg: : (A : S — U) — isEquiv(devalgi A)

The inverse map to devalgi A is of course the dependent eliminator for S', and the two
round trips unfold precisely to identifications expressing the - and n-laws.

(2025-07-19) Homotopy type theory 185

Remark 5.2.23. Yet again we are asking for a canonical map to be an equivalence;
phrasing S'-elimination in this way bundles the eliminator and its $- and -laws into
a very concise package which is moreover a proposition. o

We conclude our discussion of the circle by using univalence to prove that the
loop constructor is not identified with refl, and thus that S' is not an h-set.

Lemma 5.2.24. S' is not an h-set; in particular, Id(Id(S", pt, pt), loop, refl) — Void.

Proof. Using S'-elimination, we can define a function f : S' — U sending pt to Bool
and loop to the path ua not : Id(U, Bool, Bool) induced by univalence applied to
not : Bool ~ Bool, reusing notation from the proof of Theorem 5.2.17. Suppose loop
and refl are identified. Then cong f loop and cong f refl would be identified, and in
turn ua not and refl would be identified. But coe (ua not) is not and coe refl is idggol,
and as we have already seen in the proof of Theorem 5.2.17, these are not identified. O

The proof of Lemma 5.2.24 makes essential use of univalence. In the absence of
univalence, the rules for S' can be validated in the set model of ITT—and are thus
consistent with global UIP—by interpreting S' as a one-element set. In type theories
with UIP, higher inductive types do not behave as topological spaces but rather as
inductive types subject to equations (or “data types with laws” [Tur85]). Because there
is nothing “higher” about such HITs, they are often called quotient inductive types
(QITs); the reader has already met one, namely propositional truncation (Section 2.7.3).

Exercise 5.11. Write down a specification of Bool in the style of our specification of
ST, then show that the usual rules for Bool imply that devalgoo] : (A : Bool — U) —
((b : Bool) = A b) — (Atrue X A false) is an equivalence for all A.

Exercise 5.12. Show that if B : U, by, bf : B, and the evaluation map (A : B — U) —
((b:B) —» Ab) — (Ab; X A by) is an equivalence for all A, then B ~ Bool.

5.2.3.2 Suspensions

Our next example of a HIT is the suspension Susp A of a type A, which is generated
by two point constructors north, south : Susp A and a family of path constructors
merid : (a : A) — Id(Susp A, south, north). The intuition behind these strange
constructor names is that Susp A can be pictured as a globe consisting of a north and
south pole joined by a meridian path for every a : A.

As with the circle, we start our specification of Susp A by postulating constructors:

Susp: U —->U
north : {A:U} — Susp A

186 Univalent type theories (2025-07-19)

south : {A: U} — Susp A
merid : {A: U} — (a: A) — Id(Susp A, south, north)

Using these constructors we define a dependent evaluation map, noting that (as in
coproduct types and Nat) evaluation at merid is parameterized by a : A.

devalgysp : {A: U} — (B:Susp A — U) — ((x: Susp A) - Bx) —
ZbS:B south an;B north (@ : A) — Id (B north, subst B (merid a) by, b,,)
devalsysp B f = (f south, f north, \a — dcong f (merid a))

Finally, the elimination principle states that evaluation is an equivalence for all A, B.
Eliminationsysp : {A: U} — (B : Susp A — U) — isEquiv(devalgsysp B)
Suspensions are an important tool in homotopy theory.

Exercise 5.13. Show that S' ~ Susp Bool. (Hint: draw a picture.)

In fact one can define n-spheres S™ as the n-fold suspensions of Bool: the 1-sphere
is the circle, the 2-sphere S? = Susp (Susp Bool) is the ordinary sphere, and so forth.

ST:Nat - U
S% = Bool
ssuc(n) = Susp S”

Lemma 5.2.24 generalizes to the statement that S” refutes IsOfHLevel (suc n) for
all n : Nat [UF13, Theorem 8.6.17]. As a result, the disjoint union of all n-spheres is a
single type with no finite h-level, resolving the remark at the start of this section.*

Corollary 5.2.25. For all m : Nat, the type Y, ,.nat S™ does not have h-level m.

5.2.3.3 Set truncations

For our final example of HITs we consider set truncations |A|, which are considerably
more complex than S' and Susp due to having a recursive path constructor. In our
last encounter with recursive constructors—namely suc : Nat — Nat in Section 2.5.4—
we needed to phrase the mapping out property of Nat in terms of displayed algebra
homomorphisms out of an initial algebra; the same will be true here.

The set truncation |A| of a type A has two constructors, starting with a point
[a] : |A] for every a : A. Then, for every pair of paths p,q : Id(JA|, x, y) in the set
truncation itself, it has a path trunc p q between those two paths.

4In the standard model of HoTT, even S? does not have finite h-level. To the authors’ knowledge, it
is still open whether this classic result of Serre [Ser53] can be shown inside HoTT.

(2025-07-19) Homotopy type theory 187

|_|:U—>1U
[[]:{A:U} - A — |A]
trunc : {A : U} {x y: |A|} - (P q: Id(|A|’x> y)) - Id(Id(lAan y)’P’ q)

Because we think of the Id-types of a HIT as part of its specification, we consider not
only x,y : |A| but also p, g : Id(JA|, x, y) as recursive arguments of trunc.

To specify the elimination principle we must adapt the notions of (displayed)
algebra and (displayed) algebra homomorphism from Section 2.5.4 to the HIT setting.
Skipping to the end of this process, for each A : U we define displayed algebras over
(JAl, [-], trunc) as triples (B, b, §) of:

« atypeB: |A| - U,
. afunctionbd: (a:A) — B [a], and

« a function f which for any x,y : |A|, X : B(x), § : B(y), p,q : Id(|A],x,v),
p : 1d(B(y), subst B p %, 1), and ¢ : Id(B(y), subst B q X, §) produces an identifi-
cation Id (Id(B(y), subst B q X,), p’, §) where

p’ = subst (Ar — Id(B(y), subst Br %, 7)) (trunc p q) p

and displayed algebra homomorphisms from (|A|, [-], trunc) to (B, b,) as functions
f: (x:|A]) = B(x) that send [—] to b and trunc to f in an appropriate sense.

These definitions are mechanically derivable from the constructors but are admit-
tedly rather unwieldy. There is however a considerably simpler perspective in the case
of set truncation, starting from the observation that the constructors for |A| are just a
pair of a map [—] : A — |A| and a proof trunc : HasUIP |A| that |A]| is an h-set.

Lemma 5.2.26 (Lemma 6.9.1 [UF13]). A displayed algebra (B, b,) over (|A|, [-], trunc)
is equivalently a type B : |A| — U, a function b : (a : A) — B [a], and a proof that B(x)
is an h-set for every x : |Al.

Combining the first and third data, we may define the type DAlgebra of displayed
algebras as pairs of a family of h-sets B : |[A| — HSet and a function b : (a : A) — B [a].

DAlgebra: U — U
DAIgebraA = ZB:|A|—>HSet (a : A) — B [a]

Given a displayed algebra (B, b) : DAlgebra A, we define displayed algebra homomor-
phisms from |A| to (B, b) as functions f : (x : |A]) — B(x) that send [a] to b a. (The
requirement that f send trunc to f is automatic because the type of f is a proposition.)

DAlgebraHom : (A : U) — DAlgebra A - U

188 Univalent type theories (2025-07-19)

DAlgebraHom A (B, b) = Zf:(x:lAl)—)B(x) Id((a:A) — B al],b,Aa — f [a])

In Section 2.5.4, the elimination principle for Nat stated that for every displayed
algebra (A, a,, as) over (Nat, zero, suc(—)) there is a unique displayed algebra homo-
morphism from the latter to the former. The analogous condition here is that the type
of such displayed algebra homomorphisms is contractible.

Elimination|_| : {A: U} — (B: DAlgebra A) — IsContr(DAlgebraHom A B)

Another way to phrase the elimination principle is to ask that for all B : |A| — HSet,
precomposition by [—] determines an equivalence:

comp: {A: U} — (B:|A| — HSet) — ((x: |A]) > Bx) — ((a: A) — B [a])
comp B fa=f[a]

EIimina’tionI_| : {A:U} - (B:|A| — HSet) — IsEquiv(comp B)

In Section 2.7.3 we said that the propositional truncation of A is the proposition
that most closely approximates the type A. As one might expect, the set truncation of
A is likewise the h-set that most closely approximates A.

Theorem 5.2.27. Forall A:U and B : HSet, (A — B) ~ (|A| — B).
Proof. This is exactly the non-dependent case of EIiminationl'_l. O

Propositional truncation and set truncation are the first two in a series of n-
truncation operations that best approximate A by an n-type. In practice, propositional
truncation ((—1)-truncation) and set truncation (0-truncation) come up most often.

5.2.4 Applications of homotopy type theory

Higher inductive types and univalent universes (of non-propositions) are rather exotic
features for which many users of type theory lack intuition, so it is reasonable to
wonder how they came about and what makes them interesting. Unfortunately, an
early attempt to motivate univalence proved too much of a digression to include in
this book, so instead we close this section by outlining three major applications of
homotopy type theory in an attempt to convey a sense of the field.

(2025-07-19) Homotopy type theory 189

Synthetic homotopy theory One of the earliest recognized applications of HoTT
was as a framework for reasoning synthetically or axiomatically about homotopy types,
as opposed to the traditional practice of working with respect to a particular “analytic”
realization of homotopy types as topological spaces, Kan complexes, etc. To this end, it
is natural to wonder how many classical results about homotopy types may be replayed
within HoT'T, starting with foundational results from algebraic topology (a field which
classifies topological spaces by means of algebraic invariants).

In algebraic topology, the fundamental group m; (X, x) of the space X based at x € X
is the set of homotopy equivalence classes of loops based at x, with loop concatenation
as its multiplication. Within type theory, we can define the fundamental group of
X : U based at x : X as the set truncation of the space of identifications of x with itself,
ie, m(X,x) = |Id(X, x, x)|. Armed with this definition, a more complex version of
our proof that the circle is not an h-set (Lemma 5.2.24) establishes a standard result:

Theorem 5.2.28 (Licata and Shulman [LS13]). The fundamental group of the circle,
71(S, pt), is isomorphic to the integers under addition.

In other words, not only is loop distinct from refl, but (up to identification) the type
Id(S', pt, pt) consists precisely of all the n-fold compositions of loop, i.e., the n-fold
applications of trans to loop and sym loop.

It is worth noting that the HoTT proof of Theorem 5.2.28 is very different from
the standard proof one might encounter in an algebraic topology course, as it relies on
a univalent universe and makes no reference to real numbers or even topology (e.g.,
the Lebesgue covering lemma). This is to be expected, as constructions inside HoTT
are valid in any Grothendieck co-topos and not just topological spaces [Shu19].

Descent and colimits The role of univalent universes in characterizations of higher
inductive types such as Theorem 5.2.28 is part of the higher-categorical phenomenon
of descent, in which universes improve the behavior of colimits.

In topology, space-indexed families (such as vector bundles or covering spaces)
are typically encoded as a “total space” Y equipped with a continuous projection map
7 : Y — X to the indexing space X, where the value of the family at x € X is recovered
as the preimage 7! (x). This suggests that there are two ways to encode X-indexed
families of types in type theory: as the usual maps into the universe X — U or as
maps into X, Fam(X) = Y y.y Y — X. Univalence implies that these definitions agree
in the sense that Fam(X) ~ (X — U), and in fact univalence is interprovable with
this equivalence (along with function extensionality and propositional univalence).

In the case of X = S, by combining the above equivalence with the elimination
principle for the circle at U, we can prove that S' is equivalent to what homotopy
theorists know as the classifying space of Z-torsors.

190 Univalent type theories (2025-07-19)

Theorem 5.2.29. There is an equivalence (Y y.y Y — S?) =~ (Zy,u Yo = Yo).

More generally, this equivalence allows us to characterize maps into homotopy
colimits—types with mapping out properties—by transforming them into maps out of
those types and applying the elimination principle specialized to a univalent universe.

Some descent-type theorems hold in the absence of univalence. For instance, our
proof that universes imply the disjointness of booleans (Theorem 2.6.3) is descent for
coproducts, which holds in ETT (and sets). However, it is only in HoT T (and co-topoi)
that descent holds for all colimits such as S', the homotopy pushout 1 « (11) — 1.

Structure Identity Principle A third and perhaps more familiar application of
univalence is the structure identity principle (SIP), which states that identifications of
structured types are equivalent to structure-preserving equivalences [CD13].
Suppose we define the type of monoids in HoTT in the usual way, as tuples of an
h-set X along with an identity element e : X, a binary multiplication _-_ : X —» X — X,
and proofs that the multiplication is unital and associative. (We require that the carrier
is an h-set to ensure that the identifications are propositions and not interesting data.)

Mon = ZX:HSet ZE:X Z_-_:X—>X—>X((x X) - Id(X,X 6 X) X Id(X9e * X, X)) X
(xyz:X) > X, x-(y-2),(x-y)-2)

Remarkably, a direct consequence of univalence (as well as some standard Id-type
manipulations such as Lemma 5.2.12) is that identifications of monoids are equivalent
to monoid isomorphisms. In other words, the type theory has somehow “predicted”
the correct notion of sameness for monoids!

Theorem 5.2.30. For all X, Y : Mon, the type of identifications Id (Mon, X, Y) is equiv-
alent to the type of monoid isomorphisms between X and Y, or equivalences of the
carriers fst(X) =~ fst(Y) sending the unit and multiplication of X to those of Y.

As a consequence, because all constructions within type theory respect identifica-
tion, all constructions on monoids automatically transfer across monoid isomorphisms.

Corollary 5.2.31. Any property of monoids P : Mon — U respects monoid isomorphism.

Although we have illustrated the SIP as it applies to monoids, analogous statements
hold not only for all algebraic structures on h-sets but even for (higher) categories and
many other structures up to the appropriate notion of equivalence [Ahr+25].

(2025-07-19) Cubical type theory (DRAFT) 191

5.3 Cubical type theory (DRAFT)

Thus far in this chapter, we have introduced the univalence axiom and studied a
few of its consequences. Hopefully the reader has been convinced that this is an
interesting principle with which to extend type theory and that it at least offers partial
compensation for the loss of the extensional equality type. However, so far we have
considered only the extension of ITT by an simple axiom to obtain univalence and,
consequently, the resulting theory does not satisfy canonicity.

In particular, it is not difficult to encounter interesting closed elements of type Nat
which are constructed via univalence, but in core HoTT these programs cannot be
evaluated to closed numerals. Famously, Brunerie [Bru18] gave a concise construction
of an element of the type Y, nat 74(S®) = Z/nZ but the lack of canonicity meant
that actually working out the concrete n : Nat for which this equation held was
considerably more difficult [Bru16]. This is far from the only example: the proof that
71 (S') = Z referenced in Section 5.2 ought to give an algorithm for computing the
winding number of a map S' — S, but this algorithm can only be run if canonicity

holds.

Remark 5.3.1. In fact, in Section 5.2 we assumed function extensionality along with
univalence. A more careful account would allow us to derive the former from the latter
and in fact our solution to canonicity and univalence will handle funext en passant. o

At first, one might hope that this problem can be fixed “locally” and that one can
simply add a definitional equality to ua to recover canonicity. Unfortunately, no such
obvious equalities present themselves. A moment’s contemplation will reveal how
while there is a reasonable candidate for coe applied to ua(...), the general case of
J and ua is far murkier; such an equation must correctly handle, for instance, the
application of sym and trans to ua along with any other number of constructions.
More generally, we justified our definition of Id around the idea that every element of
Id (A, a, b) was controlled by refl, but this is simply no longer the case in the presence
of ua.

Accordingly, our approach to balancing canonicity alongside univalence will in-
volve a more global and radical change. We shall reimagine the intensional identity
type in order to give it a new mapping in property which gives us the flexibility
we need to implement univalence. The result of these changes will be cubical type
theory [CCHM18; AFH18; Ang+21].

Unfortunately, cubical type theory is vastly more complex than any other type
theory we have discussed in this book. Accordingly, we cannot realistic present in the
same detail that we have given to ETT or ITT. Our compromise is to introduce what
we term core cubical type theory in this section. We detail the required modifications to

192 Univalent type theories (2025-07-19)

the judgmental structure of type theory, present the additional operations necessary
to manipulate them, and sketch how these operations behave and can be used to
implement univalence. The last step, however, will mostly be cursory and we will
omit most of the rules governing these operations. We do, however, return to them in
Section 5.4 where we discuss some of these details more thoroughly (though still not in
the entirety). Our goal is to provide a working knowledge of cubical type theory, rather
than a precise account. For the latter, we refer the reader to Angiuli et al. [Ang+21]
which does include a more exhaustive account of the theory.

The basis of cubical type theory In this section, we discuss the rules that must
be added to intensional type theory in order to arrive at cubical type theory. For
concreteness, we will take our base type theory to type theory without any sort of
identity type. It is possible to include the intensional identity type as it is possible to
extend cubical type theory with indexed inductive types more generally. However, we
shall set about to find a better behaved identity type (path types) and so its inclusion is
superfluous.

5.3.1 A judgmental structure for identity types

We begin by convincing ourselves that the judgmental structure of cubical type theory
is, in fact, helpful for our problem of giving the identity type a mapping-in property.
We begin by observing that we have already attempted to provide an identity type with
such a characterization: this was the extensional identity type we moved away from
in Chapter 4. There is not an obvious alternative judgmental structure in intensional
type theory for the identity type to internalize, so we shall invent one.

This entire process will be broken up into two steps:

1. introduce a new form of judgment and define the new identity type to internalize
it,

2. equip each type with additional operations such that this new identity type can
implement the expected operations.

We shall eventually see that the first step occupies our attention in Section 5.3.2,
while the second takes up Sections 5.3.4 and 5.3.6

It is notable that these two steps are actually distinct: with both the intensional and
extensional identity types, once we fixed the judgmental structure we internalized all
the rules of the identity type came more-or-less for free. In fact, the same will be true
here: the second step does not alter the behavior of the identity type per se. The issue

(2025-07-19) Cubical type theory (DRAFT) 193

is that the judgmental structure being internalized is no longer definitional equality
and so we must add additional structure to all types in order to ensure that this new
structure is a useful approximation of equality.

More heuristically, we cannot internalize actual judgmental equality via a mapping-
in property and so we internalize a new judgmental structure for identifications. We
then attempt to paper over the difference between these new judgmental identifica-
tions and actual definitional equality by equipping every single type with additional
operations ensuring the former is closer to the latter.

Notation 5.3.2. With an eye towards cubical type theory, we will refer to our new iden-
tity type as a path type and write Path (A, a, b) and occasionally refer to identifications
as paths.

In particular, it is only after both steps are completed that we will have a replace-
ment for Id that we can contemplate using for univalence. There is a degree of flexibility
in how we draw the line between these two steps in cubical type theory. We can make
the judgmental structure relatively light-weight by making the operations on types
more onerous or vice versa. This division is the source of the differences between the
various flavors of cubical type theory, but overall the differences are slight. We will
choose to follow Angiuli et al. [Ang+21] and adopt a relatively minimal judgmental
structure at the expense of slightly more complex operations on types.

Let us warm up by considering a direct approach following Licata and Harper
[LH12] loosely. We need a new judgment to internalize identifications, so let us simply
introduce a new sort of identifications a, B, y which reify identifications and a new
judgmentI' + @ : a = b : A stating that « is such an identification between a, b : A. As
usual, we will write Id(T, a, b, A) for the set of « satisfying T + ¢ : a = b : A. The idea is
that we can now at least easily define Path (A, g, b) via the follow natural isomorphism:

Tm(T, Path (A, a, b)) = 1d(T, a, b, A)

This completes our goal of defining Path (A, a, b) and it yields all the necessary
rules for this type. The reader will immediately notice, however, that this type is
impossible to use and absolutely not a substitute for the identity type. Indeed, just
because we claimed that I' + « : a = b : A reifies identifications does nothing to
actually force « to behave like any sort of equality. We have only shifted the work
into specifying this judgment. For instance, we might choose to include a “reflexivity
identification” via the following rule:

T'ta=b:A
Trreflld:a=b:A

A

194 Univalent type theories (2025-07-19)

Of course, this cannot be the only rule governing our new judgment; the point of
this exercise was to allow for additional identifications (such as ua) to arise naturally.
In order to do this, we can simply add other inference rules to this judgment! While
we do not detail the process here, the reader can imagine that e.g., an identification of
pairs can be constructed from identifications of components.

These rules ensure that we can construct elements of Path(A, a, b), but do not
actually give us much leverage in using elements of this new type. Our elimination rule
for Path (A, a, b) lets us conclude that there is some identification between a and b, but
this is of limited use: there is nothing like J for identifications or even the equivalent
of subst.

Before when identity types internalized definitional equality, we relied on the fact
that everything in type theory was automatically congruent and substitutive with
respect to definitional equality. Now we are internalizing identifications and nothing
forces types in our theory to respect identifications in the same way. This is what the
second step of the procedure above referred to: we will require additional operations
on terms to bridge this gap. For instance, for each type family I'.A + Btype there
must be an equivalent of subst which sends identificationsI' - a : a = b : A to maps
between B(a) and B(b).

However, we will not attempt to unfold this further. The problem is that it is
difficult to present the full set of rules governing I' + @ : a = b : A as well as to
present the set of operations all types must enjoy in order to force them to respect
identifications. The first problem is the most serious and stems from our desire to
support univalence. If we are to have univalence, then we know that there will be
elements a, b : A such that the collection of identifications between a and b contains
distinct elements and, accordingly, we will quickly run into the need for non-trivial
identifications between identifications.

In fact, one can imagine these arising even without univalence: we had discussed
that a pair of identificationsI' F @ :a=a’" : Aand T + b : b’ = B : ought to induce
an identification T + (a,) : pair(a, b) = pair(a’,b’) : A X B and we ought to arrange
that (reflld, reflld) = reflId. To properly account for this and other “higher identifica-
tions”, we are quickly led to introducing a new judgment for governing identifications
between identifications. As the reader might guess, however, the problem does not
stop here and we require judgments for identifications between identifications be-
tween identifications... This infinite regress then becomes plain. Accordingly, rather
than special-casing a judgment for identifications between terms, we shall design an
apparatus which smoothly handles identifications of arbitrary “height”.

It is here that we encounter cubes for the first time. Cubical type theory starts
from the insight that an identification between a, b : A can be viewed as a function
I — A from some “type” I. Since we already have a good idea of how to account for
functions within the judgments of type theory, if we could recast identity types more

(2025-07-19) Cubical type theory (DRAFT) 195

into the shape of functions we could reuse this knowledge.

Of course, it is not obvious that functions and identity types share much in com-
mon.” A small amount of topological intuition can help motivate this approach: we can
say that two points in a space x, y € X are path-connected just when there is a continu-
ous function from the real interval p : [0, 1] — X such that p(0) = x and p(1) = x. The
geometry of [0, 1] ensures that this notion of identification is actually an equivalence
relation. For instance, transitivity comes from the map [0, 1] — [0, 1] V [0, 1] dividing
the interval into two halves and the continuity of 1 — x provides symmetry. A major
advantage of this definition is that it stacks to identifications between identifications
without additional effort: we just take functions from [0, 1] X [0, 1] satisfying the
relevant boundary conditions.

Of course, we have nothing like the real interval in type theory, nor do we intend
to add it. However, we can add a judgmental structure which simulates some of its
properties and use this as the basis for our definition of an identification in a type. We
shall add a faux type I to our theory and extend our grammar of context to hypothesize
over “variables” of type I such that an identification is then just a term in a context
containing such an interval variable.

Remark 5.3.3. It is not yet clear why I must be a separate structure rather than an
ordinary type. Indeed, this is a subtle point and relates to the additional operations
necessary to implement the equivalent J and its related operations. In fact, we shall
see that I cannot support these operations and so it cannot be a type. However, in all
other respects it does behave like a type: we shall see that the substitution calculus
around [as well as the rules for forming elements its elements are essentially the same
as for terms. For this reason, one often refers to I as a pre-type. o

5.3.2 The interval and its structure

Let us make this discussion more formal. We introduce a new judgment I' +- r ¢ I which
signifies that r is an element of this interval “pre-type” and has the presupposition
F I' cx. We then introduce a new form a context stating that one may hypothesize over
elements of I. All told, the rules for this are given as follows:

F T cx F T cx F I cx Avry:T F'rrel
F Tolex [Irp:T TJIrqsl Arr[y]sl

>We have already seen hints of this in Section 5.2.3 with the higher-inductive type for the interval

196 Univalent type theories (2025-07-19)

Ary:T Arrzl Ary:T Arrsl Ary:T.l
Arpoyr=y:T Arqgly.r] =r:l Ary=(poy)aly] : .l
Fll-)/ztrz Fol-ylzI‘l Lrrel I'rrel
Lok rlyzoyi]l =rly2llyi] s I Frrlid]=rsI

We shall ' + r ¢ I as a dimension term and q as a dimension variable.

Notation 5.3.4. We write y.[for the analogous substitution to y.A.

Exercise 5.14. Define Int(T) to be the set {r | T + r ¢ I}. Rephrase the above substitu-
tion rules and equalities using Int(T") and, in particular, isolate a mapping-in property
for I.L.

Notation 5.3.5. The reader will notice that while context extension with an interval
is formally distinct from I'.A, the substitution calculus is the same around both. Con-
sequently, it is not difficult to adapt the translation from named variables to formal
syntax with explicit substitutions to account for interval “variables”. When we write
informal programs in cubical type theory, we shall therefore use essentially the same
notation for variables of I as we have for variables of a type A. By convention, we shall
use the letters i, j, k for these dimension variables.

All told then, I has been added to our theory such that it behaves more-or-less like
a type without any introduction or elimination rules and we can only hypothesize
variables of type I and pass them around. This is far less structure than the real
interval [0, 1], but it is already almost enough to realize our judgmental structure for
identifications: an identification in A can simply be taken as an element Il + a : A[p].
What we are missing is some means of stating what, precisely, is being identified
by such an a. In the topological case, an identification was a continuous function
p : [0,1] — X which identified p(0) with p(1). Accordingly, we now augment I with
two closed dimension terms 0, 1 and understand .l + a : A[p] to be identifying a[id.0]
and a[id.1].

F I ex
T'rO0,131

Lemma 5.3.6. ForeveryI I a: A there is an identification of a with itself.

Proof. Given such an a, the term p = a[p] is an element of I.I - A[p] type and it is
routine to check that p[id.0] = a = p[id.1]. O

(2025-07-19) Cubical type theory (DRAFT) 197

We have used I to recover the bespoke identification judgment from before and in
a less ad-hoc manner. Just as before, we may define a path type to internalize this new
structure directly:
I'+ Atype F'rtab:A
I + Path(A, a,b) type

F'tab:A Ik p:Alp] T'+ta=plid.0] : A I'+ta=plid1] : A
[+ A(p) : Path(A, a, b)

I'+p:Path(A ab) Frrel
T + papp(p,7r) : A

['+p:Path(A ab)
T+ papp(p,0) =a: A T+ papp(p,1)=b: A

T'tab:A
IIrp:A[p] I'ta=plid.0] : A I'ta=plid-1] : A F'rrel

T + papp(A(p),r) = p[ider] : A

T+ p:Path(A a b)
T + A(papp(p[p].@)) = p : Path(A, a,b)

Notice that, unlike an ordinary function type, a path type specifies the behavior
of its elements on 0 and 1. In particular if p is an element of Path(A, a,b) then we
have definitional equalities papp (p, 0) = a and papp(p, 1) = b to enforce the intuition
that p is a path from a to b. These equations are justified by the introduction rule
which requires additional boundary conditions ensuring that elements of Path (A, a, b)
correspond not just to arbitrary elements of A depending on I but to elements which
satisfying the necessary equations.

Exercise 5.15. Show that the above rules are precisely equivalent to requiring the
following mapping-in property for Path(A4, a, b):

Tm(T, Path(A, a, b)) = {p € Tm(I.L A[p]) | p[id.0] = a A p[id.1] = b}

198 Univalent type theories (2025-07-19)

Exercise 5.16. Use Lemma 5.3.6 to define an element refl(a) : Path(A, a, a) for every
F'ra:A.

Notation 5.3.7. For expository purposes, it is also helpful to have a type TI(I, A) with
the following mapping-in property:

Tm(T, TI(L, A)) = Tm(T.L, A)

We shall not regard this as part of our official definition of cubical type theory and
use it only for small informal examples. In these few occurrences of this “TI-type”, we
shall use the ordinary syntax for functions, using the observation above that we can
translate “named interval variables” into the formal substitution calculus for I.

5.3.3 Cultivating intuition for path types

Before proceeding to the other rules of cubical type theory, we take a moment to explore
the consequences of including the interval within type theory. For this, and in cubical
type theory more generally, it is helpful to use a small amount of topological intuition,
guided by the observation that a term 1.[....I+ a : A[p"] which depends on n copies
of I can be visualized as an n-dimensional cube in A. In low dimension, we therefore
have points in A, lines in A, squares in A, and cubes in A for n = 0, 1, 2, 3 respectively.
Let us illustrate the case where n = 2 more thoroughly. Given 1.LI a : A[p?], the
two dimension variables serve as “axes” for this square and so we can “draw” a as the
following square:

a[id.0]
a[id.0,0] ———— a[id.1.0]

a[id.o0.I] a alid.1.I]

alid.0,1] ——— alid.1.1]
alid.1]

The four closed terms one obtains by specializing a with the four substitutions
1 + idee.€’ : 1.LI are the vertices. Next, there are four substitutions from 1 to 1.LI
which implement the first or second I with a constant and the other I with ¢. Applying
each of these substitutions to a yields the edges of the square. Finally, a itself is the
entire square.

We have chosen to draw this square with the leftmost I in 1.L.I as the horizontal axis
and the rightmost as the vertical axis. We further oriented the horizontal axis to grow to

(2025-07-19) Cubical type theory (DRAFT) 199

the right and the vertical axis to grow down. This convention is reasonably standard—it
matches the typical orientation of commutative diagrams in category theory—but it is
often helpful to disambiguate these diagrams by using named variables and labeling
axes. For instance, we might have written i 3 I, j $ I + a(i, j) : A and depicted the above
square as follows:

i a(i, 0)
jr) a(0,0) ———— a(1,0)
a(0, j) a a(1, j)

a(0,1) ————— a(1,1)

l!

Remark 5.3.8. We note that in the above example we have assumed that A does not
depend on either dimension variable but this restriction is not mandatory. We will
have occasion to study such heterogeneous squares at various points. o

This schematic visualization highlights one of the major benefits of using I to
structure identifications compared to a direct judgment I' + @ : a = b : A: we can now
seamlessly account for identifications between identifications simply by adding more
than one copy of I to the context. Moreover, path types between path types of A are
really no more complex to manipulate than ordinary path types as both are simply
kinds of functions valued in A.

There is another major benefit to using I: we have no need to add further rules of
I to customize the behavior of path types in each connective. For instance, there is no
need for a rule that “identifications in a pair can be built from a pair of identifications”.
This fact is already derivable from those rules governing dependent sums generally.
In fact, path types enjoy a number of remarkable extensionality principles (including
function extensionality) without additional effort on our part.

This traces back to a subtle point: when we isolated identifications as a new
judgment, nothing connected it to the behavior of types or terms. Here, however,
we have smuggled identifications in through the existing apparatus of contexts and
substitutions and so the existing equations for types and terms automatically apply to
identifications.

For instance, the n law for dependent sums states that Tm(T, Z (A, B)) is isomorphic
to X zetm(r,a) TM(T, B[id.a]). If we choose I' = Iy.[and specialize to the case where
B = By[p] for simplicity, this immediately yields the following:

200 Univalent type theories (2025-07-19)

Lemma 5.3.9. There is a natural bijection of the following shape:

Tm(To, Path(2(A, Bo[p]), x, y))
= Tm(Tp, Path (A, fst(x), fst(y))) X Tm(Ty, Path(A, snd(x), snd(y)))

Exercise 5.17. Prove Lemma 5.3.9

Note that while we have specialized to the simpler case of non-dependent >-types,
it is only for notational convenience. Even more striking is the case for dependent
products.

Lemma 5.3.10. There is a natural bijection of the following shape:

Tm(T, Path(I1(A, B), f, 9)) = Tm(I'.A, Path(B,app(f[p].q). app(g[pl.q)))
In other words, function extensionality is automatically true for path types.

Proof. Let us begin by observing that, by the mapping-in property of path types, we
can rephrase our goal as the following:

{p e Tm(T.LI(A B)[p]) | ...} = {Tm(T.ALB[p]) | ...}

However, we can further apply the mapping-in property for II-types to replace the
left-hand set with {p € Tm(T.LA[p], B[p-A]) | ...}. The conclusion the follows
immediately from the isomorphism of contexts I.I.A[p] = T'.A.l (Exercise 5.18). O

Exercise 5.18. Prove that if I’ - Atype then there are mutually inverse substitutions
TLA[p] Fro:T.Aland T AJ + 7y : T.LA[p].

This has certainly improved on our earlier attempt which simply added a new
explicit judgment of identifications but the story cannot stop here. In particular, we
still have done nothing to address the link between Path (A, a, b) and the actual ability
to substitute a for b in a type. That is, we have no operation like that of subst or, more
generally, J. As mentioned earlier, these operations do not come directly from the
interval or judgments upon it. Instead, we shall add them more-or-less as constants
to our theory and then, to preserve canonicity, add type-specific equations telling us
how they compute.

5.3.4 Coercing along paths

We now introduce the first and most fundamental operation of the two operations we
shall add to cubical type theory: coey4 (short for coerce). Roughly, this operation ensures

(2025-07-19) Cubical type theory (DRAFT) 201

that, from the perspective of a type, all elements of the interval are interchangeable
and we shall see momentarily that this is precisely what is required to implement a
version of subst for Path(A, a, b).

The addition of coe,4 also means a change in the status of I in our type theory.
While we have not added any sort of elimination principle for I, the reader may have
noticed that up till this point there was really nothing which distinguished it from
Bool; the rules we required of I were a strict subset of those for Bool. The coercion
operation firmly rules out the possibility that I = Bool: a type depending on Bool can
be quite different over true and false which is precisely the possibility excluded by
coe.

Specifically, if T.I + Atype then A[id.r] and Alid.s] are equivalent for every
I' + r,s ¢ I. The typing rule for this constant is given as follows:

I+ Atype IF'rrssl I'ta:Alider]
'+ coely *(a) : Alid.s]

I+ Atype IF'rrel I'Fa:Alider]

I+ coe’y " (a) = a: Alid.r]

A priori, coe may seem as though it does little to advance our goal of implementing
subst for Path(A, a,b). However, suppose we are given a path ' + p : Path(A, a,b)
along with a type T'.A + C type, applying the ordinary rule for substitution, we obtain
I[.I+ C" = Clp.papp(p, q)] type. Inspection reveals that instantiating C’ at 0 and 1
yields C[id.a] and C[id.b] and so coe yields the following operation:

Ik)L(coeoc,_fll’oﬂ(q)) : C[id.a] — CJid.b]

In other words, coe can be used to define subst. The advantage to coe over subst
is that we can now set about equipping coe with a collection of definitional equalities
in order to recover canonicity. Unlike subst, there shall be no single rule for how coe
computes in general but, instead, coe4 will compute depending on the form of A. For
example, for closed types such as Nat, U, or Bool, we constrain coe with the following:

Ftrsel I'rb:Bool

I + coep - (b) = b : Bool

Of course, this strategy only works in the simplest example: when the type con-
structor is closed and cannot depend on the interval in any meaningful way. Most
commonly, when A is a type former e.g. X(By, By), coe4 will be defined in terms of
coep,. In the case of non-dependent case A = B X By, for instance, one must add a

202 Univalent type theories (2025-07-19)

definitional equality stating coe’,”*(a) = pair(coegjs (fst(a)), coe%l_’s(snd(a))).(’ In
Section 5.4, we shall see that while it is unfeasible to see how univalence ought to
compute relative to J, it is possible (if difficult) to describe its computation with respect
to coe.

Our strategy of defining coe4 in terms of the constituents of A is responsible for
another surprising feature of coe: if subst is defined by instantiating r = 0 and s = 1,
why do we bother to allow for arbitrary r, s? We shall see that in various situations we
require this additional flexibility in order to build up coe at more complex types from
simpler ones.

We will not detail the equations governing coe here, but do provide examples
in Section 5.4. Instead, we focus on the equation which leads to the next structure
necessary for core cubical type theory: coe in Path(A, a,b). At present, we lack the
operations necessary to provide an equation specifying how coej, (Aab) (p) must
compute. It is worth sketching the problem informally, so as to properly situate the
solution. We wish to formulate a rule of the following shape:

I.I+ Atype TJdrab:A F'rrsel T+ p:Path(A,q,b)[id.r]
ESN
S coelr,;ﬁ(A’a’b) (p) = ? :Path(A, a,b)[id.s]

This hole must be filled by a path in A built from coe4. The straightforward approach
is roughly to “compose” p (the function from I to A[id.r]) with coex r s (a function
Alid.r] — A[ides]). However, the resulting term does not satisfy the necessary
boundary conditions to be an element of Path (A, a, b)[id.s]. Instead, we obtain an
element of the following:

Path (A[id.s], coe’, *(a[id.r]), coe’,"* (b[id.r]))

In other words, we are confronted by the fact that while there is a “line” interpolat-
ing between e.g., coe’,"*(a[id.r]) and a[id.s], they are not equal. This mismatch is
solved by the second operation for manipulating terms depending on I: homogeneous
composition or hcomp. To a first approximation, this operation allows us to take our
collection of three lines and compose them into a single path.

However, while the motivating example given above comes from stitching together
three sides of a square into a single line, our need to provide type-specific equations for
computing this operation in each type forces us to provide a more general composition
operator. In order to properly formulate hcomp in Section 5.3.6, we begin by extending

the judgmental apparatus with the necessary tools to support it.

OThis is often expressed by stating that coe is defined “by induction” on the type, but this is misleading.
After all, types do not come equipped with any sort of induction principle in general!

(2025-07-19) Cubical type theory (DRAFT) 203

5.3.5 Cofibrations and faces

Let us fix 1.LI + a : A[p?] and recall the visualization of a as a square:

a[id.0]
a[id.0.0] ——— a[id.1.0]

alid,0.I] a alid,11]

alid.0,1]] —— a[id.1.1]
alid.1]

The edges and vertices in the above square are called the faces of a. More generally,
a face of a term p is the result from specializing interval variables p depends upon.

The hcomp operation which we use to compose paths does so by solving a more
general problem. It provides a uniform way to assemble certain collections of matching
faces into an entire n-cube. For instance, our earlier desire to combine three lines into
a single line can be rephrased into taking three terms representing three faces of a
square and extending them to a term representing the entire square.

In general, we should not expect that every matching collection of faces assembles
into a cube. For instance, the question of whether a and b are identifiable amounts
to asking if a and b are the 0 and 1 faces of some term p. Since we do not expect (or
want!) all terms to be identifiable, clearly some subsets of cubes should not always be
extendable.

