
Principles of Dependent Type Theory

Carlo Angiuli
Indiana University
cangiuli@iu.edu

Daniel Gratzer
Aarhus University
gratzer@cs.au.dk

(2025-05-02)

i

mailto:cangiuli@iu.edu
mailto:gratzer@cs.au.dk

[Rake thudding against face]
Eeeuughhh

Robert Onderdonk Terwilliger Jr., Ph.D.
The Simpsons, Season 5 Episode 2, “Cape Feare.”

Acknowledgements

We thank Lars Birkedal for his comments and suggestions on drafts of this book, and
Sam Tobin-Hochstadt for many insightful conversations over lunch that helped us refine
our narrative. We also thank the students who participated in Modern Dependent Types
(CSCI-B619) at Indiana University andModern Dependent Type Theory at Aarhus University
in Spring 2024, for whom this book was prepared. We further thank the participants in
the series of lectures on this material given by the second author at Oxford University
during the 2024 Michaelmas term. A special thanks to Nathan Corbyn, Naïm Favier, Fred
Fu, Rasmus Kirk Jakobsen, Max Jenkins, Artem Iurchenko, Pavel Kovalev, Kwing Hei Li,
Amélia Liao, Mathias Adams Møller, Egor Namakonov, Thomas Porter, June Roussea, Zixiu
Su, Nicolas Wu, and Yafei Yang.
add names as people point out typos

iii

Contents

Acknowledgements iii

Contents iv

Changes vi

1 Introduction 1
1.1 Dependent types for functional programmers 3

2 Extensional type theory 16
2.1 The simply-typed lambda calculus . 17
2.2 Towards the syntax of dependent type theory 24
2.3 The calculus of substitutions . 28
2.4 Internalizing judgmental structure: Π,Σ, Eq,Unit 33
2.5 Inductive types: Void, Bool, Nat . 44
2.6 Universes: U0,U1,U2, . 55
2.7★ Girard’s paradox . 64
2.8★ Propositions and universes of propositions (draft) 66

3 Metatheory and implementation 82
3.1 A judgmental reconstruction of proof assistants 83
3.2 Metatheory for type-checking . 88
3.3★ A case study in elaboration: definitions 95
3.4 Metatheory for computing . 97
3.5★ The set model of type theory . 102
3.6 Equality in extensional type theory is undecidable 117

4 Intensional type theory 123
4.1 Programming with propositional equality 124
4.2 Intensional identity types . 130
4.3 Limitations of the intensional identity type 136
4.4★ Observational type theory (draft) . 147

5 Univalent type theories (draft) 149
5.1 Propositions in intensional type theory 150
5.2 Homotopy type theory . 154

iv

(2025-05-02) Contents v

5.3 Cubical type theory . 171
5.4★ Computing with coercions and compositions 188

6 Semantics of type theory (draft) 199
6.1 Categories with Families: Contexts and substitutions 201
6.2 Pullback squares and Π, Σ, Eq, Unit . 208
6.3 Orthogonality and Void, Bool, Nat . 216
6.4 CwF morphisms and U0,U1,U2, . 233
6.5 Locally cartesian closed categories and coherence 242
6.6 Canonicity via gluing . 264
6.7★ A semantic definition of the syntax of type theories 264

A Martin-Löf type theory 265

B Solutions to selected exercises 274

Bibliography 278

Changes

Below we summarize our major updates of this book.

2025-04-30

• Removed a section from Chapter 5 (may return in Chapter 6).
• Revised Section 2.8 on propositions in extensional type theory.
• Drafted Sections 6.1 to 6.5 on the semantics of type theory.

2024-08-29

• Begin maintaining a change log.
• Added Section 3.5 on the set model of extensional type theory.
• Added solutions to selected exercises in Appendix B.
• Drafted Section 2.8 on propositions in extensional type theory.
• Drafted Chapter 5 on homotopy type theory.

2024-04-14 v0.1

• Added Chapter 1.
• Added Chapter 2 on extensional type theory.
• Added Chapter 3 on metatheory and implementation.
• Added Chapter 4 on intensional type theory.
• Added Appendix A collecting the formal rules of type theory.

vi

1Introduction

In this book, we aim to introduce the reader to a modern research perspective on the design
of “full-spectrum” dependent type theories. After studying this book, readers should be
prepared to engage with contemporary research papers on dependent type theory, and
to understand the motivations behind recent extensions of Martin-Löf’s dependent type
theory [Mar84b], including observational type theory [AMS07], homotopy type theory
[UF13], and cubical type theory [CCHM18; Ang+21].

This book is in an early draft form and is missing many relevant citations.
The authors welcome any feedback.

Dependent type theory (henceforth just type theory) often appears arcane to outside
observers for a handful of reasons. First, as in the parable of the elephant, there are myriad
perspectives on type theory. The language presented in this book, mutatis mutandis, can
be accurately described as:

• the core language of assertions and proofs in proof assistants like Agda [Agda], Coq
[Coq], Lean [dMU21], and Nuprl [Con+85];

• a richly-typed functional programming language, as in Idris [Bra13] and Pie [FC18],
as well as in the aforementioned proof assistants Agda and Lean [Chr23].

• an axiom system for reasoning synthetically in a number of mathematical settings,
including locally cartesian closed 1-categories [Hof95b], homotopy types [Shu21],
and Grothendieck∞-topoi [Shu19];

• a structural [Tse17], constructive [Mar82] foundation for mathematics as an alterna-
tive to ZFC set theory [Alt23].

A second difficulty is that it is quite complex to even define type theory in a precise
fashion, for reasons we shall discuss in Section 2.2, and the relative merits of different styles
of definition—and even which ones satisfactorily define any object whatsoever—have been
the subject of great debate among experts over the years.

Finally, much of the literature on type theory is highly technical—involving either
lengthy proofs by induction or advanced mathematical machinery—in order to account for
its complex definition and applications. In this book we attempt to split the difference by
presenting a mathematically-informed viewpoint on type theory while avoiding advanced
mathematical prerequisites.

1

(2025-05-02) 2

Goals of the course As researchers who work on designing new type theories, our goal
in this course is to pose and begin to answer the following questions: What makes a good
type theory, and why are there so many? We will focus on notions of equality in Martin-Löf
type theory as a microcosm of this broader question, studying how extensional [Mar82],
intensional [Mar75], observational [AMS07; SAG22; PT22], homotopy [UF13], and cubical
type theories [CCHM18; Ang+21] have provided increasingly sophisticated answers to
this deceptively simple question.

Although the design of type theory is inextricably linked to its applications (both
theoretical and practical), we stress that this book focuses only on its design; there are
many other resources for readers interested in learning how to use type theory.

Notes to the reader This bookwaswritten to accompany the authors’ lectures in graduate
courses on dependent type theory. As such, they are designed to be read in a linear fashion,
with each chapter and section depending on many of the sections that come before it, with
a few exceptions. Sections marked with ★, such as Section 2.7, are considered optional and
are not referenced later in the text; these sections cover topics that we consider important
but nevertheless tangential to the main narrative. Smaller tangents are confined to Remarks
and Advanced Remarks, the latter requiring more advanced mathematical prerequisites
such as category theory. These often provide useful context or intuition but are again not
integral to the main narrative.

Each chapter ends with a discussion of related literature, and we encourage the inter-
ested reader to follow these pointers to learn about these topics in greater depth. We have
also attempted to include many references throughout the main body of the text, and the
lengthy bibliography should also be considered a useful resource for further study.

Finally, we have included some exercises throughout the text to reinforce important
concepts; for best results, the reader should work through at least some of these. Solutions
to selected exercises can be found in Appendix B.
Dependency graph of sections; describe which sections discuss semantics, imple-
mentation, or various other subtopics that are scattered throughout the book.

Notes to the expert We briefly remark on some editorial decisions that may surprise
experts in type theory. First, we emphasize that this book is about the design of type
theory, not how to use it. We therefore provide relatively few examples of working within
type theory, focusing instead on type theories qua mathematical objects in their own right.

In light of this focus, experts may be surprised to find that our presentation does not
explicitly rely on category theory. This was a difficult decision for the authors, both of
whom view type theory from a categorical perspective, but we believe it is simply not
feasible to insist that students begin their journey into type theory by first reading a book

(2025-05-02) Dependent types for functional programmers 3

on category theory, and early attempts to simultaneously introduce category theory and
type theory felt unsatisfactory on both counts.

That said, we do not attempt in any way to hide the presence of categories, functors, and
naturality in the foundations of type theory. On the contrary, in Chapter 2 we define various
connectives by the functors they (co)represent, phrased in more elementary language. We
hope our exposition is accessible to readers encountering type theory for the first time,
but also plainly categorical in flavor to those with more mathematical background.

Our perspective on type theory is deeply algebraic: we regard the judgments of
type theory as being indexed by well-formed contexts and types, all defined only up
to definitional equality. As a result, it is straightforward for us to introduce the notion of a
model of type theory in Section 3.4, of which syntax is the initial example.

Finally, we have aimed to confine the non-optional sections of this book to fit within
a semester of brisk lectures. For this reason we have elided numerous topics of interest,
including a systematic treatment of inductive types, more discussion of elaboration, proofs
of canonicity and normalization, and countless interesting variations of type theory.

In this chapter In Section 1.1 we introduce and motivate the concepts of type and term
dependency, definitional equality, and propositional equality through the lens of typed
functional programming. Note that Chapter 2 is self-contained albeit lacking in motivation,
so readers unfamiliar with functional programming can safely skip ahead.

Goals of the chapter By the end of this chapter, you will be able to:

• Give examples of full-spectrum dependency.

• Explain the role of definitional equality in type-checking, and how and why it differs
from ordinary closed-term evaluation.

• Explain the role of propositional equality in type-checking.

1.1 Dependent types for functional programmers

The reader is forewarned that the following section assumes some familiarity with func-
tional programming, unlike the remainder of this book.

Types in programming languages For the purposes of this course, one should regard a
programming language’s (static) type system as its grammar, not as one of many potential
static analyses that might be enabled or disabled.1 Indeed, just as a parser may reject

1The latter perspective is valid, but we wish to draw a sharp distinction between types qua (structural)
grammar, and static analyses that may be non-local, non-structural, or non-substitutive in nature.

(2025-05-02) Dependent types for functional programmers 4

as nonsense a program whose parentheses are mismatched, or an untyped language’s
interpreter may reject as nonsense a program containing unbound identifiers, a type-
checker may reject as nonsense the program 1 + "hi" on the grounds that—much like the
previous two examples—there is no way to successfully evaluate it.

Concretely, a type system divides a language’s well-parenthesized, well-scoped expres-
sions into a collection of sets: the expressions of type Nat are those that “clearly” compute
natural numbers, such as literal natural numbers (0, 1, 120), arithmetic expressions (1 + 1),
and fully-applied functions that return natural numbers (fact 5, atoi "120"). Similarly, the
expressions of type String are those that clearly compute strings ("hi", itoa 5), and for
any types𝐴 and 𝐵, the expressions of type𝐴 → 𝐵 are those that clearly compute functions
that, when passed an input of type 𝐴, clearly compute an output of type 𝐵.

What do we mean by “clearly”? One typically insists that type-checking be fully
automated, much like parsing and identifier resolution. Given that determining the result of
a program is in general undecidable, any automated type-checking process will necessarily
compute a conservative underapproximation of the set of programs that compute (e.g.)
natural numbers. (Likewise, languages may complain about unbound identifiers even in
programs that can be evaluated without a runtime error!)

The goal of a type system is thus to rule out as many undesirable programs as possible
without ruling out too many desirable ones, where both of these notions are subjective
depending on which runtime errors one wants to rule out and which programming idioms
one wants to support. Language designers engage in the neverending process of refining
their type systems to rule out more errors and accept more correct code; full-spectrum
dependent types can be seen as an extreme point in this design space.

1.1.1 Uniform dependency: length-indexed vectors

Every introduction to dependent types starts with the example of vectors, or lists with
specified length. We start one step earlier by considering lists with a specified type of
elements, a type which already exhibits a basic form of dependency.

Parameterizing by types One of the most basic data structures in functional program-
ming languages is the list, which is either empty (written []) or consists of an element 𝑥
adjoined to a list xs (written 𝑥 :: xs). In typed languages, we typically require that a list’s
elements all have the same type so that we know what operations they support.

The simplest way to record this information is to have a separate type of lists for each
type of element: a ListOfNats is either empty or a Nat and a ListOfNats, a ListOfStrings is
either empty or a String and a ListOfStrings, etc. This strategy clearly results in repetition
at the level of the type system, but it also causes code duplication because operations that
work uniformly for any type of elements (e.g., reversing a list) must be defined twice for
the two apparently unrelated types ListOfNats and ListOfStrings.

(2025-05-02) Dependent types for functional programmers 5

In much the same way that functions—terms indexed by terms—promote code reuse
by allowing programmers to write a series of operations once and perform them on many
different inputs, we can solve both problems described above by allowing types and terms
to be uniformly parameterized by types. Thus the types ListOfNats and ListOfStrings
become two instances (List Nat and List String) of a single family of types List:2

data List (𝐴 : Set) : Set where
[] : List 𝐴
:: : 𝐴 → List 𝐴 → List 𝐴

and any operation that works for all element types 𝐴, such as returning the first (or all but
first) element of a list, can be written as a family of operations:

head : (𝐴 : Set) → List 𝐴 → 𝐴

head 𝐴 [] = error "List must be non-empty."
head 𝐴 (𝑥 :: xs) = 𝑥

tail : (𝐴 : Set) → List 𝐴 → List 𝐴
tail 𝐴 [] = error "List must be non-empty."
tail 𝐴 (𝑥 :: xs) = xs

By partially applying head to its type argument, we see that head Nat has type
List Nat → Nat and head String has type List String → String, and the expression
1 + (head Nat (1 :: [])) has type Nat whereas 1 + (head String ("hi" :: [])) is ill-typed
because the second input to + has type String.

Parameterizing types by terms The perfectionist reader may find the List 𝐴 type
unsatisfactory because it does not prevent runtime errors caused by applying head and
tail to the empty list []. We cannot simply augment our types to track which lists are
empty, because 2 :: 1 :: [] and 1 :: [] are both nonempty but we can apply tail Nat twice to
the former before encountering an error, but only once to the latter.

Instead, we parameterize the type of lists not only by their type of elements as before
but also by their length—a term of type Nat—producing the following family of types:3

data Vec (𝐴 : Set) : Nat → Set where
[] : Vec 𝐴 0
:: : {𝑛 : Nat} → 𝐴 → Vec 𝐴 𝑛 → Vec 𝐴 (suc 𝑛)

Types parameterized by terms are known as dependent types.
2For the time being, the reader should understand 𝐴 : Set as notation meaning “𝐴 is a type.”
3Curly braces {𝑛 : Nat} indicate implicit arguments automatically inferred by the type-checker.

(2025-05-02) Dependent types for functional programmers 6

Now the types of concrete lists are more informative—(2 :: 1 :: []) : Vec Int 2 and
(1 :: []) : Vec Int 1—but more importantly, we can give head and tail more informative
types which rule out the runtime error of applying them to empty lists. We do so by
revising their input type to Vec 𝐴 (suc 𝑛) for some 𝑛 : Nat, which is to say that the vector
has length at least one, hence is nonempty:

head : {𝐴 : Set} {𝑛 : Nat} → Vec 𝐴 (suc 𝑛) → 𝐴

-- head [] is impossible
head (𝑥 :: xs) = 𝑥

tail : {𝐴 : Set} {𝑛 : Nat} → Vec 𝐴 (suc 𝑛) → Vec 𝐴 𝑛
-- tail [] is impossible
tail (𝑥 :: xs) = xs

Consider now the operation that concatenates two vectors:

append : {𝐴 : Set} {𝑛 : Nat} {𝑚 : Nat} → Vec 𝐴 𝑛 → Vec 𝐴𝑚 → Vec 𝐴 (𝑛 +𝑚)

Unlike our previous examples, the output type of this function is indexed not by a variable
𝐴 or 𝑛, nor a constant Nat or 0, nor even a constructor suc −, but by an expression 𝑛 +𝑚.
This introduces a further complication, namely that we would like this expression to be
simplified as soon as 𝑛 and𝑚 are known. For example, if we apply append to two vectors
of length one (𝑛 =𝑚 = 1), then the result will be a vector of length two (𝑛 +𝑚 = 1+ 1 = 2),
and we would like the type system to be aware of this fact in the sense of accepting as
well-typed the expression head (tail (append 𝑙 𝑙′)) for 𝑙 and 𝑙′ of type Vec Nat 1.

Because head (tail 𝑥) is only well-typed when 𝑥 has type Vec 𝐴 (suc (suc 𝑛)) for
some 𝑛 : Nat, this condition amounts to requiring that the expression append 𝑙 𝑙′ not
only has type Vec 𝐴 ((suc 0) + (suc 0)) as implied by the type of append, but also type
Vec 𝐴 (suc (suc 0)) as implied by its runtime behavior. In short, we would like the two
type expressions Vec𝐴 (1+ 1) and Vec𝐴 2 to denote the same type by virtue of the fact that
1 + 1 and 2 denote the same value. In practice, we achieve this by allowing the type-checker
to evaluate expressions in types during type-checking.

In fact, the length of a vector can be any expression whatsoever of type Nat. Consider
filter, which takes a function 𝐴 → Bool and a list and returns the sublist for which the
function returns true. If the input list has length 𝑛, what is the length of the output?

filter : {𝐴 : Set} {𝑛 : Nat} → (𝐴 → Bool) → Vec 𝐴 𝑛 → Vec 𝐴 ?

After a moment’s thought we realize the length is not a function of 𝑛 at all, but rather a
recursive function of the input function and list:

filter : {𝐴 : Set} {𝑛 : Nat} → (𝑓 : 𝐴 → Bool) → (𝑙 : Vec𝐴𝑛) → Vec𝐴 (filterLen 𝑓 𝑙)

(2025-05-02) Dependent types for functional programmers 7

filterLen : {𝐴 : Set} {𝑛 : Nat} → (𝐴 → Bool) → Vec 𝐴 𝑛 → Nat
filterLen 𝑓 [] = 0
filterLen 𝑓 (𝑥 :: xs) = if 𝑓 (𝑥) then suc (filterLen 𝑓 xs) else filterLen 𝑓 xs

As before, once 𝑓 and 𝑙 are known the type of filter 𝑓 𝑙 : Vec 𝐴 (filterLen 𝑓 𝑙) will
simplify by evaluating filterLen 𝑓 𝑙 , but as long as either remains a variable we cannot learn
much by computation. Nevertheless, filterLen has many properties of interest: filterLen 𝑓 𝑙
is at most the length of 𝑙 , filterLen (𝜆𝑥 → false) 𝑙 is always 0 regardless of 𝑙 , etc. We will
revisit this point in Section 1.1.3.

Remark 1.1.1. If we regard Nat and + as a user-defined data type and recursive function,
as type theorists are wont to do, then filter’s type using filterLen is entirely analogous
to append’s type using +. We wish to emphasize that, whereas one could easily imagine
arithmetic being a privileged component of the type system, filter demonstrates that type
indices may need to contain arbitrary user-defined recursive functions. ⋄

Another approach? If our only goal was to eliminate runtime errors from head and tail,
we might reasonably feel that dependent types have overcomplicated the situation—we
needed to introduce a new function just to write the type of filter! And indeed there are
simpler ways of keeping track of the length of lists, which we describe briefly here.

First let us observe that a lower bound on a list’s length is sufficient to guarantee it is
nonempty and thus that an application of head or tail will succeed; this allows us to trade
precision for simplicity by restricting type indices to be arithmetic expressions. Secondly, in
the above examples we can perform type-checking and “length-checking” in two separate
phases, where the first phase replaces every occurrence of Vec 𝐴 𝑛 with List 𝐴 before
applying a standard non-dependent type-checking algorithm. This is possible because
we can regard the dependency in Vec 𝐴 𝑛 as expressing a computable refinement—or
subset—of the non-dependent type of lists, namely {𝑙 : List 𝐴 | length 𝑙 = 𝑛}.

Combining these insights, we can by and large automate length-checking by recasting
the type dependency of Vec in terms of arithmetic inequality constraints over an ML-style
type system, and checking these constraints with SMT solvers and other external tools. At
a very high level, this is the approach taken by systems such as Dependent ML [Xi07] and
Liquid Haskell [Vaz+14]. Dependent ML, for instance, type-checks the usual definition of
filter at the following type, without any auxiliary filterLen definition:

filter : Vec 𝐴𝑚 → ({𝑛 : Nat | 𝑛 ≤ 𝑚} × Vec 𝐴 𝑛)

Refinement type systems like these have proven very useful in practice and continue
to be actively developed, but we will not discuss them any further for the simple reason

(2025-05-02) Dependent types for functional programmers 8

that, although they are a good solution to head/tail and many other examples, they cannot
handle full-spectrum dependency as discussed below.

1.1.2 Non-uniform dependency: computing arities

Thus far, all our examples of (type- or term-) parameterized types are uniformly param-
eterized, in the sense that the functions List : Set → Set and Vec 𝐴 : Nat → Set do not
inspect their arguments; in contrast, ordinary term-level functions out of Nat such as
fact : Nat → Nat can and usually do perform case-splits on their inputs. In particular,
we have not yet considered any families of types in which the head, or top-level, type
constructor (→, Vec, Nat, etc.) differs between indices.

A type theory is said to have full-spectrum dependency if it permits the use of non-
uniformly term-indexed families of types, such as the following Nat-indexed family:

nary : Set → Nat → Set
nary 𝐴 0 = 𝐴

nary 𝐴 (suc 𝑛) = 𝐴 → nary 𝐴 𝑛

Although Vec Nat and nary Nat are both functions Nat → Set, the latter’s head type
constructor varies between indices: nary Nat 0 = Nat but nary Nat 1 = Nat → Nat.

Using nary to compute the type of 𝑛-ary functions, we can now define not only varadic
functions but even higher-order functions taking variadic functions as input, such as apply
which applies an 𝑛-ary function to a vector of length 𝑛:

apply : {𝐴 : Set} {𝑛 : Nat} → nary 𝐴 𝑛 → Vec 𝐴 𝑛 → 𝐴

apply 𝑥 [] = 𝑥
apply 𝑓 (𝑥 :: xs) = apply (𝑓 𝑥) xs

For𝐴 = Nat and 𝑛 = 1, apply applies a unary function Nat → Nat to the head element of a
Vec Nat 1; for 𝐴 = Nat and 𝑛 = 3, it applies a ternary function Nat → Nat → Nat → Nat
to the elements of a Vec Nat 3:

apply suc (1 :: []) : Nat -- evaluates to 2
apply _+_ : Vec Nat 2 → Nat
apply _+_ (1 :: 2 :: []) : Nat -- evaluates to 3
apply (𝜆𝑥 𝑦 𝑧 → 𝑥 + 𝑦 + 𝑧) (1 :: 2 :: 3 :: []) : Nat -- evaluates to 6

Although apply is not the first time we have seen a function whose type involves a
different recursive function—we saw this already with filter—this is our first example of a
function that cannot be straightforwardly typed in an ML-style type system. Another way
to put it is that nary 𝐴 𝑛 → Vec 𝐴 𝑛 → 𝐴 is not the refinement of an ML type because
nary 𝐴 𝑛 is sometimes but not always a function type.

(2025-05-02) Dependent types for functional programmers 9

Remark 1.1.2. For the sake of completeness, it is also possible to consider non-uniformly
type-indexed families of types, which go by a variety of names including non-parametric
polymorphism, intensional type analysis, and typecase [HM95]. These often serve as
optimized implementations of uniformly type-indexed families of types; a classic non-type-
theoretic example is the C++ family of types std::vector for dynamically-sized arrays,
whose std::vector<bool> instance may be compactly implemented using bitfields. ⋄

To understand the practical ramifications of non-uniform dependency, we will turn
our attention to a more complex example: a basic implementation of sprintf in Agda
(Figure 1.1). This function takes as input a String containing format specifiers such as
%u (indicating a Nat) or %s (indicating a String), as well as additional arguments of the
appropriate type for each format specifier present, and returns a String in which each
format specifier has been replaced by the corresponding argument rendered as a String.

sprintf "%s %u" "hi" 2 : String -- evaluates to "hi 2"
sprintf "%s" : String → String
sprintf "nat %u then int %d then char %c" : Nat → Int → Char → String
sprintf "%u" 5 : String -- evaluates to "5"
sprintf "%u%% of %s%c" 3 "GD" ’P’ : String -- evaluates to "3% of GDP"

Our implementation uses various types and functions imported from Agda’s standard
library, notably toList : String → List Char which converts a string to a list of characters
(length-one strings ’x’). It consists of four main components:

• a data type Token which enumerates all relevant components of the input String,
namely format specifiers (such as natTok : Token for %u and strTok : Token for %s)
and literal characters (char ’x’ : Token);

• a function lex which tokenizes the input string, represented as a List Char, from left
to right into a List Token for further processing;

• a function args which converts a List Token into a function type containing the
additional arguments that sprintf must take; and

• the sprintf function itself.

Let us begin by convincing ourselves that our first example type-checks:

sprintf "%s %u" "hi" 2 : String -- evaluates to "hi 2"

Because sprintf : (𝑠 : String) → printfType 𝑠 , the partial application sprintf "%s %u" has
type printfType "%s %u". By evaluation, the type-checker can see printfType "%s %u" =

args (strTok :: char ’ ’ :: natTok :: []) = String → Nat → String. Thus sprintf "%s %u" :
String → Nat → String, and the remainder of the expression type-checks easily.

(2025-05-02) Dependent types for functional programmers 10

data Token : Set where
char : Char → Token
intTok : Token
natTok : Token
chrTok : Token
strTok : Token

lex : List Char → List Token
lex [] = []
lex (’%’ :: ’%’ :: cs) = char ’%’ :: lex cs
lex (’%’ :: ’d’ :: cs) = intTok :: lex cs
lex (’%’ :: ’u’ :: cs) = natTok :: lex cs
lex (’%’ :: ’c’ :: cs) = chrTok :: lex cs
lex (’%’ :: ’s’ :: cs) = strTok :: lex cs
lex (𝑐 :: cs) = char 𝑐 :: lex cs

args : List Token → Set
args [] = String
args (char _ :: toks) = args toks
args (intTok :: toks) = Int → args toks
args (natTok :: toks) = Nat → args toks
args (chrTok :: toks) = Char → args toks
args (strTok :: toks) = String → args toks

printfType : String → Set
printfType 𝑠 = args (lex (toList 𝑠))

sprintf : (𝑠 : String) → printfType 𝑠
sprintf 𝑠 = loop (lex (toList 𝑠)) ""

where
loop : (toks : List Token) → String → args toks
loop [] acc = acc
loop (char 𝑐 :: toks) acc = loop toks (acc ++ fromList (𝑐 :: []))
loop (intTok :: toks) acc = 𝜆𝑖 → loop toks (acc ++ showInt 𝑖)
loop (natTok :: toks) acc = 𝜆𝑛 → loop toks (acc ++ showNat 𝑛)
loop (chrTok :: toks) acc = 𝜆𝑐 → loop toks (acc ++ fromList (𝑐 :: []))
loop (strTok :: toks) acc = 𝜆𝑠 → loop toks (acc ++ 𝑠)

Figure 1.1: A basic Agda implementation of sprintf.

(2025-05-02) Dependent types for functional programmers 11

Now let us consider the definition of sprintf, which uses a helper function loop :
(toks : List Token) → String → args toks whose first argument stores the Tokens yet to
be processed, and whose second argument is the String accumulated from printing the
already-processed Tokens. What is needed to type-check the definition of loop? We can
examine a representative case in which the next Token is natTok:

loop (natTok :: toks) acc = 𝜆𝑛 → loop toks (acc ++ showNat 𝑛)

Note that toks : List Token and acc : String are (pattern) variables, and the right-hand side
ought to have type args (natTok :: toks). We can type-check the right-hand side—given that
++ : String → String → String is string concatenation and showNat : Nat → String
prints a natural number—and observe that it has type Nat → args toks by the type of loop.

Type-checking this clause thus requires us to reconcile the right-hand side’s expected
type args (natTok :: toks) with its actual type Nat → args toks. Although these type
expressions are quite dissimilar—one is a function type and the other is not—the definition
of args contains a promising clause:

args (natTok :: toks) = Nat → args toks

As in our earlier example ofVec𝐴 (1+1) andVec𝐴 2wewould like the type expressions
args (natTok :: toks) and Nat → args toks to denote the same type, but unlike the equation
1 + 1 = 2, here both sides contain a free variable toks so we cannot appeal to evaluation,
which is a relation on closed terms (ones with no free variables).

One can nevertheless imagine some form of symbolic evaluation relation that extends
evaluation to open terms and can equate these two expressions. In this particular case,
this step of closed evaluation is syntactically indifferent to the value of toks and thus can
be safely applied even when toks is a variable. (Likewise, to revisit an earlier example, the
equation filterLen 𝑓 [] = 0 should hold even for variable 𝑓 .)

Thus we would like the type expressions args (natTok :: toks) and Nat → args toks
to denote the same type by virtue of the fact that they symbolically evaluate to the same
symbolic value, and to facilitate this wemust allow the type-checker to symbolically evaluate
expressions in types during type-checking. The congruence relation on expressions so
induced is known as definitional equality because it contains defining clauses like this one.

Remark 1.1.3. Semantically we can justify this equation by observing that for any closed
instantiation toks of toks, args (natTok :: toks) and Nat → args toks will evaluate to the
same type expression—at least, once we have defined evaluation of type expressions—and
thus this equation always holds at runtime. But just as (for reasons of decidability) the
condition “when this expression is applied to a natural number it evaluates to a natural
number” is a necessary but not sufficient condition for type-checking at Nat → Nat, we
do not want to take this semantic condition as the definition of definitional equality. It

(2025-05-02) Dependent types for functional programmers 12

is however a necessary condition assuming that the type system is sound for the given
evaluation semantics. (See Section 3.4.) ⋄

Definitional equality is the central concept in full-spectrum dependent type theory
because it determines which types are equal and thus which terms have which types. In
practice, it is typically defined as the congruence closure of the 𝛽-like reductions (also
known as 𝛽𝛿𝜁 𝜄-reductions) plus 𝜂-equivalence at some types; see Chapter 2 for details.

1.1.3 Proving type equations

Unfortunately, in light of Remark 1.1.3, there are many examples of type equations that
are not direct consequences of ordinary or even symbolic evaluation. On occasion these
equations are of such importance that researchers may attempt to make them definitional—
that is, to include them in the definitional equality relation and adjust the type-checking
algorithm accordingly [AMB13]. But such projects are often major research undertakings,
and there are even examples of equations that can be definitional but are in practice best
omitted due to efficiency or usability issues [Alt+01].

Let us turn once again to the example of filter from Section 1.1.1.

filter : {𝐴 : Set} {𝑛 : Nat} → (𝑓 : 𝐴 → Bool) → (𝑙 : Vec𝐴𝑛) → Vec𝐴 (filterLen 𝑓 𝑙)

filterLen : {𝐴 : Set} {𝑛 : Nat} → (𝐴 → Bool) → Vec 𝐴 𝑛 → Nat
filterLen 𝑓 [] = 0
filterLen 𝑓 (𝑥 :: xs) = if 𝑓 (𝑥) then suc (filterLen 𝑓 xs) else filterLen 𝑓 xs

Suppose for the sake of argument that we want the operation of filtering an arbitrary
vector by the constantly false predicate to return a Vec 𝐴 0:

filterAll : {𝐴 : Set} {𝑛 : Nat} → Vec 𝐴 𝑛 → Vec 𝐴 0
filterAll 𝑙 = filter (𝜆𝑥 → false) 𝑙 -- does not type-check

The right-hand side above has type Vec𝐴 (filterLen (𝜆𝑥 → false) 𝑙) rather than Vec𝐴 0
as desired, and in this case the expression filterLen (𝜆𝑥 → false) 𝑙 cannot be simplified by
(symbolic) evaluation because filterLen computes by recursion on 𝑙 which is a variable.
However, by induction on the possible instantiations of 𝑙 : Vec 𝐴 𝑛, either:

• 𝑙 = [], in which case filterLen (𝜆𝑥 → false) [] is definitionally equal (in fact,
evaluates) to 0; or

(2025-05-02) Dependent types for functional programmers 13

• 𝑙 = 𝑥 :: xs, in which case we have the definitional equalities

filterLen (𝜆𝑥 → false) (𝑥 :: xs)
= if false then suc (filterLen (𝜆𝑥 → false) xs) else filterLen (𝜆𝑥 → false) xs
= filterLen (𝜆𝑥 → false) xs

for any 𝑥 and xs. By the inductive hypothesis on xs, filterLen (𝜆𝑥 → false) xs = 0
and thus filterLen (𝜆𝑥 → false) (𝑥 :: xs) = 0 as well.

By adding a type of provable equations 𝑎 ≡ 𝑏 to our language, we can compactly encode
this inductive proof as a recursive function computing filterLen (𝜆𝑥 → false) 𝑙 ≡ 0:

≡ : {𝐴 : Set} → 𝐴 → 𝐴 → Set
refl : {𝐴 : Set} {𝑥 : 𝐴} → 𝑥 ≡ 𝑥

lemma : {𝐴 : Set} {𝑛 : Nat} → (𝑙 : Vec 𝐴 𝑛) → filterLen (𝜆𝑙 → false) 𝑙 ≡ 0
lemma [] = refl
lemma (𝑥 :: xs) = lemma xs

The [] clause of lemma ought to have type filterLen (𝜆𝑙 → false) [] ≡ 0, which is
definitionally equal to the type 0 ≡ 0 and thus refl type-checks. The (𝑥 :: xs) clause
must have type filterLen (𝜆𝑙 → false) (𝑥 :: xs) ≡ 0, which is definitionally equal to
filterLen (𝜆𝑙 → false) xs ≡ 0, the expected type of the recursive call lemma xs.

Now armed with a function lemma that constructs for any 𝑙 : Vec 𝐴 𝑛 a proof that
filterLen (𝜆𝑙 → false) 𝑙 ≡ 0, we can justify casting from the type Vec 𝐴 (filterLen (𝜆𝑙 →
false) 𝑙) to Vec 𝐴 0. The dependent casting operation that passes between provably equal
indices of a dependent type (in this case Vec 𝐴 : Nat → Set) is typically called subst:

subst : {𝐴 : Set} {𝑥 𝑦 : 𝐴} → (𝑃 : 𝐴 → Set) → 𝑥 ≡ 𝑦 → 𝑃 (𝑥) → 𝑃 (𝑦)

filterAll : {𝐴 : Set} {𝑛 : Nat} → Vec 𝐴 𝑛 → Vec 𝐴 0
filterAll {𝐴} 𝑙 = subst (Vec 𝐴) (lemma 𝑙) (filter (𝜆𝑥 → false) 𝑙)

Remark 1.1.4. The subst operation above is a special case of a much stronger principle
stating that the two types 𝑃 (𝑥) and 𝑃 (𝑦) are isomorphic whenever 𝑥 ≡ 𝑦: we can not only
cast 𝑃 (𝑥) → 𝑃 (𝑦) but also 𝑃 (𝑦) → 𝑃 (𝑥) by symmetry of equality, and both round trips
cancel. So although a proof 𝑥 ≡ 𝑦 does not make 𝑃 (𝑥) and 𝑃 (𝑦) definitionally equal, they
are nevertheless equal in the sense of having the same elements up to isomorphism. ⋄

Uses of subst are very common in dependent type theory; because dependently-typed
functions can both require and ensure complex invariants, one must frequently prove that

(2025-05-02) Dependent types for functional programmers 14

the output of some function is a valid input to another.4 Crucially, although subst is an
“escape hatch” that compensates for the shortcomings of definitional equality, it cannot
result in runtime errors—unlike explicit casts in most programming languages—because
casting from 𝑃 (𝑥) to 𝑃 (𝑦) requires a machine-checked proof that 𝑥 ≡ 𝑦. We can ask
for such proofs because dependent type theory is not only a functional programming
language but also a higher-order intuitionistic logic that can express inductive proofs of
type equality, and as we saw with filterAll, its type-checker serves also as a proof-checker.

The dependent type 𝑥 ≡ 𝑦 is known as propositional equality, and it is perhaps the
second most important concept in dependent type theory because it is the source of all
non-definitional type equations visible within the theory. There are many formulations of
propositional equality; they all implement _≡_, refl, and subst but differ in many other
respects, and each has unique benefits and drawbacks. We will discuss propositional
equality at length in Chapters 4 and 5.

To foreshadow the design space of propositional equality, consider that the subst
operator may itself be subject to various definitional equalities. If we apply filterAll to a
closed list ls, then lemma ls will evaluate to refl, so filterAll ls is definitionally equal to
subst (Vec 𝐴) refl (filter (𝜆𝑥 → false) ls). At this point, filter (𝜆𝑥 → false) ls already has
the desired type Vec 𝐴 0 because filterLen (𝜆𝑥 → false) ls evaluates to 0, and thus the two
types involved in the cast are now definitionally equal. Ideally the subst term would now
disappear having completed its job, and indeed the corresponding definitional equality
subst 𝑃 refl 𝑥 = 𝑥 does hold for many versions of propositional equality.

1.1.4 Unifying proving and programming

Write a bit about props as types here

4A more realistic variant of our lemma might account for any predicate that returns false on all the
elements of the given list, not just the constantly false predicate. Alternatively, one might prove that for any
𝑠 : String, the final return type of sprintf 𝑠 is String.

(2025-05-02) Dependent types for functional programmers 15

Further reading

Our four categories of dependency—types/terms depending on types/terms—are reminis-
cent of the 𝜆-cube of generalized type systems in which one augments the simply-typed
𝜆-calculus (whose functions exhibit term-on-term dependency) with any combination of
the remaining three forms of dependency [Bar91]; adding all three yields the full-spectrum
dependent type theory known as the calculus of constructions [CH88]. However, the
technical details of this line of work differ significantly from our presentation in Chapter 2.

The remarkable fact that type theory is both a functional programming language and a
logic is known bymany names including the Curry–Howard correspondence and propositions
as types. It is a very broad topic with many treatments; book-length expositions include
Proofs and Types [GLT89] and PROGRAM = PROOF [Mim20].

The code in this chapter is written in Agda syntax [Agda]. For more on dependently-
typed programming in Agda, see Verified Functional Programming in Agda [Stu16]; for a
more engineering-oriented perspective on dependent types, see Type-Driven Development
with Idris [Bra17]. The sprintf example in Section 1.1.2 is inspired by the paper Cayenne —
A Language with Dependent Types [Aug99]. Conversely, to learn about using Agda as a
proof assistant for programming language theory, see Programming Language Foundations
in Agda [WKS22].

2Extensional type theory

In order to understand the subtle differences between modern dependent type theories, we
must first study the formal definition of a dependent type theory as a mathematical object.
We will then be prepared for Chapter 3, in which we study mathematical properties of type
theory—and particularly of definitional and propositional equality—and their connection
to computer implementations of type theory. In this chapter we therefore present the
judgmental theory of Martin-Löf’s extensional type theory [Mar82], one of the canonical
variants of dependent type theory. We strongly suggest following the exposition rather
than simply reading the rules, but the rules are collected for convenience in Appendix A
(ignoring the rules marked with (ITT), which are present only in intensional type theory).

Given the time constraints of this course, we do not attempt to give a comprehensive
account of the syntax of type theories, nor do we present any of the many alternative
methods of defining type theory, some of which are more efficient (but more technical)
than the one we present here. These questions lead to the fascinating and deep area of
logical frameworks which we must regrettably leave for a different course.

In this chapter In Section 2.1 we recall the concepts of judgments and inference rules in
the setting of the simply-typed lambda calculus. In Section 2.2 we consider how to adapt
these methods to the dependent setting, and in Section 2.3 we develop these ideas into the
basic judgmental structure of dependent type theory, in which substitution plays a key role.
In Section 2.4 we extend the basic rules of type theory with rules governing dependent
products, dependent sums, extensional equality, and unit types. We argue that these
connectives can be understood as internalizations of judgmental structure, a perspective
which provides a conceptual justification of these connectives’ rules. In Section 2.5 we
define several inductive types—the empty type, booleans, and natural numbers—and
explain how and why these types do not fit the pattern of the previous section. Finally, in
Section 2.6 we discuss large elimination, which is implicit in our examples of full-spectrum
dependency from Section 1.1, and its internalization via universe types.
add descriptions of new sections, and explain optional sections

Goals of the chapter By the end of this chapter, you will be able to:

• Define the core judgments of dependent type theory, and explain how and why they
differ from the judgments of simple type theory.

• Explain the role of substitutions in the syntax of dependent type theory.

16

(2025-05-02) The simply-typed lambda calculus 17

• Define and justify the rules of the core connectives of type theory.

2.1 The simply-typed lambda calculus

The theory of typed functional programming is built on extensions of a core language
known as the simply-typed lambda calculus, which supports two types of data:

• functions of type 𝐴 → 𝐵 (for any types 𝐴, 𝐵): we write 𝜆𝑥 .𝑏 for the function that
sends any input 𝑥 of type𝐴 to an output 𝑏 of type 𝐵, and write 𝑓 𝑎 for the application
of a function 𝑓 of type 𝐴 → 𝐵 to an input 𝑎 of type 𝐴; and

• ordered pairs of type 𝐴×𝐵 (for any types 𝐴, 𝐵): we write (𝑎, 𝑏) for the pair of a term
𝑎 of type 𝐴 with a term 𝑏 of type 𝐵, and write fst(𝑝) and snd(𝑝) respectively for the
first and second projections of a pair 𝑝 of type 𝐴 × 𝐵.

It can also be seen as the implication–conjunction fragment of intuitionistic proposi-
tional logic, or as an axiom system for cartesian closed categories.

In this section we formally define the simply-typed lambda calculus as a collection of
judgments presented by inference rules, in order to prepare ourselves for the analogous—
but considerably more complex—definition of dependent type theory in the remainder of
this chapter. Our goal is thus not to give a textbook account of the simply-typed lambda
calculus but to draw the reader’s attention to issues that will arise in the dependent setting.

Readers familiar with the simply-typed lambda calculus should be aware that our
definition does not reference the untyped lambda calculus (as discussed in Remark 2.1.2)
and considers terms modulo 𝛽𝜂-equivalence (Section 2.1.2).

2.1.1 Contexts, types, and terms

The simply-typed lambda calculus is made up of two sorts, or grammatical categories,
namely types and terms. We present these sorts by two well-formedness judgments:

• the judgment 𝐴 type stating that 𝐴 is a well-formed type, and

• for any well-formed type 𝐴, the judgment 𝑎 : 𝐴 stating that 𝑎 is a well-formed term
of that type.

By comprehension these judgments determine respectively the collection of well-formed
types and, for every element of that collection, the collection of well-formed terms of that
type. (From now on we will stop writing “well-formed” because we do not consider any
other kind of types or terms; see Remark 2.1.2.)

(2025-05-02) The simply-typed lambda calculus 18

Remark 2.1.1. A judgment is simply a proposition in our ambient mathematics, one which
takes part in the definition of a logical theory; we use this terminology to distinguish
such meta-propositions from the propositions of the logic that is being defined [Mar87].
Similarly, a sort is a type in the ambient mathematics, as distinguished from the types of
the theory being defined. We refer to the ambient mathematics (in which our definition is
being carried out) as the metatheory and the logic being defined as the object theory.

In this course we will be relatively agnostic about our metatheory, which the reader can
imagine as “ordinary mathematics.” However, one can often simplify matters by adopting a
domain-specific metatheory (a logical framework) well-suited to defining languages/logics,
as an additional level of indirection within the ambient metatheory. ⋄

Types We can easily define the types as the expressions generated by the following
context-free grammar:

Types 𝐴, 𝐵 := b | 𝐴 × 𝐵 | 𝐴 → 𝐵

We say that the judgment 𝐴 type (“𝐴 is a type”) holds when 𝐴 is a type in the above
sense. Note that in addition to function and product types we have included a base type b;
without b the grammar would have no terminal symbols and would thus be empty.

Equivalently, we could define the 𝐴 type judgment by three inference rules correspond-
ing to the three production rules in the grammar of types:

b type

𝐴 type 𝐵 type

𝐴 × 𝐵 type
𝐴 type 𝐵 type

𝐴 → 𝐵 type

Each inference rule has some number of premises (here, zero or two) above the line
and a single conclusion below the line; by combining these rules into trees whose leaves
all have no premises, we can produce derivations of judgments (here, the well-formedness
of a type) at the root of the tree. The tree below is a proof that (b × b) → b is a type:

b type b type

b × b type b type

(b × b) → b type

Terms Terms are considerably more complex than types, so before attempting a formal
definition we will briefly summarize our intentions. For the remainder of this section, fix a
finite set 𝐼 . The well-formed terms are as follows:

• for any 𝑖 ∈ 𝐼 , the base term c𝑖 has type b;

(2025-05-02) The simply-typed lambda calculus 19

• pairing (𝑎, 𝑏) has type 𝐴 × 𝐵 when 𝑎 : 𝐴 and 𝑏 : 𝐵;

• first projection fst(𝑝) has type 𝐴 when 𝑝 : 𝐴 × 𝐵;

• second projection snd(𝑝) has type 𝐵 when 𝑝 : 𝐴 × 𝐵;

• a function 𝜆𝑥.𝑏 has type 𝐴 → 𝐵 when 𝑏 : 𝐵 where 𝑏 can contain (in addition to the
usual term formers) the variable term 𝑥 : 𝐴 standing for the function’s input; and

• a function application 𝑓 𝑎 has type 𝐵 when 𝑓 : 𝐴 → 𝐵 and 𝑎 : 𝐴.

The first difficulty we encounter is that unlike types, which are a single sort, there are
infinitely many sorts of terms (one for each type) many of which refer to one another. A
more significant issue is to make sense of the clause for functions: the body 𝑏 of a function
𝜆𝑥 .𝑏 : 𝐴 → 𝐵 is a term of type 𝐵 according to our original grammar extended by a new
constant 𝑥 : 𝐴 representing an indeterminate term of type 𝐴. Because 𝑏 can again be or
contain a function 𝜆𝑦.𝑐 , we must account for finitely many extensions 𝑥 : 𝐴,𝑦 : 𝐵,

To account for these extensions we introduce an auxiliary sort of contexts, or lists of
variables paired with types, representing local extensions of our theory by variable terms.

Contexts The judgment ⊢ Γ cx (“Γ is a context”) expresses that Γ is a list of pairs of term
variables with types. We write 1 for the empty context and Γ, 𝑥 : 𝐴 for the extension of Γ
by a term variable 𝑥 of type 𝐴. As a context-free grammar, we might write:

Variables 𝑥,𝑦 := 𝑥 | 𝑦 | 𝑧 | · · ·
Contexts Γ := 1 | Γ, 𝑥 :𝐴

Equivalently, in inference rule notation:

⊢ 1 cx

⊢ Γ cx 𝐴 type

⊢ Γ, 𝑥 : 𝐴 cx

We will not spend time discussing variables or binding in this book because variables
will, perhaps surprisingly, not be a part of our definition of dependent type theory. For
the purposes of this section we will simply assume that there is an infinite set of variables
𝑥,𝑦, 𝑧 . . . , and that all the variables in any given context or term are distinct.

Terms revisited With contexts in hand we are now ready to define the term judgment,
which we revise to be relative to a context Γ. The judgment Γ ⊢ 𝑎 : 𝐴 (“𝑎 has type 𝐴 in
context Γ”) is defined by the following inference rules:

(2025-05-02) The simply-typed lambda calculus 20

(𝑥 : 𝐴) ∈ Γ

Γ ⊢ 𝑥 : 𝐴
𝑖 ∈ 𝐼

Γ ⊢ c𝑖 : b
Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑏 : 𝐵

Γ ⊢ (𝑎, 𝑏) : 𝐴 × 𝐵
Γ ⊢ 𝑝 : 𝐴 × 𝐵
Γ ⊢ fst(𝑝) : 𝐴

Γ ⊢ 𝑝 : 𝐴 × 𝐵
Γ ⊢ snd(𝑝) : 𝐵

Γ, 𝑥 : 𝐴 ⊢ 𝑏 : 𝐵
Γ ⊢ 𝜆𝑥.𝑏 : 𝐴 → 𝐵

Γ ⊢ 𝑓 : 𝐴 → 𝐵 Γ ⊢ 𝑎 : 𝐴
Γ ⊢ 𝑓 𝑎 : 𝐵

The rules for c𝑖 , pairing, projections, and application straightforwardly render our
text into inference rule form, framed by a context Γ that is unchanged from premises to
conclusion. The lambda rule explains how contexts are changed: the body of a lambda
is typed in an extended context; and the variable rule explains how contexts are used: in
context Γ, the variables of type 𝐴 in Γ serve as additional terminal symbols of type 𝐴.

Rules such as pairing or lambda that describe how to create terms of a given type
former are known as introduction rules, and rules describing how to use terms of a given
type former, like projection and application, are known as elimination rules.

Remark 2.1.2. An alternative approach that is perhaps more familiar to programming
languages researchers is to define a collection of preterms

Terms 𝑎, 𝑏 := c𝑖 | 𝑥 | (𝑎, 𝑏) | fst(𝑎) | snd(𝑎) | 𝜆𝑥 .𝑎 | 𝑎 𝑏

which includes ill-formed (typeless) terms like fst(𝜆𝑥 .𝑥) in addition to the well-formed
(typed) ones captured by our grammar above, and the inference rules are regarded as
carving out various subsets of well-formed terms [Har16]. In fact, one often gives com-
putational meaning to all preterms (as an extension of the untyped lambda calculus) and
then proves that the well-typed ones are in some sense computationally well-behaved.

This is not the approach we are taking here; to us the term expression fst(𝜆𝑥 .𝑥) does
not exist any more than the type expression→ × →.1 In fact, in light of Section 2.1.2, there
will not even exist a “forgetful” map from our collections of terms to these preterms. ⋄

2.1.2 Equational rules

One shortcoming of our definition thus far is that our projections don’t actually project
anything and our function applications don’t actually apply functions—there is no sense
yet in which fst((𝑎, 𝑏)) : 𝐴 or (𝜆𝑥.𝑥) 𝑎 : 𝐴 “are” 𝑎 : 𝐴. Rather than equip our terms with
operational meaning, we will quotient our terms by equations that capture a notion of
sameness including these examples. The reader can imagine this process as analogous to

1Perhaps one’s definition of context-free grammar carves out the grammatical expressions out of
arbitrary strings over an alphabet, but this process occurs at a different level of abstraction. The reader
should banish such thoughts along with their thoughts about terms with mismatched parentheses.

(2025-05-02) The simply-typed lambda calculus 21

the presentation of algebras by generators and relations, in which our terms thus far are
the generators of a “free algebra” of (well-formed but) uninterpreted expressions.

Our true motivation for this quotient is to anticipate the definitional equality of depen-
dent type theory, but there are certainly intrinsic reasons as well, perhaps most notably
that the quotiented terms of the simply-typed lambda calculus serve as an axiom system
for reasoning about cartesian closed categories [Cro94, Chapter 4].

We quotient by the congruence relation generated by the following rules:

Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑏 : 𝐵
Γ ⊢ fst((𝑎, 𝑏)) = 𝑎 : 𝐴

Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑏 : 𝐵
Γ ⊢ snd((𝑎, 𝑏)) = 𝑏 : 𝐵

Γ ⊢ 𝑝 : 𝐴 × 𝐵
Γ ⊢ 𝑝 = (fst(𝑝), snd(𝑝)) : 𝐴 × 𝐵

Γ, 𝑥 : 𝐴 ⊢ 𝑏 : 𝐵 Γ ⊢ 𝑎 : 𝐴
Γ ⊢ (𝜆𝑥.𝑏) 𝑎 = 𝑏 [𝑎/𝑥] : 𝐵

Γ ⊢ 𝑓 : 𝐴 → 𝐵

Γ ⊢ 𝑓 = 𝜆𝑥.(𝑓 𝑥) : 𝐴 → 𝐵

The equations pertaining to elimination after introduction (projection from pairs and
application of lambdas) are called 𝛽-equivalences; the equations pertaining to introduction
after elimination (pairs of projections and lambdas of applications) are 𝜂-equivalences.

We emphasize that these equations are not a priori directed, and are not restricted to
the “top level” of terms; we genuinely take the quotient of the collection of terms at each
type by these equations, automatically inducing equations such as 𝜆𝑥 .𝑥 = 𝜆𝑥 .fst((𝑥, 𝑥)).

The first two rules explain that projecting from a pair has the evident effect. The third
rule states that every term of type 𝐴 × 𝐵 can be written as a pair (of its projections), in
effect transforming the introduction rule for products from merely a sufficient condition
to a necessary one as well. Similarly, the fifth rule states that every 𝑓 : 𝐴 → 𝐵 can be
written as a lambda (of its application).

The fourth rule explains that applying a lambda function 𝜆𝑥.𝑏 to an argument 𝑎 is equal
to the body 𝑏 of that lambda with all occurrences of the placeholder variable 𝑥 replaced
by the term 𝑎. However, this equation makes reference to a substitution operation 𝑏 [𝑎/𝑥]
(“substitute 𝑎 for 𝑥 in 𝑏”) that we have not yet defined.

(2025-05-02) The simply-typed lambda calculus 22

Substitution We can define substitution 𝑏 [𝑎/𝑥] by structural recursion on 𝑏:

c𝑖 [𝑐/𝑥] := c𝑖
𝑥 [𝑐/𝑥] := 𝑐
𝑦 [𝑐/𝑥] := 𝑦 (for 𝑥 ≠ 𝑦)

(𝑎, 𝑏) [𝑐/𝑥] := (𝑎[𝑐/𝑥], 𝑏 [𝑐/𝑥])
fst(𝑝) [𝑐/𝑥] := fst(𝑝 [𝑐/𝑥])

snd(𝑝) [𝑐/𝑥] := snd(𝑝 [𝑐/𝑥])
(𝜆𝑦.𝑏) [𝑐/𝑥] := 𝜆𝑦.𝑏 [𝑐/𝑥] (for 𝑥 ≠ 𝑦 and 𝑦 ∉ FreeVariables(𝑐))
(𝑓 𝑎) [𝑐/𝑥] := 𝑓 [𝑐/𝑥] 𝑎[𝑐/𝑥]

In the case of substituting into a lambda (𝜆𝑦.𝑏) [𝑐/𝑥], we assume that the bound variable
𝑦 introduced by the lambda is different from the variable 𝑥 being substituted away and that
𝑦 does not happen to occur freely in 𝑐 . In practice both situations are possible, in which
case one must rename 𝑦 (and all references to 𝑦 in 𝑏) before applying this rule. In any
case, we intend this substitution to be capture-avoiding in the sense of not inadvertently
changing the referent of bound variables.

However, because we have quotiented our collection of terms by 𝛽𝜂-equivalence, it is
not obvious that substitution is well-defined as a function out of the collection of terms;
in order to map out of the quotient, we must check that substitution behaves equally on
equal terms. (It is also not obvious that substitution is a function into the collection of
terms, in the sense of producing well-formed terms, as we will discuss shortly.)

Consider the equation fst((𝑎, 𝑏)) = 𝑎. To see that substitution respects this equation,
we can substitute into the left-hand side, yielding:

(fst((𝑎, 𝑏))) [𝑐/𝑥] = fst((𝑎, 𝑏) [𝑐/𝑥]) = fst((𝑎[𝑐/𝑥], 𝑏 [𝑐/𝑥]))

which is 𝛽-equivalent to 𝑎[𝑐/𝑥], the result of substituting into the right-hand side. We can
check the remaining equations in a similar fashion; the 𝑥 ≠ 𝑦 condition on substitution
into lambdas is necessary for substitution to respect 𝛽-equivalence of functions.

2.1.3 Who type-checks the typing rules?

Our stated goal in Section 2.1.1 was to define a collection of well-formed types (written
𝐴 type), and for each of these a collection of well-formed terms (written 𝑎 : 𝐴). Have we
succeeded? First of all, our definition of terms is now indexed by contexts Γ and written
Γ ⊢ 𝑎 : 𝐴, to account for variables introduced by lambdas. This is no problem: we recover
the original notion of (closed) term by considering the empty context 1. Nor is there any
issue defining the collections of types Ty = {𝐴 | 𝐴 type} and contexts Cx = {Γ | ⊢ Γ cx} as
presented by the grammars or inference rules in Section 2.1.1.

(2025-05-02) The simply-typed lambda calculus 23

It is less clear that the collections of terms are well-defined. We would like to say that
the collection of terms of type 𝐴 in context Γ, Tm(Γ, 𝐴), is the set of 𝑎 for which there
exists a derivation of Γ ⊢ 𝑎 : 𝐴, modulo the relation 𝑎 ∼ 𝑏 ⇐⇒ there exists a derivation
of Γ ⊢ 𝑎 = 𝑏 : 𝐴. Several questions arise immediately; for instance, is it the case that
whenever Γ ⊢ 𝑎 : 𝐴 is derivable, Γ is a context and 𝐴 is a type? If not, then we have some
“junk” judgments that should not correspond to elements of some Tm(Γ, 𝐴).

Lemma 2.1.3. If Γ ⊢ 𝑎 : 𝐴 then ⊢ Γ cx and 𝐴 type.

To prove such a statement, one proceeds by induction on derivations of Γ ⊢ 𝑎 : 𝐴. If,
say, the derivation ends as follows:

...

Γ ⊢ 𝑝 : 𝐴 × 𝐵
Γ ⊢ fst(𝑝) : 𝐴

then the inductive hypothesis applied to the derivation of Γ ⊢ 𝑝 : 𝐴 × 𝐵 tells us that ⊢ Γ cx
and𝐴×𝐵 type. The former is exactly one of the two statements we are trying to prove. The
other,𝐴 type, follows from an “inversion lemma” (proven by cases on the − type judgment)
that𝐴 type and 𝐵 type is not only a sufficient but also a necessary condition for𝐴×𝐵 type.

Unfortunately our proof runs into an issue at the base cases, or at least it is not clear
over what Γ the following rules range:

(𝑥 : 𝐴) ∈ Γ

Γ ⊢ 𝑥 : 𝐴
𝑖 ∈ 𝐼

Γ ⊢ c𝑖 : b

We must either add premises to these rules stating ⊢ Γ cx, or else clarify that Γ always
ranges only over contexts (which will be our strategy moving forward; see Notation 2.2.1).

Another question is the well-definedness of our quotient:

Lemma 2.1.4. If Γ ⊢ 𝑎 = 𝑏 : 𝐴 then Γ ⊢ 𝑎 : 𝐴 and Γ ⊢ 𝑏 : 𝐴.

But because 𝛽-equivalence refers to substitution, proving this lemma requires:

Lemma 2.1.5 (Substitution). If Γ, 𝑥 : 𝐴 ⊢ 𝑏 : 𝐵 and Γ ⊢ 𝑎 : 𝐴 then Γ ⊢ 𝑏 [𝑎/𝑥] : 𝐵.

We already saw that we must check that substitution 𝑏 [𝑎/𝑥] respects equality of 𝑏, but
we must also check that it produces well-formed terms, again by induction on 𝑏. Note that
substitution changes a term’s context because it eliminates one of its free variables.

(2025-05-02) Towards the syntax of dependent type theory 24

If we resume our attempt to prove Lemma 2.1.4, we will notice that substitution is not
the only time that the context of a term changes; in the right-hand side of the 𝜂-rule of
functions, 𝑓 is in context Γ, 𝑥 : 𝐴, whereas in the premise and left-hand side it is in Γ:

Γ ⊢ 𝑓 : 𝐴 → 𝐵

Γ ⊢ 𝑓 = 𝜆𝑥 .(𝑓 𝑥) : 𝐴 → 𝐵

And thus we need yet another lemma.

Lemma 2.1.6 (Weakening). If Γ ⊢ 𝑏 : 𝐵 and Γ ⊢ 𝐴 type then Γ, 𝑥 : 𝐴 ⊢ 𝑏 : 𝐵.

We will not belabor the point any further; eventually one proves enough lemmas
to conclude that we have a set of contexts Cx, a set of types Ty, and for every Γ ∈ Cx
and 𝐴 ∈ Ty a set of terms Tm(Γ, 𝐴). The complexity of each result is proportional to
the complexity of that sort’s definition: we define types outright, contexts by simple
reference to types, and terms by more complex reference to both types and contexts. The
judgments of dependent type theory are both more complex and more intertwined; rather
than enduring proportionally more suffering, we will adopt a slightly different approach.

Finally, whereas all the metatheorems mentioned in this section serve only to establish
that our definition is mathematically sensible, there are more genuinely interesting and
contentful metatheorems one might wish to prove, including canonicity, the statement
that (up to equality) the only closed terms of b are of the form c𝑖 (i.e., Tm(1, b) = {c𝑖}𝑖∈𝐼),
and decidability of equality, the statement that for any Γ ⊢ 𝑎 : 𝐴 and Γ ⊢ 𝑏 : 𝐴 we can write
a program which determines whether or not Γ ⊢ 𝑎 = 𝑏 : 𝐴.

2.2 Towards the syntax of dependent type theory

The reader is forewarned that the rules in this section serve to bridge the gap between
Section 2.1 and our “official” rules for extensional type theory, which start in Section 2.3.

As we discussed in Section 1.1, the defining distinction between dependent and simple
type theory is that in the former, types can contain term expressions and even term
variables. Thus, whereas in Section 2.1 a simple context-free grammar sufficed to define
the collection of types and we needed a context-sensitive system of inference rules to
define the well-typed terms, in dependent type theory we will find that both the types and
terms are context-sensitive because they refer to one another.

Types and contexts When is the dependent function type (𝑥 : 𝐴) → 𝐵 well-formed?
Certainly𝐴 and 𝐵 must be well-formed types, but 𝐵 is allowed to contain the term variable
𝑥 : 𝐴 whereas 𝐴 is not. In the case of (𝑛 : Nat) → Vec String (suc 𝑛), the well-formedness
of the codomain depends on the fact that suc 𝑛 is a well-formed term of type Nat (the

(2025-05-02) Towards the syntax of dependent type theory 25

indexing type of Vec String), which in turn depends on the fact that 𝑛 is known to be an
expression (in particular, a variable) of type Nat.

Thus as with the term judgment of Section 2.1, the type judgment of dependent type
theory must have access to the context of term variables, so we replace the𝐴 type judgment
(“𝐴 is a type”) of the simply-typed lambda calculus with a judgment Γ ⊢ 𝐴 type (“𝐴 is a
type in context Γ”). This innocuous change has many downstream implications, so we
will be fastidious about the context in which a type is well-formed.

The first consequence of this change is that contexts of term variables, which we
previously defined simply as lists of well-formed types, must now also take into account
in what context each type is well-formed. Informally we say that each type can depend on
all the variables before it in the context; formally, one might define the judgment ⊢ Γ cx by
the following pair of rules:

⊢ 1 cx

⊢ Γ cx Γ ⊢ 𝐴 type

⊢ Γ, 𝑥 : 𝐴 cx

Notice that the rules defining the judgment ⊢ Γ cx refer to the judgment Γ ⊢ 𝐴 type,
which in turn depends on our notion of context. This kind of mutual dependence will
continue to crop up throughout the rules of dependent type theory.

Notation 2.2.1 (Presuppositions). With a more complex notion of context, it is more
important than ever for us to decide over what Γ the judgment Γ ⊢ 𝐴 type ranges. We will
say that the judgment Γ ⊢ 𝐴 type is only well-formed when ⊢ Γ cx holds, as a matter of
“meta-type discipline,” and similarly that the judgment Γ ⊢ 𝑎 : 𝐴 is only well-formed when
Γ ⊢ 𝐴 type (and thus also ⊢ Γ cx).

One often says that ⊢ Γ cx is a presupposition of the judgment Γ ⊢ 𝐴 type, and that the
judgments ⊢ Γ cx and Γ ⊢ 𝐴 type are presuppositions of Γ ⊢ 𝑎 : 𝐴. We will globally adopt
the convention that whenever we assert the truth of some judgment in prose or as the
premise of a rule, we also implicitly assert that its presuppositions hold. Dually, we will be
careful to check that none of our rules have meta-ill-typed conclusions.

Now that we have added a term variable context to the type well-formedness judgment,
we can explain when (𝑥 : 𝐴) → 𝐵 is a type: it is a (well-formed) type in Γ when 𝐴 is a
type in Γ and 𝐵 is a type in Γ, 𝑥 : 𝐴, as follows.

Γ ⊢ 𝐴 type Γ, 𝑥 : 𝐴 ⊢ 𝐵 type
Γ ⊢ (𝑥 : 𝐴) → 𝐵 type

Rules like this describing how to create a type are known as formation rules, to parallel
the terminology of introduction and elimination rules.

(2025-05-02) Towards the syntax of dependent type theory 26

We can now sketch the formation rules for many of the types we encountered in
Chapter 1. Dependent types like _≡_ and Vec are particularly interesting because they
entangle the Γ ⊢ 𝐴 type judgment with the term well-formedness judgment Γ ⊢ 𝑎 : 𝐴.

⊢ Γ cx

Γ ⊢ Nat type

Γ ⊢ 𝐴 type Γ ⊢ 𝑛 : Nat

Γ ⊢ Vec 𝐴 𝑛 type

Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑏 : 𝐴
Γ ⊢ 𝑎 ≡ 𝑏 type

Note that the convention of presuppositions outlined in Notation 2.2.1 means that
the second and third rules have an implicit ⊢ Γ cx premise, and the third rule also has an
implicit Γ ⊢ 𝐴 type premise. To see that the conclusions of these rules are meta-well-typed,
we must check that ⊢ Γ cx holds in each case; this is an explicit premise of the first rule
and a presupposition of the premises of the second and third rules.

The formation rule for propositional equality _≡_ in particular is a major source of
dependency because it singlehandledly allows arbitrary terms of arbitrary type to occur
within types. In fact, this rule by itself causes the inference rules of all three judgments
⊢ Γ cx, Γ ⊢ 𝐴 type, and Γ ⊢ 𝑎 : 𝐴 to all depend on one another pairwise.
Exercise 2.1. Attempt to derive that (𝑛 : Nat) → Vec String (suc 𝑛) is a well-formed type
in the empty context 1, using the rules introduced in this section thus far. Several rules
are missing; which judgments can you not yet derive?

The variable rule Let us turn now to the term judgment Γ ⊢ 𝑎 : 𝐴, and in particular
the rule stating that term variables in the context are well-formed terms. For simplicity,
imagine the special case where the last variable is the one under consideration:

Γ, 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴
!?

This rule needs considerable work, as neither of the conclusion’s presuppositions,
⊢ (Γ, 𝑥 : 𝐴) cx and Γ, 𝑥 : 𝐴 ⊢ 𝐴 type, currently hold. We can address the former by adding
premises ⊢ Γ cx and Γ ⊢ 𝐴 type to the rule, from which it follows that ⊢ (Γ, 𝑥 : 𝐴) cx.2 As
for the latter, note that Γ ⊢ 𝐴 type does not actually imply Γ, 𝑥 : 𝐴 ⊢ 𝐴 type—this would
require proving a weakening lemma (see Lemma 2.1.6) for types! (Conversely, if the rule
has the premise Γ ⊢ 𝐴 type, then we cannot establish well-formedness of the context.)

There are several ways to proceed. One is to prove a weakening lemma, but given that
the well-formedness of the variable rule requires weakening, it is necessary to prove all
our well-formedness, weakening, and substitution lemmas by a rather heavy simultaneous
induction. A second approach would be to add a silent weakening rule stating that
Γ, 𝑥 : 𝐴 ⊢ 𝐵 type whenever Γ ⊢ 𝐵 type; however, this introduces ambiguity into our rules
regarding the context(s) in which a type or term is well-formed.

2Of course one could just directly add the premise ⊢ (Γ, 𝑥 : 𝐴) cx, but our short-term memory is robust
enough to recall that our next task is to ensure that 𝐴 is a type.

(2025-05-02) Towards the syntax of dependent type theory 27

We opt for a third option, which is to add explicit weakening rules asserting the
existence of an operation sending types and terms in context Γ to types and terms in
context Γ, 𝑥 : 𝐴, both written −[p]. (This notation will become less mysterious later.)

Γ ⊢ 𝐵 type Γ ⊢ 𝐴 type

Γ, 𝑥 : 𝐴 ⊢ 𝐵 [p] type
Γ ⊢ 𝑏 : 𝐵 Γ ⊢ 𝐴 type

Γ, 𝑥 : 𝐴 ⊢ 𝑏 [p] : 𝐵 [p]
Note that the type weakening rule is needed to make sense of the term weakening rule.

We can now fix the variable rule we wrote above: using −[p] to weaken 𝐴 by itself,
we move 𝐴 from context Γ to Γ, 𝑥 : 𝐴 as required in the conclusion of the rule.

⊢ Γ cx Γ ⊢ 𝐴 type

Γ, 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴[p]
To use variables that occur earlier in the context, we can apply weakening repeatedly

until they are the last variable. Suppose that 1 ⊢ 𝐴 type and 𝑥 : 𝐴 ⊢ 𝐵 type, and in the
context 𝑥 : 𝐴,𝑦 : 𝐵 we want to use the variable 𝑥 . Ignoring the 𝑦 : 𝐵 in the context for a
moment, we know that 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴[p] by the last variable rule; thus by weakening we
have 𝑥 : 𝐴,𝑦 : 𝐵 ⊢ 𝑥 [p] : 𝐴[p] [p]. In general, we can derive the following principle:

Γ ⊢ 𝐴 type Γ, 𝑥 : 𝐴 ⊢ 𝐵1 type . . . Γ, 𝑥 : 𝐴,𝑦1 : 𝐵1, . . . ⊢ 𝐵𝑛 type
Γ, 𝑥 : 𝐴,𝑦1 : 𝐵1, . . . , 𝑦𝑛 : 𝐵𝑛 ⊢ 𝑥 [p] . . . [p]︸ ︷︷ ︸

𝑛 times

: 𝐴[p] . . . [p]︸ ︷︷ ︸
𝑛 + 1 times

This approach to variables is elegant in that it breaks the standard variable rule into
two simpler primitives: a rule for the last variable, and rules for type and term weakening.
However, it introduces a redundancy in our notation, because the term 𝑥 [p]𝑛 encodes in
two different ways the variable to which it refers: by the name 𝑥 as well as positionally by
the number of weakenings 𝑛.

A happy accident of our presentation of the variable rule is thus that we can delete
variable names altogether; in Section 2.3 we will present contexts simply as lists of types
𝐴.𝐵.𝐶 with no variable names, and adopt a single notation for “the last variable in the
context,” an encoding of the lambda calculus known as de Bruijn indexing [Bru72]. Con-
ceptual elegance notwithstanding, this notation is very unfriendly to the reader in larger
examples3 so we will continue to use named variables outside of the rules themselves;
translating between the two notations is purely mechanical.

Remark 2.2.2. The first author wishes to mention another approach to maintaining
readability, which is to continue using both named variables and explicit weakenings
[Gra09]; this approach has the downside of requiring us to explain variable binding, but is
simultaneously readable and precise about weakenings. ⋄

3According to Conor McBride, “Bob Atkey once memorably described the capacity to put up with de
Bruijn indices as a Cylon detector.” (https://mazzo.li/epilogue/index.html%3Fp=773.html)

https://mazzo.li/epilogue/index.html%3Fp=773.html

(2025-05-02) The calculus of substitutions 28

2.3 The calculus of substitutions

Weakening is one of two main operations in type theory that moves types and terms
between contexts, the other being substitution of terms for variables. For the same reasons
that we want to present weakening as an explicit type- and term-forming operation, we
will also formulate substitution as an explicit operation subject to equations explicating
how it computes on each construct of the theory.

However, rather than axiomatizing single substitutions and weakenings, we will ax-
iomatize arbitrary compositions of substitutions and weakenings. In light of the fact that
substitution shortens the context of a type/term and weakening lengthens it, these com-
posite operations—called simultaneous substitutions (henceforth just substitutions)—can
turn any context Γ into any other context Δ.

We thus add one final judgment to our presentation of type theory, Δ ⊢ 𝛾 : Γ (“𝛾 is a
substitution from Δ to Γ”), corresponding to operations that send types/terms from context
Γ to context Δ. (Not a typo; we will address the “backwards” notation later.)

Notation 2.3.1. Type theory has four basic judgments and three equality judgments:

1. ⊢ Γ cx asserts that Γ is a context.

2. Δ ⊢ 𝛾 : Γ, presupposing ⊢ Δ cx and ⊢ Γ cx, asserts that 𝛾 is a substitution from Δ to Γ.

3. Γ ⊢ 𝐴 type, presupposing ⊢ Γ cx, asserts that 𝐴 is a type in context Γ.

4. Γ ⊢ 𝑎 : 𝐴, presupposing ⊢ Γ cx and Γ ⊢ 𝐴 type, asserts that 𝑎 is an element/term of
type 𝐴 in context Γ.

2′. Δ ⊢ 𝛾 = 𝛾 ′ : Γ, presupposing Δ ⊢ 𝛾 : Γ and Δ ⊢ 𝛾 ′ : Γ, asserts that 𝛾,𝛾 ′ are equal
substitutions from Δ to Γ.

3′. Γ ⊢ 𝐴 = 𝐴′ type, presupposing Γ ⊢ 𝐴 type and Γ ⊢ 𝐴′ type, asserts that 𝐴,𝐴′ are
equal types in context Γ.

4′. Γ ⊢ 𝑎 = 𝑎′ : 𝐴, presupposing Γ ⊢ 𝑎 : 𝐴 and Γ ⊢ 𝑎′ : 𝐴, asserts that 𝑎, 𝑎′ are equal
elements of type 𝐴 in context Γ.

Notation 2.3.2. We write Cx for the set of contexts, Sb(Δ, Γ) for the set of substitutions
from Δ to Γ, Ty(Γ) for the set of types in context Γ, and Tm(Γ, 𝐴) for the set of terms of
type 𝐴 in context Γ.

This presentation of dependent type theory is known as the substitution calculus [Mar92;
Tas93]. Perhaps unsurprisingly, we must discuss a considerable number of rules governing
substitutions before presenting any concrete type and term formers; we devote this section
to those rules, and cover the main connectives of type theory in Section 2.4.

(2025-05-02) The calculus of substitutions 29

Contexts The rules for contexts are as in Section 2.2, but without variable names:

⊢ 1 cx

⊢ Γ cx Γ ⊢ 𝐴 type

⊢ Γ.𝐴 cx

Although there is no context equality judgment, note that two contexts can be equal
without being syntactically identical. If 1 ⊢ 𝐴 = 𝐴′ type then 1.𝐴 and 1.𝐴′ are equal
contexts on the basis that, like all operations of the theory, context extension respects
equality in both arguments. We have omitted the ⊢ Γ = Γ′ cx judgment for the simple
reason that there would be no rules governing it: the only reason why two contexts can
be equal is that their types are pairwise equal.

Substitutions The purpose of a substitution Δ ⊢ 𝛾 : Γ is to shift types and terms from
context Γ to context Δ:

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴 type

Δ ⊢ 𝐴[𝛾] type
Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : 𝐴

Δ ⊢ 𝑎[𝛾] : 𝐴[𝛾]

Unlike the substitution operation of Section 2.1, which was a function on terms defined
by cases, these rules define two binary type- and term- forming operations that take a type
(resp., term) and a substitution as input and produce a new type (resp., term). Note also
that, despite sharing a notation, type and term substitution are two distinct operations.

The simplest interesting substitution is weakening, written p:4

Γ ⊢ 𝐴 type

Γ.𝐴 ⊢ p : Γ

In concert with the substitution rules above we can recover the weakening rules from the
previous section, e.g., if Γ ⊢ 𝐵 type and Γ ⊢ 𝐴 type then Γ, 𝑥 : 𝐴 ⊢ 𝐵 [p] type.

Because substitutions Δ ⊢ 𝛾 : Γ encode arbitrary compositions of context-shifting oper-
ations, we also have rules that close substitutions under nullary and binary composition:

⊢ Γ cx

Γ ⊢ id : Γ
Γ2 ⊢ 𝛾1 : Γ1 Γ1 ⊢ 𝛾0 : Γ0

Γ2 ⊢ 𝛾0 ◦ 𝛾1 : Γ0

These operations are unital and associative as one might expect:

Δ ⊢ 𝛾 : Γ
Δ ⊢ 𝛾 ◦ id = id ◦ 𝛾 = 𝛾 : Γ

Γ3 ⊢ 𝛾2 : Γ2 Γ2 ⊢ 𝛾1 : Γ1 Γ1 ⊢ 𝛾0 : Γ0

Γ3 ⊢ 𝛾0 ◦ (𝛾1 ◦ 𝛾2) = (𝛾0 ◦ 𝛾1) ◦ 𝛾2 : Γ0
4This mysterious name can be explained by the fact that weakening corresponds semantically to a

projection map; p can thus be pronounced as either “weakening” or “projection”.

(2025-05-02) The calculus of substitutions 30

We can summarize the rules above by stating that there is a category whose objects are
contexts and whose morphisms are substitutions.

We have already seen that substitutions shift the contexts of types and terms by −[𝛾];
they also shift the context of other substitutions by precomposition. Later we will have
occasion to discuss all three context-shifting functions between sorts that are induced by
substitutions, as follows.

Notation 2.3.3. Given a substitution Δ ⊢ 𝛾 : Γ, we write 𝛾∗ for the following functions:

• 𝜉 ↦→ 𝜉 ◦ 𝛾 : Sb(Γ,Ξ) → Sb(Δ,Ξ),

• 𝐴 ↦→ 𝐴[𝛾] : Ty(Γ) → Ty(Δ), and

• 𝑎 ↦→ 𝑎[𝛾] : Tm(Γ, 𝐴) → Tm(Δ, 𝐴[𝛾]).

Composite substitutions introduce a possible redundancy into our rules: what is the
difference between substituting by 𝛾0 and then by 𝛾1 versus substituting once by 𝛾0 ◦ 𝛾1?
We add equations asserting that substituting by id is the identity and substituting by a
composite is composition of substitutions:

Γ ⊢ 𝐴 type

Γ ⊢ 𝐴[id] = 𝐴 type

Γ ⊢ 𝑎 : 𝐴
Γ ⊢ 𝑎[id] = 𝑎 : 𝐴

Γ2 ⊢ 𝛾1 : Γ1 Γ1 ⊢ 𝛾0 : Γ0 Γ0 ⊢ 𝐴 type

Γ2 ⊢ 𝐴[𝛾0 ◦ 𝛾1] = 𝐴[𝛾0] [𝛾1] type
Γ2 ⊢ 𝛾1 : Γ1 Γ1 ⊢ 𝛾0 : Γ0 Γ0 ⊢ 𝑎 : 𝐴
Γ2 ⊢ 𝑎[𝛾0 ◦ 𝛾1] = 𝑎[𝛾0] [𝛾1] : 𝐴[𝛾0 ◦ 𝛾1]

We can summarize the rules above by stating that the𝛾∗ operations respect identity and
composition of substitutions, or more compactly, that the collections of types and terms
form presheaves Ty(−) and ∑𝐴:Ty(−) Tm(−, 𝐴) on the category of contexts, with restriction
maps given by substitution (a perspective which inspires the notation 𝛾∗).

Before moving on, it is instructive to once again convince ourselves that the rules above
are meta-well-typed. In particular, the conclusion of the second rule is only sensible if
Γ ⊢ 𝑎[id] : 𝐴, but according to the rule for term substitution we only have Γ ⊢ 𝑎[id] : 𝐴[id].
To make sense of this rule we must refer to the previous rule equating the types 𝐴[id]
and 𝐴. A consequence of this type equation is that terms of type 𝐴[id] are equivalently
terms of type 𝐴,5 and thus Γ ⊢ 𝑎[id] : 𝐴 as required. This is a paradigmatic example of the
deeply intertwined nature of the rules of dependent type theory; in particular, we cannot
defer equations to the end of our construction the way we did in Section 2.1 because many
rules are only sensible after imposing certain equations.

5In some presentations of type theory this principle is explicit and is known as the type conversion rule.
For us it is a consequence of the judgments respecting equality, i.e., Tm(Γ, 𝐴[id]) = Tm(Γ, 𝐴) as sets.

(2025-05-02) The calculus of substitutions 31

The variable rule revisited As in the previous section, the variable rule is restricted to
the last entry in the context, which we (unambiguously) always name q.6

Γ ⊢ 𝐴 type

Γ.𝐴 ⊢ q : 𝐴[p]

Writing p𝑛 for the 𝑛-fold composition of p with itself (with p0 = id), the following rule
is derivable from other rules (notated⇒) and thus not explicitly included in our system:

Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵1 type . . . Γ.𝐴.𝐵1 . . . ⊢ 𝐵𝑛 type
Γ.𝐴.𝐵1 . . . 𝐵𝑛 ⊢ q [p𝑛] : 𝐴[p𝑛+1]

⇒

Thus a variable in our system is a term of the form q [p𝑛], where 𝑛 is its de Bruijn index.

Terminal substitutions Our notation Δ ⊢ 𝛾 : Γ for substitutions is no accident; it is
indeed a good mental model to think of such substitutions as “terms of type Γ in context Δ.”
To understand why, let us think back to propositional logic. A term 1.𝐵 ⊢ 𝑐 : 𝐶 can be seen
as a proof of 𝐶 under the hypothesis 𝐵, i.e., a proof that 𝐵 =⇒ 𝐶 . Given a substitution
1.𝐴 ⊢ 𝑏 : 1.𝐵 we can obtain a term 1.𝐴 ⊢ 𝑐 [𝑏] : 𝐶 [𝑏], or a proof that 𝐴 =⇒ 𝐶 . This
suggests that substituting corresponds logically to a “cut,” and 𝑏 to a proof that 𝐴 =⇒ 𝐵.

Returning to the general case, contexts are lists of hypotheses, and a substitution
Δ ⊢ 𝛾 : Γ states that we can prove all the hypotheses of Γ using the hypotheses of Δ. Thus
anything that is true under the hypotheses Γ is also true under the hypotheses Δ—hence
the contravariance of the substitution operation.

More concretely, the idea is that a substitution Δ ⊢ 𝛾 : 1.𝐴1 . . . 𝐴𝑛 is an 𝑛-tuple of
terms 𝑎1, . . . , 𝑎𝑛 of types 𝐴1, . . . , 𝐴𝑛 , all in context Δ, and applying the substitution 𝛾 has
the effect of substituting 𝑎1 for the first variable, 𝑎2 for the second variable, . . . and 𝑎𝑛 for
the last variable. The final subtlety is that each type 𝐴𝑖 is in general dependent on all the
previous 𝐴 𝑗 for 𝑗 < 𝑖 , so the type of 𝑎2 is not just 𝐴2 but “𝐴2 [𝑎1/𝑥1],” so to speak, all the
way through “𝑎𝑛 : 𝐴𝑛 [𝑎1/𝑥1, . . . , 𝑎𝑛−1/𝑥𝑛−1].”

If all of this sounds very complicated, well. . . at any rate, the remaining rules governing
substitution define such 𝑛-tuples in two cases, 0 and 𝑛 + 1. The nullary case is fairly simple:
any substitution Γ ⊢ 𝛿 : 1 into the empty context (a length-zero list of types) is necessarily
the empty tuple ⟨⟩, which we spell !.

⊢ Γ cx

Γ ⊢ ! : 1

Γ ⊢ 𝛿 : 1

Γ ⊢ ! = 𝛿 : 1

These rules state that 1 is a terminal object in the category of contexts, a perspective which
inspires the notations 1 and !.

6This mysterious name is chosen to pair well with the name p that we gave weakening; q can thus be
pronounced as either “variable” or “qariable”.

(2025-05-02) The calculus of substitutions 32

Substitution extension The other case concerns substitutions Δ ⊢ − : Γ.𝐴 into a context
extension. Recall that Γ.𝐴 is an (𝑛 + 1)-tuple of types when Γ is an 𝑛-tuple of types, and
suppose that Δ ⊢ 𝛾 : Γ, which is to say that 𝛾 is an 𝑛-tuple of terms (in context Δ) whose
types are those in Γ. To extend this 𝑛-tuple to an (𝑛 + 1)-tuple of terms whose types are
those in Γ.𝐴, we simply adjoin one more term 𝑎 in context Δ with type 𝐴[𝛾], where this
substitution plugs the 𝑛 previously-given terms into the dependencies of 𝐴.

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴 type Δ ⊢ 𝑎 : 𝐴[𝛾]
Δ ⊢ 𝛾 .𝑎 : Γ.𝐴

The final three rules of our calculus are equations governing this substitution former:

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴 type Δ ⊢ 𝑎 : 𝐴[𝛾]
Δ ⊢ p ◦ (𝛾 .𝑎) = 𝛾 : Γ

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴 type Δ ⊢ 𝑎 : 𝐴[𝛾]
Δ ⊢ q [𝛾 .𝑎] = 𝑎 : 𝐴[𝛾]

Γ ⊢ 𝐴 type Δ ⊢ 𝛾 : Γ.𝐴
Δ ⊢ 𝛾 = (p ◦ 𝛾).q [𝛾] : Γ.𝐴

Imagining for the moment that Γ = 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 and 𝛾 = [𝑎1/𝑥1, . . . , 𝑎𝑛/𝑥𝑛], the
second rule states that 𝑥𝑛 [𝑎1/𝑥1, . . . , 𝑎𝑛/𝑥𝑛] = 𝑎𝑛 , in other words, that substituting into the
last variable 𝑥𝑛 replaces that variable by the last term 𝑎𝑛 . The first rule states in essence
that substituting into a type/term that does not mention (is weakened by) 𝑥𝑛 is the same
as dropping the last term 𝑎𝑛/𝑥𝑛 from the substitution, i.e., [𝑎1/𝑥1, . . . , 𝑎𝑛−1/𝑥𝑛−1].

Finally, the third rule states that every substitution 𝛾 into the context Γ.𝐴 is of the form
𝛾0.𝑎, where 𝑎 is determined by the behavior of 𝛾 on the last variable, and 𝛾0 is determined
by the behavior of 𝛾 on the first 𝑛 variables. (See Exercise 2.5.)

All of these rules in this section determine a category (of contexts and substitutions)
with extra structure, known collectively as a category with families [Dyb96]. We will refer
to any system that extends this collection of rules as a Martin-Löf type theory.
Exercise 2.2. Show that substitutions Γ ⊢ 𝛾 : Γ.𝐴 satisfying p ◦ 𝛾 = id are in bijection
with terms Γ ⊢ 𝑎 : 𝐴.

Exercise 2.3. Show that (𝛾 .𝑎) ◦ 𝛿 = (𝛾 ◦ 𝛿).𝑎[𝛿].

Exercise 2.4. Given Δ ⊢ 𝛾 : Γ and Γ ⊢ 𝐴 type, construct a substitution that we will name
𝛾 .𝐴, satisfying Δ.𝐴[𝛾] ⊢ 𝛾 .𝐴 : Γ.𝐴.

Exercise 2.5. Suppose that Γ ⊢ 𝐴 type and ⊢ Δ cx. Show that substitutions Δ ⊢ 𝛾 : Γ.𝐴
are in bijection with pairs of a substitution Δ ⊢ 𝛾0 : Γ and a term Δ ⊢ 𝑎 : 𝐴[𝛾0].

(2025-05-02) Internalizing judgmental structure: Π,Σ, Eq,Unit 33

2.4 Internalizing judgmental structure: Π,Σ, Eq,Unit
With the basic structure of dependent type theory finally out of the way, we are prepared
to define standard type and term formers, starting with the best-behaved connectives:
dependent products, dependent sums, extensional equality, and the unit type. Unlike
inductive types (Section 2.5), each of these connectives can be described concisely as
internalizing judgmental structure of some kind.

2.4.1 Dependent products

We start with dependent function types, also known as dependent products or Π-types. The
formation rule is as in Section 2.2, but without variable names:7

Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type
Γ ⊢ Π(𝐴, 𝐵) type

Remark 2.4.1. The Π notation and terminology is inspired by this type corresponding
semantically to a set-indexed product of sets

∏
𝑎∈𝐴 𝐵𝑎 . Indexed products generalize ordinary

products in the sense that
∏
𝑎∈{1,2} 𝐵𝑎 � 𝐵1 × 𝐵2. ⋄

Remarkably, the substitution calculus ensures that these rules are almost indistinguish-
able from the introduction and elimination rules of simple function types in Section 2.1,
with some minor additional bookkeeping to move types to the appropriate contexts:

Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝑏 : 𝐵
Γ ⊢ 𝜆 (𝑏) : Π(𝐴, 𝐵)

Γ ⊢ 𝑎 : 𝐴 Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑓 : Π(𝐴, 𝐵)
Γ ⊢ app(𝑓 , 𝑎) : 𝐵 [id.𝑎]

There continue to be a few notational shifts: 𝜆s no longer come with variable names,
and we write app(𝑓 , 𝑎) rather than 𝑓 𝑎 just to emphasize that function application is a term
constructor. The reader should convince themselves that in the final rule, Γ ⊢ 𝐵 [id.𝑎] type;
this substitutes 𝑎 for the last variable in 𝐵, leaving the rest of the context unchanged.

Next we must specify equations not only on the introduction and elimination forms,
but on the type former itself. There are two groups of equations we must impose; the first
group explains how substitutions act on all three of these operations:

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type
Δ ⊢ Π(𝐴, 𝐵) [𝛾] = Π(𝐴[𝛾], 𝐵 [𝛾 .𝐴]) type

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝑏 : 𝐵
Δ ⊢ 𝜆 (𝑏) [𝛾] = 𝜆 (𝑏 [𝛾 .𝐴]) : Π(𝐴, 𝐵) [𝛾]

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : 𝐴 Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑓 : Π(𝐴, 𝐵)
Δ ⊢ app(𝑓 , 𝑎) [𝛾] = app(𝑓 [𝛾], 𝑎[𝛾]) : 𝐵 [𝛾 .𝑎[𝛾]]

7We have switched our notation from (𝑥 : 𝐴) → 𝐵 because it is awkward without named variables.

(2025-05-02) Internalizing judgmental structure: Π,Σ, Eq,Unit 34

Roughly speaking, these three rules state that substitutions commute past each type
and term former, but 𝐵 and 𝑏 are well-formed in a larger context (Γ.𝐴) than the surrounding
term (Γ), requiring us to “shift” the substitution so that it leaves the bound variable of
type 𝐴 unchanged while continuing to act on all the free variables in Γ. (The “shifted”
substitution 𝛾 .𝐴 in these rules is the derived form defined in Exercise 2.4.)

Once again we should pause and convince ourselves that these rules are meta-well-
typed. Echoing the phenomenon we saw in Section 2.3 with Γ ⊢ 𝑎[id] : 𝐴, we need to
use the substitution rule for Π(𝐴, 𝐵) [𝛾] to see that the right-hand side of the substitution
rules for 𝜆 (𝑏) [𝛾] and app(𝑓 , 𝑎) [𝛾] are well-typed.
Exercise 2.6. Check that the substitution rule for app(𝑓 , 𝑎) [𝛾] is meta-well-typed; in
particular, show that both app(𝑓 , 𝑎) [𝛾] and app(𝑓 [𝛾], 𝑎[𝛾]) have the type 𝐵 [𝛾 .𝑎[𝛾]].

This pattern will continue: every time we introduce a new type or term former 𝜃 ,
we will add an equation 𝜃 (𝑎1, . . . , 𝑎𝑛) [𝛾] = 𝜃 (𝑎1 [𝛾1], . . . , 𝑎𝑛 [𝛾𝑛]) stating that substitutions
push past 𝜃 , adjusted as necessary in each argument. These rules are quite mechanical
and can even be automatically derived in some frameworks, but they are at the heart of
type theory itself. From a logical perspective, they ensure that quantifier instantiation is
uniform. From a mathematical perspective, as we will see in Section 2.4.2, they assert the
naturality of type-theoretic constructions. And from an implementation perspective, these
rules can be assembled into a substitution algorithm, ensuring that substitutions can be
computed automatically by proof assistants.

Remark 2.4.2. The difference between this approach to substitution and the one outlined
in Section 2.1 is one of derivability vs admissibility. In the simply-typed setting, the fact
that all terms enjoy substitution is not part of the system but rather must be proven (and
even constructed in the first place) by induction over the structure of terms, and so adding
new constructs to the theory may cause substitution to fail.

In the substitution calculus, we assert that all types and terms enjoy substitution as
basic rules of the theory, and later add equations specifying how substitution computes;
thus any extension of the theory is guaranteed to enjoy substitution. Because substitution is
a crucial aspect of dependent type theory, we find this latter approach more ergonomic. ⋄

The second group of equations is the 𝛽- and 𝜂-rules introduced in Section 2.1, complet-
ing our presentation of dependent product types.

Γ ⊢ 𝑎 : 𝐴 Γ.𝐴 ⊢ 𝑏 : 𝐵
Γ ⊢ app(𝜆 (𝑏), 𝑎) = 𝑏 [id.𝑎] : 𝐵 [id.𝑎]

Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑓 : Π(𝐴, 𝐵)
Γ ⊢ 𝑓 = 𝜆 (app(𝑓 [p], q)) : Π(𝐴, 𝐵)

(2025-05-02) Internalizing judgmental structure: Π,Σ, Eq,Unit 35

Exercise 2.7. Carefully explain why the 𝜂-rule above is meta-well-typed, in particular why
𝜆 (app(𝑓 [p], q)) has the right type. Explicitly point out all the other rules and equations
(e.g., Π-introduction, Π-elimination, weakening) to which you refer.

Exercise 2.8. Show that using Π-types we can define a non-dependent function type
whose formation rule states that if Γ ⊢ 𝐴 type and Γ ⊢ 𝐵 type then Γ ⊢ 𝐴 → 𝐵 type.
Then define the introduction and elimination rules from Section 2.1 for this encoding,
and check that the 𝛽- and 𝜂-rules from Section 2.1 hold. (Hint: it is incorrect to define
𝐴 → 𝐵 := Π(𝐴, 𝐵).)

Exercise 2.9. As discussed in Section 2.3, two contexts that are not syntactically identical
may nevertheless be equal. Give an example.