Heuristically, we should be allowed to extend subcubes which are suitably “con-
nected”, but this becomes subtle in higher dimensions. As isolating these well-behaved
subcubes is complex, it is helpful to have an judgmental apparatus for isolating par-
ticular faces of a given term or type. We do this by introducing a special grammar
of propositions which we call cofibrations. Informally, these are propositions built
from (1) comparing dimension terms for equality and (2) conjunction, disjunction, and
universal quantification of I. We realize this with a new judgment I + @ cof:

F T cx T+ ¢, cof F'rrs:l [JIF ¢cof
'+ T,Lcof ' Ay, ¢V Ycof '+ r=scof I + V¢ cof
Ary:T T+ ¢ cof IiFy: I Ly : I I, + ¢ cof
A+ ¢[y] cof To F ¢lyz o 1] = $lyally1] cof
I'F ¢cof

I+ ¢[id] = ¢ cof

204 Univalent type theories (2025-07-19)

We have omitted the long but unsurprising list of rules shaping how substitutions
#[y] interact with the various cofibration formers.

In keeping with their obvious relationship to propositions, we add another judg-
ment I' - ¢ true which states that some cofibration ¢ holds in context I'. For instance,
we require the following rules:

F'rr=s:l F T cx I'+ ¢,y cof I'+ ¢true I'+0=1true
I'tr=strue I'+ Ttrue T'ro Vi,V otrue I'+ Ltrue
T+ ¢true Avry:T I+ Ltrue I'+ ¢ cof
A+ ¢ply] true T+ ¢true

In order to fully given the full set of rules governing ¢ V i/, we require the ability
to hypothesize the truth of a proposition just as we can presently hypothesize over
elements of a type. Explicitly, given cofibration I" ¢ cof, we also require a context
I'.¢ governed by the following rules:

I'+ ¢ cof I'+ ¢ cof I'+ ¢ cof
F Tegp cx leprp:T T.¢ + ¢[p] true
Ary:T T+ ¢cof A+ ¢ly] true T+ ¢ cof Ary:Top
AF yok : Togp Ar(poy)x=¢: T
I'+ ¢ cof

T.d + pok = id : [

It is helpful to understand I'.¢) as an analog of T'.A but where ¢ is an exceptionally
strict form of proposition rather than a full type. For instance, the substitution extension
rule for cofibrations y.x does not allow the user to supply alternative “proofs” or “terms”
witnessing that ¢ is true. Instead, it simply requires that the judgment I' +- ¢ true holds
and uses *. In fact, the user is not responsible for providing any evidence whatsoever
in their term that ' + ¢ true holds. In this way, the rule is reminiscent of the conversion
rule stating that definitionally equal terms may be exchanged without any explicit
instruction by the user: cofibrations may be judged true without the user having to
provide any explicit witness.

For this reason, it is apparent that we must maintain strict control over the judgment
I' + ¢ true. If this judgment becomes too complex and, for instance, becomes sensitive to
what types are inhabited in a given context T', then it will surely become impossible for
our system to enjoy decidable type-checking. Fortunately, the grammar of cofibrations
is sufficiently simple that " ¢ true is, in fact, decidable.

(2025-07-19) Cubical type theory (DRAFT) 205

Returning to our specification of " F ¢ true, we present the final rule around ¢ v
using I.¢h:

T'k¢Vitrue T + &cof T.¢ + E[p] true L. + E[p] true
I+ Etrue

For brevity, we will not present all the rules of ' ¢ cof and choose to omit e.g.,
those governing ¢ A and V¢. The reader may trust that they are unsurprising versions
of the ordinary rules for propositional logic. We conclude our selection of the rules for
I' + ¢ cof with the following pair:

Trrsel I'+r=strue T+ ¢, cof T.¢ + ¥[p] true L.y + ¢[p] true
F'rr=s:l I'+¢=1cof

The first rule is reminiscent of equality reflection from Chapter 2 and the second is
akin to very strong propositional univalence principle for cofibrations. That is, the first
rule guarantees that if the proposition r = s holds then this can be ‘reflected’ to obtain
a definitional equality between r and s. The second rule states that cofibrations which
are inter-provable are definitionally equal such that, e.g., one may silently exchange
¢ Vyand ¢ V ¢ in any term or type.

These last two rules imply that the truth of a cofibration can impact whether or
not a term or type is well-formed by, for instance, controlling whether two dimension
terms are equal. However, we will also add two principles which much more directly
allow cofibrations to influence terms, types, and substitutions. Namely, if I" + ¢ Vi true,
we will add a rule stating that to e.g., construct a type in I' it suffices to give a type Ay
under the assumption of ¢ and one a second Ay, under the assumption of ¢ such that
Ay = Ay when ¢ A1 is assumed. We require similar rules for terms and substitutions
and as well as a twin principle for L which simply states that all these judgments
collapse if T' + L true. These rules are designed to ensure that I'.¢p V i behaves like the
“union” of the contexts I'.¢p and I.y/. For reasons of space, we give the rules carefully
for only types and sketch those for terms:

I'F @, ¢ cof T'F¢Vitrue

[opp + Ay type T - Ay type Loy A+ Ag[pek] = Ay [pe*] type
Tk [gb<—>A¢7 | ¢=—>A¢]type

T+ ¢, ¥ cof Togpy + Ay, type
Loy + Ag, type Lopy A 2 + Ay, [pekx] = Ag, [pox] type T+ ¢;true

[k [= Ay, | §2 = Ay,] = Ay, [idox] type

206 Univalent type theories (2025-07-19)

T+ ¢, cof I'+¢Vitrue I'+ Atype
I't[¢p = Alp] | ¥ — Alp]] = Atype

'+ Ltrue '+ Ltrue I' - Atype
I' + Abort type I' + Abort = Atype

I'+ ¢,y cof I'k¢Vytrue I'+ Atype
Top +ay : Alp] T +ag : Alp] Lo A+ agpox] = ay[pox] : A[pox]
Tk [¢;>a¢|1//f—>a¢]:A

I'+ L true I'+ Atype I'+ Ltrue 'ra:A
I'+abort: A I'tabort=a:A

Advanced Remark 5.3.11. More concisely, these conditions ensure that I'.¢p V ¢/ is a
pushout of T.¢p and T/ over I'.¢p A ¢ and that the presheaves for terms, types, etc. carry
these pushouts to pullbacks. Similarly, they guarantee that I'. L is initial and that all
relevant presheaves carry this initial object to a terminal object. o

From cofibrations to subcubes These rules finally allow us to deliver on an earlier
promise: we can now use cofibrations to isolate particular combinations of faces from
a term. Let us consider the context consisting of two dimension variables extended by
a cofibration stating either the first variable is 0 or the second is 1:

Il =1LL(g=1Vq[p] =0)

We know by the above rules for disjunction that giving a term T' + a : A[p®] is
equivalent to giving two terms 1.LL(qg = 0) + ao : A[p®] and 1.LL(g = 1) F a; : A[p?]
which agree on the overlap. Next, one may use the equality reflection rule for q = 1
to show that e.g., the substitution 1.LL(g = 0) + p.l o p : 1.I is invertible. We may
therefore visualize ay and a; as lines in A which share a common boundary:

alid.0.0]

a

a[id.0.1] _ alid.1.1]
0

(2025-07-19) Cubical type theory (DRAFT) 207

More generally, if ¢ is any cofibration then I'.¢ ay : A[p] will consist of some
coherent collection of faces in A. In other words, ¢ isolates some subset of the faces
of an n-cube, and the rule for splitting on disjunctions of cofibrations ensures that
ag consists of a term for each face such that these terms agree on all overlaps. The
question of whether these faces can be stitched together into a single n-cube amounts
to asking whether or not there exists some I' +- a : A such that I'.¢ + a[p] = ay4 : A[p].
This rephrasing in terms of cofibrations offers two important advantages. First, this
formulation has better behavior with respect to substitution: it is clear that any
extension in the above sense is stable under substitution and it also ensures that we
can sensibly discuss applying substitutions to collections of faces. Second, cofibrations
allow us to discuss more exotic faces like the line carved out by the cofibration i = j
for two dimension variables i, j. This corresponds to the diagonal of a square, rather
than any of its standard edges.

Notation 5.3.12. In Section 5.4, we will wish to manipulate cofibrations when working
informally with type theory. In general, like dimension variables the substitution
calculus ensures that we can largely pretend ¢ is a “type”, but the exceptionally strict
properties around cofibrations ensure that we need never actually pass one around.
When working informally, we shall therefore treat them in much the same way proof
assistants handle implicit arguments: abstracting over them with a bespoke function
type (the partial element type) but never needing to actually provide explicit terms to
apply these function types. We present only the mapping-in property for this type and
leave it to the reader to see how ordinary implicit function syntax may be translated
to this isomorphism:
Tm(T, ¢ — A) = Tm(T.¢, A)

In the above, I' - ¢ — Atype just when I'.¢ - Atype. However, since we shall only
use this connective for informal explanations, we will not regard it as part of our
definition of cubical type theory and content ourselves with this sketch of its rules.

5.3.6 Composing and filling paths

We are now ready to describe the second operation for manipulating paths hcomp and
the final component of core cubical type theory. Recall that this operation is intended
to take collections of faces—a subset of an n-cube in A—and assemble them into single
n-cube in A. As noted earlier, it is unsound to provide such an operation for arbitrary
subcubes, but with the apparatus of cofibrations to hand, it is possible to describe a
flexible class of shapes for which it is sound: given a term I + a; : A representing an
n-cube in A along with a cofibration I' + ¢ cof and a “¢-partial line” Tl - ay : A,

208 Univalent type theories (2025-07-19)

which matches ay appropriately, we may glue and extend them using hcomp to an
(n+1)-cube in A. The formal rules are as follows with ay and ay packaged into a single
partial term using disjunction of cofibrations:

'+ Atype Frrsel I'+ ¢ cof
L.L(q =r[p] v ¢[p]) +a: A[p’]
' + hcomp’, *(¢,a) : A

I'+ Atype IF'trseld I' + ¢ cof I'+ ¢true
LL(q =r[pl vV ¢[p]) +a: A[p’]
'+ hcomp’, * (¢, a) = a[id.s.*] : A

I'+ Atype Frrel I'+ ¢cof
TL(g=r[p] vV élpD +a: Alp’]
I + hcomp’, " (¢, a) = aliderx] : A

With hcomp to hand, we will be able to complete the necessary “programming
exercise” implementing coe in Path. Having added hcomp, however, we have unleashed
another avalanche of necessary programming exercises: we must discuss how hcomp
can be reduced for each type constructor. Fortunately, however, at this point we have
all the necessary tools to do this for every connective except the universe. We discuss
the rules governing hcomp for the non-universe connectives in Section 5.4, but they
are largely unsurprising.

The real complexity of hcomp comes in defining hcompy;”* (¢, A). The problem
is that, as an element of the universe, this composition is a code for a type and so
one must describe the type El(hcompy; (¢, A)). It not obvious, but the constraints
of hcomp mean that this type must be non-empty and so non-trivial introduction
and elimination rules must be given to govern this type. As with any other type we
must describe also the behavior of hcomp and coe in El(hcompy; * (¢, A)) and these
“nested” composition problems are rather intricate.

This complexity, however, is the essential tool by which cubical type theory sup-
ports a computational account of univalence. We will return to this topic in Section 5.4,
so we provide only the intuition here. Recall that the univalence axiom provides an
inverse to a certain map Path(U, A, B) — El(A) ~ EI(B). The domain of this map
now consists of certain lines in the universe—codes of types depending on I—and so
to interpret univalence, it suffices to define a family of types depending A, B : U, an
equivalence e : E1(A) ~ El(B) and a dimension term r : I. This type is typically written
V(r, A, B, e) (as in univalence).

The idea is that this type must collapse to A when the interval variable is specialized
to 0 and to B when it is specialized with 1. This type, by definition, is a path in the

(2025-07-19) Computing with coercions and compositions (DRAFT) 209

universe Path (U, A, B). As with any other type, one must describe composition and
coercion in this line of types and it is here that the invertibility of the given map
ElI(A) = EI(B) is crucial: it is this map which is used to supply coercions from one end
of V to the other.

While this sketch omits a great many details—even simplifying the shape of V
slightly—this is the crucial idea and payoff for recasting identity types as path types.
By forcing identity types in the universe to take this more flexible form, we can define
novel type formers which themselves implement the novel identifications mandated by
univalence. The details vary greatly between presentations, but this general strategy
is ubiquitous: (1) using an interval to encode identity types as path types, (2) adding
additional operations to all types to force these path types to be symmetric, transitive,
etc. and (3) implementing univalence by a specific type family depending on the
interval.

The reward for the complexity of cubical type theory is the following theorem.

Theorem 5.3.13. Cubical type theory enjoys consistency, canonicity, and normalization.

These theorems were established over several years, for several different variations
of cubical type theory. The consistency of the theory was proven in the first papers
on cubical type theory [CCHM18; AFH17]. Canonicity was established by Huber
[Hub18] and Angiuli, Hou (Favonia), and Harper [AFH17]. Normalization was proven
by Sterling and Angiuli [SA21].

5.4% Computing with coercions and compositions
(DRAFT)

Section 5.3 presented the core aspects of cubical type theory, but with many rules and
details elided. In this section, we endeavor to fill in a few of these gaps by explaining
some of the rules governing the computation of hcomp and coe in various types. Even
in a dedicated section, however, we will not provide all of these rules. A complete set
can be found in e.g., Angiuli et al. [Ang+21].

Fortunately, the remaining rules do not introduce new judgmental structure. In-
stead, they are more akin to programming exercises and show how to build e.g.,
hcompy; 4 gy in terms of composition and coercion in A and B. Accordingly, while the
previous section was replete with rules and substitutions, we shall see far fewer of
these in this section. Instead, we shall focus on these “programming exercises” and
often write out the resulting terms for computing composition and coercion in more
informal type-theoretic notation. We will present a few examples for how these are

210 Univalent type theories (2025-07-19)

turned into actual formal rules to be added to cubical type theory but thereafter leave
this mechanical task to the reader.

Notation 5.4.1. In order to facilitate writing informal terms with coe and hcomp, we
shall treat them as closed elements of the following types:

coe: (A:1-U)(ij:I) —» A(i) — A())

hcomp,; : (A:U)(i,j:D)(a: (k) - (i=kVg) > A) > A

5.4.1 coe forTl and>.

We begin by describing coercion for dependent products and sums. These two examples
contain all the interesting structure one finds in the definitions of coe for the types of
base Martin-Lof type theory and so we give them a fair bit of attention.

We begin by specifying the right-hand side of the following definitional equality:

T.I+ Atype I.I.LA + Btype TFrkrsed T+ p:X(A B)[ider]
AN
I+ coeg?’As,B) (p) = ? : 2(A, B)[id.s]

This is one of the many, many “programming exercises” in cubical type theory.
Our goal shall be to produce a term using coe for A and B which has the appropriate
type to fit into the above rule, subject to the additional condition that when r = s
then this term is equal to p. This last point is not strictly necessary for the rule to be
well-formed, but it is an important sanity check. After all, the definitional equality for
cerTAr’ B) (p) will force this to be true by transitivity and so it makes sense to ensure
that this forced equality is sensible.

We shall divide this process up into two steps. First, we present this term using

informal type theory and second, we shall list out the formal term in proper notation.

Lemma 5.4.2. FixA: 1 - U,B: (i:I) - A(i)) > U,r,s¢Landp : Y4, Bra.
Using coe for A and B, we can construct type coe (Ai — Y, ,a;Bia)rsp: Y as Bsa
which is definitional equal to p ifr = s.

Proof. By the n law for dependent sums, this term must be of the form (a, b) for some
element of As and of Bs a. In fact, it is straightforward to find the first component of
this pair: a = coe Ar s fst(p).

The second component of the pair is more complex. Naively, one might hope that
one could mirror the construction for a and use coe B in some manner. However, this
is not well-typed! After all, B is not in the correct shape for coe: it is an element of
(i:I) > Ai — U and not the required I — U. Accordingly, to apply coe we must

(2025-07-19) Computing with coercions and compositions (DRAFT) 211

choose some element of A with which to specialize B. In fact, the situation is more
fraught than this: A itself depends on I and so if we wish to obtain a specialization of
B with the type I — U, we will require an element of @ : (i ¢I) — Ai. Given such an
a, however, We can then use coe with B; = Ai — Bi (ai) to attempt to construct b.

We can further narrow things down with this in mind. After all, our goal is to
set b = coe B; r s snd(p) and if this is to be type-correct we must have ar = fst(p).
Moreover, since we wish to have b : Bas we must have as be a = coe Ar s fst(p).

In order to obtain a, we take advantage of the flexibility of coe to coerce from r to
a variable dimension, rather than 0 or 1. Specifically, we define a as follows:

a=Ai > coeAria

With a to hand, we choose b := coe B; r s snd(p), completing the required term. We
leave it to the reader to check the required definitional equality holds whenr =s. O

Rendering the above term in formal notation, the rule can be completed to the
following:

I.I+ Atype I.I.A + Btype I'rrsel T+ p:X(A B)[ider]

r—s

= pai =5 (fst(p)), coe” d : (A, B)[id.
S h () = pair(codl (Bt () coc 0 gy (0 () (A B)lids]

I' F coe

While the translation is largely mechanical, the reader can hopefully appreciate
that the informal term is far more legible than the formal cousin!

We now turn to the case of dependent products. The process is mostly similar and
we use the coercion operations on A and B to specify how coery4 p) ought to compute.
Our goal is once more to fill in the right-hand side of the following equality:

I.I+ Atype I.I.A + Btype IF'krsel T+ f:1I(A B)[id.r]
AN
Tk coelr.[_()j)B) (f) =2 :II(A, B)[id.s]

Lemma 5.4.3. FixA:1—> U,B: (i¢I) » A(i) > U,r,s¢Landp:(a: Ar) — Bra.
Using coe for A and B, we can construct type coe (Ai — (a : Ai) — Bia)rsp: (a:
As) — Bsa which is definitional equal to p ifr = s.

Proof. Our goal is to construct an element of (a : A(s)) — Bsa and, accordingly, we
fix a : A(s) and set about constructing B s a. We begin by defining a, = coe Asr a such
that we obtain b, = f(a,) : Bra,. We would like to coerce b, to obtain our desired
element of Bs a, but along what type should this coercion occur? We must find some
a: (i:I) — A(i) such that a(r) = coe Asra and a(s) = a. Capitalizing on the fact
that coe Assa = a, we choose d to be Ak — coe As k a. The full term then becomes
the following:

Aa — coe (Ak — Bk (coe Aska))rs(f(coeAsra))

212 Univalent type theories (2025-07-19)

Once again, we leave it to the intrepid reader to confirm that if r = s then this term is
simply equivalent to f. O

For the final time, we provide a translation of this informal definition into formal
notation. Hereafter, we shall leave this mechanical (if tedious) process to the reader:

I.I+ Atype I.I.LA + Btype I'rrsel I+ f:TI(A B)[id.r]

I - coefr’s) () = A(coe’ P11 (@pp(f[p], coelf P (@) : TI(A, B)lid.s]

Blpeacocf .1 (alpD)]

Undeniably, these rules are complicated.” They are, however, really just a sequence
of programming exercises and share many characteristics and so describing the first
few cases is the most painful.

The next novelty, as already mentioned, comes in the definition of coe for path
types. We turn to this next and, consequently, shift our attention to the second operator
we must define for every type: hcomp.

5.4.2 Working with the homogeneous composition operator

A common challenge when one begins to study cubical type theory is to “visualize”
hcomp. While coe matched closely enough with the already familiar subst operator,
the homogeneous composition operator is quite different than any of the combinators
one typically encounters in intensional type theory. Prior to using it to compute
coercion in path types, we give a few simple worked examples of hcomp to help
demystify this operator.

Composing two paths using hcomp Let us begin cultivating intuition for hcomp
by showing how we can use it to compose two paths p; : Path(A, a,b) and p, :
Path (A, b, c). We shall do this using hcomp A, so it remains only to choose (1) the
r — s direction we wish to compose along and (2) the cofibration ¢ to restrict along.

To visualize this situation, let us briefly fix two dimension variables i, j : I and

"Indeed, the reader may wonder how the authors managed to get these complicated terms correct.
The answer is simple: they did not. They found numerous typos in the process of editing this section.

(2025-07-19) Computing with coercions and compositions (DRAFT) 213
instantiate p; with i and p, with j. We can draw the situation as follows:

i

p1(i)

Q
(o

a p2(Jj)

a C

In anticipation of what is to come, we have added a “degenerate” edge correspond-
ing to reflexivity along a. In order to construct the composite of our two edges, it
suffices to find a line which joins the bottom two vertices. It is here we invoke hcomp.
Since our goal is to fill “down” in the j direction, e.g., to push the top edge along the
two vertical edges, we shall apply hcomp from 0 to 1. The cofibration shall be used to
isolate the two sides in this direction we possessso ¢ =i =0V i=1.

Let us put these pieces of intuition together into a term. Our goal is to construct a
path in A, so we will begin by binding a dimension variable i : I. We then define the
composite path as follows:

(p2ep1) i = hcompy, A0T(Ak,_ = [k=0—=pii|¢p = [i=0—=ali=1= pk]])

Exercise 5.19. Argue that p, e p; has the expected boundary i.e. that (p, e p;) 0 =a
and that (p, e p1) 1 =c.

What if we wish to obtain not just the bottom edge of the square, but the entire
2-dimensional term? Just as we could produce lines by using coe with a variable
dimension as the target, we can “hcomp to the middle” using a dimension variable to
obtain the entire square. We represent this with the following diagram:

i p1(i)
jﬁ a b
k=0 pqi
a hcomp, A0jAk,_— |i=0<a p2(J)
i=1<—=pyk
a Cc

(p2ep1)i

214 Univalent type theories (2025-07-19)

Exercise 5.20. Check that this 2-dimensional term has the relevant boundary condi-
tions. In particular, if j = 0 check it collapses to p i.

Inverting a path using hcomp For a second example, suppose we are given p :
Path (A, a, b). We show how hcomp may be used to construct an inverse path Path (A, b, a).

Once more, we shall fill a square involving p alongside two degenerate paths.
To visualize this situation, let us fix i, j : [and consider the following three lines:

]\rl) a a

p(i) a

b a

In order to compose paths, we have already shown how to use hcomp to complete
these three edges to a square. The same general procedure applies, though the result
is now the inverse to p. In particular, we have the following:

k=0<—a
pli= hcomp, A014k, _ — |i=0 < p(i)

i=1<—>a

In fact, with further effort we could use hcomp to construct higher paths witnessing
e.g., a path between p @ p~! and a constant path. Rather than pursuing this more fully,
however, we return to the original example which prompted this detour.

Coercion in path types from hcomp We can now complete the loop that motivated
this detour and show how to implement coercion in Path. Crucially, this requires both
coe and hcomp working in concert.

Lemma 5.4.4. Fix A : 1 — U, ab : (i : I) — A(i) alongsider,s ¢ 1 and p :
Path(A(r), a(r), b(r)). Using hcomp and coe for A, there exists a term of the following
type:

coe (Ai — Path(A(i), r(i),s(i))) rsp : Path(A(s), a(s), b(s))

Moreover, this term is definitionally equal to p whenr = s.

Proof. As before, let us fix k ¢ I such that it now suffices to define an element of A(s)
which specializes to a(s) and b(s) when k = 0 or k = 1. This latter condition is the sort

(2025-07-19) Computing with coercions and compositions (DRAFT) 215

of problem well-addressed by hcomp,, where ¢ := k = 0V k = 1: one of the definitional
equalities governing the construction precisely allows us to guarantee these equations.
It remains to work out the direction in which we ought to apply hcomp, as well as
the “top” of the square we are filling. Let us revisit the drawing of the situation we
encountered when first attempting to construct coe in Path:

k

- coeArs(pk)

coeArs(ar) coeArs(br)

as bs

Here, we have depicted the vertical lines as “wavy” since they do not actually form a
path with the top corresponding to 0 and the bottom to 1. Instead, they represent lines
in A(s) such that e.g., when specialized with r become coe Ars (br) and at s become
bs. This, however, is precisely what we require if we use composition from r to s,
rather than from 0 to 1. All told then, we arrive at the following term:

k=r< coeArs(pi)
coe Arsp = Ai — hcomp, ;- (As)rs Ak, — |[i=0 < coeAks(ak)
i=1<>coeAks(bk)

We leave it to the reader to confirm that all three of the branches of the disjunction
match as required on their overlaps and that when r = s this term collapses to p. O

5.4.3 Unfolding hcomp in various type constructors

While we have discussed the core rules governing coe at this point, it remains to
do so for hcomp. Just as with coercion, for specifying core connectives amounts to
a sequence of programming exercises and we give the details only for dependent
products and path types.

Lemma 5.4.5. Fix a cofibration ¢, types A : U, B: A — U, dimension termsr,s ¢ I, and
aterm f: (i) » (i=rV ¢) - (a: A) — B(a). There exists hcomp, ((a:A) —
Ba)rsf of type (a : A) — B(a) built from composition in B satisfying the expected
definitional equalities.

216 Univalent type theories (2025-07-19)

Proof. Let us fix a : A such that we must build b : B(a) such that if either r = s or ¢
holds then b = f s a. To this end, we shall use composition in B(a):

b=hcomp, (Ba)rsii, — fi_a

It is routine to see that this gives rise to the required term using the boundary conditions
of hcomp¢ (Ba)rs. O

Lemma 5.4.6. Fix a cofibration ¢, a type A : U, elements a,b : A, dimension terms
r,s ¢ I, and a partial term p : (i 2 1) — (i = r V ¢) — Path(A, a,b). There exists a
term hcomp¢ (Path(A, a,b)) rsp : Path(A, a, b) built from composition and coercion in
A satisfying the expected definitional equalities.

Proof. The required term is an application of hcomp in A. Since we intend to construct
apath, we fixi¢IsuchthatA\j - pj_i:(j:l) - j=rV ¢ — Ais a partial element
suitable as input for hcomp.

This is almost sufficient, but we must also ensure that the resulting extended term
satisfies the boundary condition necessary to form an element of Path (A, g, b). To fix
these boundaries, we extend ¢ with faces to govern the behavior of this term when
i =0ori=1. The final term is given as follows:

pVj=r—pj_i
hcomp,, (Path(A, a,b)) rsp := i — heompy,;_q;- Arsdj,_— |i=0—>a

i=1<=b

We once more leave it to the reader to check that this satisfies the necessary boundary
conditions. O

5.4.4 V and univalence

Finally, we turn to the rules necessary to animate both hcomp in U and univalence.
The crucial idea behind both is the same: paths in the universe are, by definition, codes
which depend on I and so to implement either hcomp or univalence, it suffices to
define new types. We shall focus largely on the new type necessary to implement
univalence V, but much of the process transfers to hcomp.

Suppose we are given A, B : U along with e : A ~ B. We wish to construct a path
uae : Path(U, A, B) or, equivalently, amap p : I — U such that p0 = Aand p1 = B.
We intend for ua to be inverse to the canonical map idToEquiv : Id(U,A,B) - A~ B
which, in this setting, amounts to requiring that coep 01 : A — B is equal to e.

(2025-07-19) Computing with coercions and compositions (DRAFT) 217

Remark 5.4.7. The reader may wonder whether we need an additional constraint
ensuring that ua(coe p 0 1) can be identified with p. As we remarked in Section 5.2,
this direction holds automatically. o

Our goal shall be to define a new type V(A, B,e,r) and to set uae = Ai —
V (A, B, e, i). We begin with the (provisional) formation rule for V:

I' + A Btype 're:A~B F'rrsl
I'+ V(A B,er)type

We note that this definition is sensitive to the precise realization of equivalence we
choose. However, any of the notions presented in Section 5.2 suffice and so we shall
ignore this detail. Moreover, we must ensure that our universe is closed under V in
order to actually carry out the definition of ua. It is more convenient to specify rules
for the type V rather than the code, however, and so we shall focus on that.

The above set of constraints on ua and path types generally translate into the
following requirements for V(A, B, e, r):

« We must have definitional equalities V(A, B,e,0) = Aand V(A, B,e, 1) = B.
« It must be the case that coe (Ai — V(A,B,¢,i))01 =e.
+ We must be able to implement hcomp and coe for V.

Of course, i — V(A, B,e,i) is always fully constrained up to equivalence: it
is the unique inhabitant of Path(U, A, B) sent to e by coe. In this way, it is largely
unimportant how precisely V is realized. What matters is only that such a type can
exist and satisfy the list of required properties. To this end, these constraints are useful
for nailing down the particular rules which define V more precisely and, unfortunately,
we must give new rules. V cannot be defined by a clever combination of existing type
formers because of the first requirement; we presently have no means of defining
a type which degenerates to two distinct types depending on the endpoints of an
interval.

In fact, given all these constraints there are precious few valid choices for the intro-
duction and elimination rules of V. The difficulty is that it is not obvious whether any
given choice of rules will suffice until one carefully checks each condition. Accordingly,
we will present the correct rules below and only then discuss some of the subtleties:

I' - A Btype I're:A~B
I'FV(AB,e0) =Atype '+ V(AB,e 1) = Btype

218 Univalent type theories (2025-07-19)

'+ A Btype F're:A=~B Frrsl
Ior=0+a:A[p] '+b:B I.r =0+ app(e[p],a) = b[p] : Blp]
I'+Vin(a, b,r) : V(A B,e,r)

Tor =0+ Vin(a, b,r)[p] =a: Alp] Tor =1+ Vin(a, b,r)[p] = b : B[p]

I'+ A Btype I'te:A~B F'rrel I'+o:V(AB,er)

I+ Vout(v) : B
T.r = 0 + Vout(v) = app(e,v) : B[p] Tor =1+ Vout(v) =0 : B[p]

'+ A Btype F're:A~B Frrsl
TFor=0+ra:A[p] F'+b:B I.r =0+ app(e[p],a) = b[p] : Blp]

I' + Vout(Vin(a, b,r)) =b : B

I'+ A, Btype I'te:A~B F'rrel IF'to:V(AB,er)
I + Vin(o[p], Vout(v),r) =v : V(A, B, e, r)

In total then, an element of V(A, B, e, r) contains a partial element of A and a full
element of B which match up according to e when both are defined. The introduction
and elimination rules (along with their § and 5 principles) are then nearly routine
from this perspective. The complexity comes from the various rules which apply if
r=0orr=1

These are a consequence of having V(A, B, e, r) collapse definitionally to A and
B. We have not encountered rules similar to this with other type formers and they
impose a number of unique constraints on the rules around V if we are to avoid having
terms of V(A, B, e, r) polluting A and B. For instance, we must add rules ensuring that
Vin(a, b,) correctly equates to a or b where this is required. Similarly, Vout(v) cannot
come only with a f rule to govern its behavior, as it must account for the situations
where v becomes an ordinary element of A and B.

To illustrate the delicacy of these rules, imagine a simple possible replacement:
instead of requiring Tor = 0 + app(e[p],a) = b[p] : B[p], what if we required that
app(e~!, b) was definitionally equal to a? While this is seemingly innocuous, e and e~
are inverses only up to a path and not necessarily definitionally inverses. Consequently,
this exchange would make it impossible to properly specify the behavior of Vout(v)
when r = 0; depending on the order in which rules were applied one could obtain
distinct (but path equal!) terms.

Another mysterious aspect of these rules is the asymmetry between A and B. Why
a is required to be a partial element whereas b is total as opposed to defined only when
r = 1 holds. What matters is not so much whether a or b is partial, but merely that
one of the two is fully defined and one is not. If neither is fully defined, it becomes

(2025-07-19) Computing with coercions and compositions (DRAFT) 219

impossible to state that a and b are equated by e. More subtly, if both are fully defined
it becomes impossible to specify coe in V.

The definitions of hcomp and coe in V are complex and we will not attempt to
detail them here. The interested reader should consult Appendix B of Angiuli [Ang19]
for precise account of V.

Finally, we note that the same chain of reasoning that leads to this definition
of V can be used to produce the type implementing hcompy;”*(¢, A). We can once
more list out the various definitional equalities which such a type must satisfy as
well as what types it must be equivalent to. Unfurling these, we determine that
elements of hcompy;* (¢, A) are essentially smaller formal composition problems, just
as elements of V were “suspended coercions along e”. Unfortunately, the details and
bookkeeping around such formal composition problems (and composition problems of
formal composition problems) is taxing. A curious reader should once again consult
Angiuli [Ang19].

220 Univalent type theories (2025-07-19)

Further reading

Again, see the “HoTT Book” [UF13] and Introduction to Homotopy Type Theory
[Rij22]. See also one of the many formalization projects based on HoTT [VAG+20;
Bau+17; Esc+10; Rij+21].

Descent: Anel [Anel9]

This material will be published by Cambridge University Press as Principles of Dependent Type Theory by Carlo
Angiuli and Daniel Gratzer. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © Carlo Angiuli and Daniel Gratzer 2024

Semantics of type theory (DRAFT)

In Chapter 2, we formulated the syntax of (extensional) type theory via rules inductively
defining sets of contexts, substitutions, types, and terms. In Chapter 3, we introduced
the notion of a general model of type theory (Definition 3.4.2) by observing that those
rules could alternatively be seen as a signature imposing various closure conditions
on four arbitrary sets of contexts, etc., recovering the notion of syntax as a free or
initial model. Although we defined the set model of type theory in Section 3.5 and
discussed the groupoid model in Section 4.3, our focus throughout this book has been
on syntactic models of type theory. In this chapter, we systematically consider models
of type theory.

Many readers may have encountered the phrase “categorical semantics” in discus-
sion of models of type theory. We have chosen to eschew the adjective “categorical”
in the title of this chapter because, fundamentally, there is nothing categorical about
the definition of model given in Definition 3.4.2. It is much closer in spirit to models
in classical universal algebra such as groups, rings, or modules: a collection of sets
together with operations and equations. Of course, a model of dependent type theory
requires some of these sets to be indexed by elements of others, making it more general
than an algebraic theory (more precisely, it is a generalized algebraic theory [Car86;
Dyb96; KKA19]; see Section 6.7).

In fact, the connection to category theory is much more pedestrian than one might
assume: it so happens that the definition of a category is hiding within the definition
of a model of type theory. Accordingly, every model of type theory can be seen as
a category equipped with additional properties and structures. Thus, in a very real
sense, we have been using the categorical semantics of type theory since Chapter 3.

Starting in this chapter however, we shall take advantage of this observation to
repackage the definition of a model into a smaller and more tractable form. This
process is a more exaggerated form of the simplification of replacing the fully unfolded
definition of a ring with the more compact “an abelian group equipped with a multipli-
cation operation - satisfying ...”. Mathematically, very little has changed but it is often
practically easier to construct examples after this reorganization since we can reuse
categorical intuitions.

Warning 6.0.1. With this in mind, for this chapter only we shall assume that the reader
has a working knowledge of category theory. In particular, we shall assume familiarity
with categories, functors, natural transformations, presheaves, the Yoneda embedding,

222 Semantics of type theory (DRAFT) (2025-07-19)

and adjunctions to the level of, for instance, the first four chapters of Riehl [Rie16] or
the first nine chapters of Awodey [Awo010].

Remark 6.0.2. The reader without exposure to category theory may find this chapter
useful motivation to begin studying category theory in its own right. Indeed, while it
is perhaps not mandatory, a working knowledge of category theory is an invaluable
tool for engaging with contemporary literature on type theory. For a reader ready to
take the plunge, we recommend either of the two aforementioned books. o

In this chapter In Sections 6.1 to 6.4 we reorganize the definition of a model of
type theory given in Section 3.2 into the concise notion of a category with families
(cwf) [Dyb96]. We observe how the natural isomorphisms used in Chapter 2 to
define connectives can be repurposed to give a succinct and efficient definition. We
systematically use a more modern reformulation of cwfs as natural models as put
forward by Awodey [Awo018].

In Section 6.5 we set out to connect cwfs to locally cartesian closed categories
(LCCCs). We describe the slogan originating with Seely [See84] that LCCCs are models
are extensional type theory and illustrate how various coherence issues complicate this
fact. We also describe at some length the local universes coherence construction [LW15;
Awo018] and how it resolves these issues to construct a cwf on top of an arbitrary
LCCC.

Section 6.6 is devoted to proving a claim from Chapter 3: extensional type theory
satisfies canonicity. We do this by constructing a particular model of type theory based
on a gluing construction and deriving canonicity from this model together with the
fact that syntax organizes into the initial model.

Finally, in Section 6.7, we show how the apparatus of cwfs can be leveraged to give
a conceptual description of the syntax of type theory itself. In particular, we follow
Bezem et al. [Bez+21] and use categories with families as the foundation for a definition
of generalized algebraic theories from which we recover the initiality results claimed in
Section 3.4.

Remark 6.0.3. Throughout this chapter, we focus on extensional type theory. We
emphasize, however, that none of this material is specific to ETT. The curious reader
may refer to e.g., Awodey [Awo18] for a treatment of the intensional identity type. o

Goals of this chapter By the end of this chapter, you will be able to:
« Explain the definition of a cwf and why it constitutes a model of type theory.

+ Explain how the locally cartesian closed category (LCCC) relates to a cwf.

(2025-07-19) Categories with families 223

« Use the local universes construction to construct a cwf from an LCCC.

« Prove metatheorems of type theory using semantic methods.

Glossary of category theory

» homc(c,d)

- Pr(C)

. Cle

. f*:Pr(C) —Pr(D)
» 12 Ce—Cp

* fi:Cc—Cpp

Yy

XXy Z

r_"

. “Gap map”

+ “Locally cartesian closed”

6.1 Categories with families

We begin by reformulating the definition of a model of extensional type theory from
Chapter 3 into a more palatable form. Our starting point is the following observation:

224 Semantics of type theory (DRAFT) (2025-07-19)

Lemma 6.1.1. If M is a model of ETT (Definition 3.4.2), then Cx pq is a category where
the hom-sets homcy, (T, A) are given by Sb o((T, A).

Proof. This is very nearly a tautology. We must construct a composition operation
for morphisms along with an identity arrow and show that the satisfy the expected
properties. However, the composition operation for substitutions o »(and the identity
substitution id 4 are defined so as to precisely fit this specification. O

The immediate pay-off of this observation is that we may collapse 7 points in
Definition 3.4.2 (two sets, two operations, and three equations) into a single structure.
What is less obvious—though more important—is that a good number of the other
points of Definition 3.4.2 can also be rephrased and compacted in this manner. In
particular, category theory is designed for naturality and therefore is exceptionally
well-suited to capturing the aspects of type theory based on naturality:

Slogan 6.1.2. Re-expressing the connectives of type theory using category theory allows
us to automatically obtain concise descriptions which bake in naturality requirements.

We shall split up the process of formulating these categorical versions this and the
following three sections (Sections 6.1 to 6.4), roughly mirroring the progression found
in Sections 2.3 to 2.6.