2.4.2 Dependent products internalize hypothetical judgments

With one type constructor, two term constructors, and five equations, it is natural to wonder
whether we have written “enough” or “the correct” rules to specify Π-types. One may also
wonder whether there is an easier way. We now introduce a methodology for making sense
of this collection of rules, and show how we can use this methodology to more efficiently
define the later connectives. In short, we will view connectives as internalizations of
judgmental structure, and Γ ⊢ − : Π(𝐴, 𝐵) in particular as an internalization of the
hypothetical judgment Γ.𝐴 ⊢ − : 𝐵.

Remark 2.4.3. In this book we limit ourselves to a semi-informal discussion of this
perspective, which can be made fully precise with the language of category theory. For
instance, using the framework of natural models, Awodey [Awo18] shows that the rules
above exactly capture thatΠ-types classify the hypothetical judgment in a precise sense. ⋄

Analyzing context extension To warm up, let us begin by recalling Exercise 2.5, which
establishes the following bijection of sets for every Δ, Γ, and 𝐴:

{𝛾 | Δ ⊢ 𝛾 : Γ.𝐴} � {(𝛾0, 𝑎) | Δ ⊢ 𝛾0 : Γ ∧ Δ ⊢ 𝑎 : 𝐴[𝛾0]}

Using Notation 2.3.2 we equivalently write:

𝜄Δ,Γ,𝐴 : Sb(Δ, Γ.𝐴) � ∑
𝛾∈Sb(Δ,Γ) Tm(Δ, 𝐴[𝛾])

where
∑
𝑎∈𝐴 𝐵𝑎 is our notation for the set-indexed coproduct of sets

∐
𝑎∈𝐴 𝐵𝑎 .

As stated, the bijections 𝜄Δ,Γ,𝐴 and 𝜄Δ′,Γ′,𝐴′ may be totally unrelated, but it turns out that
this collection of bijections is actually natural (or “parametric”) in Δ in the sense that the
behavior of 𝜄Δ0,Γ,𝐴 and 𝜄Δ1,Γ,𝐴 are correlated when we have a substitution from Δ0 to Δ1.

(2025-05-02) Internalizing judgmental structure: Π,Σ, Eq,Unit 36

Because these bijections have different types, to make this idea precise we must find
a way to relate their differing domains Sb(Δ0, Γ.𝐴) and Sb(Δ1, Γ.𝐴) with one another, as
well as their codomains

∑
𝛾∈Sb(Δ0,Γ) Tm(Δ0, 𝐴[𝛾]) and

∑
𝛾∈Sb(Δ1,Γ) Tm(Δ1, 𝐴[𝛾]).

We have already seen the former in Notation 2.3.3: every substitution Δ0 ⊢ 𝛿 : Δ1
induces a function 𝛿∗ : Sb(Δ1, Γ.𝐴) → Sb(Δ0, Γ.𝐴). We leave the latter as an exercise:
Exercise 2.10. Given Δ0 ⊢ 𝛿 : Δ1, use 𝛿∗ (Notation 2.3.3) to define the following function:∑

𝛿∗ 𝛿
∗ :

∑
𝛾∈Sb(Δ1,Γ) Tm(Δ1, 𝐴[𝛾]) →

∑
𝛾∈Sb(Δ0,Γ) Tm(Δ0, 𝐴[𝛾])

Proof. Define (∑𝛿∗ 𝛿
∗) (𝛾, 𝑎) = (𝛿∗𝛾, 𝛿∗𝑎) = (𝛾 ◦ 𝛿, 𝑎[𝛿]). □

With these functions in hand we can now explain precisely what we mean by the
naturality of 𝜄−,Γ,𝐴. Fix a substitution Δ0 ⊢ 𝛿 : Δ1. We have two different ways of turning
a substitution Δ1 ⊢ 𝛾 : Γ.𝐴 into an element of

∑
𝛾0∈Sb(Δ0,Γ) Tm(Δ0, 𝐴[𝛾0]), depicted by the

“right then down” and “down then right” paths in the diagram below:

Sb(Δ1, Γ.𝐴)

Sb(Δ0, Γ.𝐴)

𝛿∗

∑
𝛾∈Sb(Δ1,Γ) Tm(Δ1, 𝐴[𝛾])

∑
𝛾∈Sb(Δ0,Γ) Tm(Δ0, 𝐴[𝛾])

𝜄Δ1,Γ,𝐴

∑
𝛿∗ 𝛿

∗

𝜄Δ0,Γ,𝐴

Going “right then down” we obtain

𝛾 𝜄Δ1,Γ,𝐴 (𝛾)

(∑𝛿∗ 𝛿
∗) (𝜄Δ1,Γ,𝐴 (𝛾))

and going “down then right” we obtain 𝛾 ↦→ 𝛾 ◦ 𝛿 ↦→ 𝜄Δ0,Γ,𝐴 (𝛾 ◦ 𝛿).
We say that the family of isomorphisms Δ ↦→ 𝜄Δ,Γ,𝐴 is natural when these two paths

always yield the same result, i.e., when (∑𝛿∗ 𝛿
∗) (𝜄Δ1,Γ,𝐴 (𝛾)) = 𝜄Δ0,Γ,𝐴 (𝛾 ◦ 𝛿) for every

Δ0 ⊢ 𝛿 : Δ1 and 𝛾 . In other words, 𝜄Δ0,Γ,𝐴 and 𝜄Δ1,Γ,𝐴 “do the same thing” as soon as you
correct the mismatch in their types by pre- and post-composing the appropriate maps.

(2025-05-02) Internalizing judgmental structure: Π,Σ, Eq,Unit 37

Exercise 2.11. Prove that 𝜄 is natural, i.e., that the following maps are equal:∑
𝛿∗ 𝛿

∗ ◦ 𝜄Δ1,Γ,𝐴 = 𝜄Δ0,Γ,𝐴 ◦ 𝛿∗ : Sb(Δ1, Γ.𝐴) →
∑
𝛾∈Sb(Δ0,Γ) Tm(Δ0, 𝐴[𝛾])

Proof. Suppose 𝛾 ∈ Sb(Δ1, Γ.𝐴). Unfolding the solutions to Exercises 2.5 and 2.10,

(∑𝛿∗ 𝛿
∗) (𝜄Δ1,Γ,𝐴 (𝛾)) = (∑𝛿∗ 𝛿

∗) (p ◦ 𝛾, q [𝛾]) = ((p ◦ 𝛾) ◦ 𝛿, q [𝛾] [𝛿])
𝜄Δ0,Γ,𝐴 (𝛿∗(𝛾)) = 𝜄Δ0,Γ,𝐴 (𝛾 ◦ 𝛿) = (p ◦ (𝛾 ◦ 𝛿), q [𝛾 ◦ 𝛿])

which are equal by the functoriality of substitution. □

The terminology of “natural” comes from category theory, where 𝜄−,Γ,𝐴 is known as a
natural isomorphism, but we will prove and use naturality conditions without referring to
the general concept. One useful consequence of naturality is the following:
Exercise 2.12. Without unfolding the definition of 𝜄, show that the naturality of 𝜄 and the
fact that 𝜄Δ,Γ,𝐴 and 𝜄−1

Δ,Γ,𝐴 are inverses together imply that 𝜄−1 is natural, i.e., that

𝜄−1
Δ0,Γ,𝐴

◦∑𝛿∗ 𝛿
∗ = 𝛿∗ ◦ 𝜄−1

Δ1,Γ,𝐴
:
∑
𝛾∈Sb(Δ1,Γ) Tm(Δ1, 𝐴[𝛾]) → Sb(Δ0, Γ.𝐴)

Proof. Apply 𝜄−1
Δ0,Γ,𝐴

◦ − ◦ 𝜄−1
Δ1,Γ,𝐴

to both sides of the naturality equation for 𝜄 and cancel:

𝜄−1
Δ0,Γ,𝐴

◦∑𝛿∗ 𝛿
∗ ◦ 𝜄Δ1,Γ,𝐴 ◦ 𝜄−1

Δ1,Γ,𝐴
= 𝜄−1

Δ0,Γ,𝐴
◦ 𝜄Δ0,Γ,𝐴 ◦ 𝛿∗ ◦ 𝜄−1

Δ1,Γ,𝐴

𝜄−1
Δ0,Γ,𝐴

◦∑𝛿∗ 𝛿
∗ = 𝛿∗ ◦ 𝜄−1

Δ1,Γ,𝐴
□

Exercise 2.13. For categorically-minded readers: argue that 𝜄 is a natural isomorphism
in the standard sense, by rephrasing Exercises 2.10 and 2.11 in terms of categories and
functors.

Rather than defining context extension by the collection of rules in Section 2.3 and
then characterizing it in terms of 𝜄 after the fact, we can actually define it directly as “a
context Γ.𝐴 for which Sb(−, Γ.𝐴) is naturally isomorphic to

∑
𝛾∈Sb(−,Γ) Tm(−, 𝐴[𝛾]),” which

unfolds to all of the relevant rules.
In addition to its brevity, the true advantage of such characterizations is that they are

less likely to “miss” some important aspect of the definition. Zooming out, this definition
states that substitutions into Γ.𝐴 are dependent pairs of a substitution 𝛾 into Γ and a term
in 𝐴[𝛾], which is exactly the informal description we started with in Section 2.3.

With that in mind, our program for justifying the rules of type theory is as follows:

Slogan 2.4.4. A connective in type theory is given by (1) a natural type-forming operation and
(2) a natural isomorphism relating that type’s terms to judgmentally-determined structure.

(2025-05-02) Internalizing judgmental structure: Π,Σ, Eq,Unit 38

We must unfortunately remain vague here about the meaning of “judgmentally-
determined structure,” but it refers to sets constructed from the sorts Sb(Δ, Γ), Ty(Γ),
and Tm(Γ, 𝐴) using natural operations such as dependent products and dependent sums—
operations that are implicit in the meaning of inference rules. To make this more precise
requires a formal treatment of the algebra of judgments via logical frameworks.

In addition, although this slogan will make quick work of the remainder of Section 2.4,
we will need to revise it in Sections 2.5 and 2.6.

Π-types The rules in Section 2.4.1 precisely capture the existence of an operation

ΠΓ : (∑𝐴∈Ty(Γ) Ty(Γ.𝐴)) → Ty(Γ)

natural in Γ (that is, one which commutes with substitution) along with the following
family of isomorphisms also natural in Γ:

𝜄Γ,𝐴,𝐵 : Tm(Γ,Π(𝐴, 𝐵)) � Tm(Γ.𝐴, 𝐵)

The first point expresses the formation rule and Π(𝐴, 𝐵) [𝛾] = Π(𝐴[𝛾], 𝐵 [𝛾 .𝐴]). We
focus on the second point, which characterizes the remaining rules in Section 2.4.1.

The reverse map 𝜄−1
Γ,𝐴,𝐵 : Tm(Γ.𝐴, 𝐵) → Tm(Γ,Π(𝐴, 𝐵)) is the introduction rule, which

sends terms Γ.𝐴 ⊢ 𝑏 : 𝐵 to 𝜆 (𝑏). The forward map is slightly more involved, but we can
guess that it should correspond to elimination. In fact it is application to a fresh variable,
or a combination of weakening and application—given Γ ⊢ 𝑓 : Π(𝐴, 𝐵), we weaken to
Γ.𝐴 ⊢ 𝑓 [p] : Π(𝐴, 𝐵) [p] and then apply to q, obtaining Γ.𝐴 ⊢ app(𝑓 [p], q) : 𝐵.

To complete this natural isomorphismwemust check that it is an isomorphism, and that
it is natural. We begin with the isomorphism: for all ⊢ Γ cx, Γ ⊢ 𝐴 type, and Γ.𝐴 ⊢ 𝐵 type,

𝜄−1
Γ,𝐴,𝐵 (𝜄Γ,𝐴,𝐵 (𝑓)) = 𝑓
𝜄Γ,𝐴,𝐵 (𝜄−1

Γ,𝐴,𝐵 (𝑏)) = 𝑏

(2025-05-02) Internalizing judgmental structure: Π,Σ, Eq,Unit 39

Unfolding definitions, we see that this isomorphism boils down essentially to 𝛽 and 𝜂.

𝜄−1
Γ,𝐴,𝐵 (𝜄Γ,𝐴,𝐵 (𝑓))
= 𝜆 (app(𝑓 [p], q))
= 𝑓 by the 𝜂 rule

𝜄Γ,𝐴,𝐵 (𝜄−1
Γ,𝐴,𝐵 (𝑏))

= app(𝜆 (𝑏) [p], q)
= app(𝜆 (𝑏 [p.𝐴]), q) 𝜆 (−) commutes with substitution
= 𝑏 [p.𝐴 ◦ id.q] by the 𝛽 rule
= 𝑏 [p.q] by Exercise 2.14 below
= 𝑏 [id]
= 𝑏

Exercise 2.14. Using the definition of p.𝐴 from Exercise 2.4, prove the substitution
equality needed to complete the equational reasoning above.

As for the naturality of the isomorphisms 𝜄, as before we must first explain how to
relate the types of 𝜄Γ,𝐴,𝐵 and 𝜄Δ,𝐴[𝛾],𝐵 [𝛾 .𝐴] given a substitution Δ ⊢ 𝛾 : Γ. In this case, the
comparison functions are the following:

𝛾∗ : Tm(Γ,Π(𝐴, 𝐵)) → Tm(Δ,Π(𝐴[𝛾], 𝐵 [𝛾 .𝐴]))
𝛾 .𝐴∗ : Tm(Γ.𝐴, 𝐵) → Tm(Δ.𝐴[𝛾], 𝐵 [𝛾 .𝐴])

Naturality therefore states that “right then down” and “down then right” are equal
in the following diagram. (By the reader’s argument in Exercise 2.12, naturality of 𝜄
automatically implies the naturality of 𝜄−1.)

Tm(Γ,Π(𝐴, 𝐵))

Tm(Δ,Π(𝐴[𝛾], 𝐵 [𝛾 .𝐴]))

𝛾∗

Tm(Γ.𝐴, 𝐵)

Tm(Δ.𝐴[𝛾], 𝐵 [𝛾 .𝐴])

𝜄Γ,𝐴,𝐵

𝛾 .𝐴∗

𝜄Δ,𝐴[𝛾],𝐵 [𝛾 .𝐴]

(2025-05-02) Internalizing judgmental structure: Π,Σ, Eq,Unit 40

Fixing Γ ⊢ 𝑓 : Π(𝐴, 𝐵), we show 𝜄Γ,𝐴,𝐵 (𝑓) [𝛾 .𝐴] = 𝜄Δ,𝐴[𝛾],𝐵 [𝛾 .𝐴] (𝑓 [𝛾]) by computing:
𝜄Γ,𝐴,𝐵 (𝑓) [𝛾 .𝐴]
= app(𝑓 [p], q) [𝛾 .𝐴]
= app(𝑓 [p] [𝛾 .𝐴], q [𝛾 .𝐴]) app(−,−) commutes with substitution
= app(𝑓 [p ◦ 𝛾 .𝐴], q)
= app(𝑓 [𝛾 ◦ p], q)

𝜄Δ,𝐴[𝛾],𝐵 [𝛾 .𝐴] (𝑓 [𝛾])
= app(𝑓 [𝛾] [p], q)
= app(𝑓 [𝛾 ◦ p], q)

Thus all of the rules of Π-types can be summed up by a natural operation ΠΓ (formation
and its substitution law) along with a natural isomorphism 𝜄Γ,𝐴,𝐵 : Tm(Γ,Π(𝐴, 𝐵)) �
Tm(Γ.𝐴, 𝐵) where 𝜄−1 and 𝜄 are introduction and elimination, the round-trips are 𝛽 and 𝜂,
and naturality is the remaining substitution laws.

An alternative eliminator There is a strange asymmetry in the two maps 𝜄 and 𝜄−1

underlying our natural isomorphism: the latter is literally the introduction rule, but the
former combines elimination with weakening and the variable rule. It turns out that there
is an equivalent formulation of Π-elimination more faithful to our current perspective:

Γ ⊢ 𝑓 : Π(𝐴, 𝐵)
Γ.𝐴 ⊢ 𝜆−1(𝑓) : 𝐵

⇒

Such a presentation replaces the current app(−,−), 𝛽 , and 𝜂 rules with the above rule
along with new versions of 𝛽 and 𝜂 stating simply that 𝜆−1(𝜆 (𝑏)) = 𝑏 and 𝜆 (𝜆−1(𝑓)) = 𝑓
respectively. We recover ordinary function application via app(𝑓 , 𝑎) := 𝜆−1(𝑓) [id.𝑎].

Although in practice our original formulation of function application is much more
useful than anti-𝜆, the latter is more semantically natural. A variant of this argument is
discussed by Gratzer et al. [Gra+22], because in the context of modal type theories one
often encounters elimination forms akin to 𝜆−1(−) and it can be far from obvious what
the corresponding app(−,−) operation would be.
Exercise 2.15. Verify the claim that 𝜆−1(−) and its 𝛽 and 𝜂 rules do in fact imply our
original elimination, 𝛽 , and 𝜂 rules.

2.4.3 Dependent sums

We now present dependent pair types, also known as dependent sums or Σ-types. In a
reversal of our discussion of Π-types, we will begin by defining dependent sums as an
internalization of judgmental structure before unfolding this into inference rules.

(2025-05-02) Internalizing judgmental structure: Π,Σ, Eq,Unit 41

The Σ type former behaves just like the Π type former: a natural family of types
indexed by pairs of a type 𝐴 and an 𝐴-indexed family of types 𝐵,

ΣΓ : (∑𝐴∈Ty(Γ) Ty(Γ.𝐴)) → Ty(Γ)

or in inference rule notation,

Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type
Γ ⊢ Σ(𝐴, 𝐵) type

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type
Δ ⊢ Σ(𝐴, 𝐵) [𝛾] = Σ(𝐴[𝛾], 𝐵 [𝛾 .𝐴]) type

(Recall that we write
∑
𝐴∈Ty(Γ) Ty(Γ.𝐴) for the indexed coproduct

∐
𝐴∈Ty(Γ) Ty(Γ.𝐴).)

Where Σ-types and Π-types differ is in their elements. Whereas Γ ⊢ Π(𝐴, 𝐵) type
internalizes terms with a free variable Γ.𝐴 ⊢ 𝑏 : 𝐵, the type Γ ⊢ Σ(𝐴, 𝐵) type internalizes
pairs of terms Γ ⊢ 𝑎 : 𝐴 and Γ ⊢ 𝑏 : 𝐵 [id.𝑎], naturally in Γ:

𝜄Γ,𝐴,𝐵 : Tm(Γ,Σ(𝐴, 𝐵)) � ∑
𝑎∈Tm(Γ,𝐴) Tm(Γ, 𝐵 [id.𝑎])

Remarkably, the above line completes our definition of dependent sum types, but in the
interest of the reader we will proceed to unfold this natural isomorphism into inference
rules in three stages. First, we will unfold the maps 𝜄Γ,𝐴,𝐵 and 𝜄−1

Γ,𝐴,𝐵 into three term formers;
second, we will unfold the two round-trip equations into a pair of equational rules; and
finally, we will unfold the naturality condition into three more equational rules.
Exercise 2.16. Just as in Exercise 2.8, show that using Σ-types we can define a non-
dependent pair type whose formation rule states that if Γ ⊢ 𝐴 type and Γ ⊢ 𝐵 type then
Γ ⊢ 𝐴 × 𝐵 type. Then define the introduction and elimination rules from Section 2.1 for
this encoding, and check that the 𝛽- and 𝜂-rules from Section 2.1 hold.

Remark 2.4.5. There is an unfortunate terminological collision between simple types and
dependent types: although Π-types seem to generalize simple functions, they are called
dependent products, and although Σ-types seem to generalize simple products because their
elements are pairs, they are called dependent sums.

The reason is twofold: first, the elements of indexed coproducts (known to programmers
as “tagged unions”) are actually pairs (“pairs of a tag bit with data”), whereas the elements
of indexed products (“𝑛-ary pairs”) are actually functions (sending 𝑛 to the 𝑛-th projection).
Secondly, both concepts generalize simple finite products: the product 𝐵1 × 𝐵2 is both an
indexed product

∏
𝑎∈{1,2} 𝐵𝑎 and an indexed coproduct of a constant family

∑
_∈𝐵1 𝐵2. ⋄

To unpack the natural isomorphism, we note first that the forward direction 𝜄Γ,𝐴,𝐵 :
Tm(Γ,Σ(𝐴, 𝐵)) → ∑

𝑎∈Tm(Γ,𝐴) Tm(Γ, 𝐵 [id.𝑎]) sends terms Γ ⊢ 𝑝 : Σ(𝐴, 𝐵) to (meta-)pairs

(2025-05-02) Internalizing judgmental structure: Π,Σ, Eq,Unit 42

of terms, so we can unfold this map into a pair of term formers with the same premises:

Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑝 : Σ(𝐴, 𝐵)
Γ ⊢ fst(𝑝) : 𝐴

Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑝 : Σ(𝐴, 𝐵)
Γ ⊢ snd(𝑝) : 𝐵 [id.fst(𝑝)]

The map 𝜄−1
Γ,𝐴,𝐵 :

∑
𝑎∈Tm(Γ,𝐴) Tm(Γ, 𝐵 [id.𝑎]) → Tm(Γ,Σ(𝐴, 𝐵)) sends a pair of terms to

a single term of type Σ(𝐴, 𝐵), so we unfold it into one term former with two term premises:

Γ ⊢ 𝑎 : 𝐴 Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑏 : 𝐵 [id.𝑎]
Γ ⊢ pair(𝑎, 𝑏) : Σ(𝐴, 𝐵)

Unlike in our judgmental analysis of dependent products, the standard introduction
and elimination forms of dependent sums correspond exactly to the maps 𝜄−1 and 𝜄, so the
two round-trip equations are exactly the standard 𝛽 and 𝜂 principles:

Γ ⊢ 𝑎 : 𝐴 Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑏 : 𝐵 [id.𝑎]
Γ ⊢ fst(pair(𝑎, 𝑏)) = 𝑎 : 𝐴 Γ ⊢ snd(pair(𝑎, 𝑏)) = 𝑏 : 𝐵 [id.𝑎]

Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑝 : Σ(𝐴, 𝐵)
Γ ⊢ 𝑝 = pair(fst(𝑝), snd(𝑝)) : Σ(𝐴, 𝐵)

It remains to unpack the naturality of 𝜄, which as we have seen previously, encodes
the fact that the term formers commute with substitution. The reader may be surprised to
learn, however, that the substitution rule for pair(−,−) actually implies the substitution
rules for fst(−) and snd(−) in the presence of 𝛽 and 𝜂. (Categorically, this is the fact that
naturality of 𝜄−1 implies naturality of 𝜄, as we saw in Exercise 2.12.) Given the rule

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : 𝐴 Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑏 : 𝐵 [id.𝑎]
Δ ⊢ pair(𝑎, 𝑏) [𝛾] = pair(𝑎[𝛾], 𝑏 [𝛾]) : Σ(𝐴, 𝐵) [𝛾]

fix a substitution Δ ⊢ 𝛾 : Γ and a term Γ ⊢ 𝑝 : Σ(𝐴, 𝐵). Then

fst(𝑝) [𝛾]
= fst(pair(fst(𝑝) [𝛾], snd(𝑝) [𝛾])) by the 𝛽 rule
= fst(pair(fst(𝑝), snd(𝑝)) [𝛾]) by the above rule
= fst(𝑝 [𝛾]) by the 𝜂 rule

(2025-05-02) Internalizing judgmental structure: Π,Σ, Eq,Unit 43

and the calculation for snd(−) is identical. Nevertheless it is typical to include substitution
rules for all three term formers: there is nothing wrong with equating terms that are
already equal, and even in type theory, discretion can be the better part of valor.
Exercise 2.17. Check that the substitution rule for pair above is meta-well-typed, in
particular the second component 𝑏 [𝛾]. (Hint: use Exercise 2.3.)

Exercise 2.18. Show that the substitution rule for 𝜆−1(−) follows from the substitution
rule for 𝜆 (−) and the equations 𝜆 (𝜆−1(𝑓)) = 𝑓 and 𝜆−1(𝜆 (𝑏)) = 𝑏.

2.4.4 Extensional equality

We now turn to the simplest form of propositional equality, known as extensional equality
or Eq-types. As their name suggests, Eq-types internalize the term equality judgment.
They are defined as follows, naturally in Γ:

EqΓ : (∑𝐴∈Ty(Γ) Tm(Γ, 𝐴) × Tm(Γ, 𝐴)) → Ty(Γ)
𝜄Γ,𝐴,𝑎,𝑏 : Tm(Γ, Eq(𝐴, 𝑎, 𝑏)) � {★ | 𝑎 = 𝑏}

In other words, Eq(𝐴, 𝑎, 𝑏) is a type when Γ ⊢ 𝑎 : 𝐴 and Γ ⊢ 𝑏 : 𝐴, and has a unique
inhabitant exactly when the judgment Γ ⊢ 𝑎 = 𝑏 : 𝐴 holds (otherwise it is empty). The
inference rules for extensional equality are as follows:

Γ ⊢ 𝑎, 𝑏 : 𝐴
Γ ⊢ Eq(𝐴, 𝑎, 𝑏) type

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎, 𝑏 : 𝐴
Δ ⊢ Eq(𝐴, 𝑎, 𝑏) [𝛾] = Eq(𝐴[𝛾], 𝑎[𝛾], 𝑏 [𝛾]) type

Γ ⊢ 𝑎 : 𝐴
Γ ⊢ refl : Eq(𝐴, 𝑎, 𝑎)

Γ ⊢ 𝑎, 𝑏 : 𝐴 Γ ⊢ 𝑝 : Eq(𝐴, 𝑎, 𝑏)
Γ ⊢ 𝑎 = 𝑏 : 𝐴

Γ ⊢ 𝑎, 𝑏 : 𝐴 Γ ⊢ 𝑝 : Eq(𝐴, 𝑎, 𝑏)
Γ ⊢ 𝑝 = refl : Eq(𝐴, 𝑎, 𝑏)

The penultimate rule is known as equality reflection, and it is somewhat unusual because
it concludes an arbitrary term equality judgment from the existence of a term. This rule is
quite strong in light of the facts that (1) judgmentally equal terms can be silently exchanged
at any location in any judgment, (2) the equality proof Γ ⊢ 𝑝 : Eq(𝐴, 𝑎, 𝑏) is not recorded
in those exchanges, and (3) 𝑝 could even be a variable, e.g., in context Γ.Eq(𝐴, 𝑎, 𝑏).

Type theories with an extensional equality type are called extensional. The conse-
quences of equality reflection will be the primary motivation behind the latter half of this
book, but for now we simply note that these rules are a very natural axiomatization of an
equality type as the internalization of equality.

(2025-05-02) Inductive types: Void, Bool, Nat 44

Exercise 2.19. Explain how these inference rules correspond to our EqΓ and 𝜄Γ,𝐴,𝑎,𝑏 defini-
tion.

Exercise 2.20. Where are the substitution rules for term formers? (Hint: there are two
equivalent answers, in terms of either the natural isomorphism or the inference rules.)

2.4.5 The unit type

We conclude our tour of the best-behaved connectives of type theory with the simplest
connective of all: the unit type.

UnitΓ ∈ Ty(Γ)
𝜄Γ : Tm(Γ,Unit) � {★}

This unfolds to the following rules:

⊢ Γ cx

Γ ⊢ Unit type

Δ ⊢ 𝛾 : Γ
Δ ⊢ Unit [𝛾] = Unit type

⊢ Γ cx

Γ ⊢ tt : Unit

Γ ⊢ 𝑎 : Unit

Γ ⊢ 𝑎 = tt : Unit

Exercise 2.21. Where is the elimination principle? Where are the substitution rules for
term formers? (Hint: what would these say in terms of the natural isomorphism?)

2.5 Inductive types: Void, Bool, Nat
We now turn our attention to inductive types, data types with induction principles. Unlike
the type formers in Section 2.4, which are typically “hard coded” into type theories,8
inductive types are usually specified by users as extensions to the theory via inductive
schemas [Dyb94; CP90a] (essentially, data type declarations), or in theoretical contexts,
encoded as well-founded trees known as W-types [Mar82; Mar84b]. These schemas can be
extended ad infinitum to account for increasingly complex forms of inductive definition,
including indexed induction [Dyb94], mutual induction, induction-recursion [Dyb00],
induction-induction [NS12], quotient induction-induction [KKA19], and so forth.

For simplicity we restrict our attention to three examples—the empty type, booleans,
and natural numbers—that illustrate the basic issues that arise when specifying inductive
types in type theory. Unfortunately, we will immediately need to refine Slogan 2.4.4.

8This is an oversimplification: in practice, Σ and Unit are usually obtained as special cases of dependent
record types [Pol02], 𝑛-ary Σ-types with named projections.

(2025-05-02) Inductive types: Void, Bool, Nat 45

2.5.1 The empty type

We begin with the empty type Void, a “type with no elements.” Logically, this type
corresponds to the false proposition, so there should be no way to construct an element of
Void (a proof of false) except by deriving a contradiction from local hypotheses. The type
former is straightforward: naturally in Γ, a constant VoidΓ ∈ Ty(Γ), or

⊢ Γ cx

Γ ⊢ Void type

Δ ⊢ 𝛾 : Γ
Δ ⊢ Void [𝛾] = Void type

As for the elements of Void, an obvious guess is to say that the elements of the empty
type at each context are the empty set, i.e., naturally in Γ,

𝜄Γ : Tm(Γ,Void) � ∅ (!?)

This cannot be right, however, because Void does have elements in some contexts—the
variable rule alone forces q ∈ Tm(Γ.Void,Void), and other type formers can populate
Void even further, e.g., app(q, tt) ∈ Tm(Γ.Π(Unit,Void),Void).

Interlude: mapping in, mapping out To see how to proceed, let us take a brief sojourn
into set theory. There are several ways to define the product𝐴×𝐵 of two sets, for example
by constructing it as the set of ordered pairs {(𝑎, 𝑏) | 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵} or even more
explicitly as the set {{{𝑎}, {𝑎, 𝑏}} | 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵}. However, in addition to these explicit
constructions, it is also possible to characterize the set 𝐴 × 𝐵 up to isomorphism, as the
set such that every function 𝑋 → 𝐴 × 𝐵 is determined by a pair of functions 𝑋 → 𝐴 and
𝑋 → 𝐵 and vice versa.

Similarly, we can characterize one-element sets 1 as those sets for which there is
exactly one function 𝑋 → 1 for all sets 𝑋 . In fact, both of these characterizations are
set-theoretical analogues of Slogan 2.4.4, where 𝑋 plays the role of the context Γ.

After some thought, we realize that the analogous characterization of the zero-element
(empty) set 0 is significantly more awkward: there is exactly one function 𝑋 → 0 when
𝑋 is itself empty, and no functions 𝑋 → 0 when 𝑋 is non-empty. As it turns out, in this
case it is more elegant to consider the functions out of 0 rather than the functions into it: a
zero-element set 0 has exactly one function 0 → 𝑋 for all sets 𝑋 .
Exercise 2.22. Suppose that 𝑍 is a set such that for all sets 𝑋 there is exactly one function
𝑍 → 𝑋 . Show that 𝑍 is isomorphic to the empty set.

Void revisited Recall from Section 2.3 that terms correspond to “dependent functions
from Γ to𝐴.” In Section 2.4 we considered only type formers𝑇 that are easily characterized
in terms of the maps into that type former from an arbitrary context Γ: in each case we
defined maps/terms Tm(Γ,𝑇) as naturally isomorphic to the data of 𝑇 ’s introduction rule.

(2025-05-02) Inductive types: Void, Bool, Nat 46

To characterize the maps out of Void into an arbitrary type 𝐴, we cannot leave the
context fully unconstrained; instead, we must characterize the maps/terms Tm(Γ.Void, 𝐴)
for all ⊢ Γ cx and Γ.Void ⊢ 𝐴 type, recalling that—by the rules for Π-types—these are
equivalently the dependent functions out of Void in context Γ, i.e., Γ ⊢ 𝑓 : Π(Void, 𝐴).

Advanced Remark 2.5.1. Writing C for the category of contexts and substitutions, terms
Tm(Γ, 𝐴) are indeed “dependent morphisms” from Γ to 𝐴; more precisely, by Exercise 2.2,
they are ordinary morphisms Γ → Γ.𝐴 in the slice category C/Γ. Thus, for right adjoint
type operations 𝐺—those in Section 2.4—it is easy to describe Tm(Γ,𝐺 (𝐴)) directly.

For left adjoint type operations 𝐹 , the situation is more fraught. Type theory is fun-
damentally “right-biased” because its judgments concern maps from arbitrary contexts
into fixed types, but not vice versa. Thus to discuss dependent morphisms 𝐹 (𝑋) → 𝐴

we must speak about elements of Tm(Γ.𝐹 (𝑋), 𝐴), quantifying not only over the ambient
context/slice Γ but also the type 𝐴 into which we are mapping.

Confusingly, we encountered no issues defining Σ-types, despite dependent sum being
the left adjoint to pullback. This is because Σ is also the right adjoint to the functor
C → C→ sending 𝐴 ↦→ id𝐴, and it is the latter perspective that we axiomatize. The left
adjoint axiomatization makes an appearance in some systems—particularly in the context
of programming languages with existential types—phrased as let (𝑎, 𝑏) = 𝑝 in 𝑥 . ⋄

Putting all these ideas together, we will define Void as the type for which, naturally in
Γ, there is exactly one dependent function from Void to 𝐴 for any dependent type 𝐴:

𝜌Γ,𝐴 : Tm(Γ.Void, 𝐴) � {★}

To sum up the difference between the incorrect definition Tm(Γ,Void) � ∅ and the
correct one above, the former states that Tm(Γ,Void) is the smallest set (in the sense of
mapping into all other sets), whereas the latter states that in any context, Void is the
smallest type. More poetically, at the level of judgments we can see that Void is not always
empty, but at the level of types, every type “believes” that Void is empty.

Unwinding 𝜌Γ,𝐴 into inference rules, we obtain:

⊢ Γ cx Γ.Void ⊢ 𝐴 type

Γ.Void ⊢ absurd′ : 𝐴
✎

⊢ Γ cx Γ.Void ⊢ 𝑎 : 𝐴
Γ.Void ⊢ absurd′ = 𝑎 : 𝐴

✎

We have marked these rules with ✎ to indicate that they are provisional; in practice, as
we previously discussed for 𝜆−1(−), it is awkward to use rules whose conclusions constrain
the shape of their context. But just as with app(−,−), it is more standard to present an

(2025-05-02) Inductive types: Void, Bool, Nat 47

equivalent axiomatization absurd(𝑏) := absurd′[id.𝑏] that “builds in a cut”:

Γ ⊢ 𝑏 : Void Γ.Void ⊢ 𝐴 type

Γ ⊢ absurd(𝑏) : 𝐴[id.𝑏]
Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑏 : Void Γ.Void ⊢ 𝐴 type

Δ ⊢ absurd(𝑏) [𝛾] = absurd(𝑏 [𝛾]) : 𝐴[𝛾 .𝑏 [𝛾]]

Γ ⊢ 𝑏 : Void Γ.Void ⊢ 𝑎 : 𝐴
Γ ⊢ absurd(𝑏) = 𝑎[id.𝑏] : 𝐴[id.𝑏]

✎

The term absurd(−) is known as the induction principle for Void, in the sense that it
allows users to prove a theorem for all terms of type Void by proving that it holds for each
constructor of Void, of which there are none.

In light of our definition of Void, we update Slogan 2.4.4 as follows:

Slogan 2.5.2. A connective in type theory is given by (1) a natural type-forming operation Υ
and (2) one of the following:

2.1. a natural isomorphism relating Tm(Γ, Υ) to judgmentally-determined structure, or

2.2. for all Γ.Υ ⊢ 𝐴 type, a natural isomorphism relating Tm(Γ.Υ, 𝐴) to judgmentally-
determined structure.

The final rule for absurd(−), the 𝜂 principle, implies a very strong equality principle
for terms in an inconsistent context (Exercise 2.26) which we derive in the following
sequence of exercises. For this reason, and because this rule is derivable in the presence of
extensional equality (Section 2.5.4), we consider it provisional ✎ for the time being.
Exercise 2.23. Show that if Γ ⊢ 𝑏0, 𝑏1 : Void then Γ ⊢ 𝑏0 = 𝑏1 : Void.

Exercise 2.24. Fixing Δ ⊢ 𝛾 : Γ, prove that there is at most one substitution Δ ⊢ 𝛾 : Γ.Void
satisfying p ◦ 𝛾 = 𝛾 .

Exercise 2.25. Let Γ.Void ⊢ 𝐴 type and Γ ⊢ 𝑎 : 𝐴[id.𝑏]. Show that Γ.Void ⊢ 𝐴[id.𝑏 ◦ p] =
𝐴 type, and therefore that Γ.Void ⊢ 𝑎[p] : 𝐴.

Exercise 2.26. Derive the following rule, using the previous exercise as well as the 𝜂 rule.

Γ ⊢ 𝑏 : Void Γ.Void ⊢ 𝐴 type Γ ⊢ 𝑎 : 𝐴[id.𝑏]
Γ ⊢ 𝑎 = absurd(𝑏) : 𝐴[id.𝑏]

⇒

(2025-05-02) Inductive types: Void, Bool, Nat 48

Exercise 2.27. We have included the rule Δ ⊢ absurd(𝑏) [𝛾] = absurd(𝑏 [𝛾]) : 𝐴[𝛾 .𝑏 [𝛾]]
but it is in fact derivable using the 𝜂 rule. Prove this.

Add an exercise about the mapping-out formulation of Σ-types, following Re-
mark 2.5.1.

2.5.2 Booleans

We turn now to the booleans Bool, a “type with two elements.” Once again the type former
is straightforward: BoolΓ ∈ Ty(Γ) naturally in Γ, or

Γ ⊢ Bool type

Δ ⊢ 𝛾 : Γ
Δ ⊢ Bool [𝛾] = Bool type

It is also clear that we want two constructors of Bool, true and false, natural in Γ:

Γ ⊢ true : Bool Γ ⊢ false : Bool

Δ ⊢ 𝛾 : Γ
Δ ⊢ true = true [𝛾] : Bool

Δ ⊢ 𝛾 : Γ
Δ ⊢ false = false [𝛾] : Bool

Keeping Slogan 2.5.2 in mind, there are two possible ways for us to complete our ax-
iomatization of Bool. As with Void it is tempting but incorrect to define 𝜄 : Tm(Γ,Bool) �
{★,★′}; although the natural transformation 𝜄−1 is equivalent to our rules for true and
false, 𝜄 does not account for variables of type Bool or other indeterminate booleans that
arise in non-empty contexts.9 Thus we must instead characterize maps out of Bool by
giving a family of sets naturally isomorphic to Tm(Γ.Bool, 𝐴).

So, what should terms Γ.Bool ⊢ 𝑎 : 𝐴 be? By substitution, such a term clearly
determines a pair of terms Γ ⊢ 𝑎[id.true] : 𝐴[id.true] and Γ ⊢ 𝑎[id.false] : 𝐴[id.false].
Conversely, if true and false are the “only” booleans, then such a pair of terms should
uniquely determine elements of Tm(Γ.Bool, 𝐴) in the sense that to map out of Bool, it
suffices to explain what to do on true and on false.

To formalize this idea, let us write ((id.true)∗, (id.false)∗) for the function which sends
𝑎 ∈ Tm(Γ.Bool, 𝐴) to the pair (𝑎[id.true], 𝑎[id.false]). We complete our specification of
Bool by asking for this map to be a natural isomorphism; thus, naturally in Γ, we have:

BoolΓ ∈ Ty(Γ)
trueΓ, falseΓ ∈ Tm(Γ,Bool)

((id.true)∗, (id.false)∗) : Tm(Γ.Bool, 𝐴) � Tm(Γ, 𝐴[id.true]) × Tm(Γ, 𝐴[id.false])
9Even if variables 𝑥 : Bool stand for one of true or false, 𝑥 itself must be an indeterminate boolean

equal to neither constructor; otherwise the identity 𝜆𝑥 .𝑥 : Bool → Bool would be a constant function.

(2025-05-02) Inductive types: Void, Bool, Nat 49

This definition is remarkable in several ways. For the first time we are asking not only
for the existence of some natural isomorphism, but for a particular map to be a natural
isomorphism; and because this map is defined in terms of true and false, these must be
asserted prior to the natural isomorphism itself. We update our slogan accordingly:

Slogan 2.5.3. A connective in type theory is given by (1) a natural type-forming operation Υ
and (2) one of the following:

2.1. a natural isomorphism relating Tm(Γ, Υ) to judgmentally-determined structure, or

2.2. a collection of natural term constructors for Υ which, for all Γ.Υ ⊢ 𝐴 type, determine a
natural isomorphism relating Tm(Γ.Υ, 𝐴) to judgmentally-determined structure.

In the case of Void we simply had no term constructors to specify, and because there
is at most one (natural) isomorphism between anything and {★}, it was unnecessary for
us to specify the underlying map. In general, however, we emphasize that it is essential to
specify the map; this is what ensures that when we define a function “by cases” on true
and false, applying it to true or false recovers the specified case and not something else.
On the other hand, because we have specified the underlying map, it being an isomorphism
is a property rather than additional structure: there is at most one possible inverse.

Zooming out, however, our definition of Bool has a similar effect to our definition of
Void from Section 2.5.1: Tm(Γ,Bool) is not the set {true, false} at the level of judgments,
but every type “believes” that it is. This is the role of type-theoretic induction principles.

Advanced Remark 2.5.4. From the categorical perspective, option 2.2 in Slogan 2.5.3
asserts that the inclusion map of Υ’s constructors into Υ’s terms is left orthogonal to
all types. Maps which are left orthogonal to a class of objects and whose codomain
belongs to that class are known as fibrant replacements; in this sense, we have defined
Tm(−,Void) and Tm(−,Bool) as fibrant replacements of the constantly zero- and two-
element presheaves. This perspective is crucial to early work in homotopy type theory
[AW09] and the formulation of the intensional identity type in natural models [Awo18]. ⋄

It remains to unfold our natural isomorphism into inference rules. We do not need any
additional rules for the forward map, which is substitution by id.true and id.false. As the

(2025-05-02) Inductive types: Void, Bool, Nat 50

reader may have already guessed, the backward map is essentially10 dependent if :

Γ.Bool ⊢ 𝐴 type Γ ⊢ 𝑎𝑡 : 𝐴[id.true] Γ ⊢ 𝑎 𝑓 : 𝐴[id.false] Γ ⊢ 𝑏 : Bool

Γ ⊢ if (𝑎𝑡 , 𝑎 𝑓 , 𝑏) : 𝐴[id.𝑏]

Δ ⊢ 𝛾 : Γ
Γ.Bool ⊢ 𝐴 type Γ ⊢ 𝑎𝑡 : 𝐴[id.true] Γ ⊢ 𝑎 𝑓 : 𝐴[id.false] Γ ⊢ 𝑏 : Bool

Δ ⊢ if (𝑎𝑡 , 𝑎 𝑓 , 𝑏) [𝛾] = if (𝑎𝑡 [𝛾], 𝑎 𝑓 [𝛾], 𝑏 [𝛾]) : 𝐴[𝛾 .𝑏 [𝛾]]

The fact that if is an inverse to ((id.true)∗, (id.false)∗) expresses the 𝛽 and 𝜂 laws:

Γ.Bool ⊢ 𝐴 type Γ ⊢ 𝑎𝑡 : 𝐴[id.true] Γ ⊢ 𝑎 𝑓 : 𝐴[id.false]
Γ ⊢ if (𝑎𝑡 , 𝑎 𝑓 , true) = 𝑎𝑡 : 𝐴[id.true] Γ ⊢ if (𝑎𝑡 , 𝑎 𝑓 , false) = 𝑎 𝑓 : 𝐴[id.false]

Γ.Bool ⊢ 𝐴 type Γ.Bool ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑏 : Bool

Γ ⊢ if (𝑎[id.true], 𝑎[id.false], 𝑏) = 𝑎[id.𝑏] : 𝐴[id.𝑏]
✎

The 𝛽 laws—the first two equations—are perhaps more familiar than the 𝜂 law, which
effectively asserts that any two terms dependent on Bool are equal if (and only if) they
are equal on true and false. (The 𝜂 rule is sometimes decomposed into a “local expansion”
and a collection of “commuting conversions.”) Although semantically justified, it is typical
to omit judgmental 𝜂 laws for all inductive types because they are not syntax-directed
and thus challenging to implement, and because they are derivable in the presence of
extensional equality (Section 2.5.4).
Exercise 2.28. Give rules axiomatizing the boolean analogue of absurd′, and prove that
these rules are interderivable with our rules for if (𝑎𝑡 , 𝑎 𝑓 , 𝑏).

2.5.3 Natural numbers

Our final example of an inductive type is the type of natural numbers Nat, the “least type
closed under zero : Nat and suc(−) : Nat → Nat.” The natural numbers more or less fit
the same pattern as Void and Bool, but the recursive nature of suc(−) complicates the

10The inverse directly lands in Γ.Bool and not Γ, but as with absurd′ (Section 2.5.1) we adopt a more
standard presentation in which all conclusions have a generic context; see Exercise 2.28.

(2025-05-02) Inductive types: Void, Bool, Nat 51

situation significantly. The formation and introduction rules remain straightforward:

Γ ⊢ Nat type Γ ⊢ zero : Nat

Γ ⊢ 𝑛 : Nat

Γ ⊢ suc(𝑛) : Nat

Δ ⊢ 𝛾 : Γ
Δ ⊢ Nat [𝛾] = Nat type

Δ ⊢ 𝛾 : Γ
Δ ⊢ zero [𝛾] = zero : Nat

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑛 : Nat

Γ ⊢ suc(𝑛) [𝛾] = suc(𝑛[𝛾]) : Nat

Following the pattern we established with Bool, we might ask for maps out of Nat to
be determined by their behavior on zero and suc(−), i.e., for the two substitutions

(id.zero)∗ : Tm(Γ.Nat, 𝐴) → Tm(Γ, 𝐴[id.zero])
(p.suc(q))∗ : Tm(Γ.Nat, 𝐴) → Tm(Γ.Nat, 𝐴[p.suc(q)])

to determine, for every Γ.Nat ⊢ 𝐴 type, a natural isomorphism

((id.zero)∗, (p.suc(q))∗) :
Tm(Γ.Nat, 𝐴) � Tm(Γ, 𝐴[id.zero]) × Tm(Γ.Nat, 𝐴[p.suc(q)]) (!?)

This turns out not to be the correct definition, but first, note that the first substitution
moves us from Γ.Nat to Γ (analogously to Bool) whereas the second substitution moves us
from Γ.Nat also to Γ.Nat; this is because the suc(−) constructor has type “Nat → Nat,” so
the condition of “being determined by one’s behavior on suc(𝑛) : Nat” is properly stated
relative to a variable 𝑛 : Nat. Put more simply, if the argument of suc(−) was of type 𝑋
rather than Nat, then the latter substitution would be Γ.𝑋 ⊢ p.suc(q) : Γ.Nat.

But given that suc(−) is recursive—taking Nat to Nat—we now for the first time are
defining a judgment by a natural isomorphism whose right-hand side also has the very
same judgment we are trying to define, namely Tm(Γ.Nat, . . .), i.e., terms in context Γ.Nat.
This natural isomorphism is therefore not so much a definition of its left-hand side as it
is an equation that the left-hand side must satisfy—in principle, this equation may have
many different solutions for Tm(Γ.Nat, 𝐴), or no solutions at all.

Interlude: initial algebras This equation asserts in essence that the natural numbers
are a set 𝑁 satisfying the isomorphism 𝑁 � {★} + 𝑁 ,11 where the reverse map equips 𝑁

11Why? In algebraic notation and ignoring dependency, the equation states that 𝐴Γ×𝑁 � 𝐴Γ × 𝐴Γ×𝑁 ,
which simplifies to (Γ × 𝑁) � Γ + (Γ × 𝑁) and thus 𝑁 � 1 + 𝑁 .

(2025-05-02) Inductive types: Void, Bool, Nat 52

with a choice of “implementations” of zero ∈ 𝑁 and suc(−) : 𝑁 → 𝑁 . The set of natural
numbers N with zero := 0 and suc(𝑛) := 𝑛 + 1 are a solution, but there are infinitely many
other solutions as well, such as N + {∞} with zero := 0, suc(𝑛) := 𝑛 + 1, and suc(∞) := ∞.

Nevertheless one might imagine that (N, 0,− + 1) is a distinguished solution in some
way, and indeed it is the “least” set𝑁 with a point 𝑧 ∈ 𝑁 and endofunction 𝑠 : 𝑁 → 𝑁—here
we are dropping the requirement of (𝑧, 𝑠) being an isomorphism—in the sense that for any
(𝑁, 𝑧, 𝑠) there is a unique function 𝑓 : N→ 𝑁 with 𝑓 (0) = 𝑧 and 𝑓 (𝑛 + 1) = 𝑠 (𝑓 (𝑛)). Such
triples (𝑁, 𝑧, 𝑠) are known as algebras for the signature 𝑁 ↦→ 1 + 𝑁 , structure-preserving
functions between algebras are known as algebra homomorphisms, and algebras with the
above minimality property are initial algebras.

The above definitions extend straightforwardly to dependent algebras and homo-
morphisms: given an ordinary algebra (𝑁, 𝑧, 𝑠), a displayed algebra over (𝑁, 𝑧, 𝑠) is a
triple of an 𝑁 -indexed family of sets {�̃�𝑛}𝑛∈𝑁 , an element 𝑧 ∈ �̃�𝑧 , and a function
𝑠 : (𝑛 : 𝑁) → �̃�𝑛 → �̃�𝑠 (𝑛) [KKA19]. Given any displayed algebra (�̃� , 𝑧, 𝑠) over the natural
number algebra (N, 0,− + 1), there is once again a unique function 𝑓 : (𝑛 : N) → �̃�𝑛 with
𝑓 (0) = 𝑧 and 𝑓 (𝑛 + 1) = 𝑠 (𝑛, 𝑓 (𝑛)). The reader is likely familiar with the special case of
displayed algebras over N valued in propositions rather than sets:

∀𝑃 : N→ Prop. 𝑃 (0) =⇒ (∀𝑛.𝑃 (𝑛) =⇒ 𝑃 (𝑛 + 1)) =⇒ ∀𝑛.𝑃 (𝑛)

Advanced Remark 2.5.5. The data of a displayed algebra over (𝑁, 𝑧, 𝑠) is equivalent to
the data of an algebra homomorphism into (𝑁, 𝑧, 𝑠), where the forward direction of this
equivalence sends the family {�̃�𝑛}𝑛∈𝑁 to the first projection (∑𝑛∈𝑁 �̃�𝑛) → 𝑁 . A displayed
algebra over the natural number algebra is thus a homomorphism �̃� → N; the initiality of
N implies this map has a unique section homomorphism, which unfolds to the dependent
universal property stated above. ⋄

Natural numbers revisited Coming back to our specification of Nat, our formation and
introduction rules axiomatize an algebra (Nat, zero, suc(−)) for the signature 𝑁 ↦→ 1 + 𝑁 ,
but our proposed Bool-style natural isomorphism does not imply that this algebra is initial.
The solution is to simply axiomatize that any displayed algebra over (Nat, zero, suc(−))
admits a unique displayed algebra homomorphism from (Nat, zero, suc(−)).

Unwinding definitions, we ask that naturally in Γ, and for any 𝐴 ∈ Ty(Γ.Nat), 𝑎𝑧 ∈
Tm(Γ, 𝐴[id.zero]), and 𝑎𝑠 ∈ Tm(Γ.Nat.𝐴,𝐴[p2.suc(q [p])]), we have an isomorphism:

𝜌Γ,𝐴,𝑎𝑧 ,𝑎𝑠 : {𝑎 ∈ Tm(Γ.Nat, 𝐴) | 𝑎𝑧 = 𝑎[id.zero] ∧ 𝑎𝑠 [p.q.𝑎] = 𝑎[p.suc(q)]} � {★}

The type of 𝑎𝑠 is easier to understand with named variables: it is a term of type 𝐴(suc(𝑛))
in context Γ, 𝑛 : Nat, 𝑎 : 𝐴(𝑛).

(2025-05-02) Inductive types: Void, Bool, Nat 53

Remark 2.5.6. This is the third time we have defined a connective in terms of a natural
isomorphism with {★}. In Section 2.4.5, we used such an isomorphism to assert that Unit
has a unique element in every context; in Section 2.5.1, we asserted dually that every
dependent type over Void admits a unique dependent function from Void. The present
definition is analogous to the latter, but restricted to algebras: every displayed algebra
over Nat admits a unique displayed algebra homomorphism from Nat. ⋄

Advanced Remark 2.5.7. In light of Remark 2.5.4 and Remark 2.5.6, we have defined Nat
as the fibrant replacement of the initial object in the category of (1 + −)-algebras. ⋄

In rule form, the reverse direction of the natural isomorphism states that any displayed
algebra (𝐴, 𝑎𝑧, 𝑎𝑠) over Nat gives rise to a map out of Nat,

Γ ⊢ 𝑛 : Nat
Γ.Nat ⊢ 𝐴 type Γ ⊢ 𝑎𝑧 : 𝐴[id.zero] Γ.Nat.𝐴 ⊢ 𝑎𝑠 : 𝐴[p2.suc(q [p])]

Γ ⊢ rec(𝑎𝑧, 𝑎𝑠, 𝑛) : 𝐴[id.𝑛]
which commutes with substitution,

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑛 : Nat
Γ.Nat ⊢ 𝐴 type Γ ⊢ 𝑎𝑧 : 𝐴[id.zero] Γ.Nat.𝐴 ⊢ 𝑎𝑠 : 𝐴[p2.suc(q [p])]

Δ ⊢ rec(𝑎𝑧, 𝑎𝑠, 𝑛) [𝛾] = rec(𝑎𝑧 [𝛾], 𝑎𝑠 [𝛾 .Nat.𝐴], 𝑛[𝛾]) : 𝐴[𝛾 .𝑛[𝛾]]
and is a displayed algebra homomorphism, i.e., sends zero to 𝑎𝑧 and suc(𝑛) to 𝑎𝑠 (𝑛, rec(𝑛)):

Γ.Nat ⊢ 𝐴 type Γ ⊢ 𝑎𝑧 : 𝐴[id.zero] Γ.Nat.𝐴 ⊢ 𝑎𝑠 : 𝐴[p2.suc(q [p])]
Γ ⊢ rec(𝑎𝑧, 𝑎𝑠, zero) = 𝑎𝑧 : 𝐴[id.zero]

Γ ⊢ 𝑛 : Nat
Γ.Nat ⊢ 𝐴 type Γ ⊢ 𝑎𝑧 : 𝐴[id.zero] Γ.Nat.𝐴 ⊢ 𝑎𝑠 : 𝐴[p2.suc(q [p])]

Γ ⊢ rec(𝑎𝑧, 𝑎𝑠, suc(𝑛)) = 𝑎𝑠 [id.𝑛.rec(𝑎𝑧, 𝑎𝑠, 𝑛)] : 𝐴[id.suc(𝑛)]
Finally, the 𝜂 rule of Nat, which is again typically omitted, expresses that there is

exactly one displayed algebra homomorphism from Nat to (𝐴, 𝑎𝑧, 𝑎𝑠): if Γ.Nat ⊢ 𝑎 : 𝐴 is a
term that sends zero to 𝑎𝑧 and suc(𝑛) to 𝑎𝑠 (𝑛, 𝑎[id.𝑛]), then it is equal to rec(𝑎𝑧, 𝑎𝑠, q).

Γ.Nat ⊢ 𝐴 type Γ.Nat ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑛 : Nat
Γ ⊢ 𝑎𝑧 : 𝐴[id.zero] Γ ⊢ 𝑎𝑧 = 𝑎[id.zero] : 𝐴[id.zero]

Γ.Nat.𝐴 ⊢ 𝑎𝑠 : 𝐴[p2.suc(q [p])] Γ.Nat ⊢ 𝑎𝑠 [p.q.𝑎] = 𝑎[p.suc(q)] : 𝐴[p.suc(q)]
Γ ⊢ rec(𝑎𝑧, 𝑎𝑠, 𝑛) = 𝑎[id.𝑛] : 𝐴[id.𝑛]

✎

(2025-05-02) Inductive types: Void, Bool, Nat 54

Exercise 2.29. Rewrite the first rec rule using named variables instead of p and q, and
convince yourself that it expresses a form of natural number induction.

Exercise 2.30. Define addition for Nat in terms of rec. We strongly recommend solving
Exercise 2.29 prior to this exercise in order to use standard named syntax.

Inductive types are initial algebras Our definition of Nat is more similar to our
definitions of Void and Bool than it may first appear. In fact, all three types are initial
algebras for different signatures, although the absence of recursive constructors in Void
and Bool allowed us to sidestep this machinery. The empty type Void is the initial algebra
for the signature 𝑋 ↦→ 0: a (displayed) 0-algebra is just a (dependent) type with no
additional data, so initiality asserts that any Γ.Void ⊢ 𝐴 type admits a unique displayed
algebra homomorphism—a dependent function with no additional conditions—from Void.

Likewise, (Bool, true, false) is the initial algebra for the signature 𝑋 ↦→ 1 + 1. A
displayed (1+ 1)-algebra over Bool is a type Γ.Bool ⊢ 𝐴 type equipped with two terms Γ ⊢
𝑎𝑡 : 𝐴[id.true] and Γ ⊢ 𝑎 𝑓 : 𝐴[id.false]; initiality states that for any such displayed algebra
there is a unique displayed algebra homomorphism (Bool, true, false) → (𝐴, 𝑎𝑡 , 𝑎 𝑓):

𝜌Γ,𝐴,𝑎𝑡 ,𝑎𝑓 : {𝑎 ∈ Tm(Γ.Bool, 𝐴) | 𝑎𝑡 = 𝑎[id.true] ∧ 𝑎 𝑓 = 𝑎[id.false]} � {★}
We refrain from restating Slogan 2.5.3 in terms of initial algebras, because the general

theory of displayed algebras and homomorphisms for a given signature is too significant a
detour for this book; we hope that the reader is convinced that a general pattern exists.
Exercise 2.31. In Section 2.5.2, our definition of Bool roughly asserted a natural isomor-
phism between 𝑎 ∈ Tm(Γ.Bool, 𝐴) and pairs of substituted terms (𝑎[id.true], 𝑎[id.false]).
Prove that this definition is equivalent to the 𝜌Γ,𝐴,𝑎𝑡 ,𝑎𝑓 characterization above.

2.5.4 Unicity via extensional equality

In this section we have defined the inductive types Void, Bool, and Nat by equipping
them with constructors and asserting that dependent maps out of them are judgmentally
uniquely determined by where they send those constructors. That is, a choice of where
to send the constructors determines a map via elimination, and any two maps out of an
inductive type are judgmentally equal if they agree on the constructors.

This unicity condition is incredibly strong. First of all, it implies the substitution rule
for eliminators, because e.g. if (𝑎𝑡 , 𝑎 𝑓 , q) [𝛾 .Bool] and if (𝑎𝑡 [𝛾], 𝑎 𝑓 [𝛾], q) agree on true and
false (see Exercise 2.27). More alarmingly, in the case of Void, it states that all terms in
contexts containing Void are equal to one another (see Exercise 2.26).

It turns out that these unicity principles—the 𝜂 rules of inductive types—are derivable
from the other rules of inductive types in the presence of equality reflection (Section 2.4.4),
the other suspiciously strong rule of extensional type theory. For instance:

(2025-05-02) Universes: U0,U1,U2, . . . 55

Theorem 2.5.8. The following rule (𝜂 for Void) can be derived from the other rules for Void
in conjunction with the rules for Eq.

Γ ⊢ 𝑏 : Void Γ.Void ⊢ 𝑎 : 𝐴
Γ ⊢ absurd(𝑏) = 𝑎[id.𝑏] : 𝐴[id.𝑏]

✎,⇒

Proof. Suppose Γ ⊢ 𝑏 : Void and Γ.Void ⊢ 𝑎 : 𝐴. By equality reflection (Section 2.4.4), it
suffices to exhibit an element of Eq(𝐴[id.𝑏], absurd(𝑏), 𝑎[id.𝑏]), which we obtain easily
by Void elimination:

Γ ⊢ absurd(𝑏) : Eq(𝐴[id.𝑏], absurd(𝑏), 𝑎[id.𝑏]) □

In Chapter 3 we will see that all of these suspicious rules are problematic from an
implementation perspective, leading us to replace extensional type theory with intensional
type theory (Chapter 4), which differs formally in only two ways: it replaces Eq-types with
a different equality type that does not admit equality reflection, and it deletes the 𝜂 rules
from Void, Bool, and Nat.

However, in light of the fact that the latter rules are derivable from the former, we—as
is conventional—simply omit the 𝜂 rules for inductive types from the official specification
of extensional type theory. (These rules were all marked as provisional ✎.) Note that this
does not apply to the 𝜂 rules for Π, Σ, or Unit, which remain in both type theories.

Semantically, deleting these 𝜂 rules relaxes the unique existence to simply existence.
An algebra which admits a (possibly non-unique) algebra homomorphism to any other
algebra is known as weakly initial, rather than initial. Rather than asking for the collection
of algebra homomorphisms to be naturally isomorphic to {★}, we simply ask for the map
from algebra homomorphisms to {★} to admit a natural section (right inverse).

Advanced Remark 2.5.9. Recalling Remark 2.5.4, Theorem 2.5.8 corresponds to the fact that
a class of morphisms L which is weakly orthogonal to R is actually orthogonal to R when
the latter is closed under relative diagonals (𝑋 𝑌 ∈ R implies 𝑋 𝑋 ×𝑌 𝑋 ∈ R). ⋄

Exercise 2.32. Prove that the 𝜂 rule for Bool can be derived from the other rules for Bool
in conjunction with the rules for Eq, by mirroring the proof of Theorem 2.5.8.

2.6 Universes: U0,U1,U2, . . .

We are nearly finished with our definition of extensional type theory, but what’s missing
is significant: our theory is still not full-spectrum dependent (in the sense of Section 1.1.2)!
That is, we have still not introduced the ability to define a family of types whose head
type constructor differs at different indices, such as a Bool-indexed family of types which

(2025-05-02) Universes: U0,U1,U2, . . . 56

sends true to Nat and false to Unit. A more subtle but fatal flaw with our current theory
is that—despite all the logical connectives at our disposal—we cannot prove that true and
false are different, i.e., we cannot exhibit a term 1 ⊢ 𝑝 : Π(Eq(Bool, true, false),Void).

It turns out that addressing the former will solve the latter en passant, so in this
section we will discuss two approaches for defining dependent types by case analysis. In
Section 2.6.1 we introduce large elimination, which equips inductive types with a second
elimination principle targeting type-valued algebras (which send each constructor to a
type), in addition to their usual elimination principle targeting algebras valued in a single
dependent type (which send each constructor to a term of that type).

Unfortunately we will see that large elimination has some serious limitations, so it will
not be an official part of our definition of extensional type theory. Instead, in Section 2.6.2,
we introduce type universes, connectives which internalize the judgment Γ ⊢ 𝐴 type
modulo “size issues.” By internalizing types as terms of a universe type, universes reduce
the problem of computing types by case analysis to the problem of computing terms by case
analysis, which we solved in Section 2.5. That said, universes are a deep and complex topic
that will bring us one step closer to our discussion of homotopy type theory in Chapter 5.

2.6.1 Large elimination

In Section 2.5 we introduced elimination principles for inductive types (like Bool), which
allow us to define dependent functions out of an inductive type (𝑓 : Π(Bool, 𝐴)) by cases
on that type’s constructors. A direct but uncommon way of achieving full-spectrum
dependency is to equip each inductive type with a second elimination principle, large
elimination, which allows us to define dependent families of types by cases.12

In the case of Bool, large elimination is characterized by the following rules:

Γ ⊢ 𝐴𝑡 type Γ ⊢ 𝐴𝑓 type Γ ⊢ 𝑏 : Bool

Γ ⊢ If (𝐴𝑡 , 𝐴𝑓 , 𝑏) type
✎

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴𝑡 type Γ ⊢ 𝐴𝑓 type Γ ⊢ 𝑏 : Bool

Δ ⊢ If (𝐴𝑡 , 𝐴𝑓 , 𝑏) [𝛾] = If (𝐴𝑡 [𝛾], 𝐴𝑓 [𝛾], 𝑏 [𝛾]) type
✎

Γ ⊢ 𝐴𝑡 type Γ ⊢ 𝐴𝑓 type
Γ ⊢ If (𝐴𝑡 , 𝐴𝑓 , true) = 𝐴𝑡 type Γ ⊢ If (𝐴𝑡 , 𝐴𝑓 , false) = 𝐴𝑓 type

✎

12Large elimination maps Bool into the collection of all types, which is “large” (in the sense of being “the
proper class of all sets”) rather than the collection of terms of a single type, which is “small” (“a set”).

(2025-05-02) Universes: U0,U1,U2, . . . 57

If we compare these to the rules of ordinary (“small”) elimination,

Γ.Bool ⊢ 𝐴 type Γ ⊢ 𝑎𝑡 : 𝐴[id.true] Γ ⊢ 𝑎 𝑓 : 𝐴[id.false] Γ ⊢ 𝑏 : Bool

Γ ⊢ if (𝑎𝑡 , 𝑎 𝑓 , 𝑏) : 𝐴[id.𝑏]

Γ.Bool ⊢ 𝐴 type Γ ⊢ 𝑎𝑡 : 𝐴[id.true] Γ ⊢ 𝑎 𝑓 : 𝐴[id.false]
Γ ⊢ if (𝑎𝑡 , 𝑎 𝑓 , true) = 𝑎𝑡 : 𝐴[id.true] Γ ⊢ if (𝑎𝑡 , 𝑎 𝑓 , false) = 𝑎 𝑓 : 𝐴[id.false]

we see that the large eliminator If is exactly analogous to the small eliminator if “specialized
to 𝐴 := type.” Note that this statement is nonsense because the judgment “type” is not a
type, but the intuition is useful and will be formalized momentarily. (Indeed, for this reason
we cannot formally obtain If as a special case of if .) Continuing on with the metaphor,
the rule for If is simpler than the rule for if because it has a fixed codomain “type” which
is moreover not dependent on Bool: it makes no sense to ask for “Γ ⊢ 𝐴𝑡 type[id.true].”

It is even more standard to omit the 𝜂 rule for large elimination than for small elimina-
tion (which is itself typically omitted), but such a rule would state that dependent types
indexed by Bool are uniquely determined by their values on true and false:

Γ.Bool ⊢ 𝐴 type Γ ⊢ 𝑏 : Bool

Γ ⊢ 𝐴[id.𝑏] = If (𝐴[id.true], 𝐴[id.false], 𝑏) type
✎✎

If we include the 𝜂 rule, then the rules for If would express that instantiating a Bool-
indexed type at true and false, i.e. ((id.true)∗, (id.false)∗), has a natural inverse:

((id.true)∗, (id.false)∗) : Ty(Γ.Bool) � Ty(Γ) × Ty(Γ)

Again, compare this to our original formulation of small elimination for Bool:

((id.true)∗, (id.false)∗) : Tm(Γ.Bool, 𝐴) � Tm(Γ, 𝐴[id.true]) × Tm(Γ, 𝐴[id.false])

When we elide 𝜂, large elimination instead states that this map has a section (a right
inverse), which is to say that a choice of where to send true and false determines a family
of types via If , but not uniquely. This follows the discussion in Section 2.5.4, except that
we cannot derive the 𝜂 rule for large elimination from extensional equality because there
is no type “Eq(type,−,−)” available to carry out the argument in Theorem 2.5.8.

Remark 2.6.1. Large elimination only applies to types defined by mapping-out properties
such as inductive types; there is no corresponding principle for mapping-in connectives
like Π(𝐴, 𝐵) because these do not quantify over any target, whether “small” or “large.” ⋄

(2025-05-02) Universes: U0,U1,U2, . . . 58

Remark 2.6.2. If we have both small and large elimination for Bool, then we can combine
them into a derived induction principle for Bool that works for any 𝑎𝑡 : 𝐴𝑡 and 𝑎 𝑓 : 𝐴𝑓 ,
using large elimination to define the type family into which we perform a small elimination.

Γ ⊢ 𝑎𝑡 : 𝐴𝑡 Γ ⊢ 𝑎 𝑓 : 𝐴𝑓 Γ ⊢ 𝑏 : Bool

Γ ⊢ if (𝑎𝑡 , 𝑎 𝑓 , 𝑏) : If (𝐴𝑡 , 𝐴𝑓 , 𝑏)
✎,⇒

⋄

With large elimination—or a related feature, type universes—we can prove the dis-
jointness of the booleans. (Although the proof below uses equality reflection, the same
theorem holds in intensional type theory for essentially the same reason.) Our claim that
we cannot prove disjointness without these features is a (relatively simple) independence
metatheorem requiring a model construction; see The Independence of Peano’s Fourth Axiom
from Martin-Löf’s Type Theory Without Universes [Smi88].

Theorem 2.6.3. Using the rules for If , there is a term

1 ⊢ disjoint : Π(Eq(Bool, true, false),Void)

Proof. We informally describe the derivation of disjoint. ByΠ-introductionwemay assume
Eq(Bool, true, false) and prove Void. In order to do this, consider the following auxiliary
family of types over Bool:

1.Eq(Bool, true, false).Bool ⊢ 𝑃 := If (Unit,Void, q) type

Then

1.Eq(Bool, true, false) ⊢ Unit
= 𝑃 [id.true] by 𝛽 for If
= 𝑃 [id.false] by equality reflection on q
= Void type by 𝛽 for If

and therefore 1.Eq(Bool, true, false) ⊢ tt : Void. In sum, we define disjoint := 𝜆 (tt). □

As for other inductive types, the large elimination principle of Void is:

Γ ⊢ 𝑎 : Void

Γ ⊢ Absurd(𝑎) type
✎

Unfortunately, we run into a problem when trying to define large elimination for Nat.

Γ ⊢ 𝑛 : Nat Γ ⊢ 𝐴𝑧 type Γ.Nat.“type” ⊢ 𝐴𝑠 type
Γ ⊢ Rec(𝐴𝑧, 𝐴𝑠, 𝑛) type

!?

(2025-05-02) Universes: U0,U1,U2, . . . 59

In the ordinary eliminator, the branch for suc(−) has two variables 𝑚 : Nat, 𝑎 : 𝐴(𝑚)
binding the predecessor𝑚 and (recursively) the result 𝑎 of the eliminator on𝑚. When
“𝐴 := type” the recursive result is a type, meaning that the suc(−) branch ought to bind a
type variable, a concept which is not a part of our theory. This is a serious problem because
recursive constructions of types were a major class of examples in Section 1.1.2.
Exercise 2.33. There is however a non-recursive large elimination principle for Nat which
defines a type by case analysis on whether a number is zero. This principle follows from
the rules in this section along with the other rules of extensional type theory; state and
define it.

2.6.2 Universes

Although large elimination is a useful concept, it sees essentially no use in practice. We
have just seen one reason: large eliminators cannot be recursive. The standard approach
is instead to include universe types, which are “types of types,” or types which internalize
the judgment Γ ⊢ 𝐴 type. Using universes, we can recover large elimination as small
elimination into a universe; we are also able to express polymorphic type quantification
using dependent functions out of a universe.

A universe is a type with no parameters, so its formation rule is once again a natural
family of constants UΓ ∈ Ty(Γ), or

Γ ⊢ U type

Δ ⊢ 𝛾 : Γ
Δ ⊢ U = U [𝛾] type

As for its terms, the most straightforward definition would be to stipulate a natural
isomorphism between terms of U and types:

𝜄 : Tm(Γ,U) � Ty(Γ) (?!)

Note that just as we did not ask for terms of Π-types to literally be terms with an extra free
variable, we cannot ask for terms of U to literally be types: these are two different sorts!

In inference rules, the forward map of the isomorphism would introduce a new type
former El(−)13 which “decodes” an element of U into a genuine type. The reverse map
conversely “encodes” a genuine type as an element of U. These intuitions lead us to often

13This name is not so mysterious: it means “elements of,” and is pronounced “ell” or, often, omitted.

(2025-05-02) Universes: U0,U1,U2, . . . 60

refer to elements of U as codes for types.

Γ ⊢ 𝑎 : U

Γ ⊢ El(𝑎) type
Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : U

Δ ⊢ El(𝑎) [𝛾] = El(𝑎[𝛾]) type

Γ ⊢ 𝐴 type

Γ ⊢ code(𝐴) : U
?!

Γ ⊢ 𝐴 type

Γ ⊢ El(code(𝐴)) = 𝐴 type
?!

Γ ⊢ 𝑐 : U

Γ ⊢ code(El(𝑐)) = 𝑐 : U
?!

Unfortunately we can’t have nice things, as the last three rules above—the ones involv-
ing code—are unsound. In particular they imply that U contains (a code for) U, making
it a “type of all types, including itself” and therefore subject to a variation on Russell’s
paradox known as Girard’s paradox [Coq86], as outlined in Section 2.7.

2.6.2.1 Populating the universe

Returning to our definition of universe types, it is safe to postulate a type U of type-codes
which decode via El into types. (Indeed, with large elimination it is even possible to define
such a type manually, e.g. U := Bool with El(true) := Unit and El(false) := Void.)

UΓ ∈ Ty(Γ)
El : Tm(Γ,U) → Ty(Γ)

Our first attempt at populating Tm(Γ,U) was to ask for an inverse to El, but that turns
out to be inconsistent. Instead, we will simply manually equip U with codes decoding
to the type formers we have presented so far, but crucially not with a code for U itself.
This approach is somewhat verbose—for each type former we add an introduction rule
for U, a substitution rule, and an equation stating that El decodes it to the corresponding
type—but it allows us to avoid Girard’s paradox while still populating U with codes for
(almost) every type in our theory.

For example, to close U under dependent function types we add the following rules:

Γ ⊢ 𝑎 : U Γ.El(𝑎) ⊢ 𝑏 : U

Γ ⊢ pi(𝑎, 𝑏) : U

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : U Γ.El(𝑎) ⊢ 𝑏 : U

Δ ⊢ pi(𝑎, 𝑏) [𝛾] = pi(𝑎[𝛾], 𝑏 [𝛾 .El(𝑎)]) : U

Γ ⊢ 𝑎 : U Γ.El(𝑎) ⊢ 𝑏 : U

Γ ⊢ El(pi(𝑎, 𝑏)) = Π(El(𝑎), El(𝑏)) type

The third rule states that pi(𝑎, 𝑏) is the code in U for the type Π(El(𝑎), El(𝑏)). Note that
the context of 𝑏 in the introduction rule for pi(𝑎, 𝑏) makes reference to El(𝑎), mirroring
the dependency structure of Π-types. Although this move is forced, it means that the

(2025-05-02) Universes: U0,U1,U2, . . . 61

definitions of U and El each reference the other—the type of a constructor of U mentions
El, and the type of El itself mentions U—so U and El must be defined simultaneously. In
fact, this is the paradigmatic example of an inductive-recursive definition, an inductive type
that is defined simultaneously with a recursive function out of it [Dyb00].

It is no more difficult to close U under dependent pairs, extensional equality, the unit
type, and inductive types. These rules quickly become tedious, so we write only their
introduction rules below, leaving the remaining rules to Appendix A.

Γ ⊢ 𝑎 : U Γ.El(𝑎) ⊢ 𝑏 : U

Γ ⊢ sig(𝑎, 𝑏) : U

Γ ⊢ 𝑎 : U Γ ⊢ 𝑥,𝑦 : El(𝑎)
Γ ⊢ eq(𝑎, 𝑥,𝑦) : U

Γ ⊢ unit : U Γ ⊢ nat : U Γ ⊢ void : U Γ ⊢ bool : U

We can now recover the large elimination principles of Section 2.6.1 in terms of small
elimination into the type U. Moreover, because we can perfectly well extend the context
by a variable of type U, we can now also construct types by recursion on natural numbers:

Γ ⊢ 𝑛 : Nat Γ ⊢ 𝑎𝑧 : U Γ.Nat.U ⊢ 𝑎𝑠 : U

Γ ⊢ Rec(𝑎𝑧, 𝑎𝑠, 𝑛) := El(rec(𝑎𝑧, 𝑎𝑠, 𝑛)) type
⇒

Notation 2.6.4. In general, we may refer to a pair of a type (Γ ⊢ 𝐵 type) and a type family
over that type (Γ.𝐵 ⊢ 𝐸 type) as a universe, if it is appropriate to think of the former as
a collection of codes and the latter a decoding function, generalizing the paradigmatic
example of (U, El). We will encounter other universes in Sections 2.8 and 5.2.

Remark 2.6.5. Proof assistant users are very familiar with universes, so such readers may
be wondering why they have never seen El before. Indeed, proof assistants such as Coq and
Agda treat types and elements of U as indistinguishable. Historically, much of the literature
calls such universes—for which Tm(Γ,U) ⊆ Ty(Γ)—universes à la Russell, in contrast to
our universes à la Tarski, but we find such a subset inclusion to be meta-suspicious.

Instead, we prefer to say that Coq and Agda programs do not expose the notion of
type to the user at all, instead consistently referring only to elements of U. This obviates
the need for the user to ever write or see El, and the necessary calls to El can be inserted
automatically by the proof assistant in a process known as elaboration. ⋄

Remark 2.6.6. Another more semantically natural variation of universes relaxes the judg-
mental equalities governing El to isomorphisms El(pi(𝑎, 𝑏)) � Π(El(𝑎), El(𝑏)), producing
what are known as weak universes à la Tarski. However, our strict formulation is more
standard and more convenient. ⋄

Advanced Remark 2.6.7. Universes in type theory play a similar role to Grothendieck
universes and their categorical counterparts in set theory and category theory. We often

(2025-05-02) Universes: U0,U1,U2, . . . 62

refer to types encoded by U as small or U-small, and ask for small types to be closed
under various operations. As a result, universes in type theory roughly have the same
proof-theoretical strength as strongly inaccessible cardinals. Note, however, that the lack
of choice and excluded middle in type theory precludes a naïve comparison between it
and ZFC or similar theories; see Section 3.5.1. ⋄

2.6.3 Hierarchies of universes

Our definition of U is perfectly correct, but the fact that U lacks a code for itself means
that we cannot recursively define types that mention U. In addition, although we can
quantify over “small” types with Π(U,−), we cannot write any type quantifiers whose
domain includes U. We cannot fix these shortcomings directly, but we can mitigate them
by defining a second universe type U1 closed under all the same type codes as before as
well as a code for U, but no code for U1 itself. The same problem occurs one level up, so we
add a third universe U2 containing codes for U and U1 but not U2, and so forth.

In practice, nearly all applications of type theory require only a finite number of
universes, but for uniformity and because this number varies between applications, it is
typical to ask for a countably infinite (alternatively, finite but arbitrary) tower of universes
each of which contains codes for the smaller ones. (For uniformity we write U0 := U.) This
collection of U𝑖 is known as a universe hierarchy.

To define an infinite number of types and terms, we must now write rule schemas,
collections of rules that must be repeated for every (external, not internal) natural number
𝑖 > 1. Each of these rules follows the same pattern in U, with one new feature: U𝑖 contains
a code uni𝑖, 𝑗 for U 𝑗 whenever 𝑗 is strictly smaller than 𝑖 .

Γ ⊢ U𝑖 type

Γ ⊢ 𝑎 : U𝑖

Γ ⊢ El𝑖 (𝑎) type
Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : U𝑖

Δ ⊢ El𝑖 (𝑎) [𝛾] = El𝑖 (𝑎[𝛾]) type

Γ ⊢ 𝑎 : U𝑖 Γ.El𝑖 (𝑎) ⊢ 𝑏 : U𝑖

Γ ⊢ pi𝑖 (𝑎, 𝑏) : U𝑖 Γ ⊢ sig𝑖 (𝑎, 𝑏) : U𝑖

Γ ⊢ 𝑎 : U𝑖 Γ ⊢ 𝑥,𝑦 : El𝑖 (𝑎)
Γ ⊢ eq𝑖 (𝑎, 𝑥,𝑦) : U𝑖

Γ ⊢ unit𝑖 : U𝑖 Γ ⊢ void𝑖 : U𝑖 Γ ⊢ bool𝑖 : U𝑖 Γ ⊢ nat𝑖 : U𝑖

𝑗 < 𝑖

Γ ⊢ uni𝑖, 𝑗 : U𝑖

Again for uniformity we write pi0(𝑎, 𝑏) := pi(𝑎, 𝑏), etc., and we omit the substitution rules
for type codes as well as the type equations explaining how each El𝑖 computes on codes,
such as El𝑖 (eq𝑖 (𝑎, 𝑥,𝑦)) = Eq(El𝑖 (𝑎), 𝑥,𝑦) and El𝑖 (uni𝑖, 𝑗) = U 𝑗 .

It is easy to see that the rules for U𝑖+1 are a superset of the rules for U𝑖 : the only
difference is the addition of the code uni𝑖+1,𝑖 : U𝑖+1 and codes that mention this code, such

(2025-05-02) Universes: U0,U1,U2, . . . 63

as pi𝑖+1(uni𝑖+1,𝑖, uni𝑖+1,𝑖) : U𝑖+1. Thus it should be possible to prove that every closed code
of type U𝑖 has a counterpart of type U𝑖+1 that decodes to the same type, that is, “U𝑖 ⊊ U𝑖+1.”
However, this fact is not visible inside the theory. We have no induction principle for the
universe, so we cannot define an “inclusion” function 𝑓 : U𝑖 → U𝑖+1 much less prove that
it satisfies El𝑖+1(𝑓 (𝑎)) = El𝑖 (𝑎). And there is simply no way, external or otherwise, to “lift”
a variable of type U𝑖 to the type U𝑖+1.

We thus equip our universe hierarchy with one final operation: a lifting operation that
includes elements of U𝑖 into U𝑖+1, which is compatible with El and sends type codes of
U𝑖 to their counterparts in U𝑖+1. Such a strict lifting operation allows users to generally
avoid worrying about universe levels, because small codes can always be hoisted up to
their larger counterparts when needed.

Γ ⊢ 𝑐 : U𝑖

Γ ⊢ lift𝑖 (𝑐) : U𝑖+1

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : U𝑖

Δ ⊢ lift𝑖 (𝑎) [𝛾] = lift𝑖 (𝑎[𝛾]) : U𝑖+1

Γ ⊢ 𝑎 : U𝑖

Γ ⊢ El𝑖+1(lift𝑖 (𝑎)) = El𝑖 (𝑎) type

The last rule above states that a code and its lift both encode the same type. Recalling
that the entire point of a universe hierarchy is to get as close as possible to “U : U” without
being inconsistent, it makes sense to treat lifts as a clerical operation that does not affect
the type about which we speak. In addition, this equation is actually needed to state that
lift commutes with codes, such as pi (other rules omitted):

Γ ⊢ 𝑎 : U𝑖 Γ.El𝑖 (𝑎) ⊢ 𝑏 : U𝑖

Γ ⊢ lift𝑖 (pi𝑖 (𝑎, 𝑏)) = pi𝑖+1(lift𝑖 (𝑎), lift𝑖 (𝑏)) : U𝑖+1

Remark 2.6.8. We say a universe hierarchy is (strictly) cumulative when it is equipped
with lift operations that commute (strictly) with codes. Historically the term “cumulativity”
often refers to material subset inclusions Tm(Γ,U𝑖) ⊆ Tm(Γ,U𝑖+1) but once again such
conditions are incompatible with our perspective. ⋄

Remark 2.6.9. There is an equivalent presentation of universe hierarchies known as
universes à la Coquand in which one stratifies the type judgment itself, and the 𝑖th universe
precisely internalizes the 𝑖th type judgment [Coq13; Coq19; Gra+21; FAM23]. That is,
we have sorts Ty𝑖 (Γ) for 𝑖 ∈ N + {⊤} with Ty(Γ) := Ty⊤(Γ), and natural isomorphisms
Ty𝑖 (Γ) � Tm(Γ,U𝑖) for 𝑖 ∈ N mediated by El𝑖/code𝑖 . This presentation essentially creates
a new judgmental structure designed to be internalized by U, and has the concrete benefit
of unifying type formation and universe introduction into a single set of rules. ⋄

(2025-05-02) Girard’s paradox 64

Exercise 2.34. Check that the equational rule lift𝑖 (pi𝑖 (𝑎, 𝑏)) = pi𝑖+1(lift𝑖 (𝑎), lift𝑖 (𝑏)) above
is meta-well-typed. (Hint: you need to use El𝑖+1(lift𝑖 (𝑎)) = El𝑖 (𝑎).)

Exercise 2.35. We only included lifts from U𝑖 to U𝑖+1, rather than from U𝑖 to U 𝑗 for every
𝑖 < 𝑗 . Show that the latter notion of lift is derivable for any concrete 𝑖 < 𝑗 and that it
satisfies the expected equations.

2.7★ Girard’s paradox

We now substantiate the claim in Section 2.6.2 that it is inconsistent for U to contain a code
for itself, a fact commonly known as Girard’s paradox; specifically, we present a simplified
argument due to Hurkens [Hur95].14 The details of this paradox are not relevant to any
later material in this book, so the reader may freely skip this section. In this section alone,
we adopt the (inconsistent) rules of Section 2.6.2 pertaining to code.

At a high level, the fact that U contains a code for itself means that we can construct a
universe Θ that admits an embedding from its own double power set P (P Θ); from this
we can define a “set of all ordinals” and carry out a version of the Burali-Forti paradox.
The details become somewhat involved, in part because the standard paradoxes of set
theory rely on comprehension and extensionality principles not available to us in type
theory. Indeed, historically it was far from clear that “U : U” was inconsistent, and in fact
Martin-Löf’s first version of type theory had this very flaw [Mar71].

P : U → U
P 𝐴 = code(El(𝐴) → U)

P2 : U → U
P2 𝐴 = P (P 𝐴)

Θ : U
Θ = code((𝐴 : U) → (El(P2 𝐴) → El(𝐴)) → El(P2 𝐴))

Lemma 2.7.1 (Powerful universe). The universe Θ admits maps

𝜏 : El(P2 Θ) → Θ

𝜎 : Θ → El(P2 Θ)

such that

(𝐶 : El(P2 Θ)) → (𝜎 (𝜏 𝐶) = 𝜆(𝜙 : El(P Θ)) → 𝐶 (𝜙 ◦ 𝜏 ◦ 𝜎))
14An Agda formalization of Hurkens’s paradox is available at https://github.com/agda/agda/blob/

master/test/Succeed/Hurkens.agda; formalizations in other proof assistants are readily available online.

https://github.com/agda/agda/blob/master/test/Succeed/Hurkens.agda
https://github.com/agda/agda/blob/master/test/Succeed/Hurkens.agda

(2025-05-02) Girard’s paradox 65

Proof. We define:

𝜏 : El(P2 Θ) → El(Θ)
𝜏 (Φ : El(P2 Θ)) (𝐴 : U) (𝑓 : El(P2 𝐴) → El(𝐴)) (𝜒 : El(P 𝐴)) =

Φ (𝜆(𝜃 : Θ) → 𝜒 (𝑓 (𝜃 𝐴 𝑓)))

𝜎 : El(Θ) → El(P2 Θ)
𝜎 𝜃 = 𝜃 Θ 𝜏

We leave the equational condition to Exercise 2.36. □

Exercise 2.36. Show that the above definitions of 𝜏 and 𝜎 satisfy the necessary equation.

As an immediate consequence of Lemma 2.7.1, we have:

𝜎 (𝜏 (𝜎 𝑥)) = 𝜆(𝜙 : El(P Θ)) . 𝜎 𝑥 (𝜙 ◦ 𝜏 ◦ 𝜎) (2.1)

One way to understand the statement of Lemma 2.7.1 is that, regarding P as a functor
whose action on 𝑓 : El(𝑌) → El(𝑋) is precomposition 𝑓 ∗ : El(P 𝑋) → El(P 𝑌), the
equational condition is equivalent to 𝜎 ◦ 𝜏 = (𝜏 ◦ 𝜎)∗∗.

We derive a contradiction from Lemma 2.7.1 by constructing ordinals within Θ:

-- 𝑦 < 𝑥 (“𝑦 ∈ 𝑥”) when each 𝑓 in 𝜎 𝑥 contains 𝑦
(<) : El(Θ) → El(Θ) → U
𝑦 < 𝑥 = code((𝑓 : El(P Θ)) → El(𝜎 𝑥 𝑓) → El(𝑓 𝑦))

-- 𝑓 is inductive if for all 𝑥 , if 𝑓 is in 𝜎 𝑥 then 𝑥 is in 𝑓
ind : El(P Θ) → U
ind 𝑓 = code((𝑥 : El(Θ)) → El(𝜎 𝑥 𝑓) → El(𝑓 𝑥))

-- 𝑥 is well-founded if it is in every inductive 𝑓
wf : El(Θ) → U
wf 𝑥 = code((𝑓 : El(P Θ)) → El(ind 𝑓) → El(𝑓 𝑥))

Specifically, we consider Ω := 𝜏 (𝜆𝑓 → ind 𝑓), the collection of all inductive collections.
Using Lemma 2.7.1 we argue that Ω is both well-founded and not well-founded.

Lemma 2.7.2. Ω is well-founded.

Proof. Suppose 𝑓 : El(P Θ) is inductive; we must show El(𝑓 Ω). By the definition of ind,
for this it suffices to show El(𝜎 Ω 𝑓). Unfolding the definition of Ω and rewriting by the
equation in Lemma 2.7.1 with 𝐶 := ind, it suffices to show that 𝑓 ◦ 𝜏 ◦ 𝜎 is inductive.

(2025-05-02) Propositions and universes of propositions (draft) 66

Thus suppose we are given 𝑥 : El(Θ) such that El(𝜎 𝑥 (𝑓 ◦ 𝜏 ◦ 𝜎)); we must show
El(𝑓 (𝜏 (𝜎 𝑥))). By rewriting El(𝜎 𝑥 (𝑓 ◦ 𝜏 ◦ 𝜎)) along Equation (2.1), we conclude
that El(𝜎 (𝜏 (𝜎 𝑥)) 𝑓). However, by our assumption that 𝑓 is inductive, this implies
El(𝑓 (𝜏 (𝜎 𝑥))), which is what we wanted to show. □

To prove that Ω is not well-founded, we start by showing that the collection of “sets
not containing themselves” 𝜙 := 𝜆𝑦 → code(El(𝜏 (𝜎 𝑦) < 𝑦) → Void) is inductive.

Lemma 2.7.3. 𝜙 is inductive.

Proof. Suppose we are given 𝑥 such that El(𝜎 𝑥 𝜙); we must show El(𝜏 (𝜎 𝑥) < 𝑥) → Void.
Thus suppose El(𝜏 (𝜎 𝑥) < 𝑥), which is to say that for any 𝑓 such that El(𝜎 𝑥 𝑓), we
have El(𝑓 (𝜏 (𝜎 𝑥))). Using our hypothesis we may set 𝑓 := 𝜙 , from which we conclude
El(𝜏 (𝜎 (𝜏 (𝜎 𝑥))) < 𝜏 (𝜎 𝑥)) → Void. We derive the required contradiction by proving
that El(𝜏 (𝜎 (𝜏 (𝜎 𝑥))) < 𝜏 (𝜎 𝑥)) holds, by El(𝜏 (𝜎 𝑥) < 𝑥) and Exercise 2.37. □

Exercise 2.37. Show that El(𝑥 < 𝑦) implies El(𝜏 (𝜎 𝑥) < 𝜏 (𝜎 𝑦)).

Theorem 2.7.4. There is a closed term of type Void.

Proof. Because Ω is well-founded and 𝜙 is inductive, we have El(𝜏 (𝜎 Ω) < Ω) → Void.
To derive a contradiction, it suffices to show El(𝜏 (𝜎 Ω) < Ω), which is to say that for
any 𝑓 such that El(𝜎 Ω 𝑓), we have El(𝑓 (𝜏 (𝜎 Ω))). By the definition of Ω, El(𝜎 (Ω 𝑓))
implies that 𝑓 ◦ 𝜏 ◦ 𝜎 is inductive; combining this with the fact that Ω is well-founded, we
obtain El(𝑓 (𝜏 (𝜎 Ω))) as required. □

2.8★ Propositions and universes of propositions (draft)
Name the theory of ETT + universe of impredicative propositions

Many readers will have encountered the slogan “propositions are types”, perhaps
termed the Curry–Howard correspondence or the Brouwer–Heyting–Kolmogorov in-
terpretation. This dictum states that that various connectives of type theory should be
possible to simultaneously view as program specifications and logical operations. For
dependent type theory, this perspective was strongly espoused by Martin-Löf [Mar82].

We will not fully develop this theme here for reasons of space, but to motivate the
forthcoming discussion it is helpful to develop a few examples. First, Π-types in dependent
type theory link together functions (à la functional programming) and universal quantifi-
cation/implication from logic. While there are many ways of making this linkage precise,
the most basic is to simply observe that the typing rules for Π-types in the non-dependent
case are identical to those for implication in intuitionistic propositional logic, to wit:

(2025-05-02) Propositions and universes of propositions (draft) 67

Type theory Propositional logic

Γ.𝐴 ⊢ 𝑏 : 𝐵 [p]
Γ ⊢ 𝜆 (𝑏) : 𝐴 → 𝐵

Γ, 𝑝 ⊢ 𝑞 true
Γ ⊢ 𝑝 → 𝑞 true

Γ ⊢ 𝑓 : 𝐴 → 𝐵 Γ ⊢ 𝑎 : 𝐴
Γ ⊢ app(𝑓 , 𝑎) : 𝐵

Γ ⊢ 𝑝 → 𝑞 true Γ ⊢ 𝑝 true
Γ ⊢ 𝑞 true

The same observations can be made for (non-dependent) Σ-types and conjunction, for
Unit and ⊤, and for Void and ⊥. If we allow for dependence, then connectives like Π- and
Σ-types resemble quantifiers rather than simple connectives and equality types capture
the equality predicate of first-order logic.

We may give a terse version of this viewpoint with the following slogan:

Slogan 2.8.1. A proposition is a type and an element of that type is a proof of that proposition.

Notation 2.8.2. We shall say a type Γ ⊢ 𝐴 type is inhabited when there exists some term
Γ ⊢ 𝑎 : 𝐴. Accordingly, Slogan 2.8.1 states that a proposition is a type and that proposition
is true just when the corresponding type is inhabited.

Already with quantifiers, however, the connection between type theory and logic
becomes slightly imperfect. Logical quantifiers use two distinct syntactic classes (propo-
sitions and sorts) which are both realized in type theory by the single syntactic class of
types. In more detail, in logic the proposition “∀𝑥 : 𝜏 . 𝜙 (𝑥)” involves a proposition 𝜙
with a free variable of sort 𝜏 . Sorts behave like collections of particular objects and it is
these collections that quantifiers actually range over. Often, one encounters logic set up
with only a single sort e.g. set theory is usually realized by first-order logic with a single
sort, that of sets. In general, however, sorts are themselves organized into something
akin to simply-typed 𝜆-calculus (Section 2.1) and one speaks of “logic over a simple-type
theory” [LS88].

None of this stratification appears in type theory where both sorts and propositions are
simply realized by types. One embeds propositions into type theory by reading Γ ⊢ 𝑎 : 𝐴
as “𝑎 is a proof of the proposition 𝐴” and embeds sorts by reading Γ ⊢ 𝑎 : 𝐴 as “𝑎 is an
element of the sort 𝐴”. One can see both of these interpretations on display when we
translate ∀𝑥 : 𝜏 .𝜙 (𝑥) to Π(𝐴, 𝐵) as 𝐴 is used to interpret a sort and 𝐵 a proposition. We
refer the reader to Martin-Löf [Mar84b] or Girard, Lafont, and Taylor [GLT89] for thorough
descriptions of this correspondence.

Many types have an intrinsic bias as to whether they are best viewed as “sorts” or
“propositions”. For example, let us put on our logician’s hat and consider Nat and Bool
as if they were propositions. Returning to Slogan 2.8.1, we think of these as propositions

(2025-05-02) Propositions and universes of propositions (draft) 68

which are true just when Nat or Bool are inhabited. Of course, this is always true (zero
and true) and accordingly we are left to conclude that Bool and Nat are interchangeable
qua propositions. More generally, logic is not concerned with how a particular proposition
is proven. Of course, the rules governing Nat and Bool are quite different and so regarding
them as both merely “true” misses out on much of their behavior. On the other hand,
we have encountered types—Unit and Void—where the elements of these types were
completely interchangeable and so nothing is lost when we treat them as mere propositions.

In this section we explore when a type is best regarded as a proposition along with the
special role played by such types. We in particular discuss the addition of a universe Ω
whose elements are codes for propositions and the consequences of this addition. Finally,
we discuss the character of “logic within type theory” and observe that many classical
tautologies from logic do not hold within type theory.
Warning 2.8.3. While we discuss several new constructions and types in this section,
none of them will be considered part of our official definition of extensional type theory.
Moreover, this material is not used in the remainder of the book with the exception of a
passing mention in Section 5.1.

2.8.1 Propositions in type theory

Following the above discussion, we are led to isolate propositions as those types for which
every pair of elements are equal:

Definition 2.8.4. Γ ⊢ 𝐴 type is said to be a proposition when the following holds:

Γ.𝐴.𝐴[p] ⊢ q [p] = q : 𝐴[p2]

More informally, 𝐴 is a proposition if all elements of 𝐴 are equal.

We may revise our earlier slogan for “propositions-as-types” to the following more
precise (if less catchy) statement:

Slogan 2.8.5. A proposition is a type 𝐴 where all elements are equal and such a (necessarily
unique) element is a proof of 𝐴.

Exercise 2.38. One may conjecture that Γ ⊢ 𝐴 type is a proposition if |Tm(Γ, 𝐴) | ≤ 1.
Argue that this is not necessarily true. (Hint: the correct formulation is that for all Δ ⊢ 𝛾 : Γ,
|Tm(Δ, 𝐴[𝛾]) | ≤ 1)

We begin with the reassuring observation that those types which we claimed were
best viewed as sorts (Nat, Bool, U𝑖 , etc.) are indeed not propositions in the above sense.
On the other hand, both Void and Unit satisfy the above conditions:

(2025-05-02) Propositions and universes of propositions (draft) 69

Exercise 2.39. Show that Γ.Void.Void ⊢ q [p] = q : Void and Γ.Unit.Unit ⊢ q [p] = q :
Unit are both derivable.

For a less trivial example of a proposition, we turn to Eq(𝐴, 𝑎, 𝑏). Unlike Unit or Void,
the equality type is neither always inhabited nor always empty. However, the 𝜂 rule for
Eq(𝐴, 𝑎, 𝑏) guarantees that any element of this type is definitionally equal to refl and so it
always contains at most one element. More formally:

Lemma 2.8.6. If Γ ⊢ 𝑎, 𝑏 : 𝐴 then Γ ⊢ Eq(𝐴, 𝑎, 𝑏) type is a proposition.

Proof. We must show that any two inhabitants of Eq(𝐴, 𝑎, 𝑏) are equal. However, by the 𝜂
law for Eq, we know that if Γ ⊢ 𝑝 : Eq(𝐶, 𝑐, 𝑑) then 𝑝 = refl. Accordingly, we have

Γ.Eq(𝐴, 𝑎, 𝑏).Eq(𝐴, 𝑎, 𝑏) [p] ⊢ q [p] = refl = q : Eq(𝐴, 𝑎, 𝑏) [p2] □

The equality type is a somewhat unusual connective in that Eq(𝐴, 𝑎, 𝑏) is a proposition
regardless of the choice of𝐴, 𝑎, or 𝑏. For other connectives such as Π and Σ, we see that this
is not the case e.g., Π(Unit,Bool) clearly contains multiple distinct inhabitants. Instead
Π and Σ “preserve” the property of being propositions. That is, Π(𝐴, 𝐵) and Σ(𝐴, 𝐵) are
propositions when 𝐴, 𝐵 are themselves propositions. In fact, for Π an even sharper result
is available:

Lemma 2.8.7. If Γ ⊢ 𝐴 type and Γ.𝐴 ⊢ 𝐵 type such that the latter is a proposition, then
Γ ⊢ Π(𝐴, 𝐵) type is a proposition.

Proof. We wish to show that the following judgment holds:

Γ.Π(𝐴, 𝐵).Π(𝐴, 𝐵) [p] ⊢ q [p] = q : Π(𝐴, 𝐵) [p2]

However, by the 𝜂 law for Π, it suffices to show that both these hold after assuming 𝐴[p2]
and applying the left- and right-hand sides of this equation to this fresh variable. This, in
turn, is immediate from the assumption that 𝐵 is a proposition. □

Exercise 2.40. Show that if Γ ⊢ 𝐴 type and Γ.𝐴 ⊢ 𝐵 type are both propositions, so too is
Γ ⊢ Σ(𝐴, 𝐵) type.

Contingent on adding coproducts to earlier stuff

Exercise 2.41. Argue that +(𝐴, 𝐵) does not preserve the property of being a proposition.
Can you find a condition on 𝐴 and 𝐵 which ensures +(𝐴, 𝐵) to be a proposition?

(2025-05-02) Propositions and universes of propositions (draft) 70

2.8.2 When types are not propositions

While we believe our definition isolating propositions among types is reasonable on its
face, we now show that distinguishing between arbitrary types and propositions can help
clarify otherwise confounding differences between type theory and logic. This discussion
is not strictly necessary for what follows and readers may skip ahead.

We begin by recalling a famous logical principle:

Definition 2.8.8. The logical axiom of choice is the following proposition where 𝜏 and 𝜎
are sorts and R is a proposition depending on 𝜏 × 𝜎 :

(∀𝑥 : 𝜏 . ∃𝑦 : 𝜎.R(𝑎, 𝑏)) ⇒ (∃𝑓 : 𝜏 → 𝜎.∀𝑥 : 𝜏 .R(𝑥, 𝑓 (𝑥)))

Let us consider the naïve process of translating this proposition into a type without
attempting to ensure that the result is a proposition according to Definition 2.8.4. To begin,
we replace the sorts 𝜏, 𝜎 with types 𝐴, 𝐵 and the proposition R with a type 𝑃 depending
on 𝐴, 𝐵. Next we exchange ∀ for Π, ∃ for Σ, and → for (non-dependent) Π. All told, we
obtain the following type (written in informal notation for clarity):

TTChoice =

((𝑎 : 𝐴) → ∑
𝑏:𝐵 𝑃 (𝑎, 𝑏)) → (∑𝑓 :𝐴→𝐵 (𝑎 : 𝐴) → 𝑃 (𝑎, 𝑓 (𝑎)))

Crucially, since we have not assumed either 𝐴 or 𝐵 are propositions, we cannot expect
either ((𝑎 : 𝐴) → ∑

𝑏:𝐵 𝑃 (𝑎, 𝑏)) or (
∑
𝑓 :𝐴→𝐵 (𝑎 : 𝐴) → 𝑃 (𝑎, 𝑓 (𝑎))) to be propositions. A

direct consequence of this divergence is the following fact:

Lemma 2.8.9. There exists an inhabitant of TTChoice.

Proof. Let us suppose we are given 𝐹 : (𝑎 : 𝐴) → ∑
𝑏:𝐵 𝑃 (𝑎, 𝑏). We must construct an

element of
∑
𝑓 :𝐴→𝐵 (𝑎 : 𝐴) → 𝑃 (𝑎, 𝑓 (𝑎)) and, using the introduction rule for Σ, we begin

by constructing an element 𝑓 : 𝐴 → 𝐵 as follows:

𝑓 (𝑎) = fst(𝐹 (𝑎))

It remains only, therefore, to construct an element 𝑔 : (𝑎 : 𝐴) → 𝑃 (𝑎, 𝑓 (𝑎)). For this, we
use the second component of 𝐹 (𝑎):

𝑔(𝑎) = snd(𝐹 (𝑎))

In total our term is then
𝜆𝑎 → (fst(𝐹 (𝑎)), snd(𝐹 (𝑎))) □

(2025-05-02) Propositions and universes of propositions (draft) 71

The attentive reader may well feel some amount of skepticism with this result even
without knowing that TTChoice is a result of a naïve translation of the axiom of choice.
After all, choice has been the subject of controversy within mathematics for over a century.
If this type-theoretic translation faithfully captured the axiom of choice and provided such
a simple proof, then this would be remarkable. In reality, however, there is no contradiction;
our type TTChoice simply does not capture any of the subtlety in the ordinary axiom of
choice because Σ fails to capture some salient aspect of ∃.

In particular, given an element 𝑝 :
∑
𝑎:𝐴 𝑃 (𝑎) we have an operation fst(−) which allows

us to recover the particular element of𝐴 for which 𝑃 (fst(𝑝)) holds. This maneuver—which
crucially relies on there being distinct elements of

∑
𝑎:𝐴 𝑃 (𝑎)—is not typically available

with ∃. In higher-order logic generally we cannot use the validity of some proposition
directly to construct an element of some sort. Moreover, it is precisely this operation in
on Σ which trivializes TTChoice. Indeed, reading our implementation of TTChoice, the
program seems to say “given a function choosing a 𝐵 for each𝐴, there is a choice function”.

Of course, it is far from obvious what we should use instead of Σ to model ∃, but we
now have at least one benchmark by which to evaluate any putative interpretation of
∃𝑥 : 𝜏 . 𝜙 (𝑥): whatever type it is, all of its inhabitants should be equal. After all, while
there is no syntactic separation in type theory to prevent the construction of an element
of a “sort”-like type based on the witness for a type interpreting ∃𝑥 : 𝜏 . 𝜙 (𝑥), if the latter
is a proposition then any such dependence must be trivial.

While the argument is far from straightforward, one can argue that there is no definition
of ∃ in extensional type theory without further extensions [Swa25].15 The most direct
way to solve this problem is to specify a new bespoke type which is (1) a proposition
by construction and (2) satisfies some version of the rules governing ∃ in higher-order
logic. Rather than taking this approach however, we shall see how such a type can be
constructed, however, in the presence of a sufficiently strong universe of propositions.

Remark 2.8.10. If one is willing to tolerate a small amount of set-theory, Σ in type theory
behaves like the disjoint union of sets

∐
𝑥∈𝑋𝑌𝑥 whereas ∃ in logic is more akin to ordinary

union
⋃
𝑥∈𝑋 𝑌𝑥 and, in particular, the latter ‘erases’ direction information about which

𝑥 was chosen whereas this is preserved directly with the former. This can be formally
justified through the set model discussed in Section 3.5. ⋄

2.8.3 Universes of propositions

We have already noted that U𝑖 is not a proposition, but there is still a bit more to say
about the interactions between U𝑖 and propositions. In particular, it is frequently useful to
have a certain “subtype” Ω𝑖 of U𝑖 whose elements are codes of only those types which are
propositions. For instance, with Ω𝑖 we can express the type of binary relations on natural

15The authors are grateful to Andrew Swan for explaining a proof of this fact.

(2025-05-02) Propositions and universes of propositions (draft) 72

numbers Nat → Nat → Ω𝑖 . A universe of propositions allows us to also more concisely
express our results around Π and Σ: they can be seen as results proving that Ω𝑖 is closed
under dependent products and dependent sums.

There are several different ways one may define such a universe of propositions, but
the basic “API” for any such universe may be summarized as follows:

• A type Ω

• A family of types Prf (𝜙) where 𝜙 : Ω

• A (necessarily unique) witness which ensures that Prf (𝜙) is a proposition for every
𝜙 : Ω.

Notation 2.8.11. We have chosen the notation Prf (𝜙) as elements of this type should be
viewed as proofs of 𝜙 .

In summary, Ω is an ordinary universe as we considered in Section 2.6 (see Nota-
tion 2.6.4) and we require that all the codes present in Ω happen to denote propositions.
We will consider two particular ways of implementing this API. The first is definable
entirely within extensional type theory and does not require us to extend the system
in any way. The second does require adding new rules to ETT but it also significantly
increases the expressivity of the type theory, allowing us to define ∃ and other previously
out-of-reach operations.

The definable universe of propositions. Let us begin with the simpler universe of
propositions which we may define purely internally to type theory. We begin with the
observation that the meta-theoretic statement “the type Γ ⊢ 𝐴 type is a proposition” can,
in fact, be internalized as a proposition:

Theorem 2.8.12. Γ ⊢ 𝐴 type is a proposition if and only if the following type is inhabited:

Γ ⊢ isProp𝐴 B Π(𝐴,Π(𝐴[p], Eq(𝐴[p2], q [p], q))) type

In informal notation: isProp𝐴 B (𝑎, 𝑏 : 𝐴) → Eq(𝐴, 𝑎, 𝑏). Moreover, any two elements of
isProp𝐴 are equal (i.e., isProp𝐴 is always a proposition).

Proof. Wenote that Γ ⊢ isProp𝐴 type is inhabited just when Γ.𝐴.𝐴[p] ⊢ Eq(𝐴[p2], q [p], q) type.
This is exactly the definition of a proposition after an application of equality reflection.

For the second part of this theorem, we note that by Lemma 2.8.7 it suffices to show
that Eq(𝐴[p2], q [p], q) is a proposition, which in turn follows from Lemma 2.8.6. □

(2025-05-02) Propositions and universes of propositions (draft) 73

With isProp to hand, we can define a collection of universes of propositions Γ ⊢ Ω𝑖 type
and Γ.Ω𝑖 ⊢ Prf typewhich contains the subset of codes in U𝑖 which decode to propositions:

Γ ⊢ Ω𝑖 B Σ(U𝑖, isPropEl (𝐴)) type Γ.Ω𝑖 ⊢ Prf𝑖 B El𝑖 (fst(q)) type

In particular, if 𝜙 : Ω𝑖 then Prf𝑖 (𝜙) is a proposition in light of Theorem 2.8.12 and snd(𝜙).
At this point, we have a repertoire of different propositions along with a hierarchy

of universes of propositions. In some sense, we have given a lightning fast account of
Sections 2.4 and 2.6 but restricted to propositions. Of course, this has moved us no closer
to our goal of studying the axiom of choice: we have already remarked that ∃ was not
definable in extensional type theory and we have added nothing new to the theory.

We now turn to a universe of propositions which requires extending type theory.
Roughly, instead of a hierarchy of universes Ω𝑖 , we shall extend type theory with a single
universe of propositions Ω which collapses the entire hierarchy.

2.8.4 An impredicative universe of propositions

The reader may expect some complications with constructing a single universe which
classifies all propositions. After all, when considering a type of types, we ran into size
issues (Girard’s paradox) which forced us to consider a hierarchy of universes U0,U1,
Surprisingly, this not an issue for propositions and one may either choose the predicative
approach and have a hierarchy of universes (Ω𝑖, Prf𝑖) as in the previous subsection or the
impredicative approach with a single universe (Ω, Prf) with a code for every proposition
within type theory.

To give some intuition as to why this is not immediately contradictory, observe that no
matter how we arrange the theory, unless Void and Unit are to be identified there must
be multiple distinct propositions. Accordingly, the type of all propositions has distinct
elements and so is not itself a proposition. This alone prevents the equivalent of U : U.

Both the predicative and impredicative approaches have pros and cons. A single
impredicative universe of propositions is a powerful extension to type theory and it is
essentially mandatory if one wishes to formalize certain areas of mathematics in type
theory (for instance, point-set topology, lattice theory, or similar). On the other hand,
it substantially complicates the theory and a good deal of metatheory of type theory
(Chapter 3) becomes exponentially more difficult. On the contrary, we have already seen
that a predicative hierarchy of universes of propositions does not require us to extend type
theory at all. In fact, both predicative and impredicative universes of propositions appear
in real-world proof assistants. For instance, Agda [Agda] features a predicative hierarchy
of universes of propositions while Coq [Coq] has an impredicative universe.

Notation 2.8.13. The terms predicative and impredicative originate in philosophy and
logic. Roughly, a construction is said to be impredicative if it may quantify over itself

(2025-05-02) Propositions and universes of propositions (draft) 74

during the process of its construction while it is predicative if this is disallowed. In our
situation, it will be possible to form codes within impredicative universe of propositions
Ω which denote e.g., Π(Ω, . . .) and therefore clearly “quantify over Ω”. However, it is
perhaps best to simply accept (im)predicative as purely technical terms, as their meaning
in philosophy and logic is neither entirely precise nor consistent.

Remark 2.8.14. The reader familiar with System F has already encountered something
akin to an impredicative universe. In the polymorphic 𝜆-calculus, ∀𝛼. 𝜏 allows 𝛼 to range
over all types including ∀𝛼. 𝜏 itself. This flexibility enables so-called Church encodings
of various types such as nat B ∀𝛼. 𝛼 → (𝛼 → 𝛼) → 𝛼 and it is behind our eventual
construction of ∃. In fact, one can even consider impredicative universes of types—though
these are much more complex—and adapt Church encodings to this setting with additional
effort [Geu01; AFS18]. ⋄

Let us now turn to the nuts and bolts of defining impredicative universe of propositions.
As ever when adding new connectives to type theory, we should be mindful of Slogan 2.5.3.
For expediency, we will begin by specifying Ω through inference rules and defer the
statement of its mapping-in property to Exercise 2.42.

We begin with the formation and elimination rules:

⊢ Γ cx

Γ ⊢ Ω type

Γ ⊢ 𝜙 : Ω

Γ ⊢ Prf (𝜙) type
Γ ⊢ 𝜙 : Ω Γ ⊢ 𝑥0, 𝑥1 : Prf (𝜙)

Γ ⊢ 𝑥0 = 𝑥1 : Prf (𝜙)

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝜙 : Ω

Δ ⊢ Prf (𝜙) [𝛾] = Prf (𝜙 [𝛾]) type
Δ ⊢ 𝛾 : Γ

Δ ⊢ Ω [𝛾] = Ω type

In other words, (Ω, Prf) forms some universe of propositions. It remains, however,
to populate this universe. We shall do so with a single and exceptionally strong rule,
reminiscent of the inconsistent code operation we discussed in Section 2.6:

Γ ⊢ 𝐴 type Γ.𝐴.𝐴[p] ⊢ q [p] = q : 𝐴[p2]
Γ ⊢ code(𝐴) : Ω

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴 type Γ.𝐴.𝐴[p] ⊢ q [p] = q : 𝐴[p2]
Δ ⊢ code(𝐴) [𝛾] = code(𝐴[𝛾]) : Ω

Γ ⊢ 𝐴 type Γ.𝐴.𝐴[p] ⊢ q [p] = q : 𝐴[p2]
Γ ⊢ Prf (code(𝐴)) = 𝐴 type

Γ ⊢ 𝜙 : Ω

Γ ⊢ 𝜙 = code(Prf (𝜙)) : Ω

We can equivalently specify this type using a mapping-in property:

(2025-05-02) Propositions and universes of propositions (draft) 75

Exercise 2.42. Construct a natural isomorphism between Tm(Γ,Ω) and {Γ ⊢ 𝐴 type |
𝐴 is a proposition}. Conclude that Ω can be specified using Slogan 2.4.4.

Advanced Remark 2.8.15. Ω is almost a subobject classifier. The only obstruction is the
equality of elements on Ω: if we wish for it to be a subobject classifier we could add an
additional principle stating that logically equivalent propositions have equal codes in Ω.
We shall return to this point in Section 5.2 under the name propositional univalence. ⋄

Remark 2.8.16. We have chosen a very strong formulation of Ω as it is the simplest to
specify. Often one will encounter an impredicative universe of propositions which is
essentially just closed under ∀. This is what is done in e.g., Coq [Coq]. ⋄

We are now almost ready to deliver on our promise that the addition of Ω allows us to
construct Γ ⊢ exists(𝐴,𝜙) : Ω for any Γ ⊢ 𝐴 type and Γ.𝐴 ⊢ 𝜙 : Ω which faithfully encodes
∃. Prior to doing so, however, we must explain “faithfully encodes” ought to mean i.e.,
rules we expect this proposition to satisfy. We therefore take a slight detour in order to
discuss an adaptation of Slogan 2.5.3 to apply to propositions as well.

Interlude: mapping in and mapping out for propositions Previously, we have an-
swered questions about what rules ought to govern a type using Slogan 2.5.3. This
same principle can be used to give a systematic account of what rules ought to govern
Prf (exists(𝑐, 𝜙)) along with other propositions.

The crucial change is that while types are determined by mapping into or mapping
out of other types, propositions are determined by their relation to other propositions. For
instance, we may specify exists by means of the following mapping out property:

1. Γ ⊢ Prf (exists(𝑐, 𝜙)) type is a proposition

2. If Γ ⊢ 𝐴 type is a proposition then there should be natural isomorphism of the
following shape:

Tm(Γ.Prf (exists(𝑐, 𝜙)), 𝐴[p]) � Tm(Γ.El𝑖 (𝑐).Prf (𝜙), 𝐴[p2])

Several points are worth emphasizing about this specification. First, unlike other
mapping out properties we have seen in Section 2.5, Γ ⊢ 𝐴 type is not allowed to depend
on Prf (exists(𝑐, 𝜙)). This is not the weakness it might first appear: Prf (exists(𝑐, 𝜙)) is
a proposition and so all its inhabitants are equal. It is even possible to derive the more
complex version of the mapping-out property where Γ.Prf (exists(𝑐, 𝜙)) ⊢ 𝐴 type from the
above principle using e.g., Σ. Accordingly, we have opted for the simpler version given
above for clarity.

Second, it is perhaps surprising that exists intuitively parallels Σ and yet has a mapping-
out rather than a mapping-in property. This is a consequence of the fact that Σ can be

(2025-05-02) Propositions and universes of propositions (draft) 76

specified by either a mapping-in or mapping-out property. We opted for the former as it is
more convenient, but we could have just as well specified it by a mapping-out property.
On the other hand, exists does not enjoy this dual character and has only the mapping-out
property that we have specified above. See the final paragraph of Remark 2.5.1 for a more
technical discussion of this point.
Should we add an exercise or something about this symmetry for sigma? Might go
well in 2.5.4?

We can turn these properties into a pair of rules governing exists just as was done in
Sections 2.4 and 2.5. By doing so, we obtain the following pair of rules:

Γ ⊢ 𝑐 : U𝑖 Γ.El𝑖 (𝑐) ⊢ 𝜙 : Ω Γ ⊢ 𝑎 : El𝑖 (𝑐) Γ ⊢ 𝑥 : Prf (𝜙 [id.𝑎])
Γ ⊢ ex(𝑎, 𝑥) : Prf (exists(𝑐, 𝜙))

✎

Γ ⊢ 𝑐 : U𝑖 Γ.El𝑖 (𝑐) ⊢ 𝜙 : Ω Γ ⊢ 𝐴 type Γ.𝐴.𝐴[p] ⊢ q [p] = q : 𝐴[p2]
Γ.El𝑖 (𝑐).Prf (𝜙) ⊢ 𝑎 : 𝐴[p2] Γ ⊢ 𝑥 : Prf (exists(𝑐, 𝜙))

Γ ⊢ split(𝑥, 𝑎) : 𝐴
✎

We note that there is no need to formulate either naturality, 𝛽 , or 𝜂 laws for these rules:
all of them deal with elements of propositions and thus all possible equations governing
them are automatically satisfied. This story can be played out to specify all propositional
versions of all the connectives of type theory. See, for instance, Gilbert et al. [Gil+19].

It is possible to connect the rules for exists to those used to structure ∃ in logic. Indeed,
the introduction and elimination rules there are typically given as follows:

Γ | ∃𝑥 : 𝜏 . 𝜙 ⊢ 𝜓
Γ, 𝑥 : 𝜏 | 𝜙 ⊢ 𝜓

Γ, 𝑥 : 𝜏 | 𝜙 ⊢ 𝜓
Γ | ∃𝑥 : 𝜏 . 𝜙 ⊢ 𝜓

Up to differences in notation and the fact that the type-theoretic rules “bake-in” a substitu-
tion, the rules mirror each other as directly as those for e.g., implication and functions.

Defining exists using Ω

Notation 2.8.17. For the remainder of this section, we shall use informal notation for
type theory to increase readability.

We now (finally) deliver on our promise.

Lemma 2.8.18. Given a type 𝐴 and 𝜙 : 𝐴 → Ω, there exists an element exists(𝐴,𝜙) : Ω
along with an isomorphism between the following types for all propositions 𝐵:

split : Prf (exists(𝐴,𝜙)) → 𝐵 � (𝑎 : 𝐴) → Prf (𝜙 𝑎) → 𝐵

We may then recover ex as split−1(𝜆𝑧 → 𝑧).

(2025-05-02) Propositions and universes of propositions (draft) 77

Remark 2.8.19. This proof builds on the same ideas as classical Church-encodings from
the untyped lambda calculus or System F: using quantification over Ω, we may define an
element of Ω directly from its mapping-out property. ⋄

Proof. We shall define exists such that it satisfies the desired isomorphism more-or-less
by definition. Explicitly, consider the following type:

𝑋 = (𝜓 : Ω) ((𝑎 : 𝐴) → (Prf (𝜙 𝑎)) → Prf (𝜓)) → Prf (𝜓)

By virtue of Lemma 2.8.7, 𝑋 is a proposition: it is a dependent product whose target is
a proposition. Accordingly, we may form exists(𝐴,𝜙) = code(𝑋). It remains to show that
this satisfies the expected isomorphism for all propositions 𝐵:

(Prf (exists(𝐴,𝜙)) → 𝐵) � ((𝑎 : 𝐴) (Prf (𝜙 𝑎)) → 𝐵)

We can replace 𝐵 in the above with Prf (𝜉) where 𝜉 = code(𝐵). In this case, we are left to
show that the following two types are isomorphic:

𝑍0 = ((𝜓 : Ω) ((𝑎 : 𝐴) (Prf (𝜙 𝑎)) → Prf (𝜓)) → Prf (𝜓)) → Prf (𝜉)
𝑍1 = (𝑎 : 𝐴) (Prf (𝜙 𝑎)) → Prf (𝜓)

We construct the necessary functions as follows:

𝑓 : 𝑍0 → 𝑍1
𝑓 𝑧0 𝑎 𝑥 = 𝑧0(𝜆𝜓 𝑘. 𝑘 𝑎 𝑥)

𝑔 : 𝑍1 → 𝑍0
𝑓 𝑧1 𝑘 = 𝑘 𝜉 𝑧1

These functions are automatically inverse to each other: both𝑍0 and𝑍1 are propositions
and so any function 𝑍𝑖 → 𝑍𝑖 is the identity function. □

Lemma 2.8.20. Given two propositions 𝜙,𝜓 : Ω, there exists a proposition or(𝜙,𝜓) : Ω such
that the following isomorphism holds for all propositions 𝐵:

(Prf (or(𝜙,𝜓)) → 𝐵) � (Prf (𝜙) → 𝐵) × (Prf (𝜓) → 𝐵)

Proof. We define or(𝜙,𝜓) to be exists(Bool, 𝜆𝑏 → if (𝑏, 𝜙,𝜓)). All desired properties then
follow from Lemma 2.8.18. □

(2025-05-02) Propositions and universes of propositions (draft) 78

Exercise 2.43. Give a direct construction of or(𝜙,𝜓) using the same techniques to con-
struct exists.

Remark 2.8.21. The reader might guess that Prf (or𝜙,𝜓) and Prf (𝜙) + Prf (𝜓) never
coincide. In fact, however, they are equivalent in one important situation: when 𝜙 and
𝜓 are disjoint propositions i.e., Prf (𝜙) × Prf (𝜓) → Void. This can be quite important in
some situations: Prf (𝜙) + Prf (𝜓) has a mapping out principle with respect to all types,
while the elimination principle for or is restricted to propositions. ⋄

We shall end our discussion of universes of propositions here. In Section 5.1, we shall
resume this thread in the context of propositional univalence.

2.8.5 Logic in type theory

Finally, we have developed the tools necessary to state the “proper” axiom of choice within
type theory and we finally ask the obvious question: does this principle hold in type
theory? We shall not keep the reader in suspense:

Theorem 2.8.22. Let us denote by LogicalChoice𝑖 the unique element of Ω such that
Prf (LogicalChoice𝑖) is equal to the following type:

(𝐴𝐵 : U𝑖) (𝑃 : 𝐴 × 𝐵 → Ω)
→ ((𝑎 : 𝐴) → Prf (exists(𝐵, 𝜆𝑏 → 𝑃 (𝑎, 𝑏))))
→ Prf (exists(𝐴 → 𝐵 𝜆𝑓 → code((𝑎 : 𝐴) → Prf (𝑃 (𝑎, 𝑓 (𝑎))))))

Neither of the following types are inhabited within type theory:

1. Prf (LogicalChoice)

2. Prf (LogicalChoice) → Void

In other words, logical choice is independent of type theory (see Section 4.3)

A proof of this theorem is out-of-scope for this book but briefly discussed in Section 6.5.
We might ask what sort of logical rules and principles are by propositions within type

theory. The answer is those of constructive higher-order logic. That is, logic without the
law of the excluded middle (LEM), the axiom of choice, or similar principles. We emphasize
that type theory does not refute these principles: it is perfectly consistent to postulate
LEM in type theory but it is just as consistent to postulate its negation:

Theorem 2.8.23. Neither of the following types are inhabited within type theory:

1. (𝜙 : Ω) → Prf (or(𝜙, code(𝜙 → Void)))

(2025-05-02) Propositions and universes of propositions (draft) 79

2. ((𝜙 : Ω) → Prf (or(𝜙, code(𝜙 → Void)))) → Void

In other words, we can neither prove nor refute 𝜙 or ¬𝜙 for all 𝜙 .

Perhaps more surprisingly, type theory is not only agnostic to the validity of classical
statements like LEM and choice. It is also consistent with principles which are classically
false. For example, type theory is consistent with “Church’s law”:

(𝑓 : Nat → Nat) → ∃𝑛 : Nat. “𝑛 is the code of a Turing machine computing 𝑓 ”

To see that this contradicts LEM, observe that with LEM we may write a function sending
a Turing machine to a boolean indicating whether or not it halts. Such a function can
never be tracked by another Turing machine.

Various other anticlassical principles can be consistently added to type theory e.g., the
statement that all functions from the real numbers to the real numbers are continuous. This
flexibility can be used to shape type theory into a powerful domain-specific language for a
particular sort of reasoning. This approach to mathematics is often referred to synthetic
mathematics. While we shall not explore it further in this book, in Chapter 5 we will
explore a particular application of this philosophy, namely homotopy type theory.
Add a few more examples of independent propositions

(2025-05-02) Propositions and universes of propositions (draft) 80

Further reading

The literature on type theory is unfortunately neither notationally nor conceptually
coherent, particularly regarding syntax and how it is defined. We summarize a number of
important references that most closely match the perspective outlined in this book; note
however that many references will agree in some ways and differ in others.

Historical references Nearly all of the ideas in this chapter can be traced back in some
form to the philosopher Per Martin-Löf, whose collected works are available in the GitHub
repository michaelt/martin-lof. Over the decades, Martin-Löf has considered many
different variations on type theory; the closest to our presentation are his notes on substitu-
tion calculus [Mar92] and the “Bibliopolis book” presenting what is now called extensional
type theory [Mar84b]. For a detailed philosophical exploration of the judgmental method-
ology that types internalize judgmental structure, see his “Siena lectures” [Mar96]. Finally,
the book Programming in Martin-Löf’s Type Theory [NPS90] remains one of the best
pedagogical introductions to type theory as formulated in Martin-Löf’s logical framework.

Syntax of dependent type theory The presentation of type theory most closely aligned
to ours can be found in the second author’s Ph.D. thesis [Gra23, Chapter 2]. Another
valuable reference is Hofmann’s Syntax and Semantics of Dependent Types [Hof97, Sections
1 and 2], which as the title suggests, presents the syntax of type theory and connects it
to semantical interpretations. Hofmann is very careful in his definition of syntax, but
the technical details of capture-avoiding substitution and presyntax have largely been
supplanted by subsequent work on logical frameworks, so we suggest that readers gloss
over these technical details.

Categorical semantics The book Categories for Types [Cro94] is a gentle introduction
to the categorical semantics of the simply-typed lambda calculus and related theories;
Castellan, Clairambault, and Dybjer [CCD21] discuss how to scale from such models to
categories with families [Dyb96], the categorical counterpart of the substitution calculus.
Readers can consult Hofmann [Hof97] for concrete examples of categories with families.
Finally, we recommendAwodey’s paper on natural models [Awo18] for amore categorically-
natural formulation of categories with families, as well as an excellent description of the
local universes strictification procedure for producing models of dependent type theory
from categories with enough structure [LW15].

Logical frameworks In this book we have attempted to largely sidestep the question
of what constitutes a valid collection of inference rules. The mathematics of syntax
can and has occupied entire books, but in short, the natural families of constants and

https://github.com/michaelt/martin-lof/

(2025-05-02) Propositions and universes of propositions (draft) 81

isomorphisms considered in this chapter can be formulated precisely in systems known
as logical frameworks. A good introduction to logical frameworks is the seminal work of
Harper, Honsell, and Plotkin [HHP93] on the Edinburgh Logical Framework, in which
object-level judgments can be encoded as meta-level types.

For logical frameworks better suited to defining dependent type theory in particular, we
refer readers to the generalized algebraic theories of [Car86] (or the tutorial on this subject
by Sterling [Ste19]), or to quotient inductive-inductive types [AK16; Dij17; KKA19; Kov22].
For logical frameworks specifically designed to accomodate the binding and substitution
of dependent type theory, we refer the reader to the Ph.D. theses of Haselwarter [Has21]
and Uemura [Uem21].

3Metatheory and implementation

In Chapter 2 we carefully defined Martin-Löf type theory as a formal mathematical object:
a kind of “algebra” of indexed sets (of types and terms) equipped with various operations.
We believe this perspective is essential to understanding both the what and the why of
type theory, providing both a precise definition that can be unfolded into inference rules,
as well as an explanation of what these rules intend to axiomatize.

This perspective is not, however, how most users of type theory interact with it. Most
users of type theory interact with proof assistants, software systems for interactively
developing and verifying large-scale proofs in type theory. Even when type theorists work
on paper rather than on a computer, many of the conveniences of proof assistants bleed
into their informal notation. Indeed, in Chapter 1 we used definitions, implicit arguments,
data type declarations, and pattern matching without a second thought.

Although this book focuses on theoretical rather than practical considerations, it is
impossible to discuss the design space of type theory without discussing the pragmatics
of proof assistants, as these have exerted a profound influence on the theory. Our goal
in this chapter is to explain how to square our mathematical notion of type theory with
(idealized) implementations1 of type theory, and to discover and unpack the substantial
constraints that the latter must place on the former.

In this chapter In Section 3.1 we axiomatize the core functionality of proof assistants
in terms of algorithmic elaboration judgments, and outline a basic implementation. In
Section 3.2 we continue to refine our implementation, taking a closer look at how the
equality judgments of type theory impact elaboration, and the metatheoretic properties
we need equality to satisfy. In Section 3.3 we consider how to extend our elaborator to
account for definitions. In Section 3.4 we discuss other metatheorems of type theory and
their relationship to program extraction. In Section 3.5 we construct a set-theoretic model
of extensional type theory and explore some of its metatheoretic consequences—including
a counterexample to one of the properties discussed in Section 3.2. Finally, in Section 3.6
we disprove a second important metatheoretic property, leading us to consider alternatives
to extensional type theory (Chapter 2) in Chapters 4 and 5.

Goals of the chapter By the end of this chapter, you will be able to:

• Explain why and how we define type-checking in terms of elaboration.
1At the end of this chapter, we provide some pointers to literature and implementations specifically

geared to readers interested in learning how to actually implement type theory.

82

(2025-05-02) A judgmental reconstruction of proof assistants 83

• Define the consistency, canonicity, normalization, and invertibility metatheorems,
and identify why each is important.

• Explain which metatheorems are disrupted by extensional equality, and sketch why.

3.1 A judgmental reconstruction of proof assistants

What exactly is the relation between Agda code (or the code in Chapter 1) and the type
theory in Chapter 2? Certainly, Coq and Agda—even without extensions—include many
convenience features that the reader would not be surprised to see omitted in a theoretical
description of type theory: implicit arguments, typeclasses/instance arguments, libraries,
reflection, tactics. . . For the moment we set aside not only these but even more fundamental
features such as data type declarations, patternmatching, and the ability towrite definitions,
in order to consider the simplest possible “Agda”: a type-checker. That is, our idealized
Agda takes as input two expressions 𝑒 and 𝜏 and accepts in the case that 𝑒 is a closed term
of closed type 𝜏 , and rejects if not.

Slogan 3.1.1. Proof assistants are fancy type-checkers.

Remark 3.1.2. For the purposes of this book, “proof assistant” refers only to proof as-
sistants in the style of Coq, Agda, and Lean. In particular, we will not discuss LCF-style
systems [GMW79] such as Nuprl [Con+85] and Andromeda [Bau+21], or systems not
based on dependent type theory, such as Isabelle [NPW02] or HOL Light [Har09]. ⋄

Convenience features of proof assistants are generally aimed at making it easier for
users to write down the inputs 𝑒 and 𝜏 , perhaps by allowing some information to be omitted
and reconstructed mechanically, or even by presenting a totally different interface for
building 𝑒 and 𝜏 interactively or from high-level descriptions. We start our investigation
with the most generous possible assumptions—in which 𝑒 and 𝜏 contain all the information
we might possibly need, including type annotations—and will find that type-checking is
already a startlingly complex problem.

Remark 3.1.3. The title of this section is an homage to A judgmental reconstruction of
modal logic [PD01], an influential article that reconsiders intuitionistic modal logic under
the mindset that types internalize judgmental structure. ⋄

3.1.1 Type-checking as elaboration

In Section 2.1 we emphasized that we do not assume that the types and terms of type
theory are obtained as the “well-formed” subsets of some collections of possibly-ill-formed

(2025-05-02) A judgmental reconstruction of proof assistants 84

Pretypes 𝜏 := (Pi 𝜏 𝜏) | (Sigma 𝜏 𝜏) | Unit | Uni | (El 𝑒) | · · ·
Preterms 𝑒 := (var 𝑖) | (lam 𝜏 𝜏 𝑒) | (app 𝜏 𝜏 𝑒 𝑒) | (pair 𝜏 𝜏 𝑒 𝑒) | (fst 𝜏 𝜏 𝑒) | · · ·
Indices 𝑖 := 0 | 1 | 2 | · · ·

Figure 3.1: Syntax of pretypes and preterms.

pretypes or preterms, nor do we even assume that they are obtained as “𝛽𝜂-equivalence
classes” of well-formed-but-unquotiented terms.

Instead, types and terms are just the elements of the sets Ty(Γ) and Tm(Γ, 𝐴), which are
defined in terms of each other and the sets Cx and Sb(Δ, Γ). When we write e.g. 𝜆 (𝑏), we
are naming a particular element of a particular set Tm(Γ,Π(𝐴, 𝐵)) obtained by applying
the “Π-introduction” map to 𝑏 ∈ Tm(Γ.𝐴, 𝐵); in particular, the values of Γ, 𝐴, 𝐵 should be
regarded as implicitly present, as they are in Appendix A where we write 𝜆Γ,𝐴,𝐵 (𝑏).

In Chapter 2 we reaped the benefits of this perspective, but it has come time to pay the
piper: what, then, is a type-checker supposed to take as input? We certainly cannot say
that a type-checker is given “a type 𝐴 and a term 𝑎” because this assumes that 𝐴 and 𝑎 are
well-formed. Type-checking cannot be a membership query; instead, it is a partial function
from concrete syntax to the sets of genuine types and terms. For an input expression to
“type-check” means that it names a type/term, not that it “is” one (which is a meta-type
error, as types/terms are mathematical objects, and input expressions are strings).

For simplicity we assume that the inputs to type-checkers are not strings but abstract
syntax trees (or well-formed formulas) conforming to the simple grammar in Figure 3.1.2
We call these semi-structured input expressions pretypes 𝜏 and preterms 𝑒 , and write them
as teletype s-expressions. In programming language theory, the process of mapping semi-
structured input expressions into structured core language terms is known as elaboration.

Slogan 3.1.4. Type-checkers for dependent type theory are elaborators.

Remark 3.1.5. What is the relationship between features of the concrete syntax of a proof
assistant, and features of the core syntax? According to Slogan 3.1.4, the concrete syntax
should be seen as “instructions” for building core syntax. These instructions may be very
close to or very far from that core syntax, but in either case, new user-facing features
should only induce new core primitives when they cannot be (relatively compositionally)
accounted for by the existing core language. ⋄

Algorithmic judgments Elaborators are partial functions that recursively consume
pretypes and preterms (abstract syntax trees) and produce types and terms. In a real proof
assistant, types and terms are of course not abstract mathematical entities but elements of

2In other words, we only consider input expressions that successfully parse; expressions that fail to
parse (e.g., because their parentheses are mismatched) automatically fail to type-check.

(2025-05-02) A judgmental reconstruction of proof assistants 85

some data type, but for our purposes we will imagine an idealized elaborator that outputs
elements of Ty(Γ) and Tm(Γ, 𝐴). We present this elaborator not as functional programs
written in pseudocode, but as algorithmic judgments defined by inference rules. Unlike the
rules in Chapter 2, these rules are intended to define an algorithm, so we will take care to
ensure that any given elaboration judgment can be derived by at most one rule. (In other
words, we define our elaborator as a deterministic logic program.)

We have already argued that pretype elaboration should take as input a pretype 𝜏
and output a type 𝐴, but what about contexts? Just as well-formedness of closed types
(1 ⊢ Π(𝐴, 𝐵) type) refers to well-formedness of open types (1.𝐴 ⊢ 𝐵 type), it is perhaps
unsurprising that elaborating closed pretypes requires elaborating open pretypes. However,
we note that we do not need or want “precontexts”; we will only descend under binders
after successfully elaborating their pretypes. For example, to elaborate (Pi 𝜏0 𝜏1) we will
first elaborate 𝜏0 to the closed type 𝐴, and only then in context 1.𝐴 elaborate 𝜏1 to 𝐵.

Thus our two main algorithmic elaboration judgments are as follows:

1. Γ ⊢ 𝜏 type⇝ 𝐴 asserts that elaborating the pretype 𝜏 relative to ⊢ Γ cx succeeds and
produces the type Γ ⊢ 𝐴 type.

2. Γ ⊢ 𝑒 : 𝐴⇝ 𝑎 asserts that elaborating the preterm 𝑒 relative to ⊢ Γ cx and Γ ⊢ 𝐴 type
succeeds and produces the term Γ ⊢ 𝑎 : 𝐴.

In pseudocode, the first judgment corresponds to a partial function elabTy(Γ, 𝜏) = 𝐴
with the invariant that if ⊢ Γ cx and elabTy terminates successfully, then Γ ⊢ 𝐴 type.
Likewise, the second judgment is a partial function elabTm(Γ, 𝐴, 𝑒) = 𝑎 whose successful
outputs are terms Γ ⊢ 𝑎 : 𝐴.

Elaborating pretypes The rules for Γ ⊢ 𝜏 type⇝ 𝐴 are straightforward translations of
the type-well-formedness rules of Chapter 2. (When it is necessary to contrast algorithmic
and non-algorithmic rules, the latter are often referred to as declarative.)

Γ ⊢ 𝜏0 type⇝ 𝐴 Γ.𝐴 ⊢ 𝜏1 type⇝ 𝐵

Γ ⊢ (Pi 𝜏0 𝜏1) type⇝ Π(𝐴, 𝐵)
Γ ⊢ 𝜏0 type⇝ 𝐴 Γ.𝐴 ⊢ 𝜏1 type⇝ 𝐵

Γ ⊢ (Sigma 𝜏0 𝜏1) type⇝ Σ(𝐴, 𝐵)

Γ ⊢ Unit type⇝ Unit Γ ⊢ Uni type⇝ U

Γ ⊢ 𝑒 : U⇝ 𝑎

Γ ⊢ (El 𝑒) type⇝ El(𝑎)

3.1.2 Elaborating preterms: the problem of type equality

Elaborating preterms is significantly more fraught. But first, let us remind ourselves
of the process of type-checking (lam 𝜏0 𝜏1 𝑒) : 𝜏 . First, we attempt to elaborate the

(2025-05-02) A judgmental reconstruction of proof assistants 86

pretype 1 ⊢ 𝜏 type ⇝ 𝐶; if this succeeds, we then attempt to elaborate the preterm
1 ⊢ (lam 𝜏0 𝜏1 𝑒) : 𝐶 ⇝ 𝑐 . If this also succeeds, then the type-checker reports success,
having transformed the input presyntax to a well-formed term 1 ⊢ 𝑐 : 𝐶 .

Since lam is our presyntax for 𝜆, elaborating lam via 1 ⊢ (lam 𝜏0 𝜏1 𝑒) : 𝐶 ⇝ 𝑐 should
produce a term 𝑐 := 𝜆1,𝐴,𝐵 (𝑏) for some 𝐴, 𝐵,𝑏 determined by 𝜏0, 𝜏1, 𝑒 respectively. We
determine these by a series of recursive calls to the elaborator: first Γ ⊢ 𝜏0 type⇝ 𝐴, then
Γ.𝐴 ⊢ 𝜏1 type⇝ 𝐵, and finally Γ.𝐴 ⊢ 𝑒 : 𝐵⇝ 𝑏. Note that these steps must be performed
sequentially and in this order, because each step uses the outputs of the previous steps as
inputs: we elaborate 𝜏1 in a context extended by 𝐴, the result of elaborating 𝜏0, and we
elaborate 𝑒 at type 𝐵, the result of elaborating 𝜏1.

At the end we obtain Γ.𝐴 ⊢ 𝑏 : 𝐵, and thence by Π-introduction a term 1 ⊢ 𝜆1,𝐴,𝐵 (𝑏) :
Π1(𝐴, 𝐵) that should be the elaborated form of 𝑒 . But the elaborated form of 𝑒 is supposed
to have type 𝐶—the result of elaborating 𝜏! Thus before returning 𝜆1,𝐴,𝐵 (𝑏) we need to
check that 1 ⊢ 𝐶 = Π(𝐴, 𝐵) type. This is where “type-checking” actually happens: we have
seen that 𝜏 determines a real type and that 𝑒 determines a real term, but until this point
we have not actually checked whether “𝑒 has type 𝜏 .”

In pseudocode, we can define elaboration of (lam 𝜏0 𝜏1 𝑒) as follows:

elabTm(Γ,𝐶, (lam 𝜏0 𝜏1 𝑒)) =
let 𝐴 = elabTy(Γ, 𝜏0) in
let 𝐵 = elabTy(Γ.𝐴, 𝜏1) in
let 𝑏 = elabTm(Γ.𝐴, 𝐵, 𝑒) in
if (Γ ⊢ 𝐶 = ΠΓ (𝐴, 𝐵) type) then return 𝜆Γ,𝐴,𝐵 (𝑏) else error

or equivalently, in algorithmic judgment notation:

Γ ⊢ 𝜏0 type⇝ 𝐴 Γ.𝐴 ⊢ 𝜏1 type⇝ 𝐵 Γ.𝐴 ⊢ 𝑒 : 𝐵⇝ 𝑏 Γ ⊢ 𝐶 = Π(𝐴, 𝐵) type
Γ ⊢ (lam 𝜏0 𝜏1 𝑒) : 𝐶 ⇝ 𝜆Γ,𝐴,𝐵 (𝑏)

This will be the only rule that concludes Γ ⊢ 𝑒 : 𝐶 ⇝ 𝑐 for 𝑒 := (lam 𝜏0 𝜏1 𝑒), ensuring
that this rule “is the lam clause of elabTm,” so to speak. Elaboration of other introduction
forms will follow a similar pattern.
Exercise 3.1. Write the algorithmic rule for elaborating the preterm (pair 𝜏0 𝜏1 𝑒0 𝑒1).

Let us pause to make several remarks. First, note that our algorithm needs to check
judgmental equality of types Γ ⊢ 𝐶 = ΠΓ (𝐴, 𝐵) type. This step is, at least implicitly, part of
all type-checking algorithms for all programming languages: if we define a function of
type 𝐴 → 𝐵 that returns 𝑒 , we have to check whether the type of 𝑒 matches the declared
return type 𝐵. Sometimes this is as simple as checking the syntactic equality of two type
expressions, but often this is non-trivial, perhaps a subtyping check.

(2025-05-02) A judgmental reconstruction of proof assistants 87

In our present setting, checking type equality is extremely non-trivial. Suppose that
𝐶 := El(𝑐) and so we are checking Γ ⊢ El(𝑐) = Π(𝐴, 𝐵) type for Γ ⊢ 𝑐 : U. This type
equality depends on the entire equational theory of terms: we may need to “rewrite
along” arbitrarily many term equations before concluding Γ ⊢ 𝑐 = pi(𝑐0, 𝑐1) : U; this only
reduces the problem to Γ ⊢ Π(El(𝑐0), El(𝑐1)) = Π(𝐴, 𝐵) type for which it suffices to check
Γ ⊢ El(𝑐0) = 𝐴 type and Γ.𝐴 ⊢ El(𝑐1) = 𝐵 type, each of which may once again require
arbitrary amounts of computation. We will revisit this point in Section 3.2.1.

Secondly, note that we have assumed for now that the preterm (lam 𝜏0 𝜏1 𝑒) contains
pretype annotations 𝜏0, 𝜏1 telling us the domain and codomain of the Π-type. In practice, a
type-checker is essentially unusable unless it can reconstruct (most of) these annotations;
we describe this reconstruction process in Section 3.2.2.

Remark 3.1.6. Naïvely, one might think that including these annotations is the source
of our problem, because it forces us to compare the type 𝐶 computed from 𝜏 to the type
Π(𝐴, 𝐵) computed from the annotations 𝜏0, 𝜏1. This is not the case. If we omit 𝜏0, 𝜏1, then to
elaborate 𝑒 we must recover 𝐴 and 𝐵 from𝐶 , which upgrades “does Γ ⊢ 𝐶 = Π(𝐴, 𝐵) type?”
to the strictly harder question “do there exist 𝐴, 𝐵 such that Γ ⊢ 𝐶 = Π(𝐴, 𝐵) type?” In
addition, we will need to wonder whether this existence is unique: otherwise, it could be
that Γ.𝐴 ⊢ 𝑒 : 𝐵⇝ 𝑏 for some choices of 𝐴, 𝐵 but not others. ⋄

Elaborating elimination forms is not much harder than elaborating introduction forms.
To elaborate (app 𝜏0 𝜏1 𝑒0 𝑒1), we elaborate the pretype annotations Γ ⊢ 𝜏0 type⇝ 𝐴 and
Γ.𝐴 ⊢ 𝜏1 type⇝ 𝐵 in sequence, then the function Γ ⊢ 𝑒0 : Π(𝐴, 𝐵) ⇝ 𝑓 and its argument
Γ ⊢ 𝑒1 : 𝐴⇝ 𝑎 in either order, before finally checking that the type of the computed term
appΓ,𝐴,𝐵 (𝑓 , 𝑎), namely 𝐵 [id.𝑎], agrees with the expected type 𝐶 .

Γ ⊢ 𝜏0 type⇝ 𝐴 Γ.𝐴 ⊢ 𝜏1 type⇝ 𝐵

Γ ⊢ 𝑒0 : Π(𝐴, 𝐵) ⇝ 𝑓 Γ ⊢ 𝑒1 : 𝐴⇝ 𝑎 Γ ⊢ 𝐶 = 𝐵 [id.𝑎] type
Γ ⊢ (app 𝜏0 𝜏1 𝑒0 𝑒1) : 𝐶 ⇝ appΓ,𝐴,𝐵 (𝑓 , 𝑎)

Elaboration of other elimination forms follows a similar pattern. The only remaining
case is term variables (var 𝑖), which we have chosen to represent as de Bruijn indices. To
elaborate (var 𝑖) we check that the context has length at least 𝑖 + 1; if so, then it remains
only to check that the type of the variable q [p𝑖] agrees with the expected type.

Γ = Γ′.𝐴𝑖 .𝐴𝑖−1. · · · .𝐴0 Γ ⊢ 𝐶 = 𝐴𝑖 [p𝑖+1] type
Γ ⊢ (var 𝑖) : 𝐶 ⇝ q [p𝑖]

In the above rule, our algorithm needs to check judgmental equality of contexts, and to
project Γ and𝐴 from Γ.𝐴. Unlike for type equality, we have no rules generating non-trivial
context equalities, so structural induction on contexts is perfectly well-defined.

(2025-05-02) Metatheory for type-checking 88

Remark 3.1.7. It is straightforward to extend our concrete syntax to support named
variables: in our elaboration judgments, we replace Γ with an environment Θ that is a list of
pairs of genuine types with the “surface name” of the corresponding term variable. Every
environment determines a context by forgetting the names; in the variable elaboration
rule, we simply look up the de Bruijn index corresponding to the given name. ⋄

Exercise 3.2. Write the algorithmic rules for elaborating (fst 𝜏0 𝜏1 𝑒) and (snd 𝜏0 𝜏1 𝑒).

3.2 Metatheory for type-checking

In Section 3.1 we saw that we can reduce type-checking to the problem of deciding the
equality of types (at least, assuming that our input preterms have all type annotations).
Deciding the equality of types in turn requires deciding the equality of terms, particularly
in the presence of universes (Section 2.6.2). It is far from obvious that these relations are
decidable—in fact, as we will see in Section 3.6, they are actually undecidable for the theory
presented in Chapter 2—and proving their decidability relies on a difficult metatheorem
known as normalization. In this section, we continue our exploration of elaboration with
an emphasis on normalization and other metatheorems necessary for type-checking.

Remark 3.2.1. Recall from Section 2.1 that a metatheorem is just an ordinary theorem in
the ambient metatheory, particularly one concerning the object type theory. ⋄

Before we can discuss computability-theoretic properties of the judgments of type
theory, however, we must fix an encoding. We have taken pains to treat the rules of type
theory as defining abstract sets Ty(Γ) and Tm(Γ, 𝐴) equipped with functions (type and
term formers) satisfying various equations (𝛽 and 𝜂 laws), which is the right perspective for
understanding the mathematical structure of type theory. But to discuss the computational
properties of type theory it is essential to exhibit an effective encoding of types and terms
that is suitable for manipulation by a Turing machine or other model of computation:
Turing machines cannot take mathematical entities as inputs, and whether equality of
types is decidable can depend on how we choose to encode them!

This is analogous to the issue that arises in elementary computability theory when
formalizing the halting problem: we must agree on how to encode Turing machines
as inputs to other Turing machines, and we must ensure that this encoding is suitably
effective. It is possible to pick an encoding of computable functions that trivializes the
halting problem, at the expense of this encoding itself necessarily being uncomputable.

Returning to type theory, derivation trees of inference rules (e.g., as in Appendix A) turn
out to be a perfectly suitable encoding. That is, when discussing computability-theoretic
properties of types, terms, and equality judgments, we shall assume that each of these is
encoded by equivalence classes of closed derivation trees; for example, we encode Ty(Γ)

(2025-05-02) Metatheory for type-checking 89

by the set of derivation trees with root Γ ⊢ 𝐴 type for some 𝐴. (Just as there are many
Turing machines realizing any given function N→ N, there will be many derivation trees
encoding any given type 𝐴 ∈ Ty(Γ).) When we say “equality of types is decidable,” what
we shall mean is that “it is decidable whether two derivations encode the same type.” But
having fixed a convention, we will avoid belaboring the point any further.

3.2.1 Normalization and the decidability of equality

To complete the pretype and preterm elaboration algorithms presented in Section 3.1, it
remains only to show that type and term equality are decidable, which is equivalent to the
following normalization condition.

Remark 3.2.2. Type and term equality are automatically semidecidable because derivation
trees are recursively enumerable. That is, to check whether two types 𝐴, 𝐵 ∈ Ty(Γ) are
equal, we can enumerate every derivation tree of type theory, terminating if we encounter a
derivation of Γ ⊢ 𝐴 = 𝐵 type. Obviously, this is not a realistic implementation strategy. ⋄

Definition 3.2.3. A normalization structure for a type theory is a pair of computable,
injective functions nfTy : Ty(Γ) → N and nfTm : Tm(Γ, 𝐴) → N.

Definition 3.2.4. A type theory enjoys normalization if it admits a normalization structure.

The reader may find these definitions surprising: where did N come from, and where
is the rest of the definition? We have chosen N because it is a countable set with decidable
equality, but any other such set would suffice. In practice, one instead defines two sets of
abstract syntax trees TyNf, TmNfwith discrete equality, and constructs a pair of computable,
injective functions nfTy : Ty(Γ) → TyNf and nfTm : Tm(Γ, 𝐴) → TmNf. It is trivial to
exhibit computable, injective Gödel encodings of TyNf and TmNf, which when composed
with nfTy, nfTm exhibit a normalization structure in the sense of Definition 3.2.3.

As for Definition 3.2.3 being sufficient, the force of normalization is that it gives us
a decision procedure for type/term equality as follows: given 𝐴, 𝐵 ∈ Ty(Γ), 𝐴 and 𝐵 are
equal if and only if nfTy(𝐴) = nfTy(𝐵) in N. Asking for these maps to be computable
ensures that this procedure is computable; injectivity ensures that it is complete in the
sense that nfTy(𝐴) = nfTy(𝐵) implies𝐴 = 𝐵. The soundness of this procedure—that𝐴 = 𝐵

implies nfTy(𝐴) = nfTy(𝐵)—is implicit in the statement that nfTy is a function out of
Ty(Γ), the set of types considered modulo judgmental equality.
Warning 3.2.5. In Section 3.6 we shall see that extensional type theory does not admit a
normalization structure, but we will proceed under the assumption that the theory we
are elaborating satisfies normalization. In Chapter 4 we will see how to modify our type
theory to substantiate this assumption.

Assuming normalization, we can define algorithmic type and term equality judgments

(2025-05-02) Metatheory for type-checking 90

1. Γ ⊢ 𝐴 ⇔ 𝐵 type asserts that the types Γ ⊢ 𝐴 type and Γ ⊢ 𝐵 type are judgmentally
equal according to some decision procedure.

2. Γ ⊢ 𝑎 ⇔ 𝑏 : 𝐴 asserts that the terms Γ ⊢ 𝑎 : 𝐴 and Γ ⊢ 𝑏 : 𝐴 are judgmentally equal
according to some decision procedure.

as follows:

nfTy(𝐴) = nfTy(𝐵)
Γ ⊢ 𝐴 ⇔ 𝐵 type

nfTm(𝑎) = nfTm(𝑏)
Γ ⊢ 𝑎 ⇔ 𝑏 : 𝐴

We notate algorithmic equality differently from the declarative equality judgments
Γ ⊢ 𝐴 = 𝐵 type and Γ ⊢ 𝑎 = 𝑏 : 𝐴 to stress that their definitions are completely different,
even though (by our argument above) two types/terms are algorithmically equal if and
only if they are declaratively equal. We thus complete the elaborator from Section 3.1 by
replacing the “calls” to Γ ⊢ 𝐶 = Π(𝐴, 𝐵) type with calls to Γ ⊢ 𝐶 ⇔ Π(𝐴, 𝐵) type.

Remark 3.2.6. It may seem surprising that normalization is so difficult; why can’t algo-
rithmic equality just orient each declarative equality rule (e.g., fst(pair(𝑎, 𝑏)) ⇝ 𝑎) and
check whether the resulting rewriting system is confluent and terminating? Unfortunately,
while this strategy suffices for some dependent type theories such as the calculus of con-
structions [CH88], it is very difficult to account for judgmental 𝜂 rules. (What direction
should 𝑝 ↭ pair(fst(𝑝), snd(𝑝)) go? What about the 𝜂 rule of Unit, 𝑎↭ tt?) These rules
require a type-sensitive decision procedure known as normalization by evaluation, whose
soundness and completeness for declarative equality is nontrivial [ACD07; Abe13]. ⋄

Exercise 3.3. We argued that the existence of a normalization structure implies that
judgmental equality is decidable. In fact, this is a biimplication. Assume that definitional
equality is decidable, and construct from this a normalization structure. (Hint: some
classical reasoning is required, such as Markov’s principle or the law of excluded middle.)

Exercise 3.4. We have sketched how to use normalization to obtain a type-checking
algorithm. This, too, is a biimplication. Using Exercise 3.3, show that the ability to decide
type-checking implies that normalization holds.

3.2.2 Injectivity and bidirectional type-checking

We have seen how to define a rudimentary elaborator for type theory assuming that
normalization holds, but the preterms that we can elaborate (Figure 3.1) are quite verbose,
making our proof assistant more of a proof adversary. For instance, function application
(app 𝜏0 𝜏1 𝑒0 𝑒1) requires annotations for both the domain and codomain of the Π-type.

(2025-05-02) Metatheory for type-checking 91

Pretypes 𝜏 := (Pi 𝜏 𝜏) | (Sigma 𝜏 𝜏) | Unit | Uni | (El 𝑒) | · · ·
Preterms 𝑒 := (var 𝑖) | (chk 𝑒 𝜏) | (lam 𝑒) | (app 𝑒 𝑒) | (pair 𝑒 𝑒) | (fst 𝑒) | · · ·

Figure 3.2: Syntax of pretypes and preterms for a bidirectional elaborator.

These annotations are highly redundant, but it is far from clear how many of them
can be mechanically reconstructed by our elaborator, nor if there is a consistent strategy
for doing so. Users of typed functional programming languages like OCaml or Haskell
might imagine that virtually all types can be inferred automatically; unfortunately, this is
impossible in dependent type theory, for which type inference is undecidable [Dow93].

It turns out there is a fairly straightforward, local, and usable approach to type recon-
struction known as bidirectional type-checking [Coq96; PT00; McB18; McB19]. The core
insight of bidirectional type-checking is that for some preterms it is easy to reconstruct
or synthesize its type (e.g., if we know a function’s type then we know the type of its
applications), but for other preterms we must be given a type at which to check it (e.g., to
type-check a function we need to be told the type of its input variable).

By explicitly splitting elaboration into twomutually-defined algorithms—type-checking
and type synthesis—we can dramatically reduce type annotations. In fact, in Figure 3.2
we can see that our new preterm syntax has no type annotations whatsoever except
for a single annotation form (chk 𝑒 𝜏) that we will use sparingly. The ebb and flow of
information between terms and types—between checking and synthesis—leads to the
eponymous bidirectional flow of information that has proven easily adaptable to new type
theories. But when should we check, and when should we synthesize?

Slogan 3.2.7. Types are checked in introduction rules, and synthesized in elimination rules.

We replace our two algorithmic elaboration judgments Γ ⊢ 𝜏 type ⇝ 𝐴 and Γ ⊢ 𝑒 :
𝐴⇝ 𝑎 with three algorithmic judgments as follows:

1. Γ ⊢ 𝜏 ⇐ type ⇝ 𝐴 (“check 𝜏”) asserts that elaborating the pretype 𝜏 relative to
⊢ Γ cx succeeds and produces the type Γ ⊢ 𝐴 type.

2. Γ ⊢ 𝑒 ⇐ 𝐴 ⇝ 𝑎 (“check 𝑒 against 𝐴”) asserts that elaborating the (unannotated)
preterm 𝑒 relative to ⊢ Γ cx and a given type Γ ⊢ 𝐴 type succeeds with Γ ⊢ 𝑎 : 𝐴.

3. Γ ⊢ 𝑒 ⇒ 𝐴⇝ 𝑎 (“synthesize 𝐴 from 𝑒”) asserts that elaborating the (unannotated)
preterm 𝑒 relative to ⊢ Γ cx succeeds and produces both Γ ⊢ 𝐴 type and Γ ⊢ 𝑎 : 𝐴.

The first two judgments, Γ ⊢ 𝜏 ⇐ type⇝ 𝐴 and Γ ⊢ 𝑒 ⇐ 𝐴⇝ 𝑎, are similar to our
previous judgments; when elaborating a preterm we are given a context and a type at
which to check that preterm. In the third judgment, Γ ⊢ 𝑒 ⇒ 𝐴⇝ 𝑎, we are also given

(2025-05-02) Metatheory for type-checking 92

a preterm and a context, but we output both a term and its type. The arrows are meant
to indicate the direction of information flow: when checking 𝑒 ⇐ 𝐴 we are given 𝐴 and
using it to elaborate 𝑒 , but when synthesizing 𝑒 ⇒ 𝐴 we are producing 𝐴 from 𝑒 .

The rules for Γ ⊢ 𝜏 ⇐ type⇝ 𝐴 are the same as those for Γ ⊢ 𝜏 type⇝ 𝐴, except that
they reference the new checking judgment Γ ⊢ 𝑒 ⇐ 𝐴⇝ 𝑎 instead of Γ ⊢ 𝑒 : 𝐴⇝ 𝑎. But
for each old Γ ⊢ 𝑒 : 𝐴⇝ 𝑎 rule, we must decide whether this preterm should be checked
or synthesized, and if the latter, how to reconstruct the type.

The easiest case is the variable (var 𝑖). Elaboration always takes place with respect to
a context which records the types of each variable, so it is easy to synthesize the variable’s
type. Notably, unlike in our previous variable rule, we do not need to check type equality!

Γ = Γ′.𝐴𝑖 .𝐴𝑖−1. · · · .𝐴0

Γ ⊢ (var 𝑖) ⇒ 𝐴𝑖 [p𝑖+1] ⇝ q [p𝑖]

Next, let us consider the rules for Π-types. According to Slogan 3.2.7, the introduction
form (lam 𝑒) should be checked. As in Section 3.1, to check Γ ⊢ (lam 𝑒) ⇐ 𝐶 ⇝ 𝜆 (𝑏) we
must recursively check the body of the lambda, Γ.𝐴 ⊢ 𝑒 ⇐ 𝐵⇝ 𝑏. But where do 𝐴 and 𝐵
come from? (Last time, we elaborated them from lam’s annotations.) We might imagine
that we can recover 𝐴 and 𝐵 from the given type 𝐶 ,

Γ ⊢ 𝐶 ⇔ Π(𝐴, 𝐵) type Γ.𝐴 ⊢ 𝑒 ⇐ 𝐵⇝ 𝑏

Γ ⊢ (lam 𝑒) ⇐ 𝐶 ⇝ 𝜆 (𝑏)
!?

but this rule does not make sense as written; Γ ⊢ 𝐶 ⇔ 𝐷 type is an algorithm which takes
two types and returns “yes” or “no”, and we cannot use it to invent the types 𝐴 and 𝐵.

Worse yet, as foreshadowed in Remark 3.1.6, even if we can find 𝐴 and 𝐵 such that
Γ ⊢ 𝐶 ⇔ Π(𝐴, 𝐵) type, there is no reason to expect this choice to be unique. That is, it
could be that Γ ⊢ 𝐶 ⇔ Π(𝐴, 𝐵) type and Γ ⊢ 𝐶 ⇔ Π(𝐴′, 𝐵′) type both hold, but 𝐴 ≠ 𝐴′ (or
alternatively, 𝐴 = 𝐴′ and 𝐵 ≠ 𝐵′). If so, it is possible that 𝑒 elaborates with respect to one
of these choices but not the other, i.e., Γ.𝐴 ⊢ 𝑒 ⇐ 𝐵⇝ 𝑏 succeeds but Γ.𝐴′ ⊢ 𝑒 ⇐ 𝐵′⇝ ?
fails; even if both succeed, they will necessarily elaborate two different terms! We must
foreclose these possibilities in order for elaboration to be well-defined.

Definition 3.2.8. A type theory has injective Π-types if Γ ⊢ Π(𝐴, 𝐵) = Π(𝐴′, 𝐵′) type
implies Γ ⊢ 𝐴 = 𝐴′ type and Γ.𝐴 ⊢ 𝐵 = 𝐵′ type.

Definition 3.2.9. A type theory has invertible Π-types if it has injective Π-types and admits
a computable function which, given Γ ⊢ 𝐶 type, either produces the unique Γ ⊢ 𝐴 type and
Γ.𝐴 ⊢ 𝐵 type for which Γ ⊢ 𝐶 = Π(𝐴, 𝐵) type, or determines that no such 𝐴, 𝐵 exist.

Remark 3.2.10. That is, a type theory has injective Π-types if the type former ΠΓ :
(∑𝐴∈Ty(Γ) Ty(Γ.𝐴)) → Ty(Γ) is injective. A type theory has invertible Π-types if the

(2025-05-02) Metatheory for type-checking 93

image of ΠΓ is decidable and ΠΓ admits a (computable) partial inverse Π−1
Γ : Im(ΠΓ) →

(∑𝐴∈Ty(Γ) Ty(Γ.𝐴)). ⋄

Particularly in light of Remark 3.2.10, one can easily extend the terminology of injec-
tivity and invertibility to non-Π type formers.

Definition 3.2.11. If all the type constructors of a type theory are injective (resp., invert-
ible), we say that the type theory has injective (resp., invertible) type constructors.

Having injective or invertible type constructors does not follow from normalization.
(A type theory in which all empty types are equal may be normalizing but will not satisfy
injectivity.) In practice, however, having invertible type constructors is almost always an
immediate consequence of the proof of normalization. As we mentioned in Section 3.2.1,
normalization proofs generally construct abstract syntax trees TyNf, TmNf of “𝛽-short, 𝜂-
long” types and terms for which equality is both syntactic as well as sound and complete for
judgmental equality. Given a type Γ ⊢ 𝐶 type, we invert its head constructor by computing
nfTy(𝐶) ∈ TyNf, checking its head constructor in TyNf, and projecting its arguments.

Injectivity and invertibility are very strong conditions; function types in set theory are
not injective, nor are Π-types injective in extensional type theory.
Exercise 3.5. Give an example of three sets 𝑋,𝑌, 𝑍 such that 𝑋 � 𝑌 , but the set of
functions 𝑋 → 𝑍 is equal to the set of functions 𝑌 → 𝑍 .

Exercise 3.6. We will see in Section 3.5 that type theory admits an interpretation in which
closed types are sets. Exercise 3.5 shows that sets do not have injective Π-types, but these
two facts together do not imply that type theory lacks injective Π-types. Why not?

Warning 3.2.12. In Section 3.5 we shall see that extensional type theory does not have
injective type constructors, due to interactions between equality reflection and large
elimination or universes (Theorem 3.5.19). We will proceed under the assumption that the
theory we are elaborating has invertible type constructors, and in Chapter 4 we will see
how to modify our type theory to substantiate this assumption.

Completing our elaborator The force of having invertible Π-types is to have an algo-
rithm unPi which takes Γ ⊢ 𝐶 type and returns the unique pair of types 𝐴, 𝐵 for which
Γ ⊢ 𝐶 = Π(𝐴, 𝐵) type, or raises an exception if this pair does not exist. Using unPi we can

(2025-05-02) Metatheory for type-checking 94

repair our earlier attempt at checking (lam 𝑒), and define the synthesis rule for (app 𝑒0 𝑒1):
unPi(𝐶) = (𝐴, 𝐵) Γ.𝐴 ⊢ 𝑒 ⇐ 𝐵⇝ 𝑏

Γ ⊢ (lam 𝑒) ⇐ 𝐶 ⇝ 𝜆 (𝑏)

Γ ⊢ 𝑒0 ⇒ 𝐶 ⇝ 𝑓 unPi(𝐶) = (𝐴, 𝐵) Γ ⊢ 𝑒1 ⇐ 𝐴⇝ 𝑎

Γ ⊢ (app 𝑒0 𝑒1) ⇒ 𝐵 [id.𝑎] ⇝ app(𝑓 , 𝑎)
This is the only elaboration rule for (lam 𝑒); in particular, there is no synthesis rule

for lambda, because we cannot elaborate 𝑒 without knowing what type 𝐴 to add to the
context. On the other hand, to synthesize the type of (app 𝑒0 𝑒1), we synthesize the type
of 𝑒0; if it is of the form Π(𝐴, 𝐵), we then check that 𝑒1 has type 𝐴 and then return 𝐵,
suitably instantiated. Putting these rules together, the reader might notice that we cannot
type-check (app (lam 𝑒0) 𝑒1), because this would require synthesizing (lam 𝑒0). In fact,
bidirectional type-checking cannot type-check 𝛽-redexes in general for this reason.

For this reason, we have included a type-annotation preterm (chk 𝑒 𝜏) which allows
users to explicitly annotate a preterm with a pretype. The type of this preterm is trivially
synthesizable: it is the result of elaborating 𝜏 ! In order to synthesize (chk 𝑒 𝜏), we simply
check 𝑒 against 𝜏 , and if successful, return that type.

Γ ⊢ 𝜏 ⇐ type⇝ 𝐴 Γ ⊢ 𝑒 ⇐ 𝐴⇝ 𝑎

Γ ⊢ (chk 𝑒 𝜏) ⇒ 𝐴⇝ 𝑎

In particular, we can type-check the 𝛽-redex from before, as long as we annotate the
lambda with its intended type: (app (chk (lam 𝑒0) (Pi 𝜏0 𝜏1)) 𝑒1).

The above rule allows us to treat a checkable term as synthesizable. The converse is
much easier: to check the type of a synthesizable term, we simply compare the synthesized
type to the expected type.

Γ ⊢ 𝑒 ⇒ 𝐵⇝ 𝑎 Γ ⊢ 𝐴 ⇔ 𝐵 type

Γ ⊢ 𝑒 ⇐ 𝐴⇝ 𝑎

As written, the above rule applies to any checking problem because its conclusion is
unconstrained. In our elaboration algorithm, we should only apply this rule if no other
rule matches. It is the final “catch-all” clause for situations where we have not one but two
sources of type information: on the one hand, we can synthesize 𝑒’s type directly, and on
the other hand, we are also given the type that 𝑒 is supposed to have. Interestingly, this is
the only rule where our bidirectional elaborator checks type equality Γ ⊢ 𝐴 ⇔ 𝐵 type.
Exercise 3.7. For each of (pair 𝑒0 𝑒1), (fst 𝑒), and (snd 𝑒), decide whether this preterm
should be checked or synthesized, then write the algorithmic rule for elaborating it. (Hint:
you must assume that Σ-types are invertible.)

(2025-05-02) A case study in elaboration: definitions 95

3.3★ A case study in elaboration: definitions

To round out our discussion of elaboration, we sketch how to extend our concrete syntax
and type-checker to account for definitions, a key part of any proof assistant. The input to
a proof assistant is typically not a single term 𝑒 : 𝜏 but a sequence of definitions

def1 : 𝜏1 = 𝑒1
def2 : 𝜏2 = 𝑒2
...

def𝑛 : 𝜏𝑛 = 𝑒𝑛

where every 𝑒 𝑗 and 𝜏 𝑗 can mention def𝑖 for 𝑖 < 𝑗 .
To account for this cross-definition dependency, we might imagine elaborating each

definition one at a time, adding a new (nameless) variable to the context for each successful
definition. Such a strategy might proceed as follows:

1. elaborate 1 ⊢ 𝜏1 ⇐ type⇝ 𝐴1 and 1 ⊢ 𝑒1 ⇐ 𝐴1 ⇝ 𝑎1; if successful,

2. elaborate 1.𝐴1 ⊢ 𝜏2 ⇐ type⇝ 𝐴2 and 1.𝐴1 ⊢ 𝑒2 ⇐ 𝐴2 ⇝ 𝑎2; if successful,

3. continue elaborating each 𝜏𝑖 and 𝑒𝑖 in context 1.𝐴1.𝐴𝑖−1 as above.

Unfortunately this algorithm is too naïve: if we treat def1 as a variable of type 𝐴1, the
type-checker will not have access to the definition def1 = 𝑎1. Consider:

const : Nat
const = 2

proof : const ≡ 2
proof = refl

Here const will successfully elaborate in the empty context to suc(suc(zero)) : Nat, but
the elaboration problem for proof will be 1.Nat ⊢ refl ⇐ q ≡ suc(suc(zero)) ⇝ ? ,
which will fail: an arbitrary variable of type Nat is surely not equal to 2!

Remark 3.3.1. For readers familiar with functional programming, we summarize the above
discussion as “let is no longer 𝜆,” in reference to the celebrated encoding of (let𝑥 = 𝑎 in𝑏) as
((𝜆𝑥 . 𝑏) 𝑎) often adopted in Lisp-family languages. This slogan is not unique to dependent
type theory; users of ML-family languages may already be familiar with this phenomenon
in light of the Hindley-Milner approach to typing let. ⋄

To solve this problem, we must somehow instrument our elaborator with the ability to
remember not only the type of a definition but its definiens as well. There are several ways

(2025-05-02) A case study in elaboration: definitions 96

to accomplish this; one possibility is to add a new form of definitional context extension
“Γ.(q := 𝑎 : 𝐴)” in which the variable is judgmentally equal to a given term 𝑎 [McB99;
SP94]. We opt for an indirect but less invasive encoding of this idea: taking inspiration
from Section 2.6.2, wherein we encoded “extending the context by a type variable” by
adding a new type U whose terms are codes for types, we will add a new type former,
singleton types, whose terms are elements of 𝐴 judgmentally equal to 𝑎.

Singleton types The singleton type of Γ ⊢ 𝑎 : 𝐴, written Γ ⊢ Sing(𝐴, 𝑎) type, is a type
whose elements are in bijection with the elements of Tm(Γ, 𝐴) that are equal to 𝑎, namely
the singleton subset {𝑎} [Asp95; SH06]. That is, naturally in Γ,

SingΓ : (∑𝐴∈Ty(Γ) Tm(Γ, 𝐴)) → Ty(Γ)
𝜄Γ,𝐴,𝑎 : Tm(Γ, Sing(𝐴, 𝑎)) � {𝑏 ∈ Tm(Γ, 𝐴) | 𝑏 = 𝑎}

In inference rules,

Γ ⊢ 𝑎 : 𝐴
Γ ⊢ Sing(𝐴, 𝑎) type

Γ ⊢ 𝑎 : 𝐴
Γ ⊢ in(𝑎) : Sing(𝐴, 𝑎)

Γ ⊢ 𝑠 : Sing(𝐴, 𝑎)
Γ ⊢ out(𝑠) : 𝐴

Γ ⊢ 𝑠 : Sing(𝐴, 𝑎)
Γ ⊢ out(𝑠) = 𝑎 : 𝐴

Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑠 : Sing(𝐴, 𝑎)
Γ ⊢ in(out(𝑠)) = 𝑠 : Sing(𝐴, 𝑎)

This definition may seem rather odd, but note that a variable of type Sing(𝐴, 𝑎) de-
termines a term out(q) : 𝐴[p] that is judgmentally equal to 𝑎[p], thereby allowing us to
extend contexts by “defined variables.”

Remark 3.3.2. In extensional type theory, we can define singleton types as pairs of an ele-
ment of𝐴 and a proof that this element equals 𝑎, i.e., Sing(𝐴, 𝑎) := Σ(𝐴, Eq(𝐴[p], q, 𝑎[p]))
with in(𝑎) := pair(𝑎, refl) and out(𝑠) := fst(𝑠). This encodingmakes essential use of equal-
ity reflection, but singleton types can also be added as a primitive type former to type
theories without equality reflection, without disrupting normalization. ⋄

Extending our elaborator We begin by introducing concrete syntax for lists of 𝑒 : 𝜏
pairs, which we call declarations:

Declarations ds := (decls (𝑒1 𝜏1) . . .)
Pretypes 𝜏 := · · ·
Preterms 𝑒 := · · ·

We extend our bidirectional elaborator as follows. First, we parameterize all our
judgments by a second context Θ that keeps track of which variables in Γ are ordinary

(2025-05-02) Metatheory for computing 97

“local” variables (introduced by types/terms such as Π or 𝜆), and which variables refer
to declarations. We write Θ as a list 1.decl.decl.local. . . . with the same length as Γ =

1.𝐴1.𝐴2.𝐴3. . . . , to indicate in this case that only the variable of type 𝐴3 is local. We will
replace the variable rule shortly; the remaining elaboration rules do not interact with Θ
except to extend Θ by local whenever a new variable is added to the context Γ.

Secondly, we introduce a new algorithmic judgment Γ;Θ ⊢ ds ok which type-checks a
list of declarations ds by elaborating the first declaration (𝑒1 𝜏1) in context Γ;Θ into the term
𝑎1 : 𝐴1, and then elaborating the remaining declarations in context Γ.Sing(𝐴1, 𝑎1);Θ.decl.

Γ;Θ ⊢ (decls) ok

Γ;Θ ⊢ 𝜏1 ⇐ type⇝ 𝐴1 Γ;Θ ⊢ 𝑒1 ⇐ 𝐴1 ⇝ 𝑎1
Γ.Sing(𝐴1, 𝑎1);Θ.decl ⊢ (decls (𝑒2 𝜏2) . . .) ok

Γ;Θ ⊢ (decls (𝑒1 𝜏1) (𝑒2 𝜏2) . . .) ok

Finally, we must edit our variable rule to account for whether a variable is an ordinary
local variable or refers to an earlier declaration; in the latter case, we must insert an extra
out(−) around the variable so it has the correct type 𝐴 rather than Sing(𝐴, 𝑎).

Γ = Γ′.𝐴𝑖 .𝐴𝑖−1. · · · .𝐴0
Θ = Θ′.local.𝑥𝑖−1. · · · .𝑥0

Γ;Θ ⊢ (var 𝑖) ⇒ 𝐴𝑖 [p𝑖+1] ⇝ q [p𝑖]

Γ = Γ′.𝐴𝑖 .𝐴𝑖−1. · · · .𝐴0
Θ = Θ′.decl.𝑥𝑖−1. · · · .𝑥0
unSing(𝐴𝑖) = (𝐴, 𝑎)

Γ;Θ ⊢ (var 𝑖) ⇒ 𝐴[p𝑖+1] ⇝ out(q [p𝑖])

In the second rule above, the rules of singleton types ensure that the elaborated term
out(q [p𝑖]) is judgmentally equal to 𝑎[p𝑖+1], where 𝑎 is the previously-elaborated definiens
of the corresponding declaration. Putting everything together, to check an input file
(decls (𝑒1 𝜏1) (𝑒2 𝜏2) . . .) we attempt to derive 1; 1 ⊢ (decls (𝑒1 𝜏1) (𝑒2 𝜏2) . . .) ok.

To sum up, we emphasize once again that although this book focuses on the core
calculi of proof assistants, it is impossible to have a satisfactory understanding of this topic
without paying heed to their surface languages as well; often, the best way to understand a
new surface language feature is to add a new feature in the core language to accommodate
it. Ideally, our alterations to the core language will be minor but will significantly simplify
elaboration.

3.4 Metatheory for computing

Our focus on type-checking has led us to normalization (Definition 3.2.4) and invertible
type constructors (Definition 3.2.11) as metatheorems essential to the implementation of
type theory. Notably, these metatheorems are stated with respect to types and terms in
arbitrary contexts; in this section, we will discuss two more important metatheorems that

(2025-05-02) Metatheory for computing 98

concern only terms in the empty context 1, namely consistency and canonicity. Neither of
these properties is needed to implement a type-checker, but as wewill see, they are essential
to the applications of type theory to logic and programming languages respectively.

Definition 3.4.1. A type theory is consistent if there is no closed term 1 ⊢ 𝑎 : Void.

Consistency is the lowest bar that a type theory must pass in order to function as
a logic. When we interpret types as logical propositions, Void corresponds to the false
proposition. By the rules of Void (Section 2.5.1), the existence of a closed term 1 ⊢ 𝑎 : Void
(an assumption-free proof of false) implies that every closed type has at least one closed
term 1 ⊢ absurd(𝑎) : 𝐴, or in other words, that every proposition has a proof. Thus
Definition 3.4.1 corresponds to logical consistency in the traditional sense.

At this point we pause to sketch the model theory of type theory. In Chapter 2 we were
careful to formulate the judgments of type theory as (indexed) sets, and the rules of type
theory as (dependently-typed) operations between these sets and equations between these
operations. As a result we can regard this data as a kind of generalized algebra signature,
in the sense of Section 2.5.3; in particular, we obtain a general notion of “implementation”
of, or algebra for, this signature—more commonly known as a model of type theory.

Definition 3.4.2. A model of type theory M consists of the following data:

1. a set CxM ofM-contexts,

2. for each Δ, Γ ∈ CxM , a set SbM (Δ, Γ) of M-substitutions from Δ to Γ,

3. for each Γ ∈ CxM , a set TyM (Γ) ofM-types in Γ, and

4. for each Γ ∈ CxM and 𝐴 ∈ TyM (Γ), a set TmM (Γ, 𝐴) ofM-terms of 𝐴 in Γ,

5. an emptyM-context 1M ∈ CxM ,

6. for each Γ ∈ CxM and 𝐴 ∈ TyM (Γ), anM-context extension Γ.M𝐴 ∈ CxM ,

7. for Γ ∈ CxM ,𝐴 ∈ TyM (Γ), and 𝐵 ∈ TyM (Γ.M𝐴), anM-Π type ΠM (𝐴, 𝐵) ∈ TyM (Γ),

8. and every other context, substitution, type, and term forming operation described
in Appendix A, all subject to all the equations stated in Appendix A.

Definition 3.4.3. Given two models of type theoryM,N , a homomorphism of models of
type theory 𝑓 : M → N consists of the following data:

1. a function Cx𝑓 : CxM → CxN ,

2. for each Δ, Γ ∈ CxM , a function Sb𝑓 (Δ, Γ) : SbM (Δ, Γ) → SbN (Cx𝑓 (Δ),Cx𝑓 (Γ)),

(2025-05-02) Metatheory for computing 99

3. for each Γ ∈ CxM , a function Ty𝑓 (Γ) : TyM (Γ) → TyN (Cx𝑓 (Γ)), and

4. for each Γ ∈ CxM and 𝐴 ∈ TyM (Γ), a function Tm𝑓 (Γ, 𝐴) : TmM (Γ, 𝐴) →
TmN (Cx𝑓 (Γ), Ty𝑓 (Γ) (𝐴)),

5. such that Cx𝑓 (1M) = 1N ,

6. and every other context, substitution, type, and term forming operation ofM is also
sent to the corresponding operation of N in a similar fashion.

Definition 3.4.4. The sets Cx, Sb(Δ, Γ), Ty(Γ), and Tm(Γ, 𝐴), equipped with the context,
substitution, type, and term forming operations described in Appendix A, tautologically
form a model of type theory T known as the syntactic model.

Theorem 3.4.5. The syntactic model T is the initial model of type theory; that is, for any
model of type theoryM, there exists a unique homomorphism of models T → M.

The notions of model and homomorphism are quite complex, but they are mechanically
derivable from the rules of type theory as presented in Appendix A, viewed as the signature
of a quotient inductive-inductive type (QIIT) [KKA19] or generalized algebraic theory
(GAT) [Car86]. The initiality of the syntactic model expresses the fact that type theory is
the “least” model of type theory, in the sense that it—by definition—satisfies all the rules
of type theory and no others; this mirrors the sense in which initiality of N with respect
to (1 + −)-algebras expresses that the natural numbers are generated by zero and suc(−).
The reader curious to learn more about how GATs/QIITs are defined and to see a proof
of Theorem 3.4.5 is encouraged to consult Bezem et al. [Bez+21] or Kaposi, Kovács, and
Altenkirch [KKA19].

Remark 3.4.6. Theorem 3.4.5 should be regarded as stating the soundness and complete-
ness of type theory with respect to this notion of model. The homomorphism T → M
expresses soundness: the syntax of type theory can be interpreted into any model M.
Conversely, the fact that the syntax constitutes a model T expresses completeness: any
result that holds for all models must in particular hold for T and thence for the syntax.

We note that Definitions 3.4.2 and 3.4.3 were carefully chosen so as to make soundness
and completeness nearly tautological, and indeed, this is evidenced by the fact that these
definitions and theorems can be mechanically derived by the general machinery of quotient
inductive-inductive types or generalized algebraic theories. Unimpressed readers may
commiserate with Girard’s “broccoli logic” critique of such semantics [Gir99]. ⋄

While the definition of a model does not lend much insight into type theory on its
own, the model theory of type theory is an essential tool in the metatheorist’s toolbox; to
prove any property of the syntactic model T , we simply produce a model of type theory

(2025-05-02) Metatheory for computing 100

M such that Theorem 3.4.5 implies the property in question. In the case of consistency, it
suffices to exhibit any non-trivial model of type theory whatsoever.

Theorem 3.4.7. Suppose there exists a model of type theoryM such that TmM (1M,VoidM)
is empty; then type theory is consistent.

Proof. We must show that from the existence of M and a term 𝑎 ∈ Tm(1,Void) we can
derive a contradiction. By Theorem 3.4.5, there is a homomorphism of models 𝑓 : T → M,
and in particular a function Tm𝑓 (1,Void) : Tm(1,Void) → TmM (1M,VoidM); applying
this function to 𝑎 produces an element of TmM (1M,VoidM), an empty set. □

In Section 3.5 we will see that there is a “standard” set-theoretic model S of extensional
type theory in which contexts are sets, types are families of sets indexed by their context,
and each type former is interpreted as the corresponding construction on indexed sets. As a
trivial corollary of this model and Theorem 3.4.7, we obtain the consistency of extensional
type theory. We postpone further details of the set-theoretic model to Section 3.5; interested
readers may also consult Castellan, Clairambault, and Dybjer [CCD21] and Hofmann
[Hof97] for tutorials on the categorical semantics of type theory.

Theorem 3.4.8 (Martin-Löf [Mar84b]). Extensional type theory is consistent.

Note that while an inconsistent type theory is useless as a logic, it may still be useful
for programming; indeed, many modern functional programming languages include some
limited forms of dependent types despite being inconsistent.
Exercise 3.8. Consider an unrestricted fixed-point operator fix : (𝐴 → 𝐴) → 𝐴, i.e.,

Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝑎 : 𝐴[p]
Γ ⊢ fix(𝑎) : 𝐴

✎

Show that adding such a rule results in an inconsistent type theory.

In fact, our final metatheorem is directly connected to the interpretation of type theory
as a programming language, although the connection may not be immediately apparent.

Definition 3.4.9. A type theory enjoys canonicity if for every closed 1 ⊢ 𝑏 : Bool either
1 ⊢ 𝑏 = true : Bool or 1 ⊢ 𝑏 = false : Bool, but not both.

Remark 3.4.10. Another common statement of canonicity is that for every closed 1 ⊢ 𝑛 :
Nat either 1 ⊢ 𝑛 = zero : Nat or 1 ⊢ 𝑛 = suc(𝑚) : Nat where 1 ⊢𝑚 : Nat. This statement
is not equivalent to Definition 3.4.9 in general, but in practice one only considers type
theories that satisfy both or neither, and proofs of one also imply the other en passant. ⋄

(2025-05-02) Metatheory for computing 101

Remark 3.4.11. Consistency states that Tm(1,Void) � ∅, whereas canonicity states that
Tm(1,Bool) � {★,★′} and Tm(1,Nat) � N. As discussed at length in Section 2.5, none of
these properties hold in Γ because variables can produce noncanonical terms at any type;
however, there are indeed no noncanonical closed terms of type Void, Bool, or Nat. ⋄

Theorem 3.4.12. Extensional type theory enjoys canonicity.

Frustratingly, although Theorem 3.4.12 was certainly known to researchers in the 1970s
and 1980s, the authors are unable to locate a precise reference from this time period. For a
modern proof of Theorem 3.4.12, we refer the reader to Sterling [Ste21, Chapter 4].

Like consistency—and normalization and invertibility of type constructors—canonicity
can be established by constructing a model of type theory, although the proofs of the
latter three metatheorems are considerably more involved than the proof of consistency.
Canonicity models interpret the contexts, substitutions, types, and terms of type theory as
pairs of that syntactic object along with additional data which explains how that object
may be placed in canonical form [Fre78; LS88; MS93; Cro94; Fio02; AK16; Coq19; KHS19].
Such models can be seen as displayed models of type theory over the syntactic model, and
are called gluing models in the categorical literature. The interested reader may consult
Lambek and Scott [LS88] for information on this perspective as it applies to higher-order
logic, and Crole [Cro94] for an application to simple type theory.
Exercise 3.9. In light of Remark 3.4.11, we might imagine that canonicity follows from
the existence of a model of type theoryM for which TmM (1M,BoolM) has exactly two
elements. This is not the case; why? (Why can’t we mimic the proof of Theorem 3.4.7?)