6.1.1 Contexts and substitutions

We begin by reformulating the portions of Definition 3.4.2 that do not involve specific
connectives into more categorical terms. In so doing, we shall arrive at the defini-
tion of a category with families [Dyb96]—or, rather, the equivalent notion of natural
model [Awo18]. Coincidentally, this discussion closely parallels the path taken by
Dybjer [Dyb96] when he introduced the notion, but many of the concrete results are
due to Awodey [Awo18].

Lemma 6.1.3. The operations and equations for the empty context 1 are precisely
equivalent to the requirement that Cx yq possess a chosen terminal object.

Proof. Recall that a terminal object X : C is one such that hom¢ (Y, X) = {x} for all
objects Y. Inspecting the rules governing 1 5, we see that ! 5 furnishes an inverse to
the unique map homcy, (', 1p() — {*}. |

In order to consolidate other aspects of M, we must deal with Ty ,(-) and
Tm p((—, —). Fortunately, these too admit clean categorical descriptions:

(2025-07-19) Categories with families 225

Lemma 6.1.4. The family of sets Ty 5((—) and the operations and equations for applying
substitutions to types —[—] a1 are precisely equivalent to a presheaf over Cx p1.

Proof. Let us recall that a presheaf X : C°P — Set consists of (1) a family of sets X (c)
for each c : C, (2) a collection of functions X (f) : X(¢’) — X(c) for each f : c—>¢’,
(3) equations stating that X(id) is the identity function and X (f o g) = X(g) o X(f).
Reviewing the operations and equations for Ty y(—) and —[~] ¢, we find a perfect
match. O

A similar story can be told for Tm p((—, —) and substitution on terms, but one must
work slightly harder: since terms are indexed over both context and types, Tm p((—, —)
is not a presheaf over Cx 4 but instead over the category of elements fr Cxpt Ty p(T):

Definition 6.1.5. If C is a category and X : Pr(C), the category of elements f o Xis
defined as following:

« Objects are pairs (¢ : C,x : X(c)).

« A morphism (c, x) — (d, y) consists of a morphism f : c— d suchthat X (f) y =
X.

« Composition and identity are defined using the corresponding operations from

C.
See Riehl [Riel6, Section 2.4] for more details.

To gain intuition, let us consider fF:CxM Ty o((T'). Its objects are pairs of a context I'
and a type A : Ty ,((T') and morphisms (A, B) — (I, A) are substitutions y : Sb((A,T)
such that B = A[y]. Such pairs and substitutions are precisely the inputs to Tm s (—, —)
and so we conclude the following:

Lemma 6.1.6. The family of sets Tm x(—, —) and the operations and equations for apply-
ing substitution to terms —[—] s are precisely equivalent to a presheaf over /r: Cxp Ty p(T).

A digression: slicing presheaf categories A classical result in category theory
is that there exists an equivalence between Pr(C),x and Pr(f cX); most often, this is
used to prove that the slice category of a presheaf category is itself a presheaf category.
For our purposes it is often vital to pass between these perspectives when studying
Tm p((—, —) and so we include both a sketch of this proof and note its specialization to

Tmp (=, -).

226 Semantics of type theory (DRAFT) (2025-07-19)

First, we define the functor U sending Pr(C),x to Pr(f cX). This functor sends
0 : Y — X to the following presheaf over f o X

U(o) (¢,x) = {y: Y(c) | oc(y) = x}

Given a : hompy(c),x (0, 7), the functorial action U(«) is defined as follows:

U(a) (c,x)y=acy

In particular, since 7 o @ = ¢ and o.(y) = x by definition of U(c), we must have
¢ (acy) = x so that this definition is well-typed.

Exercise 6.1. Check that U satisfies the equations necessary to be a functor.

Exercise 6.2. Argue that U is fully faithful.

In light of Exercise 6.2, to check that U is an equivalence, it suffices to check that
it is essentially surjective. That is, we must show that if Y : Pr(f X) then there exists

0:Yy— X such that U(c) = Y. Fixing Y : Pr(fC X), we define o and Y as follows:

YO c = Zx:X(c) Y(C, x) oc=1m

We leave it to the reader to carry out the routine verification that Y; is functorial and
o is natural. We may now compute U (0):

U(O-) (C’ x) = {(X(), y) : ZxO:X(C) Y(C’ X()) | X0 = x} = Y(C’ X)

It is routine to check that these bijections organize into the required natural isomor-
phism. All told, we conclude the following:

Theorem 6.1.7. U is an equivalence.
We may specialize this discussion to Ty y, : Pr(Cx () and Tm p(: Pr(fCXM Ty p0):

Corollary 6.1.8. The family of sets Tm y((—, —) and the operations and equations for ap-
plying substitution to terms —[—] p are precisely equivalent to an object in Pr(Cx m) /1y, -

We denote the induced object of the slice category 7 : Tm — Ty, and it is
explicitly given as follows:

Ty I = 2y,) Tmm(T,A) al =m

(2025-07-19) Categories with families 227

The categorical formulation of context extension With Tm% to hand, we
reformulate one final piece of Definition 3.4.2 before taking stock: context extensions.
This definition is a bit more complex since it mixes together all four of contexts,
substitutions, terms and types. However, our discussion of the mapping-in property of
context extension in Section 2.4.2 should lead us to guess that it too can be expressed
categorically.

Definition 6.1.9. If « : X — Y where X, Y : Pr(C), we say « is representable whenever
the pullback y(c) Xy X is representable for every y(c) — Y.

In other words, a natural transformation is representable if for every y : y(¢) —Y
there exists some ¢, : C along with morphisms p, : ¢, — c and g, : y(c,) — X such
that the following diagram is a pullback:

dy

y(cyj X
Y(py) a
y(c) m Y (6.1)

We call a particular choice of triples (cy, py, qy) a representability structure on a. Rep-
resentability structures are all suitably uniquely isomorphic to one another, but need
not be equal (in much the same way that limits are determined only up to unique
isomorphism).

Lemma 6.1.10. The operations and equations around context extension (including the
variable term and the weakening substitution) in M are precisely equivalent to requiring
a representability structure on 7t : TmS, — Ty 5.

Proof. Let us begin by unfolding what is involved in a representability structure on
x and, in particular, what the universal property of Diagram 6.1 determines when
specialized to . First note that a morphism A : y(I') — Ty , is equivalent by Yoneda
to a type A : Ty ,,(I'). Accordingly, a representability structure is an assignment of
every I'and A : Ty (') to a triple (Ta : Cxpm, pa : Ta— T, qa : y(Ta) — Tm’,) such
that the following square commutes and is a pullback:

qaA
y(Iy) ———— Tm

M
y(pa) T

rn —— 7T
y(T) 1 Y M

228 Semantics of type theory (DRAFT) (2025-07-19)

Let us apply the Yoneda lemma once more to see that g4 is equivalent to a pair
A" : Ty p((Ta), q : Tm (T4, A”). Moreover, by the naturality of the Yoneda lemma and
the commutation of the above square, we conclude that 7 T4 (A’, a) = A[pa] m and so,
unfolding the left-hand side of this equality, A" = A[pa] pm. Accordingly, the data of
the commuting square corresponds to I'. (A, q 5, and p 4.

What'’s left is to analyze the universal property of this pullback square. As a general
matter, a square in a presheaf category has the universal property of a pullback square
just when it has the correct universal property with respect to representable presheaves.
There are several ways to prove this, but perhaps the simplest is to recall that (co)limits
in presheaves are computed pointwise and to apply the Yoneda lemma.

Accordingly, the fact that the above commuting square is a pullback amounts to the
following: for every (A : Cxpq, y(A) — y(I), y(A) — Tm$) fitting into the below
diagram, there is a unique dashed arrow making the diagram commute:

y(8) /\A

7 y([y) ——— Tm®

M

T

' — T
y(T) N YMm

Applying the Yoneda lemma, we see that the maps y(A) — Ty 5 and y(A) — TmS$,,
correspond to a substitution y : Sb(A,T') and a term a : Tm(A, A[y] m). Finally, we
see that the dashed arrow encodes y. pqa and the commutation of the diagram and the
unicity of the dashed arrow correspond to the equations around y. yqa, completing the
proof. O

We emphasize that while the reshuffling was more involved to relate representabil-
ity structures and context extensions, the two notions are completely equivalent. The
purpose of this reformulation is not to favor one over the other, but to have both
available for when the representability structure notion is easier (e.g., in Section 6.5)
and for when the ((—.p—), p p1» q 5¢) is easier (eg, in Section 6.6).

(2025-07-19) Categories with families 229

Exercise 6.3. Suppose that A, T : Cxy(and that A : Ty (T') and y : Sbo((A,T). Show
that the following is a pullback diagram:

)/.MA
ApAYIM — T A
_
PMm BPM
A T
Y

(Hint: there is a slick proof based on the 3-for-2 lemma for pullbacks and Lemma 6.1.10.)

The definition of a cwf Collecting all these reformulations together, we arrive at
the definition of a cwf [Dyb96] or, more precisely, a cwf recast into the language of
natural models [Awo018]:

Definition 6.1.11. A category with families (cwf) consists of the following data:
« A category C
+ A chosen terminal object1: C
« A pair of presheaves and a natural transformation 7¢ : Tmg, — Ty

+ A representability structure on 7¢

(Standardize terminology around “bare type theory” and cwf (not natural model).}

Theorem 6.1.12. A category with families is equivalent to a model of type theory
without any connectives.

Remark 6.1.13. Different authors package the data of a model (or a cwf) in different
ways. Since they are all equivalent these differences are fundamentally unimportant.
However, they can be useful in different situations and it is important to feel comfort-
able passing between a fully unfolded definition of a model (Definition 3.4.2) or a more
compressed variant (Definition 6.1.11). Not only because many variations appear in
the literature, but because often one formulation is more perspicacious in a particular
situation. o

We refer to a model of type theory without connectives as a model of base type
theory. Our goal is to now explore how to reformulate the specification of various
connectives from Definition 3.4.2 on top of the definition of a cwf. Since we will have

230 Semantics of type theory (DRAFT) (2025-07-19)

Connective Unfolded structure | Categorical version
The unit type (Unit) Structure 6.2.2 Lemma 6.2.5
The equality type (Eq) Structure 6.2.6 Lemma 6.2.9
Dependent products (IT) Structure 6.2.18 Lemma 6.2.20
Dependent sums (%) Exercise 6.9 Lemma 6.2.21
Booleans (Bool) Structure 6.3.2 Lemma 6.3.6
Coproducts (+) Structure 6.3.7 Lemma 6.3.12
The empty type (Void) Structure 6.3.14 Lemma 6.3.15
The natural numbers (Nat) | Structure 6.3.16 Lemma 6.3.25
A single universe (Ug) Structure 6.4.17 Theorem 6.4.22
A universe hierarchy (U;) | Exercise 6.15 Lemma 6.4.23

Figure 6.1: Table of categorical reformulation of the connectives of type theory

a great deal of data to manipulate when discussing equipping models of base type
theory with connectives, we take a moment to discuss the global structure of this
process. Essentially every subsection of Sections 6.2 to 6.4 will deal with one a single
connective and in each we will follow the same process. First, we begin by recalling
the relevant portion of Definition 3.4.2 and then work to reformulate them into a more
concise categorical definition. The final result will be a statement of the form “a model
of base type theory supports an interpretation of the connective © just when it comes
equipped with the following categorical structures”. For ease of reference, we have
gather a table describing where each structure is introduced and the result where it is
reformulated in Figure 6.1.

As in Chapter 2, once the substitution calculus is in place the connectives of type
theory are essentially orthogonal may be introduced in any order. An exception to
this pattern is U, as the closure conditions required of the universe are of course
sensitive to the other connectives available within the theory. When dealing with
individual connectives, it is frequently convenient to consider models of type theory
which support only a specific subset of connectives. In particular, we may define a
model of type theory with e.g., only IT and Unit as a base model together with the
structures in Definition 3.4.2 specifically related to e.g., IT and Unit. The main result of
the following sections may be summarized by the following “theorem schema”:

Theorem 6.1.14. A model of type theory with any set of connectives consists of (1)
a category with families (Definition 6.1.11) and (2) the categorical reformulation of
structures pertaining to each of those connectives.

In particular, a model of type theory with IT and Unit consists of Definition 6.1.11
satisfying the additional requirements described in Lemmas 6.2.5 and 6.2.20.

(2025-07-19) Pullback squares andI1, %, Eq, Unit 231

6.2 Pullback squares and I1, X, Eq, Unit

We now continue our quest to reformulate Definition 3.4.2 in more categorical terms
by turning our attention to connectives with mapping-in specifications: I1, Unit, ¥,
and Eq. As with contexts and substitutions, our goal is to find equivalent “repackaged”
definitions which consolidate the operations and equations for each connective.

Notation 6.2.1. In the previous section, we were careful to subscript Ty y((=), Tm (=, —),
etc. with M to emphasize that they were part of the data of some model M. However,

in this section the notational burden of subscripting virtually every operation with
M outweighs the benefits of being explicit. Accordingly, within this section we fix a
model M and write e.g. Ty rather than Ty ,,.

6.2.1 The unit type

We begin with Unit, as it is the simplest case. Let us begin with by recalling the
relevant portions of Definition 3.4.2 which are required to interpret the rules of the
Unit (Section 2.4):

Structure 6.2.2. A unit type structure on M consists of the following:
« An operation Unit : {T': Cx} — Ty(T)
« For every substitution y : Sb(A,T') an equation Unit = Unit[y]
« A collection of isomorphisms : : (I' : Cx) — Tm (T, Unit) = {x}
« For every substitution y : Sb(A,T) an equation 5 o y* = ip.!

Let us begin by noting that our prior intuition that these equations enforced
naturality was justified:

Lemma 6.2.3. Unit and the associated equations form a natural transformation Unit :
1—Ty.

To recast 1 into a natural transformation, we note that there is a presheaf sending
I' to Tm(T, Unit). In fact, one can construct this functor by pulling back Tm®* — Ty
along the map Unit : 1 — Ty. In light of this, we denote this presheaf by Unit*Tm®.

IThis requirement is vacuous since both sides are maps into {x}, but we include it for consistency.

232 Semantics of type theory (DRAFT) (2025-07-19)

Exercise 6.4. Check that Tm® X, 1 = Tm(—, Unit —).
Lemma 6.2.4. 1 and its equations form a natural isomorphism Unit*Tm® = 1.
All told, we can replace our original four points with two:
« anatural transformation Unit : 1 — Ty,
« a natural isomorphism Unit*Tm*® = 1.
In fact, we can bundle these two points into one:

Lemma 6.2.5 (Categorical reformulation of Unit). A unit type structure on M is
equivalent to a choice of pullback of the following shape:

1 Tm*
_

1 Ty (6.2)

Proof. The natural transformation Unit : 1— Ty is precisely what is required to
construct the base of this pullback and the natural isomorphism ensures is equivalent
to the data of the top map together with the property that it forms a pullback. O

This result leads us to a reformulation of our slogan for specifying types with a
mapping-in universal property: they ought to be determined by a pullback square
involving 7. Before crystallizing this slogan, we consider a slightly less trivial example
to see the pattern more clearly.

6.2.2 The extensional equality type

We next turn our attention to the extensional equality type. Once more, we begin by
isolating the subset of Definition 3.4.2 required to interpret the rules of Eq given in
Section 2.4.4.

Structure 6.2.6. An equality structure on M consists of the following operations and
equations:

« An operation

Eq: {l: Cx}(A: Ty(T)) » Tm(T,A) — Tm(T,A) — Ty(T)

(2025-07-19) Pullback squares andI1, %, Eq, Unit 233

« For every substitution y : Sb(A,T') along with A : Ty(T') and a,b : Tm(T, A), an
equation
Eq(A[yl. alyl.bly]) = Eq(A, a,b)[y]

+ A collection of isomorphisms

1:(T:Cx)(A:Ty(M))(a,b: Tm(T,A)) - Tm(T,Eq(T, A, a,b)) = {x | a=b}

« For every substitutiony : Sb(A,I') and A : Ty(T') and a, b : Tm (I, A), an equation
lA(A[Y]’ a[)’], b[)’]) © }’* = IF(A’ a, b)

Once more, we wish to parlay these operations and equations into natural trans-
formations into Ty and Tm®. However, this time there is non-trivial formation data:
A along with a, b. Accordingly, the domain of natural transformation Eq is not 1 like
with Unit, but instead a presheaf whose value at I' is % 4., () Tm(I, A) X Tm(T, A).
We can construct this presheaf out of Ty and Tm*:

Exercise 6.5. Show (Tm* X7, Tm*)I" = 3 4.1y) Tm(T, A) X Tm(T, A).
In light of the above exercise, the following is nearly a tautology.

Lemma 6.2.7. The operation Eq and the equations around it are equivalent to a natural
transformation Tm® X, Tm*®* —Ty.

We next turn to the isomorphism :. This step requires some creativity, as both
Tm(T,Eq(A, a,b)) and {x | a = b} depend onT, A, a, and b. Accordingly, ¢ is a family of
isomorphisms between objects indexed not just over the context but on the formation
data as well; it consists not merely a natural isomorphism in Pr(Cx) but instead in
Pr(-/Cx Tm® X1, Tm®). Accordingly, we are asking for a natural transformation between
the following two presheaves:

X(T A a,b) =Tm(T,Eq(A, a, b)) Y(T,A a,b) = {x|a=0b}

Lemma 6.2.8. | organizes into an isomorphism X = Y in Pr(/CX Tm® X1, Tm*®).

Our final step is to use the equivalence Pr(/CX Tm® X1y, Tm®) = Pr(Cx) /Tme xy, Tme* to
present this isomorphism in Pr(Cx).

234 Semantics of type theory (DRAFT) (2025-07-19)

Exercise 6.6. Under the above equivalence, show that X is isomorphic to the left hand
vertical map of the following diagram:

Eq*Tm*® Tm*®
_
Tm® X7, Tm* Ty (6.3)
Eq

Exercise 6.7. Under the above equivalence, show that Y is isomorphic to the diagonal
map Tm® — Tm® X1, Tm®.

Accordingly, | determines a natural isomorphism between Eq*Tm*® = Tm® fitting
into a commuting triangle:

Tm*® Eq*Tm*®

Tm® X, Tm*

Let us recall that this top map has a recognizable name: it is the natural transformation
corresponding to refl. If we paste this commuting triangle onto the end of Diagram 6.3,
we arrive at the following characterization of extensional equality types:

Lemma 6.2.9 (Categorical reformulation of Eq). An equality structure on M is equiva-
lent to a a choice of pullback square of the following form:

refl
Tm® Tm*
_
o) T
Tm® X1, Tm* Ty
Eq

In fact, here we can see all the key elements of the equality type at play: the domain
and codomain of the left map is the introduction and formation data of Eq with the top
and bottom horizontal maps encoding the introduction and formation rules. Finally,
the fact that the square is a pullback encodes the elimination principle (along with its
p and 5 equations). All told, we arrive at a categorical version of Slogan 2.4.4:

(2025-07-19) Pullback squares andI1, %, Eq, Unit 235

Slogan 6.2.10. A connective © with a mapping-in universal property is determined by a
choice of pullback of the following shape:

introg
I@ Tm*

_

Fe Ty
formg

Here Fg encodes the formation data of ©, Ig the introduction data, and the top and bottom
maps the introduction and formation operations, respectively. The elimination rule along
with all the equations are handled by naturality and the universal property of a pullback.

6.2.3 An interlude: polynomial functors

Our next goal will be to apply Slogan 6.2.10 to IT and X, but these types are substantially
more complicated that Eq and Unit. The wrinkle is the formation and introduction
data involve premises which hypothesize over variables. For instance, the formation
data of both IT and ¥ are presheaves of the following shape:

I'> Yarym Ty(ILA)

We now show that, remarkably, operations like these—those which hypothesize over a
variable—also admit an elegant description within Pr(Cx). First, we lay some ground-
work. We begin with the following result (see, for instance, Awodey [Awo010, Corollary
9.17]).

Lemma 6.2.11. If f : C— D then * : Pr(D) — Pr(C) has a right adjoint f..

Theorem 6.2.12. The pullback functor f* : Pr(C);y — Pr(C),x admits a right adjoint
fr-

Proof. Passing along the equivalences Pr(C),/x = Pr(/X) and Pr(C)y ~ Pr(/Y), we
must show that the precomposition functor (f of)" Pr(f Y) — Pr(f X) has a right
adjoint. We now apply Lemma 6.2.11.]

We now show that we can model “a type or term in an extended context” using ..

Notation 6.2.13. We write X* for the pullback functor X — 1 or, equivalently, the
functor Y + X x Y. Furthermore, we write Y, for the forgetful functor C;y — C (the
left adjoint to Y*).

236 Semantics of type theory (DRAFT) (2025-07-19)

Definition 6.2.14. If f : X—Y is a map in Pr(C) the polynomial functor over f
P; : Pr(C) — Pr(C) is defined as follows:

Pf:YvyOﬁOX*

Lemma 6.2.15 (Awodey [Awo18, Proposition 6]). There is an isomorphism between
P, (Ty) I and sets of pairs 3 o1y (1) Ty (IA).

Proof. We prove this through the Yoneda lemma:

P (Ty) T = homp,(c) (y(T), P~ (Ty))

Let us break homp, () (y(T'), P (Ty) = Ty,m.(Tm®)*Ty) into two halves: a mor-
phism A : y(I') — Ty (equivalently, an element of Ty (T')) and a morphism hompy(cx) , (A, 7 (Tm*)’
Let us further investigate the second morphism:

homPr(C)/Ty (A, m.Ty)
= hompr(c)/Tm. (y(I) X7y Tm®, (Tm*)*Ty)

= homp,(c) (y(T.A), Ty)
= Ty (T.A) .

We can replay exactly this proof with Tm*® to obtain this following:
Lemma 6.2.16. P,(Tm*) T = 3 4.1, (1) Zp.ry(r.a) TM(I.A, B).

One last result is necessary: we wish to find a presheaf which encodes the formation
data for a X-type:

2 ATy (T) 2By (T.A) 2aTm(r,4) 1M(T, B[id.a])

This is slightly more complex (Awodey [Awo18] uses the internal language to give a
succinct description of this presheaf). The most straightforward approach is define
such a presheaf manually:

P(T) = X a1y (r) ZB1y(r.4) ZatmT.a) Tm(T, Blid.a])

(2025-07-19) Pullback squares andI1, %, Eq, Unit 237

Exercise 6.8. Define the functorial action of P using substitution.

We note—more for completeness than necessity—that it is possible to build this
presheaf just using P, and other purely categorical constructs:

Lemma 6.2.17 (Awodey [Awo018, Remark 13],Uemura [Uem21, Lemma 6.2.1]). There
is a canonical square of the following form and, moreover, it is a pullback:

P Tm*
_

Pr(Ty) Xty Tm* —————— Ty (6.4)

Here € is the counit of the adjunction ©* 4 ..

Proof. For concision, we write X = P, (Ty) X1, Tm*® within this proof. First, we note
that the canonical square is defined using the evident projections from P. To show that
this square is a pullback, we use the Yoneda lemma to characterize X X1, Tm* whereby it
will be clear that the unique induced map P — X X1, Tm® is an equivalence. To do this,
we apply the Yoneda lemma such that it suffices to characterize hom (y(I'), X X1, Tm*®).
By universal property, this consists of the following:

« an element of hom(y(T'), Tm®) or, equivalently, B, : Ty(I') and b : Tm (T, By).

« an element of hom(y(T'), P, (Ty) X1, Tm®) or, equivalently, A : Ty(I') and A :
Tm(T, A) along with B : Ty(T'.A) (the latter by Lemma 6.2.15)

« an equality B[id.a] = B,. O
We define 7 ® 7 : P— P, (Ty) to be the composite:

p P (Ty) X1y Tm* ——————— P, (Ty)

Hereafter we refer to P as dom (7 ®). This map projects (A, B, a, b) onto (A, B).

6.2.4 Dependent products and sums

Having expended the effort to calculate the effect of these polynomial functors in
Pr(Cx), it requires only a little more effort to apply Slogan 6.2.10 to dependent products
and sums.

We begin with dependent products. In the now familiar routine, we begin by
isolating the structure on a model needed to interpret dependent products.

238 Semantics of type theory (DRAFT) (2025-07-19)

Structure 6.2.18. A dependent product structure on M consists of the following
operations and equations:

« Anoperator IT: {I' : Cx}(A : Ty(T')) — Ty(I'.A) — Ty(T)
« For every y : Sb(A,T) along with A : Ty(T') and B : Ty(T'.A), an equality
II(A, B)[y] = II(A[y], Bly.A])
« A family of isomorphisms:
1:{T : Cx}(A: Ty(I'))(B: Ty(T.A)) — Tm(I,II(A B)) = Tm(T'.A, B)
« For every y : Sb(A,T) along with A : Ty(T) and B : Ty(I'.A), an equality
(A[y], Bly-A) oy" =y" 0 (A B)
In light of Lemma 6.2.15, we can bundle together IT into a natural transformation:
Lemma 6.2.19. II and its equation organize into a map P, (Ty) — Ty.

Moreover, by the same reasoning as we applied in the case of Eq, the isomorphism
1 is equivalent to a natural isomorphism P,(Tm®) = IT*Tm* fitting into the following
commuting triangle:

P, (Tm*) — 5 IT"Tm"

N

P,(Tm®)
All told, we arrive at the following:

Lemma 6.2.20 (Categorical reformulation of IT). A dependent product structure on M
is equivalent to a choice of pullback square of the following shape:

P.(Tm*®) Tm*
P, (7) T
P, (Ty) Ty

The bottom morphism of this pullback square corresponds to I1 while the top corresponds
to the introduction form A(-).

(2025-07-19) Orthogonality and Void, Bool, +, Nat 239

Finally, we content ourselves with providing “the answer” for dependent sums and
leaving it to the intrepid reader to fill in the details:

Exercise 6.9. Isolate the operations and equations in the style of Definition 3.4.2
necessary to interpret the rules of dependent sums (Section 2.4.3).

Lemma 6.2.21 (Categorical reformulation of X). M supports dependent sums if and
only if it is equipped with a choice of pullback square of the following shape:

dom(r® 1) ———— Tm*®
TR T

P, (Ty) Ty

The bottom morphism of this pullback square corresponds to ¥ while the top corresponds
to the introduction form pair.

6.3 Orthogonality and Void, Bool, +, Nat

We next turn to connectives without a mapping-out property and, in particular, to
Void, Bool, +, and Nat. Following the notation of Section 6.2, we fix a model M for
this section and systematically reformulate the requirements for M to support these
connectives into more categorical terms. As before, we will avoid subscripting each
operation with M as it is the only model we discuss in this section.

In light of Section 2.5, it should come as no surprise that to explain these connec-
tives, we cannot merely rely on Slogan 6.2.10. In fact, we can give a crisp explanation
of why this slogan is doomed to failure for Void:

Exercise 6.10. Show that there can be no pullback diagram of the following shape:*

0 Tm*
_

1 Ty

(Hint: use the representability of 7.)

2The authors once ran headlong into this fact as part of a project with Jonathan Sterling in 2019. The
result was an extremely elegant construction which sadly only applied under unsatisfiable hypotheses.

240 Semantics of type theory (DRAFT) (2025-07-19)

Fortunately, the failure of Slogan 6.2.10 to account for types with mapping-out
universal properties provides us with an excuse to introduce the categorical theory of
orthogonality. Roughly, we shall find that while the above square fails to be a pullback,
the degree to which this fails is “invisible” to 7. This concretizes an intuition presented
in Section 2.5: from the perspective of other types, Void is always empty.

Warning 6.3.1. Mirroring Section 2.5, we will start by giving specifications of these
types that explicitly include their # laws. In Section 6.3.4 we will show how to modify
these specifications to omit 5 laws, as required in intensional type theory. (Recall from
Section 2.5.5 that in extensional type theory, 5 principles for inductive types can be
derived from Eq-types.)

6.3.1 Orthogonality and Bool

We will work our way towards a definition of orthogonal maps by investigating Bool.
We start with Bool over the simpler Void as the latter is a bit too simple (both trivial
formation data and no introduction rules) which makes it difficult to see some of parts
of the story. Let us begin by recalling the operations and equations governing this

type:

Structure 6.3.2. A boolean structure on M consists of the following operations,
equations, and properties:

« An operator Bool : {T' : Cx} — Ty(T)

« An equation Bool[y] = Bool for every y : Sb(A,T).

« A pair of operators true, false : {I' : Cx} — Tm(T, Bool)

« Equations true[y] = true and false[y] = false for every y : Sb(A,T).

Finally, we require that the following maps are bijections for allT" and A € Ty (I".Bool):

(—[id.true], —[id.false]) : ¥
Tm(T.Bool, A) = Tm(T, A[id.true]) x Tm(T, A[id.false])

We will refer to the final point in this list as Property 1 as it will bear the brunt of our
scrutiny.

(2025-07-19) Orthogonality and Void, Bool, +, Nat 241

Inspecting the rules and equations for Bool, true, and false, we see that they all
organize into natural transformations e.g.,

true

o
Ty

Here, the commutativity expresses the fact that true has the expected type. We can
place true and false in the same diagram by using 1 LI 1 in Pr(Cx):

[true, false]
1u1 Tm*

1 T 6.5
Bool Y (©.5)

Just as we have seen in Exercise 6.10, this square is never a pullback square. We
can ‘measure’ the failure of Diagram 6.5 to be a pullback by studying the induced
map i : 11— 1 Xy, Tm* = Bool"Tm?®; the square is a pullback if and only if i is an
isomorphism.

Unfolding definitions, i is the map which includes true, false into Tm (T, Bool).
This will never be an isomorphism (think of variable elements of Bool) but it should
be an isomorphism “from the perspective of other types”. This is the force of the
final property in the list governing booleans. We begin by restructuring this property
slightly to see how it is really a fact about i.

First, we note that Tm(T.Bool, A) is equivalent to the set of sections of the weaken-
ing map I".Bool.A—TI".Bool. For Tm (I, A[true]) and Tm(T, A[true]), we can com-
bine the above remark about sections with Exercise 6.3. In particular, a pair of elements
from Tm(T', A[true]) and Tm (T, A[true]) corresponds a choice of dotted top arrow of
the following diagram:

y() uy(T) » y(I'.Bool.A)

y(id.true),
y(id.false)

y(T'.Bool) < y(T'.Bool)
i

242 Semantics of type theory (DRAFT) (2025-07-19)

Note that we must express this diagram in Pr(Cx) via the Yoneda embedding be-
cause there is no guarantee that Cx will have enough coproducts. Let us denote
[y(id.true), y(id.false)] by Vr in what follows.

In light of these observations, the Property | is equivalent to requiring that for all
I' and A € Ty(T'), whenever there is a commuting square of the following shape, there
is a unique dashed map making it commute:

y(@) uy(D) y(T.Bool.A)
o
Vr //////////
y(I’.Bool)/ vy y(T.Bool)
i

We can give a more conceptual description of Vi by “factoring out” the I'. In par-
ticular, note that y(T') U y(T) = y(T) x (1 U 1) and y(I'.Bool) = y(T') X Bool*Tm®.
Accordingly, Vi = y(I') x V;. In fact, we have already encountered V: this is the map
i:10U1— Bool"Tm*® which measures the failure of Diagram 6.5 to be a pullback. We
therefore rewrite the above diagram to the following equivalent:

y(I) Ly(D) y(I.Bool.A)
y(T) x i //,/’///
y(I“.Bool)/ ” y(T.Bool)
|

Our next goal is to link this property to the following definition from category
theory:

Definition 6.3.3. If i : A— B and f : X — Y are morphisms in C, we say thati th f
(i is orthogonal to f) if every commuting square of the following shape has a unique
diagonal map making it commute:

A 3

— X
Y

5

We also say that i is left orthogonal to f and f is right orthogonal to i.

(2025-07-19) Orthogonality and Void, Bool, +, Nat 243

Remark 6.3.4. One should interpret i h f as f “believing” that i is an isomorphism
(or, dually, that i believes f is an isomorphism). This viewpoint is foundational in
homotopical algebra, where one systematically studies orthogonality and weaker
notions thereof. o

Property { as we have presented it above then almost that y(T') X i is orthogonal
to p. However, there is a slight mismatch: we have unique lifts only when the bottom
map is id, while orthogonality requires arbitrary maps. The following result clarifies
this distinction:

Exercise 6.11. Show thatifi: A— Band f : X — Y are morphisms in C then i i f
if and only if each gp : B—Y and ¢; : A— B Xy X, the following diagram has a
unique diagonal map:

A X Xy B

We now observe that weakening maps I''Bool.A— I".Bool are precisely the pull-
backs 7 along a map I'Bool — Ty. Combining this with the above exercise, we
conclude the following:

Lemma 6.3.5. Property t is equivalent to requiring y(T') X i h 7 for everyT.
Putting this together, we conclude the following:

Lemma 6.3.6 (Categorical reformulation of Bool). A boolean structure on M is equiv-
alent to a choice of Diagram 6.5 such that the gap map i satisfies y(T') X i M\ 7 for every
I':Cx.

Exercise 6.12. Given F : [— C™ such that F(i) M gforalli : I, show that li_r)nl_ F(i) M
g. Conclude that Property 1 holds if and only if X x i M x for every X : Pr(Cx).

Before we introduce a refinement of Slogan 2.5.3, we replay this story for coproduct
types to see an example with non-trivial formation data.

244 Semantics of type theory (DRAFT) (2025-07-19)

6.3.2 Coproducts

As before, we begin by collecting together the operations and equations necessary for
a model to support coproducts:

Structure 6.3.7. A coproduct structure on M consists of the following operations,
equations, and properties:

« An operator + : {T': Cx} — Ty(T') — Ty(T) — Ty(T)
« An equation (A + B)[y] = Aly] + Bly] for every y : Sb(A,T') and A, B : Ty(T').
« A pair of operators

inl : {T : Cx}(A,B: Ty(T')) » Tm(T,A) - Tm(T, A + B)
inr : {T' : Cx}{A,B: Ty(I')} - Tm([,B) » Tm(T, A+ B)

Equations inl(a)[y] = inl(a[y]) and inr(b)[y] = inr(b[y]) and for every y :
Sb(A,T), A,B: Ty(I'),a: Tm(T, A) and b : Tm(T, B).

Proofs that the following maps are bijections for all T and A, B € Ty(T') and
CeTy(I.A+B)

(=[p.inl(q)]. -[p.inr(q)]) :
Tm(T.A + B,C)
= Tm(T.A,C[p.inl(q)]) X Tm(T.B,C[p.inr(q)])

We once more refer to this final property as Property { and, just as before, note
that we can use coproducts in Pr(Cx) to capture the first four items with a single
commuting diagram in Pr(Cx):

[inl, inr]
(Tm®* X Ty) U (Ty X Tm*®) Tm*
[z xid,id X 7] b4
Ty X Ty Ty (6.6)

(2025-07-19) Orthogonality and Void, Bool, +, Nat 245

We now turn our attention to Property f and connecting it with orthogonality. As
before, Diagram 6.6 induces amap i : (Tm® X Ty) U (Ty X Tm®) — +*Tm*:

(Tm®* X Ty) U (Ty Xx Tm*®)

Ty X Ty " Ty

In fact, more is true. Since the above diagram commutes, we know that i induces
a morphism in Pr(Cx)/yxt, between [X id,id X 7] and z;. Something similar
was also true for Bool but there it was trivial: i induced a morphism in the slice
category of 1 which is simply equivalent to Pr(Cx). This is a reflection of the fact
that the type of coproducts—unlike that of booleans—has non-trivial formation data.
Consequently, the introduction operation sending e.g., an element of A to an element
of A+ B is parameterized not just by the context but also by the two types A and B. This
additional parameterization gives rise to a natural transformation in Pr(_/CX Ty x Ty)
or, equivalently, Pr(Cx) ryxty-

To get a better understanding of i, let us calculate a little with it. Fix a pair of types
A, B : y(I') — Ty and consider the pullback functor (A, B)* : Pr(Cx) /ryxty — Pr(Cx) y(r).
Applying this to i, we obtain the following morphism in Pr(Cx) yr):

A*Tm® LU B*Tm*® (A,B)* +* Tm*

y(T)

Exercise 6.13. Carefully check that (A, B)* (i) has the required form.

We can further simplify this by noting that A*Tm*® = y(I".A) and B*Tm*® = y(T.B).
Moreover, more-or-less by definition of + : Ty X Ty — Ty there is an isomorphism
(A,B)* +* Tm* = y(I'".A + B). All told then, (A, B)*(i) gives, up to isomorphism, the
following map over y(T'):

Vrag :y(T.A) uy(T.B)—y(l.A+ B)

Following our intuitions from the boolean case, we arrive at the following lemma:

246 Semantics of type theory (DRAFT) (2025-07-19)

Lemma 6.3.8. Property 1 is equivalent to requiring Vrap M x for allT : Cx and
A B: Ty(T).

Proof. Recall that Vr 45 M 7 holds if and only if for each C : y(I''A+ B) — Ty
(equivalently, a type C : Ty(T'.A + B)), every diagram of the following shape has
a unique diagonal map:

y(T) U y(T) y(I'.A+ B.C)
-
Vr.aB /,/”/ p
y(T.A+B) - y(T.A+B)
1

Unfolding and using the full and faithfulness of y, this is equivalent to Property . O

Our final step is to state the relationship between Vr 4 g and i in a slightly tidier
form. To this end, we recall a basic fact about limits in slice categories:

Lemma 6.3.9. Iff : A—C and g : B— C are objects of C/c then the product f Xg : C)c
is given by the composite A Xc B — A — C (or, equivalently, AXc B — B — C).

Let us write Uc for the forgetful functor C/c — C. We have already seen that (up
to isomorphism) Uy (r) ((A, B)*(i)) = Vr 4,8 whenever A, B : y(I') — Ty. In light of the
above, however, we could equivalently say that Uryxty ((A, B) X i) = Vr 4 p Where we
now regard (A, B) as an object of Pr(Cx) /ryxty-

Lemma 6.3.10. Property T holds if and only if U((A,B) x i) h nx for every A,B :
y(T) —Ty.

Let us note that Uc : C/c— C has a right adjoint whenever C has products:

X +— C X X. Moreover, for any adjunction L 4 R we have the following:

Exercise 6.14. Fix L : C— D such that L4 R,ifi:A—B:Cand f : X —Y : D
then L(i) M f if and only if i h R(f).

Accordingly, we may rephrase Property { one last time:

Lemma 6.3.11. Property T holds if and only if (A,B) x i h (Ty X Ty) X & for every
AB:y(T)—Ty.

In light of Exercise 6.12 along with the fact that Pr(Cx) 7y xT1y is generated under
colimits by objects of the form y(I') — Ty X Ty, we may replace the above condition
with the requirement that U(X x i) M 7 for every X : Pr(Cx) 7y xTy-

(2025-07-19) Orthogonality and Void, Bool, +, Nat 247

Lemma 6.3.12 (Categorical reformulation of +). A coproduct structure on M is equiv-
alent to a choice of commuting square (Diagram 6.6) such that the gap map i satisfies
(X x i) M (Ty x Ty) X 7 for every X : Pr(Cx) /ryxTy-

(Start the Void section here (so readers can find it). }

We may consolidate this into an extension of Slogan 6.2.10 which accounts for
non-recursive inductive types:

Slogan 6.3.13. A non-recursive inductive type Y is specified by a commuting square:

introy
IY Tm*

Fr Ty
formy

Where formy is the formation map and introy is the introduction operation. Moreover,
ifi : I— form{Tm® in Pr(Cx),r is the gap map, we require that X X i \ F X 7 for all
X : Pr(Cx)/F.