The force of canonicity is that it implies the existence of an “evaluation” algorithm that,
given a closed boolean 1 ⊢ 𝑎 : Bool, reports whether 𝑎 is equal to true or to false. There
are two ways to obtain such an algorithm; the first is to prove canonicity in a constructive
metatheory, so that the proof itself constitutes such an algorithm. The second is to appeal
to Markov’s principle: because derivation trees are recursively enumerable, a classical
proof of canonicity implies that the naïve enumeration algorithm will terminate.

In a direct sense, such an algorithm is indeed an interpreter for closed terms of type
theory. But canonicity also produces a much richer notion of computational adequacy
for type theory; giving this theory its due weight would take us too far afield, but we
will briefly sketch the highlights. By results in categorical realizability [Jac99; Oos08],
essentially every model of computation gives rise to a highly structured and well-behaved
category known as a realizability topos; these categories support models of dependent type
theory in which terms of type Bool are (equivalence classes of) boolean computations in
some idealized model of computation. For instance, in the effective topos [Hyl82], closed
terms of type Bool are equivalence classes of Turing machines modulo Kleene equivalence
(i.e., two machines are equivalent if they coterminate with the same value).

(2025-05-02) The set model of type theory 102

Because models of type theory in realizability topoi interpret terms in concrete (albeit
theoretical) notions of computation such as Turing machines or combinator calculi, they
can be regarded abstractly as compilers for type theory. Alternatively, they serve to justify
the program extraction mechanisms found in proof assistants such as Coq and Agda,
which associate to each term an OCaml or Haskell program whose observable behavior is
compatible with the definitional equality of type theory.

From this perspective, canonicity guarantees that definitional equality fully constrains
the observable behaviors of extracted programs: for any closed boolean 1 ⊢ 𝑏 : Bool, every
possible extract for𝑏 must evaluate to (the extract of) either true or false, as predetermined
by whether 𝑏 = true or 𝑏 = false. Note that it is still possible for two different extracts
of 𝑏 to have very different execution traces; canonicity only constrains their observable
behavior, considered modulo some appropriate notion of observational equivalence.

Remark 3.4.13. The above discussion may clarify why canonicity is harder to prove
than consistency: consistency implies the existence of a non-trivial model of type theory,
whereas canonicity places a constraint on all models of type theory. ⋄

We emphasize once more that, unlike normalization and invertibility of type con-
structors, neither consistency nor canonicity is required to implement a bidirectional
type-checker for type theory. However, it seems safe to assume that anybody writing such
a type-checker is interested in type theory’s applications to logic or programming or both,
in which case consistency and canonicity are relevant properties. In addition, failures of
canonicity often indicate a paucity of definitional equalities that can have a negative effect
on the usability of a type theory even as a logic.

3.5★ The set model of type theory

We now spell out the details of the set-theoretic modelS of extensional type theory alluded
to in Section 3.4 [Hof97]. The remainder of this book will not depend on this section, but
it may nevertheless be valuable to readers interested in better understanding the model
theory of type theory or how type theory relates to traditional mathematics.

In short, S interprets the contexts of type theory as sets, substitutions as functions,
dependent types as indexed families of sets, terms as indexed families of elements, and every
type- and term-forming operation as its “standard” mathematical counterpart. For example,
the S-interpretation of the closed functions from Nat to Nat, TmS (1S,ΠS (NatS,NatS)),
is (isomorphic to) the set of ordinary mathematical functions N→ N.

The main subtlety in defining S is that we would like the set CxS of S-contexts to be
“the collection of all sets,” but this collection is unfortunately not a set: by Russell’s paradox,
having a “set of all sets including itself” leads to contradiction. To properly circumvent

(2025-05-02) The set model of type theory 103

this issue we must introduce the notion of Grothendieck universes, the set-theoretic cousins
of the type-theoretic universes introduced in Section 2.6.

3.5.1 Grothendieck universes

Grothendieck universes are sets that resemble a “set of all sets” without falling victim to
Russell’s paradox. Roughly speaking, they are collections of sets that are closed under all
the operations of set theory: they contain ∅ and are closed under formation of powersets,
unions, set comprehensions, and so forth.

Definition 3.5.1. A Grothendieck universe V is a set satisfying the following conditions:

1. ∅ ∈ V .

2. Transitivity: If 𝑋 ∈ V and 𝑌 ∈ 𝑋 , then 𝑌 ∈ V .

3. Closure under powersets: If 𝑋 ∈ V then P(𝑋) ∈ V .

4. Closure under indexed unions: If 𝑋 ∈ V and 𝑓 : 𝑋 → V , then
⋃
𝑥∈𝑋 𝑓 (𝑥) ∈ V .

5. N ∈ V . (This condition is omitted by many authors.)

We admit that Definition 3.5.1 may seem somewhat mysterious; unfortunately, thor-
oughly justifying these axioms is beyond the scope of this book. We refer the reader to
Shulman [Shu08] for a reference which assumes relatively little set-theoretic background.

For our purposes, the axioms of Grothendieck universes satisfy three important prop-
erties. First, all the closure properties of Grothendieck universes are closure properties of
sets: replacing 𝑋 ∈ V with “𝑋 is a set,” it is true that ∅ and N are sets, and that sets are
transitive and closed under powersets and indexed unions. In other words, the collection
of all sets looks like a Grothendieck universe—except that a Grothendieck universe must
be a set, which the collection of all sets is not.

Secondly, these closure conditions imply all the other usual closure conditions of sets.
For example, V is also closed under subsets, products, and function spaces, defined by
their standard set-theoretic encodings. We prove a number of these closure conditions
below, noting that these are not intended to be exhaustive.

Lemma 3.5.2. Every Grothendieck universeV is closed under the following constructions:

1. Subsets: If 𝑋 ∈ V and 𝑌 ⊆ 𝑋 , then 𝑌 ∈ V .

2. Binary unions: If 𝑋,𝑌 ∈ V then 𝑋 ∪ 𝑌 ∈ V .

3. Products: If 𝑋,𝑌 ∈ V then 𝑋 × 𝑌 ∈ V .

(2025-05-02) The set model of type theory 104

4. Function spaces: If 𝑋,𝑌 ∈ V then 𝑋 → 𝑌 ∈ V .

5. Indexed coproducts: If 𝑋 ∈ V and 𝑓 : 𝑋 → V , then
∑
𝑥∈𝑋 𝑓 (𝑥) ∈ V .

6. Indexed products: If 𝑋 ∈ V and 𝑓 : 𝑋 → V , then
∏
𝑥∈𝑋 𝑓 (𝑥) ∈ V .

Proof.

1. This follows directly from 𝑌 ∈ P(𝑋) ∈ V and transitivity.

2. We obtain binary unions as a special case of indexed unions, using the fact that the
two-element set P(P(∅)) = {∅, {∅}} is an element of V . Let 𝑓 : P(P(∅)) → V be
the function sending ∅ to 𝑋 and {∅} to 𝑌 ; then we define 𝑋 ∪ 𝑌 :=

⋃
𝑥∈𝑋 𝑓 (𝑥) ∈ V .

3. Following the usual set-theoretic construction, we define 𝑋 × 𝑌 to be the subset
of P(P(𝑋 ∪ 𝑌)) consisting of ordered pairs (𝑥,𝑦) with 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 , where
(𝑥,𝑦) := {{𝑥}, {𝑥,𝑦}}. We observe that 𝑋 ×𝑌 ∈ V by the closure ofV under binary
unions, powersets, and subsets.

4. Functions 𝑓 : 𝑋 → 𝑌 are in bijection with subsets 𝑆 ⊆ 𝑋 ×𝑌 satisfying the condition
that for all 𝑥 ∈ 𝑋 , there exists a unique 𝑦 ∈ 𝑌 such that the ordered pair (𝑥,𝑦) is in
𝑆 . We may therefore take the collection of all such 𝑆—a subset of P(𝑋 ×𝑌) and thus
an element ofV—as the definition of the function space 𝑋 → 𝑌 .

5. We define the indexed disjoint union
∑
𝑥∈𝑋 𝑓 (𝑥) as the subset of 𝑋 × ⋃

𝑥∈𝑋 𝑓 (𝑥)
consisting of ordered pairs (𝑥,𝑦) for which 𝑦 ∈ 𝑓 (𝑥).

6. Similarly, we define the indexed product
∏
𝑥∈𝑋 𝑓 (𝑥) as the subset of𝑋 → ⋃

𝑥∈𝑋 𝑓 (𝑥)
consisting of the functions 𝑔 for which 𝑔(𝑥) ∈ 𝑓 (𝑥) for all 𝑥 ∈ 𝑋 . □

Finally and most importantly, although the existence of Grothendieck universes is
independent from the axioms of ordinary (ZFC) set theory, it is consistent to assume that
they exist,3 and the resulting theory is well-understood albeit stronger than ZFC.

Advanced Remark 3.5.3. In fact, assuming the existence of a Grothendieck universeV
is exactly the same as assuming the existence of a strongly inaccessible cardinal. This is
fairly modest as far as large cardinal axioms are concerned, but it is strong enough that
ZFC+V proves Con(ZFC). Indeed,V is a model of ZFC! ⋄

Remark 3.5.4. As we will see in Section 3.5.4, one consequence of the set-theoretic model
of type theory is the consistency of type theory. By Gödel’s incompleteness theorem,
constructing this model must require a metatheory stronger than extensional type theory.

3In particular, it does not follow from the axioms thatV contains itself.

(2025-05-02) The set model of type theory 105

Although ZFC and extensional type theory are not exactly aligned in strength, we should
not be surprised that plain ZFC is too weak. In fact, if we augment extensional type theory
with an impredicative universe of propositions (Section 2.8) and a few axioms, it becomes
exactly as strong as ZFC with a universe hierarchy [Wer97]. ⋄

In the remainder of Section 3.5, we will rely on an ambient assumption that there is a
(𝜔 + 1)-indexed hierarchy of nested Grothendieck universes, in the following sense.

Definition 3.5.5. For a partial order 𝐼 , an 𝐼 -hierarchy of Grothendieck universes (V𝑖)𝑖∈𝐼 is
a family of Grothendieck universesV𝑖 such thatV𝑖 ∈ V𝑗 whenever 𝑖 < 𝑗 .

Axiom 3.5.6. There exists an (𝜔 + 1)-hierarchy of Grothendieck universesV0 ∈ · · · ∈ V𝜔 .

Intuitively, Axiom 3.5.6 states thatV0 contains all the sets that exist in ZFC,V1 contains
all the sets of ZFC+V0, V2 contains all the sets of ZFC+V0+V1, and so forth. One often
refers to the sets of ZFC as small sets for emphasis, and in general for a Grothendieck
universeV we say that a set 𝑋 isV-small if 𝑋 ∈ V . Thus Axiom 3.5.6 equivalently states
that small sets areV𝑖-small andV𝑖 isV𝑗 -small for all 𝑖 < 𝑗 .

3.5.2 The substitution calculus of sets

Exhibiting a modelM of type theory (Definition 3.4.2) requires an enormous amount of
data, but we can break the process down into three steps:

1. First, one must define the sets of M-contexts CxM , M-substitutions SbM (−,−),
M-types TyM (−), andM-terms TmM (−,−).

2. Next, onemust provide theM-interpretations of the rules of the substitution calculus
(Section 2.3), the core structure of type theory governing variables and substitutions,
and verify that these satisfy the associated equations.

3. Finally, for each connective (Π-types, Void, U𝑖 , etc.) one providesM-interpretations
of the associated rules, and again verifies the associated equations.

The steps must be performed in this order, because the choice of sets (e.g., CxM) in the
first step affects the interpretation of the substitution calculus (e.g., pM) in the second step,
which in turn affects the interpretation of every connective. However, the interpretations
of non-U connectives do not depend on one another and can be added in any order, because
we were careful in Chapter 2 to avoid mentioning (e.g.) Π-types in the rules for Σ-types.

We will now carry out the first two steps of defining the set model S. By the end of
this subsection, we will have a model of a dependent type theory with no connectives,
mirroring the situation at the end of Section 2.3.

(2025-05-02) The set model of type theory 106

The basic sets With the machinery of Grothendieck universes (Definition 3.5.1) under
our belt, we can now define the basic sets of the S-interpretation of type theory: the
S-contexts, S-substitutions, S-types, and S-terms. Rather than defining the set of S-
contexts CxS to be the nonexistent “set of all sets,” we will define it to be a Grothendieck
universe, a set of some sets which is closed under all the set-forming operations of set
theory. For reasons that will become clear later, we choose the set of S-contexts to be V𝜔 ,
the largest Grothendieck universe asserted by Axiom 3.5.6.

CxS := V𝜔

For any two S-contexts Δ, Γ ∈ CxS , the set of S-substitutions from Δ to Γ is simply the
set of ordinary functions from Δ to Γ:

SbS (Δ, Γ) := Δ → Γ (Δ, Γ ∈ CxS)

Notation 3.5.7. Throughout this section, the variables Γ, 𝛾, 𝐴, 𝑎, . . . range over S-contexts,
substitutions, types, and terms, not syntactic contexts, substitutions, types, and terms as
they generally have throughout this book. We believe this notation is the least confusing
in the long run, but the reader should proceed cautiously.

Intuitively, an S-type 𝐴 in S-context Γ should be a family of sets indexed by the set Γ,
i.e., a choice of set 𝐴(𝑥) for each 𝑥 ∈ Γ. As in our definition of CxS , we can obtain a set of
such families by restricting all the sets 𝐴(𝑥) to be elements ofV𝜔 :

TyS (Γ) := Γ → V𝜔 (Γ ∈ CxS)

Finally, given an S-context Γ ∈ V𝜔 and an S-type 𝐴 : Γ → V𝜔 in that context, an
S-term 𝑎 ∈ TmS (Γ, 𝐴) should be a family of elements of each 𝐴(𝑥) for each 𝑥 ∈ Γ. In
other words, 𝑎 should be a dependent function (𝑥 : Γ) → 𝐴(𝑥), where 𝑎(𝑥) ∈ 𝐴(𝑥) for all
𝑥 ∈ Γ. Set-theoretically, such functions are more commonly understood as elements of the
Γ-indexed product of the sets 𝐴(−); see Remarks 2.4.1 and 2.4.5.

TmS (Γ, 𝐴) :=
∏
𝑥∈Γ 𝐴(𝑥) (Γ ∈ CxS, 𝐴 ∈ TyS (Γ))

Summing up, we define S-contexts as (V𝜔-small) sets, S-substitutions as functions,
S-types as indexed families of (V𝜔 -small) sets, andS-terms as indexed families of elements.

The category of substitutions Having now defined the basic sets underlying the S-
interpretation of type theory, our next task is to define the operations of the substitution
calculus (collected in the first section of Appendix A), starting with the identity and
composition of substitutions.

(2025-05-02) The set model of type theory 107

For every S-context Γ ∈ CxS , we must define an identity S-substitution idS in
SbS (Γ, Γ). Unfolding the definitions of CxS and SbS (Γ, Γ), this is for every Γ ∈ V𝜔 a
function Γ → Γ, which we can simply take to be the identity function:

idS :
∏

Γ∈V𝜔 Γ → Γ

idS Γ 𝑥 := 𝑥

Next, given any Γ0, Γ1, Γ2 ∈ CxS , 𝛾1 ∈ SbS (Γ2, Γ1), and 𝛾0 ∈ SbS (Γ1, Γ0) we must define
the composite S-substitution 𝛾0 ◦S 𝛾1 ∈ SbS (Γ2, Γ0), namely by function composition:

◦S :
∏

Γ0,Γ1,Γ2∈CxS SbS (Γ1, Γ0) → SbS (Γ2, Γ1) → SbS (Γ2, Γ0)
(𝛾0 ◦S 𝛾1) (𝑥) := 𝛾0(𝛾1(𝑥))

Notation 3.5.8. Starting with the above definition, we suppress unambiguous arguments
for clarity: in this case, the S-contexts Γ0, Γ1, Γ2.

In the substitution calculus, identity and composition satisfy various equations, namely
that composition is associative with identity as a left and right unit. We must therefore
verify that our definitions of S-identity and S-composition validate the same equations:
Exercise 3.10. Verify the following equations:

• For all 𝛾 ∈ SbS (Δ, Γ), idS ◦S 𝛾 = 𝛾 = 𝛾 ◦S idS .

• For all 𝛾2 ∈ SbS (Γ3, Γ2), 𝛾1 ∈ SbS (Γ2, Γ1), and 𝛾0 ∈ SbS (Γ1, Γ0), 𝛾0 ◦S (𝛾1 ◦S 𝛾2) =

(𝛾0 ◦S 𝛾1) ◦S 𝛾2.

The empty context Next we define the empty S-context 1S ∈ CxS and the terminal
S-substitution !S ∈ SbS (Γ, 1S) for every Γ ∈ CxS . Notably, although we call 1 the empty
context, it is in fact interpreted as a one-element set.

1S ∈ V𝜔

1S := {★}

Remark 3.5.9. We write {★} to emphasize that it does not matter which one-element set
in V𝜔 we choose. The most natural concrete choice of one-element set is perhaps {∅},
which we note is an element of V𝜔 by axioms (1), (2) and (3) of Definition 3.5.1. ⋄

(2025-05-02) The set model of type theory 108

Exercise 3.11. In light of the definition of 1S above, show that closedS-types are just sets
and closed S-terms are just elements of those sets. To be precise, construct isomorphisms
𝜄 : TyS (1S) � V𝜔 and 𝜅𝐴 : TmS (1S, 𝐴) � 𝜄 (𝐴) for all 𝐴 ∈ TyS (1S).

The terminal S-substitution into 1S is the constant function returning ★.

!S :
∏

Γ∈CxS SbS (Γ, 1S)
!S (𝑥) := ★

We have one equation to check before moving on.

Lemma 3.5.10. For all 𝛿 ∈ SbS (Γ, 1S), 𝛿 = !S .

Proof. Unfolding definitions, we see that 𝛿 and !S are both functions Γ → {★}. There is
only one such function, so they must be equal. □

Applying substitutions Applying anS-substitution Δ → Γ to anS-type (resp., S-term)
in context Γ must produce an S-type (resp., S-term) in context Δ:

[]S :
∏

Δ,Γ∈CxS
∏
𝛾∈SbS (Δ,Γ) TyS (Γ) → TyS (Δ)

[]S :
∏

Δ,Γ∈CxS
∏
𝛾∈SbS (Δ,Γ)

∏
𝐴∈TyS (Γ) TmS (Γ, 𝐴) → TmS (Δ, 𝐴[𝛾]S)

Thankfully, the types of these operations are significantly more intimidating than their
definitions. Unfolding definitions in the first line, we must take a function 𝛾 : Δ → Γ and
a function 𝐴 : Γ → V𝜔 and produce a function Δ → V𝜔 , which is easily accomplished by
composing 𝐴 and 𝛾 . Substitution on terms is identical:

𝐴[𝛾]S := 𝐴 ◦ 𝛾
𝑎[𝛾]S := 𝑎 ◦ 𝛾

The substitution calculus includes a number of equations governing _[_], namely that
substituting by id is the identity and substituting by a composite substitution is the same
as a composition of substitutions; checking these for S is again straightforward.
Exercise 3.12. Verify the following, where Γ ∈ CxS , 𝐴 ∈ TyS (Γ), and 𝑎 ∈ TmS (Γ, 𝐴):

• 𝐴[idS]S = 𝐴.

• 𝑎[idS]S = 𝑎.

• If 𝛾1 ∈ SbS (Γ2, Γ1) and 𝛾0 ∈ SbS (Γ1, Γ), then 𝐴[𝛾0 ◦S 𝛾1]S = 𝐴[𝛾0]S [𝛾1]S .

• If 𝛾1 ∈ SbS (Γ2, Γ1) and 𝛾0 ∈ SbS (Γ1, Γ), then 𝑎[𝛾0 ◦S 𝛾1]S = 𝑎[𝛾0]S [𝛾1]S .

(2025-05-02) The set model of type theory 109

Extending contexts The remaining operations of the substitution calculus are context
extension Γ.𝐴, substitution extension 𝛾 .𝑎, the weakening substitution p, and the variable
term q. We must start by defining the S-interpretation of context extension, because it
occurs in the types of all the other operations.

Recall from Sections 2.3 and 2.4.2 that substitutions into Γ.𝐴 are roughly “pairs of a
substitution into Γ and a term of type 𝐴.” More precisely, there is a natural isomorphism
between substitutions 𝛾 ∈ Sb(Δ, Γ.𝐴) and pairs (𝛾0 ∈ Sb(Δ, Γ), 𝑎 ∈ Tm(Δ, 𝐴[𝛾0])). Unfold-
ing S-interpretations and setting Δ = 1S , in light of Exercise 3.11 we see that elements of
the set Γ.S𝐴 must be in bijection with pairs (𝑥0 ∈ Γ, 𝑎 ∈ 𝐴(𝑥0)), and so we might as well
take this as the definition of Γ.S𝐴.

.S :
∏

Γ∈CxS TyS (Γ) → CxS
Γ.S𝐴 :=

∑
𝑥∈Γ 𝐴(𝑥)

Wemust be careful to check that this set is actually an element of CxS = V𝜔 , which follows
from the closure of Grothendieck universes under indexed coproducts (Lemma 3.5.2).

Once again, to define pS , qS , and _.S_ we must unfold their types, which will turn out
to be significantly more intimidating than their definitions. Weakening, for example, is
simply the first projection from

∑
:

pS :
∏

Γ∈V𝜔
∏
𝐴∈Γ→V𝜔 (

∑
𝑥∈Γ 𝐴(𝑥)) → Γ

pS (𝑥, 𝑎) := 𝑥

Similarly, variables and substitution extension are respectively the second projection
and pairing operations of

∑
. For any Δ, Γ ∈ V𝜔 and 𝐴 ∈ Γ → V𝜔 :

qS :
∏
𝑝∈(∑𝑥∈Γ 𝐴(𝑥)) 𝐴(pS (𝑝))

qS (𝑥, 𝑎) := 𝑎

.S :
∏
𝛾∈Δ→Γ (

∏
𝑦∈Δ𝐴(𝛾 (𝑦))) → Δ → ∑

𝑥∈Γ 𝐴(𝑥)
(𝛾 .S𝑎) (𝑦) := (𝛾 (𝑦), 𝑎(𝑦))

Exercise 3.13. Check that the types given above for pS , qS , and _.S_ match the types
given in Section 2.3, by unfolding the S-interpretations given throughout this section.

The S-interpretations of context extension, substitution extension, weakening, and
variables as

∑
, pairing, first projection, and second projection may in fact clarify the

meaning of these operations in the substitution calculus. At any rate, it is straightforward
to verify the necessary equations, which correspond to the 𝛽- and 𝜂-laws of

∑
.

Lemma 3.5.11. If Δ, Γ ∈ CxS and 𝐴 ∈ TyS (Γ), then:

(2025-05-02) The set model of type theory 110

• If 𝛾 ∈ SbS (Δ, Γ) and 𝑎 ∈ TmS (Δ, 𝐴[𝛾]S), then pS ◦S (𝛾 .S𝑎) = 𝛾 .

• If 𝛾 ∈ SbS (Δ, Γ) and 𝑎 ∈ TmS (Δ, 𝐴[𝛾]S), then qS [𝛾 .S𝑎] = 𝑎.

• If 𝛾 ∈ SbS (Δ, Γ.S𝐴) then 𝛾 = (pS ◦S 𝛾).S (qS [𝛾]S).

Proof. These all follow essentially by definition. For the first equation, fix 𝛾 : Δ → Γ and
𝑎 ∈ ∏

𝑦∈Δ𝐴(𝛾 (𝑦)); we must show 𝜋1 ◦ (𝜆𝑦 → (𝛾 (𝑦), 𝑎(𝑦))) = 𝛾 . Because both sides are
functions, it suffices to check that they agree on all 𝑦 ∈ Δ, and indeed both produce 𝛾 (𝑦)
when applied to 𝑦. For the second equation we must show 𝜋2 ◦ (𝜆𝑦 → (𝛾 (𝑦), 𝑎(𝑦))) = 𝑎,
which again follows by applying both sides to 𝑦 ∈ Δ.

For the third equation, fix𝛾 : Δ → ∑
𝑥∈Γ 𝐴(𝑥) and show𝛾 = 𝜆𝑦 → (𝜋1(𝛾 (𝑦)), 𝜋2(𝛾 (𝑦))).

This follows by applying both sides to 𝑦 ∈ Δ and noting that 𝛾 (𝑦) ∈ ∑
𝑥∈Γ 𝐴(𝑥) is by

definition of the form (𝑥0, 𝑎). □

The reader should now verify that we have provided an S-interpretation of every rule
of the substitution calculus, covering the first section of Appendix A.

Notation 3.5.12. We note that we can safely reuse notations from Chapter 2 for their S
counterparts. In particular, following Exercise 2.4, we write 𝛾 .S𝐴 for (𝛾 ◦S pS).S (qS)S .

3.5.3 The type-theoretic connectives of sets

Now that we have defined the S-interpretation of the basic structure of type theory, we
can extend S with any connectives of our choice. Unlike the operations considered in
Section 3.5.2, the connectives of type theory are (generally) defined independently of one
another, allowing us to model them in a modular fashion. We consider some representative
cases, namely, the S-interpretations of Π-types, Eq-types, Void, Bool, and U0.

Π-types Taking advantage of the compact representation of the rules of Π-types in-
troduced in Section 2.4.2, the S-interpretation of Π-types consists of an S-type-forming
operation and a family of isomorphisms of sets:

ΠS :
∏

Γ∈CxS (
∑
𝐴∈TyS (Γ) TyS (Γ.S𝐴)) → TyS (Γ)

𝜄S :
∏

Γ∈CxS
∏
𝐴∈TyS (Γ)

∏
𝐵∈TyS (Γ.S𝐴) TmS (Γ,ΠS Γ (𝐴, 𝐵)) � TmS (Γ.S𝐴, 𝐵)

subject to the following equations expressing their naturality in Γ ∈ CxS :

(ΠS Γ (𝐴, 𝐵)) [𝛾]S = ΠS Δ (𝐴[𝛾]S, 𝐵 [𝛾 .S𝐴]S) (𝛾 ∈ SbS (Δ, Γ))
(𝜄S Γ 𝐴 𝐵 𝑓) [𝛾 .S𝐴]S = 𝜄S Δ (𝐴[𝛾]S) (𝐵 [𝛾 .S𝐴]S) (𝑓 [𝛾]S) (𝛾 ∈ SbS (Δ, Γ))

(2025-05-02) The set model of type theory 111

To get a handle on the situation, let us consider the types of ΠS and 𝜄S when specialized
to the empty context 1S , and simplified along the isomorphisms of Exercise 3.11:

ΠS 1S : (∑𝐴∈V𝜔 (𝐴 → V𝜔)) → V𝜔

𝜄S 1S :
∏
𝐴∈V𝜔

∏
𝐵∈𝐴→V𝜔 ΠS 1S (𝐴, 𝐵) � ∏

𝑎∈𝐴 𝐵(𝑎)

That is, in the empty context, for any 𝐴 ∈ V𝜔 and 𝐵 : 𝐴 → V𝜔 we must choose a set
ΠS 1S (𝐴, 𝐵) ∈ V𝜔 to serve as the S-Π-type of 𝐴 and 𝐵, and this set must be isomorphic
to the set-theoretic indexed product

∏
𝑎∈𝐴 𝐵(𝑎).

The situation for arbitrary contexts is essentially the same, except that all three of 𝐴,
𝐵, and their S-Π-type are additionally indexed by a set Γ. We define ΠS as follows:

ΠS Γ (𝐴, 𝐵) 𝑥 :=
∏
𝑎∈𝐴(𝑥) 𝐵(𝑥, 𝑎) (𝑥 ∈ Γ)

noting that 𝐵 : (∑𝑥∈Γ 𝐴(𝑥)) → V𝜔 by the definition of Γ.S𝐴 in Section 3.5.2. Finally, we
must verify that our definition

∏
𝑎∈𝐴(𝑥) 𝐵(𝑥, 𝑎) ∈ V𝜔 , which indeed holds by Lemma 3.5.2.

Lemma 3.5.13. ΠS is natural in Γ, i.e., (ΠS Γ (𝐴, 𝐵)) [𝛾]S = ΠS Δ (𝐴[𝛾]S, 𝐵 [𝛾 .S𝐴]S) in
TyS (Δ) for any 𝛾 ∈ SbS (Δ, Γ).

Proof. Unfolding the operations of the substitution calculus, we must show:

(ΠS Γ (𝐴, 𝐵)) ◦ 𝛾 = ΠS Δ (𝐴 ◦ 𝛾, 𝜆(𝑦, 𝑎) → 𝐵(𝛾 (𝑦), 𝑎))

These are both functions Δ → V𝜔 , so it suffices to check that they agree on all 𝑦 ∈ Δ:

((ΠS Γ (𝐴, 𝐵)) ◦ 𝛾) (𝑦)
= ΠS Γ (𝐴, 𝐵) (𝛾 (𝑦))
=
∏
𝑎∈𝐴(𝛾 (𝑦)) 𝐵(𝛾 (𝑦), 𝑎)

=
∏
𝑎∈(𝐴◦𝛾) (𝑦) (𝜆(𝑦, 𝑎) → 𝐵(𝛾 (𝑦), 𝑎)) (𝑦, 𝑎)

= ΠS Δ (𝐴 ◦ 𝛾, 𝜆(𝑦, 𝑎) → 𝐵(𝛾 (𝑦), 𝑎)) 𝑦 □

As for the isomorphism 𝜄S , unfolding definitions we must construct:

𝜄S :
∏

Γ∈V𝜔
∏
𝐴∈Γ→V𝜔

∏
𝐵∈(∑𝑥∈Γ 𝐴(𝑥))→V𝜔 (

∏
𝑥∈Γ

∏
𝑎∈𝐴(𝑥) 𝐵(𝑥, 𝑎)) �

∏
𝑝∈(∑𝑥∈Γ 𝐴(𝑥)) 𝐵(𝑝)

Fixing Γ, 𝐴, 𝐵, this isomorphism is simply the dependent (un)currying isomorphism
(𝑥 : Γ) → (𝑎 : 𝐴(𝑥)) → 𝐵(𝑥, 𝑎) � (𝑝 :

∑
𝑥 :Γ 𝐴(𝑥)) → 𝐵(𝑝), defined as follows:

𝜄S Γ 𝐴 𝐵 𝑓 (𝑥, 𝑎) := 𝑓 𝑥 𝑎
𝜄−1
S Γ 𝐴 𝐵 𝑔 𝑥 𝑎 := 𝑔 (𝑥, 𝑎)

(2025-05-02) The set model of type theory 112

Exercise 3.14. Verify that 𝜄S and 𝜄−1
S are inverses.

Exercise 3.15. Verify that 𝜄S is natural in Γ. (Hint: show that

(𝜄S Γ 𝐴 𝐵 𝑓) ◦ (𝜆(𝑦, 𝑎) → (𝛾 (𝑦), 𝑎)) = 𝜄S Δ (𝐴 ◦ 𝛾) (𝜆(𝑦, 𝑎) → 𝐵(𝛾 (𝑦), 𝑎)) (𝑓 ◦ 𝛾)

for any 𝑓 ∈ ∏
𝑥∈Γ

∏
𝑎∈𝐴(𝑥) 𝐵(𝑥, 𝑎) and 𝛾 ∈ SbS (Δ, Γ), by showing that they agree on all

(𝑦, 𝑎) ∈ ∑
𝑦∈Δ𝐴(𝛾 (𝑦)).)

Eq-types The S-interpretation of extensional equality types is analogous to that of Π-
types. Following Section 2.4.4, we must define an S-type-forming operation and a family
of isomorphisms of sets, both natural in Γ:

EqS :
∏

Γ∈CxS (
∑
𝐴∈TyS (Γ) TmS (Γ, 𝐴) × TmS (Γ, 𝐴)) → TyS (Γ)

𝜄S :
∏

Γ∈CxS
∏
𝐴∈TyS (Γ)

∏
𝑎,𝑏∈TmS (Γ,𝐴) TmS (Γ, EqS Γ (𝐴, 𝑎, 𝑏)) � {★ | 𝑎 = 𝑏}

We define EqS Γ (𝐴, 𝑎, 𝑏) to be the Γ-indexed family of sets that maps 𝑥 ∈ Γ to a
one-element set when 𝑎(𝑥) = 𝑏 (𝑥) ∈ 𝐴(𝑥), and an empty set otherwise.

EqS Γ (𝐴, 𝑎, 𝑏) 𝑥 := {★ | 𝑎(𝑥) = 𝑏 (𝑥)}

To define 𝜄S , we note that S-terms 𝑒 ∈ TmS (Γ, EqS Γ (𝐴, 𝑎, 𝑏)) are constant functions
sending every 𝑥 ∈ Γ to the unique element ★. In particular, the existence of such an 𝑒
implies that 𝑎(𝑥) = 𝑏 (𝑥) for all 𝑥 ∈ Γ, and any two such terms 𝑒, 𝑒′ must agree on all 𝑥 ∈ Γ
and thus be equal. Thus:

𝜄S Γ 𝐴 𝑎 𝑏 𝑒 := ★

𝜄−1
S Γ 𝐴 𝑎 𝑏 ★ 𝑥 := ★

Exercise 3.16. Verify that 𝜄S and 𝜄−1
S are inverses.

Exercise 3.17. State and prove the naturality equations for EqS and 𝜄S . (Hint: reference
the naturality equations in Section 2.4.4, and unfold definitions.)

The empty type Our next type Void is defined not by a mapping-in property but a
mapping-out property. However, as discussed in Section 2.5.1, it can nevertheless be
axiomatized as a natural type-forming operation with a natural family of isomorphisms:

VoidS :
∏

Γ∈CxS TyS (Γ)
𝜌S :

∏
Γ∈CxS

∏
𝐴∈TyS (Γ.SVoidS) TmS (Γ.SVoidS, 𝐴) � {★}

(2025-05-02) The set model of type theory 113

Given that Void is called the empty type, it is perhaps unsurprising that S interprets it
as the empty set, regarded as a constant family over Γ ∈ V𝜔 and 𝑥 ∈ Γ.

VoidS Γ 𝑥 := ∅

Elements of the S-context Γ.SVoidS are pairs of 𝑥 ∈ Γ and 𝑦 ∈ VoidS 𝑥 , but the latter
set is defined to be empty, so no such pairs exist and Γ.SVoidS = ∅. Accordingly, S-terms
𝑓 ∈ TmS (Γ.SVoidS, 𝐴) are (dependent) functions out of an empty set. As discussed in
Section 2.5.1, there is exactly one such function for every 𝐴, and this is precisely the
content of the isomorphism 𝜌S .

𝜌S Γ 𝐴 𝑎 := ★

Exercise 3.18. Complete the S-interpretation of Void: verify that 𝜌S is an isomorphism,
and prove the naturality equations for VoidS and 𝜌S , following Section 2.5.1.

Booleans Like Void, the booleans are also defined by a mapping-out property. Recalling
Section 2.5.2, the specification of Bool has three components, the first two being a natural
type-former and two natural term-formers:

BoolS :
∏

Γ∈CxS TyS (Γ)
trueS, falseS :

∏
Γ:CxS TmS (Γ,BoolS)

The third component is once again a natural isomorphism, but unlike the previous
examples in which the two directions of the isomorphism encode introduction and elimi-
nation, here the forward map is fixed by the choice of trueS and falseS , and the reverse
map expresses the principle that maps out of Bool are determined by their instantiations
at true and false. Writing 𝜌 Γ 𝐴 for the map which sends 𝑎 ∈ TmS (Γ.SBoolS, 𝐴) to the
pair of S-terms (𝑎[idS .StrueS]S, 𝑎[idS .SfalseS]S), we require 𝜌 to be an isomorphism.

𝜌 :
∏

Γ∈CxS
∏
𝐴∈TyS (Γ.SBoolS)TmS (Γ.SBoolS, 𝐴) �

TmS (Γ, 𝐴[idS .StrueS]S) × TmS (Γ, 𝐴[idS .SfalseS]S)
𝜌 Γ 𝐴 𝑎 := (𝑎[idS .StrueS]S, 𝑎[idS .SfalseS]S)

We can define BoolS to be any fixed two-element set {trueS, falseS}, regarded as a
constant family over Γ ∈ V𝜔 and 𝑥 ∈ Γ.

BoolS Γ 𝑥 := {0, 1}
trueS Γ 𝑥 := 1
falseS Γ 𝑥 := 0

(2025-05-02) The set model of type theory 114

Exercise 3.19. State and prove the naturality equations for BoolS , trueS , and falseS .

It remains only to check that 𝜌 Γ 𝐴 is indeed an isomorphism.

Lemma 3.5.14. The map 𝑎 ↦→ (𝑎[idS .StrueS]S, 𝑎[idS .SfalseS]S) is an isomorphism

TmS (Γ.SBoolS, 𝐴) � TmS (Γ, 𝐴[idS .StrueS]S) × TmS (Γ, 𝐴[idS .SfalseS]S)
Proof. Unfolding definitions, the S-context Γ.SBoolS is the set Γ × {0, 1}, so S-types 𝐴 ∈
TyS (Γ.SBoolS) are families of sets Γ × {0, 1} → V𝜔 , and S-terms 𝑎 ∈ TmS (Γ.SBoolS, 𝐴)
are dependent functions

∏
𝑝∈Γ×{0,1}𝐴(𝑝). But∏

𝑝∈Γ×{0,1}𝐴(𝑝)
�

∏
𝑥∈Γ

∏
𝑏∈{0,1}𝐴(𝑥, 𝑏)

�
∏
𝑥∈Γ 𝐴(𝑥, 1) ×𝐴(𝑥, 0)

� (∏𝑥∈Γ 𝐴(𝑥, 1)) × (∏𝑥∈Γ 𝐴(𝑥, 0))
where the forward composite map is 𝑎 ↦→ ((𝜆𝑥 → 𝑎(𝑥, 1)), (𝜆𝑥 → 𝑎(𝑥, 0))). Unfolding
definitions, this is precisely the map we wanted to show is an isomorphism. □

Universes The final connective we discuss is U, a “type of types” whose terms Γ ⊢ 𝑎 : U
decode to types Γ ⊢ El(𝑎) type. As we saw in Section 2.6, universe types require far
more rules than the other connectives: type theory has a countably infinite hierarchy
of universes U = U0 : U1 : U2 : . . . , each closed under codes for every type-former and
satisfying definitional equalities involving El, with lift operations between these universes
commuting with all the aforementioned operations. In addition, the S-interpretation of U
as a “set of sets” will force us to confront some set-theoretic technicalities.

The good news is that all of this structure will fall quite neatly into place. The astute
reader may have noticed that Axiom 3.5.6 postulates an infinite hierarchy of Grothendieck
universes V0 ∈ · · · ∈ V𝜔 of which we have only used V𝜔 thus far; the remaining V𝑖 serve
as the S-interpretations of the type-theoretic universe hierarchy.

Let us begin by defining (U0)S = US and (El0)S = ElS :
US :

∏
Γ∈V𝜔 TyS (Γ)

US Γ 𝑥 := V0

ElS :
∏

Γ∈V𝜔 TmS (Γ,US) → TyS (Γ)
ElS Γ 𝑐 := 𝑐

To make sense of the last definition, we note that ElS Γ : (Γ → V0) → (Γ → V𝜔). By our
hypothesis V0 ∈ V𝜔 and Lemma 3.5.2, V0 ⊆ V𝜔 , so in particular (Γ → V0) ⊆ (Γ → V𝜔).

(2025-05-02) The set model of type theory 115

Exercise 3.20. State and prove the naturality equations for US and ElS .

Following Section 2.6.2, the S-interpretation of U must include codes for Π-types:

piS :
∏

Γ∈CxS (
∑
𝐴∈TmS (Γ,US) TmS (Γ.SElS (𝐴),US)) → TmS (Γ,US)

satisfying a naturality equation as well as the following equation in Γ → V𝜔 :

ElS Γ (piS Γ (𝐴, 𝐵)) = ΠS Γ (ElS Γ 𝐴, ElS Γ 𝐵)

Because ElS Γ is just the inclusion (Γ → V0) ⊆ (Γ → V𝜔), we can simply take the
above equation as a definition—setting piS Γ (𝐴, 𝐵) := ΠS Γ (𝐴, 𝐵)—as long as we prove
that the right-hand side lands inside of Γ → V0 when 𝐴 and 𝐵 are pointwiseV0-small.

Lemma 3.5.15. If Γ ∈ V𝜔 , 𝐴 ∈ Γ → V0, and 𝐵 ∈ (∑𝑥∈Γ 𝐴(𝑥)) → V0, then

(∏𝑥∈Γ
∏
𝑎∈𝐴(𝑥) 𝐵(𝑥, 𝑎)) ∈ Γ → V0

Proof. Note that this statement refines a similar observation in our construction of S-Π-
types, in which all the V0 are replaced by V𝜔 . The proof is identical: because V0 is a
Grothendieck universe, Lemma 3.5.2 implies that

∏
𝑎∈𝐴(𝑥) 𝐵(𝑥, 𝑎) ∈ V0 for all 𝑥 ∈ Γ. □

The naturality equation for piS then follows immediately from the naturality of ΠS .
The codes for other connectives proceed identically, using the fact that V0 is closed under
every relevant construction. For the remainder of the universe hierarchy, we define
(U𝑖)S Γ 𝑥 := V𝑖 and check that (El𝑖)S and (lift𝑖)S are subset inclusions.

3.5.4 Using the set model

We finally arrive at the main result of this section.

Theorem 3.5.16. S is a model of extensional type theory.

Although extensional type theory is often considered an alternative to set theory, the
fact that S allows us to reduce questions about type theory to questions about sets makes
the set model one of the most powerful tools for studying the properties of type theory.
In Section 3.6, we appeal to S in two proofs that equality in extensional type theory
is undecidable; in the remainder of this section, we will quickly rattle off several other
corollaries of Theorem 3.5.16, starting with the consistency of type theory (Theorem 3.4.8).

Proof of Theorem 3.4.8. To show that type theory is consistent, by Theorem 3.4.7 it suf-
fices to exhibit a model M in which TmM (1M,VoidM) is empty. Choosing M = S, by
Exercise 3.11 we have TmS (1S,VoidS) � VoidS 1S ★ := ∅. □

(2025-05-02) The set model of type theory 116

More generally, S tells us that any term in extensional type theory—that is, in its
syntactic model T (Definition 3.4.4)—gives rise to a corresponding function of sets. On the
one hand, this lets us construct functions on sets by writing down terms in type theory;
on the other hand, we can disprove the existence of terms by showing that their image
under the S-interpretation does not exist, as we just did in the proof of consistency.

Lemma 3.5.17. Within type theory, there are no injective functions (Nat → Nat) → Nat;
that is, there are no closed terms of type∑

𝑓 :(Nat→Nat)→Nat (𝑔1, 𝑔2 : Nat → Nat) → 𝑓 (𝑔1) = 𝑓 (𝑔2) → 𝑔1 = 𝑔2

Proof. Unfolding definitions, the image of such a term under S is a pair whose first
projection is an ordinary set-theoretic function 𝑓 : (N → N) → N, and whose second
projection is a three-argument function that takes two functions 𝑔1, 𝑔2 : N → N and
𝑥 ∈ {★ | 𝑓 (𝑔1) = 𝑓 (𝑔2)}, and returns {★ | 𝑔1 = 𝑔2}. In particular, although the second
projection is unique when it exists, it exists only when 𝑓 is injective. But N → N is
uncountable, so there can be no injective functions from it to N. □

Remark 3.5.18. This argument does not go through if we restrict attention to the syntactic
model, because the set Tm(1,Π(Nat,Nat)) of closed terms of type Nat → Nat is countable:
it is a quotient of a subset of finite derivation trees, which are countable. ⋄

Theorem 3.5.19. Extensional type theory does not have injective Π-types (Definition 3.2.8).

Proof. Using equality reflection and universes, the following judgment holds:

1.Eq(U, pi(unit, void), pi(bool, void)) ⊢ Π(Unit,Void) = Π(Bool,Void) type

If extensional type theory had injective Π-types, this would imply:

1.Eq(U, pi(unit, void), pi(bool, void)) ⊢ Unit = Bool type

This implies in particular that true and false are elements of Unit in this context. By the
𝜂 rule for Unit this implies that true = false in this context, and hence by Theorem 2.6.3,

1.Eq(U, pi(unit, void), pi(bool, void)) ⊢ tt : Void

TheS-interpretation of the above context is a set with one element ifΠS (UnitS,VoidS)
ΠS (BoolS,VoidS) are equal sets, which is indeed the case because both are ∅. Thus the
S-interpretation of the above term must be a function from a one-element set to ∅, which
does not exist. We conclude that there is no such term, and thus extensional type theory
does not have injective Π-types. □

(2025-05-02) Equality in extensional type theory is undecidable 117

Finally, recall that all of the constructions in this section have assumed an (𝜔 + 1)-
hierarchy of Grothendieck universes V0 ∈ · · · ∈ V𝜔 (Axiom 3.5.6): we use V𝜔 to model
contexts and types, and smallerV𝑖 to model U𝑖 . In general, we need 𝑛 + 1 Grothendieck
universes to model a type theory with 𝑛 universes.

Theorem 3.5.20. An (𝑛 + 1)-hierarchy of Grothendieck universes V0 ∈ · · · ∈ V𝑛 suffices to
construct a set-theoretic model of extensional type theory with 𝑛 universes U0 : · · · : U𝑛−1.

3.6 Equality in extensional type theory is undecidable

In this section we present two proofs that term equality in extensional type theory is
undecidable, and hence extensional type theory does not admit a normalization structure
by Exercise 3.3. The first proof, due to Castellan, Clairambault, and Dybjer [CCD17], is
conceptually straightforward but requires an appeal to the set-theoretic model (Section 3.5).
The second proof, due to Hofmann [Hof95a], requires only the assumption that extensional
type theory is consistent (Theorem 3.4.8), but is more complex, requiring the machinery
of recursively inseparable sets. Both of these ideas arise with some frequency in the
metatheory of type theory, so we cover both proofs in some detail.

3.6.1 The first proof: deciding equality of SK terms

The strategy of our first proof is to exhibit a context Γ𝑆𝐾 and an encoding ⟦−⟧ of terms
of the SK combinator calculus into type-theoretic terms in context Γ𝑆𝐾 , such that two
SK terms are convertible if and only if their encodings are judgmentally equal. Because
convertibility of SK terms is undecidable, judgmental equality is as well.

Recall that the SK combinator calculus is an extremely minimal Turing-complete
language generated by application and two combinators named 𝑆 and 𝐾 :

Combinators 𝑥 := 𝑆 | 𝐾 | 𝑥 𝑥

Combinators compute according to the following rewriting system ↦→. We say that two
combinators are convertible, written 𝑥 ∼ 𝑦, if they are related by the reflexive, symmetric,
and transitive closure of ↦→.

𝑆 𝑥 𝑦 𝑧 ↦→ (𝑥 𝑧) (𝑦 𝑧) 𝐾 𝑥 𝑦 ↦→ 𝑥

𝑥 ↦→ 𝑥′

𝑥 𝑦 ↦→ 𝑥′𝑦

𝑦 ↦→ 𝑦′

𝑥 𝑦 ↦→ 𝑥 𝑦′

(2025-05-02) Equality in extensional type theory is undecidable 118

We define the following context, written in Agda-style notation:

Γ𝑆𝐾 := 1,
𝐴 : U,
• : 𝐴 → 𝐴 → 𝐴,

𝑠 : 𝐴,
𝑘 : 𝐴,
𝑒1 : (𝑎 𝑏 : 𝐴) → Eq(𝐴, (𝑘 • 𝑎) • 𝑏, 𝑎),
𝑒2 : (𝑎 𝑏 𝑐 : 𝐴) → Eq(𝐴, ((𝑠 • 𝑎) • 𝑏) • 𝑐, (𝑎 • 𝑐) • (𝑏 • 𝑐))

Writing Λ for the set of SK combinator terms, we can straightforwardly define a
function ⟦−⟧ : Λ → Tm(Γ𝑆𝐾 , 𝐴) by sending application, 𝑆 , and 𝐾 to •, 𝑠 , and 𝑘 respectively,
and this function respects convertibility of combinators.

Lemma 3.6.1. There is a function ⟦−⟧ : Λ → Tm(Γ𝑆𝐾 , 𝐴) such that 𝑥 ∼ 𝑦 =⇒ ⟦𝑥⟧ = ⟦𝑦⟧.

Exercise 3.21. The context Γ𝑆𝐾 only includes two of the four generating rules of ↦→. Why
haven’t we included the other two, or reflexivity, symmetry, or transitivity?

Lemma 3.6.1 implies that term equality is sound for an undecidable problem, but this
does not yet imply that term equality is undecidable; it is possible, for example, that all
terms in the image of ⟦−⟧ are equal. To complete our proof, we must observe that term
equality is also complete for convertibility; we argue this by using the set-theoretic model
of type theory to recover the convertibility class of 𝑥 from the term ⟦𝑥⟧.

Theorem 3.6.2. If ⟦𝑥⟧ = ⟦𝑦⟧ then 𝑥 ∼ 𝑦.

Proof. Let us write 𝑓 : T → S for the homomorphism from the syntactic model T to
the set-theoretic model S. This homomorphism interprets syntactic contexts Γ as sets
Cx𝑓 (Γ), syntactic types𝐴 ∈ Ty(Γ) asCx𝑓 (Γ)-indexed families of sets, and syntactic context
extensions as indexed coproducts of those families. (See Section 3.5 for more details.)

Unwinding definitions, elements of Cx𝑓 (Γ𝑆𝐾) are “SK-algebras,” or dependent tuples
of a set along with application, 𝑆 , and 𝐾 operations satisfying the convertibility axioms.
Combinators modulo convertibility form such an algebra in the evident way; writing [𝑥]
for the convertibility equivalence class of 𝑥 ∈ Λ, we have

𝛾𝑆𝐾 := (Λ/∼, (𝜆[𝑥] [𝑦] → [𝑥 𝑦]), [𝑠], [𝑘],★,★) ∈ Cx𝑓 (Γ𝑆𝐾)
Homomorphisms of models respect equality, so from ⟦𝑥⟧ = ⟦𝑦⟧ ∈ Tm(Γ𝑆𝐾 , 𝐴) we see

that these terms are interpreted in S as equal dependent functions
∏

(𝐴,...):Cx𝑓 (Γ𝑆𝐾) 𝐴, and
in particular, applying these functions to 𝛾𝑆𝐾 produces two equal elements of Λ/∼. We
can prove by induction on combinators that for any 𝑧 ∈ Λ this procedure recovers 𝑧 up to
convertibility (i.e., sends ⟦𝑧⟧ to [𝑧]) and thus [𝑥] = [𝑦] as required. □

(2025-05-02) Equality in extensional type theory is undecidable 119

Theorem 3.6.3. Equality of terms 𝑎, 𝑏 ∈ Tm(Γ𝑆𝐾 , 𝐴) is undecidable.

Proof. Suppose it were decidable; then for any 𝑥,𝑦 ∈ Λ we can decide the equality of
⟦𝑥⟧, ⟦𝑦⟧ ∈ Tm(Γ𝑆𝐾 , 𝐴). By Lemma 3.6.1 and Theorem 3.6.2, ⟦𝑥⟧ = ⟦𝑦⟧ if and only if 𝑥 ∼ 𝑦,
so we can in turn decide the convertibility of SK-combinators, which is impossible. □

3.6.2 The second proof: separating classes of Turing machines

In the first proof we reduce an undecidable problem to the judgmental equality of open
terms, but establishing the completeness of this reduction requires appealing to the set-
theoretic model of type theory. Our second proof relies only on the consistency of exten-
sional type theory, showing that deciding judgmental equality of closed functions would
allow us to algorithmically separate two recursively inseparable subsets of N.

Notation 3.6.4. Fix a standard, effective Gödel encoding of Turing machines, in which the
standard operations on Turing machines are definable by primitive recursion. We write 𝜙𝑛
for the partial function induced by the Turing machine encoded by 𝑛.

Theorem 3.6.5 (Rosser [Ros36], Trakhtenbrot [Tra53], and Kleene [Kle50]). Consider the
following two subsets of the natural numbers:

𝐴 = {𝑛 ∈ N | 𝜙𝑛 (𝑛) terminates with result 0}
𝐵 = {𝑛 ∈ N | 𝜙𝑛 (𝑛) terminates with result 1}

There is no Turing machine which terminates on all inputs and separates 𝐴 from 𝐵.

Proof. Suppose we are given a Turing machine 𝑒 which always terminates with value 0 or
1, such that 𝑒 (𝑛) = 0 when 𝑛 ∈ 𝐴 and 𝑒 (𝑛) = 1 when 𝑛 ∈ 𝐵. Consider the algorithm

𝐹 (𝑛) :=
{
halt(1) 𝑒 (𝑛) = 0
halt(0) 𝑒 (𝑛) = 1

Because 𝑒 terminates on all inputs, so does 𝐹 . Note that 𝑒 (𝐹 (𝑛)) ≠ 𝑒 (𝑛) by construction:
if 𝑒 (𝐹 (𝑛)) = 1 then 𝑒 (𝑛) = 0 and vice versa. By the second recursion theorem, there exists
a Turing machine 𝑓 realizing 𝐹 applied to its own Gödel number. However, 𝑒 (𝑓) can be
neither 0 nor 1 as 𝑒 (𝑓) = 𝑒 (𝐹 (𝑓)) by definition, but 𝑒 (𝑓) ≠ 𝑒 (𝐹 (𝑓)). □

We will show that the existence of a normalization structure for extensional type
theory contradicts the above theorem. First, we observe that we can write a “small-step
interpreter” for Turing machines in type theory. Let us write TM and State for Nat to
indicate that we are interpreting a natural number as a Turing machine or Turing machine
state respectively, as encoded by 𝜙 . Then we can define the following functions in type
theory by primitive recursion:

(2025-05-02) Equality in extensional type theory is undecidable 120

• init : TM → Nat → State

• hasHalted : State → ∑
𝑏:Bool if (Nat,Unit, 𝑏)

• step : State → State

Using these operations, we can run a Turing machine for an arbitrary but finite number
of steps on any input, determine whether it has halted, and if so, extract the result. We
can therefore define the following function:

-- returns true iff Turing machine 𝑛 halts on 𝑛 with result 1 in fewer than 𝑡 steps
returnOne : TM → Nat → Bool
returnOne 𝑛 𝑡 = go (init 𝑛 𝑛) 𝑡

where
go : State → Nat → Bool
go 𝑠 zero = false
go 𝑠 (suc 𝑛) =

if fst (hasHalted 𝑠) then isOne (snd (hasHalted 𝑠)) else go (step 𝑠) 𝑛

Let 𝐻0 ∈ N be the encoding of a Turing machine which immediately halts with result
0 regardless of its input. Then, writing �̄� for the element of Tm(1,Nat) corresponding to
𝑚 ∈ N, we will show that returnOne(𝑛), returnOne(𝐻0) ∈ Tm(1,Π(Nat,Bool)) are equal
(resp., unequal) when 𝑛 is a Turing machine which halts with result 0 (resp., 1).

Lemma 3.6.6. If 𝑛 ∈ N is such that 𝜙𝑛 (𝑛) = 0, then

1 ⊢ returnOne 𝑛 = returnOne 𝐻0 : Π(Nat,Bool).

Proof. By the 𝜂 rule for Π-types, it suffices to show

1, 𝑡 : Nat ⊢ returnOne 𝑛 𝑡 = returnOne 𝐻0 𝑡 : Bool

By equality reflection, this follows from:

1, 𝑡 : Nat ⊢ 𝑃𝑡 : Eq(Bool, returnOne 𝑛 𝑡, returnOne 𝐻0 𝑡)

In Exercise 3.22 the reader will establish this by Nat elimination on 𝑡 . Note that by
𝜙𝑛 (𝑛) = 0, there exists some number ℓ such that the Turing machine encoded by 𝑛 halts in
𝑡 steps on 𝑛 with result 0. Thus we must in essence construct the following terms:

1, 𝑡 : Nat ⊢ 𝑃0 : Eq(Bool, returnOne 𝑛 zero, returnOne 𝐻0 zero)
1, 𝑡 : Nat ⊢ 𝑃1 : Eq(Bool, returnOne 𝑛 (suc zero), returnOne 𝐻0 (suc zero))
...

1, 𝑡 : Nat ⊢ 𝑃ℓ+1 : Eq(Bool, returnOne 𝑛 (sucℓ+1 𝑡), returnOne 𝐻0 (sucℓ+1 𝑡))

(2025-05-02) Equality in extensional type theory is undecidable 121

In the above, we write sucℓ+1(𝑡) for the (ℓ + 1)-fold application of suc(−) to 𝑡 . When
𝑖 ≤ ℓ it is straightforward to construct 𝑃𝑖 , as both sides equal false. For 𝑃ℓ+1, we note that
returnOne𝑚 (suc𝑘 𝑡) = false when𝑚 encodes a machine which halts in fewer than 𝑘
steps with a result other than 1, completing the proof. □

Exercise 3.22. Fill in the gap in the above argument using the elimination principle for
Nat.

The remaining condition is easier to show.

Lemma 3.6.7. If 𝑛 ∈ N is such that 𝜙𝑛 (𝑛) = 1, then if the equality

1 ⊢ returnOne 𝑛 = returnOne 𝐻0 : Π(Nat,Bool)

holds, extensional type theory is inconsistent.

Proof. Because𝜙𝑛 (𝑛) terminates, there is some number of steps 𝑡 for which returnOne𝑛 𝑡 =
true. On the other hand, returnOne 𝐻0 𝑡 = false for every 𝑡 , so by applying both of these
equal functions to 𝑡 we conclude that 1 ⊢ true = false : Bool. By Theorem 2.6.3 this
implies extensional type theory is inconsistent. □

Theorem 3.6.8. The judgmental equality 1 ⊢ returnOne 𝑛 = returnOne𝐻0 : Π(Nat,Bool)
cannot be decidable for all 𝑛 ∈ N.

Proof. By Lemma 3.6.6, this equation holds if 𝜙𝑛 (𝑛) = 0; by Lemma 3.6.7 and Theorem 3.4.8,
it does not hold if 𝜙𝑛 (𝑛) = 1. If this equation were decidable, we would be able to define
a terminating algorithm which separates the subsets of 𝑛 ∈ N for which 𝜙𝑛 (𝑛) = 0 and
𝜙𝑛 (𝑛) = 1, contradicting Theorem 3.6.5. □

(2025-05-02) Equality in extensional type theory is undecidable 122

Further reading

There are a number of excellent pedagogical resources on type-checkers for dependent
type theory that we encourage our implementation-inclined readers to explore. Coquand
[Coq96] describes algorithms for bidirectional type-checking and deciding equality along
with a proof sketch of correctness. Löh, McBride, and Swierstra [LMS10] include additional
exposition and a complete Haskell implementation that extends a type-checker for a simply-
typed calculus that is also described in the paper. The Mini-TT tutorial by Coquand et al.
[Coq+09] includes a Haskell implementation of a type theory which is unsound (allowing
arbitrary fixed-points) but supports data type declarations and basic pattern matching.

In addition to the aforementioned papers, there are numerous online resources, in-
cluding a tutorial by Christiansen [Chr19] on the normalization by evaluation algorithm
for deciding equality, and the elaboration-zoo of Kovács [Kov] which is an excellent
resource for more advanced implementation techniques.

4Intensional type theory

In Chapter 3 we outlined several key properties of type theories: consistency states that
type theory can be viewed as a logic, canonicity states that type theory can be viewed as a
programming language, normalization allows us to define a type-checking algorithm, and
invertibility of type constructors improves that algorithm. Unfortunately, we also saw in
Section 3.6 that extensional type theory does not satisfy the latter two properties due to
the equality reflection rule of its Eq-types (Section 2.4.4).

If we remove Eq-types from extensional type theory then it will satisfy all four metathe-
orems above, but it becomes unusably weak. A foreseeable consequence is that type theory
would no longer have an equality proposition; a more subtle issue is that many equations
stop holding altogether, judgmentally or otherwise. This is because inductive types are
characterized by maps into other types only, so what properties they enjoy depends on
what types exist. Indeed we have already seen that Eq-types allow us to prove their 𝜂-rules
and universes allow us to prove disjointness of their constructors; without Eq-types their
𝜂-rules will no longer be provable, and disjointness cannot even be stated!

We are left asking: how should we internalize judgmental equality as a type, if not
Eq? This question has preoccupied type theorists for decades and—fortunately for their
continued employment—has no clear-cut answer. We will find that deleting equality
reflection causes equality types to become underconstrained, and their most canonical
replacement, intensional identity types, lack several important reasoning principles. The
decades-long quest for a suitable identity type has resulted in many subtle variations as
well as some major innovations in type theory, as we will explore in Chapter 5. But first
we turn our attention to intensional type theory, or type theory with intensional identity
types, the system on which most type-theoretic proof assistants are based.

Notation 4.0.1. We adopt the common acronyms ETT and ITT for extensional type theory
and intensional type theory respectively.

In this chapter In Section 4.1 we explore the basic properties that any propositional
equality connective must satisfy, and show that a small set of primitive operations suffice
to recover many of the positive consequences of equality reflection while allowing for
normalization. In Section 4.2 we formally define the intensional identity type according to
the framework of inductive types outlined in Section 2.5, and show that this type precisely
satisfies the properties of equality outlined above. In Section 4.3 we compare extensional
and intensional identity types, noting that the latter lacks several important principles,
but by adding two axioms to it we can recover all the reasoning principles of extensional
type theory in a precise sense. Finally, in Section 4.4, we summarize a line of research on

123

(2025-05-02) Programming with propositional equality 124

observational type theory [AMS07], which attempts to improve intensional identity types
without sacrificing normalization.

Goals of the chapter By the end of this chapter, you will be able to:

• Define subst and contractibility of singletons, use them to prove other properties of
equality, and implement them using intensional identity types.

• Explain how intensional identity types fit into the framework of internalizing judg-
mental structure that we developed in Chapter 2.

• Discuss the relationship and tradeoffs between intensional and extensional equality.

• Informally describe observational type theory, and explain how it addresses the
shortcomings of intensional and extensional type theory.

4.1 Programming with propositional equality

In this section we will informally consider what properties should be satisfied by any “type
of equations.” Recall from Section 1.1.3 that such a propositional (or typal, or internal)
notion of equality is important for proving equations between types that type-checkers
cannot handle automatically, and that such type equations allow us to cast (coerce) between
the types involved. In Section 3.1 we discussed how type-checkers automatically handle
definitional (judgmental) type equalities; one can therefore think of propositional type
equalities as “verified casts” that users manually insert into terms.

Our starting point will be the type theory described in Chapter 2 but without Eq-types.
Instead wewill add an identity type Id1 with the same formation (and universe introduction)
rule but no other properties yet:

Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑏 : 𝐴
Γ ⊢ Id(𝐴, 𝑎, 𝑏) type

Γ ⊢ 𝑎 : U𝑖 Γ ⊢ 𝑥 : El(𝑎) Γ ⊢ 𝑦 : El(𝑎)
Γ ⊢ id(𝑎, 𝑥,𝑦) : U𝑖

Γ ⊢ El(id(𝑎, 𝑥,𝑦)) = Id(El(𝑎), 𝑥,𝑦) type

The primary way to use a proof of Id(𝐴, 𝑎, 𝑎′) is in concert with an 𝐴-indexed family
of types 𝑏 : 𝐴 → U; namely, we conclude that the 𝑎 and 𝑎′ instances of this family are
themselves equal in the sense that we have a proof of Id(U, 𝑏 𝑎, 𝑏 𝑎′), and as a result we
are able to cast between the types El(𝑏 𝑎) and El(𝑏 𝑎′). Notably, because type equality is
central to this story, universes will play a major role in this section.

1Although beyond the scope of this book, we expect the Superego connective to internalize the rules of
type theory; arguably singleton types internalize the self and thus serve as the Ego.

(2025-05-02) Programming with propositional equality 125

Notation 4.1.1. What should we call terms of type Id(𝐴, 𝑎, 𝑏)? This type will no longer
precisely internalize the equality judgment so it can be misleading to call them equalities
between 𝑎 and 𝑏. On the other hand, calling them “proofs of equality between 𝑎 and 𝑏” is
too cumbersome. We will refer to them as identifications between 𝑎 and 𝑏.

Notation 4.1.2. In the remainder of this section we will return to the informal notation of
Chapter 1; in particular, we omit El(−), thereby suppressing the difference between types
and terms of type U. We resume our more rigorous notation in Section 4.2.

4.1.1 Constructing identifications

Following the discussion above, we can already formulate two necessary conditions on
Id(𝐴, 𝑎, 𝑏). First, we must have some source of identifications between terms. As with
Eq-types we choose reflexivity; in concert with definitional equality, this allows us to prove
any terms are identified as long as they differ only by 𝛽 , 𝜂, and expanding definitions:

refl : {𝐴 : U} → (𝑎 : 𝐴) → Id(𝐴, 𝑎, 𝑎)

Secondly, given an identification Id(𝐴, 𝑎, 𝑎′) and a dependent type 𝐵 : 𝐴 → U, we must be
able to convert terms of type 𝐵(𝑎) to 𝐵(𝑎′), a process (confusingly) known as substitution:

subst : {𝐴 : U} {𝑎 𝑎′ : 𝐴} → (𝐵 : 𝐴 → U) → Id(𝐴, 𝑎, 𝑎′) → 𝐵 𝑎 → 𝐵 𝑎′

Remark 4.1.3. The subst function did not emerge in our discussion of Eq-types for the
simple reason that equality reflection trivializes it: subst 𝐵 𝑝 𝑏 = 𝑏. Indeed, all of the
operations we discuss in this section are trivial in the presence of equality reflection. ⋄

By assuming that Id-types satisfy refl and subst we are off to a good start, but a priori
these are only two of the many combinators that we expect to be definable for Id(𝐴, 𝑎, 𝑏);
for starters, as an equality relation, identifications ought to be not only reflexive but also
symmetric and transitive. Fortunately and somewhat surprisingly, it turns out that both
symmetry and transitivity are consequences of refl and subst.

Lemma 4.1.4. Using refl and subst, we can prove symmetry of identifications, i.e.,

sym : {𝐴 : U} {𝑎 𝑏 : 𝐴} → Id(𝐴, 𝑎, 𝑏) → Id(𝐴,𝑏, 𝑎)

Proof. Fix 𝐴 : U and 𝑎 𝑏 : 𝐴 and 𝑝 : Id(𝐴, 𝑎, 𝑏). To construct a term of type Id(𝐴,𝑏, 𝑎), we
simply choose a clever 𝐵 at which to instantiate subst:

𝐵 : 𝐴 → U
𝐵 𝑥 = id(𝐴, 𝑥, 𝑎)

(2025-05-02) Programming with propositional equality 126

In particular, note that 𝐵(𝑎) = Id(𝐴, 𝑎, 𝑎) is easily proven by refl, and 𝐵(𝑏) = Id(𝐴,𝑏, 𝑎)
is our goal; thus subst 𝐵 𝑝 is a function 𝐵(𝑎) → 𝐵(𝑏) and our goal follows soon after:

sym : {𝐴 : U} {𝑎 𝑏 : 𝐴} → Id(𝐴, 𝑎, 𝑏) → Id(𝐴,𝑏, 𝑎)
sym {𝐴 𝑎 𝑏} 𝑝 = subst (𝜆𝑥 → id(𝐴, 𝑥, 𝑎)) 𝑝 (refl 𝑎) □

Lemma 4.1.5. Using refl and subst, we can prove transitivity of identifications, i.e.,

trans : {𝐴 : U} {𝑎 𝑏 𝑐 : 𝐴} → Id(𝐴, 𝑎, 𝑏) → Id(𝐴,𝑏, 𝑐) → Id(𝐴, 𝑎, 𝑐)

Proof. Fix 𝐴 : U, 𝑎 𝑏 𝑐 : 𝐴, 𝑝 : Id(𝐴, 𝑎, 𝑏), and 𝑞 : Id(𝐴,𝑏, 𝑐). To construct a term of type
Id(𝐴, 𝑎, 𝑐), we again choose a clever instantiation of subst, in this case 𝐵(𝑥) = Id(𝐴, 𝑎, 𝑥).
Once again, 𝐵(𝑏) is easily proven by our assumption 𝑝 , and 𝐵(𝑐) is our goal. Substituting
along 𝑞 : Id(𝐴,𝑏, 𝑐) completes our proof:

trans : {𝐴 : U} {𝑎 𝑏 𝑐 : 𝐴} → Id(𝐴, 𝑎, 𝑏) → Id(𝐴,𝑏, 𝑐) → Id(𝐴, 𝑎, 𝑐)
trans {𝐴 𝑎 𝑏 𝑐} 𝑝 𝑞 = subst (𝜆𝑥 → id(𝐴, 𝑎, 𝑥)) 𝑞 𝑝 □

Exercise 4.1. Provide an alternative proof trans′ of Lemma 4.1.5 which substitutes along
𝑝 rather than 𝑞, using a slightly different choice of 𝐵.

In fact, refl and subst also allow us to prove that identifications are a congruence, in
the sense that given Id(𝐴, 𝑎, 𝑎′) and 𝑓 : 𝐴 → 𝐵, we obtain an identification Id(𝐵, 𝑓 𝑎, 𝑓 𝑎′).

Lemma 4.1.6. Using subst, we can prove congruence of identifications, i.e.,

cong : {𝐴 𝐵 : U} {𝑎 𝑎′ : 𝐴} → (𝑓 : 𝐴 → 𝐵) → Id(𝐴, 𝑎, 𝑎′) → Id(𝐵, 𝑓 𝑎, 𝑓 𝑎′)

Proof. The proof strategy remains the same, so we proceed directly to the term:

cong : {𝐴 𝐵 : U} {𝑎 𝑎′ : 𝐴} → (𝑓 : 𝐴 → 𝐵) → Id(𝐴, 𝑎, 𝑎′) → Id(𝐵, 𝑓 𝑎, 𝑓 𝑎′)
cong {𝐴 𝐵 𝑎 𝑎′} 𝑓 𝑝 = subst (𝜆𝑥 → id(𝐵, 𝑓 𝑎, 𝑓 𝑥)) 𝑝 (refl (𝑓 𝑎)) □

Finally, we must consider how subst ought to compute. Because subst can produce
terms of any type, including Bool and Nat, we must impose some definitional equalities
on it if our type theory is to satisfy canonicity (Section 3.4). One equation springs to mind
immediately: if we apply subst 𝐵 to refl 𝑎, the resulting coercion 𝐵 𝑎 → 𝐵 𝑎 has the type
of the identity function, so it is reasonable to ask for it to be the identity function. That is,
we ask for the following definitional equality:

subst 𝐵 (refl 𝑎) 𝑏 = 𝑏 : 𝐵 𝑎

(2025-05-02) Programming with propositional equality 127

4.1.2 Constructing identifications of identifications

Although refl and subst go quite a long way, they do not suffice to derive all the properties
of identifications wemight expect; we start encountering their limits as soon as we consider
identifications between elements of Id(𝐴, 𝑎, 𝑏) itself. These identifications of identifications
arise very naturally in practice. Quite often we must use subst when constructing a
dependently-typed term in order to align various type indices; if we ever construct a type
that depends on such a term, we will very quickly be in the business of proving that two
potentially distinct sequences of subst casts are themselves equal.

For the sake of concreteness, consider the following pair of operations that “rotate” a
Vector (a list of specified length, as defined in Chapter 1):

append : {𝐴 : U} {𝑛 𝑚 : Nat} → Vec 𝐴 𝑛 → Vec 𝐴𝑚 → Vec 𝐴 (𝑛 +𝑚)
comm : {𝑛 𝑚 : Nat} → Id(Nat, 𝑛 +𝑚,𝑚 + 𝑛)

rot1 : {𝐴 : U} {𝑛 : Nat} → Vec 𝐴 𝑛 → Vec 𝐴 𝑛
rot1 [] = []
rot1 {𝐴 (suc𝑛)} (𝑥 :: xs) = subst (Vec 𝐴) (comm 𝑛 1) (append xs (𝑥 :: []))

rot2 : {𝐴 : U} {𝑛 : Nat} → Vec 𝐴 𝑛 → Vec 𝐴 𝑛
rot2 [] = []
rot2 (𝑥 :: []) = 𝑥 :: []
rot2 {𝐴 (suc(suc𝑛))} (𝑥0 :: 𝑥1 :: xs) =

subst (Vec 𝐴) (comm 𝑛 2) (append xs (𝑥0 :: 𝑥1 :: []))

We expect to be able to prove that rot1 twice is the same as rot2:

{𝐴 : U} {𝑛 : Nat} → (xs : Vec 𝐴 (2 + 𝑛)) → Id(Vec 𝐴 (2 + 𝑛), rot1 (rot1 xs), rot2 xs)

However, this will not be possible with our current set of primitives. In our definitions of
rot1 and rot2we were forced to include various applications of subst to correct mismatches
between the indices (𝑛 + 1), (1 + 𝑛) and (𝑛 + 2), (2 + 𝑛), and these subst terms will get in
our way as we try to establish the above identification. If we proceed by induction on xs,
for instance, we will get stuck attempting to construct a identification between

subst (Vec 𝐴) (comm 𝑛 1)
(append (subst (Vec 𝐴) (comm 𝑛 1) (append xs (𝑥0 :: []))) (𝑥1 :: []))

and

subst (Vec 𝐴) (comm 𝑛 2) (append xs (𝑥0 :: 𝑥1 :: []))

(2025-05-02) Programming with propositional equality 128

of typeVec𝐴 (2+𝑛). Unfortunately, because𝑛 is a variable, neither comm𝑛 1 nor comm𝑛 2
are the reflexive identification, so we can make no further progress.

The above example is a bit involved, but there are many smaller (albeit more contrived)
examples of identifications that are beyond our reach; for example, given a variable
𝑝 : Id(𝐴, 𝑎, 𝑏) we cannot construct an identification Id(Id(𝐴, 𝑎, 𝑏), 𝑝, sym (sym 𝑝)).

Our “API” for identity types is thus missing an operation that allows us to prove
identifications between two identifications. To hit upon this operation, we introduce the
concept of (propositional) singleton types (in contrast to the “definitional singleton types” of
Section 3.3). Given a type 𝐴 and a term 𝑎 : 𝐴, the singleton type [𝑎] is defined as follows:

[𝑎] = ∑
𝑏:𝐴 Id(𝐴, 𝑎, 𝑏)

That is, [𝑎] is the type of “elements of𝐴 that can be identified with 𝑎.” Intuitively, there
should only be one such element, namely 𝑎 itself—or to be more precise, (𝑎, refl 𝑎). But
this, too, is not yet provable. Certainly, given an arbitrary element (𝑏, 𝑝) : [𝑎] we can see
that (by 𝑝) their first projections 𝑎 and 𝑏 are identified, but we have no way of identifying
their second projections refl 𝑎 and 𝑝 .

In fact, most of our “coherence problems” of identifying identifications can be reduced
to the problem of identifying all elements of [𝑎]: this is in some sense the ur-coherence
problem. Intuitively this is because being able to identify arbitrary (𝑏, 𝑝) with (𝑎, refl 𝑎)
allows us to transform subst terms involving the arbitrary identification 𝑝 into subst terms
involving the distinguished identification refl 𝑎, the latter of which “compute away.”

Lemma 4.1.7. Suppose we are given some 𝐴 : U and 𝑎 : 𝐴 such that all elements of [𝑎] are
identified; then for any 𝑏 : 𝐴 and 𝑝 : Id(𝐴, 𝑎, 𝑏) we have Id(Id(𝐴, 𝑎, 𝑏), 𝑝, sym (sym 𝑝)).

Proof. Fixing 𝐴, 𝑎, 𝑏, and 𝑝 , we notice that (𝑎, refl 𝑎), (𝑏, 𝑝) : [𝑎] by definition, and thus
by assumption we have an identification 𝑞 : Id([𝑎], (𝑎, refl 𝑎), (𝑏, 𝑝)). As before, we shall
choose a clever 𝐵 for which subst 𝐵 solves our problem, namely:

𝐵 : [𝑎] → U
𝐵 (𝑏0, 𝑝0) = id(id(𝐴, 𝑎, 𝑏0), 𝑝0, sym (sym 𝑝0))

Inspecting our definition of Lemma 4.1.4, we see that sym (refl 𝑥) = refl 𝑥 definitionally,
and thus the following definitional equalities hold:

𝐵 (𝑎, refl 𝑎) = Id(Id(𝐴, 𝑎, 𝑎), refl 𝑎, sym (sym (refl 𝑎)))
= Id(Id(𝐴, 𝑎, 𝑎), refl 𝑎, sym (refl 𝑎))
= Id(Id(𝐴, 𝑎, 𝑎), refl 𝑎, refl 𝑎)

𝐵 (𝑏, 𝑝) = Id(Id(𝐴, 𝑎, 𝑏), 𝑝, sym (sym 𝑝))

It is easy to produce an element of the former type (namely, refl (refl 𝑎)), the latter
type is our goal, and 𝑞 is an identification between the two indices. Thus:

(2025-05-02) Programming with propositional equality 129

symsym : {𝐴 : U} {𝑎 𝑏 : 𝐴} → (𝑝 : Id(𝐴, 𝑎, 𝑏)) → Id(Id(𝐴, 𝑎, 𝑏), 𝑝, sym (sym 𝑝))
symsym {𝐴 𝑎 𝑏} 𝑝 = subst

(𝜆(𝑏0, 𝑝0) → id(id(𝐴, 𝑎, 𝑏0), 𝑝0, sym (sym 𝑝0)))
? : Id([𝑎], (𝑎, refl 𝑎), (𝑏, 𝑝)) -- by assumption
(refl (refl 𝑎)) □

We substantiate the assumption of Lemma 4.1.7 with a new primitive operation on
identity types, uniq, that identifies (𝑎, refl 𝑎) with arbitrary elements of [𝑎]. (By sym
and trans, it follows that any two arbitrary elements of [𝑎] are also identified.) As with
subst, we also assert that a certain definitional equality holds when uniq is supplied with
the reflexive identification. This operation is often called singleton contractibility [Coq14;
UF13], and it will feature prominently in Chapter 5.

uniq : {𝐴 : U} {𝑎 : 𝐴} → (𝑥 : [𝑎]) → Id([𝑎], (𝑎, refl 𝑎), 𝑥)
uniq (𝑎, refl 𝑎) = refl (𝑎, refl 𝑎)

Exercise 4.2. Like subst, uniq is definable in extensional type theory; show this.

Exercise 4.3. Recalling trans (Lemma 4.1.5) and trans′ (Exercise 4.1), use subst and uniq
to construct a term of the following type:

{𝐴 : U} {𝑎 𝑏 𝑐 : 𝐴} → (𝑝 : Id(𝐴, 𝑎, 𝑏)) → (𝑞 : Id(𝐴,𝑏, 𝑐)) →
Id(Id(𝐴, 𝑎, 𝑐), trans 𝑝 𝑞, trans′ 𝑝 𝑞)

4.1.3 Intensional identity types

To summarize Sections 4.1.1 and 4.1.2, we have asked for Id(𝐴, 𝑎, 𝑏) to support the following
three operations subject to two definitional equalities:

refl : {𝐴 : U} → (𝑎 : 𝐴) → Id(𝐴, 𝑎, 𝑎)
subst : {𝐴 : U} {𝑎 𝑎′ : 𝐴} → (𝐵 : 𝐴 → U) → Id(𝐴, 𝑎, 𝑎′) → 𝐵 𝑎 → 𝐵 𝑎′

uniq : {𝐴 : U} {𝑎 : 𝐴} → (𝑥 : [𝑎]) → Id([𝑎], (𝑎, refl 𝑎), 𝑥)

subst 𝐵 (refl 𝑎) 𝑏 = 𝑏

uniq(𝑎, refl 𝑎) = refl (𝑎, refl 𝑎)

Definition 4.1.8. An intensional identity type is any type Id(𝐴, 𝑎, 𝑏) equipped with the
three operations above satisfying the two definitional equalities above.

(2025-05-02) Intensional identity types 130

Intensional identity types were introduced by Martin-Löf [Mar75] and have been the
“standard” formulation of propositional equality in type theory for most of the interven-
ing years, although various authors have presented them via different but equivalent
sets of primitive operations and equations [CP90b; PP90; Pau93; Str93; Coq14].2 Our
presentation most closely follows Coquand [Coq14] which, to our knowledge, was first
proposed by Steve Awodey in 2009. In Sections 4.3 and 4.4 we will also consider related but
non-equivalent presentations endowing Id(𝐴, 𝑎, 𝑏) with more properties [Str93; Hof95a;
AMS07].

Let us be clear, however, that this broad agreement in the literature is not an indication
of happiness. On the contrary, most type theorists have many complaints about intensional
identity types: there are several important properties that they do not satisfy, and they can
be frustrating in practice for a number of reasons. They have persisted for so long because
of a relative lack of compelling alternatives that also satisfy the two crucial properties of:

1. Capturing the most important properties of equality—reflexivity, symmetry, transi-
tivity, congruence, substitutivity, etc.—thus enabling a wide range of constructions.

2. Their inclusion in a type theory is compatible with all the metatheorems discussed
in Chapter 3, especially—unlike Eq-types—normalization.

In Section 4.3 we will discuss the shortcomings of Id-types in more detail, but it
will turn out that these shortcomings can be mostly overcome by adding several axioms
(postulated terms, or in essence, free variables) to type theory. Adding such axioms causes
canonicity to fail, but as discussed in Section 3.4, type theories without canonicity are
merely frustrating (requiring more manual reasoning by identifications), whereas type
theories without normalization are essentially un-type-checkable. As a result, many users
of type theory opt to work with Id-types with some additional axioms.

But before we get ahead of ourselves, we proceed by formally defining Id-types and
thus the type theory known as intensional type theory.

4.2 Intensional identity types

In this section we formally define intensional identity types, or Id-types, returning to the
style of definition adopted throughout Chapter 2. Although it is possible to add Id-types
to extensional type theory, we are primarily interested in defining intensional type theory,
which is obtained by replacing certain rules of ETT by the rules in this section. Specifically,
we remove from the theory of Chapter 2 all rules pertaining to Eq-types; in Appendix A
those rules are annotated (ETT), and the rules added in this section are annotated (ITT).

2The equivalence between the presentations of Martin-Löf [Mar75] and Paulin-Mohring [Pau93] is due
to Hofmann [Str93, Addendum].

(2025-05-02) Intensional identity types 131

Although the rules for Id-types appear complicated and unmotivated at first, it will
turn out that they arise naturally from our methodology that types internalize judgmental
structure. Recalling Slogan 2.5.3, connectives in type theory are specified by a natural
type-forming operation whose terms are either defined by a mapping-in property (a natural
isomorphism with judgmentally-defined structure) or a mapping-out property (an algebra
signature for which the type carries a weakly initial algebra).

The formation rule of Id(𝐴, 𝑎, 𝑏) is identical to that of Eq(𝐴, 𝑎, 𝑏):

Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑏 : 𝐴
Γ ⊢ Id(𝐴, 𝑎, 𝑏) type

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑏 : 𝐴
Δ ⊢ Id(𝐴, 𝑎, 𝑏) [𝛾] = Id(𝐴[𝛾], 𝑎[𝛾], 𝑏 [𝛾]) type

Or equivalently, the following type-forming operation natural in Γ:

IdΓ : (∑𝐴∈Ty(Γ) Tm(Γ, 𝐴) × Tm(Γ, 𝐴)) → Ty(Γ)

We must now decide whether to define Id(𝐴, 𝑎, 𝑏) by a mapping-in property or a
mapping-out property. In Chapter 2 we saw that mapping-in properties are generally
both simpler and better-behaved, but we already defined Eq-types by the mapping-in
property of internalizing judgmental equality (i.e., Tm(Γ, Eq(𝐴, 𝑎, 𝑏)) � {★ | 𝑎 = 𝑏}), and
it is unclear what other structure we could ask for Id-types to internalize.3

Faced with no other options, we are forced to consider a mapping-out property instead.
Per the discussion in Sections 2.5.2 and 2.5.3, such a property starts with a collection of
natural term constructors of Id(𝐴, 𝑎, 𝑏), in this case only reflexivity:

Γ ⊢ 𝑎 : 𝐴
Γ ⊢ refl : Id(𝐴, 𝑎, 𝑎)

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : 𝐴
Δ ⊢ refl [𝛾] = refl : Id(𝐴[𝛾], 𝑎[𝛾], 𝑎[𝛾])

Or equivalently, the following term-forming operation natural in Γ:

reflΓ,𝐴,𝑎 ∈ Tm(Γ, Id(𝐴, 𝑎, 𝑎))

Whereas the mapping-in property of Eq-types asserts that refl is their only inhabitant,
the mapping-out property of Id-types will assert that every type believes that refl is their
only inhabitant, in just the same way that every type “believes” that true and false are
the only elements of Bool, namely that to map out of Bool it suffices to explain how to
behave on true and false.

Remark 4.2.1. Like the induction principles of inductive types, the subst and uniq prim-
itives of Section 4.1 are both maps out of Id(𝐴, 𝑎, 𝑏) that have prescribed behavior on

3Cubical type theory in fact invents a new judgmental structure for propositional equality to internalize,
but we will return to this point in Section 5.3.

(2025-05-02) Intensional identity types 132

the constructor refl. We will see shortly that both subst and uniq are definable via the
Id-elimination principle we are about to present, and remarkably, that Id-elimination can
conversely be recovered as a combination of subst and uniq!

Compared to subst and uniq, Id-elimination is more clearly motivated by general
considerations (mapping-out properties), more self-contained (not requiring Σ-types), and
even often more ergonomic in practice. But subst and uniq are nevertheless very important
combinators that certainly merit special discussion. ⋄

Luckily refl is not a recursive constructor, so we can avoid the discussion of displayed
algebras of Section 2.5.3 and return to the simpler characterization of mapping-out proper-
ties in Sections 2.5.2 and 2.5.4 as a section (right inverse) to substitution of constructors. In
exchange we must for the first time consider an inductive type former that has formation
data, namely a type 𝐴 and two terms 𝑎, 𝑏 : 𝐴.

Suppose we have a dependent type over an identity type:

Γ.𝐴.𝐴[p] .Id(𝐴[p2], q [p], q) ⊢ 𝐶 type

Into any term of the above type we can substitute refl:

(id.q.refl)∗ : Tm(Γ.𝐴.𝐴[p] .Id(𝐴[p2], q [p], q),𝐶) → Tm(Γ.𝐴,𝐶 [id.q.refl])

The elimination principle for Id-types is precisely a section of the above map.
Let us unpack this a bit. First, we rewrite the above map using named variables:

[𝑎/𝑏, refl/𝑝] : Tm(Γ, 𝑎 : 𝐴,𝑏 : 𝐴, 𝑝 : Id(𝐴, 𝑎, 𝑏),𝐶 (𝑎, 𝑏, 𝑝)) → Tm(Γ, 𝑎 : 𝐴,𝐶 (𝑎, 𝑎, refl(𝑎)))

A section to this map tells us that to construct an element of 𝐶 (𝑎, 𝑏, 𝑝) for any 𝑎, 𝑏 : 𝐴
and 𝑝 : Id(𝐴, 𝑎, 𝑏), it suffices to say what to do on 𝑎, 𝑎, refl (i.e., provide a term of type
𝐶 (𝑎, 𝑎, refl)). Compared to our definition of if in Section 2.5.2, the context on the left
is more complex because the domain of a dependent type 𝐶 : Id(𝐴, 𝑎, 𝑏) → U is itself
dependent on 𝑎, 𝑏 : 𝐴, and the context on the right is more complex because the constructor
refl is dependent on 𝑎 : 𝐴.

Remark 4.2.2. From a more nuts-and-bolts perspective, imagine that we asked for 𝐶 not
to be dependent on all three of 𝑎, 𝑏, 𝑝 as Γ, 𝑎 : 𝐴,𝑏 : 𝐴, 𝑝 : Id(𝐴, 𝑎, 𝑏) ⊢ 𝐶 (𝑎, 𝑏, 𝑝) type, but
only on 𝑝 , i.e., Γ, 𝑝 : Id(𝐴, 𝑎, 𝑏) ⊢ 𝐶 (𝑝) type for some fixed 𝑎, 𝑏 : 𝐴. Then we would not
even be able to even state what it means to substitute refl for 𝑝 , because refl only has
type Id(𝐴, 𝑎, 𝑏) when 𝑎 and 𝑏 are definitionally equal. Instead, we ask for all of 𝑎, 𝑏, 𝑝 to be
variables, and consider the substitution of 𝑎, 𝑎, refl for 𝑎, 𝑏, 𝑝 . ⋄

Unfolding the above section into inference rules, we once again “build in a cut” by
applying the stipulated term in context Γ.𝐴.𝐴[p] .Id(𝐴[p2], q [p], q) to arguments 𝑎 : 𝐴,
𝑏 : 𝐴, and 𝑝 : Id(𝐴, 𝑎, 𝑏) all in context Γ. The first rule below is the section map itself, the

(2025-05-02) Intensional identity types 133

second rule is naturality of the section map, and the third states that applying the section
map followed by (id.q.refl)∗ is the identity:

Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑏 : 𝐴 Γ ⊢ 𝑝 : Id(𝐴, 𝑎, 𝑏)
Γ.𝐴.𝐴[p] .Id(𝐴[p2], q [p], q) ⊢ 𝐶 type Γ.𝐴 ⊢ 𝑐 : 𝐶 [id.q.refl]

Γ ⊢ J(𝑐, 𝑝) : 𝐶 [id.𝑎.𝑏.𝑝]

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑏 : 𝐴 Γ ⊢ 𝑝 : Id(𝐴, 𝑎, 𝑏)
Γ.𝐴.𝐴[p] .Id(𝐴[p2], q [p], q) ⊢ 𝐶 type Γ.𝐴 ⊢ 𝑐 : 𝐶 [id.q.refl]
Δ ⊢ J(𝑐, 𝑝) [𝛾] = J(𝑐 [(𝛾 ◦ p).q], 𝑝 [𝛾]) : 𝐶 [𝛾 .𝑎[𝛾] .𝑏 [𝛾] .𝑝 [𝛾]]

Γ ⊢ 𝑎 : 𝐴 Γ.𝐴.𝐴[p] .Id(𝐴[p2], q [p], q) ⊢ 𝐶 type Γ.𝐴 ⊢ 𝑐 : 𝐶 [id.q.refl]
Γ ⊢ J(𝑐, refl) = 𝑐 [id.𝑎] : 𝐶 [id.𝑎.𝑎.refl]

These rules complete our definition of Id-types and thus of intensional type theory.
As with the eliminators of Void, Bool, and Nat, it can be helpful to think of J(𝑐, 𝑝) as

somehow “pattern-matching on 𝑝” with clause 𝑐 .

match (𝑎, 𝑏, 𝑝) with
(𝑎, 𝑎, refl) → 𝑐 𝑎

From this perspective, the definitional equality J(𝑐, refl) = 𝑐 [id.𝑎] states that the entire
match expression reduces to 𝑐 when (𝑎, 𝑏, 𝑝) is indeed of the form (𝑎, 𝑎, refl).

Remark 4.2.3. The name of J for Id-elimination dates back to Martin-Löf [Mar84a], in
which Martin-Löf notates Id-types as I, and he seems to have chosen J simply because it is
the next letter of the alphabet. At any rate, unlike Identity or reflexivity, it has no obvious
meaning as the initial letter of pre-existing mathematical terminology.

For readers who might find this notational choice to be singularly arbitrary, we recall
Scott’s story of mailing Church a postcard asking why 𝜆 was chosen as the symbol for
function abstraction in his 𝜆-calculus, and receiving the same postcard with the annotation
“eeny, meeny, miny, moe” [Sco18]. ⋄

Like extensional type theory, intensional type theory satisfies consistency and canon-
icity; unlike extensional type theory, it also satisfies the metatheorems on open terms
discussed in Chapter 3 and is therefore exceptionally well-behaved from the perspective
of both theory and implementability.

Theorem 4.2.4 (Martin-Löf [Mar71; Mar75] and Coquand [Coq91]). Intensional type
theory satisfies consistency, canonicity, normalization, and has invertible type constructors.

(2025-05-02) Intensional identity types 134

One typically deduces all of these properties from the proof of normalization: given
that normalization amounts to concretely characterizing the sets Tm(Γ, 𝐴) for all Γ, 𝐴,
consistency and canonicity amount to verifying that these characterizations of Tm(1,Void)
and Tm(1,Bool) contain zero and two elements respectively, and invertibility of Π-types
amounts to inverting the induced Π(−,−) map on normal forms. There are many proofs
of normalization for intensional type theory and minor variations on it, some relying on
semantic model constructions [AK16; Coq19; Ste21] and others more closely connected to
algorithms used in real implementations [ACD07; Abe13; AÖV17].

From J to subst and uniq We close this section by showing that J is interprovable with
the combination of subst and uniq, first that both subst and uniq are instances of J.

Notation 4.2.5. Our J(𝑏, 𝑝) notation is not well-suited to informal constructions with
named variables, because 𝑏 silently binds a variable of type 𝐴, and moreover, the type 𝐶
can be hard to infer by inspection. In our informal notation we will therefore wrap J as a
function with the following type, satisfying the definitional equality j 𝐵 𝑏 𝑎 𝑎 refl = 𝑏 𝑎.

j : {𝐴 : U} (𝐶 : (𝑎 𝑏 : 𝐴) → Id(𝐴, 𝑎, 𝑏) → U) → ((𝑎 : 𝐴) → 𝐶 𝑎 𝑎 refl) →
(𝑎 𝑏 : 𝐴) (𝑝 : Id(𝐴, 𝑎, 𝑏)) → 𝐶 𝑎 𝑏 𝑝

Likewise we introduce the functions pi, sig : (𝐴 : U) (𝐵 : 𝐴 → U) → U as wrappers
for the codes pi(−,−) and sig(−,−) respectively.