We can apply this slogan to quickly reformulate the specification of Void:

Structure 6.3.14. An empty type structure on a model M consists of the following
operations, equations, and properties:

« An operator Void : {I" : Cx} — Ty(T)
« An equation Void[y] = Void for every y : Sb(A,T).
Finally, we require that the following unique map is a bijection allT and A € Ty(T'.Void):
Tm(T'.Void, A) — {x}

Lemma 6.3.15 (Categorical reformulation of Void). An empty type structure on a model
is equivalent to a the following:

e A commuting square of the following form:

0 Tm®
1 T
Void Y

 The gap map i : 0— Void " Tm® satisfies X x i h 7 for every X : Pr(Cx).

248 Semantics of type theory (DRAFT) (2025-07-19)

6.3.3 Natural numbers

Just as in Section 2.5, the type of natural numbers proves to be more difficult than Void,

Bool, or +. As before, the complexity is a result of the recursive nature of Nat which

means we cannot consider just an orthogonality condition to describe Nat; we must

also have some categorical account of (initial) algebras as introduced in Section 2.5.4.
We begin by recalling the specification of Nat in M:

Structure 6.3.16. A natural number structure on a model M consists of the following:
« An operation Nat : {T' : Cx} — Ty(T).
« Equations Nat[y] = Nat for all y : Sb(A,T).
« An operation zero : {T' : Cx} — Tm (I, Nat).
« Equations zero[y] = zero for all y : Sb(A,T).
« An operation suc : {T' : Cx} — Tm(T,Nat) — Tm (I, Nat).
« Equations (suc(n))[y] = suc(n[y]) for all y : Sb(A,T) and n : Tm(T, Nat).

« Given a type A : Ty(T'.Nat) along with terms a, : Tm(T, A[id.zero]) and
as : Tm(T'.Nat.A, A[p2.suc(q[p])]), there is a unique term a : Tm(I'.Nat, A)
satisfying the following two equations:

alid.zero] = a,
al[p.suc(q)] = as[id.a]
As before, we refer to the final point as Property .

The first six points can be compactly expressed using natural transformations in
Pr(Cx) as we have seen already. They are precisely equivalent to the following two
pieces of data:

+ A morphism Nat : 1 —Ty.

« A morphism « : 1 LI Nat*Tm® — Nat*Tm"®.

(2025-07-19) Orthogonality and Void, Bool, +, Nat 249

Initial algebras, categorically In fact, the morphism « can be said to shape
Nat*Tm® into an algebra for a certain functor. To state this more precisely, we recall
the definition of an algebra:

Definition 6.3.17. If F : C — C is a functor, an F-algebra is an object C along with a
morphism a : F(C) —C.

Definition 6.3.18. A homomorphism between F-algebras a : F(C)—C and b :
F(D)— D is a morphism f : C— D such that f o a = b o F(f):

F(C)) F(D)

C D
f
We write Alg(F) for the category of F-algebras.

With a category to hand, it is easy to define the initial F-algebra for any functor F:
it is the initial object of Alg(F) provided such an object exists. Our goal shall be to use
this definition to replay the intuition that Nat is an initial algebra of sorts. To this end,
we shall eventually require the analog of a dependent algebra from Section 2.5.4 so we
record a succinct definition of here:

Definition 6.3.19. The category of dependent F-algebras over an F-algebraa : F(C) —C
is the slice category Alg(F)/(c,q)-

Lemma 6.3.20. Aside from Property t, a model supports a type of natural numbers
precisely when there is a natural transformation Nat : 1— Ty along with a choice of
of (— U 1)-algebra structure on Nat*Tm®.

What remains, as ever, is to account for Property 7. In this case, we do not require
an orthogonality condition. We need to record the fact that Nat*Tm?® is, in some sense,
the initial (— LI 1)-algebra among types.

To begin with, we note the following:

Lemma 6.3.21. IfT : Cx then y(I'Nat) = y(T') X Nat*Tm® supports the structure of a
(— U 1)-algebra given up to isomorphism by y(T') X a.

Lemma 6.3.22. IfA : Ty(T'.Nat) then a,, and a; as given in Property 1 are equivalent
to structuring y(T' .Nat.A) as a dependent algebra over y(I'.Nat) via a map:

Xasa, - Y(I'\Nat.A) U1 — y(I'.Nat.A)

250 Semantics of type theory (DRAFT) (2025-07-19)

Lemma 6.3.23. If A : Ty(I'\Nat), a,, and as are as given in Property T, the unique
existence of a term a corresponds to existence of a unique algebra homomorphism
1—T.Nat.Ain Alg(— (] 1)/y(F.Nat)~

This suggests that y(I"Nat) ought to be the initial object in Alg(— U 1)/y(r.Nat)>
but this is not quite correct. We only have initiality with respect to those dependent
algebras of the form I"'Nat.A — I'".Nat for some A.

Definition 6.3.24. Given an F-algebra (Y, @), a representable dependent F-algebra
X —Y is a dependent algebra over Y such that X — Y is a pullback of x.

Lemma 6.3.25. A natural number structure on a model of type is equivalent to a
natural transformation Nat : 1— Ty along with a (— U 1)-algebra structure a on
Nat*sr such that for allT : Cx, if one restricts the category of dependent algebras over
(y(T) x Nat*z,y(T') X) to the full subcategory of representable dependent algebras,
y(T) X « is initial.

6.3.4 Weak orthogonality and types without 1 laws

Recall that our official definition of ETT in Chapter 2 did not include 5 principles for
inductive types. In particular, we chose to omit rules such as the following from our
specification of e.g., Bool:
F I ex I'Boolta:A
I'.Bool + a = if (q, a[p.true], a[p.false]) : A

We justified this choice with two observations:

+ These rules, much like equality reflection, make it vastly harder or even impos-
sible to construct a normalization algorithm for type theory.

« All of these 5 principles are derivable from the corresponding f rules in the
presence of equality reflection.

Accordingly, we reasoned that it was more efficient to have a single rule which
compromised decidability of type-checking (equality reflection) to ensure that the
transition from ETT to ITT was concentrated within a single connective (Eq).

(2025-07-19) Orthogonality and Void, Bool, +, Nat 251

In this subsection we pay attention to specifying mapping-out types without as-
suming an 7 law. If M supports Eq, these new descriptions are equivalent to those we
have already given. However, if we wished to adapt this discussion from ETT to ITT,
it is once again beneficial to specify mapping-out types without a unicity principle:
the difference in models once more comes down to whether we include Eq or Id in the
model. As a bonus, by investing some effort in describing mapping-out types without
an n law, we are able to give a categorical description of when a model supports Id
with no additional effort.

However, the inclusion of the 5 principles in our cwf reformulation of a model
has actually allowed us to simplify various structures. In particular, the 5 rule ensures
that the terms witnessing the elimination rules of various inductive connectives are
actually unique. Accordingly, we were able to recast these elimination principles as
various orthogonality properties: we showed that the elimination rule for e.g., booleans
could be recast as requiring some a dotted map fitting into a commuting square:

[a:, af]
y(I) uy(D) y(I'.Bool .A)
Vr //,a"///
y(I“.Bool)/ - y(T'.Bool)

The commutativity of this diagram corresponds to the f equalities of the elimination
form: it states that when a is specialized to true or false, it collapses appropriately
to a; and ay. The unicity of a accounts for the 5 law. If we remove the 7 law from
booleans, therefore, we can no longer expect a to exist uniquely.

6.3.4.1 Booleans without a unicity principle

Let us recall the weakened notion of Property § used in Section 2.5.5. M supports
booleans without the n law when in addition to the operations Bool, true, and false,
it enjoys the following:

« An operation
if : {T : Cx}{A : Ty(T.Bool)}
— Tm(T, A[id.true]) X Tm(T, A[id.false]) — Tm(T'.Bool, A)

« Equations if (a;, ar)[id.true] = a; and if (a;, ar)[id.false] = a;

252 Semantics of type theory (DRAFT) (2025-07-19)

« Equations if (a;, ar)[y.Bool] = if (a;[y], ar[y]) whenever y : Sbr((A,T).

These properties combined are weaker than Property f, which essentially stated
that if was unique among operations satisfying the second point (which, in particular,
automatically causes it to satisfy the third point). Our goal is to discuss how this
weaker set of properties can be recast categorically. Let us begin by fitting if into a
lifting diagram.

Fixing ' : Cx, A : Ty(I'), a; : Tm(T, A[id.true]), and ar : Tm(T, A[id false]),
we see that the existence of if and the first pair of equations governing it can be
summarized by the following commuting diagram:

[al’s af]
y(I) Ly(D) y(I'.Bool.A)
T
Vr .if(at, af)m H
y(I“.Bool)‘. vy y(T.Bool)
i

However, we are no longer requiring that this diagonal lift exists uniquely, merely
that some particular chosen lift exists. To integrate the third equation, suppose we are
given a substitution y : Sb(A, T'). We require that the following diagram commute:

[t>]

vy oy 2y by T yrpoolay
i{(at\y\,af“m N if(as, af)

y(A.Bool) +(7 Bool) y(I'.Bool) - y(T'.Bool)

(6.7)
In particular, the third equation ensure that more than merely requiring that there
are some collections of lifts to various commuting squares, the choice of lifts are suitably
coherent: the chosen solution to lifting problem for a; and ay when restricted along
y(y.Bool) must match the solution to the lifting problem for a;[y] and ar[y].
We summarize this discussion with the following:

(2025-07-19) Orthogonality and Void, Bool, +, Nat 253

Lemma 6.3.26. M supports if and B laws if there is a choice of lifting for all diagrams
of the following shape:

[al'a af]
y(T) uy(T) y(I'.Bool.A)
=
Vr .if(a,g, af).” H
y(F.Bool)‘. vy y(I'.Bool)
i

Furthermore, if satisfies the final equation just when Diagram 6.7 commutes for all
y: A—T.

A digression: stable weak orthogonality structures This is a halfway point
between “the lift is unique” and “there merely exists some lift”. We have encountered
the categorical incarnation of the former (orthogonality). The later is sometimes called
weak orthogonality and the halfway point between these two notions needed to encode
booleans is termed stable weak orthogonality. Note that unlike (weak) orthogonality,
stable weak orthogonality is a structure: we must provide an explicit choice of maps
which satisfy some properties. This is in contrast to (weak) orthogonality, where these
maps are merely required to exist (uniquely or not).

Definition 6.3.27. Anincoherent stable weak orthogonality structure s : (i : A— B) AWk
(f : X—Y) in a category C is an assignment of objects C and pairs of maps
x: CxA—Xandy : CXB—Y satisfying f o x = y o (C X i) to amap scxy
fitting into the following:

X

CxA /X
Cxi /Sc,x,y f
CxB Y

Yy

We say that s is coherent—or, more concisely, a stable weak orthogonality structure
s i M f—if it further satisfies the condition that for any ¢ : D — C, the following

254 Semantics of type theory (DRAFT) (2025-07-19)

diagram commutes:

DxA cx4 CxA X X
SCx f
O(CxB\ Y
/SD,XO(CXA)JJ /
D x B CxB Y
cXB [}

We recall a characterization of stable orthogonality structures due to Awodey
[Awo18]:

Lemma 6.3.28. Supposing C has finite products and exponentials, the stable orthogo-
nality structurei : A— B M f : X — Y is equivalent to a section to the canonical map
p:XB— XA %y YB.

Proof. By the Yoneda lemma, to construct a map s : X? Xya Y2 — X5 such that
pos = id, it suffices to construct a section y(X* xya YB) — y(X®) to y(p). Unfolding
the data of a natural transformation in this case, for each C : C, we must construct an
assignment hom (C, X Xy Y8) — hom(C, X®) which is natural in C. Let us use the
universal properties of pullbacks and exponentials to simplify this:

hom(C, X®) = hom(CxB,X) hom(C, X*xyaY®) = hom(CXA, X)Xpom(cxa,y)yhom(CXB,Y)

In particular, an element of hom(C, X# xya Y®) corresponds to commuting square
while elements hom(C, X?) corresponds to commuting squares with a chosen lift:

CxA — X
CxB — Y

In other words, a section y(X4 xya Y3) — y(X®) corresponds precisely to an assign-
ment of commuting squares to lifts and the condition naturality of this assignment is
exactly the equation distinguishing a stable weak orthogonality structure from a weak
orthogonality structure. O

By similar reasoning to Exercise 6.11, we obtain the following lemma:

Lemma 6.3.29. An incoherent stable weak orthogonality structures : (i : A— B) h"X
(f : X—Y) is equivalent to an assignment of objects C and mapsy : C X B— X and

(2025-07-19) Orthogonality and Void, Bool, +, Nat 255

x : CXA— X Xy (C X B) satisfying my o x = (C X i) to a map sc,xy fitting into the
following:

(id, x)
CxA (CXA) Xexp X
Cxi sc’x’y/ T
CXB CXxB
id

s is coherent if for allc : D — C then sc,x,yo(cXB) = ((iXA)X;ixBX) 0SD xo(cxA),yo(cxB)-

Finally, just as done with orthogonality, we can combine Lemma 6.3.26 with
the observations that (1) maps y(I'.Bool.A) — y(I".Bool) are precisely the pullbacks
of 7 along maps y(I'.Bool) — Ty and (2) Vr = y(T') X i where i is the gap map
10U 1— Bool"Tm*® to obtain the following:

Lemma 6.3.30. M supports if and its attendant equations just when there is a stable
orthogonality structure i M 7.

In total then, M supports booleans without an 1 law just when there is a commuting
square Diagram 6.5 along with a stable weak orthogonality structure i Mt x. The
revised version of Slogan 6.3.13 for types without an 5 law is given as follows:

Slogan 6.3.31. The formation and introduction rules of a non-recursive inductive type Y
are specified by a commuting square:

introy
IY Tm*

FY Ty
formy

Where form describes the formation operation and intro the introduction. The elimination
rule without an n principle is given by the data of a stable weak orthogonality structure
i N Fy x m where i : I — form*Tm® in Pr(Cx)r is the gap map.

6.3.4.2 Intensional identity types

Finally, we note an important instance of Slogan 6.3.31: the intensional identity type.
Here we reap the rewards of some of our effort in this section, as we are able to give a
concise specification of intensional identity types with essentially no additional effort:

256 Semantics of type theory (DRAFT) (2025-07-19)

Lemma 6.3.32. M supports an intensional identity type just when it comes equipped
with the following pieces of data:

e A commuting square of the following shape:

refl
Tm® Tm*

Tm® X, Tm* ” Ty

* A stable orthogonality structure Tm®* —Id"Tm*® bt (Tm*® xq, Tm* X 7) in
Pr(cx)/Tm'XTmi'-

To model intensional rather than extensional identity types, it is therefore only
necessary to swap out the requirement that M supports Eq to instead require Id and
to use Slogan 6.3.31 rather than Slogan 6.3.13 when specifying inductive types (as they
are no longer equivalent).

6.4 Cwf morphisms and Uy, U, U,, . . .

The final step in our process of converting Definition 3.4.2 to a more categorically
acceptable form is to consider universes. We shall take this as an opportunity to also
elaborate on the notion of a homomorphism of models (Definition 3.4.3) to give an
slick—if indirect—characterization of universes as sub-models of type theory.

6.4.1 Homomorphisms of models

The definition of a homomorphism of models of type theory follows the same template
as any algebraic structure: we have maps between all the (families of) sets which we
require commute with all of the operations these sets are closed under.

Example 6.4.1. To see an example of this process in miniature, recall that a group
(G, 0,+, —) consists of (1) a set G and (2) three operations 0 : G, +: G X G — G and
— : G — G satisfying a handful of equations. We can ‘read off’ the definition of a
morphism f : (G, 0g, +6, —¢) — (H, O, +x, —g) from this description. It consists of a

(2025-07-19) Cwf morphisms and Uy, Uy, U, . .. 257

function of sets fy : G— H such that the following equations hold:

Jo(0g) =0u fola+c b) = fola) +u fo(b) fo(=ca) = —rfo(a)

We have already given a definition morphisms of models in Definition 3.4.3 but
since there are vastly more sets and operations for models of ETT than for groups, the
definition is rather unwieldy. Our goal is to repackage this definition just as was done
for that of models into a more concise and categorical framework.

Morphisms of models of base type theory

To this end, let us begin by considering type theory without any connectives and
models consisting of only the operations described in Section 6.1 (e.g., plain categories
with families). Let us recall Definition 3.4.3 for this base type theory:

Definition 6.4.2. If M and N are models of base type theory, a homomorphism F
from M to N consists of the following data:

« A function F¢y : Cxp—> Cxpy

A family of functions Fsp(— —y : (A, T : Cxpq) = Sba(A,T) — Sby(Fex (A), Fex (T))

« A family of functions Fry(_) : (I' : Cxp) — Ty 0((I') — Ty p(Fex(T))

A family of functions
Frin(—-) + (T : Cxp) (A= Ty (1) = Tmp(T, A) = Ty (Fex (T), Fry (r) (A))

Moreover, we require that these functions commute with 1, —.—, !, id, o, p, q, and
substitution on types and terms. For instance, we the following equations:

Fox(Ipm) =18 Fspray)(Um) =!n

We can reformulate homomorphisms using the description of models given in
Definition 6.1.11. As a first step, we note the following:

Lemma 6.4.3. IfF : M — N then the data of Fc and Fsy, (- _) together with the require-
ments that these functions preserve o, id, and 1 is equivalent to a functor Cx oy — Cxn
which preserves the chosen terminal objects of these two categories.

258 Semantics of type theory (DRAFT) (2025-07-19)

Lemma 6.4.4. If F : M— N, the families of functions Fr,(_y and Frm (- —) together
with the properties that they commute with substitution are equivalent to a choice of
commuting square:

FTm
Tmpq FTmy

Ty m FTyy
FTy

Here we denote the functor between categories of context induced by F as F.

Proof. Unfolding the definition of natural transformation and F*, the conclusion follows
immediately, e.g., Fry sends an element A € Ty ,((T) to Fry () (A). O

These two requirements—a functor F between the categories of contexts preserving
1 and a commuting square between the presheaves of types and terms—record almost
all of the requirements of Definition 6.4.2. The only outstanding requirement is the
preservation of context extension. This is somewhat difficult to give a purely categorical
phrasing of because it necessitates preserving particular choices of objects defined with
universal properties.

Lemma 6.4.5. A morphism of models F : M — N consists of the following:
e A functor F : M\— N which preserves 1 on-the-nose.

* A commuting square of the following shape:

FTm
Tmpm F'Tmy

Ty m FTyn
FTy

Such that for allT : Cxpq and A : Ty 5((T'), we have F(T'. pA) = F(T). xFry (1) (A)
along with F(p »() = p n and Frmn (T A A[p p(]) (Qp) = qu-

Remark 6.4.6. One could also imagine requiring that morphisms between cwfs pre-
serve the empty context and context extension only up to canonical isomorphism.

(2025-07-19) Cwf morphisms and Uy, Uy, U, . .. 259

This viewpoint is systematically developed by e.g., Clairambault and Dybjer [CD14]
and Uemura [Uem21] constructs a further generalization of generalized algebraic
theories which ensures that these morphisms are the default obtained by the logical
framework. o

Dealing with connectives in morphisms of models

Thus far we have only discussed morphisms of type theory without any connectives.
To extend our description of morphisms to full ETT, we must also specify how a
morphism of models interacts with e.g., I, %, and so on. Notably, since a connective
extends the theory of type theory with new operations and equations but no new sorts,
to extend our definition of morphism requires only that we add more conditions rather
than imposing any new data.

We once more recall a specialized version of Definition 3.4.3 dealing only with
Unit:

Definition 6.4.7. A morphism F : M — N of models of type theory with Unit
consists of a morphism of models of base type theory of F : M — N such that F
satisfies the following equations:

Fryr)(Unit o) =Unity Frin(r,unity) (ttp) =ty
The following is a direct rephrasing of these equations:

Lemma 6.4.8. If F : M— N is a morphism of models of base type theory and M and
N are both equipped with a choice of unit types, F extends to a morphism of models with
Unit just when the following diagram commutes:

Fr(tty)
m
F(1) =1 Tm pq F*Tmy
F(1) =1 TY pm FTy n

F*(Unit y)

260 Semantics of type theory (DRAFT) (2025-07-19)

For a general connective ©, we can specify the commutation of F with the opera-
tions of © using a diagram based on the commuting square specifying the formation
and introduction data of a connective (Slogans 6.2.10 and 6.3.13). In particular, we have
no need to specify that the elimination operator is also preserved, as this follows for
free.

Remark 6.4.9. Note that if we instead used Slogan 6.3.31, we would have to impose
additional requirements to make sure that F commuted appropriately with the chosen
weak stable orthogonality structure. o

However, some care is required. In the case of Unit, we took advantage of the
fact that F* preserves 1 and therefore that we could relate the formation data for
Unit y(to that of Unit .. We will not have an isomorphism F*(Fg,) = Fg,, for each
connective ®, but we are always able to construct a canonical map Fg,, — F*(Fg,,) for
the connectives of ETT. For instance, since F* preserves limits and colimits and there are
maps Ty y— F*Ty 5, and Tm 5 — F*Tm , there are canonical (but non-invertible!)
maps relating the formation data of Eq, Bool, and Void.

The cases of IT and X are slightly more complex, as they involve polynomial
functors. We illustrate this principle for IT in detail and leave it to the reader to
extrapolate the principle to other connectives.

Definition 6.4.10. A morphism of models of base type theory F : M — N extends
to a morphism of models of type theory with IT if it satisfies the following equations
forall T : Cxpq, A: Ty p((T), B: Ty ,((T. pA), and b : Tm p((T'. A, B):

Fry(ry(ITp (A, B)) = I A (Fry (1) (A), Fry(r.y4) (B))
Frn(r.(A.B) (Am(D)) = An(Frm(r.pa,8) (b))

Notice that we have not included any equations governing app. This is because
the desired equation holds automatically thanks to those equations governing A along
with the § and 5 laws for IT-types:

Lemma 6.4.11. IfF : M— N is a morphism of models with I1-types then the fol-
lowing holds for allT : Cxp, A @ Ty \(T), B : Ty p((T.pmA), a : Tmp (T, A), and
[Tmp (T, IIp (A, B)):

Frm (1,Blid pi. pial) (APP p (> @) = app pq (Frin (1,11, (A,B)) (f)s Frm(1,4) (@)

(2025-07-19) Cwf morphisms and Uy, Uy, U, . .. 261

Proof. This is a consequence of the § and 5 laws:

Frm (r,Blid . maln0) (@PP (S @)

= Frm(x.Blid pmalp) (@PP M (F [P s @ p0) [id - mal)

= Frmn(r.8) (aPP p (f [P m])s A p0)) [1d v A Frm(r,4) ()]

app v (AN (Frm(r.8) (@PP p (F [P p]s n)))s Frm(r.a) (@)

app n (Frm (r.mmp (4.8) (Am(@PP o (F[P pm]s A p)))s Frm(r,a) (@)

app n (Frm (1.1, (4,8)) ()s Frm(r,4) (@) i

Remark 6.4.12. This proof is essentially a combination of the inter-derivability be-
tween app and A~! along with the observation that natural transformations which are
pointwise isomorphisms are natural isomorphisms. o

We will now reformulate the equational presentation of Definition 6.4.10 into a
less symbol-heavy diagrammatic formulation as was done for Unit. To start with, we
must specify the canonical maps between the formation and introduction data of IT ¢
and ITy,.

Lemma 6.4.13. IfF : M — N then thereisacanonical mapa : Py, Ty — F*(Pr, Ty o).

Proof. Thisis easiest to show using Lemma 6.2.15: if T' : Cx 5(then P, Ty »(T') consists

of pairs 2 avy , (r) Ty m(T'- mA). Similarly, F* (Pr, Ty) (T) = 21y (r(r)) TY M(F(D)-NA).
We now use Fr, while taking advantage of the fact that F(I'. pqA) = F(T'). v Fry (1) (A):

a T (A, B) = (Fry(r)(A), Fry (.4 (B))
We leave it to the reader to check that this assignment is natural. O
Lemma 6.4.14. IfF : M — N then there is a canonical map a : P, Tm g — F*(Pr, Tmy).

Lemma 6.4.15. IfF : M — N is a morphism of models of base type theory, F extends to
a morphism of models of type theory with I1 just when the following diagram commutes:

Py (Tmy) ————— Tmy

N N\

F*(Pry (Tmy)) ————— F*(Tmy)

N

F*(Pry (Tmy)) ———— F'(Tyy)

262 Semantics of type theory (DRAFT) (2025-07-19)

Proof. Note that the front, back, left, and right faces commute for an arbitrary mor-
phism of models of base type theory. It therefore suffices to show that extending
to a morphism to support IT is equivalent to the commutation of the top and bot-
tom squares. Unfolding, the commutation of the bottom square is equivalent to the
following equation for all T : Cxp, A : Ty 5((T), and B : Ty »(I'. pA):

Fry(r)(TIpm (A, B)) = Ty (Fry (1) (A), Fry(r.pa) (B))

Similarly, the bottom square is equivalent to the following equation for all " : Cx 4,
A: TyM(P), B: TyM(F.MA), and b : TmM(F.MA, B):

Frm @y (AB)) (Am (A, B, b)) = AN (Fry 1) (A), Fry(r.54) (B), Frm(r.54,8) (D))
These exactly correspond to the requirements ensuring that F preserve IT. O

Remark 6.4.16. 'We can re-express the above 3-dimensional diagram into a square in
Pr(Cxp)

Py (mp) M

F*(Pry(my)) ————— F'nn o

In total then, a morphism F : M — N of models of type theory with some set of
connectives consists of a morphism of base type theory which satisfies the additional
properties required to commute with all relevant connectives.

6.4.2 Universes as sub-models

We now reap the rewards of our effort investigating morphisms of models of type
theory, as it allows us to give a concise definition of when a model M supports a
hierarchy of universes. For this subsection, let us fix a model M and we will once
more suppress M as a subscript, instead simply writing e.g., Ty or IL

Structure 6.4.17. A universe structure on a model of type theory M consists of the
following:

« AtypeUgr : Ty 5(T') forevery I' : Cx (and a family of types Elyr : Ty ,(I'.Uqr).

« Equations Uyr[y] = Upa and Elgr(c)[y] = Elga(c[y]) for every y : Sba(A,T)
and ¢ : Tmp(T, Upr)

(2025-07-19) Cwf morphisms and Uy, Uy, U, . .. 263

« For each of I1, %, Eq, Unit, Bool, +, Void, Nat, there is an operation pi, sig,
eq, unit, bool, coprod, void, nat e.g., pi(co,c1) : Tmp((T,Ujy) whenever ¢y :
Tm (T, Up) and ¢; : Tm pq(T.Ely(co), Up).

« For each of the connectives above, an equation stating that the operator com-
mutes with substitution e.g., pi(co, ¢1)[y] = pi(colyl, c1[y-El(co)]) whenever
Y : Sba(A,T), co : Tmp(T,Up) and ¢1 : Tmpq(T.Ely(co), Up).

« For each of the connectives above, an equation stating that El commutes with
the operation e.g., Ely(pi(co, ¢1)) = pi(Ely(co), Elg(c1)).

As is routine, the first two points are equivalent to a pair of natural transformations:

Lemma 6.4.18. The operators Uyr and Elor and the substitution equations on them are
equivalent to a pair of natural transformations

Up:1—Ty El:U;Tm*—Ty

The challenge is to reformulate the final three points. While it is possible to specify
operators such as pi, sig, and so on individually, this is rather laborious. Instead we
opt for a different approach. We begin by observing the following:

Lemma 6.4.19. The projection y(p) : y(1.Uy.Ely) — y(1.Uy) obtains a canonical
representability structure from 1.

Proof. Since y(p) : y(1.Uy.Ely) — y(1.Uy) is a pullback of x, the left-hand square in
the following diagram is a pullback:

y(T) (L0 y(1.Uy) Ty

In particular, we may use y(I'.Ely(c)) as the chosen pullback for the representability
structure on y(p). O

Corollary 6.4.20. Cxyq and y(p) : y(1.Uy.Ely) — y(1.Uy) is a model of base type
theory Uy. Moreover, the identity functor and the following commuting square then

264 Semantics of type theory (DRAFT) (2025-07-19)

induce a morphism of models I : Uy — M:

y(1.Up.Ely) ——— Tm*

y(1.Up) Ty

Lemma 6.4.21. The remaining structure specifying a universe in M is equivalent to the
data equipping U, with all the connectives of type theory such that I induces a morphism
of models.

Proof. We describe this explicitly for Void and Unit, as the remaining connectives are
identical but more notationally cumbersome. In the case of Unit, to equip U, with a
unit type such that I is a morphism of models is equivalent to choosing a left-hand
square in the following diagram:

tt
h
1 y(1.Uy.Elj)) —— Tm*
_
1 1.U, T
Unit

Since both squares are required to be pullbacks, a choice of the left-hand diagram is
fully determined by a morphism Unitq,, : 1—> y(1.Up) such that the bottom triangle
commutes. This precisely corresponds to the data closing U, under Unit in M.

For Void, the procedure is similar. Equipping y(p) with an interpretation of Void
such that I is a morphism of models corresponds to picking a left-hand square in the

(2025-07-19) Cwf morphisms and Uy, Uy, U, . .. 265

following diagram, subject to an orthogonality condition:

0 y(1.Uy.Elj) ———— Tm*
1 1.U T
w y
Void

The orthogonality condition states that the map X X 0— X x Void g, y(1.U,.El) is
orthogonal to y(p). Since the right-hand square is a pullback, the left-hand map is
equivalent to X X 0— X X Void"Tm*® and since y(p) is a pullback of 7, this condition
is automatic.

In particular, the only requirement in the choice of such a left-hand square is the
map Void ¢, : 1—>y(1.Up) subject to the commuting triangle above. This is equivalent
to the data closing U, under Void in M as required. O

Theorem 6.4.22 (Categorical reformulation of U). A universe structure on M is equiv-
alent to the following:

* A choice of natural transformations Uy : 1— Ty and Ely : U;Tm® — Ty

 An interpretation of the connectives I1, X, Unit, Eq, Void, Bool, Nat, and + into
the model Uy = (Cxp, y(1.Up.Ely) — y(1.Uy)) such that the canonical map
I: Uy—> M is a morphism of models with all of these connectives.

Hierarchies of universes With Theorem 6.4.22, it is straightforward to describe
the requirement that M supports a hierarchy of universes. Given the amount of
data that is required to describe such a hierarchy in an unfolded fashion, we will
present the categorical repackaging and leave it to the diligent reader to compare with
Definition 3.4.2.

Lemma 6.4.23 (Categorical reformulation of a hierarchy). M supports a cumulative
hierarchy of universes just when it is equipped with the following:

e For each i : N, a choice of natural transformations U; : 1— Ty and El; :
UTm®* —Ty

266 Semantics of type theory (DRAFT) (2025-07-19)

e For each i, an interpretation of the connectives I1, ¥, Unit, Eq, Void, Bool, Nat, +,
andUj for all j < i into the model U; = (Cx p, y(1.U;.El)) — y(1.U;)) such that
the canonical map U; — M is a morphism of models.

e For each i, a natural transformation lift : y(1.U;) — y(1.U;y1) such that the outer
square commutes and the left-hand square in following diagram is a pullback:

/\

1.Ui+1.Eli+1 ******** > y(l.Ui+1.Eli+1) —— Tm"*

y(1.Upy1)) —————— y(1.Usq) Ty
lift

Moreover, we require that left-hand square induce a morphism of models U; — U; .

Exercise 6.15. Isolate the necessary operations and equations on a model for sup-
porting a hierarchy of universes and argue that this structure is equivalent to the
requirements of Lemma 6.4.23.

6.5 Locally cartesian closed categories and coherence

Thus far in this chapter, we have spent a considerable amount of effort investigating
the definition of a model of type theory. Despite this effort, we have only met two
examples of models: the syntactic model (Theorem 3.4.5) and the set model (Section 3.5).
In general, constructing a model of type theory is hard work because of all the data
that must be chosen and the properties that must be checked. Our goal is to ease
this process by constructing a technique in this theorem which takes any category
satisfying certain properties (e.g., finitely cocomplete and locally cartesian closed) and
producing a model of type theory (Theorem 6.5.35). This is particularly convenient as
we have a large stock of such well-behaved categories (e.g., Pr(C) for any C) and we
therefore a whole supply of models.

Rather than proceeding straight to this coherence theorem, we actually begin by
studying the reverse question: given a well-behaved model of type theory M, what
structure does Cx 5 possess? We shall see that a number of type-theoretic connectives
correspond directly to recognizable categorical structures. In particular, we shall show

(2025-07-19) Locally cartesian closed categories and coherence 267

that for well-behaved models, the category of contexts is finitely complete, locally
cartesian closed and possesses finite coproducts and a natural number object. Despite
this connection, we will find a fundamental mismatch of strictness between locally
cartesian closed categories and models of type theory. This sets the stage for our
coherence theorem which papers over the difference and shows that any category C
satisfying these properties can be realized as the category of contexts of a model of type
theory. In reality, even more is true: one can set up a (bi)-equivalence of (2-)categories
showing that the two procedures are inverses [CD14].

6.5.1 From models to locally cartesian closed categories

In this subsection, we will fix a model of type theory M which we will assume to be
democratic. Roughly, our goal is to analyze Cx 4 as a category and so it is useful to
know that the behavior of Cx 4 is fully controlled by types. That is, to assume that
every context is built from the empty context by repeatedly extending with types. Note
that while this is true for the syntactic model 77, it need not hold in arbitrary models.

Definition 6.5.1. A model M is democratic if for every context I : Cx 5 there exists
atype A : Ty (1) along with an isomorphism I' = 1 y(. p(A.

Lemma 6.5.2. The syntactic model T is democratic.

Proof. While this may seem obvious, a modicum of effort is required to apply the
induction principle for the syntactic model (Theorem 3.4.5) and we spell out some of
the details here to illustrate the process.

We will construct a model of type theory 7; along with a homomorphism i :
Jo— 7 and we will further arrange for contexts in 7, to be syntactic contexts I' for
which there exists a closed type A and isomorphism 1.A = I". The map i will then send
I'in 75 to T in T. By initiality, there is a unique model homomorphism ! : 7~ — 75 and
(by initiality once more) we must have i o! = id. Consequently, i is a split epimorphism
and so every I' : Cxq is in the image of i—precisely what we were attempting to prove.

It remains, therefore, only to construct 7y and i. Let us take the category of contexts
Cxq; for 75 to be the full subcategory of 7~ spanned by contexts I' for which there
exists an isomorphism I' = 1.A for some closed type A. The chosen terminal object of
Cxq lands in this full subcategory: 1 = 1.Unit. We write i for the inclusion functor
TJo— T . The presheaves of types and terms over Cxg; are given by restricting those

from 7 :

Tyg = i"(Tyq) =Tygqoi Tm;6 =i"(Tm%) =Tmi-oi gy =i (mg) =y oi

268 Semantics of type theory (DRAFT) (2025-07-19)

To show that 7; is representable, recall that (1) i* preserves (co)limits and (2) i*y (i(T)) =
y(I') since i is fully-faithful. It therefore suffices to show if I' : Cxg; and A € Ty (')
then i(T").7A lies in the image of i. By construction, there must be some B such that
i(T) 2 1.Band so 1.X(B, A) = i(T').A as required.

Finally, we must show that 7 is closed under all the connectives of type theory and
that i extends to a homomorphism of models. There is a conceptual reason for this: all
connectives may be defined using finite limits and polynomial functors Py where f is a
morphism built from pullbacks, composites, and 7. One may check that i* preserves all
of these operations—for polynomials, one uses Lemma 6.2.15—and therefore applying
i* to structure closing 7~ under each connective yields the appropriate structure in
7. Moreover, one obtains a morphism of models extending i using id : wq; — i* 75
(Lemma 6.4.5) which commutes with all connectives more-or-less tautologically.

However, a much less sophisticated though more tedious approach suffices: one
may simply show that each operation listed in Definition 3.4.2 can be defined on 7,
using the appropriate operation on 7. For instance, for IT we must define the following:

7« (T : Cxg)(A: Ty (D) (B : Ty (I A)) — Tyg (D)

We choose Il7; = IT+ which is well-formed because i(I".4;A) = i(T").7A by definition.
The same procedure and argument works for every other operation. O

We have observed all the way back in Chapter 2 that the terms of a type A € Ty (T)
can be recovered from Cx through the weakening substitution p : . A—T. More
generally, if A, B € Ty(T') then there is an isomorphism between functions Tm(T', A —
B) and homcy . (I"A—T,I.B—T). We shall use this to produce a more convenient
description of the slice category Cx r using terms of types and terms in context I'. We
begin by showing that each substitution is isomorphic to a weakening substitution:

Lemma 6.5.3. If§ : ' — A then there exists p , : A.A— A along with an isomorphism
5 =p, inCxyp.

Proof. By democracy, we know that I' = 1.4y and A = 1.B for some B. Without loss of
generality, we may replace I" by 1.4 and A by 1.B such that § : I'— A is of the form
1.b where b € Tm(1.Ao, B[p]).

We then choose A € Ty(A) to be Z(Ao[!],Eq(B[!],q[pl,b['.A¢])). In informal
notation: 1,x : B+ 3,4, Eq(B, b(a), x) type. Next, we must construct an isomorphism
d = p,. For this, we choose fy = J.pair(q,refl) : §— p, for one direction and
fi = !.fst(q) : p4, — 6 for the other. For the latter, note that we must use equality
reflection to ensure that 6 o f; = p as required of a morphism in Cx /5. We leave it to
the reader to check that these are inverses using the f and n laws for X and Eq. O

(2025-07-19) Locally cartesian closed categories and coherence 269

Advanced Remark 6.5.4. Homotopy-theoretic readers may observe that there is some
similarity between the replacement of I' — A by p , and the factorization of a map of
spaces f : X — Y into a trivial cofibration followed by a fibration X — Xxy Y%l — v,
This would be particularly evident if we replaced Eq with Id and used the dictionary
between intensional type theory and homotopy theory explored in Chapter 5. In fact,
this same factorization exists for intensional identity types and can be used to structure
the category of contexts of a model of ITT into a fibration category [GG08; AKL15]. In
the case of Eq, the first map is a genuine isomorphism so this factorization system is
trivial. o

Corollary 6.5.5. There is an equivalence of categories between Cx r and the category of
types Ty (I') whose morphisms hom (A, B) are given by functions Tm(I', A — B).

Remark 6.5.6. 'We emphasize that types in context I are viewed as maps into I'. This is
a curious reversal from both the notation I' + A type and Section 6.1 where I" behaves
like a domain of some function in both. This trick of viewing maps into an object as
families indexed by that object is common in category theory and geometry; it allows
us to define families even in the absence of an “object of objects”. More concretely,
Ty : Pr(Cx) is not representable and so we must express dependent types (maps
y(I') — Ty) more indirectly. We shall analyze the extent to which this process can be
reversed in Section 6.5.2 o

The pullback functors y* : Cx;r — Cx/, for each y : A—T also admit a familiar
description when transported along the equivalence constructed in Lemma 6.5.3. By
Exercise 6.3, pulling back I''A—T along y yields A.A[y] — A and the reader may
compute that it sends a morphism p.b : I.A—T.B to p.b[J.A]. In other words, when
translating between slice categories and terms and types in context, the pullback
operation between contexts is realized by substitution on terms and types.

With all of this effort, we can quickly rattle of a list of categorical properties
satisfied by Cx by leveraging corresponding types. This discussion closely tracks the
structure of Chapter 2: types with mapping-in properties correspond to limits and
right adjoints, those with mapping out properties to left adjoints and colimits, and
finally universes occupy an uneasy position of their own.

Types with mapping-in properties As ever, we begin with those types with
mapping-in characterizations.

Lemma 6.5.7. Every slice category Cxr has finite products. Consequently, Cx has all
finite limits.

270 Semantics of type theory (DRAFT) (2025-07-19)

Proof. Every slice category has terminal objects—in the form of idr—and so it suffices
to show that Cx/r has binary products. Passing to considering Ty (I') in context I', we
claim the product of A, B € Ty(T) is given by A X B (the non-dependent version of X).
To prove this, we must complete a programming exercise. We must argue that
if C € Ty(T) and f € Tm(T,C — A) and g € Tm(T,C — B) then there is a unique
function (f,g) € Tm(I',C — A X B) such that fst o (f,g) = f and snd o (f,g) = ¢g:

We define (f,g) = Ac — pair(f(c),g(c)) and the commutation of the diagram
along with its uniqueness are then consequences of the and 5 laws for X. O

Lemma 6.5.8. Ify : A—T theny” : Cx;r — Cx 5 commutes with finite products.

Proof. 1t suffices to check this problem for Ty (T') and Ty(A) where it is an immediate
consequence of the stability of X, fst, snd, and pair under substitution. m]

Exercise 6.16. Show that Cxr has exponentials and these are preserved by y*.
Lemma 6.5.9. Cx is locally cartesian closed.

Proof. This is a general consequence of the observation that Cx has a terminal object
and the fact that each slice category is cartesian closed and this structure is preserved
by pullback functors. O

For the sake of completeness (and because the result is recognizable), we can give
an explicit description of the right adjoint to pullback: y. : Cx ;5 —> Cx . We begin
by replacing A and y by p, : I A—T. In this case, the right adjoint to p* is given as
follows:

B e Ty(T.A) — II(A, B)
To show this, it suffices to construct an isomorphism of the following shape natural in
C:
Tm(T,C — II(A,B)) = Tm(T.A,C[p] — B)

Using the mapping-in characterization of II, we may replace the left and right sides
of this isomorphism with Tm(T'.C.A[p], B[p.A]) and Tm(T.A.C[p], B[p]). These are
naturally isomorphic by exchange.

(2025-07-19) Locally cartesian closed categories and coherence 271

Exercise 6.17. y* also has a left adjoint given by post-composition by y (this holds
whenever y* exists). Reformulate this left adjoint into another recognizable type-
theoretic operation.

Types with mapping-out properties Taking stock, thus far we have used I, Z,
Eq, and Unit (the last being a necessary consequence of democracy). What structure
do the other connectives of dependent type theory induce? Following our noses from
Section 6.3, we guess that the coproduct types + and the empty type Void suffice to
close Cx under finite coproducts and Nat induces an initial algebra for (1 U —).

Lemma 6.5.10. Cx has finite coproducts.

Proof. Considering the equivalent category Ty(1), we represent binary coproducts
A Ul B using the coproduct type, A + B. The rules governing this type are precisely
those necessary for universal property. Similarly, we realize the initial object with
Void. O

Lemma 6.5.11. Cxr has an initial (1 U —)-algebra (Definition 6.3.17) and pullback
functors preserve this initial algebra.

Remark 6.5.12. For the second claim to be well-formed, we must convince ourselves
that y* : Cx;r — Cx/ induces a functor Alg(1cx, U —)—> Alg(1cy,, U—). This
follows from the observation pullback commutes with both limits and colimits in a
locally cartesian closed category. ©

Proof. The initial (1 U —)-algebra in Ty(T) is given by Nat and the terms zero €
Tm (T, Nat) and suc : Tm(T, Nat — Nat). To prove initiality, let us fix A along with
a € Tm(T,A) and s € Tm(I';A — A). The unique algebra morphism « : Nat — A
is given by the following function (written in informal notation for clarity): An —
rec(n, a, s). This organizes into an algebra morphism because of the f laws of Nat and
it is unique with this property by the 7 law.

The commutation of these initial algebras with the pullback functor is then a
consequence of the stability of Nat and the attendant operators under substitution. O

Clearly this collection of initial algebras is fully determined by the initial algebra
for 1 U — in Cx. We shall call this algebra a stably initial (1 U —)-algebra.

Corollary 6.5.13. Cx has a stably initial (1 Ll —)-algebra.

272 Semantics of type theory (DRAFT) (2025-07-19)

Identifying universes in the category of contexts It remains to discuss how the
hierarchy of universes U; fit into this story. Here the answer is somewhat messier
because, unfortunately, universes in extensional type theory lack any clean description
through universal properties. Indeed, we shall see in Section 6.5.5 that universe
hierarchies can be a particular challenge when modeling type theory categorically.
We shall roughly follow the approach proposed by Streicher [Str05]. To begin with,
we recall the following definitions which roughly axiomatize the collection of maps
isomorphic to p : I".El(¢) —I" where ¢ € Tm (T, U):

Definition 6.5.14. If C is a category with finite limits a bare universe is a collection of
morphisms S in C which is stable under pullback; if = € S then f*m € S for all f:

AXpE —— E

_
S> f*m mTeS

A—— B

f

Notation 6.5.15. Each universe induces a full subcategory S,y of C;y whose objects
are those maps f : X — Y € S. Closure under pullback ensures that pullback functors
y* : Cry, — Cyy, restrict to S;y,. We say S contains an object Cif C—1 € S.

Obviously not much can be said about a bare categorical universe, but we can
refine this definition to impose conditions matching the existence of El along with the
closure properties of U. In other words, we insist that as a class of maps, S is generated
by pulling back (applying a substitution to) a single map (1.U.El(q) — 1.U) and is
closed under all of the categorical structures induced by type-theoretic connectives.

Definition 6.5.16. Consider C is a locally cartesian closed category with finite co-
products and a stably initial (1 LI —)-algebra and suppose further that S is a bare
universe in C. We shall call a bare universe S a universe if it comes with a chosen
map 7 : U®*— U € S such that every map in f : X — Y € S can be presented x*r for
some x : Y — U (r is generic for S) and such that it satisfies the following additional
properties:

1. S contains all isomorphisms.

2. S is closed under composition.

w

LI f:X—Yandg:Y—Zarein S then fig € S.

o~

I f:X—YeSthenA: X—XXxy X eS.

(2025-07-19) Locally cartesian closed categories and coherence 273

5. S,y is closed under coproducts and contains the initial (1 L —)-algebras in Cyy.

Lemma 6.5.17. Each U; induces a universe V; = {f | 3¢ € Tm(ILU;).f = p :
T.El(c) —T}.

Proof. As stated above, the generic map r is give by 1.U.El(q) — 1.U. To verify this,
fix p : T.El(¢) — T with Tm (T, U;). The following diagram is a pullback:

IEl(c) ——— 1.U.El(q)

T 1.U
l.c

To verify properties (1-5), we use the closure of U; under various connectives: Unit for
(1), X for (2), IT for (3), Eq for (4), and +, Void, and Nat for (5). All of these properties
are proven by essentially the same argument, so we illustrate the pattern by proving
(3). Fix f : Ty — T} and g : I} — I, such that f, g € S. We must show that g.(f) € S.

First, since f, g € S, we may replace them with isomorphic weakening maps and
reduce to considering f = p : T.El(¢;).El(¢;) —T.El(¢y) and g = p : T.El(¢y) —T.
Above, we showed that if T' = 1 then g. f could be realized by I".TI(El(cy), El(c;)) —T.
The same argument applies to a general I' and so it suffices to argue that

T.I1(El(co), El(c;)) —T € S

Since U; is closed under IT, this map is equal to T.El(pi(co, ¢;)) — T and the conclusion
is now immediate. O

Definition 6.5.18. A hierarchy of universes S, Sy, ... in a category C consists of a
collection of universes S; such that S; C S;,; and such that S;,; contains Uj.

Lemma 6.5.19. The collection Vo, V1, - -+ defined in Lemma 6.5.17 organizes into a
hierarchy of universes.

We summarize all of the insights of this discussion into the following theorem:

Theorem 6.5.20. If M is a democratic model of type theory then Cx pq is locally cartesian
closed and has finite coproducts, a stably initial algebra for 1 U —, and a hierarchy of
universes.

With additional effort, we could enhance Theorem 6.5.20 to the following theorem:

274 Semantics of type theory (DRAFT) (2025-07-19)

Theorem 6.5.21. The map M — Cx induces a functor CWF ger, — LCC from the full
subcategory of democratic models to the category of locally cartesian closed categories.

We will not attempt to prove this theorem as we are not showing any sort of categorical
equivalence between democratic models and locally cartesian closed categories (indeed,
we would need to enhance locally cartesian closed categories to account for Bool, Nat,
etc.). For further on discussion on this point, see Clairambault and Dybjer [CD14].

The remainder of this section is devoted to the converse question: given such a
well-behaved category C, can we find a (democratic) model of type theory M such
that Cxq =~ C. As the reader may infer from the length of this section, the question is
not as straightforward as one might hope.

6.5.2 The strictness problem

In this subsection, let us fix C to be a category satisfying the conclusions of Theo-
rem 6.5.20: local cartesian closure, existence of finite coproducts, etc. Our goal is to
study whether C can be realized as the category of contexts of some model M of type
theory. Running down the list of requirements of a model, we start with Cxq = C,
and we see easily that C has a terminal object (it is locally cartesian closed). We run
into trouble, however, with the very next piece of data: what should the presheaf of
types Ty » be?

Our goal is to “reverse” Theorem 6.5.20 and so we can start by asking a related
question: given a democratic model of type theory N, how can one recover Ty ,, from
Cxn? One plausible approach is suggested by Lemma 6.5.3. This result shows that since
N is democratic, every substitution A— T is isomorphic to a weakening substitution
I''A— T with A € Ty (T'). Consequently, there is a tight relationship between Ty, (I")
and Cxy/r given by sending A € Ty (T) to p : I.A—T. Accordingly, we begin to
search for a suitable definition of Ty , in terms of C,_.

Some caution is required, however, because even in the case of a democratic model
N the aforementioned correspondence is not a bijection. In fact, it is neither necessarily
injective nor surjective! Distinct types can be sent to the same context and there is no
guarantee that every morphism A —T' is equal to one of the form I''A—T'. What is
present is an equivalence of groupoids:

Lemma 6.5.22. Write C* for groupoid core of C: the wide subcategory which discards
all non-invertible morphisms. There is an equivalence Ty ,(I')= = CXN/EF.

Proof. The equivalence of categories restricts to an equivalence of groupoids as every
functor preserves isomorphisms. O

(2025-07-19) Locally cartesian closed categories and coherence 275

Exercise 6.18. Show thatif F : C — D is an equivalence of groupoids, then F induces
a bijection of sets C/~— D/~ where Cy ~ C; if there exists an isomorphism C, = C;.
What does this imply in the case of Lemma 6.5.22?

Exercise 6.19. Show that while Cx does not suffice to recover Ty, both of them
together fully determine Tm y. In other words, once Ty 4 is chosen Tm 4 is forced.

Fortunately, this complication is not as major a problem as it might seem. After all,
our goal in the section was only to define M such that Cx ¢ = C. We are therefore
not overly concerned with whether Ty ,, is determined uniquely, just with whether
there is any Ty 4 such that the induced groupoid Ty ,(C)= is C/EC. Motivated by this
line of thought, we therefore arrive at the following guess for a “functor” Ty ,,:

Ty m(C) = Ob(Cyc) ()

Unfortunately, this definition fails even the most basic test: this is not even a functor!
Indeed, while each f : C— D induces a pullback function f* : Ob(C;p) — Ob(C/c),
these are only truly well-defined up to isomorphism. Once we choose particular
representatives, we cannot expect that id* = id or that f* o g* = (g o f)*. In fact, it
is not guaranteed that sucha choice is even possible: Lumsdaine [Lum17] shows that
certain subcategories of Set can fail to have this property.

Exercise 6.20. Recall the standard explicit description of pullbacks A X¢ B in Set as
subsets of the cartesian product A X B, convince yourself that the maps Set,y — Set,x
induced by this realization of pullbacks are not functorial.

Once more, the situation improves slightly if we consider categories (or even
groupoids) rather than just sets: one can show that C,_ : C°P — CAT is a pseudofunc-
tor; f*og" = (go f)" and these isomorphisms are suitably coherent. The same is true
of the restriction of this functor to groupoids C/E_ : C°? — Grpd.

This is mismatch of equality versus coherent isomorphism is commonly referred
to as the coherence problem for dependent type theory and was famously overlooked
by Seely [See84]. Our task is then to find a suitable functor which approximates the
merely pseudo-functorial C/E_. There are two distinct approaches to this problem:

1. We can capitalize on some special feature of C which enables us to give a
functorial presentation of C /E_ to bypass this issue.

2. We can give a much more involved replacement of this pseudofunctor which
uses comparatively minimal information about C but then work harder to build
the rest of the model with this more intricate definition of Ty ;.

276 Semantics of type theory (DRAFT) (2025-07-19)

We will focus on the second approach: more complicated replacements for Ob(C;)
which apply with fewer assumptions based on C. We will discuss two such construc-
tions in the following two subsections.

Remark 6.5.23. For completeness, we note an important example of (1). Recall from
Section 6.1 that there is a canonical equivalence Pr(Cy),x = Pr(/ X). While we do not
prove it, this equivalence is pseudofunctorial in X such that the following diagrams
commute up to (coherent) isomorphisms for all f : X — Y

Pr(Co)yy —— Pr(Cy)/x

| |

Pr(/Y) _ Pr(fX)

Moreover, the assignment of X — f X and C +— Pr(C) are both functorial and so
the following gives a functorial replacement of Ob(C,-) when C = Pr(Cy):

Ty 4((X) = Ob(Pr([X))

This definition is used by Hofmann [Hof97] to give an interpretation of type theory
into Pr(Cy) and we refer the reader there for more information on this model. o

6.5.3 The universe construction

In this subsection, we present our first and simplest solution to the coherence problem,
modulo the additional assumption that our input category C has an additional universe.
We refer to this model as U(C).

The core idea behind the construction of U (C) is simple enough: we will take the
additional universe V in C (Definition 6.5.16) and use it as the basis for a workable
approximation of Ob(C,_). More specifically, V must come equipped with a generic
map 7 : E— B and we argue that y(B) is a sufficient definition for Tyq). We
emphasize that this is a necessarily imperfect approximation: y(B)(C) consists of
maps C — B which, by assumption, correspond to V-small families over C. This is
only a subset of Ob(C¢), but the raison d’étre of universes was that this subset of
families was closed under all the operations of type theory so that we could pretend it
was complete.

Warning 6.5.24. Strictly speaking this coherence construction does not meet our goals:
the model induced on C is not democratic. By choosing V to be a sufficiently large
universe, however, this has little impact in practice.

(2025-07-19) Locally cartesian closed categories and coherence 277

The astute reader might recognize both this argument and this idea from Section 3.5.
Indeed, while we motivated our use of Grothendieck universes purely in terms of
size considerations, it was also used to give a definition of presheaves of types and
terms. This construction is more-or-less a reprise of the set model construction from
earlier but with the salient properties of Set now axiomatized. To that end, let us fix a
category C and assume the following properties:

C is locally cartesian closed,

« has finite coproducts,

has a stably initial algebra for 1 LI —,
« and C has an (w + 1)-indexed hierarchy of universes Sy, . . ., S,.

In particular, we assume that C has an additional universe compared with Theo-
rem 6.5.20 which contains the hierarchy of universes already specified. We will not
use this largest universe to interpret U; for some universe level i. Instead, this final
universe will serve form the basis for our strictly functorial Ty (¢):

CX‘M(C) =C

Sbas(c) (T, A) = hom(T, A)

Tyq(c)(T) = hom(T, U,)

Tmyc)TLA:T—U,) ={a:T—U} | n,0a=A}

In other words, we take 7¢/(¢) : Tm:u(c) — Tyqc) tobe y(70) : y(U3) — y(Us).
Compare these definitions to Section 3.5 to see how Definition 6.5.16 serves as our
replacement for Grothendieck universes.

Exercise 6.21. Show that y(z,,) is a representable natural transformation.

What remains is to show that mq(¢) is closed under the various connectives. One
might fear that this process will be difficult. Fortunately, that difficulty has been shifted
into showing that C has an (w + 1)-indexed hierarchy of universes. Having assumed
this, the requirement that 7¢,(¢) is closed under all the connectives of type theory is
more-or-less true by definition. In particular, (1) ensures that 7¢;(¢) can be equipped
with the requisite structure for Unit, (2) handles X, (3) handles II, (4) handles Eq,
and (5) handles +, Bool, and Nat. We will go through the details for IT and Bool for
completeness.

278 Semantics of type theory (DRAFT) (2025-07-19)

Lemma 6.5.25. There exists a pullback square of the following shape in Pr(Cxq(c)):

P,Tm* Ty
_
P, Ty Tm*

Proof. We will construct this pullback square in two steps. First, we will construct the
corresponding square in C itself and second we will argue that y commutes will all the
relevant operations and functors involved. Accordingly, since the Yoneda embedding
preserves pullback square (along with all other limits) the desired square in Pr(Cxq/(c))
arises from the C version.

In more detail, recall that P,; was defined as the composite of three functors:

(Tm*®)* Ty Y1
Pr(C) ——— Pr(C)fme ——— Pr(C);ry, ——— Pr(C)

All three of these categories and functors have counterparts in C and the Yoneda
embedding then induces the following commutative diagram of functors where each
square commutes up to isomorphism:

(Tm*®)* T Ty,
Pr(C) —— Pr(C)jrm* — Pr(C);ry ——— Pr(C)

I ! ! I

| | | I
|

C Cue, Cu, ———C
Uz)* (T (Uo):

The main thing that must be checked in this diagram is the commutativity of the
inner square. This is a consequence of the more general fact thaty o f. = y(f). oy
whose verification we leave to the reader—it is a slightly more complex version of
the argument that the Yoneda embedding preserves exponentials. This shows that
P,(y(X)) = y(P,, (X)) and so we are reduced to constructing the following square in
C:

Ue

[} w

(2025-07-19) Locally cartesian closed categories and coherence 279

Since 7,, is generic for S,,, to construct this pullback square it suffices to show P, (7,) €
S»- Examining the definition of P, , we note that all three of the relevant functors
preserve elements of S, and so the conclusion follows. O

This proof methodology is a useful trick: since each of the operations involved in
defining various connectives (e.g., those given by Slogans 6.2.10 and 6.3.13) are available
in any locally cartesian closed category and preserved by any locally cartesian closed
functor. In particular, the Yoneda embedding commutes with all of these operations
and so we can transfer these structures from C to Pr(C) using y. We go through
another example of this with Bool. Here we must work slightly harder to rephrase
our requirements in the language of locally cartesian closed categories.

Lemma 6.5.26. There exists a commutative square of the following form in Pr(C):

101 Tm*

—

T
Bool(u(c) Y

Moreover, the gap map g : 1111—Tm?* X1, 1 = Booly, ¢ is left orthogonal to 1.

Proof. Let us recall that g M 7 is equivalent to requiring that the following canonical
map is an isomorphism:

(Tmo)Bool,u(C)ﬂ' SN (Tm')l I XTYIUI TyBOOI'H(C)”

As it stands, neither this requirement nor the commuting diagram above are formulated
in the language of locally cartesian closed categories as both mention a coproduct: 1L/1.
In particular, even if we formulate such a square in C, it is not automatic that it will be
preserve by the Yoneda embedding. Fortunately, we can replace all occurrences of L
with appropriate products as 1 LI 1 is used only in the domains of various functions.

We may reformulate our goal as constructing (1) a map Boolq¢;¢) : 1— Ty and
(2) a pair of maps trueq(c), falseq;(c) : 1 HBoolfL,(C)Tm’ such that the following
canonical map is an isomorphism:

Bool;,

(Tm*)B°Mu©™ — (Tm® x Tm*) XryxTy Ty O H©OT

280 Semantics of type theory (DRAFT) (2025-07-19)

This can then be recast into C. By assumption, S, is closed under isomorphisms
and coproducts and so we obtain a pullback square of the following shape:

1|_|1J us

1 U,

From this, this contains the required maps and the induced gap map is invertible by
construction. O

We may stitch these two lemmas, along with other similar arguments, together to
conclude the following:

Theorem 6.5.27. C supports a model of type theory U(C) with all connectives except
universes.

The poor behavior of universe hierarchies Unfortunately, the story around
universes is not nearly so simple. While a version of a universe hierarchy may be
interpreted into this model, it will not satisfy cumulativity nor any of the other defini-
tional equalities imposed on codes in Section 6.4. For example, neither the equations
lift (pi(co, c1)) = pi(lift(co), lift(¢1)) nor El(pi(cy, ¢1)) = II(El(cy), c;) will automat-
ically hold. The latter can be replaced with an isomorphism i.e., there is a pair of
mutually inverse functions between these types in the model but the latter may simply
fail to hold.

6.5.4 Presheaf models of type theory

While not strictly speaking necessary, it is too tempting to not go through the con-
struction of a hierarchy of universes in Pr(C) due to Hofmann and Streicher [HS97].
In light of the previous subsection, this construction also yields a model of type theory
in arbitrary presheaf topoi. The goal of this section is to prove the following:

Theorem 6.5.28. IfV is a Grothendieck universe (Definition 3.5.1) and C is a V-small
category, then following set of morphisms in Pr(C) forms a universe:

S={f:X—Y|VC:C,y € Y(C). f (y) is V-small}
We say that f is fiberwise V-small.

(2025-07-19) Locally cartesian closed categories and coherence 281

Exercise 6.22. Show that S is a bare universe i.e. that fiberwise small morphisms are
stable under pullback.

The heart of Theorem 6.5.28 is to construct the generic map for S, so we will begin
by showing that S is satisfies (1-5) of Definition 6.5.16.

Lemma 6.5.29. S is contains all isomorphisms, is closed under composition, pushforward,
diagonals, coproducts, and contains a stably initial (1 U —)-algebra.

Proof. All of these calculations are of a similar flavor. For instance, to show that S is
stable under composition, it suffices to show thatif f : X — Y and g : Y — Z are both
fiberwise V-small then so too is go f. Fix z € Z(C) for some C such that it now suffices
to argue that X = (g o f)7!(z) is V-small. We may decompose X into the disjoint
union Yy eg1(z) f ~1(xp). The conclusion then follows by assumption together with
the observation that V-small sets are closed under V-small indexed disjoint unions.

Note that for dependent products, matters are slightly complicated by the fact that
if C: Cand z: Z(C) then (g.f) !(z) is realized as follows:

(g*f)_l (2) = [ecrse Hyeg’l(z) f_l (v)
Here we must use the fact that C is V-small to ensure that [[..~r_,c is not too large. O

Proof of Theorem 6.5.28. It remains only to show that S has a generic family. Let us
write Pry (D) for the full subcategory of Pr(9) spanned by those objects X : Pr(D)
such that X (D) € V for every D : D. It is important here that we have required that
X (D) is literally a member of V, rather than merely being V small as it ensures that
Pry (D) is a small category whenever 9 is small. We then consider the following
presheaf:

B(C) = Ob(Pry (C)c))

B is strictly functorial: we send f : Cy — C; to the action on objects associated with
the functor F* : Pr(C)c,) — Pr(C/c,) where F = fi : C/c, — C/¢,. This presheaf will
serve as the base of our generic family. The total family is given as follows:

E:Pr(C)
E(C) = Xx-ob(pry (¢ e)) X(C,id)

m:E—B
”C(Xr_) =X

As an aside, both 7 and E can be specified as a presheaf over f ¢ B (Theorem 6.1.7):

E(C,X) = X(C,id)

282 Semantics of type theory (DRAFT) (2025-07-19)

Note that 7 € Sas 77! (C,X) = X"'(C, id) is V-small because X : Pry (C)c).
Fix f : X—Y € S. It remains to show that there exists a pullback of the following
shape:

X > E
_

Y B
p

Since fis fiberwise V-small, for each C : C and y € Y(C) there exists an elemento € V
such that v = f~!(y). Using the axiom of choice, we assemble these into a function f
and we define a natural transformation f : Y — B as follows:

Pe(y) =Ac:C" — C.f(C',y -¢c)

We leave it to the reader to verify that this indeed natural. Moreover, if C : C then
(Y Xg E)(C) is then equivalent to),y () f(C,y) which, in turn, is equivalent to
2yvo) f ~I(y). It follows that f3 then fits into the required pullback diagram. O

6.5.5 The local universes construction

We now turn to the coherence construction introduced by Lumsdaine and Warren
[LW15] and Awodey [Awo018]. For the sake of expediency, we present only a special
case of this construction and refer the reader to Awodey [Awo18] and Shulman [Shu19,
Appendix A] for more thorough treatments which deal with e.g., intensional type
theory and the non-democratic models one frequently encounters in the semantics of
homotopy type theory.

As in Section 6.5.3, let us fix a locally cartesian closed category C equipped with
coproducts, a stably initial (1 LI —)-algebra, a hierarchy of universes, etc. Unlike
previously, however, we do not insist on a top universe U, and instead we work a bit
harder to define Ty ;) and Tm£(c).

The key idea of the local universes construction is to compensate for the lack of U,
by choosing 7z (c) to be the sum of all possible choices; no single choice of universe
will necessarily suffice for every situation, but we shall show that in every situation

(2025-07-19) Locally cartesian closed categories and coherence 283

there is at least one suitable universe:

nrc) = 2re—Y(T) : Tmy(c) HTYL(C)

Explicitly, a type A € Ty () () is a pair of (1) a ‘local universe’ 7 : E— B and (2)
a ‘type in this universe’ f : I — B. A term of type A in context I then consists of a

section of A:
E

B

r— B

Notation 6.5.30. We have deliberately chosen to use E, B rather than A, T for the
(co)domain of a local universe in an attempt to disambiguate between morphisms in C
qua universes versus morphisms qua substitutions.

If we imagine that there is a single master universe then this definition collapses
to that of Section 6.5.3, but this definition allows the universe of types to change
between types. Before giving further intuition, we note that =z is a representable
natural transformation.

Lemma 6.5.31. 7 (c) is a representable natural transformation.

Proof. Consider the following pullback diagram:

p Tm g
_

y(T) Ty m

By the Yoneda lemma, hom(y(T), > .5 y(B)) isequivalent to },.5_,g hom(y(T), y(B)),
so we may factor the above diagram into two pullback squares for some 7 : E— B:

p y(E) Tmp
_
y(7)
y(O) y(B) Ty pm

In particular, P = y(E X X) and so 7 is representable. O

284 Semantics of type theory (DRAFT) (2025-07-19)

Let us suppose I' is a context in this nascent model (an object of C) and A = (7 :
E—B,f :I'— B) € Ty ;(¢)(C). Unfolding the above proof, we see that I'.A is given
by B Xg I' and the p is the projection B Xg I'—TI'. Consequently, there are many
distinct A = (7, f) which give rise to isomorphic maps B Xg ' —TI' and therefore
many distinct types A, B € Ty ;) (I') such that I'A = T.B.

Our earlier observation was the groupoid Ty () (I') ought to be equivalent to C/Er,
but this redundancy tells us that Ty ;) as a set is very far from being in bijection
with Ob(C/¢). This is vital: the many distinct representations of a given type is what
ensures that Ty (¢ is strictly functorial.

For instance, we can construct two types which give rise to the same extended
context by taking a type A realized by (z, f) in context I' and a substitution y : [, — T..
The type A[y] = (7, f o y) induces an isomorphic context to the distinct type (f*z,y).
Intuitively, the local universes model ‘delays’ implementing substitution by pullback
to ensure functoriality at the cost of many redundant representations of each types.
Fortunately, this duplication does not really impact the construction. All that matters
is that every such family f € C/EC can be realized by at least one type (say, (f,id)) and
that Ty (¢ is strictly functorial.

Exercise 6.23. Show that 7 () is democratic (Definition 6.5.1).

Closure under type connectives The heart of the local universes construction
is to close 7 (c) under the operations of type theory. This is more difficult than
Section 6.5.3 because we must describe how to form a Il-type when, for instance, the
two types are drawn from separate universes. Many of these arguments are formally
similar and so we shall detail only three connectives: Unit, Bool, and I1. We refer the
reader to Awodey [Awo18] or Lumsdaine and Warren [LW15] for other basic types
and to Appendix A of Shulman [Shu19] for universes.

Lemma 6.5.32. 7 (¢ supports unit types i.e., there exists a pullback square of the
following shape:

1 TmL(C)
_

—

T
Unit /¢, YL

Proof. A map Unit z(¢) : 1— Ty () consists of a local universe 7 : E— B and a
map f:1— B. Wetaker =id : 1—1 and f =id : 1— 1. By our earlier discussion,

3Just as with the universes construction, the universes obtained in this manner satisfy fewer equations
than the theory described Chapter 2.

(2025-07-19) Locally cartesian closed categories and coherence 285

we know that the pullback Unitz(C)Tm m—the extension of the empty context by

Unit £ (¢)—is given by E Xp 1 i.e. 1 as required. O

Lemma 6.5.33. 71 (c) supports booleans i.e., there exists a square of the following shape
whose gap map is orthogonal to 7 (¢c):

101 Tmgc)

—

T
BOO]L(C) YL(C)

Proof. We start by defining Bool £(¢) : 1— Ty ;) as the local universe 1 L 1— 1 to-
gether with type id. Direct calculation then shows that the pullback Boolz(c)Tmz(c)
is given by y(1 LI 1). It then suffices to show that 1 LI 1 — y(1 U 1) is orthogonal to 7.
This follows from the representability of 7 ;(¢) and we leave this calculation to the
reader. O

Lemma 6.5.34. 71 (¢) is closed underIli.e., there exists a pullback square of the following
shape:

Prro(Tmpc)) ——— Tmyge

|

Prroy (MY £(c)) o Ve
L(

Proof. We begin by defining Il r (¢). The input to IT £ (¢) consists of the following:
« acontextT' : C,

- atype A € Ty) () given by a local universe 74 : E4—> By and a map
fA : FHBA,

- atypein B € Ty ;¢ (T'.A) given by a local universe 75 : Eg —> Bp and a map
fB : T XBA EAHBB,

We must construct a local universe in along with a map into this universe. Just as
with the prior two examples, we choose a local universe which suitably ‘encodes’ the
dependent product. Drawing inspiration from Section 6.2, we define 7 : E— B to be

PTA (TB) : PTA (EB) — PTA (BB)

286 Semantics of type theory (DRAFT) (2025-07-19)

Under this definition, a map C — B consists of (1) a map C — B4 along with (2) a
map E4 Xp, C— Bg. We therefore obtain the required map f : I'— B precisely
from (fa, fg). The reader may verify directly that ITz(c)((7a, fa), (7, f3)) = (7, f)
assembles into the required natural transformation.

It remains to show that IT ;¢ fits into the desired pullback square. We begin by
calculating a term of I1 £ (¢) (A, B) with A, B as above. Unfolding definitions, a term is
amap t : ' —P,, (Ep) fitting into the appropriate commuting triangle:

PTA (EB)

PTA (TB)

P, (B
(far fo) (Be)

By universal properties of P,, (Eg) and P, (7g), t corresponds to (1) amap t; : I' — By
and (2) amap t; : E4 Xp, I' — Ep. The commuting triangle above forces I' — By4 to be
fa and further ensures that 75 o t; = fg. In other words, an element of I1 £ (¢) (4, B) is
precisely determined by an element of B in the context I'. /(¢)A. The reader may check
that this equivalence is natural in order to obtain the required pullback square. O

The final result One can proceed as we have done in Lemmas 6.5.32 to 6.5.34 to
show that the model based on local universes is closed under all the connectives of type
theory (sans universes). With further effort, one can also account universes [Shu19,
Appendix A] to some extent in this theory, though as of writing this construction is
not known to support cumulative universes.

Putting these pieces together, one arrives at the following result:

Theorem 6.5.35. If C satisfies the conclusion of Theorem 6.5.20 then 7 z(c) extends
to a democratic model of type theory with all connectives whose category of contexts is

precisely L(C).

To close out this lengthy section, let us list a few potential applications of Theo-
rem 6.5.35 and, more generally, the connection it implies between locally cartesian
closed categories and type theory.

Broadly, there are two classes of applictions:

1. We can now use locally cartesian closed categories to construct exotic models of
type theory

(2025-07-19) Canonicity via gluing 287

2. We can now use type theory to reason about exotic locally cartesian closed
categories.

We content ourselves with only a few examples in the literature of each, as these
two classes of applications contain a large swathe of modern type theory.

For the first application, a number of independence results are now readily available
and, in particular, we may use Theorem 6.5.35 with various topoi to delivering on some
of the independence results promised in Section 2.7. One may use the model of type
theory in Pr({0 < 1}) = Set™ to show the independence of both the law of the excluded
middle and the axiom of choice from ETT. Exchanging presheaf topoi for sheaf topoi,
one can falsify Markov’s principle [CM16]* and various other constructive taboos.
Using instead various realizability topoi [vOo0s08], one can show the consistency
of Church’s thesis with extensional type theory. More recently, Andrew Swan has
announced a proof that not all quotient types are definable in ETT using similar
methods [Swa25].

In the second direction, one may use the model of extensional type theory available
in Pr(C) to give a succinct account of all of the structures defined in Sections 6.1 to 6.4.
In particular, the interpretation of dependent products in Pr(C) yields a semantic
version of higher-order abstract syntax [Hof99] and this maneuver is already present
in Awodey [Awo018]. More strikingly, the same model of type theory in cubical sets
can be used to succinctly construct a model of cubical type theory [OP16]. The same
approach applied to categories arising from Artin gluing may be used to give conceptual
arguments for the normalization of various type theories [SA21; Ste21; Gra22].

6.6 Canonicity via gluing

In Section 3.4, we discussed how various metatheorems of type theory can be reduced
to questions about models of dependent type theory. In this section, we follow one
such reduction to deliver on a result promised earlier. We will construct a particular
model of extensional type theory and from it conclude that extensional type theory
satisfies canonicity (Definition 3.4.9). In addition to showing the validity of a crucial

4Coquand and Mannaa opt for a more elaborate approach to deal with the relatively poor behavior
(particularly in constructive metatheory) of hierarchies of universes which we have largely ignored in
this section. See Gratzer, Shulman, and Sterling [GSS22] for more discussion on this point

288 Semantics of type theory (DRAFT) (2025-07-19)

property, this argument exemplifies the style of gluing argument which has become
widely used technique in dependent type theory.
The basic outline for all arguments of this style breaks down into three steps:

1. We construct a particular model G.

2. We exhibit a morphism of models 7 : G— 7 from this freshly constructed
model to the syntactic model.

3. Using the initiality of syntax, we conclude that 7 has a section i : G — 7 where
initiality tells in particular that 7 o i = id.

The goal is to arrange the first and second steps in such a way a sectionto G — 7~
yields the desired theorem. For instance, in this section we wish to prove canonicity at
Bool. Accordingly, we will arrange matters such that Tmg(1g,Boolg) = {0,1} and
the map 71mg (14.B00l;) sends 0 to true and 1 to false. With these two assumptions
to hand, it is only a short argument to conclude canonicity. Indeed, we note that if
b € Tmq(1,Bool) the equation o i = id ensures the following:

b= TTmg (1g.Boolg) (iqu-(l,Bool) (b))

By assumption, the image of 71mg(14,B00l) 1S {true, false} and so we know that b =
true or b = false, as required.

The heart of the argument is therefore contained in the first two steps. In fact,
they often happen somewhat simultaneously—one usually constructs the model G
in such a way that the definition of 7 is immediate. We shall how this holds true of
canonicity, where the actual derivation of canonicity (Theorem 6.6.14) is quite short
compared with the construction of the model and homomorphism which both take
place in Sections 6.6.1 and 6.6.2.

The canonicity model This leads us to the next question: where does G come from?
We know what this model must provide: we must have Tmg(1g,Boolg) = {0,1}.
With just this constraint, however, it is far from obvious where such a model ought
to come from. We have met one model with Tmg(1g, Boolg) = {0,1}: the set model
S (Section 3.5). However, there is no suitable morphism 7 : S — 7, so we cannot
simply take the set model off the shelf. We have something of the opposite problem
with syntactic model 7~ where it is easy to obtain a morphism 7, but where we cannot
directly establish Tm4(1, Bool) = {0, 1}.

In fact, G will be a somewhat odd model and, in some formal sense, a mixing of
both 7 and S (see Section 6.6.4). Each sort in G will be interpreted a X type pairing
an element X° of the appropriate sort from 7~ with some additional data X* specific to

(2025-07-19) Canonicity via gluing 289

proving canonicity. Projecting out the first component X° will then give rise to the
homomorphism G — 7. The complexity of dependent type theory means that the
additional data X* is hard to summarize concisely, but its role is precisely to ensure
that an element of Tmg(1g5,Boolg) will consist of a closed boolean term b° along
with a proof that either b° = true or b° = false. The data contained in X* becomes
more complex to account for open terms and terms of other types, but this complexity
is precisely what is required to show that every closed boolean can be appropriately
equipped with the canonicity data just described.

Gluing (specifically, Artin gluing [AGV72]) enters the picture as a conceptual way
to structure all of this additional data. It is a categorical construction which pastes
together two categories along a functor and, in this case, we shall find we can gluing
together the syntactic model and the set model appropriately to obtain the model.
While geometrical considerations motivated the original construction, its application
to proving metatheorems can be traced to Freyd [Fre78]. Since then, the methodology
has been applied and adapted to a wide variety of different systems and metatheorems.

We begin with the definition of Artin gluing in its most general form:

Definition 6.6.1. If C and D are categories and F : C — D then the gluing category
GI(F) is defined such that:

« an object X : GI(F) consists of a triple (D : D,C : C, f : D—F(C)),

« a morphism g : (Dy, Cy, fo) — (D1, C1, f1) consists of a pair of morphisms g :
Dy— D, and g; : Cy — C; fitting into the following commutative diagram:

90
Dy D,

fo fi

F(C F(C
(Co) Flon) (C1)

Generally, if C and D enjoy some categorical properties (e.g., C and D are locally
cartesian closed) and F is sufficiently well-behaved (e.g., preserves finite limits) then
(1) GI(F) will inherit these properties and (2) 7r; : GI(F) — C will preserve them. For
instance, Freyd [Fre78] capitalize on the fact that GI1(F) forms an (elementary) topos
in certain situations and 7; is a logical morphism in those cases. See Lambek and Scott
[LS88] for a textbook account of this proof together with the argument connecting it
to Freyd’s result.