Exercise 4.4. Use the elimination principle J to define the function j above, and check
that your definition of j satisfies the stipulated definitional equality.

The flexibility and complexity of J come from the fact that the motive [McB02] 𝐶 can
depend not only on the two elements of𝐴 but also the identification itself, both in arbitrary
ways; many principles fall immediately out of J given a sufficiently clever choice of 𝐶 .

Lemma 4.2.6. Using j we can define subst, i.e., a term of type

subst : {𝐴 : U} {𝑎 𝑎′ : 𝐴} → (𝐵 : 𝐴 → U) → Id(𝐴, 𝑎, 𝑎′) → 𝐵 𝑎 → 𝐵 𝑎′

satisfying the definitional equality subst refl 𝑏 = 𝑏.

Proof. We will apply j to the same 𝑎, 𝑎′ : 𝐴 and 𝑝 : Id(𝐴, 𝑎, 𝑎′) as subst, choosing a motive
such that the type of the fully-applied j will be 𝐵 𝑎 → 𝐵 𝑎′:

𝐶 𝑥 𝑦 _ = pi (𝐵 𝑥) (𝜆_ → 𝐵 𝑦)

We have𝐶 𝑎 𝑎′ 𝑝 = 𝐵 𝑎 → 𝐵 𝑎′ as desired, and it remains only to exhibit a term of type
(𝑎 : 𝐴) → 𝐶 𝑎 𝑎 refl = (𝑎 : 𝐴) → 𝐵 𝑎 → 𝐵 𝑎, which is easy to do. In total:

(2025-05-02) Intensional identity types 135

subst : {𝐴 : U} {𝑎 𝑎′ : 𝐴} → (𝐵 : 𝐴 → U) → Id(𝐴, 𝑎, 𝑎′) → 𝐵 𝑎 → 𝐵 𝑎′

subst {𝐴 𝑎 𝑎′} 𝐵 𝑝 = j (𝜆𝑥 𝑦 _ → pi (𝐵 𝑥) (𝜆_ → 𝐵 𝑦)) (𝜆_ 𝑥 → 𝑥) 𝑎 𝑎′ 𝑝

The reader can verify that the stipulated definitional equality holds. □

Exercise 4.5. Check that the above definition of subst satisfies the required equation.

Lemma 4.2.7. Using j we can define uniq, i.e., a term of type

uniq : {𝐴 : U} {𝑎 : 𝐴} → (𝑥 : [𝑎]) → Id([𝑎], (𝑎, refl), 𝑥)

satisfying the definitional equality uniq (𝑎, refl) = refl.

Proof. Writing 𝐴 : U, 𝑎 : 𝐴, and 𝑥 := (𝑏, 𝑝) :
∑
𝑏:𝐴 Id(𝐴, 𝑎, 𝑏) for the arguments of uniq, we

will apply j to 𝑎, 𝑏, 𝑝 with a motive that allows us to reduce the general case of 𝑎, 𝑏, 𝑝 to
the particular and easy case of 𝑎, 𝑎, refl:

𝐶 𝑥 𝑦 𝑝′ = id(sig 𝐴 (𝜆𝑧 → id(𝐴, 𝑥, 𝑧)), (𝑥, refl), (𝑦, 𝑝′))

Then 𝐶 𝑎 𝑏 𝑝 = Id([𝑎], (𝑎, refl), (𝑏, 𝑝)), and it remains only to exhibit a term of type
(𝑎 : 𝐴) → 𝐶 𝑎 𝑎 refl = (𝑎 : 𝐴) → Id([𝑎], (𝑎, refl), (𝑎, refl)), which is again easy:

uniq : {𝐴 : U} {𝑎 : 𝐴} → (𝑥 : [𝑎]) → Id([𝑎], (𝑎, refl), 𝑥)
uniq {𝐴 𝑎} (𝑏, 𝑝) = j (𝜆𝑥 𝑦 𝑝′ → id(sig 𝐴 (𝜆𝑧 → id(𝐴, 𝑥, 𝑧)), (𝑥, refl), (𝑦, 𝑝′)))

(𝜆𝑥 → refl(𝑥,refl)) 𝑎 𝑏 𝑝

The reader can again verify that the stipulated definitional equality holds.
Note that unlike the motive we used in Lemma 4.2.6, the motive here depends not only

on 𝑥,𝑦 : 𝐴 but also the identification 𝑝′ : Id(𝐴, 𝑥,𝑦). Note also that the motive actually
generalizes our goal: rather than proving that for a fixed 𝑎 : 𝐴 we can identify (𝑎, refl) and
(𝑏, 𝑝) : [𝑎], we prove that for any 𝑥,𝑦 : 𝐴 we can identify (𝑥, refl) and (𝑦, 𝑝′) : [𝑥]. □

Exercise 4.6. Check that the above definition of uniq satisfies the required equation.

And back again Conversely, using subst and uniq it is also possible to define a term
j satisfying the required definitional equality. We leave most of the construction to the
reader in the following series of exercises. In these exercises we fix the arguments of j
as 𝐴 : U, 𝐶 : (𝑎 𝑏 : 𝐴) (𝑝 : Id(𝐴, 𝑎, 𝑏)) → U, 𝑐 : (𝑎 : 𝐴) → (𝐶 𝑎 𝑎 refl), 𝑎, 𝑏 : 𝐴, and
𝑝 : Id(𝐴, 𝑎, 𝑏), and we define the following “partially uncurried” type family:

𝐶𝑎 : (𝑥 : [𝑎]) → U
𝐶𝑎 𝑥 = 𝐶 𝑎 (fst 𝑥) (snd 𝑥)

(2025-05-02) Limitations of the intensional identity type 136

Exercise 4.7. Define a term 𝑐𝑎 : 𝐶𝑎 (𝑎, refl).

Exercise 4.8. Without using J, define a term 𝑞 : Id([𝑎], (𝑎, refl), (𝑏, 𝑝)).

Exercise 4.9. Using 𝑐𝑎 and 𝑞 but not J, define a term 𝑐𝑏 : 𝐶𝑎 (𝑏, 𝑝).

Exercise 4.10. Show that the type of 𝑐𝑏 is equal to 𝐶 𝑎 𝑏 𝑝 , and use this to combine the
previous three exercises into a definition of j that uses subst and uniq but not J.

Exercise 4.11. Check that your solution to Exercise 4.10 satisfies j 𝐶 𝑐 𝑎 𝑎 refl = 𝑐 𝑎.

Exercise 4.12. We have seen in Remark 4.1.3 and Exercise 4.2 that subst and uniq are
definable for Eq-types in ETT; from Exercise 4.10 it follows that j is also definable in
ETT for Eq-types. Give an explicit definition of j for Eq-types in ETT. (Hint: you can
combine the above results, but it is also fairly straightforward to arrive at the definition
independently.)

Although it is perhaps easier to wrap one’s head around subst and uniq rather than J,
as we noted in Remark 4.2.1 it is often more straightforward in practice to use J directly.
Consider for instance the function cong from Section 4.1, which we really ought to have
stated for dependent functions:

cong : (𝑓 : (𝑎 : 𝐴) → 𝐵 𝑎) {𝑎0 𝑎1 : 𝐴} (𝑝 : Id(𝐴, 𝑎0, 𝑎1)) →
Id(𝐵 𝑎1, subst 𝐵 𝑝 (𝑓 𝑎0), 𝑓 𝑎1)

Defining dependent cong in terms of subst and uniq is a headache, because one must
use both simultaneously to handle the occurrence of 𝑝 in the type. It is, however, straight-
forward to define with J:

cong 𝑓 = j (𝜆𝑎0 𝑎1 𝑝 → Id(𝐵 𝑎1, subst 𝐵 𝑝 (𝑓 𝑎0), 𝑓 𝑎1)) (𝜆𝑎 → refl𝑓 (𝑎))

4.3 Limitations of the intensional identity type

We have now seen that the rules for Id-types are well-motivated from a theoretical per-
spective as the mapping-out formulation of equality, and that they support the operations
of subst and uniq presented in Section 4.1, which in turn imply many properties including
the symmetry, transitivity, and congruence of equality. We have also seen that ITT is more
well-behaved than ETT (Theorem 4.2.4), and that all the rules of Id-types are validated by
the Eq-types of ETT (Exercise 4.12).

Have we even lost anything at all by moving from ETT to ITT? Well, yes; the entire
point of moving to ITT was to remove equality reflection from our theory, in light of its

(2025-05-02) Limitations of the intensional identity type 137

undecidability (Section 3.6). Removing equality reflection does come at a cost: in ETT
whenever we can prove 𝑝 : Eq(𝐴, 𝑎, 𝑎′) we can freely use terms of type 𝐵 𝑎 at type 𝐵 𝑎′,
but in ITT we must explicitly appeal to the proof 𝑝 with subst 𝐵 𝑝 : 𝐵 𝑎 → 𝐵 𝑎′.

So then are types and terms of ITT simply more bureaucratic than those of ETT, or
does ITT actually “prove fewer statements” than ETT in some meaningful sense? This is
an excellent question, and one that requires some care to set up precisely.

Given that closed types (of a consistent type theory) can be seen as logical propositions
and their terms as their proofs, we might naïvely wonder is every non-empty closed type
of ETT also non-empty in ITT? This question does not make sense as posed because, by
equality reflection, well-formed types in ETT need not be well-formed in ITT. Consider
for instance the following closed type of ETT:

(𝑝 : Eq(Bool, true, false)) → Eq(Eq(Bool, true, false), refl, 𝑝)

On the other hand, closed types of ITT do correspond to closed types of ETT in a
more-or-less straightforward way, because their rules differ only in their choice of equality
type, and the Eq-types of ETT satisfy all the rules of the Id-types of ITT (and more); to
make this translation precise we once again turn to model theory.

Definition 4.3.1. We define a model of ITT, a homomorphism of models of ITT, and the
syntactic model T𝐼𝑇𝑇 of ITT following Definitions 3.4.2 to 3.4.4, but replacing the structure
corresponding to Eq-types with that of Id-types; as in Theorem 3.4.5, T𝐼𝑇𝑇 is the initial
model of ITT. For clarity we rename the concepts defined in Definitions 3.4.2 to 3.4.4 to
model of ETT, homomorphism of models of ETT, and syntactic model T𝐸𝑇𝑇 of ETT.

Theorem 4.3.2. The underlying sets of the syntactic model of ETT support a model of ITT.

Proof. Intuitively, thismeans that the syntax of ETT “satisfies the rules of ITT.” Formally, we
construct a modelM of ITT whose contexts are the contexts of the syntax of ETT, CxM :=
CxT𝐸𝑇𝑇 ; whose substitutions are the substitutions of the syntax of ETT, SbM (Δ, Γ) :=
SbT𝐸𝑇𝑇 (Δ, Γ); and likewise for types and terms. For all the rules of ITT that are also present
in ETT, we choose the corresponding structure, e.g., 1M := 1TETT .

The only subtlety is how to define the Id-types of M, and for this we choose the
Eq-types of T𝐸𝑇𝑇 , i.e., IdM (𝐴, 𝑎, 𝑏) := EqT𝐸𝑇𝑇 (𝐴, 𝑎, 𝑏) and reflM := reflT𝐸𝑇𝑇 . The reader has
already verified in Exercise 4.12 that the J eliminator is definable in ETT. □

Corollary 4.3.3. There is a function ⟦−⟧ that sends contexts (resp., substitutions, types,
terms) of ITT to contexts (resp., substitutions, types, terms) of ETT.

Proof. By Theorem 4.3.2 and the initiality of the syntactic model of ITT, there is a unique
homomorphism 𝑓 : T𝐼𝑇𝑇 → M of models of ITT, and thus in particular there are functions
Cx𝑓 : CxT𝐼𝑇𝑇 → CxM = CxT𝐸𝑇𝑇 and likewise for substitutions, types, and terms. □

(2025-05-02) Limitations of the intensional identity type 138

By construction, this translation ⟦−⟧ of ITT to ETT “does nothing” except at Id-types,
where ⟦Id(𝐴, 𝑎, 𝑏)⟧ = Eq(⟦𝐴⟧, ⟦𝑎⟧, ⟦𝑏⟧). Intuitively, this is possible because Eq-types
are defined to have only refl as elements, which is strictly stronger than the definition of
Id-types as “appearing to other types to have only refl as elements.”
Exercise 4.13. Using Corollary 4.3.3 and Theorem 3.4.8, prove that intensional type theory
is consistent.

We can now ask a more precise question:

Question 4.3.4. Suppose that 1 ⊢ 𝐴 type in ITT, and that in ETT there is a term 1 ⊢ 𝑎 : ⟦𝐴⟧.
Then does there necessarily exist a term 1 ⊢ 𝑎′ : 𝐴 in ITT?

Remark 4.3.5. Types containing at least one term are said to be inhabited (Notation 2.8.2),
so Question 4.3.4 equivalently asks, “if ⟦𝐴⟧ is inhabited in ETT, is𝐴 inhabited in ITT?” ⋄

By focusing only on types that are well-formed in ITT, this formulation avoids the
pitfalls discussed earlier. Perhaps the converse of Question 4.3.4 is more intuitive: do there
exist types that can be formed without equality reflection, but that can only be inhabited
with equality reflection? Unfortunately, such types do exist, and thus the answer to
Question 4.3.4 is no; even worse, the counterexamples are ones that users of type theory
are likely to encounter frequently in practice.

Independence The famed propositions-as-types correspondence (Section 2.8) states
that types can be read as logical propositions and terms as proofs. Under this reading,
counterexamples to Question 4.3.4 are propositions that are independent of intensional
type theory, i.e., propositions 𝐴 for which neither 𝐴 nor 𝐴 → Void are provable.4

Lemma 4.3.6. If 1 ⊢ 𝐴 type is a counterexample to Question 4.3.4, then 𝐴 is independent of
intensional type theory.

Proof. By definition, there must exist a term 1 ⊢ 𝑎 : ⟦𝐴⟧ in ETT, but no term 1 ⊢ 𝑎′ : 𝐴 in
ITT. Thus 𝐴 is by definition not provable in ITT, so it suffices to show that 𝐴 → Void is
also not provable in ITT. Suppose that there were a term 1 ⊢ 𝑓 : 𝐴 → Void in ITT; then
there would also be a term 1 ⊢ ⟦𝑓 ⟧ : ⟦𝐴⟧ → Void in ETT, but this would mean there is a
closed proof ⟦𝑓 ⟧(𝑎) of Void in ETT, contradicting its consistency (Theorem 3.4.8). □

Of course, there are other kinds of independent propositions too; as a sufficiently
strong formal system, ITT is subject to Gödel’s incompleteness theorem and thus one can
construct independent propositions roughly corresponding to “the type of consistency

4For the purposes of this section we refer only to the naïve reading of all types as propositions (Slo-
gan 2.8.1), not restricted to the classes of “propositional” types discussed in Sections 2.8 and 5.1.

(2025-05-02) Limitations of the intensional identity type 139

proofs of ITT.” But for now we restrict our attention to counterexamples to Question 4.3.4,
exploring two in particular: function extensionality and uniqueness of identity proofs.

4.3.1 Function extensionality

The principle of function extensionality states that for any two functions 𝑓 , 𝑔 : (𝑎 : 𝐴) →
𝐵(𝑎), if 𝑓 (𝑎) and 𝑔(𝑎) are equal for all 𝑎 : 𝐴, then 𝑓 and 𝑔 are equal. We reproduce the
formal statement of funext below, along with its non-dependent special case funext′:

Funext = (𝐴 : U) → (𝐵 : 𝐴 → U) → (𝑓 𝑔 : (𝑎 : 𝐴) → 𝐵 𝑎) →
((𝑎 : 𝐴) → Id(𝐵 𝑎, 𝑓 𝑎, 𝑔 𝑎)) → Id((𝑎 : 𝐴) → 𝐵 𝑎, 𝑓 , 𝑔)

Funext′ = (𝐴 𝐵 : U) → (𝑓 𝑔 : 𝐴 → 𝐵) →
((𝑎 : 𝐴) → Id(𝐵, 𝑓 𝑎, 𝑔 𝑎)) → Id(𝐴 → 𝐵, 𝑓 , 𝑔)

Both of these are counterexamples to Question 4.3.4 and thus independent of ITT. First,
we check that ⟦Funext⟧ is provable in ETT.
Exercise 4.14. Construct a closed term of type ⟦Funext⟧ in extensional type theory.

Next, we must check that Funext is not provable in intensional type theory. As with
consistency (Theorem 3.4.7), it suffices to exhibit a model of ITT in which the set of closed
terms of type Funext is empty. However, it is surprisingly difficult to do so!5 One such
model is—tautologically—the syntax of ITT itself, or T𝐼𝑇𝑇 ; however, showing that this is
the case is precisely what we are already trying to prove. A more useful observation is that
the models used to prove normalization contain concrete characterizations of Tm(Γ, 𝐴)
for all Γ, 𝐴 and thus it is possible to unfold such a model and explicitly verify that there
are no normal forms—and hence no elements whatsoever—of Tm(1, Funext) [Hof95a].

Remark 4.3.7. The latter approach is tantamount to the proof-theoretic technique of
showing that a formula is not derivable by proving cut elimination for a calculus and then
checking by induction that the formula has no cut-free proofs. ⋄

One can also imagine more “mathematical” (and non-initial) models that refute function
extensionality. An early example of such a model based on realizability and gluing was
given by Streicher [Str93, Chapter 3]; a more recent example is the (categorical) “poly-
nomial” model of von Glehn [Gle14]. In both cases the model construction is somewhat
involved but checking that they refute Funext is comparatively straightforward. In any
case, any of these arguments allows us to conclude:

5There are many simple “countermodels of function extensionality” which fail to validate the 𝜂-rule
of Π-types and are therefore not models of ITT as we have defined it. They are, however, models of the
calculus of inductive constructions, which lacks 𝜂 for Π-types.

(2025-05-02) Limitations of the intensional identity type 140

Theorem 4.3.8. There is no closed term of type Funext in intensional type theory.

The authors are uncertain to whom this result should be attributed. Turner [Tur89]
suggests that it was known to Martin-Löf and it was certainly known to type theorists
in the 1980s, but the earliest explicit discussion of the independence of Funext we have
located is the countermodel of Streicher [Str93].

There are many examples of function extensionality arising in practice. For instance,
in ITT we can prove (𝑛 𝑚 : Nat) → Id(Nat, 𝑛 +𝑚,𝑚 + 𝑛) but not Id(Nat → Nat →
Nat, (+), (+)◦flip). Similarly, althoughmergeSort, bubbleSort : List Nat → List Nat agree
on all inputs, we cannot prove they are equal functions. This has real consequences in
practice: if we write a function that calls bubbleSort, is it equal to the same function where
these calls have been replaced by calls to mergeSort? If function extensionality held this
would follow immediately from cong; as it stands, one must manually argue that the text
of the function respects swapping subroutines in this way—even though it is impossible to
define a function that doesn’t!

We view the independence of function extensionality as perhaps the greatest failing
of intensional type theory, as it frequently causes problems with no benefit,6 and it is
therefore common to simply postulate Funext when working in ITT, that is, to add a rule

⊢ Γ cx

Γ ⊢ funext : Funext
✎

Postulating an axiom in this way is equivalent to prepending every context by a variable
of type Funext, and it therefore preserves normalization (a property of all contexts) while
disrupting canonicity (a property of the empty context, which is “no longer empty”).
Exercise 4.15. Argue that postulating Funext causes canonicity to fail. That is, pro-
duce a closed term of type Bool in ITT adjoined with the above rule that appears to be
judgmentally equal to neither true nor false. (You do not need to formally prove this fact.)

4.3.2 Uniqueness of identity proofs

Our second counterexample to Question 4.3.4 is the principle of uniqueness of identity
proofs (UIP), which states that any two identifications between the same two terms are
themselves identified.

UIP = (𝐴 : U) → (𝑎 𝑏 : 𝐴) → (𝑝 𝑞 : Id(𝐴, 𝑎, 𝑏)) → Id(Id(𝐴, 𝑎, 𝑏), 𝑝, 𝑞)
6There are occasions where one may wish to not identify all pointwise-equal procedures, e.g., when

studying the runtime of algorithms, but we stress that ITT also does not allow us to distinguish pointwise-
equal functions; studying runtime in this way requires other axioms and, likely, the removal of 𝛽-rules.

(2025-05-02) Limitations of the intensional identity type 141

In short, UIP asserts that identifications are unique: up to identification, there is at
most one proof of Id(𝐴, 𝑎, 𝑏) for any 𝑎, 𝑏 : 𝐴. Types with at most one element are often
called (homotopy) propositions, so we might equivalently phrase UIP as the principle that
propositional equality is a proposition.7 Like Funext, UIP is independent of ITT. On the
one hand, it holds in ETT and thus cannot be refuted by ITT:
Exercise 4.16. Construct a closed term of type ⟦UIP⟧ in extensional type theory.

To see that UIP is not provable in ITT, it again suffices to exhibit a countermodel, a
model of ITT in which the set of closed terms of type UIP is empty. The original such
countermodel, the groupoid model of type theory of Hofmann and Streicher [HS98], is
very instructive as well as historically significant as a precursor to homotopy type theory
(Chapter 5), so unlike the countermodels of Funext we will take the time to sketch it below.

The groupoid model is similar to the set-theoretic model of type theory (Section 3.5)
except that it replaces sets with groupoids, sets equipped with additional structure:

Definition 4.3.9. A groupoid 𝑋 = (|𝑋 |,R, id, (−)−1, ◦) consists of a set |𝑋 |, a family of
sets R indexed over |𝑋 | × |𝑋 |, and dependent functions:

• id : {𝑥 : |𝑋 |} → R(𝑥, 𝑥),

• (−)−1 : {𝑥 𝑦 : |𝑋 |} → R(𝑥,𝑦) → R(𝑦, 𝑥), and

• (◦) : {𝑥 𝑦 𝑧 : |𝑋 |} → R(𝑦, 𝑧) → R(𝑥,𝑦) → R(𝑥, 𝑧),

such that id ◦ 𝑓 = 𝑓 = 𝑓 ◦ id, 𝑓 ◦ 𝑓 −1 = id, id = 𝑓 −1 ◦ 𝑓 , and 𝑓 ◦ (𝑔 ◦ ℎ) = (𝑓 ◦ 𝑔) ◦ ℎ.

Definition 4.3.10. Given two groupoids 𝑋,𝑌 , a homomorphism of groupoids 𝐹 : 𝑋 → 𝑌 is
a pair of functions 𝐹0 : |𝑋 | → |𝑌 | and 𝐹1 : {𝑥 𝑥′ : |𝑋 |} → R𝑋 (𝑥, 𝑥′) → R𝑌 (𝐹0(𝑥), 𝐹0(𝑥′))
for which 𝐹1 commutes with the groupoid operations, i.e.,

• 𝐹1(id) = id,

• 𝐹1(𝑓 −1) = 𝐹1(𝑓)−1, and

• 𝐹1(𝑔 ◦ 𝑓) = 𝐹1(𝑔) ◦ 𝐹1(𝑓).

7The terminology of “propositional equality” is perhaps ill-advised.

(2025-05-02) Limitations of the intensional identity type 142

Exercise 4.17. For categorically-minded readers: argue that a groupoid is exactly the
same as a category all of whose morphisms are isomorphisms, and a homomorphism of
groupoids is exactly a functor.

Advanced Remark 4.3.11. The name “groupoid” comes from the perspective that these
are a weaker notion of group in which the multiplication is a partial operation. ⋄

We can think of a groupoid as equipping its underlying set with a “proof-relevant
notion of equality” which like ordinary equality is reflexive, symmetric, transitive, and
respected by functions (groupoid homomorphisms), but unlike ordinary equality “can hold
in more than one way.” Following this intuition, we will model closed types 𝐴 ∈ Ty(1) not
as sets 𝑋 but as groupoids (|𝑋 |,R, . . .), closed terms 𝑎 ∈ Tm(1, 𝐴) as elements of |𝑋 |, and
closed identifications 𝑝 ∈ Tm(1, Id(𝐴, 𝑎, 𝑏)) as elements of R(𝑎, 𝑏).

Before outlining the model itself, we give a few examples of groupoids.
Example 4.3.12. Every set𝐴 can be regarded as a discrete groupoid Δ𝐴 in which RΔ𝐴 (𝑥,𝑦) =
{★ | 𝑥 = 𝑦}. The remaining structure is uniquely determined: id = ★, ★−1 = ★, etc.
Example 4.3.13. Given two groupoids 𝑋,𝑌 , the set of groupoid homomorphisms 𝑋 → 𝑌

(Definition 4.3.10) admits a natural groupoid structure in which

R𝑋→𝑌 (𝐹,𝐺) =
{𝑇 : (𝑥 : |𝑋 |) → R(𝐹0 𝑥,𝐺0 𝑥) | ∀𝑓 : R(𝑥,𝑦). 𝐺1(𝑓) ◦𝑇 (𝑥) = 𝑇 (𝑦) ◦ 𝐹1(𝑓)}

In light of Exercise 4.17, categorically-minded readers might observe that 𝑇 is exactly a
natural transformation from 𝐹 to 𝐺 . We leave the remaining structure as an exercise.
Example 4.3.14. For an explicit example of a groupoid that is not discrete, consider
the groupoid traditionally called 𝐵(Z/2), whose underlying set is the singleton {★},
R𝐵(Z/2) (★,★) = Z/2 = {0, 1}, and the remaining structure is as follows:

id = 0
𝑥 ◦ 𝑦 = 𝑥 + 𝑦 mod 2
𝑥−1 = 𝑥

The reader can check that these operations satisfy the necessary equations. (Hint: this is
equivalent to checking that Z/2 with the above id, ◦, and (−)−1 forms a group.)
Example 4.3.15. There is a “large” groupoid S of all “small” sets, where RS(𝑋,𝑌) is the set
of bijections between the sets 𝑋 and 𝑌 , and the operations are the identity, inverse, and
composition of bijections. This groupoid is not discrete because there can be more than
one bijection between a pair of sets, e.g., id, swap ∈ RS({★,★′}, {★,★′}).

(2025-05-02) Limitations of the intensional identity type 143

Example 4.3.16. There is a “large” groupoid G of all “small” groupoids, whose underlying
collection is the proper class of all groupoids, and for which RG(𝑋,𝑌) is the set of all
groupoid isomorphisms (invertible homomorphisms, or homomorphisms for which 𝐹0 and
each 𝐹1 are bijections) from 𝑋 to 𝑌 . The groupoid S from Example 4.3.15 embeds into G,
so G is also not discrete.

As in the set-theoretic model of type theory, groupoids and groupoid-indexed families
of groupoids form amodel of type theory. WritingG for the groupoid model of (intensional)
type theory and 𝑓 : T𝐼𝑇𝑇 → G for the homomorphism from the syntactic model to G, 𝑓
interprets syntactic contexts Γ as groupoidsCx𝑓 (Γ), the closed context 1 as the one-element,
one-identification groupoid, syntactic substitutions as groupoid homomorphisms, and
syntactic types 𝐴 ∈ Ty(Γ) as Cx𝑓 (Γ)-indexed families of groupoids (Ty𝑓 (Γ) (𝐴))𝛾∈Cx𝑓 (Γ) .
Such a family assigns to each groupoid element 𝛾 ∈ Cx𝑓 (Γ) a groupoid (Ty𝑓 (Γ) (𝐴))𝛾 , and
to each identification 𝛼 ∈ RCx𝑓 (Γ) (𝛾,𝛾 ′) a homomorphism (Ty𝑓 (Γ) (𝐴))𝛾 → (Ty𝑓 (Γ) (𝐴))𝛾 ′
in a manner compatible with identity and composition. (Using Example 4.3.16, we can
repackage the data of such a family quite simply as a groupoid homomorphism Cx𝑓 (Γ) →
G.) Finally, 𝑓 interprets syntactic terms 𝑎 ∈ Tm(Γ, 𝐴) as dependent functions assigning
to each element 𝛾 ∈ Cx𝑓 (Γ) of the context an element of the groupoid (Ty𝑓 (Γ) (𝐴))𝛾 in a
manner that respects identifications. (We can again phrase this condition as a groupoid
homomorphism, but we will not pursue the details further.)

Most of the structure of the groupoid model of type theory mirrors that of the set-
theoretic model, with some added complication to account for identifications; for example,
rather than interpreting the universe as the large set of all small sets, we interpret it as
the large groupoid G of all small groupoids (Example 4.3.16). The key departure is in the
interpretation of Id-types: for closed 𝐴 ∈ TyG (1G) and 𝑎, 𝑏 ∈ TmG (1G, 𝐴), the G-identity
type IdG (𝐴, 𝑎, 𝑏) is chosen to be (the discrete groupoid on) the set of identifications in the
groupoid 𝐴 between 𝑎 and 𝑏, namely ΔR𝐴 (𝑎, 𝑏).

It is not at all obvious that such an interpretation supports J, but this is the force of
the groupoid model: because all types and terms respect identifications, it is in fact the
case that dependent functions from Id-types into any G-type are generated by the data of
where to send refl. Interested readers can find these and all the other details in the paper
of Hofmann and Streicher [HS98].

Theorem 4.3.17 (Hofmann and Streicher [HS98]). There is no closed term of type UIP in
intensional type theory.

Proof. This follows immediately from the fact that the groupoid model interprets UIP as
the empty groupoid, whose proof we sketch below. Recall that:

UIP = (𝐴 : U) → (𝑎 𝑏 : 𝐴) → (𝑝 𝑞 : Id(𝐴, 𝑎, 𝑏)) → Id(Id(𝐴, 𝑎, 𝑏), 𝑝, 𝑞)
A term of this type in G would be a dependent function out of the interpretation of

U, which is the groupoid of groupoids G. Suppose that such a function exists; then we

(2025-05-02) Limitations of the intensional identity type 144

could apply it to the groupoid 𝐵(Z/2) ∈ G defined in Example 4.3.14, then twice to the
unique element ★ ∈ |𝐵(Z/2) | of that groupoid, and then to the two distinct identifications
0, 1 ∈ R𝐵(Z/2) (★,★). The result would have to be a proof that 0 = 1, which is false. □

4.3.2.1 Towards homotopy type theory

The busy reader may wish to skip this section initially. The groupoid model demonstrates
that Id-types support richer interpretations than merely equations: identifications can be
any data that is respected by all the constructs of type theory.

Although the groupoid model provides us with interesting examples of identity types,
we note that the identity types of any groupoid𝑋 , ΔR𝑋 (𝑥,𝑦), are always discrete groupoids
with no interesting identifications of their own. Thus the groupoid model does validate
the “uniqueness of identity proofs of identity proofs”:

UIPIP = (𝐴 : U) → (𝑎 𝑏 : 𝐴) → (𝑝 𝑞 : Id(𝐴, 𝑎, 𝑏)) →
(𝛼 𝛽 : Id(Id(𝐴, 𝑎, 𝑏), 𝑝, 𝑞)) → Id(Id(Id(𝐴, 𝑎, 𝑏), 𝑝, 𝑞), 𝛼, 𝛽)

LikeUIP, this principle is also independent of ITT, and we can construct a countermodel
in 2-groupoids, which contain a second level of “2-identifications” R2(𝑝, 𝑞) between any
pair of identifications 𝑝, 𝑞 ∈ R(𝑎, 𝑏) between elements 𝑎, 𝑏. Although we will not define
these precisely, we note that the passage from groupoids to 2-groupoids is analogous to the
passage from sets to groupoids; for instance, every groupoid can be regarded as a discrete
2-groupoid with the same elements and 1-identifications but with trivial 2-identifications.

The story once again repeats for the 2-groupoid model of type theory, and in fact
for any 𝑛: there is a model of ITT in which closed types are interpreted as 𝑛-groupoids,
and this model refutes U(IP)𝑛 but validates U(IP)𝑛+1. In fact, this suggests correctly that
ordinary groupoids ought to be thought of as 1-groupoids and sets as 0-groupoids; indeed,
the set (0-groupoid) model of type theory validates UIP1. Looking downward, the large
0-groupoid of (−1)-groupoids is the set of propositions {∅, {★}}.

But what about for all 𝑛? Is it possible to construct a model that simultaneously refutes
U(IP)𝑛 for every 𝑛 ∈ N? Intuitively, such a model would have to interpret closed types as
“∞-groupoids” with countably infinite towers of identifications. The answer is yes [War08,
Corollary 4.26], and in fact Voevodsky’s simplicial model of homotopy type theory [KL21]
can be seen as precisely such a model [KS15].

4.3.3 Hofmann’s conservativity theorem

We have generated an infinite stream of counterexamples to Question 4.3.4—propositions
that are provable in ETT but not ITT—namely Funext and U(IP)𝑛 for 𝑛 ≥ 1. Is there a
third class of counterexamples? Surprisingly, no: all counterexamples to Question 4.3.4 are
generated by Funext and UIP in a precise sense. (Note that UIP implies U(IP)𝑛 for 𝑛 > 1.)

(2025-05-02) Limitations of the intensional identity type 145

To state this claim more precisely, let us write

Γ𝑎𝑥 := 1, funext : Funext, uip : UIP

for the ITT context containing two variables, one of type Funext and one of typeUIP; types
and terms of ITT in context Γ𝑎𝑥 are in bijection with closed types and terms of intensional
type theory extended by two rules postulating Funext andUIP. Then, Hofmann’s celebrated
conservativity result states that:

Theorem 4.3.18 (Hofmann [Hof95a]). Suppose that Γ𝑎𝑥 ⊢ 𝐴 type in ITT, and ⟦Γ𝑎𝑥⟧ ⊢ 𝑎 :
⟦𝐴⟧ in ETT; then there exists a term Γ𝑎𝑥 ⊢ 𝑎′ : 𝐴 in ITT.

In Exercises 4.14 and 4.16 the reader has constructed proofs 1 ⊢ 𝑝 : ⟦Funext⟧ and 1 ⊢
𝑞 : ⟦UIP⟧ of function extensionality and UIP in ETT, so we can discharge the hypotheses
of ⟦Γ𝑎𝑥⟧ to obtain the following corollary:

Corollary 4.3.19. If Γ𝑎𝑥 ⊢ 𝐴 type in ITT and 1 ⊢ 𝑎 : ⟦𝐴⟧[𝑝/funext, 𝑞/uip] in ETT, then
there exists a term Γ𝑎𝑥 ⊢ 𝑎′ : 𝐴 in ITT.

Corollary 4.3.19 is great news: although ITT is weaker than ETT, it is weaker by exactly
two principles, namely function extensionality and uniqueness of identity proofs. We are
led naturally to wonder whether there is a “best of both worlds”:

Question 4.3.20. Can we extend intensional type theory (with new terms and/or equations)
in such a way that Funext and UIP are derivable, and the resulting type theory enjoys both
canonicity and normalization?

If we are satisfied with only one of canonicity or normalization, note that ETT is such an
extension of ITT satisfying canonicity (Theorem 3.4.12) but not normalization (Section 3.6);
on the other hand, extending ITT with axioms for Funext and UIP trivially makes these
provable and satisfies normalization (Theorem 4.2.4) but not canonicity (Exercise 4.15).

Remark 4.3.21. Such tradeoffs are common in the design of type theory: canonicity says
that a type theory has “enough” equations, whereas normalization generally requires that
there not be “too many”; it can be hard to find the right balance. ⋄

Type theorists have considered Question 4.3.20 since the 1990s, and there is some
good news to report. If we are content for the moment to solve only the problem of UIP
(ignoring Funext), there is in fact a rather modest extension of ITT that satisfies canonicity
and normalization and in which UIP is provable.

For this, it will help us to consider an equivalent formulation of UIP due to Streicher
[Str93] known as Axiom K :8

8In light of Remark 4.2.3, perhaps the reader can guess where the name K comes from.

(2025-05-02) Limitations of the intensional identity type 146

K = (𝐴 : U) → (𝑎 : 𝐴) → (𝑝 : Id(𝐴, 𝑎, 𝑎)) → Id(Id(𝐴, 𝑎, 𝑎), 𝑝, refl)

It is easy to see that K follows from UIP, as it is the special case of UIP in which 𝑎 and 𝑏
are the same and one of the identity proofs is refl. The other direction of the biimplication
is more subtle, but follows from a careful application of J, or identity elimination.
Exercise 4.18. Prove that K implies UIP in ITT.

As with subst and uniq, there is a sensible definitional equality with which to equip
k : K, namely k 𝐴 𝑎 refl = refl, and we can even rephrase k as a “second elimination
principle” of Id-types as follows:

Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑝 : Id(𝐴, 𝑎, 𝑎) Γ.𝐴.Id(𝐴[p], q, q) ⊢ 𝐵 type Γ.𝐴 ⊢ 𝑏 : 𝐵 [id.refl]
Γ ⊢ K(𝑏, 𝑝) : 𝐵 [id.𝑎.𝑝]

Γ ⊢ 𝑎 : 𝐴 Γ.𝐴.Id(𝐴[p], q, q) ⊢ 𝐵 type Γ.𝐴 ⊢ 𝑏 : 𝐵 [id.refl]
Γ ⊢ K(𝑏, refl) = 𝑏 [id.𝑎.refl] : 𝐵 [id.𝑎.refl]

Δ ⊢ 𝛾 : Γ
Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑝 : Id(𝐴, 𝑎, 𝑎) Γ.𝐴.Id(𝐴[p], q, q) ⊢ 𝐵 type Γ.𝐴 ⊢ 𝑏 : 𝐵 [id.refl]

Δ ⊢ K(𝑏, 𝑝) [𝛾] = K(𝑏 [(𝛾 ◦ p).q], 𝑝 [𝛾]) : 𝐵 [𝛾 .𝑎[𝛾] .𝑝 [𝛾]]

It is instructive to compare the rules for K to those of J, whose motives

Γ.𝐴.𝐴[p] .Id(𝐴[p2], q [p], q) ⊢ 𝐶 type

quantify over both sides of the identification. Although J may seem superficially more
general, neither J nor K imply the other. On the one hand, K is equivalent to UIP, which is
independent of ITT; on the other hand, we needed the additional flexibility of J to define
subst (Lemma 4.2.6), and we invite the reader to attempt this definition with K alone.

Although adding the above rules for K to intensional type theory breaks the pattern of
inductive types we established in Section 2.5, the resulting theory continues to enjoy all
the good properties of intensional type theory.

Theorem 4.3.22. Intensional type theory plus the above rules for K satisfies consistency,
canonicity, normalization, has invertible type constructors, and also validates UIP.

In fact, K was originally introduced not to restore extensionality to ITT but in the
study of dependent pattern-matching, where early formulations of pattern-matching for
dependent type theory [Coq92] were found to derive K and were thus stronger than the
standard rules of ITT. Although researchers have subsequently formulated a weaker notion

(2025-05-02) Observational type theory (draft) 147

of pattern-matching that does not derive K [CDP14], many proof assistants such as Agda
still include K by default, often via pattern-matching.

Unfortunately it is significantly more challenging to add function extensionality to ITT
in a satisfactory (canonicity-preserving) fashion, either in tandem with or independently of
K/UIP. There are a number of type theories that admit function extensionality and satisfy
all the relevant metatheorems, most notably observational type theories (Section 4.4, which
also validate UIP) and cubical type theories (Chapter 5, which intentionally do not validate
UIP), but these systems are quite a bit more complex than ITT and have not supplanted it.

Thus, despite its shortcomings, many practitioners choose to work in ITT extended
with an axiom for function extensionality and either an axiom for UIP or a version of
dependent pattern-matching that validates K.

4.4★ Observational type theory (draft)

(2025-05-02) Observational type theory (draft) 148

Further reading

We have mentioned previously that proof assistants decide equality of terms using a
type-sensitive algorithm known as normalization by evaluation (NbE). Proofs of the
normalization metatheorem for intensional type theory proceed by establishing that NbE
is sound and complete for the equational theory of ITT, using a proof technique known
as Kripke logical relations. There are many papers dedicated to proving normalization
for variants of ITT; Abel [Abe13] includes a lengthy exposition starting with the non-
dependent case, Abel, Öhman, and Vezzosi [AÖV17] formalize their proof in Agda, and
Coquand [Coq19] and Sterling [Ste21] present semantic formulations of NbE that are
significantly less technical but require more mathematical sophistication.

As for the independence and conservativity theorems discussed in Section 4.3, the theses
of Streicher [Str93] and Hofmann [Hof95a] remain excellent references; however, a more
modern account is available in the thesis of Winterhalter [Win20], and recent advances in
semantics have enabled much shorter albeit sophisticated proofs of conservativity [KL23].

The independence of function extensionality from ITT has led to a cottage industry
of observational type theories as discussed in Section 4.4; the authors are biased but
recommend Sterling, Angiuli, and Gratzer [SAG22, Section 1] for a brief history of equality
in type theory. On the other hand, the independence of UIP has spawned an entire
subdiscipline, homotopy type theory (Chapter 5). Models of homotopy type theory, such as
Voevodsky’s simplicial model [KL21], can be seen as vast generalizations of the groupoid
model of Hofmann and Streicher [HS98].

5Univalent type theories (draft)

In Chapter 4 we studied the intensional identity type better-behaved replacement for Eq
which satisfies canonicity, normalization, and decidable type-checking. Unfortunately,
these extra metatheorems came a cost: sensible results such as UIP and function exten-
sionality were independent of ITT. This led to the question of whether it was possible to
extend ITT to a theory satisfying canonicity, normalization, and decidable type-checking
while also validating both UIP and function extensionality (Section 4.4).

In this chapter we survey the a more radical proposal. Rather than constructing a type
theory extending ITT to better capture ETT, we consider extending type theory with a
reasoning principle incompatiblewith UIP: Voevodsky’s univalence axiom. Intensional type
theory extended with univalence, homotopy type theory (HoTT) is therefore incompatible
with ETT but features new reasoning principles to compensate for this loss.

We shall explore some of the remarkable consequences of univalence and the new
reasoning principles it adds to type theory. More than this, we will show that univalence
is an inevitable consequence of attempting to take seriously our insistence that types be
characterized uniquely by their behavior. In particular, univalence follows from attempting
to equip the universe with a good “mapping-in” property akin to that enjoyed by Π and Σ.

On first inspection, HoTT brings us no closer to our overarching goal of finding a
type theory which supports both powerful reasoning principles along with a large suite of
metatheorems. Indeed, HoTT is roughly defined by adding the univalence axiom to ITT,
the type theory satisfies normalization but fails to validate canonicity.

We resolve this issue with the introduction of a more refined type theory with univa-
lence: cubical type theory. We shall see how cubical type theory incorporates univalence
and its consequences while managing to satisfy canonicity, normalization, and decidable
type-checking. This balance is achieved by reimagining the intensional identity type such
that it can be characterized by a “mapping-in” property just as was done with Eq.

These topics bring the reader all the way present day research in type theory. Uni-
valence was first introduced in 2010 [Voe10], much of the material on homotopy type
theory we discuss was put forward in 2013 [UF13], and cubical type theory dates to
2018 [CCHM18] with key results only proven in 2021 [SA21]. Moreover, the story of
univalent type theories is emphatically ongoing. Researchers are presently attempting
to produce other versions of type theory validating univalence as well as canonicity and
normalization [Shu23]. Even the consequences simply axiomatizing univalence within
ITT is the subject of active study.

149

(2025-05-02) Propositions in intensional type theory 150

In this chapter In Sections 5.1 and 5.2, we motivate, define, and explore univalence as
an axiom within intensional type theory. We begin with the simpler form of propositional
univalence in Section 5.1 and, with this intuition to hand, introduce full univalence in
Section 5.2. There we survey some of the highlights of homotopy type theory and show,
in particular, that its inclusion invalidates UIP. Finally, in Section 5.3 we discuss the key
ideas behind cubical type theory and explain the details and implications in Section 5.4.

Goals of the chapter By the end of this chapter, you will be able to:

• Define the univalence axiom as well as its key constituents such as isEquiv.

• Work with core concepts of HoTT such as h-levels and higher inductive types.

• Sketch how univalence relates to a mapping-in property for the universe

• Describe the motivations for cubical type theory arising from homotopy type theory.

• Explain the role of the interval and composition structures in cubical type theory.

5.1 Propositions in intensional type theory

The central topic of this chapter is univalence, which states that the identity type when
applied to elements of the universe Id(U, 𝐴, 𝐵) is equivalent to equivalences between 𝐴
and 𝐵. However, univalence has a major deficiency: unlike other principles and axioms
we have encountered, it is not compatible with viewing types as mere sets.

Before moving on to full univalence, we therefore discuss a halfway point: propositional
univalence. This axiom is a consequence of full univalence obtained by restricting to types
𝐴, 𝐵 which have at most one element. Crucially, propositional univalence is compatible
with set-theoretic intuitions and thus we can give a more precise account of how it is
justified without pitching the reader into any homotopy theory. Moreover, propositional
univalence is a useful reasoning principle even in the context of extensional type theory
and thus of independent interest.

For this section, we shall assume that the reader has some familiarity with the notion
of a proposition in type theory. We refer them to Section 2.8 for further details.

Notation 5.1.1. In this section, we return to informal intensional type theory as used in
Chapter 1 and Section 4.1.

Assumption 5.1.2. We will also assume that function extensionality holds in this section
and, in particular, that there is a constant funext : Funext (see Section 4.3 for the notation).

(2025-05-02) Propositions in intensional type theory 151

5.1.1 Homotopy propositions

What, exactly, is the difference between an arbitrary type and a type which ought to be
regarded as a proposition? As discussed in Section 2.8: a proper type may have distinct
inhabitants, but propositions have at most one element. In extensional type theory, we
crystallized this by requiring that if 𝑎, 𝑏 : 𝐴 then 𝑎 = 𝑏 : 𝐴 definitionally. Equivalently,
we could ask that if 𝑎, 𝑏 : 𝐴 then Eq(𝐴, 𝑎, 𝑏) is inhabited. In intensional type theory
these two approaches no longer coincide: we can either require that a proposition 𝐴 is
definitionally irrelevant—any two inhabitants are definitionally equal—or merely ask that
they be propositionally irrelevant such that for any two elements 𝑎, 𝑏 there is an element
Id(𝐴, 𝑎, 𝑏). Customarily, one refers to the first variety of propositions as strict propositions
and the second as homotopy propositions.

Without equality reflection, strict and homotopy propositions do not coincide. Worse,
neither is a clearly superior choice and both have advantages and disadvantages. Strict
propositions are more ergonomic and do not require the user to provide proofs equating
two elements whichmust, by construction, be equal [Gil+19]. On the other hand, homotopy
propositions arise more naturally in type theories without equality reflection. For instance,
given a list of natural numbers 𝑙 : ListNat the type of minimal elements is a homotopy
proposition:

MinimumElements(ℓ) = ∑
𝑛:Nat 𝑛 ∈ ℓ × (𝑚 : Nat) →𝑚 ∈ ℓ → 𝑛 ≤ 𝑚

This type, however, is not a strict proposition in ITT (even if 𝑙 is empty!) owing to the
absence of 𝜂 laws for Nat and Void. More generally, we can consider 𝐴 : U and use the
full power of type theory to prove that 𝐴 is a homotopy proposition. It is only in the most
trivial of cases where such an 𝐴 will be a strict proposition. Within this chapter we shall
encounter various types which are homotopy propositions for subtle reasons and this
flexibility is then crucial. For this reason, among others, we shall focus exclusively on
homotopy propositions in this chapter.

We may define a predicate isHProp : U → U capturing whether a given type is a
homotopy proposition (see Theorem 2.8.12). Consequently, we can define the universe of
homotopy propositions without extending our theory at all:

HProp𝑖 B
∑
𝐴:U𝑖 isHProp𝐴

Remark 5.1.3. In truth, there is a final and most important reason for us to use homotopy
propositions: they scale properly to homotopy type theory while strict propositions simply
do not. However, this claim is by nature difficult to substantiate before we introduce
homotopy type theory. ⋄

Notation 5.1.4. We shall usually suppress the index on HProp𝑖 and simply write HProp.
Furthermore, we generally treat the projection HProp → U as silent. We shall also write
𝐴 : HProp if 𝐴 : U to signify that there exists some term 𝜙 such that (𝐴,𝜙) : HProp.

(2025-05-02) Propositions in intensional type theory 152

Exercise 5.1. Suppose that 𝐵 : 𝐴 → HProp, show that (𝑎 : 𝐴) → 𝐵 𝑎 : HProp. (Hint: use
funext.)

Our main goal in this section is not, however, to extol the virtues of HProp. In fact, we
want to point out a key deficiency with this type if it is really to represent “a universe of
propositions”: it has far, far too many inhabitants according to Id. In particular, a pair of
hprops 𝐴, 𝐵 will hardly ever be identifiable even if they represent the same proposition.
Consider, for instance, Unit and Unit × Unit. These are not equal within U and so cannot
be equal in HProp. What, however, is to be gained by distinguishing them? Essentially
nothing.

The situation is similar to function extensionality in Chapter 4; we are not allowed to
identify these two types, but nothing within our theory can treat them differently. Indeed,
really our only means of interacting with elements of HProp (or, indeed, elements of U) is
to attempt to construct elements of these types and to ask whether these elements may be
identified. For this purpose, Unit and Unit × Unit are completely interchangeable: both
are inhabited and have exactly one element.

As it stands, Id measures roughly whether two propositions have been built using an
identical sequence of type formers. However, no meaningful operation on propositions
depends on this fact! Indeed, if we informally regard propositions in the set-theoretic
model, we find that we are splitting hairs over whether e.g., {★} and {(★,★)} are equal.
They are certainly different sets, but they also clearly encode the same proposition (⊤)
and it would therefore be pleasant if our notion of equality captured this fact.

To further belabor the point, let us import a reasoning principle from the set model
of type theory: the law of the excluded middle (LEM). This principle states that given
𝜙 : HProp either 𝜙 or ¬𝜙 is inhabited. This is certainly not derivable in type theory and
we do not suggest its addition, but we do note that if it holds then we can define a map:

isTrue : HProp → Bool

This map actually gives rise to something like a bijection between HProp and Bool
with the inverse being toProp = Id(Bool, true,−). It is only “like” a bijection: while
Id(Bool, 𝑏, isTrue(toProp(𝑏))) holds for all booleans 𝑏, toProp(isTrue(𝜙)) is merely logi-
cally equivalent to 𝜙 rather than equal.

The idea behind our new reasoning principle—propositional univalence—is to rectify
this deficiency by postulating that logically equivalent propositions are identifiable.

(↔) : U → U → U
𝐴 ↔ 𝐵 = (𝐴 → 𝐵) × (𝐵 → 𝐴)

propUnivalence : (𝐴𝐵 : HProp) → (𝐴 ↔ 𝐵) → Id(HProp, 𝐴, 𝐵)

(2025-05-02) Propositions in intensional type theory 153

In fact, we can derive a seemingly stronger result from propUnivalence: the identity
type Id(HProp, 𝐴, 𝐵) is actually isomorphic to 𝐴 ↔ 𝐵.

Notation 5.1.5. We write 𝐴 � 𝐵 for the type following type:

(𝑓 : 𝐴 → 𝐵) × (𝑔 : 𝐵 → 𝐴) × Id(𝐴 → 𝐴,𝑔 ◦ 𝑓 , id) × Id(𝐵 → 𝐵, 𝑓 ◦ 𝑔, id)

Theorem 5.1.6. propUnivalence induces an isomorphism (𝐴 ↔ 𝐵) � Id(HProp, 𝐴, 𝐵)

Proof. We can easily define a putative inverse propUnivalence−1 to propUnivalence: given
an identification 𝑝 : Id(HProp, 𝐴, 𝐵) we define a biimplication 𝐴 ↔ 𝐵 using the tuple
(subst id 𝑝, subst id (sym𝑝)). Moreover, using Exercise 5.2, propUnivalence−1◦propUnivalence
can be identified with id.

For the reverse, we note that 𝑖 = propUnivalence ◦ propUnivalence−1 is an idempo-
tent map: there is an identification between 𝑖 ◦ 𝑖 and 𝑖 . However, any idempotent map
Id(𝐴, 𝑎, 𝑏) → Id(𝐴, 𝑎, 𝑏) must be the identity (Exercise 5.3) completing the proof. □

This result leads us to a reformulation of propositional univalence:

Corollary 5.1.7. The canonical map Id(HProp, 𝐴, 𝐵) → (𝐴 ↔ 𝐵) induced by subst is an
isomorphism.

Exercise 5.2. If 𝐴, 𝐵 : HProp, then 𝐴 ↔ 𝐵 : HProp.

Exercise 5.3. Prove the following result due to Escardó [Esc14]: if 𝑖 : (𝑎, 𝑏 : 𝐴) →
Id(𝐴, 𝑎, 𝑏) → Id(𝐴, 𝑎, 𝑏) is idempotent, it is equal to id. (Hint: argue first using the
elimination principle that 𝑖 (𝑝) can be identified with trans (𝑖 refl) 𝑝 and then use this to
identify trans (𝑖 refl) (𝑖 refl) with (𝑖 refl)).

Returning to our earlier discussion regarding HProp and Bool in the presence of LEM,
we might alternatively define propUnivalence in this setting by stating that the canonical
map Bool → HProp is a genuine isomorphism. This insight leads us to a construction of
a model of type theory in sets which validates propositional univalence:

Theorem 5.1.8. Both intensional and extensional type theory with propositional univalence
is consistent.

todo: excise
We shall return to the semantics of propositional univalence more thoroughly in ??.

end excision
One takeaway from the above consistency result, however, is that propUnivalence

is compatible with our existing intuitions for type theory: if types are sets, there is no
particular harm in identifying propositions up to logical equivalence.

(2025-05-02) Homotopy type theory 154

Towards univalence All the motivations that led us to desiring propositional univalence,
however, are not limited to mere propositions. We only interact with types by studying
their inhabitants and so we may just as well ask that two elements of U be identified when
they are isomorphic. Hence, we are naturally led to wonder about what happens if we
drop the requirement that propUnivalence applies only to propositions. That is, what the
status of the full univalence axiom:

(𝐴𝐵 : U) → isEquiv(Id(U, 𝐴, 𝐵) → 𝐴 ≃ 𝐵)

Here we have deliberately introduced some undefined notation: isEquiv and ≃ rather
than our previous � and “is an isomorphism”. We shall see presently that these replace-
ments are necessary and that a more refined notion of invertibility is required for full
univalence than for its propositional cousin. In fact, this is only the beginning of the
subtlety. We shall see that, unlike propositional univalence, full univalence is incompatible
with many of our set-theoretic intuitions for Id and that univalence contradicts UIP as well
as its weaker cousins U(IP)n. Thus, while both are natural, propositional univalence is
a relatively anodyne extension compatible with standard interpretations of type theory.
On the other hand, univalence leads us to a far richer theory with an entirely different
character than extensional type theory.

5.2 Homotopy type theory

In this section, we arrive at the core topic of this chapter: univalence. Having discussed the
simpler case of propositional univalence, we introduce the full univalence axiom and, with
it, core homotopy type theory: the extension of ITT with the univalence axiom. In order to
properly define this, we must give the precise type of the univalence axiom; a more subtle
endeavor than one might guess! With univalence to hand, we investigate its most basic
consequences and notions such as the homotopy levels of types. We also introduce one of
themost interesting applications of homotopical thinking: higher inductive types. We show
how HoTT suggests a novel form of inductive type which allows us to describe quotients,
propositional truncations, and even topological-inspired objects in a straightforward
conceptual manner.

Notation 5.2.1. In this section, we return to informal intensional type theory as used in
Chapter 1 and Section 4.1.

Assumption 5.2.2. We will also assume that function extensionality holds in this section
and, in particular, that there is a constant funext : Funext (see Section 4.3 for the notation).

(2025-05-02) Homotopy type theory 155

Related reading Thus far we have limited ourselves to describing additional reading in
supplementary sections at the end of this chapter. This was largely because most other
sources did not quite match the goals we set ourselves in this book. Fortunately, there
are multiple book-length treatments of homotopy type theory freely available and we
encourage the reader to consult them. In particular, theHoTT Book [UF13] and Rijke’s forth-
coming book [Rij22] are both excellent introductions to the subject. There are also multiple
formalizations of the core contents of homotopy type theory in proof assistants [VAG+20;
Esc+14; Rij+21] and these may also be useful to consult.

We will endeavor to provide citations for the related results in Univalent Foundations
Program [UF13] to expedite referencing the HoTT book. The reader will also find Chapters
9 through 17 of Rijke [Rij22] (where chapters are relatively short) to contain a superset of
the material discussed in this section.

Remark 5.2.3. In general, the reader who has made it to this point now has the necessary
prerequisites to read a great deal of the type theory literature. We encourage them to do
so; the goal of this book is to prepare a student to engage with the literature and this is
best done through practice! ⋄

5.2.1 The Univalence Axiom

We have begun this section with the rough outline of the univalence axiom in mind: the
transport function transp = subst id : Id(U, 𝐴, 𝐵) → (𝐴 → 𝐵) is an injection whose image
is precisely the subtype of equivalences from 𝐴 to 𝐵, 𝐴 ≃ 𝐵. Our goal is now to nail down
the relevant definitions here. We must first explain what it means for a map to be an
equivalence i.e., define a proposition isEquiv(𝑓) (Theorem 5.2.5). If we then define the
subtype of equivalences 𝐴 ≃ 𝐵 =

∑
𝑓 :𝐴→𝐵 isEquiv(𝑓), we must then show that transp can

be written as the composite fst ◦ idtoequiv where idtoequiv is the (necessarily unique)
map Id(U, 𝐴, 𝐵) → (𝐴 ≃ 𝐵) (Lemma 5.2.8). Finally, we can then formally state univalence
by requiring that idtoequiv is itself an equivalence (Definition 5.2.9).

Without further ado, let us consider the first point: how should we define isEquiv(𝑓)? A
first definition might follow what we would say in set theory: 𝑓 : 𝐴 → 𝐵 is an equivalence
if it has an inverse:

hasTwoSidedInverse(𝑓) =∑
𝑔:𝐵→𝐴 (Id(𝐴 → 𝐴,𝑔 ◦ 𝑓 , id)) × (Id(𝐵 → 𝐵, 𝑓 ◦ 𝑔, id))

In this case, 𝐴 ≃ 𝐵 would simply become 𝐴 � 𝐵 as specified above.

(2025-05-02) Homotopy type theory 156

Exercise 5.4. Construct an element of idIsIso : hasTwoSidedInverse(id).

This definition certainly correlates with our expectations but, surprisingly, it is simply
incorrect and asserting univalence based on this definition will result in an inconsistent
system. The root of the issue is following metatheorem:

Theorem 5.2.4. The proposition isHProp(hasTwoSidedInverse(𝑓)) is independent of ITT.

In fact, with univalence we will be able to refute isHProp(hasTwoSidedInverse(𝑓)).
In such a situation the type 𝐴 ≃ 𝐵 =

∑
𝑓 :𝐴→𝐵 hasTwoSidedInverse(𝑓) is not a subtype of

𝐴 → 𝐵. While this defies our intuitions for 𝐴 ≃ 𝐵, it is actually more serious than that.
Essentially, asserting univalence allows us to convert 𝑝 : 𝐴 ≃ 𝐵 into an identification
Id(U, 𝐴, 𝐵) and then—using J—pretend that that identification is reflexivity. All told, if
we are essentially able to assume that (1) 𝐴 = 𝐵 (2) 𝑝 = (id, idIsIso) when constructing a
term depending on 𝑝 . As noted above, however, univalence also gives us the ability to
construct an element of hasTwoSidedInverse(id) which is provably distinct from idIsIso
and this leads to a contradiction.

The upshot of this is that we must find a more refined definition of the proposition
isEquiv which is, in particular, a proposition. We emphasize that we still want it to be the
case that if isEquiv(𝑓) holds then 𝑓 has an inverse. We just cannot have isEquiv(𝑓) by the
literal data of such a two-sided inverse because the actual choice of a particular inverse
encodes too much data and leads to inconsistencies. In summary, our specification for
isEquiv(𝑓) is the following three points:

1. A map hasTwoSidedInverse(𝑓) → isEquiv(𝑓).

2. Another map isEquiv(𝑓) → hasTwoSidedInverse(𝑓).

3. isEquiv(𝑓) : HProp

It turns out that any definition of isEquiv satisfying these three properties is as good
as any other. The following exercise makes this claim precise:
Exercise 5.5. Show that if isEquiv1(𝑓) and isEquiv2(𝑓) both satisfy the above constraints,
then there is a map 𝛼 : isEquiv1(𝑓) → isEquiv2(𝑔) such that hasTwoSidedInverse(𝛼)
holds.

Arguably, we could stop our discussion of isEquiv here and simply insist that some
definition of isEquiv exists. However, for the sake of completeness we present a valid
definition of isEquiv and refer the reader to Univalent Foundations Program [UF13, Chapter
4] for an exhaustive discussion.

Theorem 5.2.5. If 𝑓 : 𝐴 → 𝐵 then the following is a valid definition of isEquiv(𝑓):

(2025-05-02) Homotopy type theory 157

fib(𝑓 , 𝑏) = ∑
𝑎:𝐴 Id(𝐵, 𝑓 𝑎, 𝑏)

isContr(𝑋) = ∑
𝑥 :𝑋 (𝑦 : 𝑋) → Id(𝑋, 𝑥,𝑦)

isEquiv(𝑓) = (𝑏 : 𝐵) → isContr(fib(𝑓 , 𝑏))

Remark 5.2.6. In the above, fib(𝑓 , 𝑏) is the preimage 𝑓 −1(𝑏) or fiber of 𝑓 over 𝑏 while
isContr(𝑋) states that 𝑋 is a type with precisely one element. Informally then, isEquiv(𝑓)
just when each preimage 𝑓 −1(𝑏) has exactly one element. In homotopical parlance, 𝑓 is an
equivalence just when it has contractible fibers. ⋄

To prove this theorem, we require the following fact from the HoTT book.

Lemma 5.2.7 (Lemma 3.11.4 [UF13]). For any type 𝐴, isContr(𝐴) : HProp.

Proof of Theorem 5.2.5. We have three things to prove.
First, we must show that if 𝑓 : 𝐴 → 𝐵 has a two-sided inverse 𝑔 : 𝐵 → 𝐴, then 𝑓 has

contractible fibers. Let us then fix 𝑏 : 𝐵. We must show the following to be contractible:∑
𝑎:𝐴 Id(𝐵, 𝑓 𝑎, 𝑏)

Using the assumption that 𝑔 is a two-sided inverse, we note that it suffices to show that∑
𝑎:𝐴 Id(𝐴,𝑔(𝑓 𝑎), 𝑔 𝑏) is contractible. To show this, it suffices

∑
𝑎:𝐴 Id(𝐴, 𝑎,𝑔 𝑏) but this

last type is easy to inhabit as we may choose (𝑔𝑏, refl). We must then show exhibit an
identification between (𝑔𝑏, refl) and an arbitrary element 𝑝 :

∑
𝑎:𝐴 Id(𝐴,𝑔(𝑓 𝑎), 𝑔 𝑏). While

we omit the details, this identification is almost exactly defined by snd(𝑝).
Second, we must show that if 𝑝 : isEquiv(𝑓) implies hasTwoSidedInverse(𝑓). Let us

define a putative inverse 𝑔 to 𝑓 as follows:

𝑔𝑏 = fst(fst(𝑝 𝑏))

Explicitly, 𝑔 is defined to be the composite of the following chain of operations:

𝑏 : 𝐵
↦→ 𝑝 𝑏 : isContr(fib(𝑓 , 𝑏))
↦→ fst(𝑝 𝑏) : fib(𝑓 , 𝑏) = ∑

𝑎:𝐴 Id(𝐵, 𝑓 𝑎, 𝑏)
↦→ fst(fst(𝑝 𝑏)) : 𝐴

It is then easy to define a function 𝛽 : (𝑏 : 𝐵) → Id(𝐵, 𝑓 (𝑔𝑏), 𝑏) as 𝑔 was chosen more-or-
less to make this true by definition. Explicitly, such a function is given by the composite
snd ◦ fst ◦ 𝑝 .

It is only slightly more work to define a function 𝛼 : (𝑎 : 𝐴) → Id(𝐴,𝑔(𝑓 𝑎), 𝑎) and it
is here that we require that there is exactly one element of each fiber:

𝛼 : (𝑎 : 𝐴) → Id(𝐴,𝑔(𝑓 𝑎), 𝑎)

(2025-05-02) Homotopy type theory 158

𝛼 𝑎 = cong (𝜆𝑓 → fst(𝑓)) (snd (𝑝 (𝑓 𝑎)) (𝑎, refl))

Finally, we must show that isEquiv(𝑓) is a proposition. To this end, we note that
propositions under closed dependent products (Exercise 5.1) and so the result is a direct
consequence of Lemma 5.2.7 □

Lemma 5.2.8. There is a unique map idtoequiv𝐴,𝐵 : Id(U, 𝐴, 𝐵) → 𝐴 ≃ 𝐵 with an identifi-
cation between fst ◦ idtoequiv and transp.

Proof. We begin by defining idtoequiv(𝑝) and prove that it is unique afterwards. Using
the identity elimination rule, it suffices to define idtoequiv(𝑝) when 𝑝 = refl. That is, we
may assume that 𝐴 = 𝐵 and show that isEquiv(transp refl). We note that the following
chain of equalities follows by definition:

isEquiv(transp refl) = isEquiv(subst id refl) = isEquiv(id)

To establish isEquiv(id), we note that it suffices to show hasTwoSidedInverse(id) which
is established by Exercise 5.4.

We now turn to showing that idtoequiv is unique. Suppose we are given another
map 𝑓 : Id(U, 𝐴, 𝐵) → 𝐴 ≃ 𝐵 along with another identification between fst ◦ 𝑓 and
transp. We wish to construct an element of Id(Id(U, 𝐴, 𝐵) → 𝐴 ≃ 𝐵, idtoequiv, 𝑓). By
function extensionality, it suffices to fix 𝑝 : Id(U, 𝐴, 𝐵) and exhibit an identification
Id(𝐴 ≃ 𝐵, idtoequiv𝑝, 𝑓 𝑝).

We note that 𝐴 ≃ 𝐵 is a dependent sum type and so by Exercise 5.6 it suffices to exhibit
a pair of identifications:

1. 𝑖 : Id(𝐴 → 𝐵, fst(idtoequiv𝑝), fst(𝑓 𝑝)),

2. an identification in isEquiv(fst(𝑓 𝑝)) between subst isEquiv𝑝 (snd (idtoequiv𝑝))
and snd(𝑓 𝑝).

We construct 𝑖 using trans and sym; we know that both fst(idtoequiv𝑝) and fst(𝑓 𝑝)
can be identified with transp𝑝 . The second identification is automatic. By construction,
we know that any two elements of isEquiv(...) can be identified. □

Exercise 5.6. Given 𝑥,𝑦 :
∑
𝑎:𝐴 𝐵 𝑎, construct a function of the following type:

(𝑝 : Id(𝐴, fst𝑥, fst𝑦)) → Id(𝐵𝑦, subst𝐵 𝑝 (snd𝑥), snd𝑦) → Id(∑𝑎:𝐴 𝐵 𝑎, 𝑥,𝑦)

Definition 5.2.9. The univalence axiom Univalence is defined as follows:

Univalence = (𝐴, 𝐵 : U) → isEquiv(idtoequiv𝐴,𝐵 : Id(U, 𝐴, 𝐵) → (𝐴 ≃ 𝐵))

(2025-05-02) Homotopy type theory 159

It is important to note that univalence is fundamentally a statement about a uni-
verse. It says something about the behavior of subst id which is, in turn, defined with
respect to a particular universe. Our informal notation has hidden the presence of
the universe slightly; we have erased the subscripts signifying levels and suppressed
El(−). More precisely, we should have written Univalence𝑖 to signify that the map
idtoequiv𝑖 : Id(U𝑖, 𝐴, 𝐵) → ∑

𝑓 :El (𝐴)→El (𝐵) isEquiv𝑖 (𝑓) is an equivalence. We shall con-
tinue to avoid this level of formality for most of this section, but bring it up for the moment
to emphasize that core homotopy type theory assumes univalence for every universe U𝑖 :

Definition 5.2.10. We shall refer to intensional type theory extended with funext : Funext
and univalence𝑖 : Univalence𝑖 for each universe level 𝑖 as core homotopy type theory (core
HoTT).

The definition of univalence may be intimidating at first glance: it involves universes
alongside the (surprisingly subtle) isEquiv used in two different places. It can be helpful to
consider the (equivalent) axiom hasTwoSidedInverse(idtoequiv) which can then be recast
into three pieces of data:

1. A map ua : 𝐴 ≃ 𝐵 → Id(U, 𝐴, 𝐵)

2. For each 𝑓 : 𝐴 ≃ 𝐵, an identification uaBeta : Id(𝐴 → 𝐵, transp(ua 𝑓), fst 𝑓)

3. for each 𝑝 : Id(U, 𝐴, 𝐵), an identification uaEta : Id(Id(U, 𝐴, 𝐵), 𝑝, ua(idtoequiv𝑝))

Surprisingly, the third piece of data is actually derivable from the first two [Lic16].
Consequently, full univalence can be thought of as the (comparatively simple) assertion that
any 𝑓 : 𝐴 ≃ 𝐵 induces an identification ua 𝑓 : Id(U, 𝐴, 𝐵) such that transp(ua 𝑓) = fst 𝑓 .

While we will not attempt to argue for its consistency, univalence does not contradict
intensional type theory. Together with the normalization result for intensional type theory
(Theorem 4.2.4), we conclude the following:

Theorem 5.2.11. Core HoTT is consistent and enjoys normalization and decidable type-
checking.

HoTT does not, however, satisfy canonicity. The quest to resolve this issue will lead us
to cubical type theory in Section 5.3.

5.2.2 Homotopy levels

We now take our first steps in homotopy type theory by arguing that univalence actually
contradicts U(IP)𝑛 for all 𝑛. We shall see that need not look far to find counterexample of
U(IP)𝑛 in core HoTT: the universe refutes each of these truncation axioms.

(2025-05-02) Homotopy type theory 160

In order to formulate this properly, it is convenient to isolate a predicate hasHLevel :
Nat → U → U in type theory which essentially encodes “U(IP)𝑛 holds for 𝐴”. It turns out
that this is connected to an important notion of homotopy theory—that of truncation and
𝑛-types—and so we shall “types satisfying U(IP)n” as types of “h(omotopy)-level 𝑛”.

An unfortunate fact is that the indexing does not match between h-level 𝑛 and U(IP)n
and so, for instance, hasHLevel 1𝐴 does not signify that𝐴 satisfies UIP. The correspondence
is that hasHLevel (1 + 𝑛)𝐴 holds if 𝐴 satisfies U(IP)n. This indexing scheme is standard in
homotopy type theory and, unpleasantly, nowhere else. The root of the issue is that there
are natural definitions of (−1)-level and (−2)-level types and we wish to capture these
in hasHLevel. However, the natural numbers stubbornly start at 0. Accordingly, we must
shift everything up by at least 2 when encoding things in type theory. The other mismatch
is that a type satisfying UIP behaves like a 0-level type rather than a 1-level type.1

Up to these reindexing complications, we note that we have already explicitly written
out hasHLevel 2 and hasHLevel 3 in Section 4.3 as UIP and UIPIP:

hasHLevel 2𝐴 = (𝑎 𝑏 : 𝐴) (𝑝 𝑞 : Id(𝐴, 𝑎, 𝑏)) → Id(Id(𝐴, 𝑎, 𝑏), 𝑝, 𝑞)
hasHLevel 3𝐴 = (𝑎 𝑏 : 𝐴) (𝑝 𝑞 : Id(𝐴, 𝑎, 𝑏)) (𝛼 𝛽 : Id(Id(𝐴, 𝑎, 𝑏), 𝑝, 𝑞))

→ Id(Id(Id(𝐴, 𝑎, 𝑏), 𝑝, 𝑞), 𝛼, 𝛽)

Unfortunately, it is clear that we cannot continue in this way. We must find some
way to define hasHLevel (suc(𝑛))𝐴 in terms of hasHLevel𝑛𝐴. To this end, let us note
that hasHLevel 3𝐴 = (𝑎 𝑏 : 𝐴) → hasHLevel 2 (Id(𝐴, 𝑎, 𝑏)). This forms the basis of an
inductive definition, but we must figure out what the base case ought to be. Consider
hasHLevel 2𝐴 which ought to encode UIP. By definition, we have now have the following:

𝐴 satisfies UIP
= hasHLevel 2𝐴
= (𝑎 𝑏 : 𝐴) → hasHLevel 1 (Id(𝐴, 𝑎, 𝑏))
= (𝑎 𝑏 : 𝐴) (𝑝 𝑞 : Id(𝐴, 𝑎, 𝑏)) → hasHLevel 0 (Id(Id(𝐴, 𝑎, 𝑏), 𝑝, 𝑞))

Accordingly, we must choose hasHLevel 0 (Id(Id(𝐴, 𝑎, 𝑏), 𝑝, 𝑞)) such that this last type
is equivalent to 𝐴 satisfying UIP. Moreover, our goal was that hasHLevel𝑛 should be a
predicate on types and so we also wish to ensure that hasHLevel 0𝐴 is a proposition.

In the final type listed above, if 𝐴 satisfies UIP then surely 𝑝 and 𝑞 are supposed to be
equal (as identifications between the same two elements of a type satisfying UIP). At the
very least we must have hasHLevel 0𝑋 → 𝑋 , but if we simply take this to be the definition
of hasHLevel 0𝑋 then the result will not be a proposition.

1Roughly, the lack of non-trivial identificationsmeans the type behaves like a set which is a 0-dimensional
object.

(2025-05-02) Homotopy type theory 161

However, satisfying UIP tells us a little more than there merely existing an identification.
If a type satisfies UIP, then we can actually compute this identification. That is, there is
(by definition) a function that take 𝑝, 𝑞 and produces an element of Id(Id(𝐴, 𝑎, 𝑏), 𝑝, 𝑞). A
general result in intensional type theory states that if we are able to define a function
𝑓 : (𝑥 𝑦 : 𝑋) → Id(𝑋, 𝑥,𝑦), then every identification between 𝑥 and 𝑦 must be identifiable
with 𝑓 𝑥 𝑦 [UF13, Lemma 3.3.4]. Accordingly, we can define hasHLevel 0𝑋 = isContr(𝑋).

In total then, we define hasHLevel as follows:

hasHLevel 0𝐴 = isContr(𝐴)
hasHLevel (suc(𝑛))𝐴 = (𝑎 𝑏 : 𝐴) → hasHLevel𝑛 (Id(𝐴, 𝑎, 𝑏))

Finally, by induction along with Lemma 5.2.7 and Exercise 5.1, we can prove that
hasHLevel𝑛𝐴 is a proposition.
Exercise 5.7. Give a description of a type 𝐴 such that hasHLevel 1𝐴. (Hint: we have
already introduced terminology for this class of types.)

The theory of hasHLevel is extremely rich (see Univalent Foundations Program [UF13,
Chapter 7] or Rijke [Rij22, Chapter 12]). However, we will content ourselves with using
it only to deliver on a promised result: univalence refutes UIP. That is, we give a type 𝐴
such that hasHLevel 2𝐴 → Void holds.

Notation 5.2.12. If hasHLevel 2𝐴, we shall say that𝐴 is a homotopy set or hset (analogous
to a homotopy proposition).

Theorem 5.2.13. hasHLevel 2 U → Void

Proof. Let us assume 𝜙 : hasHLevel 2 U and set about constructing an element of Void. To
this end, we note that we may use univalence to define a function of the following type:

ua : (Bool ≃ Bool) → Id(U,Bool,Bool)

In particular, we obtain a pair of paths 𝑝 = ua id and 𝑞 = ua not (we leave it to the
reader to prove isEquiv not holds). Using 𝜙 , we then obtain the following:

𝛼 = fst(𝜙 Bool Bool 𝑝 𝑞) : Id(Id(U,Bool,Bool), 𝑝, 𝑞)

Again by univalence—specifically uaBeta—we have a further pair of identifications:

Id(Bool → Bool, transp𝑝, id) Id(Bool → Bool, transp𝑞, not)

By congruence applied 𝛼 along with transitivity, we therefore obtain an element uhoh :
Id(Bool → Bool, id, not). Finally, cong (𝜆𝑓 → 𝑓 true) uhoh : Id(Bool, true, false) and
from here it is straightforward to produce an element of Void. □

(2025-05-02) Homotopy type theory 162

Corollary 5.2.14. The type HSet =
∑
𝐴:U hasHLevel 2𝐴 is not an hset.

In fact, we can to some extent bootstrap this process. Essentially U0 does not satisfy
hasHLevel 2 because it contains a type Bool which does not satisfy hasHLevel 1. A more
complex butmorally similar argument tells us thatU𝑖+1 will not satisfy hasHLevel (suc𝑖+3(0))
since it contains U𝑖 which does not satisfy hasHLevel (suc𝑖+2(0)).

Theorem 5.2.15 (Kraus and Sattler [KS15]). For every external natural number 𝑖 there is
an term of type hasHLevel (suc𝑖+2(0)) U𝑖 → Void

Corollary 5.2.16. Core HoTT does not satisfy U(IP)n for any 𝑛.

It is natural to wonder if hasHLevel 3 U0 holds in core HoTT. Phrased differently, did
we need to work up the ladder of universes to refute U(IP)n or could we have refuted them
all using a single universe. In fact, the following result is independent of core HoTT:

Proposition 5.2.17. There exist a type 𝐴 such that (𝑛 : Nat) → hasHLevel𝑛𝐴 → Void.

This type is inhabited in the standard model of HoTT in simplicial sets [KL21] morally
because the interpretation of U0 in this model contains many spaces which are small, but
homotopically complex. More generally, it is natural to wonder whether the only source
of types not satisfying hasHLevel 2 is the universe.

In fact, in core homotopy type theory this is the case! Every other constructor Π, Σ,
Bool, etc. either has an h-level lower than 2 (i.e., satisfies UIP) or “preserves” types of level
𝑘 . For instance, the h-level of Σ(𝐴, 𝐵) depends on the h-levels of 𝐴 and 𝐵, but Σ does not
raise the h-level: if 𝐴 and 𝐵 are both of h-level 𝑘 then so too is Σ(𝐴, 𝐵). There is some
interesting behavior even with core types: for instance, it turns out that the h-level of
Π(𝐴, 𝐵) depends only on the h-level of 𝐵. However, as it stands the only way to construct
a type of h-level higher than 2 is to use universes in some essential way.

Given that we must cope with the hypothetical presence of types with arbitrarily high
h-levels, we now discuss a mechanism for defining types of our own which have h-level
above 2. This types shall be realized as higher inductive types (HITs). We shall see how they
allow us to construct homotopically complex types not stemming from the universe and
thereby prove Proposition 5.2.17 internally. Remarkably, HITs are useful for far, far more
than merely establishing Proposition 5.2.17 and we shall that they enable us to capture
interesting ideas from both homotopy theory and logic within type theory.

5.2.3 Higher inductive types

We also introduce one of the most common extensions to homotopy type theory: higher
inductive types. Briefly, once we acknowledge that types may have non-trivial identifi-
cations, it becomes natural to include the identifications as part of the specification of
inductive types alongside their generating elements.

(2025-05-02) Homotopy type theory 163

Remark 5.2.18. We will follow Univalent Foundations Program [UF13] and Rijke [Rij22]
(as well as Section 2.5) and treat HITs in an essentially ad hoc manner. In particular, we
will not concern ourselves with developing a schema for higher inductive types [CH19]
and instead describe specific examples that ought to exist in any sufficiently expressive
schema. ⋄

5.2.3.1 The interval

Let us begin with arguably the simplest possible example and describe a variation on Bool.
Recall that Bool was the type generated by two terms: true and false. This is enforced
by the elimination principle which ensures that every type believes that Bool merely has
these two terms. Let us recall that—roughly—the elimination principle ensures that for
each 𝐴 : Bool → U there is a section to the following map

((𝑏 : Bool) → 𝐴𝑏) −→ 𝐴 true ×𝐴 false

Our goal is to describe a new type I which, like Bool, is generated by two points 0
and 1 along with an identification seg : Id(I, 0, 1). Just as before if we are given 𝐴 : I → U,
we have a map from sending a term 𝑎 : (𝑖 : I) → 𝐴 𝑖 to the terms 𝑎 0 : 𝐴 0 and 𝑎 1 = 𝐴 1,
but what is to be done with this “freely added identification” seg? It will determine an
identification between 𝑎 0 and 𝑎 1 by congruence:

cong𝑎 seg : Id(𝐴 1, subst𝐴 seg (𝑎 0), 𝑎 1)

If we stitch this all together, we obtain the following map:

eval : ((𝑖 : I) → 𝐴 𝑖) −→ ∑
𝑎0:𝐴 0

∑
𝑎1:𝐴 1 Id(𝐴 1, subst𝐴 seg𝑎0, 𝑎1)

The idea that I is generated by 0, 1, and seg is crystallized by requiring that this map
have a section. That is, given 𝐴 : I → U we wish to be able to define a function of the
following type:

recI : (∑𝑎0:𝐴 0
∑
𝑎1:𝐴 1 Id(𝐴 1, subst𝐴 seg𝑎0, 𝑎1)) → (𝑖 : I) → 𝐴 𝑖

Moreover, we also will ask for an identification between recI ◦ eval and id. This
identification will then morally serve as the “𝛽 equalities” for the elimination principle but
up to Id rather than definitional equality.

This discussion may highlight what we intend to accomplish with higher inductive
types like I and makes clear what “freely adding identifications” ought to accomplish,
but what rules should be added to core HoTT to realize these terms? The answer is,
unfortunately, somewhat murky. An often underappreciated appeal of cubical type theory
(Section 5.3) is its comparatively clean account of higher inductive types. In core HoTT, it is

(2025-05-02) Homotopy type theory 164

not even clear howmany definitional equalities may be imposed on recI if we were to add it
as a primitive term-former. It is possible to imagine the appropriate definitional equations
to impose for 0 and 1, but what about seg? If we wish to ensure that the eliminator
“computes” on seg, we would be forced to specify cong (recI (𝑎0, 𝑎1, 𝑝)) seg = 𝑝 .

For this book, we will take the simplest (though least practical) approach and require
no definitional equalities. That is, we shall simply postulate recI along with its attendant
𝛽-equality up to Id. While this is unpleasant for performing actual constructions with
HITs, it has the advantage of conceptual uniformity and, of course, it will be satisfied by
any method of adding HITs to core HoTT.

We will content ourselves with proving only one fact about I: we need not have
bothered to introduce it as it is equivalent to Unit.

Lemma 5.2.19. The unique map I → Unit is an equivalence.

Proof. There are a variety of ways to prove this fact, but we will proceed explicitly. Let
us denote the unique map I → Unit by 𝑓 and write 𝑔★ = 0. It is trivial to obtain an
identification between 𝑓 ◦ 𝑔 and id, so we focus on constructing an identification between
𝑔 ◦ 𝑓 : I → I and id. By function extensionality, it suffices to construct an identification
𝜙 : (𝑖 : I) → Id(I, 0, 𝑖). For this, we turn to recI.

𝛼 : Id(Id(I, 0, 1), transp Id(I, 0,−) seg refl, seg)
𝛼 = j (𝜆𝑖0 𝑖1 𝑝 → Id(Id(I, 𝑖0, 𝑖1), transp Id(I, 𝑖0,−) 𝑝 refl, 𝑝))

(𝜆𝑖 → refl)
seg

𝜙 = recI (refl, seg, 𝛼)

We emphasize an important point in the above construction: even though seg is added
as a generating identification in I, we may still apply J to seg. In particular, the addition of
generating identifications does not refute our earlier claim that “every type believes that
Id is generated by refl”. □

5.2.3.2 Suspensions

While I was helpful for illustrating the basic ideas behind HITs, it is clearly not very
interesting as a type in its own right. Let us therefore turn to a family of HITs which were
not already definable in type theory: suspensions Σ𝐴.

We begin by specifying the generators for Σ𝐴. As before, we shall work with these
additional axioms in our type theory alongside an axiom Σ : U → U but without any
definitional equalities. There are two generating terms north, south : Σ𝐴 and a generating
identification merid𝑎 : Id(Σ𝐴, south, north) for each 𝑎 : 𝐴.

(2025-05-02) Homotopy type theory 165

Remark 5.2.20. It may be helpful to note that this generalizes I by allowing for not just a
single generating identification between a pair of elements but any number we choose. ⋄

Remark 5.2.21. We shall see in Section 5.2.4 that Σ𝐴 can be visualized as some sort of
globe with a north and south pole joined by a fresh meridian for each 𝑎 : 𝐴. We note that
there is no relation between dependent sum types and suspension types other than both
starting with an “s” and therefore being traditionally written with a Σ. ⋄

As before, we use these to define an evaluation map for a type 𝐵 : Σ𝐴 → U:

eval : ((𝑠 : Σ𝐴) → 𝐵 𝑠)
→ ∑

𝑏𝑠 :𝐵 south
∑
𝑏𝑛 :𝐵 north(𝑎 : 𝐴) → Id(𝐵 north, subst𝐵 (merid𝑎) 𝑎𝑠, 𝑎𝑛)

Finally, we axiomatize the elimination principle as a section to this map:

recΣ : (∑𝑏𝑠 :𝐵 south
∑
𝑏𝑛 :𝐵 north(𝑎 : 𝐴) → Id(𝐵 north, subst𝐵 (merid𝑎) 𝑎𝑠, 𝑎𝑛))

→ (𝑠 : Σ𝐴) → 𝐵 𝑠

The importance to Σ𝐴 is that it is can be made to refute U(IP)n for any 𝑛 by carefully
choosing 𝐴. While a proof is out-of-scope for our purposes, it is possible to show that
Σ𝑛 Bool does not satisfy hasHLevel (1 + 𝑛) given 𝑛 : Nat.2

Theorem 5.2.22 (Theorem 8.6.17 [UF13]). For any 𝑛 : Nat, the suspension Σ𝑛 Bool does
not satisfy hasHLevel (1 + 𝑛).

Corollary 5.2.23. The type𝑋 =
∑
𝑛:Nat Σ

𝑛 Bool does not satisfy hasHLevel𝑛 for any𝑛 : Nat.

Proof. We observe that Σ𝑛 Bool is a retract of 𝑋 for any 𝑛 : Nat; there are maps 𝑒 :
Σ𝑛 Bool → 𝑋 and 𝑟 : 𝑋 → Σ𝑛 Bool such that 𝑟 ◦ 𝑒 is the identity. One can argue that
if 𝐴 is a retract of 𝐵 and hasHLevel𝑛 𝐵 then hasHLevel𝑛𝐴. However, we know that
hasHLevel (1 + 𝑛) (Σ𝑛 Bool) does not hold and so 𝑋 must not satisfy hasHLevel𝑛 for any
𝑛. □

5.2.3.3 Set truncations

For our final example of higher inductive types, we turn to an example which is truly
inductive. For both I and Σ, we postulated types with constructors generating both new
elements and identifications, but in both cases none of these constructors took an element
of either I or Σ. This is akin to Bool or Void and in contrast to a type like Nat where

2While it is much harder to prove, it is also the case that hasHLevel𝑛 (Σ2 Bool) is refuted by at least
some models of homotopy type theory for all 𝑛 > 4. To the authors’ knowledge, it is still open whether this
classic result due to Serre [Ser53] holds directly within HoTT.

(2025-05-02) Homotopy type theory 166

suc(−) takes an element of Nat. Our last example of set truncation’s, |𝐴|, is more the cast
of Nat.

First, |𝐴| is generated by the following constructors:

• If 𝑎 : 𝐴 then [𝑎] : |𝐴|

• If 𝑝, 𝑞 : Id(|𝐴|, 𝑎, 𝑏) then trunc : Id(Id(|𝐴|, 𝑎, 𝑏), 𝑝, 𝑞)

In summary, there is a map𝐴 → |𝐴| and we further ensure that |𝐴| has h-level 2: every
pair of identity proofs can be identified. The second constructor ranges over elements
of |𝐴| and gives |𝐴| its “inductive” character. The force of this last constructor is in the
following observation:

Lemma 5.2.24. hasHLevel 2 |𝐴|.

Proof. Unfolding, we see that a witness for this type is precisely trunc. □

We shall see that |𝐴| occupies a particular place among types satisfying hasHLevel 2;
it is the “best approximation to 𝐴 satisfying this predicate”. In other words, |−| allows us
to replace a type with one satisfying UIP. To make this statement precise and prove it, we
must specify the elimination principle for |𝐴|.

An interlude on displayed algebra Before we arrive at the elimination principle, we
must specify what it means to be a |𝐴|-display algebra just as we did for Nat in Section 2.5.3.
We can follow the same process there and mechanically derive the following (rather
complex) definition of what it is required for 𝐵 : |𝐴| → U to be a displayed algebra over
|𝐴| when it comes equipped with the following:

• A function [−] : (𝑎 : 𝐴) → 𝐵([𝑎]).

• Given𝑝, 𝑞 : Id(𝐴, 𝑎0, 𝑎1) alongwith𝑏0 : 𝐵(𝑎0),𝑏1 : 𝐵(𝑎1), 𝑝 : Id(𝐵(𝑎1), subst𝐵 𝑝 𝑏0, 𝑏1),
and 𝑞 : Id(𝐵(𝑎1), subst𝐵 𝑞 𝑏0, 𝑏1), an element of the following type:

trunc : Id(Id(𝐵(𝑎1), subst𝐵 𝑞 𝑏0, 𝑏1), subst (𝜆𝑟 → Id(𝐵(𝑎1), subst𝐵 𝑟 𝑏0, 𝑏1)) trunc𝑝, 𝑞)

This specification expresses some of the complexity that can come from working with
J and intensional identity types, especially in the context of HoTT. The need to apply
“dependent substitutions” quickly leads to impossible to read types. Fortunately, in this
particular case we can give a much simpler specification:

Lemma 5.2.25 (Lemma 6.9.1 [UF13]). The data required for 𝐵 : |𝐴| → U to be a displayed
|𝐴|-algebra is equivalent to a function [−] : (𝑎 : 𝐴) → 𝐵([𝑎]) along with (𝑎 : 𝐴) →
hasHLevel 2 (𝐵 𝑎).

(2025-05-02) Homotopy type theory 167

We can package things up even further by recalling the definitionHSet =
∑
𝐴:U hasHLevel 2𝐴.

We may then omit the final requirement of the above lemma by instead requiring 𝐵 : |𝐴| →
HSet.

With this digression, we may state the elimination principle for |𝐴| as a section to the
following canonical map for any 𝐵 : |𝐴| → HSet given by precomposing with [−]:

((𝑎 : |𝐴|) → 𝐵(𝑎)) → ((𝑎 : 𝐴) → 𝐵([𝑎]))

Explicitly, we have the following elimination rule:

rec|𝐴| : ((𝑎 : 𝐴) → 𝐵([𝑎])) → (𝑎 : |𝐴|) → 𝐵(𝑎)

Finally, we make good on our earlier promise:

Theorem 5.2.26. Given any 𝐵 : HSet, the type 𝐴 → 𝐵 is equivalent to |𝐴| → 𝐵.

Proof. This is an immediate consequence of the elimination principle specialized to a
non-dependent motive. □

This theorem shows that “from the perspective of an h-set”, |𝐴| is equivalent to 𝐴. In
fact, one can define a version of |𝐴| for every possible h-level. These allow one to better
and better approximate 𝐴 by a sequence of types which satisfy some version of U(IP)n. In
practice, |𝐴| and it cousin for homotopy propositions arise most frequently.

5.2.4 A sampling of homotopy type theory

This section has been a whirlwind tour of some of the most interesting type-theoretic
aspects of homotopy type theory. It is, however, an impossible task to fully discuss HoTT
in merely a section of this book; multiple books have been written on the topic. Instead,
we content ourselves by concluding our excursion through HoTT with a discussion of
a few applications of the theory and pointers to the relevant literature. We (somewhat
artificially) divide these applications into three separate tracks: synthetic homotopy theory,
quotients and colimits in type theory, and the structure-identity principle.

Remark 5.2.27. We once more remind the reader that the purpose of this book is to help
them engage with the literature. They are therefore encouraged to do the legwork of
studying some of the cited papers and books. ⋄

Synthetic homotopy theory As one might have inferred from the name, HoTT is
closely related to homotopy theory. We have thus far avoided any real discussion of
the field, but homotopy theory arose from the study of (algebraic) topology: a subfield
of geometry concerned with study shapes up to twisting, stretching, and compression.

(2025-05-02) Homotopy type theory 168

While homotopy theory has since spread out to touch many distinct areas of mathematics
(algebraic geometry, representation theory, mathematical physics, and number theory,
among many others!) many of the classical results of the field concern properties of
familiar shapes such as circles, spheres, and tori.

Interestingly, the connection between HoTT and homotopy theory allows us to recast
these shapes as particular types and thereby reproduce classical results from algebraic
topology purely within type theory. The resulting theorems synthetic theorems apply in
greater generality (to any model of HoTT) and often yield shorter and more conceptual
proofs. Some of this is introduced in Univalent Foundations Program [UF13] and Rijke
[Rij22].

For instance, one can define a type which behaves like a circle: 𝑆1 = ΣBool. Pictorially,
this is a type with 2 elements joined by 2 identifications. If we view elements as points and
identifications as paths, this is a valid description of a circle. A classical result in algebraic
topology is to fully characterize the maps 𝑆1 → 𝑆1 which send south to south (so-called
pointed maps). Within the framework of homotopy type theory, we may characterize this
into something more familiar to type theorists:

Lemma 5.2.28. The type of pointed maps 𝑆1 →∗ 𝑆1 is equivalent to Id(𝑆1, south, south).

One of the classical results of homotopy theory (and homotopy type theory) is a
complete characterization of this type. One approach to this result is through careful
analysis of type families 𝐵 : 𝑆1 → U—the HoTT version of covering spaces. In particular,
note that by construction 𝐵 consists of (1) a type𝐴 : U and (2) an identification/equivalence
𝑒 : 𝐴 ≃ 𝐴. For instance, one can define 𝐵 via Bool and not. One can similarly consider a
type with three elements and the isomorphism corresponding to successor modulo three.
In the limit, we find the universal type family to be defined from Z and the succ from
which Licata and Shulman [LS13] concluded the following:

Theorem 5.2.29 (Corollary 8.1.10 [UF13]). Id(𝑆1, south, south) ≃ Z.

While this is one of the earliest results of synthetic homotopy theory, many classical
results have now been defined others are being actively studied. We refer the reader
to Univalent Foundations Program [UF13] and Rijke [Rij22] for textbook discussions
of synthetic homotopy theory. We also highlight the theses van Doorn [vDoo18] and
Brunerie [Bru16] for the construction of the Serre spectral sequence and the computation
of 𝜋4(𝑆3) respectively. A particularly notable instance of synthetic homotopy theory is the
proof of the Blakers-Massey theorem due to Hou (Favonia) et al. [Fav+16]. This synthetic
proof is significantly simpler than existing “analytic” proofs and has since led to various
generalizations in homotopy theory.

(2025-05-02) Homotopy type theory 169

Descent and colimits A surprising fact about HoTT is that many “quotient”-type con-
structions when realized as HITs behave much better than attempts to codify them in
extensional type theory.3 Formally, one may say that all quotient-type constructions or
colimits in HoTT exhibit effectivity or descent [Lur09; Rez10; AJ21].

To see the utility of descent in action, let us consider how one might realize the quotient
of 𝐴 : HSet by an equivalence relation 𝑅 : 𝐴 → 𝐴 → HProp as a HIT 𝐴/𝑅. This type has
three constructors:

• For each 𝑎 : 𝐴, there is an element [𝑎] : 𝐴/𝑅.

• For each 𝑟 : 𝑅 𝑎0 𝑎1, there is an identification [𝑟] : Id(𝐴/𝑅, [𝑎0], [𝑎1])

• For each 𝑝, 𝑞 : Id(𝐴/𝑅, 𝑥,𝑦), there is an identification Id(Id(𝐴/𝑅, 𝑥,𝑦), 𝑝, 𝑞)

Remark 5.2.30. The final constructor ensures that 𝐴/𝑅 is an hset. Without this modifica-
tion, we may accidentally encounter e.g. 𝑆1 = Unit/(𝜆_ → Unit). ⋄

We will omit the elimination principle, but invite the reader to attempt to devise what
it should be themselves and consult Univalent Foundations Program [UF13, Lemma 6.10.3]
to check their answer.

It is clear that if 𝑎0 and 𝑎1 are related by 𝑅, then [𝑎0] and [𝑎1] are identified. What is
less clear, however, is that this condition is both sufficient and necessary. This is one of
the most basic expressions of descent and often referred to as the effectivity of quotients:

Theorem 5.2.31 (Lemma 10.1.8 [UF13]). Id(𝐴/𝑅, [𝑎0], [𝑎1]) ≃ 𝑅 𝑎0 𝑎1.

This property is crucial for using quotients in ordinary mathematics. Imagine, for
instance, attempting to represent Q as the quotient of Z × Nat and being unable to prove
that (𝑎, 𝑏) and (𝑐, 𝑑) are identified just when 𝑎/𝑏 = 𝑐/𝑑 .

What is perhaps surprising to the reader is not that this property holds in HoTT, but
that it frequently does not hold in intensional type theory! Returning to the discussion
at the beginning of this section, the rough issue is that effectivity of quotients holds
only if we consider equivalence relations valued in propositions which are definitionally
propositional, not merely homotopy propositions. This is something of a quagmire for
intensional type theory: in most situations homotopy propositions are preferable except
for quotient types where strict propositions are superior.

Fortunately, homotopy type theory rectifies this situation by ensuring that homo-
topy propositions are the correct answer in all situations. This improvement is a direct
consequence of allowing additional identifications in the universe i.e., univalence.

We also note that effectivity is usually a somewhat special property of quotients by
equivalence relations. Even working in ordinary set theory, even though one can ask

3This is, in fact, a manifestation of the slogan that “colimits work better in ∞-categories”.

(2025-05-02) Homotopy type theory 170

whether any colimit constructions satisfies effectivity, it will hold in generality only for
(1) disjoint unions and (2) quotients by equivalence relations. The remarkable fact of
homotopy theory and HoTT is that effectivity holds for all colimits. For instance, a more
modern perspective on Theorem 5.2.29 is that it is a direct consequence of effectivity for
for the HIT used to define 𝑆1.

Advanced Remark 5.2.32. While thoroughly out of scope, it is worth mentioning that
effectivity of all colimits is more than just a consequence of univalence, it is equivalent
to it when working categorically. For more on this perspective, see Lurie [Lur09, Section
6.1.6], Gepner and Kock [GK16], or Rasekh [Ras21]. An approachable talk on the subject
was also given by Anel [Ane19]. ⋄

Structure and Identity Principle An inarguable lesson of twentieth century mathemat-
ics is that whenever one encounters a structure, the task is to find an appropriate notion
of map (homomorphism) between instances of this structure. While appropriate depends
on the situation, a fundamental principle is that any property of interest of e.g., groups
is stable under e.g., invertible group homomorphisms (isomorphisms). A remarkable fact
of univalence is the structure identity principle (SIP): for any type of structured objects,
univalence ensures that the corresponding identity type is equivalent to isomorphisms.

To see this principle concretely, consider the following type of monoids:

Mon =

-- The carrier∑
𝐴:HSet

-- The operations∑
𝜖 :𝐴∑
(·):𝐴→𝐴→𝐴

-- The equations∑
(𝑎:𝐴)→Id (𝐴,𝑎·𝜖,𝑎)∑
(𝑎:𝐴)→Id (𝐴,𝜖 ·𝑎,𝑎)

((𝑎0 𝑎1 𝑎2 : 𝐴) → Id(𝐴, 𝑎0 · (𝑎1 · 𝑎2), (𝑎0 · 𝑎1) · 𝑎2))

It is easy enough to define the type of monoid homomorphisms: a map between
carriers which commutes with multiplication and 𝜖 . What is remarkable is that monoid
isomorphisms fall out without additional work:

Theorem 5.2.33. If 𝐴, 𝐵 : Mon the type Id(Mon, 𝐴, 𝐵) is equivalent to the type of monoid
isomorphisms 𝐴 � 𝐵.

Remark 5.2.34. In a certain sense, this theorem is a repeated application of Exercise 5.6
and massaging identity types. ⋄

(2025-05-02) Cubical type theory 171

What is most profitable about SIP is its robustness: it applies not only to monoids or
even algebraic structures, but to everything from partial orders to Petri nets to dagger
categories. A thorough study of this principle is carried out in the book by Ahrens et al.
[Ahr+25].

5.3 Cubical type theory

Thus far in this chapter, we have introduced the univalence axiom and studied a few of
its consequences. Hopefully the reader has been convinced that this is an interesting
principle with which to extend type theory and that it at least offers partial compensation
for the loss of the extensional equality type. However, so far we have considered only the
extension of ITT by an simple axiom to obtain univalence and, consequently, the resulting
theory does not satisfy canonicity.

In particular, it is not difficult to encounter interesting closed elements of type Nat
which are constructed via univalence, but in core HoTT these programs cannot be evaluated
to closed numerals. Famously, Brunerie [Bru18] gave a concise construction of an element
of the type

∑
𝑛:Nat 𝜋4(𝑆3) = Z/𝑛Z but the lack of canonicity meant that actually working out

the concrete 𝑛 : Nat for which this equation held was considerably more difficult [Bru16].
This is far from the only example: the proof that 𝜋1(𝑆1) ≃ Z referenced in Section 5.2
ought to give an algorithm for computing the winding number of a map 𝑆1 → 𝑆1, but this
algorithm can only be run if canonicity holds.

Remark 5.3.1. In fact, in Section 5.2 we assumed function extensionality along with
univalence. A more careful account would allow us to derive the former from the latter
and in fact our solution to canonicity and univalence will handle funext en passant. ⋄

At first, one might hope that this problem can be fixed “locally” and that one can simply
add a definitional equality to ua to recover canonicity. Unfortunately, no such obvious
equalities present themselves. A moment’s contemplation will reveal how while there is
a reasonable candidate for transp applied to ua(. . .), the general case of J and ua is far
murkier; such an equation must correctly handle, for instance, the application of sym and
trans to ua along with any other number of constructions. More generally, we justified
our definition of Id around the idea that every element of Id(𝐴, 𝑎, 𝑏) was controlled by
refl, but this is simply no longer the case in the presence of ua.

Accordingly, our approach to balancing canonicity alongside univalence will involve a
more global and radical change. We shall reimagine the intensional identity type in order
to give it a new mapping in property which gives us the flexibility we need to implement
univalence. The result of these changes will be cubical type theory [CCHM18; AFH18;
Ang+21].

(2025-05-02) Cubical type theory 172

Unfortunately, cubical type theory is vastly more complex than any other type theory
we have discussed in this book. Accordingly, we cannot realistic present in the same detail
that we have given to ETT or ITT. Our compromise is to introduce what we term core
cubical type theory in this section. We detail the required modifications to the judgmental
structure of type theory, present the additional operations necessary to manipulate them,
and sketch how these operations behave and can be used to implement univalence. The
last step, however, will mostly be cursory and we will omit most of the rules governing
these operations. We do, however, return to them in Section 5.4 where we discuss some of
these details more thoroughly (though still not in the entirety). Our goal is to provide a
working knowledge of cubical type theory, rather than a precise account. For the latter, we
refer the reader to Angiuli et al. [Ang+21] which does include a more exhaustive account
of the theory.

The basis of cubical type theory In this section, we discuss the rules that must be
added to intensional type theory in order to arrive at cubical type theory. For concreteness,
we will take our base type theory to type theory without any sort of identity type. It is
possible to include the intensional identity type as it is possible to extend cubical type
theory with indexed inductive types more generally. However, we shall set about to find a
better behaved identity type (path types) and so its inclusion is superfluous.

5.3.1 A judgmental structure for identity types

We begin by convincing ourselves that the judgmental structure of cubical type theory
is, in fact, helpful for our problem of giving the identity type a mapping-in property. We
begin by observing that we have already attempted to provide an identity type with such a
characterization: this was the extensional identity type we moved away from in Chapter 4.
There is not an obvious alternative judgmental structure in intensional type theory for the
identity type to internalize, so we shall invent one.

This entire process will be broken up into two steps:

1. introduce a new form of judgment and define the new identity type to internalize it,

2. equip each type with additional operations such that this new identity type can
implement the expected operations.

We shall eventually see that the first step occupies our attention in Section 5.3.2, while
the second takes up Sections 5.3.4 and 5.3.6

It is notable that these two steps are actually distinct: with both the intensional and
extensional identity types, once we fixed the judgmental structure we internalized all the
rules of the identity type came more-or-less for free. In fact, the same will be true here:
the second step does not alter the behavior of the identity type per se. The issue is that

(2025-05-02) Cubical type theory 173

the judgmental structure being internalized is no longer definitional equality and so we
must add additional structure to all types in order to ensure that this new structure is a
useful approximation of equality.

More heuristically, we cannot internalize actual judgmental equality via a mapping-in
property and so we internalize a new judgmental structure for identifications. We then
attempt to paper over the difference between these new judgmental identifications and
actual definitional equality by equipping every single type with additional operations
ensuring the former is closer to the latter.

Notation 5.3.2. With an eye towards cubical type theory, we will refer to our new identity
type as a path type and write Path(𝐴, 𝑎, 𝑏) and occasionally refer to identifications as paths.

In particular, it is only after both steps are completed that we will have a replacement
for Id that we can contemplate using for univalence. There is a degree of flexibility in
how we draw the line between these two steps in cubical type theory. We can make the
judgmental structure relatively light-weight by making the operations on types more
onerous or vice versa. This division is the source of the differences between the various
flavors of cubical type theory, but overall the differences are slight. We will choose to
follow Angiuli et al. [Ang+21] and adopt a relatively minimal judgmental structure at the
expense of slightly more complex operations on types.

Let us warm up by considering a direct approach following Licata and Harper [LH12]
loosely. We need a new judgment to internalize identifications, so let us simply introduce
a new sort of identifications 𝛼, 𝛽,𝛾 which reify identifications and a new judgment Γ ⊢ 𝛼 :
𝑎 = 𝑏 : 𝐴 stating that 𝛼 is such an identification between 𝑎, 𝑏 : 𝐴. As usual, we will write
Id(Γ, 𝑎, 𝑏, 𝐴) for the set of 𝛼 satisfying Γ ⊢ 𝛼 : 𝑎 = 𝑏 : 𝐴. The idea is that we can now at
least easily define Path(𝐴, 𝑎, 𝑏) via the follow natural isomorphism:

Tm(Γ, Path(𝐴, 𝑎, 𝑏)) � Id(Γ, 𝑎, 𝑏, 𝐴)

This completes our goal of defining Path(𝐴, 𝑎, 𝑏) and it yields all the necessary rules
for this type. The reader will immediately notice, however, that this type is impossible to
use and absolutely not a substitute for the identity type. Indeed, just because we claimed
that Γ ⊢ 𝛼 : 𝑎 = 𝑏 : 𝐴 reifies identifications does nothing to actually force 𝛼 to behave like
any sort of equality. We have only shifted the work into specifying this judgment. For
instance, we might choose to include a “reflexivity identification” via the following rule:

Γ ⊢ 𝑎 = 𝑏 : 𝐴
Γ ⊢ reflId : 𝑎 = 𝑏 : 𝐴

✎

Of course, this cannot be the only rule governing our new judgment; the point of this
exercise was to allow for additional identifications (such as ua) to arise naturally. In order

(2025-05-02) Cubical type theory 174

to do this, we can simply add other inference rules to this judgment! While we do not
detail the process here, the reader can imagine that e.g., an identification of pairs can be
constructed from identifications of components.

These rules ensure that we can construct elements of Path(𝐴, 𝑎, 𝑏), but do not actually
give us much leverage in using elements of this new type. Our elimination rule for
Path(𝐴, 𝑎, 𝑏) lets us conclude that there is some identification between 𝑎 and 𝑏, but this is
of limited use: there is nothing like J for identifications or even the equivalent of subst.

Before when identity types internalized definitional equality, we relied on the fact that
everything in type theory was automatically congruent and substitutive with respect to
definitional equality. Now we are internalizing identifications and nothing forces types in
our theory to respect identifications in the same way. This is what the second step of the
procedure above referred to: we will require additional operations on terms to bridge this
gap. For instance, for each type family Γ.𝐴 ⊢ 𝐵 type there must be an equivalent of subst
which sends identifications Γ ⊢ 𝛼 : 𝑎 = 𝑏 : 𝐴 to maps between 𝐵(𝑎) and 𝐵(𝑏).

However, we will not attempt to unfold this further. The problem is that it is difficult
to present the full set of rules governing Γ ⊢ 𝛼 : 𝑎 = 𝑏 : 𝐴 as well as to present the set of
operations all types must enjoy in order to force them to respect identifications. The first
problem is the most serious and stems from our desire to support univalence. If we are to
have univalence, then we know that there will be elements 𝑎, 𝑏 : 𝐴 such that the collection
of identifications between 𝑎 and 𝑏 contains distinct elements and, accordingly, we will
quickly run into the need for non-trivial identifications between identifications.

In fact, one can imagine these arising even without univalence: we had discussed
that a pair of identifications Γ ⊢ 𝛼 : 𝑎 = 𝑎′ : 𝐴 and Γ ⊢ 𝑏 : 𝑏′ = 𝐵 : ought to induce an
identification Γ ⊢ (𝛼, 𝛽) : pair(𝑎, 𝑏) = pair(𝑎′, 𝑏′) : 𝐴 × 𝐵 and we ought to arrange that
(reflId, reflId) = reflId. To properly account for this and other “higher identifications”,
we are quickly led to introducing a new judgment for governing identifications between
identifications. As the reader might guess, however, the problem does not stop here and we
require judgments for identifications between identifications between identifications... This
infinite regress then becomes plain. Accordingly, rather than special-casing a judgment
for identifications between terms, we shall design an apparatus which smoothly handles
identifications of arbitrary “height”.

It is here that we encounter cubes for the first time. Cubical type theory starts from
the insight that an identification between 𝑎, 𝑏 : 𝐴 can be viewed as a function I→ 𝐴 from
some “type” I. Since we already have a good idea of how to account for functions within
the judgments of type theory, if we could recast identity types more into the shape of
functions we could reuse this knowledge.

Of course, it is not obvious that functions and identity types share much in common.4 A
small amount of topological intuition can help motivate this approach: we can say that two

4We have already seen hints of this in Section 5.2.3 with the higher-inductive type for the interval

(2025-05-02) Cubical type theory 175

points in a space 𝑥,𝑦 ∈ 𝑋 are path-connected just when there is a continuous function from
the real interval 𝑝 : [0, 1] → 𝑋 such that 𝑝 (0) = 𝑥 and 𝑝 (1) = 𝑥 . The geometry of [0, 1]
ensures that this notion of identification is actually an equivalence relation. For instance,
transitivity comes from the map [0, 1] → [0, 1] ∨ [0, 1] dividing the interval into two
halves and the continuity of 1−𝑥 provides symmetry. A major advantage of this definition
is that it stacks to identifications between identifications without additional effort: we just
take functions from [0, 1] × [0, 1] satisfying the relevant boundary conditions.

Of course, we have nothing like the real interval in type theory, nor do we intend to
add it. However, we can add a judgmental structure which simulates some of its properties
and use this as the basis for our definition of an identification in a type. We shall add a faux
type I to our theory and extend our grammar of context to hypothesize over “variables”
of type I such that an identification is then just a term in a context containing such an
interval variable.

Remark 5.3.3. It is not yet clear why Imust be a separate structure rather than an ordinary
type. Indeed, this is a subtle point and relates to the additional operations necessary to
implement the equivalent J and its related operations. In fact, we shall see that I cannot
support these operations and so it cannot be a type. However, in all other respects it does
behave like a type: we shall see that the substitution calculus around I as well as the rules
for forming elements its elements are essentially the same as for terms. For this reason,
one often refers to I as a pre-type. ⋄

5.3.2 The interval and its structure

Let us make this discussion more formal. We introduce a new judgment Γ ⊢ 𝑟 I which
signifies that 𝑟 is an element of this interval “pre-type” and has the presupposition ⊢ Γ cx.
We then introduce a new form a context stating that one may hypothesize over elements
of I. All told, the rules for this are given as follows:

⊢ Γ cx

⊢ Γ I cx

⊢ Γ cx

Γ I ⊢ p : Γ
⊢ Γ cx

Γ I ⊢ q I
Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑟 I

Δ ⊢ 𝑟 [𝛾] I

Δ ⊢ 𝛾 : Γ Δ ⊢ 𝑟 I
Δ ⊢ p ◦ 𝛾 𝑟 = 𝛾 : Γ

Δ ⊢ 𝛾 : Γ Δ ⊢ 𝑟 I
Δ ⊢ q[𝛾 𝑟] = 𝑟 I

Δ ⊢ 𝛾 : Γ I
Δ ⊢ 𝛾 = (p ◦ 𝛾) q[𝛾] : Γ I

Γ1 ⊢ 𝛾2 : Γ2 Γ0 ⊢ 𝛾1 : Γ1 Γ2 ⊢ 𝑟 I
Γ0 ⊢ 𝑟 [𝛾2 ◦ 𝛾1] = 𝑟 [𝛾2] [𝛾1] I

Γ ⊢ 𝑟 I
Γ ⊢ 𝑟 [id] = 𝑟 I

We shall Γ ⊢ 𝑟 I as a dimension term and q as a dimension variable.

Notation 5.3.4. We write 𝛾 I for the analogous substitution to 𝛾 .𝐴.

(2025-05-02) Cubical type theory 176

Exercise 5.8. Define Int(Γ) to be the set {𝑟 | Γ ⊢ 𝑟 I}. Rephrase the above substitution
rules and equalities using Int(Γ) and, in particular, isolate a mapping-in property for Γ I.

Notation 5.3.5. The reader will notice that while context extension with an interval is
formally distinct from Γ.𝐴, the substitution calculus is the same around both. Consequently,
it is not difficult to adapt the translation from named variables to formal syntax with explicit
substitutions to account for interval “variables”. When we write informal programs in
cubical type theory, we shall therefore use essentially the same notation for variables of I
as we have for variables of a type 𝐴. By convention, we shall use the letters 𝑖, 𝑗, 𝑘 for these
dimension variables.

All told then, I has been added to our theory such that it behaves more-or-less like a
type without any introduction or elimination rules and we can only hypothesize variables
of type I and pass them around. This is far less structure than the real interval [0, 1],
but it is already almost enough to realize our judgmental structure for identifications: an
identification in 𝐴 can simply be taken as an element Γ I ⊢ 𝑎 : 𝐴[p]. What we are missing
is some means of stating what, precisely, is being identified by such an 𝑎. In the topological
case, an identification was a continuous function 𝑝 : [0, 1] → 𝑋 which identified 𝑝 (0)
with 𝑝 (1). Accordingly, we now augment I with two closed dimension terms 0, 1 and
understand Γ I ⊢ 𝑎 : 𝐴[p] to be identifying 𝑎[id 0] and 𝑎[id 1].

⊢ Γ cx

Γ ⊢ 0, 1 I

Lemma 5.3.6. For every Γ ⊢ 𝑎 : 𝐴 there is an identification of 𝑎 with itself.

Proof. Given such an 𝑎, the term 𝑝 = 𝑎[p] is an element of Γ I ⊢ 𝐴[p] type and it is routine
to check that 𝑝 [id 0] = 𝑎 = 𝑝 [id 1]. □

We have used I to recover the bespoke identification judgment from before and in
a less ad-hoc manner. Just as before, we may define a path type to internalize this new
structure directly:

Γ ⊢ 𝐴 type Γ ⊢ 𝑎, 𝑏 : 𝐴
Γ ⊢ Path(𝐴, 𝑎, 𝑏) type

Γ ⊢ 𝑎, 𝑏 : 𝐴 Γ I ⊢ 𝑝 : 𝐴[p] Γ ⊢ 𝑎 = 𝑝 [id 0] : 𝐴 Γ ⊢ 𝑎 = 𝑝 [id 1] : 𝐴
Γ ⊢ 𝜆 (𝑝) : Path(𝐴, 𝑎, 𝑏)

Γ ⊢ 𝑝 : Path(𝐴, 𝑎, 𝑏) Γ ⊢ 𝑟 I
Γ ⊢ papp(𝑝, 𝑟) : 𝐴

Γ ⊢ 𝑝 : Path(𝐴, 𝑎, 𝑏)
Γ ⊢ papp(𝑝, 0) = 𝑎 : 𝐴 Γ ⊢ papp(𝑝, 1) = 𝑏 : 𝐴

(2025-05-02) Cubical type theory 177

Γ ⊢ 𝑎, 𝑏 : 𝐴
Γ I ⊢ 𝑝 : 𝐴[p] Γ ⊢ 𝑎 = 𝑝 [id 0] : 𝐴 Γ ⊢ 𝑎 = 𝑝 [id 1] : 𝐴 Γ ⊢ 𝑟 I

Γ ⊢ papp(𝜆 (𝑝), 𝑟) = 𝑝 [id 𝑟] : 𝐴

Γ ⊢ 𝑝 : Path(𝐴, 𝑎, 𝑏)
Γ ⊢ 𝜆 (papp(𝑝 [p], q)) = 𝑝 : Path(𝐴, 𝑎, 𝑏)

Notice that, unlike an ordinary function type, a path type specifies the behavior of
its elements on 0 and 1. In particular if 𝑝 is an element of Path(𝐴, 𝑎, 𝑏) then we have
definitional equalities papp(𝑝, 0) = 𝑎 and papp(𝑝, 1) = 𝑏 to enforce the intuition that 𝑝 is
a path from 𝑎 to 𝑏. These equations are justified by the introduction rule which requires
additional boundary conditions ensuring that elements of Path(𝐴, 𝑎, 𝑏) correspond not just
to arbitrary elements of 𝐴 depending on I but to elements which satisfying the necessary
equations.
Exercise 5.9. Show that the above rules are precisely equivalent to requiring the following
mapping-in property for Path(𝐴, 𝑎, 𝑏):

Tm(Γ, Path(𝐴, 𝑎, 𝑏)) � {𝑝 ∈ Tm(Γ I, 𝐴[p]) | 𝑝 [id 0] = 𝑎 ∧ 𝑝 [id 1] = 𝑏}

Exercise 5.10. Use Lemma 5.3.6 to define an element refl(𝑎) : Path(𝐴, 𝑎, 𝑎) for every
Γ ⊢ 𝑎 : 𝐴.

Notation 5.3.7. For expository purposes, it is also helpful to have a type Π(I, 𝐴) with the
following mapping-in property:

Tm(Γ,Π(I, 𝐴)) � Tm(Γ I, 𝐴)

We shall not regard this as part of our official definition of cubical type theory and use
it only for small informal examples. In these few occurrences of this “Π-type”, we shall
use the ordinary syntax for functions, using the observation above that we can translate
“named interval variables” into the formal substitution calculus for I.

5.3.3 Cultivating intuition for path types

Before proceeding to the other rules of cubical type theory, we take a moment to explore
the consequences of including the interval within type theory. For this, and in cubical type
theory more generally, it is helpful to use a small amount of topological intuition, guided
by the observation that a term 1 I . . . I ⊢ 𝑎 : 𝐴[p𝑛] which depends on 𝑛 copies of I can be
visualized as an 𝑛-dimensional cube in 𝐴. In low dimension, we therefore have points in
𝐴, lines in 𝐴, squares in 𝐴, and cubes in 𝐴 for 𝑛 = 0, 1, 2, 3 respectively. Let us illustrate the

(2025-05-02) Cubical type theory 178

case where 𝑛 = 2 more thoroughly. Given 1 I I ⊢ 𝑎 : 𝐴[p2], the two dimension variables
serve as “axes” for this square and so we can “draw” 𝑎 as the following square:

𝑎[id 0 0]

𝑎[id 0 1]

𝑎[id 1 0]

𝑎[id 1 1]

𝑎[id 0]

𝑎[id 0 I] 𝑎[id 1 I]

𝑎[id 1]

𝑎

The four closed terms one obtains by specializing 𝑎 with the four substitutions 1 ⊢
id 𝜖 𝜖′ : 1 I I are the vertices. Next, there are four substitutions from 1 to 1 I I which
implement the first or second I with a constant and the other I with q. Applying each of
these substitutions to 𝑎 yields the edges of the square. Finally, 𝑎 itself is the entire square.

We have chosen to draw this square with the leftmost I in 1 I I as the horizontal axis
and the rightmost as the vertical axis. We further oriented the horizontal axis to grow to
the right and the vertical axis to grow down. This convention is reasonably standard—it
matches the typical orientation of commutative diagrams in category theory—but it is
often helpful to disambiguate these diagrams by using named variables and labeling axes.
For instance, we might have written 𝑖 I, 𝑗 I ⊢ 𝑎(𝑖, 𝑗) : 𝐴 and depicted the above square
as follows:

𝑎(0, 0)

𝑎(0, 1)

𝑎(1, 0)

𝑎(1, 1)

𝑎(𝑖, 0)

𝑎(0, 𝑗) 𝑎(1, 𝑗)

𝑎(𝑖, 1)

𝑎

𝑖

𝑗

Remark 5.3.8. We note that in the above example we have assumed that 𝐴 does not
depend on either dimension variable but this restriction is not mandatory. We will have
occasion to study such heterogeneous squares at various points. ⋄

This schematic visualization highlights one of the major benefits of using I to structure
identifications compared to a direct judgment Γ ⊢ 𝛼 : 𝑎 = 𝑏 : 𝐴: we can now seamlessly
account for identifications between identifications simply by adding more than one copy of
I to the context. Moreover, path types between path types of 𝐴 are really no more complex
to manipulate than ordinary path types as both are simply kinds of functions valued in 𝐴.

There is another major benefit to using I: we have no need to add further rules of I to
customize the behavior of path types in each connective. For instance, there is no need

(2025-05-02) Cubical type theory 179

for a rule that “identifications in a pair can be built from a pair of identifications”. This
fact is already derivable from those rules governing dependent sums generally. In fact,
path types enjoy a number of remarkable extensionality principles (including function
extensionality) without additional effort on our part.

This traces back to a subtle point: when we isolated identifications as a new judgment,
nothing connected it to the behavior of types or terms. Here, however, we have smuggled
identifications in through the existing apparatus of contexts and substitutions and so the
existing equations for types and terms automatically apply to identifications.

For instance, the 𝜂 law for dependent sums states that Tm(Γ,Σ(𝐴, 𝐵)) is isomorphic to∑
𝑎∈Tm(Γ,𝐴) Tm(Γ, 𝐵 [id.𝑎]). If we choose Γ = Γ0 I and specialize to the case where 𝐵 = 𝐵0 [p]

for simplicity, this immediately yields the following:

Lemma 5.3.9. There is a natural bijection of the following shape:

Tm(Γ0, Path(Σ(𝐴, 𝐵0 [p]), 𝑥,𝑦))
� Tm(Γ0, Path(𝐴, fst(𝑥), fst(𝑦))) × Tm(Γ0, Path(𝐴, snd(𝑥), snd(𝑦)))

Exercise 5.11. Prove Lemma 5.3.9

Note that while we have specialized to the simpler case of non-dependent Σ-types, it
is only for notational convenience. Even more striking is the case for dependent products.

Lemma 5.3.10. There is a natural bijection of the following shape:

Tm(Γ, Path(Π(𝐴, 𝐵), 𝑓 , 𝑔)) � Tm(Γ.𝐴, Path(𝐵, app(𝑓 [p], q), app(𝑔[p], q)))

In other words, function extensionality is automatically true for path types.

Proof. Let us begin by observing that, by the mapping-in property of path types, we can
rephrase our goal as the following:

{𝑝 ∈ Tm(Γ I,Π(𝐴, 𝐵) [p]) | . . . } � {Tm(Γ.𝐴 I, 𝐵 [p]) | . . . }

However, we can further apply the mapping-in property for Π-types to replace the left-
hand set with {𝑝 ∈ Tm(Γ I.𝐴[p], 𝐵 [p 𝐴]) | . . . }. The conclusion the follows immediately
from the isomorphism of contexts Γ I.𝐴[p] � Γ.𝐴 I (Exercise 5.12). □

(2025-05-02) Cubical type theory 180

Exercise 5.12. Prove that if Γ ⊢ 𝐴 type then there are mutually inverse substitutions
Γ I.𝐴[p] ⊢ 𝜏0 : Γ.𝐴 I and Γ.𝐴 I ⊢ 𝜏1 : Γ I.𝐴[p].

This has certainly improved on our earlier attempt which simply added a new explicit
judgment of identifications but the story cannot stop here. In particular, we still have done
nothing to address the link between Path(𝐴, 𝑎, 𝑏) and the actual ability to substitute 𝑎
for 𝑏 in a type. That is, we have no operation like that of subst or, more generally, J. As
mentioned earlier, these operations do not come directly from the interval or judgments
upon it. Instead, we shall add them more-or-less as constants to our theory and then, to
preserve canonicity, add type-specific equations telling us how they compute.

5.3.4 Coercing along paths

We now introduce the first and most fundamental operation of the two operations we
shall add to cubical type theory: coe𝐴 (short for coerce). Roughly, this operation ensures
that, from the perspective of a type, all elements of the interval are interchangeable and
we shall see momentarily that this is precisely what is required to implement a version of
subst for Path(𝐴, 𝑎, 𝑏).

The addition of coe𝐴 also means a change in the status of I in our type theory. While
we have not added any sort of elimination principle for I, the reader may have noticed
that up till this point there was really nothing which distinguished it from Bool; the rules
we required of I were a strict subset of those for Bool. The coercion operation firmly rules
out the possibility that I = Bool: a type depending on Bool can be quite different over
true and false which is precisely the possibility excluded by coe.

Specifically, if Γ I ⊢ 𝐴 type then 𝐴[id 𝑟] and 𝐴[id 𝑠] are equivalent for every Γ ⊢ 𝑟, 𝑠 I.
The typing rule for this constant is given as follows:

Γ I ⊢ 𝐴 type Γ ⊢ 𝑟, 𝑠 I Γ ⊢ 𝑎 : 𝐴[id 𝑟]
Γ ⊢ coe𝑟→𝑠

𝐴 (𝑎) : 𝐴[id 𝑠]

Γ I ⊢ 𝐴 type Γ ⊢ 𝑟 I Γ ⊢ 𝑎 : 𝐴[id 𝑟]
Γ ⊢ coe𝑟→𝑟

𝐴 (𝑎) = 𝑎 : 𝐴[id 𝑟]

A priori, coe may seem as though it does little to advance our goal of implementing
subst for Path(𝐴, 𝑎, 𝑏). However, suppose we are given a path Γ ⊢ 𝑝 : Path(𝐴, 𝑎, 𝑏)
along with a type Γ.𝐴 ⊢ 𝐶 type, applying the ordinary rule for substitution, we obtain
Γ I ⊢ 𝐶′ = 𝐶 [p.papp(𝑝, q)] type. Inspection reveals that instantiating 𝐶′ at 0 and 1 yields
𝐶 [id.𝑎] and 𝐶 [id.𝑏] and so coe yields the following operation:

Γ ⊢ 𝜆 (coe0→1
𝐶′ [p I] (q)) : 𝐶 [id.𝑎] → 𝐶 [id.𝑏]

(2025-05-02) Cubical type theory 181

In other words, coe can be used to define subst. The advantage to coe over subst is that
we can now set about equipping coe with a collection of definitional equalities in order
to recover canonicity. Unlike subst, there shall be no single rule for how coe computes
in general but, instead, coe𝐴 will compute depending on the form of 𝐴. For example, for
closed types such as Nat, U, or Bool, we constrain coe with the following:

Γ ⊢ 𝑟, 𝑠 I Γ ⊢ 𝑏 : Bool

Γ ⊢ coe𝑟→𝑠
Bool (𝑏) = 𝑏 : Bool

Of course, this strategy only works in the simplest example: when the type constructor
is closed and cannot depend on the interval in any meaningful way. Most commonly,
when 𝐴 is a type former e.g. Σ(𝐵0, 𝐵1), coe𝐴 will be defined in terms of coe𝐵𝑖 . In the case
of non-dependent case 𝐴 = 𝐵0 × 𝐵1, for instance, one must add a definitional equality
stating coe𝑟→𝑠

𝐴
(𝑎) = pair(coe𝑟→𝑠

𝐵0
(fst(𝑎)), coe𝑟→𝑠

𝐵1
(snd(𝑎))).5 In Section 5.4, we shall see

that while it is unfeasible to see how univalence ought to compute relative to J, it is possible
(if difficult) to describe its computation with respect to coe.

Our strategy of defining coe𝐴 in terms of the constituents of𝐴 is responsible for another
surprising feature of coe: if subst is defined by instantiating 𝑟 = 0 and 𝑠 = 1, why do we
bother to allow for arbitrary 𝑟, 𝑠? We shall see that in various situations we require this
additional flexibility in order to build up coe at more complex types from simpler ones.

We will not detail the equations governing coe here, but do provide examples in
Section 5.4. Instead, we focus on the equation which leads to the next structure necessary
for core cubical type theory: coe in Path(𝐴, 𝑎, 𝑏). At present, we lack the operations
necessary to provide an equation specifying how coe𝑟→𝑠

Path (𝐴,𝑎,𝑏) (𝑝) must compute. It is
worth sketching the problem informally, so as to properly situate the solution. We wish to
formulate a rule of the following shape:

Γ I ⊢ 𝐴 type Γ I ⊢ 𝑎, 𝑏 : 𝐴 Γ ⊢ 𝑟, 𝑠 I Γ ⊢ 𝑝 : Path(𝐴, 𝑎, 𝑏) [id 𝑟]
Γ ⊢ coe𝑟→𝑠

Path (𝐴,𝑎,𝑏) (𝑝) = ? : Path(𝐴, 𝑎, 𝑏) [id 𝑠]
✎

This hole must be filled by a path in 𝐴 built from coe𝐴. The straightforward approach is
roughly to “compose” 𝑝 (the function from I to𝐴[id 𝑟]) with coe𝐴 𝑟 𝑠 (a function𝐴[id 𝑟] →
𝐴[id 𝑠]). However, the resulting term does not satisfy the necessary boundary conditions
to be an element of Path(𝐴, 𝑎, 𝑏) [id 𝑠]. Instead, we obtain an element of the following:

Path(𝐴[id 𝑠], coe𝑟→𝑠
𝐴 (𝑎[id 𝑟]), coe𝑟→𝑠

𝐴 (𝑏 [id 𝑟]))

In other words, we are confronted by the fact that while there is a “line” interpolating
between e.g., coe𝑟→𝑠

𝐴
(𝑎[id 𝑟]) and 𝑎[id 𝑠], they are not equal. This mismatch is solved by

5This is often expressed by stating that coe is defined “by induction” on the type, but this is misleading.
After all, types do not come equipped with any sort of induction principle in general!

(2025-05-02) Cubical type theory 182

the second operation for manipulating terms depending on I: homogeneous composition
or hcomp. To a first approximation, this operation allows us to take our collection of three
lines and compose them into a single path.

However, while the motivating example given above comes from stitching together
three sides of a square into a single line, our need to provide type-specific equations for
computing this operation in each type forces us to provide a more general composition
operator. In order to properly formulate hcomp in Section 5.3.6, we begin by extending
the judgmental apparatus with the necessary tools to support it.

5.3.5 Cofibrations and faces

Let us fix 1 I I ⊢ 𝑎 : 𝐴[p2] and recall the visualization of 𝑎 as a square:

𝑎[id 0 0]

𝑎[id 0 1]

𝑎[id 1 0]

𝑎[id 1 1]

𝑎[id 0]

𝑎[id 0 I] 𝑎[id 1 I]

𝑎[id 1]

𝑎

The edges and vertices in the above square are called the faces of 𝑎. More generally, a
face of a term 𝑝 is the result from specializing interval variables 𝑝 depends upon.

The hcomp operation which we use to compose paths does so by solving a more
general problem. It provides a uniform way to assemble certain collections of matching
faces into an entire 𝑛-cube. For instance, our earlier desire to combine three lines into a
single line can be rephrased into taking three terms representing three faces of a square
and extending them to a term representing the entire square.

In general, we should not expect that every matching collection of faces assembles into
a cube. For instance, the question of whether 𝑎 and 𝑏 are identifiable amounts to asking if
𝑎 and 𝑏 are the 0 and 1 faces of some term 𝑝 . Since we do not expect (or want!) all terms
to be identifiable, clearly some subsets of cubes should not always be extendable.

Heuristically, we should be allowed to extend subcubes which are suitably “connected”,
but this becomes subtle in higher dimensions. As isolating these well-behaved subcubes is
complex, it is helpful to have an judgmental apparatus for isolating particular faces of a
given term or type. We do this by introducing a special grammar of propositions which
we call cofibrations. Informally, these are propositions built from (1) comparing dimension
terms for equality and (2) conjunction, disjunction, and universal quantification of I. We
realize this with a new judgment Γ ⊢ 𝛼 cof:

(2025-05-02) Cubical type theory 183

⊢ Γ cx

Γ ⊢ ⊤,⊥ cof

Γ ⊢ 𝜙,𝜓 cof

Γ ⊢ 𝜙 ∧𝜓, 𝜙 ∨𝜓 cof

Γ ⊢ 𝑟, 𝑠 I
Γ ⊢ 𝑟 = 𝑠 cof

Γ I ⊢ 𝜙 cof

Γ ⊢ ∀𝜙 cof

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝜙 cof

Δ ⊢ 𝜙 [𝛾] cof
Γ1 ⊢ 𝛾2 : Γ2 Γ0 ⊢ 𝛾1 : Γ1 Γ2 ⊢ 𝜙 cof

Γ0 ⊢ 𝜙 [𝛾2 ◦ 𝛾1] = 𝜙 [𝛾2] [𝛾1] cof

Γ ⊢ 𝜙 cof

Γ ⊢ 𝜙 [id] = 𝜙 cof

We have omitted the long but unsurprising list of rules shaping how substitutions 𝜙 [𝛾]
interact with the various cofibration formers.

In keeping with their obvious relationship to propositions, we add another judgment
Γ ⊢ 𝜙 truewhich states that some cofibration 𝜙 holds in context Γ. For instance, we require
the following rules:

Γ ⊢ 𝑟 = 𝑠 I
Γ ⊢ 𝑟 = 𝑠 true

⊢ Γ cx

Γ ⊢ ⊤ true

Γ ⊢ 𝜙,𝜓 cof Γ ⊢ 𝜙 true

Γ ⊢ 𝜙 ∨𝜓,𝜓 ∨ 𝜙 true

Γ ⊢ 0 = 1 true
Γ ⊢ ⊥ true

Γ ⊢ 𝜙 true Δ ⊢ 𝛾 : Γ
Δ ⊢ 𝜙 [𝛾] true

Γ ⊢ ⊥ true Γ ⊢ 𝜙 cof

Γ ⊢ 𝜙 true

In order to fully given the full set of rules governing 𝜙 ∨𝜓 , we require the ability to
hypothesize the truth of a proposition just as we can presently hypothesize over elements
of a type. Explicitly, given cofibration Γ ⊢ 𝜙 cof, we also require a context Γ 𝜙 governed by
the following rules:

Γ ⊢ 𝜙 cof

⊢ Γ 𝜙 cx

Γ ⊢ 𝜙 cof

Γ 𝜙 ⊢ p : Γ
Γ ⊢ 𝜙 cof

Γ 𝜙 ⊢ 𝜙 [p] true

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝜙 cof Δ ⊢ 𝜙 [𝛾] true
Δ ⊢ 𝛾 ★ : Γ 𝜙

Γ ⊢ 𝜙 cof Δ ⊢ 𝛾 : Γ 𝜙
Δ ⊢ (p ◦ 𝛾) ★ = 𝜙 : Γ 𝜙

Γ ⊢ 𝜙 cof

Γ 𝜙 ⊢ p★ = id : Γ 𝜙

It is helpful to understand Γ 𝜙 as an analog of Γ.𝐴 but where 𝜙 is an exceptionally
strict form of proposition rather than a full type. For instance, the substitution extension
rule for cofibrations 𝛾 ★ does not allow the user to supply alternative “proofs” or “terms”
witnessing that 𝜙 is true. Instead, it simply requires that the judgment Γ ⊢ 𝜙 true holds

(2025-05-02) Cubical type theory 184

and uses ★. In fact, the user is not responsible for providing any evidence whatsoever in
their term that Γ ⊢ 𝜙 true holds. In this way, the rule is reminiscent of the conversion rule
stating that definitionally equal terms may be exchanged without any explicit instruction
by the user: cofibrations may be judged true without the user having to provide any
explicit witness.

For this reason, it is apparent that we must maintain strict control over the judgment
Γ ⊢ 𝜙 true. If this judgment becomes too complex and, for instance, becomes sensitive to
what types are inhabited in a given context Γ, then it will surely become impossible for
our system to enjoy decidable type-checking. Fortunately, the grammar of cofibrations is
sufficiently simple that Γ ⊢ 𝜙 true is, in fact, decidable.

Returning to our specification of Γ ⊢ 𝜙 true, we present the final rule around 𝜙 ∨𝜓
using Γ 𝜙 :

Γ ⊢ 𝜙 ∨𝜓 true Γ ⊢ 𝜉 cof Γ 𝜙 ⊢ 𝜉 [p] true Γ 𝜓 ⊢ 𝜉 [p] true
Γ ⊢ 𝜉 true

For brevity, we will not present all the rules of Γ ⊢ 𝜙 cof and choose to omit e.g., those
governing 𝜙 ∧𝜓 and ∀𝜙 . The reader may trust that they are unsurprising versions of the
ordinary rules for propositional logic. We conclude our selection of the rules for Γ ⊢ 𝜙 cof
with the following pair:

Γ ⊢ 𝑟, 𝑠 I Γ ⊢ 𝑟 = 𝑠 true
Γ ⊢ 𝑟 = 𝑠 I

Γ ⊢ 𝜙,𝜓 cof Γ 𝜙 ⊢ 𝜓 [p] true Γ 𝜓 ⊢ 𝜙 [p] true
Γ ⊢ 𝜙 = 𝜓 cof

The first rule is reminiscent of equality reflection from Chapter 2 and the second is
akin to very strong propositional univalence principle for cofibrations. That is, the first
rule guarantees that if the proposition 𝑟 = 𝑠 holds then this can be ‘reflected’ to obtain a
definitional equality between 𝑟 and 𝑠 . The second rule states that cofibrations which are
inter-provable are definitionally equal such that, e.g., one may silently exchange 𝜙 ∨𝜓 and
𝜓 ∨ 𝜙 in any term or type.

These last two rules imply that the truth of a cofibration can impact whether or not a
term or type is well-formed by, for instance, controlling whether two dimension terms
are equal. However, we will also add two principles which much more directly allow
cofibrations to influence terms, types, and substitutions. Namely, if Γ ⊢ 𝜙 ∨𝜓 true, we will
add a rule stating that to e.g., construct a type in Γ it suffices to give a type 𝐴𝜙 under the
assumption of 𝜙 and one a second 𝐴𝜓 under the assumption of𝜓 such that 𝐴𝜙 = 𝐴𝜓 when
𝜙 ∧𝜓 is assumed. We require similar rules for terms and substitutions and as well as a
twin principle for ⊥ which simply states that all these judgments collapse if Γ ⊢ ⊥ true.
These rules are designed to ensure that Γ 𝜙 ∨𝜓 behaves like the “union” of the contexts
Γ 𝜙 and Γ 𝜓 . For reasons of space, we give the rules carefully for only types and sketch
those for terms:

(2025-05-02) Cubical type theory 185

Γ ⊢ 𝜙,𝜓 cof Γ ⊢ 𝜙 ∨𝜓 true
Γ 𝜙 ⊢ 𝐴𝜙 type Γ 𝜓 ⊢ 𝐴𝜓 type Γ 𝜓 ∧𝜓 ⊢ 𝐴𝜙 [p★] = 𝐴𝜓 [p★] type

Γ ⊢ [𝜙 ↩→ 𝐴𝜙 | 𝜓 ↩→ 𝐴𝜓] type

Γ ⊢ 𝜙1,𝜓2 cof Γ 𝜙1 ⊢ 𝐴𝜙1 type
Γ 𝜙2 ⊢ 𝐴𝜙2 type Γ 𝜙1 ∧ 𝜙2 ⊢ 𝐴𝜙1 [p★] = 𝐴𝜙2 [p★] type Γ ⊢ 𝜙𝑖 true

Γ ⊢ [𝜙1 ↩→ 𝐴𝜙1 | 𝜙2 ↩→ 𝐴𝜙2] = 𝐴𝜙𝑖 [id ★] type

Γ ⊢ 𝜙,𝜓 cof Γ ⊢ 𝜙 ∨𝜓 true Γ ⊢ 𝐴 type

Γ ⊢ [𝜙 ↩→ 𝐴[p] | 𝜓 ↩→ 𝐴[p]] = 𝐴 type

Γ ⊢ ⊥ true

Γ ⊢ Abort type

Γ ⊢ ⊥ true Γ ⊢ 𝐴 type

Γ ⊢ Abort = 𝐴 type

Γ ⊢ 𝜙,𝜓 cof Γ ⊢ 𝜙 ∨𝜓 true Γ ⊢ 𝐴 type
Γ 𝜙 ⊢ 𝑎𝜙 : 𝐴[p] Γ 𝜓 ⊢ 𝑎𝜙 : 𝐴[p] Γ 𝜓 ∧𝜓 ⊢ 𝑎𝜙 [p★] = 𝑎𝜓 [p★] : 𝐴[p★]

Γ ⊢ [𝜙 ↩→ 𝑎𝜙 | 𝜓 ↩→ 𝑎𝜓] : 𝐴

Γ ⊢ ⊥ true Γ ⊢ 𝐴 type

Γ ⊢ abort : 𝐴
Γ ⊢ ⊥ true Γ ⊢ 𝑎 : 𝐴

Γ ⊢ abort = 𝑎 : 𝐴

Advanced Remark 5.3.11. More concisely, these conditions ensure that Γ 𝜙∨𝜓 is a pushout
of Γ 𝜙 and Γ 𝜓 over Γ 𝜙 ∧ 𝜓 and that the presheaves for terms, types, etc. carry these
pushouts to pullbacks. Similarly, they guarantee that Γ ⊥ is initial and that all relevant
presheaves carry this initial object to a terminal object. ⋄

From cofibrations to subcubes These rules finally allow us to deliver on an earlier
promise: we can now use cofibrations to isolate particular combinations of faces from a
term. Let us consider the context consisting of two dimension variables extended by a
cofibration stating either the first variable is 0 or the second is 1:

Γ = 1 I I (q = 1 ∨ q[p] = 0)

We know by the above rules for disjunction that giving a term Γ ⊢ 𝑎 : 𝐴[p3] is equivalent
to giving two terms 1 I I (q = 0) ⊢ 𝑎0 : 𝐴[p3] and 1 I I (q = 1) ⊢ 𝑎1 : 𝐴[p3] which agree
on the overlap. Next, one may use the equality reflection rule for q = 1 to show that e.g.,
the substitution 1 I I (q = 0) ⊢ p I ◦ p : 1 I is invertible. We may therefore visualize 𝑎0 and

(2025-05-02) Cubical type theory 186

𝑎1 as lines in 𝐴 which share a common boundary:

𝑎[id 0 1] 𝑎[id 1 1]

𝑎[id 0 0]

𝑎0

𝑎1

More generally, if 𝜙 is any cofibration then Γ 𝜙 ⊢ 𝑎𝜙 : 𝐴[p] will consist of some
coherent collection of faces in 𝐴. In other words, 𝜙 isolates some subset of the faces of an
𝑛-cube, and the rule for splitting on disjunctions of cofibrations ensures that 𝑎𝜙 consists of
a term for each face such that these terms agree on all overlaps. The question of whether
these faces can be stitched together into a single 𝑛-cube amounts to asking whether or not
there exists some Γ ⊢ 𝑎 : 𝐴 such that Γ 𝜙 ⊢ 𝑎[p] = 𝑎𝜙 : 𝐴[p]. This rephrasing in terms of
cofibrations offers two important advantages. First, this formulation has better behavior
with respect to substitution: it is clear that any extension in the above sense is stable under
substitution and it also ensures that we can sensibly discuss applying substitutions to
collections of faces. Second, cofibrations allow us to discuss more exotic faces like the line
carved out by the cofibration 𝑖 = 𝑗 for two dimension variables 𝑖, 𝑗 . This corresponds to
the diagonal of a square, rather than any of its standard edges.

Notation 5.3.12. In Section 5.4, we will wish to manipulate cofibrations when working
informally with type theory. In general, like dimension variables the substitution calculus
ensures that we can largely pretend 𝜙 is a “type”, but the exceptionally strict properties
around cofibrations ensure that we need never actually pass one around. When working
informally, we shall therefore treat them in much the same way proof assistants handle
implicit arguments: abstracting over themwith a bespoke function type (the partial element
type) but never needing to actually provide explicit terms to apply these function types.
We present only the mapping-in property for this type and leave it to the reader to see
how ordinary implicit function syntax may be translated to this isomorphism:

Tm(Γ, 𝜙 → 𝐴) � Tm(Γ 𝜙,𝐴)
In the above, Γ ⊢ 𝜙 → 𝐴 type just when Γ 𝜙 ⊢ 𝐴 type. However, since we shall only use
this connective for informal explanations, we will not regard it as part of our definition of
cubical type theory and content ourselves with this sketch of its rules.

5.3.6 Composing and filling paths

We are now ready to describe the second operation for manipulating paths hcomp and
the final component of core cubical type theory. Recall that this operation is intended

(2025-05-02) Cubical type theory 187

to take collections of faces—a subset of an 𝑛-cube in 𝐴—and assemble them into single
𝑛-cube in 𝐴. As noted earlier, it is unsound to provide such an operation for arbitrary
subcubes, but with the apparatus of cofibrations to hand, it is possible to describe a flexible
class of shapes for which it is sound: given a term Γ ⊢ 𝑎0 : 𝐴 representing an 𝑛-cube in
𝐴 along with a cofibration Γ ⊢ 𝜙 cof and a “𝜙-partial line” Γ 𝜙 I ⊢ 𝑎𝜙 : 𝐴, which matches
𝑎0 appropriately, we may glue and extend them using hcomp to an (𝑛 + 1)-cube in 𝐴.
The formal rules are as follows with 𝑎0 and 𝑎𝜙 packaged into a single partial term using
disjunction of cofibrations:

Γ ⊢ 𝐴 type Γ ⊢ 𝑟, 𝑠 I Γ ⊢ 𝜙 cof
Γ I (q = 𝑟 [p] ∨ 𝜙 [p]) ⊢ 𝑎 : 𝐴[p2]

Γ ⊢ hcomp𝑟→𝑠
𝐴 (𝜙, 𝑎) : 𝐴

Γ ⊢ 𝐴 type Γ ⊢ 𝑟, 𝑠 I Γ ⊢ 𝜙 cof Γ ⊢ 𝜙 true
Γ I (q = 𝑟 [p] ∨ 𝜙 [p]) ⊢ 𝑎 : 𝐴[p2]
Γ ⊢ hcomp𝑟→𝑠

𝐴 (𝜙, 𝑎) = 𝑎[id 𝑠 ★] : 𝐴

Γ ⊢ 𝐴 type Γ ⊢ 𝑟 I Γ ⊢ 𝜙 cof
Γ I (q = 𝑟 [p] ∨ 𝜙 [p]) ⊢ 𝑎 : 𝐴[p2]
Γ ⊢ hcomp𝑟→𝑟

𝐴 (𝜙, 𝑎) = 𝑎[id 𝑟 ★] : 𝐴

With hcomp to hand, we will be able to complete the necessary “programming exercise”
implementing coe in Path. Having added hcomp, however, we have unleashed another
avalanche of necessary programming exercises: we must discuss how hcomp can be
reduced for each type constructor. Fortunately, however, at this point we have all the
necessary tools to do this for every connective except the universe. We discuss the rules
governing hcomp for the non-universe connectives in Section 5.4, but they are largely
unsurprising.

The real complexity of hcomp comes in defining hcomp𝑟→𝑠
U (𝜙,𝐴). The problem is that,

as an element of the universe, this composition is a code for a type and so one must describe
the type El(hcomp𝑟→𝑠

U (𝜙,𝐴)). It not obvious, but the constraints of hcomp mean that this
type must be non-empty and so non-trivial introduction and elimination rules must be
given to govern this type. As with any other type we must describe also the behavior
of hcomp and coe in El(hcomp𝑟→𝑠

U (𝜙,𝐴)) and these “nested” composition problems are
rather intricate.

This complexity, however, is the essential tool by which cubical type theory supports a
computational account of univalence. We will return to this topic in Section 5.4, so we
provide only the intuition here. Recall that the univalence axiom provides an inverse to
a certain map Path(U, 𝐴, 𝐵) → El(𝐴) ≃ El(𝐵). The domain of this map now consists of

(2025-05-02) Computing with coercions and compositions 188

certain lines in the universe—codes of types depending on I—and so to interpret univalence,
it suffices to define a family of types depending 𝐴, 𝐵 : U, an equivalence 𝑒 : El(𝐴) ≃ El(𝐵)
and a dimension term 𝑟 : I. This type is typically written V(𝑟, 𝐴, 𝐵, 𝑒) (as in univalence).

The idea is that this type must collapse to𝐴 when the interval variable is specialized to
0 and to 𝐵 when it is specialized with 1. This type, by definition, is a path in the universe
Path(U, 𝐴, 𝐵). As with any other type, one must describe composition and coercion in this
line of types and it is here that the invertibility of the given map El(𝐴) ≃ El(𝐵) is crucial:
it is this map which is used to supply coercions from one end of V to the other.

While this sketch omits a great many details—even simplifying the shape of V slightly—
this is the crucial idea and payoff for recasting identity types as path types. By forcing
identity types in the universe to take this more flexible form, we can define novel type
formers which themselves implement the novel identifications mandated by univalence.
The details vary greatly between presentations, but this general strategy is ubiquitous: (1)
using an interval to encode identity types as path types, (2) adding additional operations
to all types to force these path types to be symmetric, transitive, etc. and (3) implementing
univalence by a specific type family depending on the interval.

The reward for the complexity of cubical type theory is the following theorem.

Theorem 5.3.13. Cubical type theory enjoys consistency, canonicity, and normalization.

These theorems were established over several years, for several different variations
of cubical type theory. The consistency of the theory was proven in the first papers on
cubical type theory [CCHM18; AFH17]. Canonicity was established by Huber [Hub18]
and Angiuli, Hou (Favonia), and Harper [AFH17]. Normalization was proven by Sterling
and Angiuli [SA21].

5.4★ Computing with coercions and compositions

Section 5.3 presented the core aspects of cubical type theory, but with many rules and
details elided. In this section, we endeavor to fill in a few of these gaps by explaining
some of the rules governing the computation of hcomp and coe in various types. Even in
a dedicated section, however, we will not provide all of these rules. A complete set can be
found in e.g., Angiuli et al. [Ang+21].

Fortunately, the remaining rules do not introduce new judgmental structure. Instead,
they are more akin to programming exercises and show how to build e.g., hcompΠ (𝐴,𝐵) in
terms of composition and coercion in 𝐴 and 𝐵. Accordingly, while the previous section
was replete with rules and substitutions, we shall see far fewer of these in this section.
Instead, we shall focus on these “programming exercises” and often write out the resulting
terms for computing composition and coercion in more informal type-theoretic notation.

(2025-05-02) Computing with coercions and compositions 189

We will present a few examples for how these are turned into actual formal rules to be
added to cubical type theory but thereafter leave this mechanical task to the reader.

Notation 5.4.1. In order to facilitate writing informal terms with coe and hcomp, we
shall treat them as closed elements of the following types:

coe : (𝐴 : I→ U) (𝑖, 𝑗 I) → 𝐴(𝑖) → 𝐴(𝑗)
hcomp𝜙 : (𝐴 : U) (𝑖, 𝑗 I) (𝑎 : (𝑘 I) → (𝑖 = 𝑘 ∨ 𝜙) → 𝐴) → 𝐴

5.4.1 coe for Π and Σ

We begin by describing coercion for dependent products and sums. These two examples
contain all the interesting structure one finds in the definitions of coe for the types of base
Martin-Löf type theory and so we give them a fair bit of attention.

We begin by specifying the right-hand side of the following definitional equality:

Γ I ⊢ 𝐴 type Γ I.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑟, 𝑠 I Γ ⊢ 𝑝 : Σ(𝐴, 𝐵) [id 𝑟]
Γ ⊢ coe𝑟→𝑠

Σ (𝐴,𝐵) (𝑝) = ? : Σ(𝐴, 𝐵) [id 𝑠]
✎

This is one of the many, many “programming exercises” in cubical type theory. Our
goal shall be to produce a term using coe for 𝐴 and 𝐵 which has the appropriate type to fit
into the above rule, subject to the additional condition that when 𝑟 = 𝑠 then this term is
equal to 𝑝 . This last point is not strictly necessary for the rule to be well-formed, but it is
an important sanity check. After all, the definitional equality for coe𝑟→𝑟

Σ (𝐴,𝐵) (𝑝) will force
this to be true by transitivity and so it makes sense to ensure that this forced equality is
sensible.

We shall divide this process up into two steps. First, we present this term using informal
type theory and second, we shall list out the formal term in proper notation.

Lemma 5.4.2. Fix 𝐴 : I → U, 𝐵 : (𝑖 I) → 𝐴(𝑖) → U, 𝑟, 𝑠 I, and 𝑝 :
∑
𝑎:𝐴𝑟 𝐵 𝑟 𝑎. Using

coe for 𝐴 and 𝐵, we can construct type coe (𝜆𝑖 → ∑
𝑎:𝐴 𝑖 𝐵 𝑖 𝑎) 𝑟 𝑠 𝑝 :

∑
𝑎:𝐴𝑠 𝐵 𝑠 𝑎 which is

definitional equal to 𝑝 if 𝑟 = 𝑠 .

Proof. By the 𝜂 law for dependent sums, this term must be of the form (𝑎, 𝑏) for some
element of 𝐴𝑠 and of 𝐵 𝑠 𝑎. In fact, it is straightforward to find the first component of this
pair: 𝑎 = coe𝐴𝑟 𝑠 fst(𝑝).

The second component of the pair is more complex. Naïvely, one might hope that
one could mirror the construction for 𝑎 and use coe𝐵 in some manner. However, this
is not well-typed! After all, 𝐵 is not in the correct shape for coe: it is an element of
(𝑖 I) → 𝐴 𝑖 → U and not the required I→ U. Accordingly, to apply coe we must choose
some element of 𝐴 with which to specialize 𝐵. In fact, the situation is more fraught than

(2025-05-02) Computing with coercions and compositions 190

this: 𝐴 itself depends on I and so if we wish to obtain a specialization of 𝐵 with the type
I→ U, we will require an element of 𝑎 : (𝑖 I) → 𝐴 𝑖 . Given such an 𝑎, however, We can
then use coe with 𝐵𝑎 = 𝜆𝑖 → 𝐵 𝑖 (𝑎 𝑖) to attempt to construct 𝑏.

We can further narrow things down with this in mind. After all, our goal is to set
𝑏 = coe𝐵𝑎 𝑟 𝑠 snd(𝑝) and if this is to be type-correct we must have 𝑎 𝑟 = fst(𝑝). Moreover,
since we wish to have 𝑏 : 𝐵 𝑎 𝑠 we must have 𝑎 𝑠 be 𝑎 = coe𝐴𝑟 𝑠 fst(𝑝).

In order to obtain 𝑎, we take advantage of the flexibility of coe to coerce from 𝑟 to a
variable dimension, rather than 0 or 1. Specifically, we define 𝑎 as follows:

𝑎 := 𝜆𝑖 → coe𝐴𝑟 𝑖 𝑎

With 𝑎 to hand, we choose 𝑏 B coe𝐵𝑎 𝑟 𝑠 snd(𝑝), completing the required term. We leave
it to the reader to check the required definitional equality holds when 𝑟 = 𝑠 . □

Rendering the above term in formal notation, the rule can be completed to the following:

Γ I ⊢ 𝐴 type Γ I.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑟, 𝑠 I Γ ⊢ 𝑝 : Σ(𝐴, 𝐵) [id 𝑟]
Γ ⊢ coe𝑟→𝑠

Σ (𝐴,𝐵) (𝑝) = pair(coe𝑟→𝑠
𝐴 (fst(𝑝)), coe𝑟→𝑠

𝐵 [id .coe𝑟 [p]→q

𝐴[p I] (𝑎[p])]
(snd(𝑝))) : Σ(𝐴, 𝐵) [id 𝑠]

While the translation is largely mechanical, the reader can hopefully appreciate that
the informal term is far more legible than the formal cousin!

We now turn to the case of dependent products. The process is mostly similar and we
use the coercion operations on 𝐴 and 𝐵 to specify how coeΠ (𝐴,𝐵) ought to compute. Our
goal is once more to fill in the right-hand side of the following equality:

Γ I ⊢ 𝐴 type Γ I.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑟, 𝑠 I Γ ⊢ 𝑓 : Π(𝐴, 𝐵) [id 𝑟]
Γ ⊢ coe𝑟→𝑠

Π (𝐴,𝐵) (𝑓) = ? : Π(𝐴, 𝐵) [id 𝑠]
✎

Lemma 5.4.3. Fix 𝐴 : I → U, 𝐵 : (𝑖 I) → 𝐴(𝑖) → U, 𝑟, 𝑠 I, and 𝑝 : (𝑎 : 𝐴𝑟) → 𝐵 𝑟 𝑎.
Using coe for𝐴 and 𝐵, we can construct type coe (𝜆𝑖 → (𝑎 : 𝐴 𝑖) → 𝐵 𝑖 𝑎) 𝑟 𝑠 𝑝 : (𝑎 : 𝐴𝑠) →
𝐵 𝑠 𝑎 which is definitional equal to 𝑝 if 𝑟 = 𝑠 .

Proof. Our goal is to construct an element of (𝑎 : 𝐴(𝑠)) → 𝐵 𝑠 𝑎 and, accordingly, we fix
𝑎 : 𝐴(𝑠) and set about constructing 𝐵 𝑠 𝑎. We begin by defining 𝑎𝑟 = coe𝐴𝑠 𝑟 𝑎 such that
we obtain 𝑏𝑟 = 𝑓 (𝑎𝑟) : 𝐵 𝑟 𝑎𝑟 . We would like to coerce 𝑏𝑟 to obtain our desired element of
𝐵 𝑠 𝑎, but along what type should this coercion occur? We must find some 𝑎 : (𝑖 I) → 𝐴(𝑖)
such that 𝑎(𝑟) = coe𝐴𝑠 𝑟 𝑎 and 𝑎(𝑠) = 𝑎. Capitalizing on the fact that coe𝐴𝑠 𝑠 𝑎 = 𝑎, we
choose 𝑎 to be 𝜆𝑘 → coe𝐴𝑠 𝑘 𝑎. The full term then becomes the following:

𝜆𝑎 → coe (𝜆𝑘 → 𝐵 𝑘 (coe𝐴𝑠 𝑘 𝑎)) 𝑟 𝑠 (𝑓 (coe𝐴𝑠 𝑟 𝑎))

Once again, we leave it to the intrepid reader to confirm that if 𝑟 = 𝑠 then this term is
simply equivalent to 𝑓 . □

(2025-05-02) Computing with coercions and compositions 191

For the final time, we provide a translation of this informal definition into formal
notation. Hereafter, we shall leave this mechanical (if tedious) process to the reader:

Γ I ⊢ 𝐴 type Γ I.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑟, 𝑠 I Γ ⊢ 𝑓 : Π(𝐴, 𝐵) [id 𝑟]

Γ ⊢ coe𝑟→𝑠
Π (𝐴,𝐵) (𝑓) = 𝜆 (coe𝑟 [p]→𝑠 [p]

𝐵 [p q.coe𝑠 [p]→I
𝐴[(p◦p) I] (q [p])]

(app(𝑓 [p], coe𝑠 [p]→𝑟 [p]
𝐴[p q] (q)))) : Π(𝐴, 𝐵) [id 𝑠]

Undeniably, these rules are complicated.6 They are, however, really just a sequence
of programming exercises and share many characteristics and so describing the first few
cases is the most painful.

The next novelty, as already mentioned, comes in the definition of coe for path types.
We turn to this next and, consequently, shift our attention to the second operator we must
define for every type: hcomp.

5.4.2 Working with the homogeneous composition operator

A common challenge when one begins to study cubical type theory is to “visualize” hcomp.
While coe matched closely enough with the already familiar subst operator, the homoge-
neous composition operator is quite different than any of the combinators one typically
encounters in intensional type theory. Prior to using it to compute coercion in path types,
we give a few simple worked examples of hcomp to help demystify this operator.

Composing two paths using hcomp Let us begin cultivating intuition for hcomp by
showing how we can use it to compose two paths 𝑝1 : Path(𝐴, 𝑎, 𝑏) and 𝑝2 : Path(𝐴,𝑏, 𝑐).
We shall do this using hcomp𝐴, so it remains only to choose (1) the 𝑟 → 𝑠 direction we
wish to compose along and (2) the cofibration 𝜙 to restrict along.

To visualize this situation, let us briefly fix two dimension variables 𝑖, 𝑗 I and instantiate
𝑝1 with 𝑖 and 𝑝2 with 𝑗 . We can draw the situation as follows:

𝑎

𝑎

𝑏

𝑐

𝑝1(𝑖)

𝑎 𝑝2(𝑗)

𝑖

𝑗

In anticipation of what is to come, we have added a “degenerate” edge corresponding
to reflexivity along 𝑎. In order to construct the composite of our two edges, it suffices to

6Indeed, the reader may wonder how the authors managed to get these complicated terms correct. The
answer is simple: they did not. They found numerous typos in the process of editing this section.

(2025-05-02) Computing with coercions and compositions 192

find a line which joins the bottom two vertices. It is here we invoke hcomp. Since our goal
is to fill “down” in the 𝑗 direction, e.g., to push the top edge along the two vertical edges,
we shall apply hcomp from 0 to 1. The cofibration shall be used to isolate the two sides in
this direction we possess so 𝜙 B 𝑖 = 0 ∨ 𝑖 = 1.

Let us put these pieces of intuition together into a term. Our goal is to construct a path
in 𝐴, so we will begin by binding a dimension variable 𝑖 I. We then define the composite
path as follows:

(𝑝2 • 𝑝1) 𝑖 = hcomp𝜙 𝐴 0 1 (𝜆𝑘, _ → [𝑘 = 0 ↩→ 𝑝1 𝑖 | 𝜙 ↩→ [𝑖 = 0 ↩→ 𝑎 | 𝑖 = 1 ↩→ 𝑝2 𝑘]])

Exercise 5.13. Argue that 𝑝2 • 𝑝1 has the expected boundary i.e. that (𝑝2 • 𝑝1) 0 = 𝑎 and
that (𝑝2 • 𝑝1) 1 = 𝑐 .

What if we wish to obtain not just the bottom edge of the square, but the entire 2-
dimensional term? Just as we could produce lines by using coe with a variable dimension
as the target, we can “hcomp to the middle” using a dimension variable to obtain the entire
square. We represent this with the following diagram:

𝑎

𝑎

𝑏

𝑐

hcomp𝜙 𝐴 0 𝑗 𝜆𝑘, _ →

𝑘 = 0 ↩→ 𝑝1 𝑖

𝑖 = 0 ↩→ 𝑎

𝑖 = 1 ↩→ 𝑝2 𝑘

𝑝1(𝑖)

𝑎 𝑝2(𝑗)

(𝑝2 • 𝑝1) 𝑖

𝑖

𝑗

Exercise 5.14. Check that this 2-dimensional term has the relevant boundary conditions.
In particular, if 𝑗 = 0 check it collapses to 𝑝1 𝑖 .

Inverting a path using hcomp For a second example, suppose we are given 𝑝 :
Path(𝐴, 𝑎, 𝑏). We show how hcomp may be used to construct an inverse path Path(𝐴,𝑏, 𝑎).
Once more, we shall fill a square involving 𝑝 alongside two degenerate paths.

(2025-05-02) Computing with coercions and compositions 193

To visualize this situation, let us fix 𝑖, 𝑗 I and consider the following three lines:

𝑎

𝑏

𝑎

𝑎

𝑎

𝑝 (𝑖) 𝑎

𝑖

𝑗

In order to compose paths, we have already shown how to use hcomp to complete
these three edges to a square. The same general procedure applies, though the result is
now the inverse to 𝑝 . In particular, we have the following:

𝑝−1 𝑖 B hcomp𝜙 𝐴 0 1 𝜆𝑘, _ →

𝑘 = 0 ↩→ 𝑎

𝑖 = 0 ↩→ 𝑝 (𝑖)
𝑖 = 1 ↩→ 𝑎

In fact, with further effort we could use hcomp to construct higher paths witnessing

e.g., a path between 𝑝 • 𝑝−1 and a constant path. Rather than pursuing this more fully,
however, we return to the original example which prompted this detour.

Coercion in path types from hcomp We can now complete the loop that motivated
this detour and show how to implement coercion in Path. Crucially, this requires both coe
and hcomp working in concert.

Lemma5.4.4. Fix𝐴 : I→ U, 𝑎, 𝑏 : (𝑖 I) → 𝐴(𝑖) alongside 𝑟, 𝑠 I and 𝑝 : Path(𝐴(𝑟), 𝑎(𝑟), 𝑏 (𝑟)).
Using hcomp and coe for 𝐴, there exists a term of the following type:

coe (𝜆𝑖 → Path(𝐴(𝑖), 𝑟 (𝑖), 𝑠 (𝑖))) 𝑟 𝑠 𝑝 : Path(𝐴(𝑠), 𝑎(𝑠), 𝑏 (𝑠))

Moreover, this term is definitionally equal to 𝑝 when 𝑟 = 𝑠 .

Proof. As before, let us fix 𝑘 I such that it now suffices to define an element of 𝐴(𝑠)
which specializes to 𝑎(𝑠) and 𝑏 (𝑠) when 𝑘 = 0 or 𝑘 = 1. This latter condition is the sort
of problem well-addressed by hcomp𝜙 where 𝜙 B 𝑘 = 0 ∨ 𝑘 = 1: one of the definitional
equalities governing the construction precisely allows us to guarantee these equations. It
remains to work out the direction in which we ought to apply hcomp𝜙 as well as the “top”
of the square we are filling. Let us revisit the drawing of the situation we encountered

(2025-05-02) Computing with coercions and compositions 194

when first attempting to construct coe in Path:

coe𝐴𝑟 𝑠 (𝑎 𝑟)

𝑎 𝑠

coe𝐴𝑟 𝑠 (𝑏 𝑟)

𝑏 𝑠

coe𝐴𝑟 𝑠 (𝑝 𝑘)
𝑘

Here, we have depicted the vertical lines as “wavy” since they do not actually form a path
with the top corresponding to 0 and the bottom to 1. Instead, they represent lines in 𝐴(𝑠)
such that e.g., when specialized with 𝑟 become coe𝐴𝑟 𝑠 (𝑏 𝑟) and at 𝑠 become 𝑏 𝑠 . This,
however, is precisely what we require if we use composition from 𝑟 to 𝑠 , rather than from
0 to 1. All told then, we arrive at the following term:

coe𝐴𝑟 𝑠 𝑝 B 𝜆𝑖 → hcomp𝑖=0∨𝑖=1 (𝐴𝑠) 𝑟 𝑠 𝜆𝑘, _ →

𝑘 = 𝑟 ↩→ coe𝐴𝑟 𝑠 (𝑝 𝑖)
𝑖 = 0 ↩→ coe𝐴𝑘 𝑠 (𝑎 𝑘)
𝑖 = 1 ↩→ coe𝐴𝑘 𝑠 (𝑏 𝑘)

We leave it to the reader to confirm that all three of the branches of the disjunction match
as required on their overlaps and that when 𝑟 = 𝑠 this term collapses to 𝑝 . □

5.4.3 Unfolding hcomp in various type constructors

While we have discussed the core rules governing coe at this point, it remains to do so
for hcomp. Just as with coercion, for specifying core connectives amounts to a sequence
of programming exercises and we give the details only for dependent products and path
types.

Lemma 5.4.5. Fix a cofibration 𝜙 , types 𝐴 : U, 𝐵 : 𝐴 → U, dimension terms 𝑟, 𝑠 I, and a
term 𝑓 : (𝑖 I) → (𝑖 = 𝑟 ∨𝜙) → (𝑎 : 𝐴) → 𝐵(𝑎). There exists hcomp𝜙 ((𝑎 : 𝐴) → 𝐵 𝑎) 𝑟 𝑠 𝑓
of type (𝑎 : 𝐴) → 𝐵(𝑎) built from composition in 𝐵 satisfying the expected definitional
equalities.

Proof. Let us fix 𝑎 : 𝐴 such that we must build 𝑏 : 𝐵(𝑎) such that if either 𝑟 = 𝑠 or 𝜙 holds
then 𝑏 = 𝑓 𝑠 𝑎. To this end, we shall use composition in 𝐵(𝑎):

𝑏 = hcomp𝜙 (𝐵 𝑎) 𝑟 𝑠 𝜆𝑖, _ → 𝑓 𝑖 _𝑎

It is routine to see that this gives rise to the required term using the boundary conditions
of hcomp𝜙 (𝐵 𝑎) 𝑟 𝑠 . □

(2025-05-02) Computing with coercions and compositions 195

Lemma 5.4.6. Fix a cofibration 𝜙 , a type 𝐴 : U, elements 𝑎, 𝑏 : 𝐴, dimension terms 𝑟, 𝑠 I,
and a partial term 𝑝 : (𝑖 I) → (𝑖 = 𝑟 ∨ 𝜙) → Path(𝐴, 𝑎, 𝑏). There exists a term
hcomp𝜙 (Path(𝐴, 𝑎, 𝑏)) 𝑟 𝑠 𝑝 : Path(𝐴, 𝑎, 𝑏) built from composition and coercion in 𝐴 satis-
fying the expected definitional equalities.

Proof. The required term is an application of hcomp in 𝐴. Since we intend to construct
a path, we fix 𝑖 I such that 𝜆 𝑗 → 𝑝 𝑗 _ 𝑖 : (𝑗 I) → 𝑗 = 𝑟 ∨ 𝜙 → 𝐴 is a partial element
suitable as input for hcomp.

This is almost sufficient, but we must also ensure that the resulting extended term
satisfies the boundary condition necessary to form an element of Path(𝐴, 𝑎, 𝑏). To fix these
boundaries, we extend 𝜙 with faces to govern the behavior of this term when 𝑖 = 0 or 𝑖 = 1.
The final term is given as follows:

hcomp𝜙 (Path(𝐴, 𝑎, 𝑏)) 𝑟 𝑠 𝑝 B 𝜆𝑖 → hcomp𝜙∨𝑖=0∨𝑖=1𝐴𝑟 𝑠 𝜆 𝑗, _ →

𝜙 ∨ 𝑗 = 𝑟 ↩→ 𝑝 𝑗 _ 𝑖
𝑖 = 0 ↩→ 𝑎

𝑖 = 1 ↩→ 𝑏

We once more leave it to the reader to check that this satisfies the necessary boundary
conditions. □

5.4.4 V and univalence

Finally, we turn to the rules necessary to animate both hcomp in U and univalence. The
crucial idea behind both is the same: paths in the universe are, by definition, codes which
depend on I and so to implement either hcomp or univalence, it suffices to define new
types. We shall focus largely on the new type necessary to implement univalence V, but
much of the process transfers to hcomp.

Suppose we are given 𝐴, 𝐵 : U along with 𝑒 : 𝐴 ≃ 𝐵. We wish to construct a path
ua 𝑒 : Path(U, 𝐴, 𝐵) or, equivalently, a map 𝑝 : I→ U such that 𝑝 0 = 𝐴 and 𝑝 1 = 𝐵. We
intend for ua to be inverse to the canonical map idToEquiv : Id(U, 𝐴, 𝐵) → 𝐴 ≃ 𝐵 which,
in this setting, amounts to requiring that coe𝑝 0 1 : 𝐴 → 𝐵 is equal to 𝑒 .

Remark 5.4.7. The reader may wonder whether we need an additional constraint ensuring
that ua(coe𝑝 0 1) can be identified with 𝑝 . As we remarked in Section 5.2, this direction
holds automatically. ⋄

Our goal shall be to define a new type V(𝐴, 𝐵, 𝑒, 𝑟) and to set ua 𝑒 B 𝜆𝑖 → V(𝐴, 𝐵, 𝑒, 𝑖).
We begin with the (provisional) formation rule for V:

Γ ⊢ 𝐴, 𝐵 type Γ ⊢ 𝑒 : 𝐴 ≃ 𝐵 Γ ⊢ 𝑟 I
Γ ⊢ V(𝐴, 𝐵, 𝑒, 𝑟) type

(2025-05-02) Computing with coercions and compositions 196

We note that this definition is sensitive to the precise realization of equivalence we choose.
However, any of the notions presented in Section 5.2 suffice and so we shall ignore this
detail. Moreover, we must ensure that our universe is closed under V in order to actually
carry out the definition of ua. It is more convenient to specify rules for the type V rather
than the code, however, and so we shall focus on that.

The above set of constraints on ua and path types generally translate into the following
requirements for V(𝐴, 𝐵, 𝑒, 𝑟):

• We must have definitional equalities V(𝐴, 𝐵, 𝑒, 0) = 𝐴 and V(𝐴, 𝐵, 𝑒, 1) = 𝐵.

• It must be the case that coe (𝜆𝑖 → V(𝐴, 𝐵, 𝑒, 𝑖)) 0 1 = 𝑒 .

• We must be able to implement hcomp and coe for V.

Of course, 𝜆𝑖 → V(𝐴, 𝐵, 𝑒, 𝑖) is always fully constrained up to equivalence: it is the
unique inhabitant of Path(U, 𝐴, 𝐵) sent to 𝑒 by coe. In this way, it is largely unimportant
how precisely V is realized. What matters is only that such a type can exist and satisfy the
list of required properties. To this end, these constraints are useful for nailing down the
particular rules which define V more precisely and, unfortunately, we must give new rules.
V cannot be defined by a clever combination of existing type formers because of the first
requirement; we presently have no means of defining a type which degenerates to two
distinct types depending on the endpoints of an interval.

In fact, given all these constraints there are precious few valid choices for the introduc-
tion and elimination rules of V. The difficulty is that it is not obvious whether any given
choice of rules will suffice until one carefully checks each condition. Accordingly, we will
present the correct rules below and only then discuss some of the subtleties:

Γ ⊢ 𝐴, 𝐵 type Γ ⊢ 𝑒 : 𝐴 ≃ 𝐵
Γ ⊢ V(𝐴, 𝐵, 𝑒, 0) = 𝐴 type Γ ⊢ V(𝐴, 𝐵, 𝑒, 1) = 𝐵 type

Γ ⊢ 𝐴, 𝐵 type Γ ⊢ 𝑒 : 𝐴 ≃ 𝐵 Γ ⊢ 𝑟 I
Γ 𝑟 = 0 ⊢ 𝑎 : 𝐴[p] Γ ⊢ 𝑏 : 𝐵 Γ 𝑟 = 0 ⊢ app(𝑒 [p], 𝑎) = 𝑏 [p] : 𝐵 [p]

Γ ⊢ Vin(𝑎, 𝑏, 𝑟) : V(𝐴, 𝐵, 𝑒, 𝑟)
Γ 𝑟 = 0 ⊢ Vin(𝑎, 𝑏, 𝑟) [p] = 𝑎 : 𝐴[p] Γ 𝑟 = 1 ⊢ Vin(𝑎, 𝑏, 𝑟) [p] = 𝑏 : 𝐵 [p]

Γ ⊢ 𝐴, 𝐵 type Γ ⊢ 𝑒 : 𝐴 ≃ 𝐵 Γ ⊢ 𝑟 I Γ ⊢ 𝑣 : V(𝐴, 𝐵, 𝑒, 𝑟)
Γ ⊢ Vout(𝑣) : 𝐵

Γ 𝑟 = 0 ⊢ Vout(𝑣) = app(𝑒, 𝑣) : 𝐵 [p] Γ 𝑟 = 1 ⊢ Vout(𝑣) = 𝑣 : 𝐵 [p]

(2025-05-02) Computing with coercions and compositions 197

Γ ⊢ 𝐴, 𝐵 type Γ ⊢ 𝑒 : 𝐴 ≃ 𝐵 Γ ⊢ 𝑟 I
Γ 𝑟 = 0 ⊢ 𝑎 : 𝐴[p] Γ ⊢ 𝑏 : 𝐵 Γ 𝑟 = 0 ⊢ app(𝑒 [p], 𝑎) = 𝑏 [p] : 𝐵 [p]

Γ ⊢ Vout(Vin(𝑎, 𝑏, 𝑟)) = 𝑏 : 𝐵

Γ ⊢ 𝐴, 𝐵 type Γ ⊢ 𝑒 : 𝐴 ≃ 𝐵 Γ ⊢ 𝑟 I Γ ⊢ 𝑣 : V(𝐴, 𝐵, 𝑒, 𝑟)
Γ ⊢ Vin(𝑣 [p],Vout(𝑣), 𝑟) = 𝑣 : V(𝐴, 𝐵, 𝑒, 𝑟)

In total then, an element of V(𝐴, 𝐵, 𝑒, 𝑟) contains a partial element of 𝐴 and a full
element of 𝐵 which match up according to 𝑒 when both are defined. The introduction and
elimination rules (along with their 𝛽 and 𝜂 principles) are then nearly routine from this
perspective. The complexity comes from the various rules which apply if 𝑟 = 0 or 𝑟 = 1.

These are a consequence of having V(𝐴, 𝐵, 𝑒, 𝑟) collapse definitionally to 𝐴 and 𝐵. We
have not encountered rules similar to this with other type formers and they impose a
number of unique constraints on the rules around V if we are to avoid having terms of
V(𝐴, 𝐵, 𝑒, 𝑟) polluting 𝐴 and 𝐵. For instance, we must add rules ensuring that Vin(𝑎, 𝑏,)
correctly equates to 𝑎 or 𝑏 where this is required. Similarly, Vout(𝑣) cannot come only
with a 𝛽 rule to govern its behavior, as it must account for the situations where 𝑣 becomes
an ordinary element of 𝐴 and 𝐵.

To illustrate the delicacy of these rules, imagine a simple possible replacement: instead
of requiring Γ 𝑟 = 0 ⊢ app(𝑒 [p], 𝑎) = 𝑏 [p] : 𝐵 [p], what if we required that app(𝑒−1, 𝑏) was
definitionally equal to 𝑎? While this is seemingly innocuous, 𝑒 and 𝑒−1 are inverses only up
to a path and not necessarily definitionally inverses. Consequently, this exchange would
make it impossible to properly specify the behavior of Vout(𝑣) when 𝑟 = 0; depending on
the order in which rules were applied one could obtain distinct (but path equal!) terms.

Another mysterious aspect of these rules is the asymmetry between 𝐴 and 𝐵. Why
𝑎 is required to be a partial element whereas 𝑏 is total as opposed to defined only when
𝑟 = 1 holds. What matters is not so much whether 𝑎 or 𝑏 is partial, but merely that one of
the two is fully defined and one is not. If neither is fully defined, it becomes impossible
to state that 𝑎 and 𝑏 are equated by 𝑒 . More subtly, if both are fully defined it becomes
impossible to specify coe in V.

The definitions of hcomp and coe in V are complex and we will not attempt to detail
them here. The interested reader should consult Appendix B of Angiuli [Ang19] for precise
account of V.

Finally, we note that the same chain of reasoning that leads to this definition of
V can be used to produce the type implementing hcomp𝑟→𝑠

U (𝜙,𝐴). We can once more
list out the various definitional equalities which such a type must satisfy as well as
what types it must be equivalent to. Unfurling these, we determine that elements of
hcomp𝑟→𝑠

U (𝜙,𝐴) are essentially smaller formal composition problems, just as elements of
V were “suspended coercions along 𝑒”. Unfortunately, the details and bookkeeping around

(2025-05-02) Computing with coercions and compositions 198

such formal composition problems (and composition problems of formal composition
problems) is taxing. A curious reader should once again consult Angiuli [Ang19].

6Semantics of type theory (draft)

In Chapter 2, we formulated the syntax of (extensional) type theory via rules inductively
defining sets of contexts, substitutions, types, and terms. In Chapter 3, we introduced
the notion of a general model of type theory (Definition 3.4.2) by observing that those
rules could alternatively be seen as a signature imposing various closure conditions on
four arbitrary sets of contexts, etc., recovering the notion of syntax as a free or initial
model. Although we defined the set model of type theory in Section 3.5 and discussed
the groupoid model in Section 4.3, our focus throughout this book has been on syntactic
models of type theory. In this chapter, we systematically consider models of type theory.

Many readers may have encountered the phrase “categorical semantics” in discussion
of models of type theory. We have chosen to eschew the adjective “categorical” in the title
of this chapter because, fundamentally, there is nothing categorical about the definition of
model given in Definition 3.4.2. It is much closer in spirit to models in classical universal
algebra such as groups, rings, or modules: a collection of sets together with operations
and equations. Of course, a model of dependent type theory requires some of these sets to
be indexed by elements of others, making it more general than an algebraic theory (more
precisely, it is a generalized algebraic theory [Car86; Dyb96; KKA19]; see Section 6.7).

In fact, the connection to category theory is much more pedestrian than one might
assume: it so happens that the definition of a category is hiding within the definition of a
model of type theory. Accordingly, every model of type theory can be seen as a category
equipped with additional properties and structures. Thus, in a very real sense, we have
been using the categorical semantics of type theory since Chapter 3.

Starting in this chapter however, we shall take advantage of this observation to repack-
age the definition of a model into a smaller and more tractable form. This process is a
more exaggerated form of the simplification of replacing the fully unfolded definition of a
ring with the more compact “an abelian group equipped with a multiplication operation ·
satisfying . . . ”. Mathematically, very little has changed but it is often practically easier to
construct examples after this reorganization since we can reuse categorical intuitions.
Warning 6.0.1. With this in mind, for this chapter only we shall assume that the reader
has a working knowledge of category theory. In particular, we shall assume familiarity
with categories, functors, natural transformations, presheaves, the Yoneda embedding, and
adjunctions to the level of, for instance, the first four chapters of Riehl [Rie16] or the first
nine chapters of Awodey [Awo10].

Remark 6.0.2. The reader without exposure to category theory may find this chapter
useful motivation to begin studying category theory in its own right. Indeed, while it is

199

(2025-05-02) 200

perhaps not mandatory, a working knowledge of category theory is an invaluable tool
for engaging with contemporary literature on type theory. For a reader ready to take the
plunge, we recommend either of the two aforementioned books. ⋄

In this chapter In Sections 6.1 to 6.4 we reorganize the definition of a model of type the-
ory given in Section 3.2 into the concise notion of a category with families (CwFs) [Dyb96].
We observe how the natural isomorphisms used in Chapter 2 to define connectives can
be repurposed to give a succinct and efficient definition. We systematically use a more
modern reformulation of CwFs as natural models as put forward by Awodey [Awo18].

In Section 6.5 we set out to connect CwFs to locally cartesian closed categories (LCCCs).
We describe the slogan originating with Seely [See84] that LCCCs are models are exten-
sional type theory and illustrate how various coherence issues complicate this fact. We
also describe at some length the local universes coherence construction [LW15; Awo18]
and how it resolves these issues to construct a CwF on top of an arbitrary LCCC.

Section 6.6 is devoted to proving a claim from Chapter 3: extensional type theory
satisfies canonicity. We do this by constructing a particular model of type theory based on
a gluing construction and deriving canonicity from this model together with the fact that
syntax organizes into the initial model.

Finally, in Section 6.7, we show how the apparatus of CwFs can be leveraged to give a
conceptual description of the syntax of type theory itself. In particular, we follow Bezem et
al. [Bez+21] and use categories with families as the foundation for a definition of generalized
algebraic theories from which we recover the initiality results claimed in Section 3.4.

Remark 6.0.3. Throughout this chapter, we focus on extensional type theory. We empha-
size, however, that none of this material is specific to ETT. The curious reader may refer
to e.g., Awodey [Awo18] for a treatment of the intensional identity type. ⋄

Goals of this chapter By the end of this chapter, you will be able to:

• Explain the definition of a CwF and why it constitutes a model of type theory.

• Explain how the locally cartesian closed category (LCCC) relates to a CwF.

• Use the local universes construction to construct a CwF from an LCCC.

• Prove metatheorems of type theory using semantic methods.

(2025-05-02) Categories with Families: Contexts and substitutions 201

Glossary of category theory

Accumulate notation and stuff here. Eventually expand this into a 2 page section
which explains it.

• homC (𝑐, 𝑑)

• Pr(C)

• C/𝑐

• 𝑓 ∗ : Pr(C) Pr(D)

• 𝑓 ∗ : C/𝐶 C/𝐷

• 𝑓∗ : C/𝐶 C/𝐷

• y

• 𝑋 ×𝑌 𝑍

• ⌜−⌝

• “Gap map”

• “Locally cartesian closed”

6.1 Categories with Families: Contexts and substitutions

We begin by reformulating the definition of a model of extensional type theory from
Chapter 3 into a more palatable form. Our starting point is the following observation:

Lemma 6.1.1. If M is a model of ETT (Definition 3.4.2), then CxM is a category where the
hom-sets homCxM (Γ,Δ) are given by SbM (Γ,Δ).

Proof. This is very nearly a tautology. We must construct a composition operation for
morphisms along with an identity arrow and show that the satisfy the expected properties.
However, the composition operation for substitutions ◦M and the identity substitution
idM are defined so as to precisely fit this specification. □

(2025-05-02) Categories with Families: Contexts and substitutions 202

The immediate pay-off of this observation is that we may collapse 7 points in Defini-
tion 3.4.2 (2 sets, 2 operations, and three equations) into a single structure. What is less
obvious—though more important—is that a good number of the other points of Defini-
tion 3.4.2 can also be rephrased and compacted in this manner. In particular, category
theory is designed for naturality and therefore is exceptionally well-suited to capturing
the aspects of type theory based on naturality:
workshop this phrasing

Slogan 6.1.2. Re-expressing the connectives of type theory using category theory allows
us to automatically obtain descriptions which automatically contain the previously explicit
naturality requirements.

We shall split up the process of formulating these categorical versions this and the
following three sections (Sections 6.1 to 6.4), roughly mirroring the progression found in
Sections 2.3 to 2.6

6.1.1 Contexts and substitutions

We begin by reformulating the portions of Definition 3.4.2 that do not involve specific
connectives into more categorical terms. In so doing, we shall arrive at the definition
of a category with families—or, rather, the equivalent notion of natural model [Awo18].
Coincidentally, this discussion closely parallels path taken by Dybjer [Dyb96] when he
introduced the notion, but the many of the concrete results are due to Awodey [Awo18].

Lemma6.1.3. The operations and equations for the empty context 1M are precisely equivalent
to the requirement that CxM possess a chosen terminal object.

Proof. Recall that a terminal object𝑋 : C is one such that homC (𝑌,𝑋) � {★} for all objects
𝑌 . Inspecting the rules governing 1M , we see that !M furnishes an inverse to the unique
map homCxM (Γ, 1M) → {★}. □

In order to consolidate other aspects ofM, we must deal with TyM (−) and TmM (−,−).
Fortunately, these too admit clean categorical descriptions:

Lemma 6.1.4. The family of sets TyM (−) and the operations and equations for applying
substitutions to types −[−]M are precisely equivalent to a presheaf over CxM .