We shall be interested in the case where C and D are the categories of contexts
associated to a pair of models and F preserves “enough” of this structure—in particular,

290 Semantics of type theory (DRAFT) (2025-07-19)

when F is a pseudo-morphism of models [KHS19]. Under these assumptions, we may
equip GI(F) with the structure of a model of type theory and upgrade the functor
71 : GI(F) — C to a morphism of models. By carefully choosing C, D, and F, we may
use this procedure to procure the required model G and homomorphism 7 discussed
above. While one could construct gluing models at this of generality, we will focus
on the more concrete case arising from proving canonicity and return to the general
result only after carrying out this proof.

In particular, we shall focus on case where C is the syntactic model, D is the
set model, and F is the global sections functor I'c = hom(1,-) : C — Set.” In this
situation, we may unfold to see that objects of GI(I") are pairs of (1) an object I'° of
Cx along with (2) a family of sets X, indexed by y € hom(1,T°). We shall view these
families of sets as proof-relevant predicates on global elements of I'* and often write
the collection as I'®* : hom(1,T°) — Set.

The definition of Ty we build on top of GI(I') and the interpretations of each
connective shall ensure that whenever y° € Sb(1,I'°), the elements of I'*(y°) provide
information on how to place each term ‘contained’ within y into canonical form. For
instance, if I'° = I} A then each y* € I'*(y°) will (1) describe how to place q[y°] into
canonical form as well as (2) contain an element of T'*(p o y°).

Substitutions in this nascent model are ordinary syntactic substitutions y° €
Sb(A°,T°) together with a function assigning to each pair 6° € Sb(1,A°) and §° €
A®(6°) an element of I'*(y° o §°). In other words, a syntactic substitution together
with a procedure ensuring that this substitution preserves canonicity evidence.

Remark 6.6.2. To those familiar with logical relations, we note that models based on
gluing are a method of categorically reconstructing this technique. See, for instance,
Mitchell and Scedrov [MS93]. o

We have thus far been deliberately vague about what canonicity evidence shall
mean precisely and this vagueness shall persist for a while longer yet; it will be
formally specified only when we close G under various connectives. We note, however,
we shall require more information than just the fact that a term can be placed into
canonical form. For instance, for elements of the universe ¢ we shall require not just
the canonical form c but also a description of the canonicity evidence associated with
El(c). In particular, accounting for the universe makes it vital for us to consider general
proof-relevant data for canonicity rather than merely having a predicate.

Assumption 6.6.3. we shall assume a hierarchy of Grothendieck universes Vo € V; - - - €
V,, as in Section 3.5.

>Note that we have not said “global sections homomorphism”, as I' is not a homomorphism of models.
It does not, for instance, preserve dependent products.

(2025-07-19) Canonicity via gluing 291

6.6.1 The bare cwf structure of the gluing model

We begin by constructing a model of bare type theory G expanding on the earlier
intuition given above. As mentioned above, we shall take Cxg to be Gl(I'cy), so it
remains only to define the empty context, Ty s, Tmg, and to define context extension
and the attendant structure.

The empty context—the terminal object in Cxg—may be constructed directly:

1g = (1714 — {x})

Exercise 6.24. Prove that 1 is actually a terminal object.

We now turn to the construction of terms and types. Prior to doing so, it pays to
start fixing some notation to allow definitions to be more compact and readable.

Notation 6.6.4. By convention, we shall superscript variables ranging over elements
of 7~ by o and families of proof-relevant predicates or witnesses by e. Accordingly, a
G-context T is a pair (I'°,T'*). We shall also use overload these superscripts to denote
projections; if I' : Cxg we write I'* for 7,(T') and likewise with I'°.

With all of this notation, we may now define the presheaf of types in G:

Tyg : Pr(Cxg)
Tyg(D) = Xaceryae) [yeesbare) I*(y°) = Tm(LA[y°]) — Vo,

Exercise 6.25. We have specified the action of Ty g on objects of Cxg but not mor-
phisms. Give the functorial action and check that it satisfies the functor laws.

In other words, a G-type consists of a syntactic type A together with a family of
proof-relevant predicates. We would like to consider a single proof-relevant predicate
on the closed elements of A but this makes no sense in dependent type theory since A
itself may be open. Accordingly, we must instead consider the more complex family of
proof-relevant predicates indexed by closing substitutions y° € Sb(1,T°) paired with
v e ().

This is our first encounter with an unfortunate truth: the amount of indices and
dependence in gluing models can be quite overwhelming (already we have three indices
to the predicate). Let us take a moment to compress this definition slightly. If T' : Cxg
we observe that the dependent sum 3} o cgp(1,re) I'*(y°) is equivalent to hom(1g,T).
We shall often suppress this isomorphism, such that Ty ; (I') may be written as follows:

2aety(r) [yenom(1gry) TM(LA[Y°]) — Vo,

292 Semantics of type theory (DRAFT) (2025-07-19)

Just as with contexts, we shall use A° and A® to denote the first and second
projections from an G type and we shall continue to use these superscripts as part
of a variable names on occasion to emphasize that a particular variable ranges over
syntactic types or proof-relevant predicates. We now define the presheaf of terms:

Tmg : Pr(fcxg Tyg)
Tmg (I, A) = Zgeetm(re,a0) [yehom1gr) A° (v, a°[¥°])

Finally, context extension is defined (as always) by something akin to a Z-type. As
will become common, the first component of I'. g A is realized by the syntactic version
of context extension. The associated proof-relevant predicate is less obvious, but pairs
together a witness for predicate I'* with one for A®* more or less as promised earlier:

—.g—: ([€ Cxg) = Tyg(T) — Cxg
rgA = (FO'AO’AYO - Zyger'(poyo) A.(P ° YO, Y(;’ q[}’]))

While both the syntactic half and family of proof-relevant predicates were relatively
short in this case, later as both components become larger it will be convenient to
specify them separately. Accordingly, we will frequently specify an G operation by
writing two lines: one defining the syntactic half and one defining the predicate:

—.g— {I €CxgHA e Tygs(I)} — Cxg
m(T.gA) =T°.A°
m(F.gA) = Ay* = Xyrere(poyo) A"(P 0 12 ¥5-4ly])
We now turn to the weakening substitution and variable terms for this operation:
pg : {I € CxgHA € Tygz(I)} — Sbg(T.gAT)
ﬂl(Pg) =Pp
m(pg) =AY Y") - m(y®)
qg :{I' € CxgHA € Tyg(I)} — Tmg(I'.gA Alpgl)
751((1g) =q
m2(qg) = A", y") = m(y®)
Lemma 6.6.5. q and p g induce an isomorphism of the following shape:

Ay = (pg oV, qglyD) : Sbg(AT.gA) = 3 s, ar) Tmg (A Aly])

Proof. We construct an inverse to this operation. Given (y,a) € X, esp s(AT) TMg (A AlyD,s
we must construct a unique y € Sbg(A,I'.gA) such that pg oy = yp and qg[7] = a.
Let us observe that, by definition, a substitution Sbg(A,I'.gA) which lies over y, and

a consists of the following data:

(2025-07-19) Canonicity via gluing 293

1. A(syntactic) substitution y° € Sb(A°,I'°.A°) such that poy® = yg and q[7°] = a°,
2. A set-theoretic function of the following type:

y*: (6 €hom(1,A)) = Xpeereyeoso) A*((r5 © 6% 7°). q[7°])
such that 7; o y* =y and 7, o * = a®.

Examining these constraints, we find that 7° and y* are both uniquely determined (as
Yo-a° and A6 — (y5(5), a*(5))). The conclusion then follows. O

Theorem 6.6.6. With the above definitions, G is a model of type theory without connec-
tives.

Before moving on to close G under connectives, let us recall that we also must
construct a homomorphism of models 7 : G— 7. We already have the functor
between categories of contexts defined by projection Cxg = GI(I') — Cx. We may
extend this to a morphism of models as follows:

”Tyg (I) (Ao, A.) = AO
TTmg (T.4) (a°, a%) = a°

We have defined operations like p; and —.g— so that these operations strictly preserve
the operations of bare type theory, so we arrive at the following:

Theorem 6.6.7. There is a morphism of models = : G— T given by projecting out the
syntactic components of each sort of G.

As we proceed to close G under various connectives, we shall also ensure that 7
extends to a homomorphism of models closed under these connectives (recalling that
this is merely a property from now on).

6.6.2 Closing the gluing model under connectives

The majority of the work in constructing G—indeed, constructing any model—is
showing that it is closed under all the connectives of dependent type theory. We have
already encountered this process several times now (Sections 3.5 and 6.5) and, just
as with those cases, the process quickly becomes repetitive. Accordingly, we shall
focus on a few representative connectives and leave it to the reader to extrapolate the
process to the other connectives of dependent type theory. In particular, we shall deal
with Unit, IT, Eq, Uy, and (of course), Bool. Since the heart of the canonicity theorem
centers around Bool, let us start with this case.

294 Semantics of type theory (DRAFT) (2025-07-19)

Lemma 6.6.8. G is closed under booleans and m preserves them.

Proof. Let us recall from Structure 6.3.2 that closing G under booleans requires pro-
viding several pieces of data. First, and most important, we must construct an Boolg :
{T € Cxg} — Tyg(T):

Boolg : {I' € Cxg} — Tyg(D)
m1(Boolg) = Bool
m(Boolg) =Ayb — {0 | b =true} U {1| b = false}

We must check that Boolg is stable under substitution. That is, if y € Sbg(A,T')
then Boolg[y] = Boolg. It suffices to check that m;(Boolg[y]) = mi(Boolg) with
i € {1,2}. Fori = 1, this is immediate from the stability of Bool under substitution in 7.
For i = 2, one calculates to see that these two predicates agree for each § € Sbg(1,A)
and b € Tm(A°, Bool):

m(Boolg[y]) (6, b)
={0| b =true} U {1 | b =false}
= my(Boolg) (6, b)

It remains to construct true g and false ; and to verify the orthogonality condition
as well as the naturality equations. We begin with the two additional operations:

mi(trueg) = true
my(trueg) =0
7y (trueg) = false

my(trueg) = 1

We leave it to the reader to check that these two operations are natural in I'. To verify
the orthogonality condition, let us fix A € Ty (I'.gBool). We may break apart the
map Tmg(I'.gBoolg, A) to Tmg (I, A[id.trueg]) X Tmg (T, A[id.false g]) into several

(2025-07-19) Canonicity via gluing 295

steps, each of which are isomorphisms:

Tmg(T.gBoolg, A)
= Y eTm(r*.Bool.A°) [lyesbg (1.1.gBooly) A° (1 a°[¥°])
= ZaOGTm(F°.Bool,A°) HyOESbg(l,F),bEng(l,Boolg) A*(yo.gb,a®[y°.b°])
= YaeTm(r°.Bool.4*) [lyoesbg (1,1),6°Tm(1,Bool) b+ eBooly (10.6)
A% (0.6 (b°%,6%),a”[y".b°])
= X e eTm(r° Bool.A4°) [Iyseshg (1)
A*(yo.gtrueg, a®[y° true]) X A®(yo.gfalseg, a°[y° false])
= Za‘;eTm(r",A"[id.true]) Za}eTm(FO,A"[id.false]) HyOESbg(l,F)
A®(yo.gtrueg, a;) X A®(yo.gfalseg, a;)
= Tmg(T, Alid.trueg]) x Tmg (T, A[id falseg])
Finally, we must check that 7 preserves booleans. That is, we must show that
1y, (r)(Boolg) = Bool along with similar equations for true and false. However,

since 7 acts on types and terms by projecting out the syntactic half of each, these
equations are immediate consequences of our definitions of these operations. O

Lemma 6.6.9. We can close G under unit types such that = extends to a morphism of
models of type theory with Unit.

Proof. We must construct two pieces of data to close G under Unit:

Unitg : {I' € Cxg} — Tyg(D)
lUnitg : {F € CXQ} - ng(l“, Unltg) =~ {*}
In addition, we must verify that both of these operations are suitably natural in I (a
condition which trivializes for iynjt g)
We begin by defining Unitg. As with contexts, it is convenient to break this

down into specifying the syntactic component first and the family of proof-relevant
predicates after the fact:

Unitg : {I' € Cxg} — Tyg(D)
71 (Unitg) = Unit
mo(Unitg) = Ayt — {*}
In other words, the syntactic component is Unit and the proof-relevant predicates

are all trivial. Strictly speaking, one must verify that Unit g is stable under substitution
but we leave this calculation to the reader.

296 Semantics of type theory (DRAFT) (2025-07-19)

Next, we construct the required isomorphism. For this, let us calculate:

Tmg (T, Unitg)
= X teTm(ro,unit) [Lyesbg(1,r) Unity (v, 1)
= Tm(T°, Unit) Unity, is trivial.
= {x} Using the n law on 7"
In particular, the unique map Tmg (I, Unitg) — {x} is a bijection as required.
Finally, we must check that 7 commutes with all of this new structure. For Unit,
this is immediate by construction: 7 projects out the syntactic component and we have

defined this to be Unit. For 1 it is automatic; there is only one map from Tm(T'°, Unit) —
{x} and inverses are unique when they exist, so both must be preserved by . O

Lemma 6.6.10. G is closed under extensional equality types and 7 preserves them.
Proof. As with Unit, we have two pieces of data to implement:

Eqg : {T' € Cxg}(A € Ty4(I)) = Tmg(I, A) = Tmg(I, A) — Tyg(T)
IEqg {I' € Cxg}(A € Tyg(I))(ab € Tmg(T, A))
— Tmg(I,Eqg(A a, b)) = {x | a=1b}
As in Lemma 6.6.9, we must check that Eq is natural and preserved by 7, while both
of these conditions hold automatically for .

We once more break down the construction of Eqg into its syntactic component
and family of proof-relevant predicates:

m1(Eqg(A a b)) =Eq(A ab)

m2(Eqg(A a,b)) =y z = {*x | a’(y) = b°(y)}
For the canonicity data, we note that to compare a®(y) to b*(y), we must know that
a’[y°] = b°[y°]. However, we know that z is an inhabitant of Eq (A°[y°], a°[y°], b°[¥°])
and so, by equality reflection in 7, we have a°[y°] = b°[y°]. The reader may directly

check that Eqg is natural and that it is preserved by 7.
To substantiate the necessary isomorphism, we once more calculate:

Tmg (I, Eqg (A a, b))

= DteTm(roEq(a%ab2)) [yeshg1r) EAg (v 1)

= Tm(T°,Eq(A°,a°,b°)) X {x | a®* = b°}

= {x|a’=b"}x{x|a®=b"} Using the 1 law on 7.
= {x|a=>b} o

(2025-07-19) Canonicity via gluing 297

Lemma 6.6.11. G is closed under dependent products and x preserves them.

Proof. To close G under dependent products (Structure 6.2.18), it suffices to exhibit
operations pieces (satisfying suitable naturality equations):
g : {T € Cxg}(A € Ty (T)) — Tyg(I.gA) — Tyg(D)
g : {T € Cxg}(A € Tyg(I))(B € Tyg(I'.gA))
— ng(l", HQ(A, B)) = ng(r.gA, B)
We begin by defining Ig:
m (g (A, B)) =I1(A%, B)
m(g(A,B)) = Ayf = [lactmg(raly)) B*(v-ga app(f, a°))

We leave the routine calculations that this is natural to the reader along with the proof
that this is preserved by x. It remains to construct 1. For this, we calculate:

Tmg (T, I1g(A, B))

= D reeTm(ren(a°,5)) [yesbg(1r) g (A B)* (v, f°[y°])

= Y foeTm(redn(4°,8%)) [yesbg (1.0).aeTmg (ra[y]) B*(v-ga app(f, a°))
= Zf°eTm(r°.A°,B°) HyeSbg(l,F.gA) B*(y.ga f°[y°.a"])

= Tmg(I'.gA,B)

The reader may check directly that this chain of isomoprhisms is natural and that it is
sent by 7 to the natural bijection given as part of 7. O

Lemma 6.6.12. G is closed under Uy and its attendant operations and x preserves them.

Proof. Closing G under a universe is a somewhat arduous process as universes (in
extensional type theory) do not have a simple universal property. For this reason,
we shall describe the interpretation of U and El carefully but content ourselves with
merely sketching how to close it under all connectives.

The crucial idea of Ug is to store not just the canonical form of an element in
the associated canonicity data, but also the canonicity data of the small type encoded
by that element. Accordingly, we first introduce an auxiliary definition stating that
¢ € Tm(1,U) is in canonical form:

Canonical(c) =
{0 c=unit} U{1|c=void} U{2|c=bool} U {3 |c=nat}
U{4|3c,ab.c=eq(c’,a,b)}
U {5 | Jeo, c1. ¢ = pi(co, c1)}
U {5 | Jep, c1. ¢ = sig(co, c1)}

298 Semantics of type theory (DRAFT) (2025-07-19)

We now define Ug as follows:

m(Ug) =Up
m(Ug) = Ay ¢ — Canonical(c) X (Tm(1,El(c®)) — Vp)

Notice that 7,(Ug) is our first predicate which is necessarily proof-relevant. Pre-
viously one could by with A®(y,t) being a mere proposition for each y and ¢, but
the same is not true for Ug. In particular, since 72(Ug)(y,c) contains an element
of Tm(1,El(c®)) — V} it will frequently contain at least as many elements as V;! In
fact, the universe is the sole connective we encounter in extensional type theory with
this property. Note to that we have used the fact that V,, (used to define Tyg(T))
contains the Grothendieck universe V;. This is similar to the situation encountered in
Section 3.5 where an (n+ 1)-hierarchy of Grothendieck universes was used to interpret
a hierarchy of n-universes.

We note, however, that the other half the computability data for U is somewhat
spurious. Since there is no elimination form for Uy, we do not technically need to
specify Canonical(c) for closed elements. Its inclusion, however, will allow us to prove
a slightly stronger canonicity theorem that also specifies elements of the universe.
The second component of the computability data (Tm(1, E1(c®)) — V), the one that
actually forces this to be proof-relevant, is mandatory; we need it to define El 4:

m(Elg(c)) = El(c°)
72 (Elg(c)) = Ay a — m(c*(y))(a)

We once more leave the naturality conditions for both Ug and El to the reader.

Closing this universe under various connectives is a procedure analogous to the
problem faced by the set model (Section 3.5). Since Vj is large enough to be closed
in V,, under all relevant operations, we can replay the construction of e.g., Boolg to
define bool g:

m1(boolg) = bool
ma(boolg) = Ay — (2,Ab — {0 | b =true} U {1 | b = false})

Routine calculation then shows that El;(boolg) = Boolg. The remaining connectives
follow the same pattern, so we leave the reader to handle those cases. O

We may collect this series of lemmas into the main result of this section:

Theorem 6.6.13. G is a model of type theory closed under all the connectives and r is a
morphism of such models.

(2025-07-19) Canonicity via gluing 299

6.6.3 Deriving canonicity

With Theorem 6.6.13 to hand, we can prove canonicity for extensional type theory
following exactly the argument outlined at the beginning of this section.

Theorem 6.6.14. Suppose b € Tm(1,Bool) then b = true or b = false.

Proof. By Theorem 3.4.5 and Theorem 6.6.13, we know that there is a morphism of mod-
elsi: 7 — G and that roi = id. Consequently, we know that b = 71 (1,800l) (itm(1,Bool) (D).
Let us then consider what data is contained in b = iTm(1,Bool) () € Tmg(1,Boolg). As
a term in G, we know that b is a pair. We analyze the two components separately.

The first component 7; (b) is an element of Tm(1, Bool). Moreover, since we have
already noted that b = TTmg (1Boolg) (b), we in fact know that ; (b) = b. The second
component 7;(b) is an element of the following set:

HyeSbg(l,l) BOOI.Q(Y’ b[}’o])

However, since 1 is terminal, we must know that Sbg (1, 1) consists of a single element:
the identity substitution. Consequently, the data in 7, (b) collapses to an element of
Bool'g(id, b[y°]). Unfolding the definition of Bool'g from Lemma 6.6.8, we see that this
amounts to an element of b = true LI b = false. The conclusion is now immediate. 0O

In fact, the additional properties of G allow us to deduce a more refined result than
merely characterizing closed booleans.

Exercise 6.26. Modify the argument given in Theorem 6.6.14 to prove the following:
if ¢ € Tm(1, Uy) then one of the following conditions must hold:

« ¢ = unit, ¢ = void, or ¢ = bool,
« there exists ¢’ € Tm(1,Up) and a,b € Tm(1, El(¢’)) such that ¢ = eq(c’, a, b),
« there exists ¢y € Tm(1,Up) and ¢; € Tm(1.El(co), Uy) such that ¢ = pi(cy, 1),

« or there exists ¢p € Tm(1,Up) and ¢; € Tm(1.El(cy), Up) such that ¢ = sig(cy, c1),

Similar statements may be proven for Void and Nat (that there are no closed
elements or a closed element is equal to suc™(zero) for some numeral m, respectively).
The reader may wish to carefully work out the definitions of Nat 5 for themselves to
confirm that this is indeed the case. We note that doing so for Void provides another
proof of the consistency of ETT.

300 Semantics of type theory (DRAFT) (2025-07-19)

6.6.4 Variations on gluing arguments

In this section, we have constructed G to prove canonicity. Along the way, the reader
may have noticed similarities in how various operations were defined and wondered if
there might be a more conceptual argument available. For instance, how much of this
construction really depends on our choice to use 7~ instead of some other model? To
what extent was the model we constructed in Section 3.5 really used? Could we have
hidden some of the indices in this proof which caused so much bureaucracy in this
proof? Fortunately, the answer to all of these questions is affirmative. In fact, these
questions have motivated a great deal of recent work in dependent type theory [AK16;
Shu15; KHS19; Coq19]. Roughly, this work attempts to improve on the style of gluing
argument we have detailed above in two distinct ways:

+ They axiomitize the precise requirements needed on 7, S, and I to allow this
argument to be repurposed for closely related systems and proofs.

+ They capitalize on the models of type theory in the various categories being
manipulated (such as Pr(Cx)) to alleviate the bookkeeping and ensure that these
constructions are easier to follow.

For the first point, for instance, Kaposi, Huber, and Sattler [KHS19] introduce the
notion of a pseudo-morphism of models of type theory. Roughly, while a morphism
of models insists that every connective and operation of type theory be preserved, a
pseudo-morphism of models requires only that context extension, the empty context
and their attendant substitutions are preserved up to (canonical) isomorphism. In
particular, there is no requirement that various type formers be preserved. The authors
show that this suffices to carry out a version of the gluing model we described above.
For instance, if M and N are models and F : M — N is a pseudo-morphism between
them, one can define a model G(F) whose category of contexts is again GI(F) and
whose presheaf of types is given as follows:

TYg(F)((ro, I,)’) : GI(F)) = ZAeTyM(ro) TYN(FI-NFTyM(Fo)(A)[Y])

In other words, a type in the glued model is a type A from M together with a family
of types in N\ parameterized by elements of F(A). The reader may confirm that these
agrees with our definition of Ty 5 (I') in the case where M =7, N =S and F =T. In
fact, all of our definitions could have been replayed in this more general setting and
we could have derived the following result:

Theorem 6.6.15 (Kaposi, Huber, and Sattler [KHS19]). If M and N are models of type
theory closed under all connectives and F is a pseudo-morphism between them, then G1(F)

(2025-07-19) A semantic definition of syntax 301

supports a model of type theory closed under all connectives and mr; : GI(F) — Cx
extends to a homomorphism of models.

Even with this additional generality, for certain gluing models (e.g., those arising in
proofs of normalization) the model itself is complex enough to warrant more abstract
arguments in its construction. To this end, Sterling and Harper [SH21] and Sterling
and Angiuli [SA21] observed that much of the construction of G could be done fully
within dependent type theory by extending extensional type theory with a handful
of constants and interpreting the theory into a certain presheaf category. Working
with dependent type theory to carry out these constructions meant that many of the
naturality obligations we left to the reader would become automatic. Even better, for
a number of constructions e.g., the construction of II-types, one many constructions
become remarkably short and simple. While for canonicity proofs this is less of an issue,
as the gluing model becomes more complex these naturality requirements become
increasingly tedious and difficult to manage. We refer the reader to Sterling [Ste21]
for an exposition of these style of gluing arguments (as well as a complete proof of
normalization for cubical type theory as introduced in Section 5.3).

6.7* A semantic definition of syntax

This material will be published by Cambridge University Press as Principles of Dependent Type Theory by Carlo
Angiuli and Daniel Gratzer. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © Carlo Angiuli and Daniel Gratzer 2024

Martin-Lof type theory

This appendix presents a substitution calculus [Mar92; Tas93; Dyb96] for several
variants of Martin-Lo6f’s dependent type theory. Martin-Lof type theories are systems
admitting the rules in section Contexts and substitutions; the rules specific to extensional
type theory, those axiomatizing extensional equality types, are marked @r7); the rules
specific to intensional type theory, those axiomatizing intensional equality types, are
marked ar7).

Judgments

Martin-Lo6f type theory has four basic judgments:
1. + I' cx asserts that T is a context.

2. A+ y:T,presupposing + A cx and + T cx, asserts that y is a substitution from A
to T (i.e., assigns a term in A to each variable in I').

3. T+ Atype, presupposing I I' cx, asserts that A is a type in context T'.

4. T Fa: A, presupposing + I'cx and T + A type, asserts that a is an element/term
of type A in context T

The presuppositions of a judgment are its meta-implicit-arguments, so to speak.
For instance, the judgment I' + Atype is sensible to write (is meta-well-typed) only
when the judgment I T cx holds. We adopt the convention that asserting the truth of a
judgment implicitly asserts its well-formedness; thus asserting I' + A type also asserts
F I cx.

As we assert the existence of various contexts, substitutions, types, and terms, we
will simultaneously need to assert that some of these (already introduced) objects are
equal to other (already introduced) objects of the same kind.

1. Ary=y :T, presupposing A+ y: T and A + y’ : T, asserts that y, y’ are equal
substitutions from A to T

2. T+ A= A’type, presupposing I' - Atype and I + A’ type, asserts that A, A’ are
equal types in context I'.

304 Martin-Lof type theory (2025-07-19)

3. Tra=a" : A presupposingI' - a: Aand T' + @’ : A, asserts that g, a’ are equal
elements of type A in context I'.

Two types (resp., contexts, substitutions, terms) being equal has the force that it
does in standard mathematics: any expression can be replaced silently by an equal
expression without affecting the meaning or truth of the statement in which it appears.
One important example of this principle is the “conversion rule” which states that if
'rA=A"typeandI'+a: A thenl'Fa: A"

In the rules that follow, some arguments of substitution, type, and term formers
are typeset as gray subscripts; these are arguments that we will often omit because
they can be inferred from context and are tedious and distracting to write.

Contexts and substitutions

F I cx I'+ Atype

CX/EMP CX/EXT
F1cx FT.Acx
FI'cx l"zl—ylzl“l rll-)/oiro
———— SB/ID SB/COMP
Tridr:T Lkyoonrnr i To
Ary:T Ary:T
Avridroy=y:T Avryoidp=y:T

r3|-)/2!r2 I‘zkyl:l‘l Flf-}/otro

Gryoo(yioy) =(vooy) oy :Io

Ary:T I'+ Atype Avry:T I'ta:A
TY/SB TM/SB
A+ Aly]ar type Aralylar: Alyl
I'+ Atype I'ra:A
I'+ Alidr] = Atype IF'ralidr] =a:A

Lty Iy I Fyo: Ty Ih - Atype
I + Alyo o y1] = Alyol [y1] type

le—)/lzl"l rll-)/olr() Ihra:A

L+ alyo o y1] = alyol[y1] = Alyo o y1]

(2025-07-19) 305

T cx rrd:1
———— SB/EMP _
T'rlp:1 rl—!I‘:(S:l
Avry:T I'+ Atype Ara:Aly] I'+ Atype
SB/EXT ——— SB/WK
A+ Y.AT.AQ : T.A rAr Pra: T
I'+ Atype Avry:T Ara:Aly]
VAR
T'AFqra:Alpral Arpraora(ya)=y:T
Ary:T Avra:Aly] Ary:TA
At qraly.al =a:Aly] Ary=(pracray)(qraly]) :T.A
II-types
I'+ Atype I''A+ Btype I'+ Atype I'Avrb:B
PI/FORM PI/INTRO
T'r HF(A, B) type T'r A—F,A,B(b) : H(A, B)

F'ta:A I''A+ Btype '+ f:TI(A B)
I'+appr 4 5(f,a) : Blidr.a]

PI/ELIM

Ary:T I'+ Atype I''A+ Btype
A +TIr (A B)[y] = HA(A[y], B[(y o paaly])-9aaly]]) type

Ary:T I'+ Atype IlF'Avb:B
A+ A)[y] = AbL(y o p)-q]) : TI(A, B) [y]

Ary:T F'ra:A I A+ Btype T+ f:TI(A B)
A+ app(f,a)[y] =app(flyl aly]) : B[(idr.a) o y]

I'ta:A T A+b:B
I+ app(A(b),a) = b[id.a] : B[id.q]

I'+ Atype I''A+ Btype '+ f:1I(A B)
't f=Aapp(flpral.qra)) : II(A, B)

306 Martin-Lof type theory (2025-07-19)

X-types

'+ Atype I''A+ Btype
I'+2r (A B) type

SIGMA/FORM

l'ta:A I''A+ Btype I'+b: Blidr.a]

SIGMA/INTRO
[+ pairp 4 3(a,b) : (A, B)
I'+ Atype I''A+ Btype I'tp:2(AB)
SIGMA/ELIM/FST
T+ fStr’A,B(p) A
I' - Atype I''A+ Btype T'tp:X(AB)
SIGMA/ELIM/SND

I+ sndr 4 p(p) : Blidr.fst(p)]

Ary:T I'+ Atype I''A+ Btype
A+ Zr(A B)[y] =Za(Alyl, Bl(y o p).q]) type

Ary:T F'ta:A I'.A+ Btype I'+b: Blid.qa]
A + pair(a, b)[y] = pair(a[y], b[y]) : (A B)[y]

Ary:T T+ Atype I. A+ Btype I'tp:X(AB)
A+ fst(p)[y] = fst(ply]) : Aly]

Ary:T I+ Atype A+ Btype I'rp:2(AB)
A+ snd(p)[y] =snd(p[y]) : B[(id fst(p)) o y]

I'ra:A I''A+ Btype ['+b:Blid.a]
[+ fst(pair(a, b)) =a: A

F'rta:A . A+ Btype I'+b: Blid.q]
I + snd(pair(a, b)) = b : B[id.q]

I'+ Atype A+ Btype I'tp:X(AB)
I+ p = pair(fst(p),snd(p)) : Z(A, B)

(2025-07-19) 307

Extensional equality types

T'rta:A I'rb:A T'rta:A
EQ/FORM (ETT)

EQ/INTRO (ETT)
I' Eqp (A a,b) type T +reflr 4, : Eq(A a,a)

Ary:T I'ta:A T'+b:A

A+ Eqr (A, b)[y] = Eqy(AlyL alyl, b[y]) type

Avry:T I'ra:A
A+ refl[y] =refl : Eq(A, a, a)[y]

(ETT)

F'ta:A T'rb:A I'tp:Eq(Aab)
(

ETT)

F'ra=b:A
F'ta:A F'rb:A I'tp:Eq(Aab)
(ETT)
I'tp=refl : Eq(A, a,b)
Unit type
F T cx F T cx
————————— UNIT/FORM ————————— UNIT/INTRO
I' + Unitr type I' + ttr : Unit
Avry:T Avry:T I'+a: Unit
A + Unitr[y] = Unity type Ak ttp[y] = tta : Unit I'+a=tt:Unit
Empty type
F T cx I'+b:Void I'.Void + Atype
————————— EMPTY/FORM EMPTY/ELIM
I + Voidr type T + absurdr 4 () : A[id.b]
Ary:T Ary:T I'+b:Void I'.Void + Atype

A + Voidr [y] = Void, type A+ absurd(b)[y] = absurd(b[y]) : Aly-bly]]

308 Martin-Lof type theory (2025-07-19)

Boolean type

FIcx
——————— BOOL/FORM
I' + Boolr type
F I cx FI'cx
———————— BOOL/INTRO/TRUE BOOL/INTRO/FALSE
I + truer : Bool I + falser : Bool
I't+ b:Bool
I'.Bool + Atype 't a; : Alid.true] '+ af: Alid false]
BOOL/ELIM
I ifr’A(at, ar, b) : A[ldb]
Ary:T
A + Boolr[y] = Bool, type
Ary:T Ary:T
A + truer[y] = true, : Bool A + falser[y] = false, : Bool
Ary:T

I'+b:Bool I'Bool + Atype I'+a;: Alid.true] I+ af: Alid false]

A vif(ar, ap, b) [yl = if (ar[yl, arlyl. bly]) - Aly-blyl]

F T cx I'.Bool + Atype I+ a;: Alid.true] ['+ay: Alid false]
' +if (as, ar, true) = a; : Alid.true]

F T ex I'.Bool + Atype I'Fa;: Alid.true] ['+ayr: Alid false]
' +if(as, ar, false) = ar : Alid false]

(2025-07-19) 309

Coproduct types

I' - Atype I' - Btype

PLUS/FORM
I' - A+r Btype

F'+ta:A I' + Btype I'+b:B I'+ Atype
PLUS/INTRO/INL PLUS/INTRO/INR
r}-il’llr’A’B(a) :A+ B rl—inl‘r,A,B(b) :A+ B

I+ Atype I + Btype I'.(A+ B) + Ctype
T'AF ¢ : Clp.inl(q)] I'BFc, : Clp.inr(q)] 'rp:A+B

- PLUS/ELIM
T + caser apc(cpcrp) : Clid.p]
Ary:T '+ Atype I' Btype
A+ (A+r B)[y] = Aly] +a Bly] type
Ary:T F'ra:A I' + Btype Ary:T '+b:B I'+ Atype

A+ inl(a)[y] = inl(a[y]) : Aly] + Bly] ~ Arinr(b)[y] =inr(b[y]) : Aly] + Bly]

Ary:T I'+ Atype I' + Btype I'.(A+ B) + Ctype
T AF ¢ : Clp.inl(q)] I.Btc, : Clp.inr(q)] F'rp:A+B

A+ case(cy, ¢, p)[y] = case(ci[y.Al, er[y.BLplyD) : Cly.plyll

I'ra:A I' v Btype
I'.(A+ B) + Ctype T'AF ¢ : Clp.inl(q)] I'BFc, : Clp.inr(q)]

T + case(cy, ¢y, inl(a)) = ¢;[id.a] : C[id.inl(a)]

I'+b:B I' - Atype
I'.(A+ B) + Ctype T.AF ¢ :Clp.inl(q)] I.Bt ¢ : C[p.inr(q)]

I + case(cy, ¢, inr (b)) = ¢, [id.b] : C[id.inr(b)]

310 Martin-Lof type theory (2025-07-19)

Natural number type

F I cx
————————— NAT/FORM
I' + Natr type

F T cx I' F n:Nat
———————— NAT/INTRO/ZERO NAT/INTRO/SUC
T + zeror : Nat '+ sucp(n) : Nat

I''Nat + Atype
I'ta,:Alid.zero] I'Nat.A + a, : A[p®.suc(q[p])] I'+n:Nat

NAT/ELIM
T + recra(ag, as,n) : Alid.n]

Ary:T
A + Natr[y] = Natp type

Ary:T Ary:T I'n:Nat
A+ zeror[y] = zero, : Nat A+ sucp(n)[y] = suc, (n[y]) : Nat

Ary:T I''Nat - Atype
I'+a,:Alid.zero] T.Nat.A + a, : A[p®.suc(q[p])] I'+n:Nat

A+ rec(az, as, n)[y] = rec(a;[yl, as[(y o p*).qlpl-ql. nly]) : Aly.nly]]

I'Nat + Atype I'ta,:Alid.zero] I'Nat.A + a, : A[p®.suc(q[p])]

T + rec(a,, as, zero) = a, : Alid.zero]

I''Nat + Atype
I'+a,:Alid.zero] T.Nat.A + a, : A[p®.suc(q[p])] I'+n:Nat

T + rec(ay, a5, suc(n)) = as[id.n.rec(a,, as, n)] : Alid.suc(n)]

(2025-07-19) 311

Intensional equality types

Tta:A T'rb:A T'rta:A
ID/FORM (ITT) ID/INTRO (ITT)
T+ 1dr (A a,b) type T+ reflr 4, :1d(A, a,a)

F'rta:A '+b:A T'tp:1d(Aab)
T AA[pl.Id(A[p*],q[pl.q) + Ctype I'AFrc:C[p.q.q.refl]

I'FJraapc(cp): Clid.a.b.p]

ID/ELIM (ITT)

Ary:T Tra:A Trb:A
(ITT
A+ 1dr (A, a,b)[y] =1da(Alyl, alyl, bly]) type

Ary:T F'ra:A
A+ refl[y] = refl : Id(A[y], aly], aly])

(ITT)

Ary:T F'ra:A F'rb:A T'tp:1d(A ab)
T.AA[pl.Id(A[p*].q[p].q) F Ctype I''Arc:C[p.q.q.refl]

ArJ(ep)lyl =J(c[(yop)al.plyD : Cly.alyl.blyl.plyll

(ITT)

F'ta:A T.AA[pl.Id(A[p®].q[p].q) F Ctype A+ c:Clp.q.q.refl]
T'+]J(c refl) = c[id.a] : C[id.a.a.refl]

(ITT)

Universes

F T cx I'ra:U;

—————— UNI/FORM EL/FORM
I' + Up, type I' + Elr;(a) type

Tkey:U; F.Eli(Co) Fec:U;

- PI/CODE
Tk pli’r(Co, Cl) : U,'

Trey:U; F.Eli(CO) Fe:U;

- SIG/CODE
I Slgi,r(COa Cl) : U;

IF'rc:U; I'+x,y:ElL(c)
[Feq;r(cxy):U;

EQ/CODE (ETT)

312 Martin-Lof type theory

I'tc:U; T'+x,y:El(c)

(2025-07-19)

I'kcy:U; I'ke: U

ID/CODE (ITT) PLUS/CODE
I'+tidir(ce,x,y) : U; [+ coprod,; -(co, ¢1) : U;
F I ex F I cx
——————————— UNIT/CODE ————————— EMPTY/CODE
I+ unit;r : U; I'+void;r : U;

F I cx FIex
———————— BOOL/CODE —————— NAT/CODE
T+ bOOli’r : U; I' - nat;r : U;

FT cx j<i I'ktc:U;
——— UNI/CODE
I'r llnir)i,j :U; Tk lifti,r(C) : Ui
Ary:T Avry:T T'rFa:U;
A+ Ur;[y] = Uy, type A+ Elj(a)[y] = ELi(aly]) type
AI—y:F I'kcy:U; I“.Eli(co)l—cle,-
A+ pi(eo, c1)[y] = pieolyl.ci[(y o p)-ql) : Us
Aky:l’ I'key:U; F.Eli(Co)l-CllUi
A+ sig(co, c1)[y] = sig(co[yl, c1[(y o p).q]) : U;
Ary:T IF're:U; I'tx,y:El(c)
(ETT)
A+ eq(c,x,y)[yl = eqlclyl. x[yl.yly]) : U;
Ary:T I'rce:U; T'Fx,y:El(c)
(TT)
A+id(c,x,y)[y] =id(c[y]. x[y]. yly]) : U;
Ary:T I'keo:U; I'ker: Ary:T

A+ coprod(co, ¢1)[y] = coprod(co[y]. e1[y]) : Ui

Ary:T

Ary:T

A + unit[y] = unit : U;

Ary:T

A+ void[y] = void : U;

Avry:T Jj<i

A+ unij[y] = uni; : U;

A+ bool[y] = bool : U;

A+ nat[y] = nat : U;

Ary:T I'rc:U;

A FLift (o) [y] = Liftely]) : sy

(2025-07-19) 313

I'tkcy:U; F.Eli(Co) Fep:U;
I' + El;(pi(co, ¢1)) = I(El;(co), El;(c1)) type

T'key:U; F.Ell‘(Cg) Fecp:U;
[+ El;(sig(co, c1)) = Z(El;(co), ELi(c1)) type

I'+c:U; T'Fx,y:El(c)
'+ Eli(eq(c, x,y)) = Eq(El;(c), x, y) type

(ETT)

TF'tc:U; I'+x,y:El(c)
T+ El;(id(c, x, y)) = Id(EL;(¢), x, y) type

(ITT)

I'key:U; I'te: U

I' + El;(coprod(co, ¢1)) = El;(co) + El;(c1) type I' + El;(unit) = Unit type
I' + El;(void) = Void type I' + El;(bool) = Bool type
j<i
I' + El;(nat) = Nat type I' + El;(uni;) = U; type
Trce:U;

T + El1(lift(c)) = El;(c) type

This material will be published by Cambridge University Press as Principles of Dependent Type Theory by Carlo
Angiuli and Daniel Gratzer. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © Carlo Angiuli and Daniel Gratzer 2024

Solutions to selected exercises

Solution 2.2. Any substitution y into I'.A is of the form (p o y).q[y], which by our
hypothesis is equal to id.q[y]. We can apply this substitution to a variable, obtaining
the term ' + q[id.q[y]] = q[y] : A[id] as required. Conversely, any term ' + a : A
determines a substitution I' + id.a : I'.A that satisfies p o (id.a) = id. One round-trip
follows from the previously noted equation, and the other from q[id.a] = a.