Proof. Let us recall that a presheaf 𝑋 : Cop → Set consists of (1) a family of sets 𝑋 (𝑐)
for each 𝑐 : C, (2) a collection of functions 𝑋 (𝑓) : 𝑋 (𝑐′) → 𝑋 (𝑐) for each 𝑓 : 𝑐 𝑐′, (3)
equations stating that𝑋 (id) is the identity function and𝑋 (𝑓 ◦𝑔) = 𝑋 (𝑔) ◦𝑋 (𝑓). Reviewing
the operations and equations for TyM (−) and −[−]M , we find a perfect match. □

(2025-05-02) Categories with Families: Contexts and substitutions 203

A similar story can be told for TmM (−,−) and substitution on terms, but one must
work slightly harder: since terms are indexed over both context and types, TmM (−,−) is
not a presheaf over CxM but instead over the category of elements

∫
Γ:CxM

TyM (Γ):

Definition 6.1.5. If C is a category and𝑋 : Pr(C), the category of elements
∫
C 𝑋 is defined

as following:

• Objects are pairs (𝑐 : C, 𝑥 : 𝑋 (𝑐)).

• A morphism (𝑐, 𝑥) (𝑑,𝑦) consists of a morphism 𝑓 : 𝑐 𝑑 such that 𝑋 (𝑓) 𝑦 = 𝑥 .

• Composition and identity are defined using the corresponding operations from C.

See Riehl [Rie16, Section 2.4] for more details.

To gain intuition, let us consider
∫
Γ:CxM

TyM (Γ). Its objects are pairs of a context Γ
and a type 𝐴 : TyM (Γ) and morphisms (Δ, 𝐵) (Γ, 𝐴) are substitutions 𝛾 : SbM (Δ, Γ)
such that 𝐵 = 𝐴[𝛾]. Such pairs and substitutions are precisely the inputs to TmM (−,−)
and so we conclude the following:

Lemma 6.1.6. The family of sets TmM (−,−) and the operations and equations for applying
substitution to terms −[−]M are precisely equivalent to a presheaf over

∫
Γ:CxM

TyM (Γ).

A digression: slicing presheaf categories A classical result in category theory is that
there exists an equivalence between Pr(C)/𝑋 and Pr(

∫
C 𝑋); most often, this is used to

prove that the slice category of a presheaf category is itself a presheaf category. For our
purposes it is often vital to pass between these perspectives when studying TmM (−,−)
and so we include both a sketch of this proof and note its specialization to TmM (−,−).
Surely there is a reference for this somewhere?

First, we define the functor 𝑈 sending Pr(C)/𝑋 to Pr(
∫
C 𝑋). This functor sends 𝜎 :

𝑌 𝑋 to the following presheaf over
∫
C 𝑋 :

𝑈 (𝜎) (𝑐, 𝑥) = {𝑦 : 𝑌 (𝑐) | 𝜎𝑐 (𝑦) = 𝑥}

Given 𝛼 : homPr(C)/𝑋 (𝜎, 𝜏), the functorial action𝑈 (𝛼) is defined as follows:

𝑈 (𝛼) (𝑐, 𝑥) 𝑦 = 𝛼 𝑐 𝑦

In particular, since 𝜏 ◦𝛼 = 𝜎 and 𝜎𝑐 (𝑦) = 𝑥 by definition of𝑈 (𝜎), we must have 𝜏 𝑐 (𝛼 𝑐 𝑦) =
𝑥 so that this definition is well-typed.

(2025-05-02) Categories with Families: Contexts and substitutions 204

Exercise 6.1. Check that𝑈 satisfies the equations necessary to be a functor.

Exercise 6.2. Argue that𝑈 is fully faithful.

In light of Exercise 6.2, to check that 𝑈 is an equivalence, it suffices to check that
it is essentially surjective. That is, we must show that if 𝑌 : Pr(

∫
C 𝑋) then there exists

𝜎 : 𝑌0 𝑋 such that𝑈 (𝜎) � 𝑌 . Fixing 𝑌 : Pr(
∫
C 𝑋), we define 𝜎 and 𝑌0 as follows:

𝑌0 𝑐 =
∑
𝑥 :𝑋 (𝑐) 𝑌 (𝑐, 𝑥) 𝜎 𝑐 = 𝜋1

We leave it to the reader to carry out the routine verification that 𝑌0 is functorial and 𝜎 is
natural. We may now compute𝑈 (𝜎):

𝑈 (𝜎) (𝑐, 𝑥) = {(𝑥0, 𝑦) :
∑
𝑥0:𝑋 (𝑐) 𝑌 (𝑐, 𝑥0) | 𝑥0 = 𝑥} � 𝑌 (𝑐, 𝑥)

It is routine to check that these bijections organize into the required natural isomorphism.
All told, we conclude the following:

Theorem 6.1.7. 𝑈 is an equivalence.

We may specialize this discussion to TyM : Pr(CxM) and TmM : Pr(
∫
CxM

TyM):

Corollary 6.1.8. The family of sets TmM (−,−) and the operations and equations for applying
substitution to terms −[−]M are precisely equivalent to an object in Pr(CxM)/TyM .

We denote the induced object of the slice category 𝜋 : Tm•
M TyM and it is explicitly

given as follows:
Tm•

M Γ =
∑
𝐴:TyM (Γ) TmM (Γ, 𝐴) 𝜋 Γ = 𝜋1

The categorical formulation of context extension With Tm•
M to hand, we reformulate

one final piece of Definition 3.4.2 before taking stock: context extensions. This definition
is a bit more complex since it mixes together all four of contexts, substitutions, terms
and types. However, our discussion of the mapping-in property of context extension in
Section 2.4.2 should lead us to guess that it too can be expressed categorically.

Definition 6.1.9. If 𝛼 : 𝑋 𝑌 where 𝑋,𝑌 : Pr(C), we say 𝛼 is representable whenever
the pullback y(𝑐) ×𝑌 𝑋 is representable for every y(𝑐) 𝑌 .

In other words, a natural transformation is representable if for every 𝑦 : y(𝑐) 𝑌

there exists some 𝑐𝑦 : C along with morphisms 𝑝𝑦 : 𝑐𝑦 𝑐 and 𝑞𝑦 : y(𝑐𝑦) 𝑋 such that

(2025-05-02) Categories with Families: Contexts and substitutions 205

the following diagram is a pullback:

y(𝑐𝑦)

y(𝑐)

y(𝑝𝑦)

𝑋

𝑌

𝑞𝑦

𝛼

𝑦
(6.1)

We call a particular choice of triples (𝑐𝑦, 𝑝𝑦, 𝑞𝑦) a representability structure on 𝛼 . Repre-
sentability structures are all suitably uniquely isomorphic to one another, but need not be
equal (in much the same way that limits are determined only up to unique isomorphism).

Lemma 6.1.10. The operations and equations around context extension (including the
variable term and the weakening substitution) inM are precisely equivalent to requiring a
representability structure on 𝜋 : Tm•

M TyM .

Proof. Let us begin by unfolding what is involved in a representability structure on 𝜋 and,
in particular, what the universal property of Diagram 6.1 determines when specialized to 𝜋 .
First note that a morphism 𝐴 : y(Γ) TyM is equivalent by Yoneda to a type 𝐴 : TyM (Γ).
Accordingly, a representability structure is an assignment of every Γ and 𝐴 : TyM (Γ)
to a triple (Γ𝐴 : CxM, 𝑝𝐴 : Γ𝐴 Γ, 𝑞𝐴 : y(Γ𝐴) Tm•

M) such that the following square
commutes and is a pullback:

y(Γ𝐴)

y(Γ)

y(𝑝𝐴)

Tm•
M

TyM

𝑞𝐴

𝜋

𝐴

Let us apply the Yoneda lemma once more to see that 𝑞𝐴 is equivalent to a pair 𝐴′ :
TyM (Γ𝐴), 𝑞 : TmM (Γ𝐴, 𝐴′). Moreover, by the naturality of the Yoneda lemma and the com-
mutation of the above square, we conclude that 𝜋 Γ𝐴 (𝐴′, 𝑎) = 𝐴[𝑝𝐴]M and so, unfolding
the left-hand side of this equality, 𝐴′ = 𝐴[𝑝𝐴]M . Accordingly, the data of the commuting
square corresponds to Γ.M𝐴, qM , and pM .

What’s left is to analyze the universal property of this pullback square. As a general
matter, a square in a presheaf category has the universal property of a pullback square
just when it has the correct universal property with respect to representable presheaves.
There are several ways to prove this, but perhaps the simplest is to recall that (co)limits in
presheaves are computed pointwise and to apply the Yoneda lemma.

(2025-05-02) Categories with Families: Contexts and substitutions 206

Accordingly, the fact that the above commuting square is a pullback amounts to
the following: for every (Δ : CxM, y(Δ) y(Γ), y(Δ) Tm•

M) fitting into the below
diagram, there is a unique dashed arrow making the diagram commute:

y(Γ𝐴)

y(Γ)

Tm•
M

TyM

𝑞𝐴

𝜋

𝐴

y(Δ)

Applying the Yoneda lemma, we see that the maps y(Δ) TyM and y(Δ) Tm•
M corre-

spond to a substitution 𝛾 : SbM (Δ, Γ) and a term 𝑎 : Tm(Δ, 𝐴[𝛾]M). Finally, we see that
the dashed arrow encodes 𝛾 .M𝑎 and the commutation of the diagram and the unicity of
the dashed arrow correspond to the equations around 𝛾 .M𝑎, completing the proof. □

We emphasize that while the reshuffling was more involved to relate representability
structures and context extensions, the two notions are completely equivalent. The purpose
of this reformulation is not to favor one over the other, but to have both available for
when the representability structure notion is easier (e.g., in Section 6.5) and for when the
((−.M−), pM, qM) is easier (eg, in Section 6.6).
Exercise 6.3. Suppose that Δ, Γ : CxM and that 𝐴 : TyM (Γ) and 𝛾 : SbM (Δ, Γ). Show
that the following is a pullback diagram:

Δ.M𝐴[𝛾]M

Δ

pM

Γ.M𝐴

Γ

𝛾 .M𝐴

pM

𝛾

(Hint: there is a slick proof based on the 3-for-2 lemma for pullbacks and Lemma 6.1.10.)

The definition of a CwF Collecting all these reformulations together, we arrive at the
definition of a CwF [Dyb96] or, more precisely, a CwF recast into the language of natural
models [Awo18]:

Definition 6.1.11. A category with families (CwF) consists of the following data:

(2025-05-02) Categories with Families: Contexts and substitutions 207

• A category C

• A chosen terminal object 1 : C

• A pair of presheaves and a natural transformation 𝜋C : Tm•
C TyC

• A representability structure on 𝜋C

Theorem 6.1.12. A category with families is equivalent to a model of type theory without
any connectives.

Remark 6.1.13. Different authors package the data of a model (or a CwF) in different ways.
Since they are all equivalent these differences are fundamentally unimportant. However,
they can be useful in different situations and it is important to feel comfortable passing
between a fully unfolded definition of a model (Definition 3.4.2) or a more compressed
variant (Definition 6.1.11). Not only because many variations appear in the literature, but
because often one formulation is more perspicacious in a particular situation. ⋄

We refer to a model of type theory without connectives as a model of base type theory.
Our goal is to now explore how to reformulate the specification of various connectives from
Definition 3.4.2 on top of the definition of a CwF. Since we will have a great deal of data to
manipulate when discussing equipping models of base type theory with connectives, we
take a moment to discuss the global structure of this process. Essentially every subsection
of Sections 6.2 to 6.4 will deal with one a single connective and in each we will follow the
same process. First, we begin by recalling the relevant portion of Definition 3.4.2 and then
work to reformulate them into a more concise categorical definition. The final result will
be a statement of the form “a model of base type theory supports an interpretation of the
connective Θ just when it comes equipped with the following categorical structures”. For
ease of reference, we have gather a table describing where each structure is introduced
and the result where it is reformulated in Figure 6.1.

As in Chapter 2, once the substitution calculus is in place the connectives of type theory
are essentially orthogonal may be introduced in any order. An exception to this pattern is
U, as the closure conditions required of the universe are of course sensitive to the other
connectives available within the theory. When dealing with individual connectives, it is
frequently convenient to consider models of type theory which support only a specific
subset of connectives. In particular, we may define a model of type theory with e.g., only
Π and Unit as a base model together with the structures in Definition 3.4.2 specifically
related to e.g., Π and Unit. The main result of the following sections may be summarized
by the following “theorem schema”:

Theorem 6.1.14. Amodel of type theory with any set of connectives consists of (1) a category
with families (Definition 6.1.11) and (2) the categorical reformulation of structures pertaining
to each of those connectives.

(2025-05-02) Pullback squares and Π, Σ, Eq, Unit 208

Connective Definition of relevant structure Categorical reformulation
The unit type (Unit) Structure 6.2.2 Lemma 6.2.5
The equality type (Eq) Structure 6.2.6 Lemma 6.2.9
Dependent products (Π) Structure 6.2.18 Lemma 6.2.20
Dependent sums (Σ) Exercise 6.9 Lemma 6.2.21
Booleans (Bool) Structure 6.3.2 Lemma 6.3.6
Coproducts (+) Structure 6.3.7 Lemma 6.3.12
The empty type (Void) Structure 6.3.14 Lemma 6.3.15
The natural numbers (Nat) Structure 6.3.16 Lemma 6.3.25
A single universe (U0) Structure 6.4.17 Theorem 6.4.22
A universe hierarchy (U𝑖) Exercise 6.15 Lemma 6.4.23

Figure 6.1: Table of categorical reformulation of the connectives of type theory

In particular, a model of type theory with Π and Unit consists of Definition 6.1.11
satisfying the additional requirements described in Lemmas 6.2.5 and 6.2.20.

6.2 Pullback squares and Π, Σ, Eq, Unit
We now continue our quest to reformulate Definition 3.4.2 in more categorical terms by
turning our attention to connectives with mapping-in specifications: Π, Unit, Σ, and Eq.
As with contexts and substitutions, our goal is to find equivalent “repackaged” definitions
which consolidate the operations and equations for each connective.

Notation 6.2.1. In the previous section, we were careful to subscript TyM (−), TmM (−,−),
etc. with M to emphasize that they were part of the data of some model M. However,
in this section the notational burden of subscripting virtually every operation with M
outweighs the benefits of being explicit. Accordingly, within this section we fix a model
M and write e.g. Ty rather than TyM .

6.2.1 The unit type

We begin with Unit, as it is the simplest case. Let us begin with by recalling the relevant
portions of Definition 3.4.2 which are required to interpret the rules of theUnit (Section 2.4):

Structure 6.2.2. A unit type structure onM consists of the following:

• An operation Unit : {Γ : Cx} → Ty(Γ)

• For every substitution 𝛾 : Sb(Δ, Γ) an equation Unit = Unit [𝛾]

(2025-05-02) Pullback squares and Π, Σ, Eq, Unit 209

• A collection of isomorphisms 𝜄 : (Γ : Cx) → Tm(Γ,Unit) � {★}

• For every substitution 𝛾 : Sb(Δ, Γ) an equation 𝜄Δ ◦ 𝛾∗ = 𝜄Γ .1

Let us begin by noting that our prior intuition that these equations enforced naturality
was justified:

Lemma 6.2.3. Unit and the associated equations form a natural transformation Unit :
1 Ty.

To recast 𝜄 into a natural transformation, we note that there is a presheaf sending Γ to
Tm(Γ,Unit). In fact, one can construct this functor by pulling back Tm• Ty along the
map Unit : 1 Ty. In light of this, we denote this presheaf by Unit∗Tm•.
Exercise 6.4. Check that Tm• ×Ty 1 � Tm(−,Unit −).

Lemma 6.2.4. 𝜄 and its equations form a natural isomorphism Unit∗Tm• � 1.

All told, we can replace our original four points with two:

• a natural transformation Unit : 1 Ty,

• a natural isomorphism Unit∗Tm• � 1.

In fact, we can bundle these two points into one:

Lemma 6.2.5 (Categorical reformulation of Unit). A unit type structure onM is equivalent
to a choice of pullback of the following shape:

1

1

Tm•

Ty

𝜋

(6.2)

Proof. The natural transformation Unit : 1 Ty is precisely what is required to construct
the base of this pullback and the natural isomorphism ensures is equivalent to the data of
the top map together with the property that it forms a pullback. □

This result leads us to a reformulation of our slogan for specifying types with amapping-
in universal property: they ought to be determined by a pullback square involving 𝜋 . Before
crystallizing this slogan, we consider a slightly less trivial example to see the pattern more
clearly.

1This requirement is vacuous since both sides are maps into {★}, but we include it for consistency.

(2025-05-02) Pullback squares and Π, Σ, Eq, Unit 210

6.2.2 The extensional equality type

We next turn our attention to the extensional equality type. Once more, we begin by
isolating the subset of Definition 3.4.2 required to interpret the rules of Eq given in
Section 2.4.4.

Structure 6.2.6. An equality structure on M consists of the following operations and
equations:

• An operation

Eq : {Γ : Cx}(𝐴 : Ty(Γ)) → Tm(Γ, 𝐴) → Tm(Γ, 𝐴) → Ty(Γ)

• For every substitution 𝛾 : Sb(Δ, Γ) along with 𝐴 : Ty(Γ) and 𝑎, 𝑏 : Tm(Γ, 𝐴), an
equation

Eq(𝐴[𝛾], 𝑎[𝛾], 𝑏 [𝛾]) = Eq(𝐴, 𝑎, 𝑏) [𝛾]

• A collection of isomorphisms

𝜄 : (Γ : Cx) (𝐴 : Ty(Γ)) (𝑎, 𝑏 : Tm(Γ, 𝐴)) → Tm(Γ, Eq(Γ, 𝐴, 𝑎, 𝑏)) � {★ | 𝑎 = 𝑏}

• For every substitution 𝛾 : Sb(Δ, Γ) and 𝐴 : Ty(Γ) and 𝑎, 𝑏 : Tm(Γ, 𝐴), an equation

𝜄Δ(𝐴[𝛾], 𝑎[𝛾], 𝑏 [𝛾]) ◦ 𝛾∗ = 𝜄Γ (𝐴, 𝑎, 𝑏)

Once more, we wish to parlay these operations and equations into natural transfor-
mations into Ty and Tm•. However, this time there is non-trivial formation data: 𝐴 along
with 𝑎, 𝑏. Accordingly, the domain of natural transformation Eq is not 1 like with Unit,
but instead a presheaf whose value at Γ is

∑
𝐴:Ty (Γ) Tm(Γ, 𝐴) × Tm(Γ, 𝐴). We can construct

this presheaf out of Ty and Tm•:
Exercise 6.5. Show (Tm• ×Ty Tm•)Γ � ∑

𝐴:Ty (Γ) Tm(Γ, 𝐴) × Tm(Γ, 𝐴).

In light of the above exercise, the following is nearly a tautology.

Lemma 6.2.7. The operation Eq and the equations around it are equivalent to a natural
transformation Tm• ×Ty Tm• Ty.

We next turn to the isomorphism 𝜄. This step requires some creativity, as both
Tm(Γ, Eq(𝐴, 𝑎, 𝑏)) and {★ | 𝑎 = 𝑏} depend on Γ, 𝐴, 𝑎, and 𝑏. Accordingly, 𝜄 is a family
of isomorphisms between objects indexed not just over the context but on the forma-
tion data as well; it consists not merely a natural isomorphism in Pr(Cx) but instead in

(2025-05-02) Pullback squares and Π, Σ, Eq, Unit 211

Pr(
∫
Cx Tm

• ×Ty Tm•). Accordingly, we are asking for a natural transformation between
the following two presheaves:

𝑋 (Γ, 𝐴, 𝑎, 𝑏) = Tm(Γ, Eq(𝐴, 𝑎, 𝑏)) 𝑌 (Γ, 𝐴, 𝑎, 𝑏) = {★ | 𝑎 = 𝑏}

Lemma 6.2.8. 𝜄 organizes into an isomorphism 𝑋 � 𝑌 in Pr(
∫
Cx Tm

• ×Ty Tm•).

Our final step is to use the equivalence Pr(
∫
Cx Tm

•×TyTm•) ≃ Pr(Cx)/Tm•×TyTm• to present
this isomorphism in Pr(Cx).
Exercise 6.6. Under the above equivalence, show that 𝑋 is isomorphic to the left hand
vertical map of the following diagram:

Eq∗Tm•

Tm• ×Ty Tm•

Tm•

Ty
Eq

(6.3)

Exercise 6.7. Under the above equivalence, show that 𝑌 is isomorphic to the diagonal
map Tm• Tm• ×Ty Tm•.

Accordingly, 𝜄 determines a natural isomorphism between Eq∗Tm• � Tm• fitting into
a commuting triangle:

Tm• Eq∗Tm•

Tm• ×Ty Tm•

Let us recall that this top map has a recognizable name: it is the natural transformation
corresponding to refl. If we paste this commuting triangle onto the end of Diagram 6.3,
we arrive at the following characterization of extensional equality types:

(2025-05-02) Pullback squares and Π, Σ, Eq, Unit 212

Lemma 6.2.9 (Categorical reformulation of Eq). An equality structure on M is equivalent
to a a choice of pullback square of the following form:

Tm•

Tm• ×Ty Tm•

𝛿

Tm•

Ty

refl

𝜋

Eq

In fact, here we can see all the key elements of the equality type at play: the domain
and codomain of the left map is the introduction and formation data of Eq with the top
and bottom horizontal maps encoding the introduction and formation rules. Finally, the
fact that the square is a pullback encodes the elimination principle (along with its 𝛽 and 𝜂
equations). All told, we arrive at a categorical version of Slogan 2.4.4:

Slogan 6.2.10. A connective Θ with a mapping-in universal property is determined by a
choice of pullback of the following shape:

𝐼Θ

𝐹Θ

Tm•

Ty

introΘ

𝜋

formΘ

Here 𝐹Θ encodes the formation data of Θ, 𝐼Θ the introduction data, and the top and bottom
maps the introduction and formation operations, respectively. The elimination rule along
with all the equations are handled by naturality and the universal property of a pullback.

6.2.3 An interlude: polynomial functors

Our next goal will be to apply Slogan 6.2.10 to Π and Σ, but these types are substantially
more complicated that Eq and Unit. The wrinkle is the formation and introduction data
involve premises which hypothesize over variables. For instance, the formation data of
both Π and Σ are presheaves of the following shape:

Γ ↦→ ∑
𝐴:Ty (Γ) Ty(Γ.𝐴)

We now show that, remarkably, operations like these—those which hypothesize over a
variable—also admit an elegant description within Pr(Cx). First, we lay some groundwork.
We begin with the following result (see, for instance, Awodey [Awo10, Corollary 9.17]).

(2025-05-02) Pullback squares and Π, Σ, Eq, Unit 213

Lemma 6.2.11. If 𝑓 : C D then 𝑓 ∗ : Pr(D) Pr(C) has a right adjoint 𝑓∗.

Theorem 6.2.12. The pullback functor 𝑓 ∗ : Pr(C)/𝑌 Pr(C)/𝑋 admits a right adjoint 𝑓∗.

Proof. Passing along the equivalences Pr(C)/𝑋 ≃ Pr(
∫
𝑋) and Pr(C)/𝑌 ≃ Pr(

∫
𝑌), we must

show that the precomposition functor (
∫
C 𝑓)

∗ : Pr(
∫
𝑌) → Pr(

∫
𝑋) has a right adjoint. We

now apply Lemma 6.2.11. □

We now show that we can model “a type or term in an extended context” using 𝜋∗.

Notation 6.2.13. We write𝑋 ∗ for the pullback functor𝑋 1 or, equivalently, the functor
𝑌 ↦→ 𝑋 × 𝑌 . Furthermore, we write 𝑌! for the forgetful functor C/𝑌 C (the left adjoint
to 𝑌 ∗).

Definition 6.2.14. If 𝑓 : 𝑋 𝑌 is a map in Pr(C) the polynomial functor over 𝑓 P𝑓 :
Pr(C) Pr(C) is defined as follows:

P𝑓 = 𝑌! ◦ 𝑓∗ ◦ 𝑋 ∗

Lemma6.2.15 (Awodey [Awo18, Proposition 6]). There is an isomorphism between P𝜋 (Ty) Γ
and sets of pairs

∑
𝐴:Ty (Γ) Ty(Γ.𝐴).

Proof. We prove this through the Yoneda lemma:

P𝜋 (Ty) Γ � homPr(C) (y(Γ), P𝜋 (Ty))

Let us break homPr(C) (y(Γ), P𝜋 (Ty) = Ty!𝜋∗(Tm•)∗Ty) into two halves: a morphism𝐴 :
y(Γ) Ty (equivalently, an element of Ty(Γ)) and amorphism homPr(Cx)/Ty (𝐴, 𝜋∗(Tm•)∗Ty).
Let us further investigate the second morphism:

homPr(C)/Ty (𝐴, 𝜋∗Ty)
� homPr(C)/Tm• (y(Γ) ×Ty Tm•, (Tm•)∗Ty)
� homPr(C) (y(Γ.𝐴), Ty)
� Ty(Γ.𝐴) □

We can replay exactly this proof with Tm• to obtain this following:

Lemma 6.2.16. P𝜋 (Tm•) Γ � ∑
𝐴:Ty (Γ)

∑
𝐵:Ty (Γ.𝐴) Tm(Γ.𝐴, 𝐵).

One last result is necessary: we wish to find a presheaf which encodes the formation
data for a Σ-type: ∑

𝐴:Ty (Γ)
∑
𝐵:Ty (Γ.𝐴)

∑
𝑎:Tm (Γ,𝐴) Tm(Γ, 𝐵 [id.𝑎])

(2025-05-02) Pullback squares and Π, Σ, Eq, Unit 214

This is slightly more complex (Awodey [Awo18] uses the internal language to give a
succinct description of this presheaf). The most straightforward approach is define such a
presheaf manually:

𝑃 (Γ) = ∑
𝐴:Ty (Γ)

∑
𝐵:Ty (Γ.𝐴)

∑
𝑎:Tm (Γ,𝐴) Tm(Γ, 𝐵 [id.𝑎])

Exercise 6.8. Define the functorial action of 𝑃 using substitution.

We note—more for completeness than necessity—that it is possible to build this presheaf
just using P𝜋 and other purely categorical constructs:

Lemma 6.2.17 (Awodey [Awo18, Remark 13],Uemura [Uem21, Lemma 6.2.1]). There is a
canonical square of the following form and, moreover, it is a pullback:

𝑃

P𝜋 (Ty) ×Ty Tm•

Tm•

Ty

𝜋

𝜖
(6.4)

Here 𝜖 is the counit of the adjunction 𝜋∗ ⊣ 𝜋∗.

Proof. For concision, we write 𝑋 = P𝜋 (Ty) ×Ty Tm• within this proof. First, we note that
the canonical square is defined using the evident projections from 𝑃 . To show that this
square is a pullback, we use the Yoneda lemma to characterize 𝑋 ×Ty Tm• whereby it will
be clear that the unique induced map 𝑃 𝑋 ×Ty Tm• is an equivalence. To do this, we
apply the Yoneda lemma such that it suffices to characterize hom(y(Γ), 𝑋 ×Ty Tm•). By
universal property, this consists of the following:

• an element of hom(y(Γ), Tm•) or, equivalently, 𝐵𝑎 : Ty(Γ) and 𝑏 : Tm(Γ, 𝐵𝑎).

• an element of hom(y(Γ), P𝜋 (Ty) ×Ty Tm•) or, equivalently, 𝐴 : Ty(Γ) and 𝐴 :
Tm(Γ, 𝐴) along with 𝐵 : Ty(Γ.𝐴) (the latter by Lemma 6.2.15)

• an equality 𝐵 [id.𝑎] = 𝐵𝑎 . □

We define 𝜋 ⊗ 𝜋 : 𝑃 P𝜋 (Ty) to be the composite:

𝑃 P𝜋 (Ty) ×Ty Tm• P𝜋 (Ty)

Hereafter we refer to 𝑃 as dom(𝜋 ⊗ 𝜋). This map projects (𝐴, 𝐵, 𝑎, 𝑏) onto (𝐴, 𝐵).

(2025-05-02) Pullback squares and Π, Σ, Eq, Unit 215

6.2.4 Dependent products and sums

Having expended the effort to calculate the effect of these polynomial functors in Pr(Cx),
it requires only a little more effort to apply Slogan 6.2.10 to dependent products and sums.

We begin with dependent products. In the now familiar routine, we begin by isolating
the structure on a model needed to interpret dependent products.

Structure 6.2.18. A dependent product structure onM consists of the following opera-
tions and equations:

• An operator Π : {Γ : Cx}(𝐴 : Ty(Γ)) → Ty(Γ.𝐴) → Ty(Γ)

• For every 𝛾 : Sb(Δ, Γ) along with 𝐴 : Ty(Γ) and 𝐵 : Ty(Γ.𝐴), an equality

Π(𝐴, 𝐵) [𝛾] = Π(𝐴[𝛾], 𝐵 [𝛾 .𝐴])

• A family of isomorphisms:

𝜄 : {Γ : Cx}(𝐴 : Ty(Γ)) (𝐵 : Ty(Γ.𝐴)) → Tm(Γ,Π(𝐴, 𝐵)) � Tm(Γ.𝐴, 𝐵)

• For every 𝛾 : Sb(Δ, Γ) along with 𝐴 : Ty(Γ) and 𝐵 : Ty(Γ.𝐴), an equality

𝜄 (𝐴[𝛾], 𝐵 [𝛾 .𝐴]) ◦ 𝛾∗ = 𝛾∗ ◦ 𝜄 (𝐴, 𝐵)

In light of Lemma 6.2.15, we can bundle together Π into a natural transformation:

Lemma 6.2.19. Π and its equation organize into a map P𝜋 (Ty) Ty.

Moreover, by the same reasoning as we applied in the case of Eq, the isomorphism
𝜄 is equivalent to a natural isomorphism P𝜋 (Tm•) � Π∗Tm• fitting into the following
commuting triangle:

P𝜋 (Tm•) Π∗Tm•

P𝜋 (Tm•)

All told, we arrive at the following:

(2025-05-02) Orthogonality and Void, Bool, Nat 216

Lemma 6.2.20 (Categorical reformulation of Π). A dependent product structure onM is
equivalent to a choice of pullback square of the following shape:

P𝜋 (Tm•)

P𝜋 (Ty)

P𝜋 (𝜋)

Tm•

Ty

𝜋

The bottom morphism of this pullback square corresponds to Π while the top corresponds to
the introduction form 𝜆 (−).

Finally, we content ourselves with providing “the answer” for dependent sums and
leaving it to the intrepid reader to fill in the details:
Exercise 6.9. Isolate the operations and equations in the style of Definition 3.4.2 necessary
to interpret the rules of dependent sums (Section 2.4.3).

Lemma 6.2.21 (Categorical reformulation of Σ). M supports dependent sums if and only if
it is equipped with a choice of pullback square of the following shape:

dom(𝜋 ⊗ 𝜋)

P𝜋 (Ty)

𝜋 ⊗ 𝜋

Tm•

Ty

𝜋

The bottom morphism of this pullback square corresponds to Σ while the top corresponds to
the introduction form pair.

6.3 Orthogonality and Void, Bool, Nat
We next turn to connectives without a mapping-out property and, in particular, to Void,
Bool, and Nat. Following the notation of Section 6.2, we fix a modelM for this section
and systematically reformulate the requirements for M to support these connectives into
more categorical terms. As before, we will avoid subscripting each operation with M as it
is the only model we discuss in this section.

In light of Section 2.5, it should come as no surprise that to explain these connectives,
we cannot merely rely on Slogan 6.2.10. In fact, we can give a crisp explanation of why
this slogan is doomed to failure for Void:

(2025-05-02) Orthogonality and Void, Bool, Nat 217

Exercise 6.10. Show that there can no pullback diagram of the following shape2

0

1

Tm•

Ty

(Hint: use the representability of 𝜋 .)

Fortunately, the failure of Slogan 6.2.10 to account for types with mapping-out universal
properties provides us with an excuse to introduce the categorical theory of orthogonality.
Roughly, we shall find that while the above square fails to be a pullback, the degree to
which this fails is “invisible” to 𝜋 . This concretizes an intuition presented in Section 2.5:
from the perspective of other types, Void is always empty.
Warning 6.3.1. Following Section 2.5, we shall work with these types as though they have
𝜂 laws. We noted in Section 2.5.4 that these principles were derivable in the presence of Eq,
but it is easier to specify e.g., Bool if we assume that 𝜂-principles are explicitly included.
We revisit this in Section 6.3.4 where we show how to specify inductive types without
unicity principles as would be standard for e.g., intensional type theory.

6.3.1 Orthogonality and Bool

We will work our way towards a definition of orthogonal maps by investigating Bool. We
start with Bool over the simpler Void as the latter is a bit too simple (both trivial formation
data and no introduction rules) which makes it difficult to see some of parts of the story.
Let us begin by recalling the operations and equations governing this type:

Structure 6.3.2. A boolean structure onM consists of the following operations, equations,
and properties:

• An operator Bool : {Γ : Cx} → Ty(Γ)

• An equation Bool [𝛾] = Bool for every 𝛾 : Sb(Δ, Γ).

• A pair of operators true, false : {Γ : Cx} → Tm(Γ,Bool)

• Equations true [𝛾] = true and false [𝛾] = false for every 𝛾 : Sb(Δ, Γ).
2The authors once ran headlong into this fact as part of a project with Jonathan Sterling in 2019. The

result was an extremely elegant construction which sadly only applied under unsatisfiable hypotheses.

(2025-05-02) Orthogonality and Void, Bool, Nat 218

Finally, we require that the following maps are bijections for all Γ and 𝐴 ∈ Ty(Γ.Bool):

(−[id.true],−[id.false]) : †
Tm(Γ.Bool, 𝐴) � Tm(Γ, 𝐴[id.true]) × Tm(Γ, 𝐴[id.false])

We will refer to the final point in this list as Property † as it will bear the brunt of our
scrutiny.

Inspecting the rules and equations for Bool, true, and false, we see that they all
organize into natural transformations e.g.,

1 Tm•

Ty

true

Bool

Here, the commutativity expresses the fact that true has the expected type. We can place
true and false in the same diagram by using 1

∐
1 in Pr(Cx):

1
∐

1

1

Tm•

Ty

[true, false]

Bool
(6.5)

Just as we have seen in Exercise 6.10, this square is never a pullback square. We can
‘measure’ the failure of Diagram 6.5 to be a pullback by studying the induced map 𝑖 :
1
∐

1 1 ×Ty Tm• = Bool∗Tm•; the square is a pullback if and only if 𝑖 is an isomorphism.
Unfolding definitions, 𝑖 is the map which includes true, false into Tm(Γ,Bool). This

will never be an isomorphism (think of variable elements of Bool) but it should be an
isomorphism “from the perspective of other types”. This is the force of the final property
in the list governing booleans. We begin by restructuring this property slightly to see how
it is really a fact about 𝑖 .

First, we note that Tm(Γ.Bool, 𝐴) is equivalent to the set of sections of the weakening
map Γ.Bool.𝐴 Γ.Bool. For Tm(Γ, 𝐴[true]) and Tm(Γ, 𝐴[true]), we can combine the
above remark about sections with Exercise 6.3. In particular, a pair of elements from

(2025-05-02) Orthogonality and Void, Bool, Nat 219

Tm(Γ, 𝐴[true]) and Tm(Γ, 𝐴[true]) corresponds a choice of dotted top arrow of the fol-
lowing diagram:

y(Γ)∐y(Γ)

y(Γ.Bool)

[
y(id .true),
y(id .false)

] y(Γ.Bool.𝐴)

y(Γ.Bool)
id

Note that we must express this diagram in Pr(Cx) via the Yoneda embedding because there
is no guarantee thatCxwill have enough coproducts. Let us denote [y(id.true), y(id.false)]
by ∇Γ in what follows.

In light of these observations, the Property † is equivalent to requiring that for all Γ
and 𝐴 ∈ Ty(Γ), whenever there is a commuting square of the following shape, there is a
unique dashed map making it commute:

y(Γ)∐y(Γ)

y(Γ.Bool)

∇Γ

y(Γ.Bool.𝐴)

y(Γ.Bool)
id

We can give a more conceptual description of ∇Γ by “factoring out” the Γ. In particular, note
that y(Γ)∐y(Γ) � y(Γ) × (1∐1) and y(Γ.Bool) � y(Γ) × Bool∗Tm•. Accordingly, ∇Γ =

y(Γ) × ∇1. In fact, we have already encountered ∇1: this is the map 𝑖 : 1
∐

1 Bool∗Tm•

which measures the failure of Diagram 6.5 to be a pullback. We therefore rewrite the above
diagram to the following equivalent:

y(Γ)∐y(Γ)

y(Γ.Bool)

y(Γ) × 𝑖

y(Γ.Bool.𝐴)

y(Γ.Bool)
id

Our next goal is to link this property to the following definition from category theory:

Definition 6.3.3. If 𝑖 : 𝐴 𝐵 and 𝑓 : 𝑋 𝑌 are morphisms in C, we say that 𝑖 ⋔ 𝑓 (𝑖 is
orthogonal to 𝑓) if every commuting square of the following shape has a unique diagonal

(2025-05-02) Orthogonality and Void, Bool, Nat 220

map making it commute:

𝐴

𝐵

𝑖

𝑋

𝑌

𝑓

We also say that 𝑖 is left orthogonal to 𝑓 and 𝑓 is right orthogonal to 𝑖 .

Remark 6.3.4. One should interpret 𝑖 ⋔ 𝑓 as 𝑓 “believing” that 𝑖 is an isomorphism (or,
dually, that 𝑖 believes 𝑓 is an isomorphism). This viewpoint is foundational in homotopical
algebra, where one systematically studies orthogonality and weaker notions thereof. ⋄

Property † as we have presented it above then almost that y(Γ) × 𝑖 is orthogonal to p.
However, there is a slight mismatch: we have unique lifts only when the bottom map is id,
while orthogonality requires arbitrary maps. The following result clarifies this distinction:

Exercise 6.11. Show that if 𝑖 : 𝐴 𝐵 and 𝑓 : 𝑋 𝑌 are morphisms in C then 𝑖 ⋔ 𝑓 if
and only if each 𝑔0 : 𝐵 𝑌 and 𝑔1 : 𝐴 𝐵 ×𝑌 𝑋 , the following diagram has a unique
diagonal map:

𝐴

𝐵

𝑖

𝑋 ×𝑌 𝐵

𝐵
id

We now observe that weakening maps Γ.Bool.𝐴 Γ.Bool are precisely the pullbacks
𝜋 along a map Γ.Bool Ty. Combining this with the above exercise, we conclude the
following:

Lemma 6.3.5. Property † is equivalent to requiring y(Γ) × 𝑖 ⋔ 𝜋 for every Γ.

Putting this together, we conclude the following:

Lemma 6.3.6 (Categorical reformulation of Bool). A boolean structure on M is equivalent
to a choice of diagram Diagram 6.5 such that the gap map 𝑖 satisfies y(Γ) × 𝑖 ⋔ 𝜋 for every
Γ : Cx.

(2025-05-02) Orthogonality and Void, Bool, Nat 221

Exercise 6.12. Given 𝐹 : 𝐼 C→ such that 𝐹 (𝑖) ⋔ 𝑔 for all 𝑖 : 𝐼 , show that lim−−→𝑖
𝐹 (𝑖) ⋔ 𝑔.

Conclude that Property † holds if and only if 𝑋 × 𝑖 ⋔ 𝜋 for every 𝑋 : Pr(Cx).

Before we introduce a refinement of Slogan 2.5.3, we replay this story for coproduct
types to see an example with non-trivial formation data.

6.3.2 Coproducts

As before, we begin by collecting together the operations and equations necessary for a
model to support coproducts:

Structure 6.3.7. A coproduct structure on M consists of the following operations, equa-
tions, and properties:

• An operator + : {Γ : Cx} → Ty(Γ) → Ty(Γ) → Ty(Γ)

• An equation (𝐴 + 𝐵) [𝛾] = 𝐴[𝛾] + 𝐵 [𝛾] for every 𝛾 : Sb(Δ, Γ) and 𝐴, 𝐵 : Ty(Γ).

• A pair of operators

inl : {Γ : Cx}(𝐴, 𝐵 : Ty(Γ)) → Tm(Γ, 𝐴) → Tm(Γ, 𝐴 + 𝐵)
inr : {Γ : Cx}{𝐴, 𝐵 : Ty(Γ)} → Tm(Γ, 𝐵) → Tm(Γ, 𝐴 + 𝐵)

• Equations inl(𝑎) [𝛾] = inl(𝑎[𝛾]) and inr(𝑏) [𝛾] = inr(𝑏 [𝛾]) and for every 𝛾 :
Sb(Δ, Γ), 𝐴, 𝐵 : Ty(Γ), 𝑎 : Tm(Γ, 𝐴) and 𝑏 : Tm(Γ, 𝐵).

• Proofs that the following maps are bijections for all Γ and 𝐴, 𝐵 ∈ Ty(Γ) and 𝐶 ∈
Ty(Γ.𝐴 + 𝐵)

(−[p .inl(q)],−[p .inr(q)]) :
Tm(Γ.𝐴 + 𝐵,𝐶)
� Tm(Γ.𝐴,𝐶 [p .inl(q)]) × Tm(Γ.𝐵,𝐶 [p .inr(q)])

We once more refer to this final property as Property † and, just as before, note that
we can use coproducts in Pr(Cx) to capture the first four items with a single commuting
diagram in Pr(Cx):

(Tm• × Ty)∐(Ty × Tm•)

Ty × Ty

[𝜋 × id, id × 𝜋]

Tm•

Ty

[inl, inr]

𝜋

+ (6.6)

(2025-05-02) Orthogonality and Void, Bool, Nat 222

We now turn our attention to Property † and connecting it with orthogonality. As
before, Diagram 6.6 induces a map 𝑖 : (Tm• × Ty)∐(Ty × Tm•) +∗Tm•:

+∗Tm•

Ty × Ty

Tm•

Ty

𝜋

+

(Tm• × Ty)∐(Ty × Tm•)
𝑖

In fact, more is true. Since the above diagram commutes, we know that 𝑖 induces a
morphism in Pr(Cx)/Ty×Ty between [𝜋 × id, id × 𝜋] and 𝜋1. Something similar was also
true for Bool but there it was trivial: 𝑖 induced a morphism in the slice category of 1
which is simply equivalent to Pr(Cx). This is a reflection of the fact that the type of
coproducts—unlike that of booleans—has non-trivial formation data. Consequently, the
introduction operation sending e.g., an element of𝐴 to an element of𝐴+𝐵 is parameterized
not just by the context but also by the two types𝐴 and 𝐵. This additional parameterization
gives rise to a natural transformation in Pr(

∫
Cx Ty × Ty) or, equivalently, Pr(Cx)/Ty×Ty.

To get a better understanding of 𝑖 , let us calculate a little with it. Fix a pair of types
𝐴, 𝐵 : y(Γ) Ty and consider the pullback functor (𝐴, 𝐵)∗ : Pr(Cx)/Ty×Ty Pr(Cx)/y(Γ) .
Applying this to 𝑖 , we obtain the following morphism in Pr(Cx)/y(Γ) :

𝐴∗Tm•∐𝐵∗Tm• (𝐴, 𝐵)∗ +∗ Tm•

y(Γ)

Exercise 6.13. Carefully check that (𝐴, 𝐵)∗(𝑖) has the required form.

We can further simplify this by noting that 𝐴∗Tm• � y(Γ.𝐴) and 𝐵∗Tm• � y(Γ.𝐵).
Moreover, more-or-less by definition of + : Ty × Ty Ty there is an isomorphism
(𝐴, 𝐵)∗ +∗ Tm• � y(Γ.𝐴 + 𝐵). All told then, (𝐴, 𝐵)∗(𝑖) gives, up to isomorphism, the
following map over y(Γ):

∇Γ,𝐴,𝐵 : y(Γ.𝐴)∐y(Γ.𝐵) y(Γ.𝐴 + 𝐵)

Following our intuitions from the boolean case, we arrive at the following lemma:

Lemma 6.3.8. Property † is equivalent to requiring∇Γ,𝐴,𝐵 ⋔ 𝜋 for all Γ : Cx and𝐴, 𝐵 : Ty(Γ).

(2025-05-02) Orthogonality and Void, Bool, Nat 223

Proof. Recall that ∇Γ,𝐴,𝐵 ⋔ 𝜋 holds if and only if for each 𝐶 : y(Γ.𝐴 + 𝐵) Ty (equiva-
lently, a type𝐶 : Ty(Γ.𝐴 +𝐵)), every diagram of the following shape has a unique diagonal
map:

y(Γ)∐y(Γ)

y(Γ.𝐴 + 𝐵)

∇Γ,𝐴,𝐵

y(Γ.𝐴 + 𝐵.𝐶)

y(Γ.𝐴 + 𝐵)

p

id

Unfolding and using the full and faithfulness of y, this is equivalent to Property †. □

Our final step is to state the relationship between ∇Γ,𝐴,𝐵 and 𝑖 in a slightly tidier form.
To this end, we recall a basic fact about limits in slice categories:

Lemma 6.3.9. If 𝑓 : 𝐴 𝐶 and 𝑔 : 𝐵 𝐶 are objects of C/𝐶 then the product 𝑓 × 𝑔 : C/𝐶
is given by the composite 𝐴 ×𝐶 𝐵 → 𝐴 → 𝐶 (or, equivalently, 𝐴 ×𝐶 𝐵 → 𝐵 → 𝐶).

Let us write 𝑈𝐶 for the forgetful functor C/𝐶 C. We have already seen that (up to
isomorphism) 𝑈y(Γ) ((𝐴, 𝐵)∗(𝑖)) = ∇Γ,𝐴,𝐵 whenever 𝐴, 𝐵 : y(Γ) Ty. In light of the above,
however, we could equivalently say that 𝑈Ty×Ty((𝐴, 𝐵) × 𝑖) = ∇Γ,𝐴,𝐵 where we now regard
(𝐴, 𝐵) as an object of Pr(Cx)/Ty×Ty.

Lemma 6.3.10. Property † holds if and only if𝑈 ((𝐴, 𝐵) ×𝑖) ⋔ 𝜋 for every𝐴, 𝐵 : y(Γ) Ty.

Let us note that𝑈𝐶 : C/𝐶 C has a right adjoint whenever C has products: 𝑋 ↦→ 𝐶×𝑋 .
Moreover, for any adjunction 𝐿 ⊣ 𝑅 we have the following:
Exercise 6.14. Fix 𝐿 : C D such that 𝐿 ⊣ 𝑅, if 𝑖 : 𝐴 𝐵 : C and 𝑓 : 𝑋 𝑌 : D then
𝐿(𝑖) ⋔ 𝑓 if and only if 𝑖 ⋔ 𝑅(𝑓).

Accordingly, we may rephrase Property † one last time:

Lemma 6.3.11. Property † holds if and only if (𝐴, 𝐵) × 𝑖 ⋔ (Ty × Ty) × 𝜋 for every
𝐴, 𝐵 : y(Γ) Ty.

In light of Exercise 6.12 along with the fact that Pr(Cx)/Ty×Ty is generated under
colimits by objects of the form y(Γ) Ty × Ty, we may replace the above condition with
the requirement that𝑈 (𝑋 × 𝑖) ⋔ 𝜋 for every 𝑋 : Pr(Cx)/Ty×Ty.

Lemma 6.3.12 (Categorical reformulation of +). A coproduct structure on M is equivalent
to a choice of commuting square (Diagram 6.6) such that the gap map 𝑖 satisfies (𝑋 × 𝑖) ⋔
(Ty × Ty) × 𝜋 for every 𝑋 : Pr(Cx)/Ty×Ty.

(2025-05-02) Orthogonality and Void, Bool, Nat 224

We may consolidate this into an extension of Slogan 6.2.10 which accounts for non-
recursive inductive types:

Slogan 6.3.13. A non-recursive inductive type Υ is specified by a commuting square:

𝐼Υ

𝐹Υ

Tm•

Ty

introΥ

formΥ

Where formΥ is the formation map and introΥ is the introduction operation. Moreover, if
𝑖 : 𝐼 form∗

ΥTm
• in Pr(Cx)/𝐹 is the gap map, we require that 𝑋 × 𝑖 ⋔ 𝐹 × 𝜋 for all

𝑋 : Pr(Cx)/𝐹 .

We can apply this slogan to quickly reformulate the specification of Void:

Structure 6.3.14. An empty type structure on a model M consists of the following
operations, equations, and properties:

• An operator Void : {Γ : Cx} → Ty(Γ)

• An equation Void [𝛾] = Void for every 𝛾 : Sb(Δ, Γ).

Finally, we require that the following unique map is a bijection all Γ and 𝐴 ∈ Ty(Γ.Void):

Tm(Γ.Void, 𝐴) → {★}

Lemma 6.3.15 (Categorical reformulation of Void). An empty type structure on a model is
equivalent to a the following:

• A commuting square of the following form:

0

1

Tm•

Ty
Void

• The gap map 𝑖 : 0 Void∗Tm• satisfies 𝑋 × 𝑖 ⋔ 𝜋 for every 𝑋 : Pr(Cx).

(2025-05-02) Orthogonality and Void, Bool, Nat 225

6.3.3 The type of natural numbers

Just as in Section 2.5, the type of natural numbers proves to be more difficult than Void,
Bool, or +. As before, the complexity is a result of the recursive nature of Nat which
means we cannot consider just an orthogonality condition to describe Nat; we must also
have some categorical account of (initial) algebras as introduced in Section 2.5.3.

We begin by recalling the specification of Nat inM:

Structure 6.3.16. A natural number structure on a modelM consists of the following:

• An operation Nat : {Γ : Cx} → Ty(Γ).

• Equations Nat [𝛾] = Nat for all 𝛾 : Sb(Δ, Γ).

• An operation zero : {Γ : Cx} → Tm(Γ,Nat).

• Equations zero [𝛾] = zero for all 𝛾 : Sb(Δ, Γ).

• An operation suc : {Γ : Cx} → Tm(Γ,Nat) → Tm(Γ,Nat).

• Equations (suc(𝑛)) [𝛾] = suc(𝑛[𝛾]) for all 𝛾 : Sb(Δ, Γ) and 𝑛 : Tm(Γ,Nat).

• Given a type 𝐴 : Ty(Γ.Nat) along with terms 𝑎𝑧 : Tm(Γ, 𝐴[id.zero]) and 𝑎𝑠 :
Tm(Γ.Nat.𝐴,𝐴[p2.suc(q [p])]), there is a unique term 𝑎 : Tm(Γ.Nat, 𝐴) satisfying
the following two equations:

𝑎[id.zero] = 𝑎𝑧
𝑎[p.suc(q)] = 𝑎𝑠 [id.𝑎]

As before, we refer to the final point as Property †.

The first six points can be compactly expressed using natural transformations in Pr(Cx)
as we have seen already. They are precisely equivalent to the following two pieces of data:

• A morphism Nat : 1 Ty.

• A morphism 𝛼 : 1
∐

Nat∗Tm• Nat∗Tm•.

Initial algebras, categorically In fact, the morphism 𝛼 can be said to shape Nat∗Tm•

into an algebra for a certain functor. To state this more precisely, we recall the definition
of an algebra:

Definition 6.3.17. If 𝐹 : C C is a functor, an 𝐹 -algebra is an object 𝐶 along with a
morphism 𝑎 : 𝐹 (𝐶) 𝐶 .

(2025-05-02) Orthogonality and Void, Bool, Nat 226

Definition 6.3.18. Ahomomorphism between 𝐹 -algebras𝑎 : 𝐹 (𝐶) 𝐶 and𝑏 : 𝐹 (𝐷) 𝐷

is a morphism 𝑓 : 𝐶 𝐷 such that 𝑓 ◦ 𝑎 = 𝑏 ◦ 𝐹 (𝑓):

𝐹 (𝐶)

𝐶

𝐹 (𝐷)

𝐷

𝐹 (𝑓)

𝑓

We write Alg(𝐹) for the category of 𝐹 -algebras.

With a category to hand, it is easy to define the initial 𝐹 -algebra for any functor 𝐹 : it is
the initial object of Alg(𝐹) provided such an object exists. Our goal shall be to use this
definition to replay the intuition that Nat is an initial algebra of sorts. To this end, we
shall eventually require the analog of a dependent algebra from Section 2.5.3 so we record
a succinct definition of here:

Definition 6.3.19. The category of dependent 𝐹 -algebras over an 𝐹 -algebra 𝑎 : 𝐹 (𝐶) 𝐶

is the slice category Alg(𝐹)/(𝐶,𝑎) .

Lemma 6.3.20. Aside from Property †, a model supports a type of natural numbers precisely
when there is a natural transformation Nat : 1 Ty along with a choice of 𝛼 of (−∐1)-
algebra structure on Nat∗Tm•.

What remains, as ever, is to account for Property †. In this case, we do not require an
orthogonality condition. We need to record the fact that Nat∗Tm• is, in some sense, the
initial (−∐1)-algebra among types.

To begin with, we note the following:

Lemma 6.3.21. If Γ : Cx then y(Γ.Nat) � y(Γ) × Nat∗Tm• supports the structure of a
(−∐1)-algebra given up to isomorphism by y(Γ) × 𝛼 .

Lemma 6.3.22. If 𝐴 : Ty(Γ.Nat) then 𝑎𝑧 , and 𝑎𝑠 as given in Property † are equivalent to
structuring y(Γ.Nat.𝐴) as a dependent algebra over y(Γ.Nat) via a map:

𝜒𝑎𝑧 ,𝑎𝑠 : y(Γ.Nat.𝐴) + 1 y(Γ.Nat.𝐴)

Lemma 6.3.23. If 𝐴 : Ty(Γ.Nat), 𝑎𝑧 , and 𝑎𝑠 are as given in Property †, the unique existence
of a term 𝑎 corresponds to existence of a unique algebra homomorphism 1 Γ.Nat.𝐴 in
Alg(−∐1)/y(Γ.Nat) .

(2025-05-02) Orthogonality and Void, Bool, Nat 227

This suggests that y(Γ.Nat) ought to be the initial object in Alg(−∐1)/y(Γ.Nat) , but
this is not quite correct. We only have initiality with respect to those dependent algebras
of the form Γ.Nat.𝐴 Γ.Nat for some 𝐴.

Definition 6.3.24. Given an 𝐹 -algebra (𝑌, 𝛼), a representable dependent 𝐹 -algebra 𝑋 𝑌

is a dependent algebra over 𝑌 such that 𝑋 𝑌 is a pullback of 𝜋 .

Lemma 6.3.25. A natural number structure on a model of type is equivalent to a natural
transformation Nat : 1 Ty along with a (−∐1)-algebra structure 𝛼 on Nat∗𝜋 such that
for all Γ : Cx, if one restricts the category of dependent algebras over (y(Γ) ×Nat∗𝜋, y(Γ) ×𝛼)
to the full subcategory of representable dependent algebras, y(Γ) × 𝛼 is initial.

Can we simplify this further? Feels a little half-baked. Can we return to this with
the internal language to give a slick definition that way?

6.3.4 Weak orthogonality and inductive types without unicity principles

Recall that our official definition of ETT in Chapter 2 did not include 𝜂 principles for
inductive types. In particular, we chose to omit rules such as the following from our
specification of e.g., Bool:

⊢ Γ cx Γ.Bool ⊢ 𝑎 : 𝐴
Γ.Bool ⊢ 𝑎 = if (q, 𝑎[p.true], 𝑎[p.false]) : 𝐴

We justified this choice with two observations:

• These rules, much like equality reflection, make it vastly harder or even impossible
to construct a normalization algorithm for type theory.

• All of these 𝜂 principles are derivable from the corresponding 𝛽 rules in the presence
of equality reflection.

Accordingly, we reasoned that it was more efficient to have a single rule which com-
promised decidability of type-checking (equality reflection) to ensure that the transition
from ETT to ITT was concentrated within a single connective (Eq).

In this subsection we pay attention to specifying mapping-out types without assuming
an 𝜂 law. IfM supports Eq, these new descriptions are equivalent to those we have already
given. However, if we wished to adapt this discussion from ETT to ITT, it is once again
beneficial to specify mapping-out types without a unicity principle: the difference in
models once more comes down to whether we include Eq or Id in the model. As a bonus,
by investing some effort in describing mapping-out types without an 𝜂 law, we are able to
give a categorical description of when a model supports Id with no additional effort.

(2025-05-02) Orthogonality and Void, Bool, Nat 228

However, the inclusion of the 𝜂 principles in our CwF reformulation of a model has
actually allowed us to simplify various structures. In particular, the 𝜂 rule ensures that the
terms witnessing the elimination rules of various inductive connectives are actually unique.
Accordingly, we were able to recast these elimination principles as various orthogonality
properties: we showed that the elimination rule for e.g., booleans could be recast as
requiring some a dotted map fitting into a commuting square:

y(Γ)∐y(Γ)

y(Γ.Bool)

∇Γ

y(Γ.Bool.𝐴)

y(Γ.Bool)

[𝑎𝑡 , 𝑎 𝑓]

id

𝑎

The commutativity of this diagram corresponds to the 𝛽 equalities of the elimination form:
it states that when 𝑎 is specialized to true or false, it collapses appropriately to 𝑎𝑡 and 𝑎 𝑓 .
The unicity of 𝑎 accounts for the 𝜂 law. If we remove the 𝜂 law from booleans, therefore,
we can no longer expect 𝑎 to exist uniquely.

6.3.4.1 Booleans without a unicity principle

Let us recall the weakened notion of Property † used in Section 2.5.4. M supports booleans
without the 𝜂 law when in addition to the operations Bool, true, and false, it enjoys the
following:

• An operation

if : {Γ : Cx}{𝐴 : Ty(Γ.Bool)}
→ Tm(Γ, 𝐴[id.true]) × Tm(Γ, 𝐴[id.false]) → Tm(Γ.Bool, 𝐴)

• Equations if (𝑎𝑡 , 𝑎 𝑓) [id.true] = 𝑎𝑡 and if (𝑎𝑡 , 𝑎 𝑓) [id.false] = 𝑎𝑡

• Equations if (𝑎𝑡 , 𝑎 𝑓) [𝛾 .Bool] = if (𝑎𝑡 [𝛾], 𝑎 𝑓 [𝛾]) whenever 𝛾 : SbM (Δ, Γ).

These properties combined are weaker than Property †, which essentially stated that
if was unique among operations satisfying the second point (which, in particular, auto-
matically causes it to satisfy the third point). Our goal is to discuss how this weaker set of
properties can be recast categorically. Let us begin by fitting if into a lifting diagram.

Fixing Γ : Cx, 𝐴 : Ty(Γ), 𝑎𝑡 : Tm(Γ, 𝐴[id.true]), and 𝑎 𝑓 : Tm(Γ, 𝐴[id.false]), we see
that the existence of if and the first pair of equations governing it can be summarized by

(2025-05-02) Orthogonality and Void, Bool, Nat 229

the following commuting diagram:

y(Γ)∐y(Γ)

y(Γ.Bool)

∇Γ

y(Γ.Bool.𝐴)

y(Γ.Bool)

[𝑎𝑡 , 𝑎 𝑓]

id

if (𝑎𝑡 , 𝑎 𝑓)

However, we are no longer requiring that this diagonal lift exists uniquely, merely that
some particular chosen lift exists. To integrate the third equation, suppose we are given a
substitution 𝛾 : Sb(Δ, Γ). We require that the following diagram commute:

y(Γ)∐y(Γ)

y(Γ.Bool)

y(Γ.Bool.𝐴)

y(Γ.Bool)

[𝑎𝑡 , 𝑎 𝑓]

id

if (𝑎𝑡 , 𝑎 𝑓)

y(Δ)∐y(Δ)

y(Δ.Bool)

y(𝛾)∐y(𝛾)

y(𝛾 .Bool)
if (𝑎𝑡 [𝛾], 𝑎 𝑓

[𝛾])

(6.7)

In particular, the third equation ensure that more than merely requiring that there
are some collections of lifts to various commuting squares, the choice of lifts are suitably
coherent: the chosen solution to lifting problem for 𝑎𝑡 and 𝑎 𝑓 when restricted along
y(𝛾 .Bool) must match the solution to the lifting problem for 𝑎𝑡 [𝛾] and 𝑎 𝑓 [𝛾].

We summarize this discussion with the following:

Lemma 6.3.26. M supports if and 𝛽 laws if there is a choice of lifting for all diagrams of
the following shape:

y(Γ)∐y(Γ)

y(Γ.Bool)

∇Γ

y(Γ.Bool.𝐴)

y(Γ.Bool)

[𝑎𝑡 , 𝑎 𝑓]

id

if (𝑎𝑡 , 𝑎 𝑓)

Furthermore, if satisfies the final equation just when Diagram 6.7 commutes for all 𝛾 : Δ Γ.

(2025-05-02) Orthogonality and Void, Bool, Nat 230

A digression: stable weak orthogonality structures This is a halfway point between
“the lift is unique” and “there merely exists some lift”. We have encountered the categorical
incarnation of the former (orthogonality). The later is sometimes called weak orthogo-
nality and the halfway point between these two notions needed to encode booleans is
termed stable weak orthogonality. Note that unlike (weak) orthogonality, stable weak
orthogonality is a structure: we must provide an explicit choice of maps which satisfy
some properties. This is in contrast to (weak) orthogonality, where these maps are merely
required to exist (uniquely or not).

Definition 6.3.27. An incoherent stable weak orthogonality structure 𝑠 : (𝑖 : 𝐴 𝐵) ⋔wk
(𝑓 : 𝑋 𝑌) in a category C is an assignment of objects𝐶 and pairs of maps 𝑥 : 𝐶 ×𝐴 𝑋

and 𝑦 : 𝐶 × 𝐵 𝑌 satisfying 𝑓 ◦ 𝑥 = 𝑦 ◦ (𝐶 × 𝑖) to a map 𝑠𝐶,𝑥,𝑦 fitting into the following:

𝐶 ×𝐴

𝐶 × 𝐵

𝐶 × 𝑖

𝑋

𝑌

𝑥

𝑓

𝑦

𝑠𝐶,𝑥,𝑦

We say that 𝑠 is coherent—or, more concisely, a stable weak orthogonality structure
𝑠 : 𝑖 ⋔st 𝑓—if it further satisfies the condition that for any 𝑐 : 𝐷 𝐶 , the following
diagram commutes:

𝐶 ×𝐴

𝐶 × 𝐵

𝑋

𝑌

𝑥

𝑓

𝑦

𝑠𝐶,𝑥,𝑦

𝐷 ×𝐴

𝐷 × 𝐵

𝑐 ×𝐴

𝑐 × 𝐵

𝑠𝐷,𝑥◦(𝑐×𝐴
),𝑦◦(𝑐×𝐵

)

We recall a characterization of stable orthogonality structures due to Awodey [Awo18]:

Lemma 6.3.28. Supposing C has finite products and exponentials, the stable orthogonality
structure 𝑖 : 𝐴 𝐵 ⋔st 𝑓 : 𝑋 𝑌 is equivalent to a section to the canonical map 𝑝 :
𝑋𝐵 𝑋𝐴 ×𝑌𝐴 𝑌 𝐵 .

Proof. By the Yoneda lemma, to construct a map 𝑠 : 𝑋𝐴 ×𝑌𝐴 𝑌 𝐵 𝑋𝐵 such that 𝑝 ◦
𝑠 = id, it suffices to construct a section y(𝑋𝐴 ×𝑌𝐴 𝑌 𝐵) y(𝑋𝐵) to y(𝑝). Unfolding the
data of a natural transformation in this case, for each 𝐶 : C, we must construct an

(2025-05-02) Orthogonality and Void, Bool, Nat 231

assignment hom(𝐶,𝑋𝐴 ×𝑌𝐴 𝑌 𝐵) hom(𝐶,𝑋𝐵) which is natural in 𝐶 . Let us use the
universal properties of pullbacks and exponentials to simplify this:

hom(𝐶,𝑋𝐵) � hom(𝐶×𝐵,𝑋) hom(𝐶,𝑋𝐴×𝑌𝐴𝑌 𝐵) � hom(𝐶×𝐴,𝑋)×hom (𝐶×𝐴,𝑌)hom(𝐶×𝐵,𝑌)

In particular, an element of hom(𝐶,𝑋𝐴 ×𝑌𝐴 𝑌 𝐵) corresponds to commuting square while
elements hom(𝐶,𝑋𝐵) corresponds to commuting squares with a chosen lift:

𝐶 ×𝐴

𝐶 × 𝐵

𝐶 × 𝑖

𝑋

𝑌

𝑓

In other words, a section y(𝑋𝐴 ×𝑌𝐴 𝑌 𝐵) y(𝑋𝐵) corresponds precisely to an assignment
of commuting squares to lifts and the condition naturality of this assignment is exactly the
equation distinguishing a stable weak orthogonality structure from a weak orthogonality
structure. □

By similar reasoning to Exercise 6.11, we obtain the following lemma:

Lemma 6.3.29. An incoherent stable weak orthogonality structure 𝑠 : (𝑖 : 𝐴 𝐵) ⋔wk
(𝑓 : 𝑋 𝑌) is equivalent to an assignment of objects 𝐶 and maps 𝑦 : 𝐶 × 𝐵 𝑋 and
𝑥 : 𝐶 ×𝐴 𝑋 ×𝑌 (𝐶 × 𝐵) satisfying 𝜋2 ◦ 𝑥 = (𝐶 × 𝑖) to a map 𝑠𝐶,𝑥,𝑦 fitting into the
following:

𝐶 ×𝐴

𝐶 × 𝐵

𝐶 × 𝑖

(𝐶 ×𝐴) ×𝐶×𝐵 𝑋

𝐶 × 𝐵

⟨id, 𝑥⟩

𝜋2

id

𝑠𝐶,𝑥,𝑦

𝑠 is coherent if for all 𝑐 : 𝐷 𝐶 then 𝑠𝐶,𝑥,𝑦 ◦ (𝑐 × 𝐵) = ((𝑖 ×𝐴) ×𝑖×𝐵 𝑋) ◦ 𝑠𝐷,𝑥◦(𝑐×𝐴),𝑦◦(𝑐×𝐵) .

Finally, just as done with orthogonality, we can combine Lemma 6.3.26 with the
observations that (1) maps y(Γ.Bool.𝐴) y(Γ.Bool) are precisely the pullbacks of 𝜋 along
maps y(Γ.Bool) Ty and (2) ∇Γ � y(Γ) × 𝑖 where 𝑖 is the gap map 1

∐
1 Bool∗Tm•

to obtain the following:

Lemma 6.3.30. M supports if and its attendant equations just when there is a stable
orthogonality structure 𝑖 ⋔st 𝜋 .

(2025-05-02) Orthogonality and Void, Bool, Nat 232

In total then, M supports booleans without an 𝜂 law just when there is a commuting
square Diagram 6.5 along with a stable weak orthogonality structure 𝑖 ⋔st 𝜋 . The revised
version of Slogan 6.3.13 for types without an 𝜂 law is given as follows:

Slogan 6.3.31. The formation and introduction rules of a non-recursive inductive type Υ are
specified by a commuting square:

𝐼Υ

𝐹Υ

Tm•

Ty

introΥ

formΥ

Where form describes the formation operation and intro the introduction. The elimination
rule without an 𝜂 principle is given by the data of a stable weak orthogonality structure
𝑖 ⋔ 𝐹Υ × 𝜋 where 𝑖 : 𝐼 form∗Tm• in Pr(Cx)/𝐹 is the gap map.

6.3.4.2 Intensional identity types

Finally, we note an important instance of Slogan 6.3.31: the intensional identity type. Here
we reap the rewards of some of our effort in this section, as we are able to give a concise
specification of intensional identity types with essentially no additional effort:

Lemma 6.3.32. M supports an intensional identity type just when it comes equipped with
the following pieces of data:

• A commuting square of the following shape:

Tm•

Tm• ×Ty Tm•

Tm•

Ty

refl

Id

• A stable orthogonality structure Tm• Id∗Tm• ⋔st (Tm•×TyTm•×𝜋) in Pr(Cx)/Tm•×TyTm• .

To model intensional rather than extensional identity types, it is therefore only nec-
essary to swap out the requirement thatM supports Eq to instead require Id and to use
Slogan 6.3.31 rather than Slogan 6.3.13 when specifying inductive types (as they are no
longer equivalent).

(2025-05-02) CwF morphisms and U0,U1,U2, . . . 233

6.4 CwF morphisms and U0,U1,U2, . . .

The final step in our process of convertingDefinition 3.4.2 to amore categorically acceptable
form is to consider universes. We shall take this as an opportunity to also elaborate on
the notion of a homomorphism of models (Definition 3.4.3) to give an slick—if indirect—
characterization of universes as sub-models of type theory.

6.4.1 Homomorphisms of models

The definition of a homomorphism of models of type theory follows the same template as
any algebraic structure: we have maps between all the (families of) sets which we require
commute with all of the operations these sets are closed under.
Example 6.4.1. To see an example of this process in miniature, recall that a group (𝐺, 0, +,−)
consists of (1) a set 𝐺 and (2) three operations 0 : 𝐺 , + : 𝐺 × 𝐺 → 𝐺 and − : 𝐺 → 𝐺

satisfying a handful of equations. We can ‘read off’ the definition of a morphism 𝑓 :
(𝐺, 0𝐺 , +𝐺 ,−𝐺) (𝐻, 0𝐻 , +𝐻 ,−𝐻) from this description. It consists of a function of sets
𝑓0 : 𝐺 𝐻 such that the following equations hold:

𝑓0(0𝐺) = 0𝐻 𝑓0(𝑎 +𝐺 𝑏) = 𝑓0(𝑎) +𝐻 𝑓0(𝑏) 𝑓0(−𝐺𝑎) = −𝐻 𝑓0(𝑎)

We have already given a definition morphisms of models in Definition 3.4.3 but since
there are vastly more sets and operations for models of ETT than for groups, the definition
is rather unwieldy. Our goal is to repackage this definition just as was done for that of
models into a more concise and categorical framework.

Morphisms of models of base type theory

To this end, let us begin by considering type theory without any connectives and models
consisting of only the operations described in Section 6.1 (e.g., plain categories with
families). Let us recall Definition 3.4.3 for this base type theory:

Definition 6.4.2. If M and N are models of base type theory, a homomorphism 𝐹 from
M to N consists of the following data:

• A function 𝐹Cx : CxM CxN

• A family of functions 𝐹Sb (−,−) : (Δ, Γ : CxM) → SbM (Δ, Γ) → SbN (𝐹Cx (Δ), 𝐹Cx (Γ))

• A family of functions 𝐹Ty (−) : (Γ : CxM) → TyM (Γ) → TyN (𝐹Cx (Γ))

• A family of functions

𝐹Tm (−,−) : (Γ : CxM) (𝐴 : TyM (Γ)) → TmM (Γ, 𝐴) → TmN (𝐹Cx (Γ), 𝐹Ty (Γ) (𝐴))

(2025-05-02) CwF morphisms and U0,U1,U2, . . . 234

Moreover, we require that these functions commute with 1, −.−, !, id, ◦, p, q, and substitu-
tion on types and terms. For instance, we the following equations:

𝐹Cx (1M) = 1N 𝐹Sb (Γ,1M) (!M) = !N

We can reformulate homomorphisms using the description of models given in Defini-
tion 6.1.11. As a first step, we note the following:

Lemma6.4.3. If 𝐹 : M N then the data of 𝐹Cx and 𝐹Sb (−,−) together with the requirements
that these functions preserve ◦, id, and 1 is equivalent to a functor CxM CxN which
preserves the chosen terminal objects of these two categories.

Lemma 6.4.4. If 𝐹 : M N , the families of functions 𝐹Ty (−) and 𝐹Tm (−,−) together with
the properties that they commute with substitution are equivalent to a choice of commuting
square:

TmM

TyM

𝐹 ∗TmN

𝐹 ∗TyN

𝐹Tm

𝐹Ty

Here we denote the functor between categories of context induced by 𝐹 as 𝐹 .

Proof. Unfolding the definition of natural transformation and 𝐹 ∗, the conclusion follows
immediately, e.g., 𝐹Ty sends an element 𝐴 ∈ TyM (Γ) to 𝐹Ty (Γ) (𝐴). □

These two requirements—a functor 𝐹 between the categories of contexts preserving 1
and a commuting square between the presheaves of types and terms—record almost all of
the requirements of Definition 6.4.2. The only outstanding requirement is the preservation
of context extension. This is somewhat difficult to give a purely categorical phrasing
of because it necessitates preserving particular choices of objects defined with universal
properties.

Lemma 6.4.5. A morphism of models 𝐹 : M N consists of the following:

• A functor 𝐹 : M N which preserves 1 on-the-nose.

(2025-05-02) CwF morphisms and U0,U1,U2, . . . 235

• A commuting square of the following shape:

TmM

TyM

𝐹 ∗TmN

𝐹 ∗TyN

𝐹Tm

𝐹Ty

Such that for all Γ : CxM and 𝐴 : TyM (Γ), we have 𝐹 (Γ.M𝐴) = 𝐹 (Γ) .N𝐹Ty (Γ) (𝐴)
along with 𝐹 (pM) = pN and 𝐹Tm (Γ.M𝐴,𝐴[pM]) (qM) = qN .

Remark 6.4.6. One could also imagine requiring that morphisms between CwFs preserve
the empty context and context extension only up to canonical isomorphism. This viewpoint
is systematically developed by e.g., Clairambault and Dybjer [CD14] and Uemura [Uem21]
constructs a further generalization of generalized algebraic theories which ensures that
these morphisms are the default obtained by the logical framework. ⋄

Say this defines a category

Dealing with connectives in morphisms of models

Thus far we have only discussed morphisms of type theory without any connectives. To
extend our description of morphisms to full ETT, we must also specify how a morphism
of models interacts with e.g., Π, Σ, and so on. Notably, since a connective extends the
theory of type theory with new operations and equations but no new sorts, to extend our
definition of morphism requires only that we add more conditions rather than imposing
any new data.

We once more recall a specialized version of Definition 3.4.3 dealing only with Unit:

Definition 6.4.7. A morphism 𝐹 : M N of models of type theory with Unit consists
of a morphism of models of base type theory of 𝐹 : M N such that 𝐹 satisfies the
following equations:

𝐹Ty (Γ) (UnitM) = UnitN 𝐹Tm (Γ,UnitM) (ttM) = ttN

The following is a direct rephrasing of these equations:

Lemma 6.4.8. If 𝐹 : M N is a morphism of models of base type theory andM and N
are both equipped with a choice of unit types, 𝐹 extends to a morphism of models with Unit

(2025-05-02) CwF morphisms and U0,U1,U2, . . . 236

just when the following diagram commutes:

TmM

TyM

𝐹 ∗TmN

𝐹 ∗TyN

𝐹 ∗(1) � 1

𝐹 ∗(1) � 1

ttM

UnitM

𝐹 ∗(ttN)

𝐹 ∗(UnitN)

For a general connective Θ, we can specify the commutation of 𝐹 with the operations
of Θ using a diagram based on the commuting square specifying the formation and
introduction data of a connective (Slogans 6.2.10 and 6.3.13). In particular, we have no
need to specify that the elimination operator is also preserved, as this follows for free.

Remark 6.4.9. Note that if we instead used Slogan 6.3.31, we would have to impose
additional requirements to make sure that 𝐹 commuted appropriately with the chosen
weak stable orthogonality structure. ⋄

However, some care is required. In the case of Unit, we took advantage of the fact that
𝐹 ∗ preserves 1 and therefore that we could relate the formation data for UnitM to that of
UnitN . We will not have an isomorphism 𝐹 ∗(𝐹ΘN) � 𝐹ΘM for each connective Θ, but we
are always able to construct a canonical map 𝐹ΘM 𝐹 ∗(𝐹ΘN) for the connectives of ETT.
For instance, since 𝐹 ∗ preserves limits and colimits and there are maps TyM 𝐹 ∗TyN and
TmM 𝐹 ∗TmN , there are canonical (but non-invertible!) maps relating the formation
data of Eq, Bool, and Void.

The cases of Π and Σ are slightly more complex, as they involve polynomial functors.
We illustrate this principle for Π in detail and leave it to the reader to extrapolate the
principle to other connectives.

Definition 6.4.10. A morphism of models of base type theory 𝐹 : M N extends to a
morphism of models of type theory with Π if it satisfies the following equations for all
Γ : CxM , 𝐴 : TyM (Γ), 𝐵 : TyM (Γ.M𝐴), and 𝑏 : TmM (Γ.M𝐴, 𝐵):

𝐹Ty (Γ) (ΠM (𝐴, 𝐵)) = ΠM (𝐹Ty (Γ) (𝐴), 𝐹Ty (Γ.M𝐴) (𝐵))
𝐹Tm (Γ,ΠM (𝐴,𝐵)) (𝜆M (𝑏)) = 𝜆N (𝐹Tm (Γ.M𝐴,𝐵) (𝑏))

(2025-05-02) CwF morphisms and U0,U1,U2, . . . 237

Notice that we have not included any equations governing app. This is because the
desired equation holds automatically thanks to those equations governing 𝜆 along with
the 𝛽 and 𝜂 laws for Π-types:

Lemma6.4.11. If 𝐹 : M N is amorphism ofmodels withΠ-types then the following holds
for all Γ : CxM , 𝐴 : TyM (Γ), 𝐵 : TyM (Γ.M𝐴), 𝑎 : TmM (Γ, 𝐴), and 𝑓 : TmM (Γ,ΠM (𝐴, 𝐵)):

𝐹Tm (Γ,𝐵 [idM .M𝑎]M) (appM (𝑓 , 𝑎)) = appM (𝐹Tm (Γ,ΠM (𝐴,𝐵)) (𝑓), 𝐹Tm (Γ,𝐴) (𝑎))

Proof. This is a consequence of the 𝛽 and 𝜂 laws:

𝐹Tm (Γ,𝐵 [idM .M𝑎]M) (appM (𝑓 , 𝑎))
= 𝐹Tm (Γ,𝐵 [idM .M𝑎]M) (appM (𝑓 [pM], qM) [idM .M𝑎])
= 𝐹Tm (Γ,𝐵) (appM (𝑓 [pM], qM)) [idN .N𝐹Tm (Γ,𝐴) (𝑎)]
= appN (𝜆N (𝐹Tm (Γ,𝐵) (appM (𝑓 [pM], qM))), 𝐹Tm (Γ,𝐴) (𝑎))
= appN (𝐹Tm (Γ,ΠM (𝐴,𝐵)) (𝜆M (appM (𝑓 [pM], qM))), 𝐹Tm (Γ,𝐴) (𝑎))
= appN (𝐹Tm (Γ,ΠM (𝐴,𝐵)) (𝑓), 𝐹Tm (Γ,𝐴) (𝑎)) □

Remark 6.4.12. This proof is essentially a combination of the inter-derivability between
app and 𝜆−1 along with the observation that natural transformations which are pointwise
isomorphisms are natural isomorphisms. ⋄

We will now reformulate the equational presentation of Definition 6.4.10 into a less
symbol-heavy diagrammatic formulation as was done for Unit. To start with, we must
specify the canonical maps between the formation and introduction data of ΠM and ΠN .

Lemma 6.4.13. If 𝐹 : M N then there is a canonical map 𝛼 : P𝜋MTyM 𝐹 ∗(P𝜋NTyN).

Proof. This is easiest to show using Lemma 6.2.15: if Γ : CxM then P𝜋MTyM (Γ) consists
of pairs

∑
𝐴:TyM (Γ) TyM (Γ.M𝐴). Similarly, 𝐹 ∗(P𝜋NTy𝑁) (Γ) �

∑
𝐴:TyN (𝐹 (Γ)) TyM (𝐹 (Γ).N𝐴).

We now use 𝐹Ty while taking advantage of the fact that 𝐹 (Γ.M𝐴) = 𝐹 (Γ).N𝐹Ty (Γ) (𝐴):

𝛼 Γ (𝐴, 𝐵) = (𝐹Ty (Γ) (𝐴), 𝐹Ty (Γ.M𝐴) (𝐵))

We leave it to the reader to check that this assignment is natural. □

Lemma 6.4.14. If 𝐹 : M N then there is a canonical map𝛼 : P𝜋MTmM 𝐹 ∗(P𝜋NTmN).

(2025-05-02) CwF morphisms and U0,U1,U2, . . . 238

Lemma 6.4.15. If 𝐹 : M N is a morphism of models of base type theory, 𝐹 extends to a
morphism of models of type theory with Π just when the following diagram commutes:

P𝜋M (TmM)

P𝜋M (TyM)

TmM

TyM

𝐹 ∗(P𝜋N (TmN))

𝐹 ∗(P𝜋N (TmN))

𝐹 ∗(TmN)

𝐹 ∗(TyN)

Proof. Note that the front, back, left, and right faces commute for an arbitrary morphism
of models of base type theory. It therefore suffices to show that extending to a morphism to
support Π is equivalent to the commutation of the top and bottom squares. Unfolding, the
commutation of the bottom square is equivalent to the following equation for all Γ : CxM ,
𝐴 : TyM (Γ), and 𝐵 : TyM (Γ.M𝐴):

𝐹Ty (Γ) (ΠM (𝐴, 𝐵)) = ΠN (𝐹Ty (Γ) (𝐴), 𝐹Ty (Γ.M𝐴) (𝐵))

Similarly, the bottom square is equivalent to the following equation for all Γ : CxM ,
𝐴 : TyM (Γ), 𝐵 : TyM (Γ.M𝐴), and 𝑏 : TmM (Γ.M𝐴, 𝐵):

𝐹Tm (Γ,ΠM (𝐴,𝐵)) (𝜆M (𝐴, 𝐵,𝑏)) = 𝜆N (𝐹Ty (Γ) (𝐴), 𝐹Ty (Γ.M𝐴) (𝐵), 𝐹Tm (Γ.M𝐴,𝐵) (𝑏))

These exactly correspond to the requirements ensuring that 𝐹 preserve Π. □

Remark 6.4.16. We can re-express the above 3-dimensional diagram into a square in
Pr(CxM)→:

P𝜋M (𝜋M)

𝐹 ∗(P𝜋N (𝜋N))

𝜋M

𝐹 ∗𝜋N ⋄

In total then, a morphism 𝐹 : M N of models of type theory with some set of
connectives consists of a morphism of base type theory which satisfies the additional
properties required to commute with all relevant connectives.

(2025-05-02) CwF morphisms and U0,U1,U2, . . . 239

6.4.2 Universes as sub-models

We now reap the rewards of our effort investigating morphisms of models of type theory,
as it allows us to give a concise definition of when a model M supports a hierarchy of
universes. For this subsection, let us fix a model M and we will once more suppress M as
a subscript, instead simply writing e.g., Ty or Π.

Structure 6.4.17. A universe structure on a model of type theory M consists of the
following:

• A type U0,Γ : TyM (Γ) for every Γ : CxM and a family of types El0,Γ : TyM (Γ.U0,Γ).

• Equations U0,Γ [𝛾] = U0,Δ and El0,Γ (𝑐) [𝛾] = El0,Δ(𝑐 [𝛾]) for every 𝛾 : SbM (Δ, Γ) and
𝑐 : TmM (Γ,U0,Γ)

• For each of Π, Σ, Eq, Unit, Bool, +, Void, Nat, there is an operation pi, sig, eq, unit,
bool, plus, void, nat e.g., pi(𝑐0, 𝑐1) : TmM (Γ,U0) whenever 𝑐0 : TmM (Γ,U0) and
𝑐1 : TmM (Γ.El0(𝑐0),U0).

• For each of the connectives above, an equation stating that the operator commutes
with substitution e.g., pi(𝑐0, 𝑐1) [𝛾] = pi(𝑐0 [𝛾], 𝑐1 [𝛾 .El(𝑐0)]) whenever𝛾 : SbM (Δ, Γ),
𝑐0 : TmM (Γ,U0) and 𝑐1 : TmM (Γ.El0(𝑐0),U0).

• For each of the connectives above, an equation stating that El commutes with the
operation e.g., El0(pi(𝑐0, 𝑐1)) = pi(El0(𝑐0), El0(𝑐1)).

As is routine, the first two points are equivalent to a pair of natural transformations:

Lemma 6.4.18. The operators U0,Γ and El0,Γ and the substitution equations on them are
equivalent to a pair of natural transformations

U0 : 1 Ty El0 : U∗
0Tm

• Ty

The challenge is to reformulate the final three points. While it is possible to specify
operators such as pi, sig, and so on individually, this is rather laborious. Instead we opt
for a different approach. We begin by observing the following:

Lemma 6.4.19. The projection y(p) : y(1.U0.El0) y(1.U0) obtains a canonical repre-
sentability structure from 𝜋 .

(2025-05-02) CwF morphisms and U0,U1,U2, . . . 240

Proof. Since y(p) : y(1.U0.El0) y(1.U0) is a pullback of 𝜋 , the left-hand square in the
following diagram is a pullback:

y(1.U0.El0)

y(1.U0)

Tm•

Ty

y(Γ.El0(𝑐))

y(Γ)
y(!.𝑐)

In particular, we may use y(Γ.El0(𝑐)) as the chosen pullback for the representability
structure on y(p). □

Corollary 6.4.20. CxM and y(p) : y(1.U0.El0) y(1.U0) is a model of base type theory
U0. Moreover, the identity functor and the following commuting square then induce a
morphism of models 𝐼 : U0 M:

y(1.U0.El0)

y(1.U0)

Tm•

Ty

Lemma 6.4.21. The remaining structure specifying a universe in M is equivalent to the
data equipping U0 with all the connectives of type theory such that 𝐼 induces a morphism of
models.

Proof. We describe this explicitly for Void and Unit, as the remaining connectives are
identical but more notationally cumbersome. In the case of Unit, to equip U0 with a unit
type such that 𝐼 is a morphism of models is equivalent to choosing a left-hand square in
the following diagram:

y(1.U0.El0)

y(1.U0)

Tm•

Ty

1

1

ttU0

UnitU0

tt

Unit

(2025-05-02) CwF morphisms and U0,U1,U2, . . . 241

Since both squares are required to be pullbacks, a choice of the left-hand diagram is fully
determined by a morphism UnitU0 : 1 y(1.U0) such that the bottom triangle commutes.
This precisely corresponds to the data closing U0 under Unit in M.

For Void, the procedure is similar. Equipping y(p) with an interpretation of Void such
that 𝐼 is a morphism of models corresponds to picking a left-hand square in the following
diagram, subject to an orthogonality condition:

y(1.U0.El0)

y(1.U0)

Tm•

Ty

0

1
VoidU0

Void

The orthogonality condition states that the map 𝑋 × 0 𝑋 × Void∗
U0

y(1.U0.El0) is or-
thogonal to y(p). Since the right-hand square is a pullback, the left-hand map is equivalent
to 𝑋 × 0 𝑋 × Void∗Tm• and since y(p) is a pullback of 𝜋 , this condition is automatic.

In particular, the only requirement in the choice of such a left-hand square is the map
VoidU0 : 1 y(1.U0) subject to the commuting triangle above. This is equivalent to the
data closing U0 under Void inM as required. □

Theorem 6.4.22 (Categorical reformulation of U). A universe structure onM is equivalent
to the following:

• A choice of natural transformations U0 : 1 Ty and El0 : U∗
0Tm

• Ty

• An interpretation of the connectives Π, Σ, Unit, Eq, Void, Bool, Nat, and + into the
modelU0 = (CxM, y(1.U0.El0) y(1.U0)) such that the canonical map 𝐼 : U0 M
is a morphism of models with all of these connectives.

Hierarchies of universes With Theorem 6.4.22, it is straightforward to describe the
requirement thatM supports a hierarchy of universes. Given the amount of data that is
required to describe such a hierarchy in an unfolded fashion, we will present the categorical
repackaging and leave it to the diligent reader to compare with Definition 3.4.2.

Lemma 6.4.23 (Categorical reformulation of a hierarchy). M supports a cumulative
hierarchy of universes just when it is equipped with the following:

(2025-05-02) Locally cartesian closed categories and coherence 242

• For each 𝑖 : N, a choice of natural transformations U𝑖 : 1 Ty and El𝑖 : U∗
𝑖 Tm

• Ty

• For each 𝑖 , an interpretation of the connectives Π, Σ, Unit, Eq, Void, Bool, Nat, +,
and U 𝑗 for all 𝑗 < 𝑖 into the model U𝑖 = (CxM, y(1.U𝑖 .El𝑖) y(1.U𝑖)) such that the
canonical mapU𝑖 M is a morphism of models.

• For each 𝑖 , a natural transformation lift : y(1.U𝑖) y(1.U𝑖+1) such that the outer
square commutes and the left-hand square in following diagram is a pullback:

y(1.U𝑖+1.El𝑖+1)

y(1.U𝑖+1)

Tm•

Ty

1.U𝑖+1.El𝑖+1

y(1.U𝑖+1)
lift

Moreover, we require that left-hand square induce a morphism of modelsU𝑖 U𝑖+1.

Exercise 6.15. Isolate the necessary operations and equations on a model for supporting
a hierarchy of universes and argue that this structure is equivalent to the requirements of
Lemma 6.4.23.

6.5 Locally cartesian closed categories and coherence

Thus far in this chapter, we have spent a considerable amount of effort investigating the
definition of a model of type theory. Despite this effort, we have only met two examples
of models: the syntactic model (Theorem 3.4.5) and the set model (Section 3.5). In general,
constructing a model of type theory is hard work because of all the data that must be
chosen and the properties that must be checked. Our goal is to ease this process by
constructing a technique in this theorem which takes any category certain properties
(e.g., finitely cocomplete and locally cartesian closed) and producing a model of type
theory (Theorem 6.5.36). This is particularly convenient as we have a large stock of such
well-behaved categories (e.g., Pr(C) for any C) and we therefore a whole stock of models.

Rather than proceeding straight to this coherence theorem, we actually begin by studying
the reverse question: given a well-behaved model of type theory M, what structure does
CxM possess? We shall see that a number of type-theoretic connectives correspond
directly to recognizable categorical structures. In particular, we shall show that for well-
behaved models, the category of contexts is finitely complete, locally cartesian closed and

(2025-05-02) Locally cartesian closed categories and coherence 243

possesses finite coproducts and a natural number object. Despite this connection, we will
find a fundamental mismatch of strictness between locally cartesian closed categories and
models of type theory. This sets the stage for our coherence theorem which papers over the
difference and shows that any category C satisfying these properties can be realized as the
category of contexts of a model of type theory. In reality, even more is true: one can set up
a (bi)-equivalence of (2-)categories showing that the two procedures are inverses [CD14].

6.5.1 From models of type theory to locally cartesian closed categories

In this subsection, we will fix a model of type theory M which we will assume to be
democratic. Roughly, our goal is to analyze CxM as a category and so it is useful to know
that the behavior of CxM is fully controlled by types. That is, to assume that every context
is built from the empty context by repeatedly extending with types. Note that while this is
true for the syntactic model T , it need not hold in arbitrary models.

Definition 6.5.1. A model M is democratic if for every context Γ : CxM there exists a
type 𝐴 : TyM (1M) along with an isomorphism Γ � 1M .M𝐴.

Lemma 6.5.2. The syntactic model T is democratic.

Proof. While this may seem obvious, a modicum of effort is required to apply the induction
principle for the syntactic model (Theorem 3.4.5) and we spell out some of the details here
to illustrate the process.

We will construct a model of type theory T0 along with a homomorphism 𝑖 : T0 T
and we will further arrange for contexts in T0 to be syntactic contexts Γ for which there
exists a closed type 𝐴 and isomorphism 1.𝐴 � Γ. The map 𝑖 will then send Γ in T0 to Γ
in 𝑇 . By initiality, there is a unique model homomorphism ! : T T0 and (by initiality
once more) we must have 𝑖 ◦ ! = id. Consequently, 𝑖 is a split epimorphism and so every
Γ : CxT is in the image of 𝑖—precisely what we were attempting to prove.

It remains, therefore, only to construct T0 and 𝑖 . Let us take the category of contexts
CxT0 for T0 to be the full subcategory of T spanned by contexts Γ for which there exists
an isomorphism Γ � 1.𝐴 for some closed type 𝐴. The chosen terminal object of CxT lands
in this full subcategory: 1 � 1.Unit. We write 𝑖 for the inclusion functor T0 T .

The presheaves of types and terms over CxT0 are given by restricting those from T :

TyT0
= 𝑖∗(TyT) = TyT ◦ 𝑖 Tm•

T0
= 𝑖∗(Tm•

T) = Tm•
T ◦ 𝑖 𝜋T0 = 𝑖

∗(𝜋T) = 𝜋T ◦ 𝑖

To show that 𝜋T0 is representable, recall that (1) 𝑖∗ preserves (co)limits and (2) 𝑖∗y(𝑖 (Γ)) �
y(Γ) since 𝑖 is fully-faithful. It therefore suffices to show if Γ : CxT0 and 𝐴 ∈ TyT0

(Γ) then
𝑖 (Γ).T𝐴 lies in the image of 𝑖 . By construction, there must be some 𝐵 such that 𝑖 (Γ) � 1.𝐵
and so 1.Σ(𝐵,𝐴) � 𝑖 (Γ).𝐴 as required.

(2025-05-02) Locally cartesian closed categories and coherence 244

Finally, we must show that T0 is closed under all the connectives of type theory and
that 𝑖 extends to a homomorphism of models. There is a conceptual reason for this: all
connectives may be defined using finite limits and polynomial functors P𝑓 where 𝑓 is a
morphism built from pullbacks, composites, and 𝜋 . One may check that 𝑖∗ preserves all of
these operations—for polynomials, one uses Lemma 6.2.15—and therefore applying 𝑖∗ to
structure closing T under each connective yields the appropriate structure in T0. Moreover,
one obtains a morphism of models extending 𝑖 using id : 𝜋T0 𝑖∗𝜋T (Lemma 6.4.5) which
commutes with all connectives more-or-less tautologically.