Solution 2.3. To show

HErO:A Ary:T I'+ Atype Avra:Aly]
A+ (y.a)od=(yod).ald]:T.A

=

we calculate as follows:

(y-a) o6 =(po(ya)ed).(q[(y.a)od])
= (y 0 9).(q[y.a][5])
= (y 0 8).(ald])

Solution 2.4. We define y.A := (yop).q, i.e., the extension of the substitution A.A[y] +
y o p : T by the variable A.A[y] + q : A[y o p].

Solution 2.5. In the forward direction, we send A + y : T'.A to the pair of p o y and
q[y]; in the reverse direction, we send pairs of yy and a to the substitution yy.a. One
round-trip follows from y = (p o y).q[y] and the other from p o (yp.a) = yo and

q[yo.a] = a.
Solution 2.8. Below are the formation, introduction, and elimination rules for non-
dependent functions, along with their definitions in terms of IT-types:

I'+ Atype I' + Btype I'+ Atype I''Arb: Blp]
'+ A— B:=T1I(A, B[p]) type I'rAq.b:=A(b):A— B

F'rta:A I' + Btype r-f:A—B
I'+ fa:=app(f,a):B

316 Solutions to selected exercises (2025-07-19)

Note that B must be weakened, and the elimination rule is meta-well-typed because
B[p o (id.a)] = B. The - and p-rules are immediate.

Solution 2.17. The only non-trivial presupposition to check is A + pair(a[y], b[y]) :
Y (A, B)[y]. By the substitution rule for X, we have X (A, B)[y] = Z(A[y], Bly-A]).
The first component of the pair is thus well-typed by A + a[y] : A[y]. For the
second component, we must show A + b[y] : B[y.A][id.a[y]]. By applying y to
the typing premise for b we obtain A + b[y] : B[id.a][y], so it suffices to show

(y-A) o (id.a[y]) = (id.a) o y:
(y.A) o (id.aly])
= ((yop).q) o (id.aly]) by Exercise 2.4
= (yopo (id.a[y])).q[id.a[y]] by Exercise 2.3
= (yoid).aly]
= (id oy).aly]
= (id.a) oy by Exercise 2.3

Solution 2.18. The substitution rule is somewhat odd:
Ary:T I'+ Atype I'A+ Btype '+ f:1I(A B)
AAlyl v 27N (fIyD) = AP [y-Al = Bly.Al

We prove it as follows:

AN IvD

=271 Iy by f = 2(A7(f))
=271 AATH D [y-AD) by substitution for A
=171 [y.Al by A7HA(..) = ...

Solution 2.21. The elimination principle corresponds to the forward map i1 : Tm(T, Unit) —
{x}. This tells us that from I' + a : Unit we can obtain an element of {x}, a prin-

ciple which contains no useful information. The substitution rule for tt states that

A+ tt[y] = tt : Unit, but this follows already from the 7 principle. Equivalently, in
terms of the natural isomorphism, the forward maps i are natural “for free” because

all elements of {x} are equal; thus the backward maps 1 ! (which determine tt) are

also automatically natural.

(2025-07-19) 317

Solution 3.1.

I'k1otype w A I'A+ 7y type ~» B
F're:Awa I'+e:B[id.a] ~ b I' - C=3X(A B) type

[k (pair 7o 71 € €1) : C w pairy , g(a, b)

Solution 3.7. By Slogan 3.2.7, we check (pair ey e;) and synthesize (fst e) and
(snde).

unSigma(C) = (A, B) I'tey=Awa I'+e < Blid.a] ~ b

I+ (pair ey 1) & C ~» pair(a, b)

're=C~p unSigma(C) = (A, B)
't (fste) = A~ fst(p)

F're=C~p unSigma(C) = (A, B)
I+ (snd e) = BJ[id.fst(p)] ~» snd(p)

In the above rules, unSigma is an algorithm that inverts 2-types: given I' - C type
it returns the unique pair of types A, B for which I' + C = X (A, B) type, if they exist.

Solution 3.8. The fixed-point of the identity function Void — Void is a closed proof
of Void:
1 + Void type 1.Void + q : Void

1+ fix(q) : Void

Solution 3.9. Suppose there is a model M for which Tm 4((1 s, Bool »¢) has exactly
two elements. By Theorem 3.4.5 there is a function Tm¢(1,Bool) : Tm(1, Bool) —
Tm p((1 a1, Bool), but this does not allow us to conclude that Tm(1, Bool) has exactly
two elements!

In Theorem 3.4.7, the existence of a function X — 0 allowed us to observe that
X = 0, but the existence of a function X — {*, *’} does not imply X has exactly two
elements.

Solution 4.7. Define ¢, = ¢ a.

318 Solutions to selected exercises (2025-07-19)

Solution 4.8. Define g = uniq (a1, p).
Solution 4.9. Define ¢, = subst C, g c,.

Solution 4.10. We have ¢, : C, (b, p) but C, (b, p) = C a b p by definition. We define
j as follows:

j:{A:U}(C:(ab:A) -»1d(A,ab) > U) > ((a: A) > Caarefl) -
(ab:A) (p:1d(A,a b)) > Cabp
j{A} Ccab p=subst (Ax — C a (fst x) (snd x)) (uniq (b, p)) (c a)

Solution 4.11.

jCcaarefl
= subst (Ax — C a (fst x) (snd x)) (uniq (a,refl)) (ca) by Exercise 4.10
= subst (Ax — C a (fst x) (snd x)) refl (¢ a) by uniq def.eq.
=ca by subst def.eq.

Solution 5.2. From B : A — HProp we have h: (a: A) (b by : Ba) — Id(B a, by, b1).
Suppose fy, fi : (a : A) = B a. We must construct an identification between them,
which is given by funext (Aa — ha (fy a) (fi a)).

This material will be published by Cambridge University Press as Principles of Dependent Type Theory by Carlo
Angiuli and Daniel Gratzer. This pre-publication version is free to view and download for personal use only. Not
for re-distribution, re-sale, or use in derivative works. © Carlo Angiuli and Daniel Gratzer 2024

Bibliography

[AB04]

[Abe13]

[ACD07]

[AFH17]

[AFH18]

[Agda]

[AGV72]

Steve Awodey and Andrej Bauer. “Propositions as [Types]”. In: Journal
of Logic and Computation 14.4 (Aug. 2004), pp. 447-471. 1ssN: 1465-363X.
Dor: 10.1093/1logcom/14.4.447.

Andreas Abel. “Normalization by Evaluation: Dependent Types and
Impredicativity”. Habilitation thesis. Ludwig-Maximilians-Universitat
Minchen, 2013. URL: http://www2.tcs.ifi.1lmu.de/~abel/habil.
pdf.

Andreas Abel, Thierry Coquand, and Peter Dybjer. “Normalization by
Evaluation for Martin-L6f Type Theory with Typed Equality Judgements”.
In: 22nd Annual IEEE Symposium on Logic in Computer Science. LICS 2007.
July 2007, pp. 3-12. DoI: 10.1109/LICS. 2007 .33,

Carlo Angiuli, Kuen-Bang Hou (Favonia), and Robert Harper. Compu-
tational Higher Type Theory III: Univalent Universes and Exact Equality.
Preprint. Dec. 2017. arXiv: 1712.01800 [cs.LO].

Carlo Angiuli, Kuen-Bang Hou (Favonia), and Robert Harper. “Cartesian
Cubical Computational Type Theory: Constructive Reasoning with Paths
and Equalities”. In: 27th EACSL Annual Conference on Computer Science
Logic (CSL 2018). Ed. by Dan Ghica and Achim Jung. Vol. 119. Leibniz
International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018, 6:1-6:17. ISBN:
978-3-95977-088-0. DO1: 10.4230/LIPIcs.CSL.2018.6.

The Agda Development Team. The Agda Programming Language. 2020.
URL: http://wiki.portal.chalmers.se/agda/pmwiki.php.

Michael Artin, Alexander Grothendieck, and Jean-Louis Verdier. Théorie
des topos et cohomologie étale des schémas. Séminaire de Géométrie Al-
gébrique du Bois-Marie 1963-1964 (SGA 4), Dirigé par M. Artin, A.
Grothendieck, et J.-L. Verdier. Avec la collaboration de N. Bourbaki, P.
Deligne et B. Saint-Donat, Lecture Notes in Mathematics, Vol. 269, 270,
305. Berlin: Springer-Verlag, 1972.

https://doi.org/10.1093/logcom/14.4.447
http://www2.tcs.ifi.lmu.de/~abel/habil.pdf
http://www2.tcs.ifi.lmu.de/~abel/habil.pdf
https://doi.org/10.1109/LICS.2007.33
https://arxiv.org/abs/1712.01800
https://doi.org/10.4230/LIPIcs.CSL.2018.6
http://wiki.portal.chalmers.se/agda/pmwiki.php

320 Bibliography (2025-07-19)

[Ahr+25]

[AK16]

[AKL15]

[Alt+01]

[Alt23]

[AMB13]

[AMS07]

[Ane19]

Benedikt Ahrens, Paige Randall North, Michael Shulman, and Dimitris
Tsementzis. The Univalence Principle. Vol. 305. Memoirs of the American
Mathematical Society 1541. American Mathematical Society, 2025. 1SBN:
978-1-4704-7269-6. po1: 10.1090/memo/1541.

Thorsten Altenkirch and Ambrus Kaposi. “Type theory in type the-
ory using quotient inductive types”. In: Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. POPL 2016. New York, NY, USA: ACM, 2016, pp. 18-29. 1SBN:
9781450335492. po1: 10.1145/2837614.2837638.

Jeremy Avigad, Krzysztof Kapulkin, and Peter LeFanu Lumsdaine. “Ho-
motopy limits in type theory”. In: Mathematical Structures in Computer
Science 25.5 (2015). Special issue: From type theory and homotopy theory
to Univalent Foundations of Mathematics, pp. 1040-1070. 1SSN: 1469-8072.
DOI: 10.1017/50960129514000498.

T. Altenkirch, P. Dybjer, M. Hofmann, and P. Scott. “Normalization by
evaluation for typed lambda calculus with coproducts”. In: Proceedings
of the 16th Annual IEEE Symposium on Logic in Computer Science. LICS
2001. 2001, pp. 303-310. por: 10.1109/LICS.2001.932506.

Thorsten Altenkirch. “Should Type Theory Replace Set Theory as the
Foundation of Mathematics?” In: Global Philosophy 33.21 (2023). poTr:
10.1007/s10516-023-09676-0.

Guillaume Allais, Conor McBride, and Pierre Boutillier. “New equations
for neutral terms: a sound and complete decision procedure, formalized”.
In: Proceedings of the 2013 ACM SIGPLAN Workshop on Dependently-Typed
Programming. DTP 2013. New York, NY, USA: ACM, 2013, pp. 13-24. por:
10.1145/2502409.2502411.

Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. “Observa-
tional Equality, Now!” In: Proceedings of the 2007 Workshop on Program-
ming Languages Meets Program Verification. PLPV 2007. New York, NY,
USA: ACM, 2007, pp. 57-68. 1SBN: 978-1-59593-677-6. pOoI: 10 . 1145/
1292597.1292608.

Mathieu Anel. Descent & Univalence. Slides from HoTTEST seminar. May
2019. urL: https://www.math.uwo.ca/faculty/kapulkin/seminars/
hottestfiles/Anel-2019-05-2-HoTTEST. pdf.

https://doi.org/10.1090/memo/1541
https://doi.org/10.1145/2837614.2837638
https://doi.org/10.1017/s0960129514000498
https://doi.org/10.1109/LICS.2001.932506
https://doi.org/10.1007/s10516-023-09676-0
https://doi.org/10.1145/2502409.2502411
https://doi.org/10.1145/1292597.1292608
https://doi.org/10.1145/1292597.1292608
https://www.math.uwo.ca/faculty/kapulkin/seminars/hottestfiles/Anel-2019-05-2-HoTTEST.pdf
https://www.math.uwo.ca/faculty/kapulkin/seminars/hottestfiles/Anel-2019-05-2-HoTTEST.pdf

(2025-07-19) Bibliography 321

[Ang+21] Carlo Angiuli, Guillaume Brunerie, Thierry Coquand, Robert Harper,
Kuen-Bang Hou (Favonia), and Daniel R. Licata. “Syntax and models of
Cartesian cubical type theory”. In: Mathematical Structures in Computer
Science 31.4 (2021). Special issue on Homotopy Type Theory and Univa-
lent Foundations, pp. 424-468. por1: 10.1017/S0960129521000347.

[Ang19] Carlo Angiuli. “Computational Semantics of Cartesian Cubical Type
Theory”. PhD thesis. Carnegie Mellon University, Sept. 2019. URL: http:
//reports-archive.adm.cs.cmu.edu/anon/2019/CMU-CS-19-
127 pdf.

[AOV17] Andreas Abel, Joakim Ohman, and Andrea Vezzosi. “Decidability of
conversion for type theory in type theory”. In: Proceedings of the ACM on
Programming Languages 2POPL (Dec. 2017), 23:1-23:29. po1: 10.1145/
3158111.

[Asp95] David Aspinall. “Subtyping with singleton types”. In: Computer Science
Logic (CSL 1994). Ed. by Leszek Pacholski and Jerzy Tiuryn. Vol. 933.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1995, pp. 1-15. 1sBN: 978-3-540-60017-6. DOI: 10.1007/BFb0
022243.

[Aug99] Lennart Augustsson. “Cayenne — A Language with Dependent Types”. In:
Advanced Functional Programming (AFP 1998). Ed. by S. Doaitse Swierstra,
José N. Oliveira, and Pedro R. Henriques. Vol. 1608. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999,
pp- 240-267. 1SBN: 978-3-540-66241-9. DOI: 10.1007/10704973_6.

[AW09] Steve Awodey and Michael A. Warren. “Homotopy theoretic models of
identity types”. In: Mathematical Proceedings of the Cambridge Philosoph-
ical Society 146.1 (Jan. 2009), pp. 45-55. 1ssN: 0305-0041. po1: 10.1017/
S50305004108001783.

[Awo010] Steve Awodey. Category Theory. Second Edition. Oxford Logic Guides 52.
Oxford University Press, 2010. 1SBN: 9780199587360.

[Awo018] Steve Awodey. “Natural models of homotopy type theory”. In: Math-
ematical Structures in Computer Science 28.2 (2018), pp. 241-286. DOIL:
10.1017/50960129516000268.

[Bar91] Henk Barendregt. “Introduction to generalized type systems”. In: Journal
of Functional Programming 1.2 (Apr. 1991), pp. 125-154. por: 10.1017/
S50956796800020025.

https://doi.org/10.1017/S0960129521000347
http://reports-archive.adm.cs.cmu.edu/anon/2019/CMU-CS-19-127.pdf
http://reports-archive.adm.cs.cmu.edu/anon/2019/CMU-CS-19-127.pdf
http://reports-archive.adm.cs.cmu.edu/anon/2019/CMU-CS-19-127.pdf
https://doi.org/10.1145/3158111
https://doi.org/10.1145/3158111
https://doi.org/10.1007/BFb0022243
https://doi.org/10.1007/BFb0022243
https://doi.org/10.1007/10704973_6
https://doi.org/10.1017/S0305004108001783
https://doi.org/10.1017/S0305004108001783
https://doi.org/10.1017/S0960129516000268
https://doi.org/10.1017/S0956796800020025
https://doi.org/10.1017/S0956796800020025

322 Bibliography (2025-07-19)

[Bau+17] Andrej Bauer, Jason Gross, Peter LeFanu Lumsdaine, Michael Shulman,
Matthieu Sozeau, and Bas Spitters. “The HoT T Library: A Formalization of
Homotopy Type Theory in Coq”. In: Proceedings of the 6th ACM SIGPLAN
Conference on Certified Programs and Proofs. CPP 2017. New York, NY,
USA: ACM, 2017, pp. 164-172. 1sSBN: 978-1-4503-4705-1. po1: 10.1145/
3018610.3018615.

[Bau+21] Andrej Bauer, Gaétan Gilbert, Philipp G. Haselwarter, Anja Petkovic,
Matija Pretnar, and Chris Stone. Andromeda: Your type theory a la Martin-
Léf. 2021. URL: https://www.andromeda-prover.org/.

[Bez+21] Marc Bezem, Thierry Coquand, Peter Dybjer, and Martin Escardo. “On
generalized algebraic theories and categories with families”. In: Mathe-
matical Structures in Computer Science 31.9 (2021). Special issue in homage
to Martin Hofmann, pp. 1006-1023. po1: 10.1017/50960129521000268.

[Bra13] Edwin Brady. “Idris, a general-purpose dependently typed programming
language: Design and implementation”. In: Journal of Functional Pro-
gramming 23.5 (2013), pp. 552-593. po1: 10.1017/S095679681300018X.

[Bra17] Edwin Brady. Type-Driven Development with Idris. Manning Publications,
2017. 1SBN: 9781617293023.

[Brul6] Guillaume Brunerie. “On the homotopy groups of spheres in homotopy
type theory”. PhD thesis. Université Nice Sophia Antipolis, 2016. URL:
http://arxiv.org/abs/1606.05916.

[Bru18] Guillaume Brunerie. “The James Construction and m4(S?®) in Homo-
topy Type Theory”. In: Journal of Automated Reasoning 63.2 (June 2018),
pp- 255-284. 1ssN: 1573-0670. po1: 10.1007/510817-018-9468-2.

[BV73] J. M. Boardman and R. M. Vogt. Homotopy Invariant Algebraic Structures
on Topological Spaces. Springer Berlin Heidelberg, 1973. 1SBN: 9783540377993
DOI: 10.1007/bfb0068547.

[Car86] John Cartmell. “Generalised algebraic theories and contextual categories”.
In: Annals of Pure and Applied Logic 32 (1986), pp. 209—-243. 1ssN: 0168-
0072.DOI1: 10.1016/0168-0072(86)90053-9.

[CCD17] Simon Castellan, Pierre Clairambault, and Peter Dybjer. “Undecidability
of Equality in the Free Locally Cartesian Closed Category (Extended
version)”. In: Logical Methods in Computer Science 13.4 (Nov. 2017). DOTI:
10.23638/LMCS-13(4:22)2017.

https://doi.org/10.1145/3018610.3018615
https://doi.org/10.1145/3018610.3018615
https://www.andromeda-prover.org/
https://doi.org/10.1017/S0960129521000268
https://doi.org/10.1017/S095679681300018X
http://arxiv.org/abs/1606.05916
https://doi.org/10.1007/s10817-018-9468-2
https://doi.org/10.1007/bfb0068547
https://doi.org/10.1016/0168-0072(86)90053-9
https://doi.org/10.23638/LMCS-13(4:22)2017

(2025-07-19) Bibliography 323

[CCD21] Simon Castellan, Pierre Clairambault, and Peter Dybjer. “Categories
with Families: Unityped, Simply Typed, and Dependently Typed”. In:
Joachim Lambek: The Interplay of Mathematics, Logic, and Linguistics.
Ed. by Claudia Casadio and Philip J. Scott. Cham: Springer International
Publishing, 2021, pp. 135-180. 1sBN: 978-3-030-66545-6. DOI: 10.1007/
978-3-030-66545-6_5.

[CCHM18] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mortberg.
“Cubical Type Theory: A Constructive Interpretation of the Univalence
Axiom”. In: 21st International Conference on Types for Proofs and Programs
(TYPES 2015). Ed. by Tarmo Uustalu. Vol. 69. Leibniz International Pro-
ceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2018, 5:1-5:34. 1SBN: 978-3-95977-030-9.
DOI: 10.4230/LIPIcs.TYPES.2015.5.

[CD13] Thierry Coquand and Nils Anders Danielsson. “Isomorphism is equality”.
In: Indagationes Mathematicae 24.4 (2013). In memory of N.G. (Dick) de
Bruijn (1918-2012), pp. 1105-1120. 1ssN: 0019-3577. po1: 10. 1016/ .
indag.2013.09.002.

[CD14] Pierre Clairambault and Peter Dybjer. “The biequivalence of locally
cartesian closed categories and Martin-Lof type theories”. In: Math-
ematical Structures in Computer Science 24.6 (2014). por: 10 . 1017 /
S0960129513000881.

[CDP14] Jesper Cockx, Dominique Devriese, and Frank Piessens. “Pattern Match-
ing without K”. In: Proceedings of the 19th ACM SIGPLAN International
Conference on Functional Programming. ICFP 2014. New York, NY, USA:
ACM, 2014, pp. 257-268. 1SBN: 978-1-4503-2873-9. pO1: 10.1145/2628136.
2628139.

[CH19] Evan Cavallo and Robert Harper. “Higher Inductive Types in Cubical
Computational Type Theory”. In: Proceedings of the ACM on Programming
Languages 3.POPL (Jan. 2019), 1:1-1:27. 1sSN: 2475-1421. por1: 10.1145/
3290314.

[CH33] Thierry Coquand and Gérard Huet. “The Calculus of Constructions”. In:
Information and Computation 76.2 (1988), pp. 95—120. 1ssN: 0890-5401.
DpoIL: 10.1016/0890-5401(88)90005- 3.

[Chr19] David Thrane Christiansen. Checking Dependent Types with Normaliza-
tion by Evaluation: A Tutorial. Online. 2019. URL: https://davidchrist
iansen.dk/tutorials/nbe/.

https://doi.org/10.1007/978-3-030-66545-6_5
https://doi.org/10.1007/978-3-030-66545-6_5
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.1016/j.indag.2013.09.002
https://doi.org/10.1016/j.indag.2013.09.002
https://doi.org/10.1017/S0960129513000881
https://doi.org/10.1017/S0960129513000881
https://doi.org/10.1145/2628136.2628139
https://doi.org/10.1145/2628136.2628139
https://doi.org/10.1145/3290314
https://doi.org/10.1145/3290314
https://doi.org/10.1016/0890-5401(88)90005-3
https://davidchristiansen.dk/tutorials/nbe/
https://davidchristiansen.dk/tutorials/nbe/

324 Bibliography (2025-07-19)

[Chr23]

[CM16]

[Con+85]

[Coq+09]

[Coq13]

[Coq14]

[Coq19]

[Coq86]

[Coq91]

David Thrane Christiansen. Functional Programming in Lean. Online,
2023. URL: https://lean-lang.org/functional _programming_in_
lean/.

Thierry Coquand and Bassel Mannaa. “The Independence of Markov’s
Principle in Type Theory”. In: Ist International Conference on Formal
Structures for Computation and Deduction (FSCD 2016). Ed. by Delia
Kesner and Brigitte Pientka. Vol. 52. Leibniz International Proceedings
in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2016, 17:1-17:18. 1SBN: 978-3-95977-010-1. DOI:
10.4230/LIPIcs.FSCD.2016.17.

R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F Cremer,
R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden,
J. T. Sasaki, and S. F. Smith. Implementing Mathematics with the Nuprl
Proof Development Environment. Prentice-Hall, 1985. URL: http://www.
nuprl.org/book/.

Thierry Coquand, Yoshiki Kinoshita, Bengt Nordstrém, and Makoto
Takeyama. “A simple type-theoretic language: Mini-TT”. In: From Se-
mantics to Computer Science: Essays in Honour of Gilles Kahn. Ed. by
Yves Bertot, Gérard Huet, Jean-Jacques Lévy, and Gordon Plotkin. Cam-
bridge University Press, 2009. Chap. 6, pp. 139-164. por: 10 . 1017/
CB09780511770524.007.

Thierry Coquand. “Presheaf model of type theory”. Unpublished note.
2013. URL: http://www.cse.chalmers.se/~coquand/presheaf.pdf.

Thierry Coquand. “A remark on singleton types”. Unpublished note. Mar.
2014. URL: https://www.cse.chalmers.se/~coquand/singl.pdf.

Thierry Coquand. “Canonicity and normalization for dependent type
theory”. In: Theoretical Computer Science 777 (2019). In memory of Mau-
rice Nivat, a founding father of Theoretical Computer Science - Part I,
pp. 184-191. 1ssN: 0304-3975. pOI: 10.1016/].tcs.2019.01.015.

Thierry Coquand. “An Analysis of Girard’s Paradox”. In: Proceedings
of the First Annual IEEE Symposium on Logic in Computer Science. LICS
1986. IEEE Computer Society Press, June 1986, pp. 227-236. URL: https:
//inria.hal.science/inria-00076023.

Thierry Coquand. “An algorithm for testing conversion in type theory”.
In: Logical Frameworks. Ed. by Gérard Huet and Gordon Plotkin. Pro-
ceedings of the first international workshop on Logical Frameworks.

https://lean-lang.org/functional_programming_in_lean/
https://lean-lang.org/functional_programming_in_lean/
https://doi.org/10.4230/LIPIcs.FSCD.2016.17
http://www.nuprl.org/book/
http://www.nuprl.org/book/
https://doi.org/10.1017/CBO9780511770524.007
https://doi.org/10.1017/CBO9780511770524.007
http://www.cse.chalmers.se/~coquand/presheaf.pdf
https://www.cse.chalmers.se/~coquand/singl.pdf
https://doi.org/10.1016/j.tcs.2019.01.015
https://inria.hal.science/inria-00076023
https://inria.hal.science/inria-00076023

(2025-07-19)

[Coq92]

[Coq96]

[CP90]

[Cro94]

[dBru72]

[Dij17]

[dMU21]

[Dow93]

Bibliography 325

Cambridge University Press, 1991, pp. 255-279. 1sBN: 9780521413008. DOTI:
10.1017/CB09780511569807.011.

Thierry Coquand. “Pattern Matching with Dependent Types”. In: Pro-
ceedings of the 1992 Workshop on Types for Proofs and Programs. Ed. by
Bengt Nordstrom, Kent Petersson, and Gordon Plotkin. 1992, pp. 66—
79. URL: https://www. 1fcs. inf . ed. ac. uk/research/ types-
bra/proc/proc92.ps.gz.

Thierry Coquand. “An algorithm for type-checking dependent types”. In:
Science of Computer Programming 26.1 (1996), pp. 167-177. 1ssN: 0167-
6423.D01: 10.1016/0167-6423(95)00021-6.

Thierry Coquand and Christine Paulin. “Inductively defined types”. In:
COLOG-88. Ed. by Per Martin-Lo6f and Grigori Mints. Vol. 417. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 1990, pp. 50-66. ISBN: 978-3-540-52335-2. DOI: 10.1007/3-540-
52335-9_47.

Roy L. Crole. Categories for Types. Cambridge Mathematical Textbooks.
Cambridge University Press, 1994. 1sBN: 978-0521457019. po1: 10.1017/
CB09781139172707.

N. G. de Bruijn. “Lambda calculus notation with nameless dummies, a
tool for automatic formula manipulation, with application to the Church-
Rosser theorem”. In: Indagationes Mathematicae 75.5 (1972), pp. 381-392.
ISSN: 1385-7258. DO1: 10.1016/1385-7258(72)90034-0.

Gabe Dijkstra. “Quotient inductive-inductive definitions”. PhD thesis.
University of Nottingham, 2017. URL: https://eprints.nottingham.
ac.uk/42317/.

Leonardo de Moura and Sebastian Ullrich. “The Lean 4 Theorem Prover
and Programming Language”. In: Automated Deduction — CADE 28. Ed. by
André Platzer and Geoff Sutcliffe. Cham: Springer International Publish-
ing, 2021, pp. 625-635. 1SBN: 978-3-030-79876-5. DOI: 10.1007/978-3~
030-79876-5_37.

Gilles Dowek. “The undecidability of typability in the Lambda-Pi-calculus”.
In: Typed Lambda Calculi and Applications (TLCA 1993). Ed. by Marc
Bezem and Jan Friso Groote. Vol. 664. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1993, pp. 139-145. ISBN:
978-3-540-56517-8. po1: 10.1007/BFb0037103.

https://doi.org/10.1017/CBO9780511569807.011
https://www.lfcs.inf.ed.ac.uk/research/types-bra/proc/proc92.ps.gz
https://www.lfcs.inf.ed.ac.uk/research/types-bra/proc/proc92.ps.gz
https://doi.org/10.1016/0167-6423(95)00021-6
https://doi.org/10.1007/3-540-52335-9_47
https://doi.org/10.1007/3-540-52335-9_47
https://doi.org/10.1017/CBO9781139172707
https://doi.org/10.1017/CBO9781139172707
https://doi.org/10.1016/1385-7258(72)90034-0
https://eprints.nottingham.ac.uk/42317/
https://eprints.nottingham.ac.uk/42317/
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/BFb0037103

326 Bibliography (2025-07-19)

[Dyb00]

[Dybo4]

[Dyb96]

[Esc+10]

[Esc14]

[FAM23]

[FC18]

[Fio02]

[Fre78]

[GGO8]

[Gir99]

Peter Dybjer. “A General Formulation of Simultaneous Inductive-Recursive
Definitions in Type Theory”. In: The Journal of Symbolic Logic 65.2 (2000),
pp- 525-549. 15sN: 00224812. pDo1: 10.2307/2586554.

Peter Dybjer. “Inductive families”. In: Formal Aspects of Computing 6.4
(July 1994), pp. 440—465. 1sSN: 0934-5043. po1: 10.1007/BF01211308.

Peter Dybjer. “Internal type theory”. In: Types for Proofs and Programs
(TYPES 1995). Ed. by Stefano Berardi and Mario Coppo. Vol. 1158. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 1996, pp. 120-134. ISBN: 978-3-540-70722-6. DOI: 10. 1007 /3540~
61780-9_66.

Martin H. Escardé and contributors. TypeTopology. Agda development.
2010. URL: https://github.com/martinescardo/TypeTopology.

Martin Ho6tzel Escard6. Comment on “Generalize 7.2.2 and simplify encode-
decode”. GitHub comment. Dec. 2014. URL: https://github.com/HoTT/
book/issues/718#issuecomment-65378867.

Kuen-Bang Hou (Favonia), Carlo Angiuli, and Reed Mullanix. “An Order-
Theoretic Analysis of Universe Polymorphism”. In: Proceedings of the
ACM on Programming Languages 7.POPL (Jan. 2023). po1: 10. 1145/
3571250.

Daniel P. Friedman and David Thrane Christiansen. The Little Typer. The
MIT Press, 2018. 1sBN: 9780262536431.

Marcelo Fiore. “Semantic Analysis of Normalisation by Evaluation for
Typed Lambda Calculus”. In: Proceedings of the 4th ACM SIGPLAN Inter-
national Conference on Principles and Practice of Declarative Programming.
PPDP 2002. ACM, 2002, pp. 26—-37. IsBN: 1-58113-528-9. po1: 10.1145/
571157.571161.

Peter Freyd. “On proving that 1 is an indecomposable projective in various
free categories”. Unpublished note. 1978.

Nicola Gambino and Richard Garner. “The identity type weak factorisa-
tion system”. In: Theoretical Computer Science 409.1 (2008), pp. 94-109.
ISSN: 0304-3975. DO1: 10.1016/j.tcs.2008.08.030.

Jean-Yves Girard. “On the Meaning of Logical Rules I: Syntax Versus
Semantics”. In: Computational Logic. Ed. by Ulrich Berger and Helmut
Schwichtenberg. Vol. 165. NATO ASI Series F: Computer and Systems Sci-
ences. Springer Berlin Heidelberg, 1999, pp. 215-272. 1SBN: 9783642586224.
DOI: 10.1007/978-3-642-58622-4_7.

https://doi.org/10.2307/2586554
https://doi.org/10.1007/BF01211308
https://doi.org/10.1007/3-540-61780-9_66
https://doi.org/10.1007/3-540-61780-9_66
https://github.com/martinescardo/TypeTopology
https://github.com/HoTT/book/issues/718#issuecomment-65378867
https://github.com/HoTT/book/issues/718#issuecomment-65378867
https://doi.org/10.1145/3571250
https://doi.org/10.1145/3571250
https://doi.org/10.1145/571157.571161
https://doi.org/10.1145/571157.571161
https://doi.org/10.1016/j.tcs.2008.08.030
https://doi.org/10.1007/978-3-642-58622-4_7

(2025-07-19)

[GLT89]

[GMW79]

[Gra+21]

[Gra+22]

[Gra09]

[Gra22]

[Gra23]

[GSS22]

[Har09]

Bibliography 327

Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Cam-
bridge Tracts in Theoretical Computer Science 7. Cambridge University
Press, 1989. 1sBN: 0521371813. URL: https: //www. paultaylor.eu/
stable/Proofs+Types.

Michael]J. Gordon, Arthur J. Milner, and Christopher P. Wadsworth.
Edinburgh LCF: A Mechanized Logic of Computation. Vol. 78. Lecture
Notes in Computer Science. Springer-Verlag Berlin Heidelberg, 1979.
ISBN: 978-3-540-09724-2. Do1: 10.1007/3-540-09724-4.

Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal. “Multi-
modal Dependent Type Theory”. In: Logical Methods in Computer Science
17.3 (]uly 2021). pOI: 10.46298/1mcs-17(3:11)2021.

Daniel Gratzer, Evan Cavallo, G. A. Kavvos, Adrien Guatto, and Lars
Birkedal. “Modalities and Parametric Adjoints”. In: ACM Transactions
on Computational Logic 23.3 (Apr. 2022). 1ssN: 1529-3785. po1: 10.1145/
3514241.

Johan Georg Granstrom. “Reference and Computation in Intuitionistic
Type Theory”. PhD thesis. Uppsala University, 2009. UrL: https://in
tuitionistic.files.wordpress.com/2010/07/theses_published_
uppsala. pdf.

Daniel Gratzer. “Normalization for Multimodal Type Theory”. In: Pro-
ceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer
Science. LICS 2022. New York, NY, USA: ACM, 2022. 1sBN: 9781450393515.
Dpor: 10.1145/3531130.3532398.

Daniel Gratzer. “Syntax and semantics of modal type theory”. PhD thesis.
Aarhus University, 2023. urL: https://pure.au.dk/portal/en/
publications/syntax-and-semantics-of-modal-type-theory(69
4f77d2-47d3-4986-bb82-129b8d96206e) . html.

Daniel Gratzer, Michael Shulman, and Jonathan Sterling. Strict uni-
verses for Grothendieck topoi. Preprint. Feb. 2022. arXiv: 2202 . 12012
[math.CT].

John Harrison. “HOL Light: An Overview”. In: Theorem Proving in Higher
Order Logics (TPHOLs 2009). Ed. by Stefan Berghofer, Tobias Nipkow,
Christian Urban, and Makarius Wenzel. Vol. 5674. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp- 60-66. 1SBN: 978-3-642-03358-2. poI: 10.1007/978-3-642-03359-
9_4.

https://www.paultaylor.eu/stable/Proofs+Types
https://www.paultaylor.eu/stable/Proofs+Types
https://doi.org/10.1007/3-540-09724-4
https://doi.org/10.46298/lmcs-17(3:11)2021
https://doi.org/10.1145/3514241
https://doi.org/10.1145/3514241
https://intuitionistic.files.wordpress.com/2010/07/theses_published_uppsala.pdf
https://intuitionistic.files.wordpress.com/2010/07/theses_published_uppsala.pdf
https://intuitionistic.files.wordpress.com/2010/07/theses_published_uppsala.pdf
https://doi.org/10.1145/3531130.3532398
https://pure.au.dk/portal/en/publications/syntax-and-semantics-of-modal-type-theory(694f77d2-47d3-4986-bb82-129b8d96206e).html
https://pure.au.dk/portal/en/publications/syntax-and-semantics-of-modal-type-theory(694f77d2-47d3-4986-bb82-129b8d96206e).html
https://pure.au.dk/portal/en/publications/syntax-and-semantics-of-modal-type-theory(694f77d2-47d3-4986-bb82-129b8d96206e).html
https://arxiv.org/abs/2202.12012
https://arxiv.org/abs/2202.12012
https://doi.org/10.1007/978-3-642-03359-9_4
https://doi.org/10.1007/978-3-642-03359-9_4

328 Bibliography (2025-07-19)

[Har16]

[Has21]

[HHP93]

[HMO95]

[Hof95a]

[Hofo5b]

[Hof97]

[Hof99]

[How80]

[HS97]

Robert Harper. Practical Foundations for Programming Languages. Second
Edition. Cambridge University Press, 2016. 1sBN: 9781107150300. DOTI:
10.1017/CB09781316576892.

Philipp Haselwarter. “Effective Metatheory for Type Theory”. PhD thesis.
University of Ljubljana, 2021. UrRL: https://repozitorij.uni-1j.si/
IzpisGradiva.php?id=134439.

Robert Harper, Furio Honsell, and Gordon Plotkin. “A Framework for
Defining Logics”. In: Journal of the ACM 40.1 (Jan. 1993), pp. 143-184.
ISSN: 0004-5411. po1: 10.1145/138027.138060.

Robert Harper and Greg Morrisett. “Compiling Polymorphism Using
Intensional Type Analysis”. In: Proceedings of the 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL 1995.
New York, NY, USA: ACM, 1995, pp. 130-141. 1sBN: 0897916921. DOT:
10.1145/199448.199475.

Martin Hofmann. “Extensional concepts in intensional type theory”. PhD
thesis. University of Edinburgh, July 1995. URL: http://www.1fcs.inf.
ed.ac.uk/reports/95/ECS-LFCS-95-327/.

Martin Hofmann. “On the interpretation of type theory in locally carte-
sian closed categories”. In: 8th Workshop, Computer Science Logic (CSL
1994). Ed. by Leszek Pacholski and Jerzy Tiuryn. Vol. 933. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg,
1995, pp. 427-441. 1SBN: 978-3-540-49404-1. po1: 10.1007/BFb0022273.

Martin Hofmann. “Syntax and Semantics of Dependent Types”. In: Se-
mantics and Logics of Computation. Ed. by Andrew M. Pitts and P. Dybjer.
Publications of the Newton Institute. Cambridge University Press, 1997,
pp- 79-130. por: 10.1017/CB09780511526619.004.

Martin Hofmann. “Semantical analysis of higher-order abstract syntax”.
In: Proceedings of the 14th Annual IEEE Symposium on Logic in Computer
Science. LICS 1999. Washington, DC, USA: IEEE Computer Society, 1999.
ISBN: 0-7695-0158-3. po1: 10.1109/LICS.1999.782616.

William A. Howard. “The formulae-as-types notion of construction”.
In: To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism. Ed. by Jonathan P. Seldin and J. Roger Hindley. Academic
Press, 1980, pp. 479-490. 1SBN: 978-0-12-349050-6.

Martin Hofmann and Thomas Streicher. “Lifting Grothendieck Universes”.
Unpublished note. 1997. URL: https://www2.mathematik. tu-darmsta
dt.de/~streicher/NOTES/1ift.pdf.

https://doi.org/10.1017/CBO9781316576892
https://repozitorij.uni-lj.si/IzpisGradiva.php?id=134439
https://repozitorij.uni-lj.si/IzpisGradiva.php?id=134439
https://doi.org/10.1145/138027.138060
https://doi.org/10.1145/199448.199475
http://www.lfcs.inf.ed.ac.uk/reports/95/ECS-LFCS-95-327/
http://www.lfcs.inf.ed.ac.uk/reports/95/ECS-LFCS-95-327/
https://doi.org/10.1007/BFb0022273
https://doi.org/10.1017/CBO9780511526619.004
https://doi.org/10.1109/LICS.1999.782616
https://www2.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf
https://www2.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf

(2025-07-19)

[HS98]

[Hub18]

[Hur95]

[Hyls2]

[Jac99]

[KHS19]

[KKA19]

[KL21]

[KL25]

Bibliography 329

Martin Hofmann and Thomas Streicher. “The groupoid interpretation of
type theory”. In: Twenty-Five Years of Constructive Type Theory. Ed. by
Giovanni Sambin and Jan Smith. Vol. 36. Oxford Logic Guides. Oxford
University Press, 1998, pp. 83-111.

Simon Huber. “Canonicity for Cubical Type Theory”. In: Journal of Au-
tomated Reasoning (June 2018). 1ssN: 1573-0670. po1: 10.1007/s10817-
018-9469-1.

Antonius J. C. Hurkens. “A simplification of Girard’s paradox”. In: Typed
Lambda Calculi and Applications. Ed. by Mariangiola Dezani-Ciancaglini
and Gordon Plotkin. TLCA 1995. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1995, pp. 266—-278. 1SBN: 978-3-540-49178-1. po1: 10.1007/
BFb0014058.

J. M. E. Hyland. “The Effective Topos”. In: The L. E. J. Brouwer Centenary
Symposium. Ed. by A.S. Troelstra and D. van Dalen. Vol. 110. Studies in
Logic and the Foundations of Mathematics. Elsevier, 1982, pp. 165-216.
DOI: 10.1016/s0049-237x(09)70129-6.

Bart Jacobs. Categorical Logic and Type Theory. Studies in Logic and the
Foundations of Mathematics 141. North Holland, 1999. 1sBN: 9780444539427.

Ambrus Kaposi, Simon Huber, and Christian Sattler. “Gluing for Type
Theory”. In: 4th International Conference on Formal Structures for Com-
putation and Deduction (FSCD 2019). Ed. by Herman Geuvers. Vol. 131.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Ger-
many: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019, 25:1-
25:19. 1SBN: 978-3-95977-107-8. pO1: 10.4230/LIPIcs.FSCD.2019.25.

Ambrus Kaposi, Andras Kovacs, and Thorsten Altenkirch. “Construct-
ing quotient inductive-inductive types”. In: Proceedings of the ACM on
Programming Languages 3.POPL (Jan. 2019), 2:1-2:24. po1: 10. 1145/
3290315.

Krzysztof Kapulkin and Peter LeFanu Lumsdaine. “The simplicial model
of Univalent Foundations (after Voevodsky)”. In: Journal of the European
Mathematical Society 23.6 (2021), pp. 2071-2126. po1: 10.4171/JEMS/
1050.

Krzysztof Kapulkin and Yufeng Li. “Extensional concepts in intensional
type theory, revisited”. In: Theoretical Computer Science 1029 (Mar. 2025).
ISSN: 0304-3975. DO1: 10.1016/j.tcs.2024.115051.

https://doi.org/10.1007/s10817-018-9469-1
https://doi.org/10.1007/s10817-018-9469-1
https://doi.org/10.1007/BFb0014058
https://doi.org/10.1007/BFb0014058
https://doi.org/10.1016/s0049-237x(09)70129-6
https://doi.org/10.4230/LIPIcs.FSCD.2019.25
https://doi.org/10.1145/3290315
https://doi.org/10.1145/3290315
https://doi.org/10.4171/JEMS/1050
https://doi.org/10.4171/JEMS/1050
https://doi.org/10.1016/j.tcs.2024.115051

330 Bibliography (2025-07-19)

[Kle50]

[Kov16]

[Kov22]

[KS15]

[LH12]

[Lic16]

[LMS10]

[LS13]

[LS19]

[LS88]

S. C. Kleene. “A symmetric form of Godel’s theorem”. In: Koninklijke
Nederlandse Akademie van Wetenschappen, Proceedings of the section
of sciences 53 (1950), pp. 800-802. URL: https://dwc.knaw.nl/DL/
publications/PU00014670.pdf.

Andras Kovacs. elaboration-zoo. 2016. URL: https://github.com/
AndrasKovacs/elaboration-zoo.

Andras Kovacs. “Type-Theoretic Signatures for Algebraic Theories and
Inductive Types”. PhD thesis. E6tvos Lorand University, 2022. por: 10.
15476/ELTE. 2022.070.

Nicolai Kraus and Christian Sattler. “Higher Homotopies in a Hierarchy
of Univalent Universes”. In: ACM Transactions on Computational Logic
16.2 (Apr. 2015), 18:1-18:12. 15sN: 1529-3785. DOI: 10.1145/2729979.

Daniel R. Licata and Robert Harper. “Canonicity for 2-Dimensional Type
Theory”. In: Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages. POPL 2012. New York,
NY, USA: ACM, 2012, pp. 337-348. 1sBN: 978-1-4503-1083-3. por: 10.
1145/2103656.2103697.

Dan Licata. Weak univalence with “beta” implies full univalence. Email to
Homotopy Type Theory mailing list. Sept. 2016. URL: https://groups.
google.com/d/msg/homotopytypetheory/j2KBIvDw53s/YTDK4DONFQ
AJ.

Andres Loh, Conor McBride, and Wouter Swierstra. “A Tutorial Imple-
mentation of a Dependently Typed Lambda Calculus”. In: Fundamenta
Informaticae 102.2 (2010). Special issue: Dependently Typed Program-
ming, pp. 177-207. por: 10.3233/FI-2010-304.

Daniel R. Licata and Michael Shulman. “Calculating the Fundamental
Group of the Circle in Homotopy Type Theory”. In: Proceedings of the
2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.
LICS 2013. Washington, DC, USA: IEEE Computer Society, 2013, pp. 223—
232. 1SBN: 978-0-7695-5020-6. DoI: 10.1109/LICS.2013.28.

Peter LeFanu Lumsdaine and Michael Shulman. “Semantics of higher
inductive types”. In: Mathematical Proceedings of the Cambridge Philo-
sophical Society (2019). po1: 10.1017/5S030500411900015X.

Joachim Lambek and Philip J. Scott. Introduction to Higher-Order Categor-
ical Logic. Cambridge Studies in Advanced Mathematics 7. Cambridge
University Press, 1988. 1SBN: 9780521356534.

https://dwc.knaw.nl/DL/publications/PU00014670.pdf
https://dwc.knaw.nl/DL/publications/PU00014670.pdf
https://github.com/AndrasKovacs/elaboration-zoo
https://github.com/AndrasKovacs/elaboration-zoo
https://doi.org/10.15476/ELTE.2022.070
https://doi.org/10.15476/ELTE.2022.070
https://doi.org/10.1145/2729979
https://doi.org/10.1145/2103656.2103697
https://doi.org/10.1145/2103656.2103697
https://groups.google.com/d/msg/homotopytypetheory/j2KBIvDw53s/YTDK4D0NFQAJ
https://groups.google.com/d/msg/homotopytypetheory/j2KBIvDw53s/YTDK4D0NFQAJ
https://groups.google.com/d/msg/homotopytypetheory/j2KBIvDw53s/YTDK4D0NFQAJ
https://doi.org/10.3233/FI-2010-304
https://doi.org/10.1109/LICS.2013.28
https://doi.org/10.1017/S030500411900015X

(2025-07-19)

[Lumi1]

[Lum17]

[LW15]

[Mar71]

[Mar75]

[Mar82]

[Mar84a]

[Mar84b]

[Mar87]

[Mar92]

Bibliography 331

Peter LeFanu Lumsdaine. Strong functional extensionality from weak. Blog
post. Dec. 2011. URL: https://homotopytypetheory.org/2011/12/
19/strong-funext-from-weak/.

Peter LeFanu Lumsdaine. Answer to “Can we always make a strictly func-
torial choice of pullbacks/re-indexing?” MathOverflow answer. 2017. URL:
https://mathoverflow.net/q/279985.

Peter LeFanu Lumsdaine and Michael A. Warren. “The Local Universes
Model: An Overlooked Coherence Construction for Dependent Type
Theories”. In: ACM Transactions on Computational Logic 16.3 (2015). DOI:
10.1145/2754931.

Per Martin-Lo6f. “An intuitionistic theory of types”. Unpublished preprint.
1971.

Per Martin-Lof. “An Intuitionistic Theory of Types: Predicative Part”. In:
Logic Colloquium ’73. Ed. by H. E. Rose and J. C. Shepherdson. Vol. 80.
Studies in Logic and the Foundations of Mathematics. North-Holland,
1975, pp. 73-118. po1: 10.1016/S0049-237X(08)71945-1.

Per Martin-Lof. “Constructive mathematics and computer programming”.
In: Logic, Methodology and Philosophy of Science VI, Proceedings of the Sixth
International Congress of Logic, Methodology and Philosophy of Science,
Hannover 1979. Ed. by L. Jonathan Cohen, Jerzy Lo$, Helmut Pfeiffer, and
Klaus-Peter Podewski. Vol. 104. Studies in Logic and the Foundations of
Mathematics. North-Holland, 1982, pp. 153-175. po1: 10.1016/S0049-
237X(09)70189-2.

Per Martin-Lof. “Constructive mathematics and computer programming”.
In: Philosophical Transactions of the Royal Society of London A 312.1522
(Oct. 1984), pp. 501-518. 1sSN: 0080-4614. po1: 10.1098/rsta. 1984 .
0073.

Per Martin-Lof. Intuitionistic type theory. Notes by Giovanni Sambin of a
series of lectures given in Padua, June 1980. Vol. 1. Studies in Proof Theory.
Bibliopolis, 1984. 1sBN: 88-7088-105-9.

Per Martin-Lof. “Truth of a Proposition, Evidence of a Judgement, Validity
of a Proof”. In: Synthese 73.3 (1987), pp. 407-420. po1: 10.1007/bf00484
985.

Per Martin-Lof. Substitution calculus. Notes from a lecture given in Gote-
borg, Sweden. Sept. 1992. URL: https: //raw. githubusercontent .
com/michaelt/martin-lof/master/pdfs/Substitution-calculus-
1992 pdf.

https://homotopytypetheory.org/2011/12/19/strong-funext-from-weak/
https://homotopytypetheory.org/2011/12/19/strong-funext-from-weak/
https://mathoverflow.net/q/279985
https://doi.org/10.1145/2754931
https://doi.org/10.1016/S0049-237X(08)71945-1
https://doi.org/10.1016/S0049-237X(09)70189-2
https://doi.org/10.1016/S0049-237X(09)70189-2
https://doi.org/10.1098/rsta.1984.0073
https://doi.org/10.1098/rsta.1984.0073
https://doi.org/10.1007/bf00484985
https://doi.org/10.1007/bf00484985
https://raw.githubusercontent.com/michaelt/martin-lof/master/pdfs/Substitution-calculus-1992.pdf
https://raw.githubusercontent.com/michaelt/martin-lof/master/pdfs/Substitution-calculus-1992.pdf
https://raw.githubusercontent.com/michaelt/martin-lof/master/pdfs/Substitution-calculus-1992.pdf

332 Bibliography (2025-07-19)

[Mar96]

[McB02]

[McB18]

[McB19]

[McB99]

[Mim20]

[MS93]

[NPS90]

[NPW02]

Per Martin-L6f. “On the meanings of the logical constants and the justifi-
cations of the logical laws”. In: Nordic Journal of Philosophical Logic 1.1
(May 1996), pp. 11-60. URL: https://www.hf.uio.no/ifikk/english/
research/publications/journals/njpl/files/volinol/meaning.
pdf.

Conor McBride. “Elimination with a Motive”. In: Types for Proofs and
Programs (TYPES 2000). Ed. by Paul Callaghan, Zhaohui Luo, James McK-
inna, and Robert Pollack. Vol. 2277. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 197-216. por:
10.1007/3-540-45842-5_13

Conor McBride. Basics of bidirectionalism. Blog post. Aug. 2018. URL:
https://pigworker . wordpress.com/2018/08/06/basics-of -
bidirectionalism/.

Conor McBride. “The types who say ‘ni’”. Draft paper. Feb. 2019. URL:
https://github. com/pigworker/TypesWhoSayNi/blob/master/
tex/TypesWhoSayNi . pdf.

Conor McBride. “Dependently Typed Functional Programs and their
Proofs”. PhD thesis. University of Edinburgh, 1999. urL: https://era.
ed.ac.uk/bitstream/id/600/ECS-LFCS-00-419.pdf.

Samuel Mimram. PROGRAM = PROOF. Independently published, 2020.
ISBN: 979-8615591839. URL: http://www. lix . polytechnique. fr/
Labo/Samuel.Mimram/teaching/INF551/course.pdf.

John C. Mitchell and Andre Scedrov. “Notes on sconing and relators”.
In: Computer Science Logic (CSL 1992). Ed. by E. Borger, G. Jager, H.
Kleine Biining, S. Martini, and M. M. Richter. Vol. 702. Lecture Notes in
Computer Science. Springer-Verlag Berlin Heidelberg, 1993, pp. 352-378.
DOI: 10.1007/3-540-56992-8_21.

Bengt Nordstrom, Kent Petersson, and Jan Smith. Programming in Martin-
Lof’s Type Theory. Oxford University Press, 1990. URL: http://www. cse.
chalmers.se/research/group/logic/book/.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL:
A Proof Assistant for Higher-Order Logic. Vol. 2283. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002.
ISBN: 978-3-540-43376-7. DoI1: 10.1007/3-540-45949-9.

https://www.hf.uio.no/ifikk/english/research/publications/journals/njpl/files/vol1no1/meaning.pdf
https://www.hf.uio.no/ifikk/english/research/publications/journals/njpl/files/vol1no1/meaning.pdf
https://www.hf.uio.no/ifikk/english/research/publications/journals/njpl/files/vol1no1/meaning.pdf
https://doi.org/10.1007/3-540-45842-5_13
https://pigworker.wordpress.com/2018/08/06/basics-of-bidirectionalism/
https://pigworker.wordpress.com/2018/08/06/basics-of-bidirectionalism/
https://github.com/pigworker/TypesWhoSayNi/blob/master/tex/TypesWhoSayNi.pdf
https://github.com/pigworker/TypesWhoSayNi/blob/master/tex/TypesWhoSayNi.pdf
https://era.ed.ac.uk/bitstream/id/600/ECS-LFCS-00-419.pdf
https://era.ed.ac.uk/bitstream/id/600/ECS-LFCS-00-419.pdf
http://www.lix.polytechnique.fr/Labo/Samuel.Mimram/teaching/INF551/course.pdf
http://www.lix.polytechnique.fr/Labo/Samuel.Mimram/teaching/INF551/course.pdf
https://doi.org/10.1007/3-540-56992-8_21
http://www.cse.chalmers.se/research/group/logic/book/
http://www.cse.chalmers.se/research/group/logic/book/
https://doi.org/10.1007/3-540-45949-9

(2025-07-19) Bibliography 333

[NS12] Fredrik Nordvall Forsberg and Anton Setzer. “A Finite Axiomatisation
of Inductive-Inductive Definitions”. In: Logic, Construction, Computation.
Ed. by Ulrich Berger, Hannes Diener, Peter Schuster, and Monika Seisen-
berger. Vol. 3. Ontos Mathematical Logic. Ontos Verlag, 2012, pp. 259-288.
ISBN: 9783110324532. po1: 10.1515/9783110324921. 259.

[OP16] Ian Orton and Andrew M. Pitts. “Axioms for Modelling Cubical Type The-
ory in a Topos”. In: 25th EACSL Annual Conference on Computer Science
Logic (CSL 2016). Ed. by Jean-Marc Talbot and Laurent Regnier. Vol. 62.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Ger-
many: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016, 24:1-
24:19. 1SBN: 978-3-95977-022-4. DO1: 10.4230/LIPIcs.CSL.2016.24.

[Pau93] Christine Paulin-Mohring. “Inductive definitions in the system Coq: rules
and properties”. In: Typed Lambda Calculi and Applications (TLCA 1993).
Ed. by Marc Bezem and Jan Friso Groote. Vol. 664. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993,
pp- 328-345. 1SBN: 978-3-540-56517-8. DOI: 10.1007/bfb0037116.

[PDO1] Frank Pfenning and Rowan Davies. “A judgmental reconstruction of
modal logic”. In: Mathematical Structures in Computer Science 11.4 (2001),
pp- 511-540. DO1: 10.1017/50960129501003322.

[Pie02] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.
ISBN: 0-262-16209-1.

[Pol02] Robert Pollack. “Dependently Typed Records in Type Theory”. In: Formal
Aspects of Computing 13.3-5 (July 2002), pp. 386—402. 1ssN: 0934-5043.
DOI: 10.1007/s001650200018.

[Por21] Timothy Porter. “Spaces as Infinity-Groupoids”. In: New Spaces in Mathe-
matics. Cambridge University Press, Apr. 2021, pp. 258—-321. 1SBN: 9781108490634.
DpoI: 10.1017/9781108854429 . 008. URL: http://dx.doi.org/10.
1017/9781108854429.008.

[PP90] Frank Pfenning and Christine Paulin-Mohring. “Inductively defined types
in the Calculus of Constructions”. In: Mathematical Foundations of Pro-
gramming Semantics (MFPS 1989). Ed. by M. Main, A. Melton, M. Mislove,
and D. Schmidt. Vol. 442. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer-Verlag Berlin Heidelberg, 1990, pp. 209-228. 1SBN:
978-0-387-97375-3. po1: 10.1007/bfb0040259.

[PT00] Benjamin C. Pierce and David N. Turner. “Local type inference”. In: ACM
Transactions on Programming Languages and Systems 22.1 (2000), pp. 1-44.
DoOI: 10.1145/345099.345100.

https://doi.org/10.1515/9783110324921.259
https://doi.org/10.4230/LIPIcs.CSL.2016.24
https://doi.org/10.1007/bfb0037116
https://doi.org/10.1017/S0960129501003322
https://doi.org/10.1007/s001650200018
https://doi.org/10.1017/9781108854429.008
http://dx.doi.org/10.1017/9781108854429.008
http://dx.doi.org/10.1017/9781108854429.008
https://doi.org/10.1007/bfb0040259
https://doi.org/10.1145/345099.345100

334

[PT22]

[Rie16]

[Rij+21]

[Rij22]

[Rocq]

[Ros36]

[Rus03]

[SA21]

[SAG22]

[Sco18]

[See84]

[Ser53]

Bibliograph (2025-07-19)
grapny

Loic Pujet and Nicolas Tabareau. “Observational Equality: Now for Good”.
In: Proceedings of the ACM on Programming Languages 6. POPL (Jan. 2022).
DoI: 10.1145/3498693.

Emily Riehl. Category Theory in Context. Aurora: Dover Modern Math
Originals. Dover Publications, 2016. 1SBN: 978-0486809038. URL: https:
//emilyriehl.github.io/files/context.pdf.

Egbert Rijke, Elisabeth Stenholm, Jonathan Prieto-Cubides, Fredrik Bakke,
et al. The agda-unimath library. 2021. URrL: https: //github. com/
UniMath/agda-unimath/.

Egbert Rijke. Introduction to Homotopy Type Theory. To be published.
Cambridge University Press, 2022. arXiv: 2212.11082.

The Rocq Team. The Rocq Prover. Formerly known as the Coq proof
assistant. 2025. URL: https://rocq-prover.org/.

Barkley Rosser. “Extensions of Some Theorems of Gédel and Church”. In:
The Journal of Symbolic Logic 1.3 (Sept. 1936), pp. 87-91. po1: 10.2307/
2269028.

Bertrand Russell. The Principles of Mathematics. 1903. URL: https://
people.umass.edu/klement/pom/.

Jonathan Sterling and Carlo Angiuli. “Normalization for Cubical Type
Theory”. In: 36th Annual ACM/IEEE Symposium on Logic in Computer
Science. LICS 2021. 2021, pp. 1-15. po1: 10. 1109 /LICS52264 . 2021 .
9470719.

Jonathan Sterling, Carlo Angiuli, and Daniel Gratzer. “A Cubical Lan-
guage for Bishop Sets”. In: Logical Methods in Computer Science 18.1 (Mar.
2022). DoT: 10.46298/1mcs-18(1:43)2022.

Dana S. Scott. Looking backward; looking forward. Invited Talk at the
Workshop in honour of Dana Scott’s 85th birthday and 50 years of domain
theory. July 2018. URL: https://www.youtube.com/watch?v=uS9Inrm
PIoc.

R. A. G. Seely. “Locally cartesian closed categories and type theory”.
In: Mathematical Proceedings of the Cambridge Philosophical Society 95.1
(1984), pp. 33-48. po1: 10.1017/S0305004100061284.

Jean-Pierre Serre. “Cohomologie modulo 2 des complexes d’Eilenberg-
MacLane”. In: Commentarii Mathematici Helvetici 27.1 (Dec. 1953), pp. 198—
232. 1ssN: 1420-8946. po1: 10.1007/bf02564562.

https://doi.org/10.1145/3498693
https://emilyriehl.github.io/files/context.pdf
https://emilyriehl.github.io/files/context.pdf
https://github.com/UniMath/agda-unimath/
https://github.com/UniMath/agda-unimath/
https://arxiv.org/abs/2212.11082
https://rocq-prover.org/
https://doi.org/10.2307/2269028
https://doi.org/10.2307/2269028
https://people.umass.edu/klement/pom/
https://people.umass.edu/klement/pom/
https://doi.org/10.1109/LICS52264.2021.9470719
https://doi.org/10.1109/LICS52264.2021.9470719
https://doi.org/10.46298/lmcs-18(1:43)2022
https://www.youtube.com/watch?v=uS9InrmPIoc
https://www.youtube.com/watch?v=uS9InrmPIoc
https://doi.org/10.1017/S0305004100061284
https://doi.org/10.1007/bf02564562

(2025-07-19)

[SHO6]

[SH21]

[Shu08]

[Shu15]

[Shu19]

[Shu21]

[Shu22]

[Smi88]

[Smi89]

[SP94]

[Ste19]

[Ste21]

Bibliography 335

Christopher A. Stone and Robert Harper. “Extensional equivalence and
singleton types”. In: Transactions on Computational Logic 7.4 (2006),
pp- 676-722. po1: 10.1145/1183278.1183281.

Jonathan Sterling and Robert Harper. “Logical Relations as Types: Proof-
Relevant Parametricity for Program Modules”. In: Journal of the ACM
68.6 (Oct. 2021). 1SSN: 0004-5411. DOT: 10.1145/3474834.

Michael A. Shulman. Set theory for category theory. Preprint. Oct. 2008.
arXiv: 0810.1279 [math.CT].

Michael Shulman. “Univalence for inverse diagrams and homotopy canon-
icity”. In: Mathematical Structures in Computer Science 25.5 (2015), pp. 1203—
1277. Do1: 10.1017/S0960129514000565.

Michael Shulman. All (oo, 1) -toposes have strict univalent universes. Preprint.
Apr. 2019. arXiv: 1904.07004 [math.AT].

Michael Shulman. “Homotopy Type Theory: The Logic of Space”. In:
New Spaces in Mathematics: Formal and Conceptual Reflections. Ed. by
Mathieu Anel and Gabriel Catren. Vol. 1. Cambridge University Press,
2021. Chap. 6, pp. 322-404. po1: 10.1017/9781108854429.009.

Michael Shulman. Towards third generation HOTT. Joint work with Thorsten
Altenkirch and Ambrus Kaposi. Slides from CMU HoTT seminar. Apr.
2022. URL: https://home. sandiego. edu/~shulman/papers/hott-
cmu-day1.pdf.

Jan M. Smith. “The Independence of Peano’s Fourth Axiom from Martin-
Lof’s Type Theory Without Universes”. In: The Journal of Symbolic Logic
53.3 (1988), pp. 840-845. 1ssN: 00224812. po1: 10.2307/2274575.

Jan M. Smith. “Propositional functions and families of types”. In: Notre
Dame Journal of Formal Logic 30.3 (June 1989). 1ssN: 0029-4527. DOTI:
10.1305/ndjfl/1093635159.

Paula Severi and Erik Poll. “Pure Type Systems with Definitions”. In:
Logical Foundations of Computer Science (LFCS 1994). Ed. by Anil Nerode
and Yu. V. Matiyasevich. Vol. 813. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer-Verlag, 1994, pp. 316—328. 1sBN: 3540581405.
DOI: 10.1007/3-540-58140-5_30.

Jonathan Sterling. Algebraic Type Theory and Universe Hierarchies. Preprint.
Feb. 2019. arXiv: 1902.08848 [cs.LO].

Jonathan Sterling. “First Steps in Synthetic Tait Computability: The Ob-
jective Metatheory of Cubical Type Theory”. PhD thesis. Carnegie Mellon
University, 2021. por: 10.5281/zenodo.5709838.

https://doi.org/10.1145/1183278.1183281
https://doi.org/10.1145/3474834
https://arxiv.org/abs/0810.1279
https://doi.org/10.1017/S0960129514000565
https://arxiv.org/abs/1904.07004
https://doi.org/10.1017/9781108854429.009
https://home.sandiego.edu/~shulman/papers/hott-cmu-day1.pdf
https://home.sandiego.edu/~shulman/papers/hott-cmu-day1.pdf
https://doi.org/10.2307/2274575
https://doi.org/10.1305/ndjfl/1093635159
https://doi.org/10.1007/3-540-58140-5_30
https://arxiv.org/abs/1902.08848
https://doi.org/10.5281/zenodo.5709838

336 Bibliography (2025-07-19)

[Stro5]

[Str93]

[Stu16]

[Swa25]

[Tas93]

[Tra53]

[Tsel7]

[Tur85]

[Tur89]

[Uem19]

Thomas Streicher. “Universes in Toposes”. In: From Sets and Types to
Topology and Analysis: Towards practicable foundations for constructive
mathematics. Ed. by Laura Crosilla and Peter Schuster. Oxford University
Press, Oct. 2005, pp. 78-90. 1sBN: 9780198566519. poI: 10.1093/acprof':
0s50/9780198566519.003.0005.

Thomas Streicher. “Investigations Into Intensional Type Theory”. Ha-
bilitation thesis. Ludwig-Maximilians-Universitdt Miinchen, 1993. URL:
https://www2.mathematik. tu-darmstadt.de/~streicher/HabilS
treicher.pdf.

Aaron Stump. Verified Functional Programming in Agda. Association for
Computing Machinery and Morgan & Claypool, 2016. 1SBN: 9781970001273
DOI: 10.1145/2841316.

Andrew W. Swan. “Irregular models of type theory”. Abstract at 31st
International Conference on Types for Proofs and Programs (TYPES 2025).
2025. URL: https://msp.cis.strath.ac.uk/types2025/abstracts/
TYPES2025_paper40.pdf.

Alvaro Tasistro. “Formulation of Martin-Lof’s theory of types with ex-
plicit substitutions”. Licentiate thesis. Chalmers University of Technology
and University of Goéteborg, 1993.

B. A. Trakhtenbrot. “On Recursive Separability”. In: Doklady Akademii
Nauk SSSR 88.6 (1953), pp. 953-956.

Dimitris Tsementzis. “Univalent foundations as structuralist foundations”.
In: Synthese 194.9 (2017), pp. 3583-3617. po1: 10.1007/s11229-016-
1109-x.

D. A. Turner. “Miranda: A non-strict functional language with poly-
morphic types”. In: Functional Programming Languages and Computer
Architecture (FPCA 1985). Ed. by Jean-Pierre Jouannaud. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 1985, pp. 1-16. 1sBN: 978-3-540-39677-2.

David Turner. “A new formulation of constructive type theory”. In: Pro-
ceedings of the Workshop on Programming Logic. 1989.

Taichi Uemura. “Cubical Assemblies, a Univalent and Impredicative Uni-
verse and a Failure of Propositional Resizing”. In: 24th International Con-
ference on Types for Proofs and Programs (TYPES 2018). Ed. by Peter Dybjer,
José Espirito Santo, and Luis Pinto. Vol. 130. Leibniz International Pro-
ceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl —
Leibniz-Zentrum fiir Informatik, 2019, 7:1-7:20. 1SBN: 978-3-95977-106-1.
DOI: 10.4230/LIPIcs.TYPES.2018.7.

https://doi.org/10.1093/acprof:oso/9780198566519.003.0005
https://doi.org/10.1093/acprof:oso/9780198566519.003.0005
https://www2.mathematik.tu-darmstadt.de/~streicher/HabilStreicher.pdf
https://www2.mathematik.tu-darmstadt.de/~streicher/HabilStreicher.pdf
https://doi.org/10.1145/2841316
https://msp.cis.strath.ac.uk/types2025/abstracts/TYPES2025_paper40.pdf
https://msp.cis.strath.ac.uk/types2025/abstracts/TYPES2025_paper40.pdf
https://doi.org/10.1007/s11229-016-1109-x
https://doi.org/10.1007/s11229-016-1109-x
https://doi.org/10.4230/LIPIcs.TYPES.2018.7

(2025-07-19)

[Uem21]

[UF13]

[VAG+20]

[Vaz+14]

[vGle14]

[Voe10]

[Voel4]

[vO0s08]

[War08]

[Wer97]

Bibliography 337

Taichi Uemura. “Abstract and Concrete Type Theories”. PhD thesis. In-
stitute for Logic, Language and Computation, University of Amsterdam,
2021. URL: https://hdl . handle.net/11245.1/41ff0b60-64d4 -
4003-8182-c244a9afab3b.

The Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations of Mathematics. Self-published, 2013. UrL: https://homoto
pytypetheory.org/book/.

Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson, et al. UniMath —
a computer-checked library of univalent mathematics. 2020. URL: https:
//github.com/UniMath/UniMath.

Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon
Peyton-Jones. “Refinement Types for Haskell”. In: Proceedings of the 19th
ACM SIGPLAN International Conference on Functional Programming. ICFP
2014. New York, NY, USA: ACM, 2014, pp. 269-282. 1sBN: 9781450328739.
DOI: 10.1145/2628136.2628161.

Tamara von Glehn. “Polynomials and Models of Type Theory”. PhD
thesis. University of Cambridge, 2014. po1: 10.17863/CAM. 16245.

Vladimir Voevodsky. Univalent Foundations Project. A modified version
of an NSF grant application. Oct. 2010. URL: https://www.math.ias.
edu/vladimir/sites/math.ias.edu.vladimir/files/univalent_
foundations_project. pdf.

Vladimir Voevodsky. “Univalent Foundations — new type-theoretic foun-
dations of mathematics”. Talk at IHP, Paris. Apr. 2014. URL: http://www.
math.ias.edu/vladimir/Lectures.

Jaap van Oosten. Realizability: An Introduction to its Categorical Side.
Vol. 152. Studies in Logic and the Foundations of Mathematics. Elsevier
Science, 2008. 1SBN: 9780444515841.

Michael A. Warren. “Homotopy theoretic aspects of constructive type
theory”. PhD thesis. Carnegie Mellon University, Aug. 2008. URL: http:
//mawarren.net/papers/phd. pdf.

Benjamin Werner. “Sets in types, types in sets”. In: Theoretical Aspects of
Computer Software (TACS 1997). Ed. by Martin Abadi and Takayasu Ito.
Vol. 1281. Lecture Notes in Computer Science. Springer-Verlag Berlin
Heidelberg, 1997, pp. 530-546. 1SBN: 978-3-540-63388-4. po1: 10.1007/
bfb0014566.

https://hdl.handle.net/11245.1/41ff0b60-64d4-4003-8182-c244a9afab3b
https://hdl.handle.net/11245.1/41ff0b60-64d4-4003-8182-c244a9afab3b
https://homotopytypetheory.org/book/
https://homotopytypetheory.org/book/
https://github.com/UniMath/UniMath
https://github.com/UniMath/UniMath
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.17863/CAM.16245
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/univalent_foundations_project.pdf
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/univalent_foundations_project.pdf
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/univalent_foundations_project.pdf
http://www.math.ias.edu/vladimir/Lectures
http://www.math.ias.edu/vladimir/Lectures
http://mawarren.net/papers/phd.pdf
http://mawarren.net/papers/phd.pdf
https://doi.org/10.1007/bfb0014566
https://doi.org/10.1007/bfb0014566

338 Bibliography (2025-07-19)

[Win20] Théo Winterhalter. “Formalisation and Meta-Theory of Type Theory”.
PhD thesis. Université de Nantes, 2020. URL: https://theowinterhalt
er.github.io/#phd.

[WKS22] Philip Wadler, Wen Kokke, and Jeremy G. Siek. Programming Language
Foundations in Agda. Online, Aug. 2022. URL: https://plfa.inf.ed.
ac.uk/22.08/.

[Xi07] Hongwei Xi. “Dependent ML: An approach to practical programming
with dependent types”. In: Journal of Functional Programming 17.2 (2007),
pp- 215-286. pO1: 10.1017/5S0956796806006216.

https://theowinterhalter.github.io/#phd
https://theowinterhalter.github.io/#phd
https://plfa.inf.ed.ac.uk/22.08/
https://plfa.inf.ed.ac.uk/22.08/
https://doi.org/10.1017/S0956796806006216

	Changes
	Contents
	Preface
	Introduction
	Uniform dependency: length-indexed vectors
	Non-uniform dependency: computing arities
	Proving type equations

	Extensional type theory
	The simply-typed lambda calculus
	Contexts, types, and terms
	Equational rules
	Who type-checks the typing rules?

	Towards the syntax of dependent type theory
	The calculus of substitutions
	Internalizing judgmental structure: Pi, Sigma, Eq, Unit
	Dependent products
	Dependent products internalize hypothetical judgments
	Dependent sums
	Extensional equality
	The unit type

	Inductive types: Void, Bool, +, Nat
	The empty type
	Booleans
	Coproducts
	Natural numbers
	Unicity via extensional equality

	Universes: U0, U1, U2, ...
	Large elimination
	Universes
	Hierarchies of universes
	Girard's paradox

	Propositions and propositional truncation
	Propositions as some types
	The illusion of choice
	Truncating types to propositions
	The logic of type theory

	Metatheory and implementation
	A judgmental reconstruction of proof assistants
	Type-checking as elaboration
	Elaborating preterms: the problem of type equality

	Metatheory for type-checking
	Normalization and the decidability of equality
	Injectivity and bidirectional type-checking

	A case study in elaboration: definitions
	Models for metatheory
	The set model of type theory
	Grothendieck universes
	The substitution calculus of sets
	The type-theoretic connectives of sets
	Using the set model

	Equality in extensional type theory is undecidable
	The first proof: deciding equality of SK terms
	The second proof: separating classes of Turing machines

	Intensional type theory
	Programming with propositional equality
	Constructing identifications
	Constructing identifications of identifications
	Intensional identity types

	Intensional identity types
	Limitations of the intensional identity type
	Function extensionality
	Uniqueness of identity proofs
	Hofmann's conservativity theorem

	Observational type theory (draft)

	Univalent type theories
	Propositional univalence
	Homotopy propositions
	Propositional univalence
	Abstracting propositional univalence

	Homotopy type theory
	The univalence principle
	Homotopy levels and the failure of UIP
	Higher inductive types
	Applications of homotopy type theory

	Cubical type theory (draft)
	A judgmental structure for identity types
	The interval and its structure
	Cultivating intuition for path types
	Coercing along paths
	Cofibrations and faces
	Composing and filling paths

	Computing with coercions and compositions (draft)
	coe for Pi and Sigma
	Working with the homogeneous composition operator
	Unfolding hcomp in various type constructors
	V and univalence

	Semantics of type theory (draft)
	Categories with families
	Contexts and substitutions

	Pullback squares and Pi, Sigma, Eq, Unit
	The unit type
	The extensional equality type
	An interlude: polynomial functors
	Dependent products and sums

	Orthogonality and Void, Bool, +, Nat
	Orthogonality and
	Coproducts
	Natural numbers
	Weak orthogonality and types without eta laws

	Cwf morphisms and U0, U1, U2, ...
	Homomorphisms of models
	Universes as sub-models

	Locally cartesian closed categories and coherence
	From models to locally cartesian closed categories
	The strictness problem
	The universe construction
	Presheaf models of type theory
	The local universes construction

	Canonicity via gluing
	The bare cwf structure of the gluing model
	Closing the gluing model under connectives
	Deriving canonicity
	Variations on gluing arguments

	A semantic definition of syntax

	Martin-Löf type theory
	Solutions to selected exercises
	Bibliography