However, a much less sophisticated though more tedious approach suffices: one may
simply show that each operation listed in Definition 3.4.2 can be defined on T0 using the
appropriate operation on T . For instance, for Π we must define the following:

ΠT0 : (Γ : CxT0) (𝐴 : TyT0
(Γ)) (𝐵 : TyT0

(Γ.T0𝐴)) → TyT0
(Γ)

We choose ΠT0 = ΠT which is well-formed because 𝑖 (Γ.T0𝐴) = 𝑖 (Γ).T𝐴 by definition. The
same procedure and argument works for every other operation. □

Remark 6.5.3. The last part of the argument illustrates a normal dichotomy when working
with the semantics of type theory: the more abstract categorical approach often allows us
to give a high-level description of what is otherwise a straightforward but exceptionally
tedious calculation. ⋄

We have observed all the way back in Chapter 2 that the terms of a type𝐴 ∈ Ty(Γ) can
be recovered from Cx through the weakening substitution p : Γ.𝐴 Γ. More generally, if
𝐴, 𝐵 ∈ Ty(Γ) then there is an isomorphism between functions from𝐴 to 𝐵 (Tm(Γ, 𝐴 → 𝐵))
and homCx/Γ (Γ.𝐴 Γ, Γ.𝐵 Γ). Since M is democratic, we can show that every map
Γ Δ is isomorphic to one of the form p : Δ.𝐴 Δ. Consequently, we can easily describe
each slice category Cx/Γ in terms of types and terms in context Γ.

Lemma 6.5.4. If 𝛿 : Γ Δ then there exists p𝐴 : Δ.𝐴 Δ along with an isomorphism
𝛿 � p𝐴 in Cx/Δ.

Proof. By democracy, we know that Γ � 1.𝐴0 and Δ � 1.𝐵 for some 𝐵. Without loss of
generality, we may replace Γ by 1.𝐴0 and Δ by 1.𝐵 such that 𝛿 : Γ Δ is of the form !.𝑏
where 𝑏 ∈ Tm(1.𝐴0, 𝐵 [p]).

We then choose 𝐴 ∈ Ty(Δ) to be Σ(𝐴0 [!], Eq(𝐵 [!], q [p], 𝑏 [!.𝐴0])). In informal nota-
tion: 1, 𝑥 : 𝐵 ⊢ ∑𝑎:𝐴0 Eq(𝐵,𝑏 (𝑎), 𝑥) type. Next, we must construct an isomorphism 𝛿 � p𝐴.
For this, we choose 𝑓0 = 𝛿.pair(q, refl) : 𝛿 p𝐴 for one direction and 𝑓1 = !.fst(q) :
p𝐴 𝛿 for the other. For the latter, note that we must use equality reflection to ensure
that 𝛿 ◦ 𝑓1 = p as required of a morphism in Cx/Δ. We leave it to the reader to check that
these are inverses using the 𝛽 and 𝜂 laws for Σ and Eq. □

(2025-05-02) Locally cartesian closed categories and coherence 245

Advanced Remark 6.5.5. Homotopy-theoretic readers may observe that there is some
similarity between the replacement of Γ → Δ by p𝐴 and the factorization of a map of
spaces 𝑓 : 𝑋 → 𝑌 into a trivial cofibration followed by a fibration 𝑋 → 𝑋 ×𝑌 𝑌 [0,1] → 𝑌 .
This would be particularly evident if we replaced Eq with Id and used the dictionary
between intensional type theory and homotopy theory explored in Chapter 5. In fact, this
same factorization exists for intensional identity types and can be used to structure the
category of contexts of a model of ITT into a fibration category [GG08; AKL15]. In the case
of Eq, the first map is a genuine isomorphism so this factorization system is trivial. ⋄

Corollary 6.5.6. There is an equivalence of categories between Cx/Γ and the category of
types Ty(Γ) whose morphisms hom(𝐴, 𝐵) are given by functions Tm(Γ, 𝐴 → 𝐵).

Remark 6.5.7. We emphasize that types in context Γ are viewed as maps into Γ. This is a
curious reversal from both the notation Γ ⊢ 𝐴 type and Section 6.1 where Γ behaves like
a domain of some function in both. This is not the first time we have encountered Γ as
the target rather than the source of a substitution: this was already present in Section 2.3
where we observed that sections to p : Γ.𝐴 → Γ encoded terms of type 𝐴. What is novel
here is observation that every map Δ Γ can be regarded as such a weakening map.
Consequently, every map of contexts can also be seen as encoding a dependent type.

We note that this trick of viewing maps into an object as families indexed by that object
is common in category theory and geometry. It is a method of overcoming the absence of
an “object of objects” which would be necessary for us to model families indexed by Γ as
maps out of Γ. More concretely, Ty : Pr(Cx) is not representable and so we must express
dependent types (maps y(Γ) Ty) more indirectly. We shall analyze the extent to which
this process can be reversed in Section 6.5.2 ⋄

Now we can reason about Cx/Γ using types and terms over Γ (and therefore Cx itself
through closed types and terms). Moreover, the pullback functors 𝛾∗ : Cx/Γ Cx/Δ for
each 𝛾 : Δ Γ also admit a familiar description from this point of view. By Exercise 6.3,
this functor sends Γ.𝐴 Γ to Δ.𝐴[𝛾] Δ and the reader may compute that it sends a
morphism p.𝑏 : Γ.𝐴 Γ.𝐵 to p.𝑏 [𝛿.𝐴]. In other words, when translating between slice
categories and terms and types in context, the pullback operation between contexts is
realized by substitution on terms and types.

With all of this effort, we can quickly rattle of a list of categorical properties satisfied
by Cx by leveraging corresponding types.

Lemma 6.5.8. Every slice category Cx/Γ has finite products. Consequently, Cx has all finite
limits.

Proof. Every slice category has terminal objects—in the form of idΓ—and so it suffices to
show that Cx/Γ has binary products. Passing to considering Ty(Γ) in context Γ, we claim
the product of 𝐴, 𝐵 ∈ Ty(Γ) is given by 𝐴 × 𝐵 (the non-dependent version of Σ).

(2025-05-02) Locally cartesian closed categories and coherence 246

To prove this, we must complete a programming exercise. We must argue that if
𝐶 ∈ Ty(Γ) and 𝑓 ∈ Tm(Γ,𝐶 → 𝐴) and 𝑔 ∈ Tm(Γ,𝐶 → 𝐵) then there is a unique function
⟨𝑓 , 𝑔⟩ ∈ Tm(Γ,𝐶 → 𝐴 × 𝐵) such that fst ◦ ⟨𝑓 , 𝑔⟩ = 𝑓 and snd ◦ ⟨𝑓 , 𝑔⟩ = 𝑔:

𝐴 × 𝐵 𝐵𝐴

𝐶

We define ⟨𝑓 , 𝑔⟩ = 𝜆𝑐 → pair(𝑓 (𝑐), 𝑔(𝑐)) and the commutation of the diagram along
with its uniqueness are then consequences of the 𝛽 and 𝜂 laws for Σ. □

Lemma 6.5.9. If 𝛾 : Δ Γ then 𝛾∗ : Cx/Γ Cx/Δ commutes with finite products.

Proof. It suffices to check this problem for Ty(Γ) and Ty(Δ) where it is an immediate
consequence of the stability of ×, fst, snd, and pair under substitution. □

Exercise 6.16. Show that Cx/Γ has exponentials and these are preserved by 𝛾∗.

Lemma 6.5.10. Cx is locally cartesian closed.

Proof. This is a general consequence of the observation that Cx has a terminal object
and the fact that each slice category is cartesian closed and this structure is preserved by
pullback functors. □

For the sake of completeness (and because the result is recognizable), we can give
an explicit description of the right adjoint to pullback: 𝛾∗ : Cx/Δ Cx/Γ . We begin by
replacing Δ and 𝛾 by p𝐴 : Γ.𝐴 Γ. In this case, the right adjoint to p∗ is given as follows:

𝐵 ∈ Ty(Γ.𝐴) ↦→ Π(𝐴, 𝐵)

To show this, it suffices to construct an isomorphism of the following shape natural in 𝐶:

Tm(Γ,𝐶 → Π(𝐴, 𝐵)) � Tm(Γ.𝐴,𝐶 [p] → 𝐵)

Using the mapping-in characterization of Π, we may replace the left and right sides of
this isomorphism with Tm(Γ.𝐶.𝐴[p], 𝐵 [p.𝐴]) and Tm(Γ.𝐴.𝐶 [p], 𝐵 [p]). These are natu-
rally isomorphic by exchange.

(2025-05-02) Locally cartesian closed categories and coherence 247

Exercise 6.17. 𝛾∗ also has a left adjoint given by post-composition by 𝛾 (this holds when-
ever 𝛾∗ exists). Reformulate this left adjoint into another recognizable type-theoretic
operation.

Taking stock, thus far we have used Π, Σ, Eq, and Unit (the last being a necessary
consequence of democracy). What structure do the other connectives of dependent type
theory induce? Following our noses from Section 6.3, we guess that the coproduct types +
and the empty type Void suffice to close Cx under finite coproducts and Nat induces an
initial algebra for (1∐−).

Lemma 6.5.11. Cx has finite coproducts.

Proof. Considering the equivalent category Ty(1), we represent binary coproducts 𝐴
∐
𝐵

using the coproduct type,𝐴+𝐵. The rules governing this type are precisely those necessary
for universal property. Similarly, we realize the initial object with Void. □

Lemma 6.5.12. Cx/Γ has an initial (1∐−)-algebra (Definition 6.3.17) and pullback functors
preserve this initial algebra.

Remark 6.5.13. For the second claim to be well-formed, we must convince ourselves that
𝛾∗ : Cx/Γ Cx/Δ induces a functor Alg(1Cx/Γ

∐−) Alg(1Cx/Δ
∐−). This follows

from the observation that 𝛾∗(1∐𝑋) � 𝛾∗1∐𝛾∗𝑋 because pullback commutes with both
limits and colimits in a locally cartesian closed category. ⋄

Proof. The initial (1∐−)-algebra in Ty(Γ) is given byNat and the terms zero ∈ Tm(Γ,Nat)
and suc : Tm(Γ,Nat → Nat). To prove initiality, let us fix 𝐴 along with 𝑎 ∈ Tm(Γ, 𝐴) and
𝑠 ∈ Tm(Γ, 𝐴 → 𝐴). The unique algebra morphism 𝛼 : Nat → 𝐴 is given by the following
function (written in informal notation for clarity): 𝜆𝑛 → rec(𝑛, 𝑎, 𝑠). This organizes into
an algebra morphism because of the 𝛽 laws of Nat and it is unique with this property by
the 𝜂 law.

The commutation of these initial algebras with the pullback functor is then a conse-
quence of the stability of Nat and the attendant operators under substitution. □

Clearly this collection of initial algebras is fully determined by the initial algebra for
1
∐− in Cx. We shall call this algebra a stably initial (1∐−)-algebra.

Corollary 6.5.14. Cx has a stably initial (1∐−)-algebra.

It remains to discuss how the hierarchy of universes U𝑖 fit into this story. Here
the answer is somewhat messier because, unfortunately, universes in extensional type
theory lack any clean description through universal properties. Indeed, we shall see in
Section 6.5.5 that universe hierarchies can be a particular challenge when modeling type
theory categorically. We shall roughly follow the approach proposed by Streicher [Str05].

(2025-05-02) Locally cartesian closed categories and coherence 248

To begin with, we recall the following definitions which roughly axiomatize the collection
of maps isomorphic to p : Γ.El(𝑐) Γ where 𝑐 ∈ Tm(Γ,U):

Definition 6.5.15. If C is a category with finite limits a bare universe is a collection of
morphisms 𝑆 in C which is stable under pullback. That is, if 𝜋 ∈ 𝑆 then 𝑓 ∗𝜋 ∈ 𝑆 for all 𝑓 :

𝐴 ×𝐵 𝐸

𝐴

𝑆 ∋ 𝑓 ∗𝜋

𝐸

𝐵

𝜋 ∈ 𝑆

𝑓

Notation 6.5.16. Each universe induces a full subcategory 𝑆/𝑌 of 𝐶/𝑌 whose objects
are those maps 𝑓 : 𝑋 𝑌 ∈ 𝑆 . Closure under pullback ensures that pullback functors
𝑦∗ : C/𝑌1 C/𝑌0 restrict to 𝑆/𝑌𝑖 . We say 𝑆 contains an object 𝐶 if 𝐶 1 ∈ 𝑆 .

Obviously not much can be said about a bare categorical universe, but we can refine
this definition to impose conditions matching the existence of El along with the closure
properties of U. In other words, we insist that as a class of maps, 𝑆 is generated by pulling
back (applying a substitution to) a single map (1.U.El(q) 1.U) and is closed under all
of the categorical structures induced by type-theoretic connectives.

Definition 6.5.17. Consider C is a locally cartesian closed category with finite coproducts
and a stably initial (1∐−)-algebra and suppose further that 𝑆 is a bare universe in C. We
shall call a bare universe 𝑆 a universe if it comes with a chosen map 𝜏 : 𝑈 • 𝑈 ∈ 𝑆 such
that every map in 𝑓 : 𝑋 𝑌 ∈ 𝑆 can be presented 𝑥∗𝜏 for some 𝑥 : 𝑌 𝑈 (𝜏 is generic
for 𝑆) and such that it satisfies the following additional properties:

1. 𝑆 contains all isomorphisms.

2. 𝑆 is closed under composition.

3. If 𝑓 : 𝑋 𝑌 and 𝑔 : 𝑌 𝑍 are in 𝑆 then 𝑓∗𝑔 ∈ 𝑆 .

4. If 𝑓 : 𝑋 𝑌 ∈ 𝑆 then Δ : 𝑋 𝑋 ×𝑌 𝑋 ∈ 𝑆 .

5. 𝑆/𝑌 is closed under coproducts and contains the initial (1∐−)-algebras in C/𝑌 .

Lemma 6.5.18. EachU𝑖 induces a universe𝑉𝑖 = {𝑓 | ∃𝑐 ∈ Tm(Γ,U𝑖). 𝑓 � p : Γ.El(𝑐) Γ}.

(2025-05-02) Locally cartesian closed categories and coherence 249

Proof. As stated above, the generic map 𝜋 is give by 1.U.El(q) 1.U. To verify this, fix
p : Γ.El(𝑐) Γ with Tm(Γ,U𝑖). The following diagram is a pullback:

Γ.El(𝑐)

Γ

1.U.El(q)

1.U
!.𝑐

To verify properties (1–5), we use the closure of U𝑖 under various connectives: Unit for
(1), Σ for (2), Π for (3), Eq for (4), and +, Void, and Nat for (5). All of these properties are
proven by essentially the same argument, so we illustrate the pattern by proving (3). Fix
𝑓 : Γ0 Γ1 and 𝑔 : Γ1 Γ2 such that 𝑓 , 𝑔 ∈ 𝑆 . We must show that 𝑔∗(𝑓) ∈ 𝑆 .

First, since 𝑓 , 𝑔 ∈ 𝑆 , we may replace them with isomorphic weakening maps and reduce
to considering 𝑓 = p : Γ.El(𝑐0).El(𝑐1) Γ.El(𝑐0) and 𝑔 = p : Γ.El(𝑐0) Γ. Above, we
showed that if Γ = 1 then 𝑔∗𝑓 could be realized by Γ.Π(El(𝑐0), El(𝑐1)) Γ. The same
argument applies to a general Γ and so it suffices to argue that Γ.Π(El(𝑐0), El(𝑐1)) Γ ∈ 𝑆 .
Since U𝑖 is closed under Π, this map is equal to Γ.El(pi(𝑐0, 𝑐1)) Γ and the conclusion is
now immediate. □

Definition 6.5.19. A hierarchy of universes 𝑆0, 𝑆1, . . . in a category C consists of a collec-
tion of universes 𝑆𝑖 such that 𝑆𝑖 ⊆ 𝑆𝑖+1 and such that 𝑆𝑖+1 contains𝑈𝑖 .

Lemma 6.5.20. The collection𝑉0,𝑉1, · · · defined in Lemma 6.5.18 organizes into a hierarchy
of universes.

Finally, we summarize all of the insights of this discussion into the following theorem:

Theorem 6.5.21. If M is a democratic model of type theory then CxM is locally cartesian
closed and has finite coproducts, a stably initial algebra for 1

∐−, and a hierarchy of universes.

With additional effort, we could enhance Theorem 6.5.21 to the following theorem:

Theorem 6.5.22. The operation sending M to CxM is a functor CwFdem LCC from the
full subcategory of democratic models to the category of locally cartesian closed categories.

Wewill not attempt to prove this theorem as we are not showing any sort of categorical
equivalence between democratic models and locally cartesian closed categories (indeed,
we would need to enhance locally cartesian closed categories to account for Bool, Nat,
etc.). For further on discussion on this point, see Clairambault and Dybjer [CD14].

The remainder of this section is devoted to the converse question: given such a
well-behaved category C, can we find a (democratic) model of type theoryM such that
CxM ≃ C. As the reader may infer from the length of this section, the question is not as
straightforward as one might hope.

(2025-05-02) Locally cartesian closed categories and coherence 250

6.5.2 The strictness problem

In this subsection, let us fix C to be a category satisfying the conclusions of Theorem 6.5.21:
local cartesian closure, existence of finite coproducts, etc. Our goal is to study whether
C can be realized as the category of contexts of some modelM of type theory. Running
down the list of requirements of a model, we see easily that C has a terminal object (it is
locally cartesian closed) but we run into trouble with the very next piece of data: what
should the presheaf of types TyM be?

Our goal is to “reverse” Theorem 6.5.21 and so we can start by asking a related ques-
tion: given a democratic model of type theory N , how can one recover TyN from CxN?
One plausible approach is suggested by Lemma 6.5.4. This result shows that since N is
democratic, every substitution Δ Γ is isomorphic to a weakening substitution Γ.𝐴 Γ
with 𝐴 ∈ TyN (Γ). Consequently, there is a tight relationship between TyN (Γ) and CxN/Γ
given by sending 𝐴 ∈ TyN (Γ) to p : Γ.𝐴 Γ.

Some caution is required because this correspondence is not a bijection. In fact, it is
neither necessarily injective nor surjective! Distinct types can be sent to the same context
and there is no guarantee that every morphism Δ Γ is equal to one of the form Γ.𝐴 Γ.
What is present is an equivalence of groupoids:

Lemma 6.5.23. Write C� for groupoid core of C: the wide subcategory which discards all
non-invertible morphisms. There is an equivalence TyN (Γ)� ≃ CxN�/Γ .

Proof. The equivalence of categories restricts to an equivalence of groupoids as every
functor preserves isomorphisms. □

Exercise 6.18. Show that if 𝐹 : C D is an equivalence of groupoids, then 𝐹 induces
a bijection of sets C/∼ D/∼ where 𝐶0 ∼ 𝐶1 if there exists an isomorphism 𝐶0 � 𝐶1.
What does this imply in the case of Lemma 6.5.23?

The root of the problem is that there is no way to recover Ob(C) if one knows only
C� up to equivalence; the set of objects of a category or groupoid is not stable under
equivalence of categories. To give a much smaller example of the same problem, note that
the groupoid consisting of one object and the only the identity morphism is equivalent to
the groupoid with two objects together with an isomorphism between them. However,
the underlying sets of objects are quite different ({★} versus {0, 1}).

Advanced Remark 6.5.24. This could be taken as an indication that TyN would be best
realized not as a presheaf of sets but of groupoids. This would allow us to simply define
TyN (Γ) = CxN�/Γ . This would allow us to avoid a number of complications that will
follow, but unfortunately our definition of type theory as it stands gives us a mere set of
types. However, systematically exploring the idea that the collection of all types (and the
subcollections of types described by universes) ought to be regarded as groupoids rather

(2025-05-02) Locally cartesian closed categories and coherence 251

than mere sets is the first step down a road that leads to univalence. We refer the reader to
Anel [Ane19] for an exposition of this perspective. ⋄

Exercise 6.19. Find a model N for which the Ob(TyN (Γ)) → Ob(CxN/Γ) is neither
injective nor surjective.

Exercise 6.20. Show that whileCxN does not suffice to recover TyN , both of them together
fully determine TmN . In other words, once TyM is chosen TmM is forced.

Fortunately, this complication is not as major a problem as it might seem. Our goal
is, after all, not to recover Ty precisely but instead to find some presheaf of types over a
particular category C such that Ty is part of a democratic model. We therefore have a lot of
flexibility in how we define TyM with Lemma 6.5.23 as a guiding principle: eventually we
must ensure that the induced groupoid TyM (𝐶)� is C�/𝐶 . Motivated by this line of thought,
we therefore arrive at the following guess for a “functor” TyM :

TyM (𝐶) = Ob(C/𝐶) (?!)

Unfortunately, an issue arises immediately: this is not a functor! Indeed, while each
𝑓 : 𝐶 𝐷 induces a pullback function 𝑓 ∗ : Ob(C/𝐷) Ob(C/𝐶), these are only truly
well-defined up to isomorphism and we cannot expect that id∗ = id or that 𝑓 ∗◦𝑔∗ = (𝑔◦ 𝑓)∗.
The first of these is not much an of an issue: we must pick some concrete function 𝑓 ∗
for each morphism anyways and so we can always just insist that our choice is id when
𝑓 = id. The second requirement is much more problematic, however, because there is no
guarantee that there is even exist a set of choices for all 𝑓 compatible with the equation
𝑓 ∗ ◦𝑔∗ = (𝑔 ◦ 𝑓)∗. In fact, Lumsdaine [Lum] shows that even rather concrete subcategories
of Set can fail to have this property.
Exercise 6.21. Recall the standard explicit description of pullbacks𝐴×𝐶 𝐵 in Set as subsets
of the cartesian product 𝐴 × 𝐵, convince yourself that the maps Set/𝑌 Set/𝑋 induced by
this realization of pullbacks are not functorial.

One can show that the groupoidal version of this functor (C�/−) is a pseudofunctor ; we
do not have 𝑓 ∗ ◦ 𝑔∗ = (𝑔 ◦ 𝑓)∗ but we do have 𝑓 ∗ ◦ 𝑔∗ � (𝑔 ◦ 𝑓)∗ and these isomorphisms
are suitably coherent. This is what is commonly referred to as the coherence problem for
dependent type theory and was famously overlooked by Seely [See84]. Our task is then to
find a suitable functor which approximates the merely pseudo-functorial C�/−. There are
two distinct approaches to this problem:

1. We can capitalize on some special feature of C which enables us to give a functorial
presentation of C�/− to bypass this issue.

(2025-05-02) Locally cartesian closed categories and coherence 252

2. We can give a much more involved replacement of this pseudofunctor which uses
comparatively minimal information about C but then work harder to build the rest
of the model with this more intricate definition of TyM .

For an important example of (1), recall from Section 6.1 that there is a canonical equiv-
alence Pr(C0)/𝑋 ≃ Pr(

∫
𝑋). While we do not prove it, this equivalence is pseudofunctorial

in 𝑋 such that the following diagrams commute up to (coherent) isomorphisms for all
𝑓 : 𝑋 𝑌 :

Pr(C0)/𝑌

Pr(
∫
𝑌)

Pr(C0)/𝑋

Pr(
∫
𝑋)

Moreover, the assignment of 𝑋 ↦→
∫
𝑋 and C ↦→ Pr(C) are both functorial and so the

following gives a functorial replacement of Ob(C/−) when C = Pr(C0):

TyM (𝑋) = Ob(Pr(
∫
𝑋))

This definition is used by Hofmann [Hof97] to give an interpretation of type theory into
Pr(C0) and we refer the reader there for more information on this model. We will, however,
focus on the second approach: more complicated replacements for Ob(C/−) which apply
with fewer assumptions based on C. We will discuss two such constructions—the universe
coherence construction and the local universe coherence construction—in the following
two subsections.

6.5.3 The universe construction

The idea behind our first coherence construction is simple enough: we will take a universe
𝑉 in C (Definition 6.5.17) and use it as the basis for a workable approximation of Ob(C/−).
More specifically,𝑉 must come equipped with a generic map 𝜋 : 𝐸 𝐵 and we argue that
y(𝐵) is a sufficient definition for TyM . We emphasize that this is a necessarily imperfect
approximation: y(𝐵) (𝐶) consists of maps 𝐶 𝐵 which, by assumption, correspond to
𝑉 -small families over𝐶 . This is only a subset ofOb(C/𝐶), but the raison d’être of universes
was that this subset of families was closed under all the operations of type theory so that
we could pretend it was complete.
Warning 6.5.25. Strictly speaking this coherence construction does not meet our goals: the
model induced on C is not democratic. By choosing 𝑉 to be a sufficiently large universe,
however, this has little impact in practice.

(2025-05-02) Locally cartesian closed categories and coherence 253

The astute reader might recognize both this argument and this idea from Section 3.5.
Indeed, while we motivated our use of Grothendieck universes purely in terms of size
considerations, it was also used to give a definition of presheaves of types and terms. This
construction is more-or-less a reprise of the set model construction from earlier but with
the salient properties of Set now axiomatized. To that end, let us fix a category C and
assume the following properties:

• C is locally cartesian closed,

• has finite coproducts,

• has a stably initial algebra for 1
∐−,

• and C has an (𝜔 + 1)-indexed hierarchy of universes 𝑆0, . . . , 𝑆𝜔 .

In particular, we assume that C has an additional universe compared with Theo-
rem 6.5.21 which contains the hierarchy of universes already specified. We will not use
this largest universe to interpret U𝑖 for some universe level 𝑖 . Instead, this final universe
will serve form the basis for our strictly functorial TyC :

CxC = C
SbC (Γ,Δ) = hom(Γ,Δ)
TyC (Γ) = hom(Γ,𝑈𝜔)
TmC (Γ, 𝐴 : Γ 𝑈𝜔) = {𝑎 : Γ 𝑈 •

𝜔 | 𝜋𝜔 ◦ 𝑎 = 𝐴}

In other words, we take 𝜋C : Tm•
C TyC to be y(𝜏𝜔) : y(𝑈 •

𝜔) y(𝑈𝜔). Compare these
definitions to Section 3.5 to see how Definition 6.5.17 serves as our replacement for
Grothendieck universes.
Exercise 6.22. Show that y(𝜏𝜔) is a representable natural transformation.

What remains is to show that 𝜋C is closed under the various connectives. One might
fear that this process will be difficult. Fortunately, that difficulty has been shifted into
showing that C has an (𝜔 + 1)-indexed hierarchy of universes. Having assumed this, the
requirement that 𝜋C is closed under all the connectives of type theory is more-or-less
true by definition. In particular, (1) ensures that 𝜋C can be equipped with the requisite
structure for Unit, (2) handles Σ, (3) handles Π, (4) handles Eq, and (5) handles +, Bool,
and Nat. We will go through the details for Π and Bool for completeness.

(2025-05-02) Locally cartesian closed categories and coherence 254

Lemma 6.5.26. There exists a pullback square of the following shape in Pr(CxC):

P𝜋Tm•

P𝜋Ty

Ty

Tm•

Proof. We will construct this pullback square in two steps. First, we will construct the
corresponding square in C itself and second we will argue that y commutes will all the
relevant operations and functors involved. Accordingly, since the Yoneda embedding
preserves pullback square (along with all other limits) the desired square in Pr(CxC) arises
from the C version.

In more detail, recall that P𝜋 was defined as the composite of three functors:

Pr(C) Pr(C)/Tm• Pr(C)/Ty Pr(C)
(Tm•)∗ 𝜋∗ Ty!

All three of these categories and functors have counterparts in C and the Yoneda embedding
then induces the following commutative diagram of functors where each square commutes
up to isomorphism:

Pr(C) Pr(C)/Tm• Pr(C)/Ty Pr(C)
(Tm•)∗ 𝜋∗ Ty!

C C/𝑈 •
𝜔

C/𝑈𝜔 C
(𝑈 •

𝜔)∗ (𝜏𝜔)∗ (𝑈𝜔)!

y y y y

The main thing that must be checked in this diagram is the commutativity of the inner
square. This is a consequence of the more general fact that y ◦ 𝑓∗ � y(𝑓)∗ ◦ y whose
verification we leave to the reader—it is a slightly more complex version of the argument
that the Yoneda embedding preserves exponentials. This shows that P𝜋 (y(𝑋)) � y(P𝜏𝜔 (𝑋))
and so we are reduced to constructing the following square in C:

P𝜏𝜔𝑈
•
𝜔

P𝜋𝑈𝜔

𝑈 •
𝜔

𝑈𝜔

(2025-05-02) Locally cartesian closed categories and coherence 255

Since 𝜏𝜔 is generic for 𝑆𝜔 , to construct this pullback square it suffices to show P𝜏𝜔 (𝜏𝜔) ∈ 𝑆𝜔 .
Examining the definition of P𝜏𝜔 , we note that all three of the relevant functors preserve
elements of 𝑆𝜔 and so the conclusion follows. □

This proof methodology is a useful trick: since each of the operations involved in
defining various connectives (e.g., those given by Slogans 6.2.10 and 6.3.13) are available in
any locally cartesian closed category and preserved by any locally cartesian closed functor.
In particular, the Yoneda embedding commutes with all of these operations and so we can
transfer these structures from C to Pr(C) using y. We go through another example of
this with Bool. Here we must work slightly harder to rephrase our requirements in the
language of locally cartesian closed categories.

Lemma 6.5.27. There exists a commutative square of the following form in Pr(C):

1
∐

1

1

Tm•

Ty
BoolC

Moreover, the gap map 𝑔 : 1
∐

1 Tm• ×Ty 1 = Bool∗C𝜋 is left orthogonal to 𝜋 .

Proof. Let us recall that 𝑔 ⋔ 𝜋 is equivalent to requiring that the following canonical map
is an isomorphism:

(Tm•)Bool∗C𝜋 (Tm•)1
∐

1 ×Ty1
∐

1 TyBool∗C𝜋

As it stands, neither this requirement nor the commuting diagram above are formulated
in the language of locally cartesian closed categories as both mention a coproduct: 1

∐
1.

In particular, even if we formulate such a square in C, it is not automatic that it will be
preserve by the Yoneda embedding. Fortunately, we can replace all occurrences of

∐
with

appropriate products as 1
∐

1 is used only in the domains of various functions.
We may reformulate our goal as constructing (1) a map BoolC : 1 Ty and (2) a

pair of maps trueC, falseC : 1 Bool∗CTm
• such that the following canonical map is an

isomorphism:
(Tm•)Bool∗C𝜋 (Tm• × Tm•) ×Ty×Ty TyBool∗C𝜋

(2025-05-02) Locally cartesian closed categories and coherence 256

This can then be recast into C. By assumption, 𝑆𝜔 is closed under isomorphisms and
coproducts and so we obtain a pullback square of the following shape:

1
∐

1

1

𝑈 •
𝜔

𝑈𝜔

From this, this contains the required maps and the induced gap map is invertible by
construction. □

We may stitch these two lemmas, along with other similar arguments, together to
conclude the following:

Theorem 6.5.28. C supports a model of type theory with all connectives except universes.

The poor behavior of universe hierarchies Unfortunately, the story around universes
is not nearly so simple. While a version of a universe hierarchy may be interpreted into
this model, it will not satisfy cumulativity nor any of the other definitional equalities
imposed on codes in Section 6.4. For example, neither the equations lift(pi(𝑐0, 𝑐1)) =

pi(lift(𝑐0), lift(𝑐1)) nor El(pi(𝑐0, 𝑐1)) = Π(El(𝑐0), 𝑐1) will automatically hold. The latter
can be replaced with an isomorphism i.e., there is a pair of mutually inverse functions
between these types in the model but the latter may simply fail to hold.
What do we want to say here? Weak universes? Discuss GSS22/realignment?

6.5.4 Hofmann–Streicher universes and presheaf models of type theory

While not strictly speaking necessary, it is too tempting to not go through the construction
of a hierarchy of universes in Pr(C) due to Hofmann and Streicher [HS97]. In light of
the previous subsection, this construction also yields a model of type theory in arbitrary
presheaf topoi. The goal of this section is to prove the following:

Theorem 6.5.29. If 𝑉 is a Grothendieck universe (Definition 3.5.1) and C is a 𝑉 -small
category, then following set of morphisms in Pr(C) forms a universe:

𝑆 = {𝑓 : 𝑋 𝑌 | ∀𝐶 : C, 𝑦 ∈ 𝑌 (𝐶). 𝑓 −1(𝑦) is 𝑉 -small}

We say that 𝑓 is fiberwise 𝑉 -small.

(2025-05-02) Locally cartesian closed categories and coherence 257

Exercise 6.23. Show that 𝑆 is a bare universe i.e. that fiberwise small morphisms are
stable under pullback.

The heart of Theorem 6.5.29 is to construct the generic map for 𝑆 , so we will begin by
showing that 𝑆 is satisfies (1–5) of Definition 6.5.17.

Lemma 6.5.30. 𝑆 is contains all isomorphisms, is closed under composition, pushforward,
diagonals, coproducts, and contains a stably initial (1∐−)-algebra.

Proof. All of these calculations are of a similar flavor. For instance, to show that 𝑆 is stable
under composition, it suffices to show that if 𝑓 : 𝑋 𝑌 and 𝑔 : 𝑌 𝑍 are both fiberwise
𝑉 -small then so too is 𝑔 ◦ 𝑓 . Fix 𝑧 ∈ 𝑍 (𝐶) for some𝐶 such that it now suffices to argue that
𝑋 = (𝑔◦𝑓)−1(𝑧) is𝑉 -small. Wemay decompose𝑋 into the disjoint union

∑
𝑥0∈𝑔−1 (𝑧) 𝑓

−1(𝑥0).
The conclusion then follows by assumption together with the observation that 𝑉 -small
sets are closed under 𝑉 -small indexed disjoint unions.

Note that for dependent products, matters are slightly complicated by the fact that if
𝐶 : C and 𝑧 : 𝑍 (𝐶) then (𝑔∗𝑓)−1(𝑧) is realized as follows:

(𝑔∗𝑓)−1(𝑧) = ∏
𝑐:𝐶′→𝐶

∏
𝑦∈𝑔−1 (𝑧) 𝑓

−1(𝑦)

Here we must use the fact that C is 𝑉 -small to ensure that
∏
𝑐:𝐶′→𝐶 is not too large. □

Proof of Theorem 6.5.29. It remains only to show that 𝑆 has a generic family. Let us write
Pr𝑉 (D) for the full subcategory of Pr(D) spanned by those objects 𝑋 : Pr(D) such that
𝑋 (𝐷) ∈ 𝑉 for every 𝐷 : D. It is important here that we have required that𝑋 (𝐷) is literally
a member of 𝑉 , rather than merely being 𝑉 small as it ensures that Pr𝑉 (D) is a small
category whenever D is small. We then consider the following presheaf:

𝐵(𝐶) = Ob(Pr𝑉 (C/𝐶))

𝐵 is strictly functorial: we send 𝑓 : 𝐶0 𝐶1 to the action on objects associated with the
functor 𝐹 ∗ : Pr(C/𝐶1) Pr(C/𝐶0) where 𝐹 = 𝑓! : C/𝐶0 C/𝐶1 . This presheaf will serve as
the base of our generic family. The total family is given as follows:

𝐸 : Pr(C)
𝐸 (𝐶) = ∑

𝑋 :Ob(Pr𝑉 (C/𝐶)) 𝑋 (𝐶, id)

𝜋 : 𝐸 → 𝐵

𝜋𝐶 (𝑋, _) = 𝑋

As an aside, both 𝜋 and 𝐸 can be specified as a presheaf over
∫
C 𝐵 (Theorem 6.1.7):

𝐸 (𝐶,𝑋) = 𝑋 (𝐶, id)

(2025-05-02) Locally cartesian closed categories and coherence 258

Note that 𝜋 ∈ 𝑆 as 𝜋−1(𝐶,𝑋) = 𝑋−1(𝐶, id) is 𝑉 -small because 𝑋 : Pr𝑉 (C/𝐶).
Fix 𝑓 : 𝑋 𝑌 ∈ 𝑆 . It remains to show that there exists a pullback of the following

shape:
𝑋

𝑌

𝐸

𝐵
𝛽

Since 𝑓 is fiberwise 𝑉 -small, for each 𝐶 : C and 𝑦 ∈ 𝑌 (𝐶) there exists an element 𝑣 ∈ 𝑉
such that 𝑣 � 𝑓 −1(𝑦). Using the axiom of choice, we assemble these into a function 𝑓 and
we define a natural transformation 𝛽 : 𝑌 𝐵 as follows:

𝛽𝐶 (𝑦) = 𝜆𝑐 : 𝐶′ → 𝐶. 𝑓 (𝐶′, 𝑦 · 𝑐)

We leave it to the reader to verify that this indeed natural. Moreover, if 𝐶 : C then (𝑌 ×𝐵
𝐸) (𝐶) is then equivalent to

∑
𝑦:𝑌 (𝑐) 𝑓 (𝐶,𝑦) which, in turn, is equivalent to

∑
𝑦:𝑌 (𝐶) 𝑓

−1(𝑦).
It follows that 𝛽 then fits into the required pullback diagram. □

talk about how HS are super flexible and we can use them to get a strictly cumula-
tive hierarchy much as in Section 3.5.

6.5.5 The local universes construction

We now turn to the coherence construction introduced by Lumsdaine and Warren [LW15]
and Awodey [Awo18]. For the sake of expediency, we present only a special case of this
construction and refer the reader to Awodey [Awo18] and Shulman [Shu19, Appendix
A] for more thorough treatments which deal with e.g., intensional type theory and the
non-democratic models one frequently encounters in the semantics of homotopy type
theory.

As in Section 6.5.3, let us fix a locally cartesian closed category C equipped with
coproducts, a stably initial (1∐−)-algebra, a hierarchy of universes, etc. Unlike previously,
however, we do not insist on a top universe 𝑈𝜔 and instead we work a bit harder to define
TyC and TmC .

The key idea of the local universes construction is to compensate for the lack of 𝑈𝜔
by choosing 𝜋C to be the sum of all possible choices; no single choice of universe will
necessarily suffice for every situation, but we shall show that in every situation there is at
least one suitable universe:

𝜋C =
∐
𝜏 :𝐸→𝐵y(𝜏) : TmC TyC

(2025-05-02) Locally cartesian closed categories and coherence 259

Explicitly, a type 𝐴 ∈ TyC (Γ) is a pair of (1) a ‘local universe’ 𝜏 : 𝐸 𝐵 and (2) a ‘type
in this universe’ 𝑓 : Γ 𝐵. A term of type 𝐴 in context Γ then consists of a section of 𝐴:

Γ 𝐵

𝐸

𝑓

𝜏

Notation 6.5.31. Wehave deliberately chosen to use𝐸, 𝐵 rather thanΔ, Γ for the (co)domain
of a local universe in an attempt to disambiguate between morphisms in C qua universes
versus morphisms qua substitutions.

If we imagine that there is a single master universe then this definition collapses to that
of Section 6.5.3, but this definition allows the universe of types to change between types.
Before giving further intuition, we note that 𝜋 is a representable natural transformation.

Lemma 6.5.32. 𝜋C is a representable natural transformation.

Proof. Consider the following pullback diagram:

𝑃

y(Γ)

TmM

TyM

By the Yoneda lemma, hom(y(Γ),∐𝜏 :𝐸→𝐵y(𝐵)) is equivalent to ∐
𝜏 :𝐸→𝐵hom(y(Γ), y(𝐵)),

so we may factor the above diagram into two pullback squares for some 𝜏 : 𝐸 𝐵:

y(𝐸)

y(𝐵)

y(𝜏)

TmM

TyM

𝑃

y(𝐶)

In particular, 𝑃 � y(𝐸 ×𝐵 𝑋) and so 𝜋 is representable. □

Let us suppose Γ is a context in this nascent model (an object of C) and 𝐴 = (𝜏 :
𝐸 𝐵, 𝑓 : Γ 𝐵) ∈ TyC (𝐶). Unfolding the above proof, we see that Γ.𝐴 is given by
𝐵 ×𝐸 Γ and the p is the projection 𝐵 ×𝐸 Γ Γ. Consequently, there are many distinct

(2025-05-02) Locally cartesian closed categories and coherence 260

𝐴 = (𝜏, 𝑓) which give rise to isomorphic maps 𝐵 ×𝐸 Γ Γ and therefore many distinct
types 𝐴, 𝐵 ∈ TyC (Γ) such that Γ.𝐴 � Γ.𝐵.

Our earlier observation was the groupoid TyC (Γ) ought to be equivalent to C�/Γ , but
this redundancy tells us that TyC as a set is very far from being in bijection with Ob(C/𝐶).
This is vital: the many distinct representations of a given type is what ensures that TyC is
strictly functorial.

For instance, we can construct two types which give rise to the same extended context
by taking a type 𝐴 realized by (𝜏, 𝑓) in context Γ and a substitution 𝛾 : Γ0 Γ. The type
𝐴[𝛾] = (𝜏, 𝑓 ◦𝛾) induces an isomorphic context to the distinct type (𝑓 ∗𝜏,𝛾). Intuitively, the
local universesmodel ‘delays’ implementing substitution by pullback to ensure functoriality
at the cost of many redundant representations of each types. Fortunately, this duplication
does not really impact the construction. All that matters is that every such family 𝑓 ∈ C�/𝐶
can be realized by at least one type (say, (𝑓 , id)) and that TyC is strictly functorial.
Exercise 6.24. Show that 𝜋C is democratic (Definition 6.5.1).

Closure under type connectives The heart of the local universes construction is to
close 𝜋C under the operations of type theory. This is more difficult than Section 6.5.3
because we must describe how to form a Π-type when, for instance, the two types are
drawn from separate universes. Many of these arguments are formally similar and so we
shall detail only three connectives: Unit, Bool, and Π. We refer the reader to Awodey
[Awo18] or Lumsdaine and Warren [LW15] for other basic types and to Appendix A of
Shulman [Shu19] for universes.3

Lemma 6.5.33. 𝜋C supports unit types i.e., there exists a pullback square of the following
shape:

1

1

TmC

TyCUnitC

Proof. Amap UnitC : 1 TyC consists of a local universe 𝜏 : 𝐸 𝐵 and a map 𝑓 : 1 𝐵.
We take 𝜏 = id : 1 1 and 𝑓 = id : 1 1. By our earlier discussion, we know that the
pullback Unit∗CTmM—the extension of the empty context by UnitC—is given by 𝐸 ×𝐵 1 i.e.
1 as required. □

3Just as with the universes construction, the universes obtained in this manner satisfy fewer equations
than the theory described Chapter 2.

(2025-05-02) Locally cartesian closed categories and coherence 261

Lemma 6.5.34. 𝜋C supports booleans i.e., there exists a square of the following shape whose
gap map is orthogonal to 𝜋C :

1
∐

1

1

TmC

TyCBoolC

Proof. We start by defining BoolC : 1 TyC as the local universe 1
∐

1 1 together with
type id. Direct calculation then shows that the pullback Bool∗CTmC is given by y(1∐1).
It then suffices to show that 1

∐
1 y(1∐1) is orthogonal to 𝜋 . This follows from the

representability of 𝜋C and we leave this calculation to the reader. □

Lemma 6.5.35. 𝜋C is closed under Π i.e., there exists a pullback square of the following
shape:

P𝜋C (TmC)

P𝜋C (TyC)

TmC

TyCΠC

Proof. We begin by defining ΠC . The input to ΠC consists of the following:

• a context Γ : C,

• a type 𝐴 ∈ TyC (Γ) given by a local universe 𝜏𝐴 : 𝐸𝐴 𝐵𝐴 and a map 𝑓𝐴 : Γ 𝐵𝐴,

• a type in 𝐵 ∈ TyC (Γ.𝐴) given by a local universe 𝜏𝐵 : 𝐸𝐵 𝐵𝐵 and a map 𝑓𝐵 :
Γ ×𝐵𝐴 𝐸𝐴 𝐵𝐵 ,

We must construct a local universe in along with a map into this universe. Just as with the
prior two examples, we choose a local universe which suitably ‘encodes’ the dependent
product. Drawing inspiration from Section 6.2, we define 𝜏 : 𝐸 𝐵 to be

P𝜏𝐴 (𝜏𝐵) : P𝜏𝐴 (𝐸𝐵) P𝜏𝐴 (𝐵𝐵)

Under this definition, a map 𝐶 𝐵 consists of (1) a map 𝐶 𝐵𝐴 along with (2) a map
𝐸𝐴 ×𝐵𝐴 𝐶 𝐵𝐵 . We therefore obtain the required map 𝑓 : Γ 𝐵 precisely from (𝑓𝐴, 𝑓𝐵).
The reader may verify directly that ΠC ((𝜏𝐴, 𝑓𝐴), (𝜏𝐵, 𝑓𝐵)) = (𝜏, 𝑓) assembles into the re-
quired natural transformation.

(2025-05-02) Locally cartesian closed categories and coherence 262

It remains to show that ΠC fits into the desired pullback square. We begin by cal-
culating a term of ΠC (𝐴, 𝐵) with 𝐴, 𝐵 as above. Unfolding definitions, a term is a map
𝑡 : Γ P𝜏𝐴 (𝐸𝐵) fitting into the appropriate commuting triangle:

Γ

P𝜏𝐴 (𝐸𝐵)

P𝜏𝐴 (𝐵𝐵)(𝑓𝐴, 𝑓𝐵)

P𝜏𝐴 (𝜏𝐵)

By universal properties of P𝜏𝐴 (𝐸𝐵) and P𝜏𝐴 (𝜏𝐵), 𝑡 corresponds to (1) a map 𝑡0 : Γ 𝐵𝐴
and (2) a map 𝑡1 : 𝐸𝐴 ×𝐵𝐴 Γ 𝐸𝐵 . The commuting triangle above forces Γ 𝐵𝐴 to be 𝑓𝐴
and further ensures that 𝜏𝐵 ◦ 𝑡1 = 𝑓𝐵 . In other words, an element of ΠC (𝐴, 𝐵) is precisely
determined by an element of 𝐵 in the context Γ.C𝐴. The reader may check that this
equivalence is natural in order to obtain the required pullback square. □

The final result One can proceed as we have done in Lemmas 6.5.33 to 6.5.35 to show
that the model based on local universes is closed under all the connectives of type theory
(sans universes). With further effort, one can also account universes [Shu19, Appendix
A] to some extent in this theory, though as of writing this construction is not known to
support cumulative universes.

Putting these pieces together, one arrives at the following result:

Theorem 6.5.36. If C satisfies the conclusion of Theorem 6.5.21 then 𝜋C extends to a demo-
cratic model of type theory with all connectives whose category of contexts is precisely C.

To close out this lengthy section, let us list a few potential applications of Theorem 6.5.36
and, more generally, the connection it implies between locally cartesian closed categories
and type theory.

Broadly, there are two classes of applictions:

1. We can now use locally cartesian closed categories to construct exotic models of
type theory

2. We can now use type theory to reason about exotic locally cartesian closed categories.

We content ourselves with only a few examples in the literature of each, as these two
classes of applications contain a large swathe of modern type theory.

(2025-05-02) Locally cartesian closed categories and coherence 263

For the first application, a number of independence results are now readily available
and, in particular, we may use Theorem 6.5.36 with various topoi to delivering on some of
the independence results promised in Section 2.8. One may use the model of type theory
in Pr({0 ≤ 1}) = Set→ to show the independence of both the law of the excluded middle
and the axiom of choice from ETT. Exchanging presheaf topoi for sheaf topoi, one can
falsify Markov’s principle [CM16]4 and various other constructive taboos. Using instead
various realizability topoi [Oos08], one can show the consistency of Church’s law with
extensional type theory. More recently, Andrew Swan has announced a proof that not all
quotient types are definable in ETT using similar methods [Swa25].

In the second direction, one may use the model of extensional type theory available in
Pr(𝐶) to give a succinct account of all of the structures defined in Sections 6.1 to 6.4. In
particular, the interpretation of dependent products in Pr(𝐶) yields a semantic version
of higher-order abstract syntax [Hof99] and this maneuver is already present in Awodey
[Awo18]. More strikingly, the same model of type theory in cubical sets can be used to
succinctly construct a model of cubical type theory [OP16]. The same approach applied to
categories arising from Artin gluing may be used to give conceptual arguments for the
normalization of various type theories [SA21; Ste21; Gra22].
This is a very random assortment of references. Try and systematize this (even
when limited to working with extensional type theory which pars down the list
quite a lot).

What follows is not ready for comments

4Coquand and Mannaa opt for a more elaborate approach to deal with the relatively poor behavior
(particularly in constructive metatheory) of hierarchies of universes which we have largely ignored in this
section. See Gratzer, Shulman, and Sterling [GSS24] for more discussion on this point

(2025-05-02) Canonicity via gluing 264

6.6 Canonicity via gluing

6.7★ A semantic definition of the syntax of type theories

AMartin-Löf type theory

This appendix presents a substitution calculus [Mar92; Tas93; Dyb96] for several variants
of Martin-Löf’s dependent type theory. Martin-Löf type theories are systems admitting
the rules in section Contexts and substitutions; the rules specific to extensional type the-
ory, those axiomatizing extensional equality types, are marked (ETT); the rules specific to
intensional type theory, those axiomatizing intensional equality types, are marked (ITT).

Judgments

Martin-Löf type theory has four basic judgments:

1. ⊢ Γ cx asserts that Γ is a context.

2. Δ ⊢ 𝛾 : Γ, presupposing ⊢ Δ cx and ⊢ Γ cx, asserts that 𝛾 is a substitution from Δ to Γ
(i.e., assigns a term in Δ to each variable in Γ).

3. Γ ⊢ 𝐴 type, presupposing ⊢ Γ cx, asserts that 𝐴 is a type in context Γ.

4. Γ ⊢ 𝑎 : 𝐴, presupposing ⊢ Γ cx and Γ ⊢ 𝐴 type, asserts that 𝑎 is an element/term of
type 𝐴 in context Γ.

The presuppositions of a judgment are its meta-implicit-arguments, so to speak. For
instance, the judgment Γ ⊢ 𝐴 type is sensible to write (is meta-well-typed) only when the
judgment ⊢ Γ cx holds. We adopt the convention that asserting the truth of a judgment
implicitly asserts its well-formedness; thus asserting Γ ⊢ 𝐴 type also asserts ⊢ Γ cx.

As we assert the existence of various contexts, substitutions, types, and terms, we will
simultaneously need to assert that some of these (already introduced) objects are equal to
other (already introduced) objects of the same kind.

1. Δ ⊢ 𝛾 = 𝛾 ′ : Γ, presupposing Δ ⊢ 𝛾 : Γ and Δ ⊢ 𝛾 ′ : Γ, asserts that 𝛾,𝛾 ′ are equal
substitutions from Δ to Γ.

2. Γ ⊢ 𝐴 = 𝐴′ type, presupposing Γ ⊢ 𝐴 type and Γ ⊢ 𝐴′ type, asserts that 𝐴,𝐴′ are
equal types in context Γ.

3. Γ ⊢ 𝑎 = 𝑎′ : 𝐴, presupposing Γ ⊢ 𝑎 : 𝐴 and Γ ⊢ 𝑎′ : 𝐴, asserts that 𝑎, 𝑎′ are equal
elements of type 𝐴 in context Γ.

265

(2025-05-02) 266

Two types (resp., contexts, substitutions, terms) being equal has the force that it does
in standard mathematics: any expression can be replaced silently by an equal expression
without affecting the meaning or truth of the statement in which it appears. One important
example of this principle is the “conversion rule” which states that if Γ ⊢ 𝐴 = 𝐴′ type and
Γ ⊢ 𝑎 : 𝐴, then Γ ⊢ 𝑎 : 𝐴′.

In the rules that follow, some arguments of substitution, type, and term formers are
typeset as gray subscripts; these are arguments that we will often omit because they can
be inferred from context and are tedious and distracting to write.

Contexts and substitutions

⊢ 1 cx
cx/emp

⊢ Γ cx Γ ⊢ 𝐴 type

⊢ Γ.𝐴 cx
cx/ext

⊢ Γ cx

Γ ⊢ idΓ : Γ
sb/id

Γ2 ⊢ 𝛾1 : Γ1 Γ1 ⊢ 𝛾0 : Γ0

Γ2 ⊢ 𝛾0 ◦Γ2,Γ1,Γ0 𝛾1 : Γ0
sb/comp

Δ ⊢ 𝛾 : Γ
Δ ⊢ idΓ ◦ 𝛾 = 𝛾 : Γ

Δ ⊢ 𝛾 : Γ
Δ ⊢ 𝛾 ◦ idΔ = 𝛾 : Γ

Γ3 ⊢ 𝛾2 : Γ2 Γ2 ⊢ 𝛾1 : Γ1 Γ1 ⊢ 𝛾0 : Γ0

Γ3 ⊢ 𝛾0 ◦ (𝛾1 ◦ 𝛾2) = (𝛾0 ◦ 𝛾1) ◦ 𝛾2 : Γ0

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴 type

Δ ⊢ 𝐴[𝛾]Δ,Γ type
ty/sb

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : 𝐴
Δ ⊢ 𝑎[𝛾]Δ,Γ : 𝐴[𝛾]

tm/sb

Γ ⊢ 𝐴 type

Γ ⊢ 𝐴[idΓ] = 𝐴 type

Γ ⊢ 𝑎 : 𝐴
Γ ⊢ 𝑎[idΓ] = 𝑎 : 𝐴

Γ2 ⊢ 𝛾1 : Γ1 Γ1 ⊢ 𝛾0 : Γ0 Γ0 ⊢ 𝐴 type

Γ2 ⊢ 𝐴[𝛾0 ◦ 𝛾1] = 𝐴[𝛾0] [𝛾1] type
Γ2 ⊢ 𝛾1 : Γ1 Γ1 ⊢ 𝛾0 : Γ0 Γ0 ⊢ 𝑎 : 𝐴
Γ2 ⊢ 𝑎[𝛾0 ◦ 𝛾1] = 𝑎[𝛾0] [𝛾1] : 𝐴[𝛾0 ◦ 𝛾1]

⊢ Γ cx

Γ ⊢ !Γ : 1
sb/emp

Γ ⊢ 𝛿 : 1

Γ ⊢ !Γ = 𝛿 : 1

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴 type Δ ⊢ 𝑎 : 𝐴[𝛾]
Δ ⊢ 𝛾 .Δ,Γ,𝐴𝑎 : Γ.𝐴

sb/ext
Γ ⊢ 𝐴 type

Γ.𝐴 ⊢ pΓ,𝐴 : Γ
sb/wk

(2025-05-02) 267

Γ ⊢ 𝐴 type

Γ.𝐴 ⊢ qΓ,𝐴 : 𝐴[pΓ,𝐴]
var

Δ ⊢ 𝛾 : Γ Δ ⊢ 𝑎 : 𝐴[𝛾]
Δ ⊢ pΓ,𝐴 ◦Γ.𝐴 (𝛾 .𝑎) = 𝛾 : Γ

Δ ⊢ 𝛾 : Γ Δ ⊢ 𝑎 : 𝐴[𝛾]
Δ ⊢ qΓ,𝐴 [𝛾 .𝑎] = 𝑎 : 𝐴[𝛾]

Δ ⊢ 𝛾 : Γ.𝐴
Δ ⊢ 𝛾 = (pΓ,𝐴 ◦Γ.𝐴 𝛾).(qΓ,𝐴 [𝛾]) : Γ.𝐴

Π-types

Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type
Γ ⊢ ΠΓ (𝐴, 𝐵) type

pi/form
Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝑏 : 𝐵
Γ ⊢ 𝜆Γ,𝐴,𝐵 (𝑏) : Π(𝐴, 𝐵)

pi/intro

Γ ⊢ 𝑎 : 𝐴 Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑓 : Π(𝐴, 𝐵)
Γ ⊢ appΓ,𝐴,𝐵 (𝑓 , 𝑎) : 𝐵 [idΓ .𝑎]

pi/elim

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type
Δ ⊢ ΠΓ (𝐴, 𝐵) [𝛾] = ΠΔ(𝐴[𝛾], 𝐵 [(𝛾 ◦ pΔ,𝐴[𝛾]).qΔ,𝐴[𝛾]]) type

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝑏 : 𝐵
Δ ⊢ 𝜆 (𝑏) [𝛾] = 𝜆 (𝑏 [(𝛾 ◦ p).q]) : Π(𝐴, 𝐵) [𝛾]

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : 𝐴 Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑓 : Π(𝐴, 𝐵)
Δ ⊢ app(𝑓 , 𝑎) [𝛾] = app(𝑓 [𝛾], 𝑎[𝛾]) : 𝐵 [(idΓ .𝑎) ◦ 𝛾]

Γ ⊢ 𝑎 : 𝐴 Γ.𝐴 ⊢ 𝑏 : 𝐵
Γ ⊢ app(𝜆 (𝑏), 𝑎) = 𝑏 [id.𝑎] : 𝐵 [id.𝑎]

Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑓 : Π(𝐴, 𝐵)
Γ ⊢ 𝑓 = 𝜆 (app(𝑓 [pΓ,𝐴], qΓ,𝐴)) : Π(𝐴, 𝐵)

Σ-types

Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type
Γ ⊢ ΣΓ (𝐴, 𝐵) type

sigma/form

Γ ⊢ 𝑎 : 𝐴 Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑏 : 𝐵 [idΓ .𝑎]
Γ ⊢ pairΓ,𝐴,𝐵 (𝑎, 𝑏) : Σ(𝐴, 𝐵)

sigma/intro

(2025-05-02) 268

Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑝 : Σ(𝐴, 𝐵)
Γ ⊢ fstΓ,𝐴,𝐵 (𝑝) : 𝐴

sigma/elim/fst

Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑝 : Σ(𝐴, 𝐵)
Γ ⊢ sndΓ,𝐴,𝐵 (𝑝) : 𝐵 [idΓ .fst(𝑝)]

sigma/elim/snd

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type
Δ ⊢ ΣΓ (𝐴, 𝐵) [𝛾] = ΣΔ(𝐴[𝛾], 𝐵 [(𝛾 ◦ p).q]) type

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : 𝐴 Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑏 : 𝐵 [id.𝑎]
Δ ⊢ pair(𝑎, 𝑏) [𝛾] = pair(𝑎[𝛾], 𝑏 [𝛾]) : Σ(𝐴, 𝐵) [𝛾]

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑝 : Σ(𝐴, 𝐵)
Δ ⊢ fst(𝑝) [𝛾] = fst(𝑝 [𝛾]) : 𝐴[𝛾]

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑝 : Σ(𝐴, 𝐵)
Δ ⊢ snd(𝑝) [𝛾] = snd(𝑝 [𝛾]) : 𝐵 [(id.fst(𝑝)) ◦ 𝛾]

Γ ⊢ 𝑎 : 𝐴 Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑏 : 𝐵 [id.𝑎]
Γ ⊢ fst(pair(𝑎, 𝑏)) = 𝑎 : 𝐴

Γ ⊢ 𝑎 : 𝐴 Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑏 : 𝐵 [id.𝑎]
Γ ⊢ snd(pair(𝑎, 𝑏)) = 𝑏 : 𝐵 [id.𝑎]

Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑝 : Σ(𝐴, 𝐵)
Γ ⊢ 𝑝 = pair(fst(𝑝), snd(𝑝)) : Σ(𝐴, 𝐵)

Extensional equality types

Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑏 : 𝐴
Γ ⊢ EqΓ (𝐴, 𝑎, 𝑏) type

eq/form (ETT)
Γ ⊢ 𝑎 : 𝐴

Γ ⊢ reflΓ,𝐴,𝑎 : Eq(𝐴, 𝑎, 𝑎)
eq/intro (ETT)

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑏 : 𝐴
Δ ⊢ EqΓ (𝐴, 𝑎, 𝑏) [𝛾] = EqΔ(𝐴[𝛾], 𝑎[𝛾], 𝑏 [𝛾]) type

(ETT)

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : 𝐴
Δ ⊢ refl [𝛾] = refl : Eq(𝐴, 𝑎, 𝑎) [𝛾]

(ETT)

(2025-05-02) 269

Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑏 : 𝐴 Γ ⊢ 𝑝 : Eq(𝐴, 𝑎, 𝑏)
Γ ⊢ 𝑎 = 𝑏 : 𝐴

(ETT)

Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑏 : 𝐴 Γ ⊢ 𝑝 : Eq(𝐴, 𝑎, 𝑏)
Γ ⊢ 𝑝 = refl : Eq(𝐴, 𝑎, 𝑏)

(ETT)

Unit type

⊢ Γ cx

Γ ⊢ UnitΓ type
unit/form

⊢ Γ cx

Γ ⊢ ttΓ : Unit
unit/intro

Δ ⊢ 𝛾 : Γ
Δ ⊢ UnitΓ [𝛾] = UnitΔ type

Δ ⊢ 𝛾 : Γ
Δ ⊢ ttΓ [𝛾] = ttΔ : Unit

Γ ⊢ 𝑎 : Unit

Γ ⊢ 𝑎 = tt : Unit

Empty type

⊢ Γ cx

Γ ⊢ VoidΓ type
empty/form

Γ ⊢ 𝑏 : Void Γ.Void ⊢ 𝐴 type

Γ ⊢ absurdΓ,𝐴 (𝑏) : 𝐴[id.𝑏]
empty/elim

Δ ⊢ 𝛾 : Γ
Δ ⊢ VoidΓ [𝛾] = VoidΔ type

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑏 : Void Γ.Void ⊢ 𝐴 type

Δ ⊢ absurd(𝑏) [𝛾] = absurd(𝑏 [𝛾]) : 𝐴[𝛾 .𝑏 [𝛾]]

Boolean type

⊢ Γ cx

Γ ⊢ BoolΓ type
bool/form

⊢ Γ cx

Γ ⊢ trueΓ : Bool
bool/intro/true

⊢ Γ cx

Γ ⊢ falseΓ : Bool
bool/intro/false

Γ ⊢ 𝑏 : Bool
Γ.Bool ⊢ 𝐴 type Γ ⊢ 𝑎𝑡 : 𝐴[id.true] Γ ⊢ 𝑎 𝑓 : 𝐴[id.false]

Γ ⊢ ifΓ,𝐴 (𝑎𝑡 , 𝑎 𝑓 , 𝑏) : 𝐴[id.𝑏]
bool/elim

(2025-05-02) 270

Δ ⊢ 𝛾 : Γ
Δ ⊢ BoolΓ [𝛾] = BoolΔ type

Δ ⊢ 𝛾 : Γ
Δ ⊢ trueΓ [𝛾] = trueΔ : Bool

Δ ⊢ 𝛾 : Γ
Δ ⊢ falseΓ [𝛾] = falseΔ : Bool

Δ ⊢ 𝛾 : Γ
Γ ⊢ 𝑏 : Bool Γ.Bool ⊢ 𝐴 type Γ ⊢ 𝑎𝑡 : 𝐴[id.true] Γ ⊢ 𝑎 𝑓 : 𝐴[id.false]

Δ ⊢ if (𝑎𝑡 , 𝑎 𝑓 , 𝑏) [𝛾] = if (𝑎𝑡 [𝛾], 𝑎 𝑓 [𝛾], 𝑏 [𝛾]) : 𝐴[𝛾 .𝑏 [𝛾]]

⊢ Γ cx Γ.Bool ⊢ 𝐴 type Γ ⊢ 𝑎𝑡 : 𝐴[id.true] Γ ⊢ 𝑎 𝑓 : 𝐴[id.false]
Γ ⊢ if (𝑎𝑡 , 𝑎 𝑓 , true) = 𝑎𝑡 : 𝐴[id.true]

⊢ Γ cx Γ.Bool ⊢ 𝐴 type Γ ⊢ 𝑎𝑡 : 𝐴[id.true] Γ ⊢ 𝑎 𝑓 : 𝐴[id.false]
Γ ⊢ if (𝑎𝑡 , 𝑎 𝑓 , false) = 𝑎 𝑓 : 𝐴[id.false]

Natural number type

⊢ Γ cx

Γ ⊢ NatΓ type
nat/form

⊢ Γ cx

Γ ⊢ zeroΓ : Nat
nat/intro/zero

Γ ⊢ 𝑛 : Nat

Γ ⊢ sucΓ (𝑛) : Nat
nat/intro/suc

Γ.Nat ⊢ 𝐴 type
Γ ⊢ 𝑎𝑧 : 𝐴[id.zero] Γ.Nat.𝐴 ⊢ 𝑎𝑠 : 𝐴[p2.suc(q [p])] Γ ⊢ 𝑛 : Nat

Γ ⊢ recΓ,𝐴 (𝑎𝑧, 𝑎𝑠, 𝑛) : 𝐴[id.𝑛]
nat/elim

Δ ⊢ 𝛾 : Γ
Δ ⊢ NatΓ [𝛾] = NatΔ type

Δ ⊢ 𝛾 : Γ
Δ ⊢ zeroΓ [𝛾] = zeroΔ : Nat

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑛 : Nat

Δ ⊢ sucΓ (𝑛) [𝛾] = sucΔ(𝑛[𝛾]) : Nat

Δ ⊢ 𝛾 : Γ Γ.Nat ⊢ 𝐴 type
Γ ⊢ 𝑎𝑧 : 𝐴[id.zero] Γ.Nat.𝐴 ⊢ 𝑎𝑠 : 𝐴[p2.suc(q [p])] Γ ⊢ 𝑛 : Nat

Δ ⊢ rec(𝑎𝑧, 𝑎𝑠, 𝑛) [𝛾] = rec(𝑎𝑧 [𝛾], 𝑎𝑠 [(𝛾 ◦ p2).q [p] .q], 𝑛[𝛾]) : 𝐴[𝛾 .𝑛[𝛾]]

(2025-05-02) 271

Γ.Nat ⊢ 𝐴 type Γ ⊢ 𝑎𝑧 : 𝐴[id.zero] Γ.Nat.𝐴 ⊢ 𝑎𝑠 : 𝐴[p2.suc(q [p])]
Γ ⊢ rec(𝑎𝑧, 𝑎𝑠, zero) = 𝑎𝑧 : 𝐴[id.zero]

Γ.Nat ⊢ 𝐴 type
Γ ⊢ 𝑎𝑧 : 𝐴[id.zero] Γ.Nat.𝐴 ⊢ 𝑎𝑠 : 𝐴[p2.suc(q [p])] Γ ⊢ 𝑛 : Nat

Γ ⊢ rec(𝑎𝑧, 𝑎𝑠, suc(𝑛)) = 𝑎𝑠 [id.𝑛.rec(𝑎𝑧, 𝑎𝑠, 𝑛)] : 𝐴[id.suc(𝑛)]

Intensional equality types

Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑏 : 𝐴
Γ ⊢ IdΓ (𝐴, 𝑎, 𝑏) type

id/form (ITT)
Γ ⊢ 𝑎 : 𝐴

Γ ⊢ reflΓ,𝐴,𝑎 : Id(𝐴, 𝑎, 𝑎)
id/intro (ITT)

Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑏 : 𝐴 Γ ⊢ 𝑝 : Id(𝐴, 𝑎, 𝑏)
Γ.𝐴.𝐴[p] .Id(𝐴[p2], q [p], q) ⊢ 𝐶 type Γ.𝐴 ⊢ 𝑐 : 𝐶 [p.q.q.refl]

Γ ⊢ JΓ,𝐴,𝑎,𝑏,𝐶 (𝑐, 𝑝) : 𝐶 [id.𝑎.𝑏.𝑝]
id/elim (ITT)

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑏 : 𝐴
Δ ⊢ IdΓ (𝐴, 𝑎, 𝑏) [𝛾] = IdΔ(𝐴[𝛾], 𝑎[𝛾], 𝑏 [𝛾]) type

(ITT)

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : 𝐴
Δ ⊢ refl [𝛾] = refl : Id(𝐴[𝛾], 𝑎[𝛾], 𝑎[𝛾])

(ITT)

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝑏 : 𝐴 Γ ⊢ 𝑝 : Id(𝐴, 𝑎, 𝑏)
Γ.𝐴.𝐴[p] .Id(𝐴[p2], q [p], q) ⊢ 𝐶 type Γ.𝐴 ⊢ 𝑐 : 𝐶 [p.q.q.refl]

Δ ⊢ J(𝑐, 𝑝) [𝛾] = J(𝑐 [(𝛾 ◦ p).q], 𝑝 [𝛾]) : 𝐶 [𝛾 .𝑎[𝛾] .𝑏 [𝛾] .𝑝 [𝛾]]
(ITT)

Γ ⊢ 𝑎 : 𝐴 Γ.𝐴.𝐴[p] .Id(𝐴[p2], q [p], q) ⊢ 𝐶 type Γ.𝐴 ⊢ 𝑐 : 𝐶 [p.q.q.refl]
Γ ⊢ J(𝑐, refl) = 𝑐 [id.𝑎] : 𝐶 [id.𝑎.𝑎.refl]

(ITT)

Universes

⊢ Γ cx

Γ ⊢ UΓ,𝑖 type
uni/form

Γ ⊢ 𝑎 : U𝑖

Γ ⊢ ElΓ,𝑖 (𝑎) type
el/form

Γ ⊢ 𝑐0 : U𝑖 Γ.El𝑖 (𝑐0) ⊢ 𝑐1 : U𝑖

Γ ⊢ pi𝑖,Γ (𝑐0, 𝑐1) : U𝑖

pi/code
Γ ⊢ 𝑐0 : U𝑖 Γ.El𝑖 (𝑐0) ⊢ 𝑐1 : U𝑖

Γ ⊢ sig𝑖,Γ (𝑐0, 𝑐1) : U𝑖

sig/code

(2025-05-02) 272

Γ ⊢ 𝑐 : U𝑖 Γ ⊢ 𝑥,𝑦 : El𝑖 (𝑐)
Γ ⊢ eq𝑖,Γ (𝑐, 𝑥,𝑦) : U𝑖

eq/code (ETT)

Γ ⊢ 𝑐 : U𝑖 Γ ⊢ 𝑥,𝑦 : El𝑖 (𝑐)
Γ ⊢ id𝑖,Γ (𝑐, 𝑥,𝑦) : U𝑖

id/code (ITT)
⊢ Γ cx

Γ ⊢ unit𝑖,Γ : U𝑖

unit/code

⊢ Γ cx

Γ ⊢ nat𝑖,Γ : U𝑖

nat/code
⊢ Γ cx

Γ ⊢ void𝑖,Γ : U𝑖

empty/code
⊢ Γ cx

Γ ⊢ bool𝑖,Γ : U𝑖

bool/code

⊢ Γ cx 𝑗 < 𝑖

Γ ⊢ uniΓ,𝑖, 𝑗 : U𝑖

uni/code
Γ ⊢ 𝑐 : U𝑖

Γ ⊢ lift𝑖,Γ (𝑐) : U𝑖+1

Δ ⊢ 𝛾 : Γ
Δ ⊢ UΓ,𝑖 [𝛾] = UΔ,𝑖 type

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑎 : U𝑖

Δ ⊢ El𝑖 (𝑎) [𝛾] = El𝑖 (𝑎[𝛾]) type

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑐0 : U𝑖 Γ.El𝑖 (𝑐0) ⊢ 𝑐1 : U𝑖

Δ ⊢ pi(𝑐0, 𝑐1) [𝛾] = pi(𝑐0 [𝛾], 𝑐1 [(𝛾 ◦ p).q]) : U𝑖

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑐0 : U𝑖 Γ.El𝑖 (𝑐0) ⊢ 𝑐1 : U𝑖

Δ ⊢ sig(𝑐0, 𝑐1) [𝛾] = sig(𝑐0 [𝛾], 𝑐1 [(𝛾 ◦ p).q]) : U𝑖

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑐 : U𝑖 Γ ⊢ 𝑥,𝑦 : El𝑖 (𝑐)
Δ ⊢ eq(𝑐, 𝑥,𝑦) [𝛾] = eq(𝑐 [𝛾], 𝑥 [𝛾], 𝑦 [𝛾]) : U𝑖

(ETT)

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑐 : U𝑖 Γ ⊢ 𝑥,𝑦 : El𝑖 (𝑐)
Δ ⊢ id(𝑐, 𝑥,𝑦) [𝛾] = id(𝑐 [𝛾], 𝑥 [𝛾], 𝑦 [𝛾]) : U𝑖

(ITT)

Δ ⊢ 𝛾 : Γ
Δ ⊢ unit [𝛾] = unit : U𝑖

Δ ⊢ 𝛾 : Γ
Δ ⊢ nat [𝛾] = nat : U𝑖

Δ ⊢ 𝛾 : Γ
Δ ⊢ void [𝛾] = void : U𝑖

Δ ⊢ 𝛾 : Γ
Δ ⊢ bool [𝛾] = bool : U𝑖

Δ ⊢ 𝛾 : Γ 𝑗 < 𝑖

Δ ⊢ uni 𝑗 [𝛾] = uni 𝑗 : U𝑖

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝑐 : U𝑖

Δ ⊢ lift(𝑐) [𝛾] = lift(𝑐 [𝛾]) : U𝑖+1

Γ ⊢ 𝑐0 : U𝑖 Γ.El𝑖 (𝑐0) ⊢ 𝑐1 : U𝑖

Γ ⊢ El𝑖 (pi(𝑐0, 𝑐1)) = Π(El𝑖 (𝑐0), El𝑖 (𝑐1)) type

(2025-05-02) 273

Γ ⊢ 𝑐0 : U𝑖 Γ.El𝑖 (𝑐0) ⊢ 𝑐1 : U𝑖

Γ ⊢ El𝑖 (sig(𝑐0, 𝑐1)) = Σ(El𝑖 (𝑐0), El𝑖 (𝑐1)) type

Γ ⊢ 𝑐 : U𝑖 Γ ⊢ 𝑥,𝑦 : El𝑖 (𝑐)
Γ ⊢ El𝑖 (eq(𝑐, 𝑥,𝑦)) = Eq(El𝑖 (𝑐), 𝑥,𝑦) type

(ETT)

Γ ⊢ 𝑐 : U𝑖 Γ ⊢ 𝑥,𝑦 : El𝑖 (𝑐)
Γ ⊢ El𝑖 (id(𝑐, 𝑥,𝑦)) = Id(El𝑖 (𝑐), 𝑥,𝑦) type

(ITT)
Γ ⊢ El𝑖 (unit) = Unit type

Γ ⊢ El𝑖 (nat) = Nat type Γ ⊢ El𝑖 (void) = Void type Γ ⊢ El𝑖 (bool) = Bool type

𝑗 < 𝑖

Γ ⊢ El𝑖 (uni 𝑗) = U 𝑗 type

Γ ⊢ 𝑐 : U𝑖

Γ ⊢ El𝑖+1(lift(𝑐)) = El𝑖 (𝑐) type

BSolutions to selected exercises

Solution 2.2. Any substitution 𝛾 into Γ.𝐴 is of the form (p ◦ 𝛾).q [𝛾], which by our hy-
pothesis is equal to id.q [𝛾]. We can apply this substitution to a variable, obtaining the
term Γ ⊢ q [id.q [𝛾]] = q [𝛾] : 𝐴[id] as required. Conversely, any term Γ ⊢ 𝑎 : 𝐴 determines
a substitution Γ ⊢ id.𝑎 : Γ.𝐴 that satisfies p ◦ (id.𝑎) = id. One round-trip follows from the
previously noted equation, and the other from q [id.𝑎] = 𝑎.

Solution 2.3. To show

Ξ ⊢ 𝛿 : Δ Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴 type Δ ⊢ 𝑎 : 𝐴[𝛾]
Δ ⊢ (𝛾 .𝑎) ◦ 𝛿 = (𝛾 ◦ 𝛿) .𝑎[𝛿] : Γ.𝐴

⇒

we calculate as follows:

(𝛾 .𝑎) ◦ 𝛿 = (p ◦ (𝛾 .𝑎) ◦ 𝛿).(q [(𝛾 .𝑎) ◦ 𝛿])
= (𝛾 ◦ 𝛿) .(q [𝛾 .𝑎] [𝛿])
= (𝛾 ◦ 𝛿) .(𝑎[𝛿])

Solution 2.4. We define 𝛾 .𝐴 := (𝛾 ◦ p).q, i.e., the extension of the substitution Δ.𝐴[𝛾] ⊢
𝛾 ◦ p : Γ by the variable Δ.𝐴[𝛾] ⊢ q : 𝐴[𝛾 ◦ p].

Solution 2.5. In the forward direction, we send Δ ⊢ 𝛾 : Γ.𝐴 to the pair of p ◦ 𝛾 and q [𝛾];
in the reverse direction, we send pairs of 𝛾0 and 𝑎 to the substitution 𝛾0.𝑎. One round-trip
follows from 𝛾 = (p ◦ 𝛾).q [𝛾] and the other from p ◦ (𝛾0.𝑎) = 𝛾0 and q [𝛾0.𝑎] = 𝑎.

Solution 2.8. Below are the formation, introduction, and elimination rules for non-dependent
functions, along with their definitions in terms of Π-types:

Γ ⊢ 𝐴 type Γ ⊢ 𝐵 type
Γ ⊢ 𝐴 → 𝐵 := Π(𝐴, 𝐵 [p]) type

Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝑏 : 𝐵 [p]
Γ ⊢ 𝜆q.𝑏 := 𝜆 (𝑏) : 𝐴 → 𝐵

Γ ⊢ 𝑎 : 𝐴 Γ ⊢ 𝐵 type Γ ⊢ 𝑓 : 𝐴 → 𝐵

Γ ⊢ 𝑓 𝑎 := app(𝑓 , 𝑎) : 𝐵

Note that 𝐵 must be weakened, and the elimination rule is meta-well-typed because
𝐵 [p ◦ (id.𝑎)] = 𝐵. The 𝛽- and 𝜂-rules are immediate.

274

(2025-05-02) 275

Solution 2.17. The only non-trivial presupposition to check is Δ ⊢ pair(𝑎[𝛾], 𝑏 [𝛾]) :
Σ(𝐴, 𝐵) [𝛾]. By the substitution rule for Σ, we have Σ(𝐴, 𝐵) [𝛾] = Σ(𝐴[𝛾], 𝐵 [𝛾 .𝐴]). The first
component of the pair is thus well-typed by Δ ⊢ 𝑎[𝛾] : 𝐴[𝛾]. For the second component,
we must show Δ ⊢ 𝑏 [𝛾] : 𝐵 [𝛾 .𝐴] [id.𝑎[𝛾]]. By applying 𝛾 to the typing premise for 𝑏 we
obtain Δ ⊢ 𝑏 [𝛾] : 𝐵 [id.𝑎] [𝛾], so it suffices to show (𝛾 .𝐴) ◦ (id.𝑎[𝛾]) = (id.𝑎) ◦ 𝛾 :

(𝛾 .𝐴) ◦ (id.𝑎[𝛾])
= ((𝛾 ◦ p).q) ◦ (id.𝑎[𝛾]) by Exercise 2.4
= (𝛾 ◦ p ◦ (id.𝑎[𝛾])).q [id.𝑎[𝛾]] by Exercise 2.3
= (𝛾 ◦ id).𝑎[𝛾]
= (id ◦ 𝛾).𝑎[𝛾]
= (id.𝑎) ◦ 𝛾 by Exercise 2.3

Solution 2.18. The substitution rule is somewhat odd:

Δ ⊢ 𝛾 : Γ Γ ⊢ 𝐴 type Γ.𝐴 ⊢ 𝐵 type Γ ⊢ 𝑓 : Π(𝐴, 𝐵)
Δ.𝐴[𝛾] ⊢ 𝜆−1(𝑓 [𝛾]) = 𝜆−1(𝑓) [𝛾 .𝐴] : 𝐵 [𝛾 .𝐴]

We prove it as follows:

𝜆−1(𝑓 [𝛾])
= 𝜆−1(𝜆 (𝜆−1(𝑓)) [𝛾]) by 𝑓 = 𝜆 (𝜆−1(𝑓))
= 𝜆−1(𝜆 (𝜆−1(𝑓) [𝛾 .𝐴])) by substitution for 𝜆
= 𝜆−1(𝑓) [𝛾 .𝐴] by 𝜆−1(𝜆 (. . .)) = . . .

Solution 2.21. The elimination principle corresponds to the forwardmap 𝜄Γ : Tm(Γ,Unit) →
{★}. This tells us that from Γ ⊢ 𝑎 : Unit we can obtain an element of {★}, a principle which
contains no useful information. The substitution rule for tt states that Δ ⊢ tt [𝛾] = tt : Unit,
but this follows already from the 𝜂 principle. Equivalently, in terms of the natural isomor-
phism, the forward maps 𝜄Γ are natural “for free” because all elements of {★} are equal;
thus the backward maps 𝜄−1

Γ (which determine tt) are also automatically natural.

Solution 3.1.

Γ ⊢ 𝜏0 type⇝ 𝐴 Γ.𝐴 ⊢ 𝜏1 type⇝ 𝐵

Γ ⊢ 𝑒0 : 𝐴⇝ 𝑎 Γ ⊢ 𝑒1 : 𝐵 [id.𝑎] ⇝ 𝑏 Γ ⊢ 𝐶 = Σ(𝐴, 𝐵) type
Γ ⊢ (pair 𝜏0 𝜏1 𝑒0 𝑒1) : 𝐶 ⇝ pairΓ,𝐴,𝐵 (𝑎, 𝑏)

(2025-05-02) 276

Solution 3.7. By Slogan 3.2.7, we check (pair 𝑒0 𝑒1) and synthesize (fst 𝑒) and (snd 𝑒).

unSigma(𝐶) = (𝐴, 𝐵) Γ ⊢ 𝑒0 ⇐ 𝐴⇝ 𝑎 Γ ⊢ 𝑒1 ⇐ 𝐵 [id.𝑎] ⇝ 𝑏

Γ ⊢ (pair 𝑒0 𝑒1) ⇐ 𝐶 ⇝ pair(𝑎, 𝑏)

Γ ⊢ 𝑒 ⇒ 𝐶 ⇝ 𝑝 unSigma(𝐶) = (𝐴, 𝐵)
Γ ⊢ (fst 𝑒) ⇒ 𝐴⇝ fst(𝑝)

Γ ⊢ 𝑒 ⇒ 𝐶 ⇝ 𝑝 unSigma(𝐶) = (𝐴, 𝐵)
Γ ⊢ (snd 𝑒) ⇒ 𝐵 [id.fst(𝑝)] ⇝ snd(𝑝)

In the above rules, unSigma is an algorithm that inverts Σ-types: given Γ ⊢ 𝐶 type it
returns the unique pair of types 𝐴, 𝐵 for which Γ ⊢ 𝐶 = Σ(𝐴, 𝐵) type, if they exist.

Solution 3.8. The fixed-point of the identity function Void → Void is a closed proof of
Void:

1 ⊢ Void type 1.Void ⊢ q : Void

1 ⊢ fix(q) : Void

Solution 3.9. Suppose there is a model M for which TmM (1M,BoolM) has exactly
two elements. By Theorem 3.4.5 there is a function Tm𝑓 (1,Bool) : Tm(1,Bool) →
TmM (1M,BoolM), but this does not allow us to conclude that Tm(1,Bool) has exactly
two elements!

In Theorem 3.4.7, the existence of a function 𝑋 → ∅ allowed us to observe that 𝑋 = ∅,
but the existence of a function 𝑋 → {★,★′} does not imply 𝑋 has exactly two elements.

Solution 4.7. Define 𝑐𝑎 = 𝑐 𝑎.

Solution 4.8. Define 𝑞 = uniq (𝑎1, 𝑝).

Solution 4.9. Define 𝑐𝑏 = subst 𝐶𝑎 𝑞 𝑐𝑎 .

Solution 4.10. We have 𝑐𝑏 : 𝐶𝑎 (𝑏, 𝑝) but 𝐶𝑎 (𝑏, 𝑝) = 𝐶 𝑎 𝑏 𝑝 by definition. We define j as
follows:

j : {𝐴 : U} (𝐶 : (𝑎 𝑏 : 𝐴) → Id(𝐴, 𝑎, 𝑏) → U) → ((𝑎 : 𝐴) → 𝐶 𝑎 𝑎 refl) →
(𝑎 𝑏 : 𝐴) (𝑝 : Id(𝐴, 𝑎, 𝑏)) → 𝐶 𝑎 𝑏 𝑝

j {𝐴} 𝐶 𝑐 𝑎 𝑏 𝑝 = subst (𝜆𝑥 → 𝐶 𝑎 (fst 𝑥) (snd 𝑥)) (uniq (𝑏, 𝑝)) (𝑐 𝑎)

(2025-05-02) 277

Solution 4.11.

j 𝐶 𝑐 𝑎 𝑎 refl
= subst (𝜆𝑥 → 𝐶 𝑎 (fst 𝑥) (snd 𝑥)) (uniq (𝑎, refl)) (𝑐 𝑎) by Exercise 4.10
= subst (𝜆𝑥 → 𝐶 𝑎 (fst 𝑥) (snd 𝑥)) refl (𝑐 𝑎) by uniq def.eq.
= 𝑐 𝑎 by subst def.eq.

Solution 5.1. Fix ℎ : (𝑎 : 𝑎) (𝑏0, 𝑏1 : 𝐵 𝑎) → Id(𝑏 𝑎, 𝑏0, 𝑏1) along with 𝑓0, 𝑓1 : (𝑎 : 𝑎) → 𝐵 𝑎.
The identification between them is given by funext(𝜆𝑎 → ℎ 𝑎 (𝑓0 𝑎) (𝑓1 𝑎)).

Bibliography

[Abe13] Andreas Abel. “Normalization by Evaluation: Dependent Types and Impred-
icativity”. Habilitation thesis. Ludwig-Maximilians-Universität München,
2013. url: http://www2.tcs.ifi.lmu.de/~abel/habil.pdf.

[ACD07] Andreas Abel, Thierry Coquand, and Peter Dybjer. “Normalization by Eval-
uation for Martin-Löf Type Theory with Typed Equality Judgements”. In:
22nd Annual IEEE Symposium on Logic in Computer Science. LICS 2007. July
2007, pp. 3–12. doi: 10.1109/LICS.2007.33.

[AFH17] Carlo Angiuli, Kuen-Bang Hou (Favonia), and Robert Harper. Computational
Higher Type Theory III: Univalent Universes and Exact Equality. Preprint. Dec.
2017. arXiv: 1712.01800 [cs.LO].

[AFH18] Carlo Angiuli, Kuen-Bang Hou (Favonia), and Robert Harper. “Cartesian
Cubical Computational Type Theory: Constructive Reasoning with Paths
and Equalities”. In: 27th EACSL Annual Conference on Computer Science Logic
(CSL 2018). Ed. by Dan Ghica and Achim Jung. Vol. 119. Leibniz International
Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2018, 6:1–6:17. isbn: 978-3-95977-088-0.
doi: 10.4230/LIPIcs.CSL.2018.6.

[AFS18] Steve Awodey, Jonas Frey, and Sam Speight. “Impredicative Encodings of
(Higher) Inductive Types”. In: Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science. LICS ’18. New York, NY, USA: ACM,
2018, pp. 76–85. isbn: 9781450355834. doi: 10.1145/3209108.3209130.

[Agda] The Agda Development Team. The Agda Programming Language. 2020. url:
http://wiki.portal.chalmers.se/agda/pmwiki.php.

[Ahr+25] Benedikt Ahrens, Paige Randall North, Michael Shulman, and Dimitris Tse-
mentzis. The Univalence Principle. Vol. 305. Memoirs of the American Math-
ematical Society 1541. 2025. isbn: 978-1-4704-7269-6. doi: 10.1090/memo/
1541.

[AJ21] Mathieu Anel and André Joyal. “Topo-logie”. In: New Spaces in Mathematics:
Formal and Conceptual Reflections. Ed. by Mathieu Anel and GabrielEditors
Catren. Cambridge University Press, 2021, pp. 155–257.

278

http://www2.tcs.ifi.lmu.de/~abel/habil.pdf
https://doi.org/10.1109/LICS.2007.33
https://arxiv.org/abs/1712.01800
https://doi.org/10.4230/LIPIcs.CSL.2018.6
https://doi.org/10.1145/3209108.3209130
http://wiki.portal.chalmers.se/agda/pmwiki.php
https://doi.org/10.1090/memo/1541
https://doi.org/10.1090/memo/1541

(2025-05-02) Bibliography 279

[AK16] Thorsten Altenkirch and Ambrus Kaposi. “Type theory in type theory using
quotient inductive types”. In: Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL 2016.
New York, NY, USA: ACM, 2016, pp. 18–29. isbn: 9781450335492. doi: 10.
1145/2837614.2837638.

[AKL15] JeremyAvigad, Krzysztof Kapulkin, and Peter LeFanu Lumsdaine. “Homotopy
limits in type theory”. In: Mathematical Structures in Computer Science 25.5
(Jan. 2015), pp. 1040–1070. issn: 1469-8072. doi: 10.1017/s0960129514000
498. url: http://dx.doi.org/10.1017/S0960129514000498.

[Alt+01] T. Altenkirch, P. Dybjer, M. Hofmann, and P. Scott. “Normalization by eval-
uation for typed lambda calculus with coproducts”. In: Proceedings of the
16th Annual IEEE Symposium on Logic in Computer Science. LICS 2001. 2001,
pp. 303–310. doi: 10.1109/LICS.2001.932506.

[Alt23] Thorsten Altenkirch. “Should Type Theory Replace Set Theory as the Foun-
dation of Mathematics?” In: Global Philosophy 33.21 (2023). doi: 10.1007/
s10516-023-09676-0.

[AMB13] Guillaume Allais, Conor McBride, and Pierre Boutillier. “New equations
for neutral terms: a sound and complete decision procedure, formalized”.
In: Proceedings of the 2013 ACM SIGPLAN Workshop on Dependently-Typed
Programming. DTP ’13. New York, NY, USA: ACM, 2013, pp. 13–24. doi:
10.1145/2502409.2502411.

[AMS07] Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. “Observational
Equality, Now!” In: Proceedings of the 2007 Workshop on Programming Lan-
guages Meets Program Verification. PLPV ’07. New York, NY, USA: ACM, 2007,
pp. 57–68. isbn: 978-1-59593-677-6. doi: 10.1145/1292597.1292608.

[Ane19] Mathieu Anel. “Descent & Univalence”. HoTTEST talk. 2019. url: http:
//mathieu.anel.free.fr/mat/doc/Anel-2019-HoTTEST.pdf.

[Ang+21] Carlo Angiuli, Guillaume Brunerie, Thierry Coquand, Robert Harper, Kuen-
Bang Hou (Favonia), and Daniel R. Licata. “Syntax and models of Cartesian
cubical type theory”. In: Mathematical Structures in Computer Science 31.4
(2021). Special issue on Homotopy Type Theory and Univalent Foundations,
pp. 424–468. doi: 10.1017/S0960129521000347.

[Ang19] Carlo Angiuli. “Computational Semantics of Cartesian Cubical Type Theory”.
PhD thesis. Carnegie Mellon University, Sept. 2019. url: http://reports-
archive.adm.cs.cmu.edu/anon/2019/CMU-CS-19-127.pdf.

https://doi.org/10.1145/2837614.2837638
https://doi.org/10.1145/2837614.2837638
https://doi.org/10.1017/s0960129514000498
https://doi.org/10.1017/s0960129514000498
http://dx.doi.org/10.1017/S0960129514000498
https://doi.org/10.1109/LICS.2001.932506
https://doi.org/10.1007/s10516-023-09676-0
https://doi.org/10.1007/s10516-023-09676-0
https://doi.org/10.1145/2502409.2502411
https://doi.org/10.1145/1292597.1292608
http://mathieu.anel.free.fr/mat/doc/Anel-2019-HoTTEST.pdf
http://mathieu.anel.free.fr/mat/doc/Anel-2019-HoTTEST.pdf
https://doi.org/10.1017/S0960129521000347
http://reports-archive.adm.cs.cmu.edu/anon/2019/CMU-CS-19-127.pdf
http://reports-archive.adm.cs.cmu.edu/anon/2019/CMU-CS-19-127.pdf

(2025-05-02) Bibliography 280

[AÖV17] Andreas Abel, Joakim Öhman, and Andrea Vezzosi. “Decidability of conver-
sion for type theory in type theory”. In: Proceedings of the ACM on Program-
ming Languages 2.POPL (Dec. 2017), 23:1–23:29. doi: 10.1145/3158111.

[Asp95] David Aspinall. “Subtyping with singleton types”. In: Computer Science Logic.
Ed. by Leszek Pacholski and Jerzy Tiuryn. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1995, pp. 1–15. isbn: 978-3-540-49404-1.

[Aug99] Lennart Augustsson. “Cayenne —A Language with Dependent Types”. In:Ad-
vanced Functional Programming. Ed. by S. Doaitse Swierstra, José N. Oliveira,
and Pedro R. Henriques. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999,
pp. 240–267. isbn: 978-3-540-48506-3. doi: 10.1007/10704973_6.

[AW09] Steve Awodey and Michael A. Warren. “Homotopy theoretic models of
identity types”. In: Mathematical Proceedings of the Cambridge Philosoph-
ical Society 146.1 (Jan. 2009), pp. 45–55. issn: 0305-0041. doi: 10.1017/
S0305004108001783.

[Awo10] Steve Awodey. Category Theory. Second Edition. Oxford Logic Guides 52.
Oxford University Press, 2010. isbn: 9780199587360.

[Awo18] Steve Awodey. “Natural models of homotopy type theory”. In: Mathematical
Structures in Computer Science 28.2 (2018), pp. 241–286. doi: 10.1017/S0960
129516000268.

[Bar91] Henk Barendregt. “Introduction to generalized type systems”. In: Journal of
Functional Programming 1.2 (1991), pp. 125–154. doi: 10.1017/S095679680
0020025.

[Bau+21] Andrej Bauer, Gaëtan Gilbert, Philipp G. Haselwarter, Anja Petković, Matija
Pretnar, and Chris Stone. Andromeda: Your type theory à la Martin-Löf. 2021.
url: https://www.andromeda-prover.org/.

[Bez+21] Marc Bezem, Thierry Coquand, Peter Dybjer, and Martín Escardó. “On gen-
eralized algebraic theories and categories with families”. In: Mathematical
Structures in Computer Science 31.9 (2021). Special issue in homage to Martin
Hofmann, pp. 1006–1023. doi: 10.1017/S0960129521000268.

[Bra13] Edwin Brady. “Idris, a general-purpose dependently typed programming
language: Design and implementation”. In: Journal of Functional Programming
23.5 (2013), pp. 552–593. doi: 10.1017/S095679681300018X.

[Bra17] Edwin Brady. Type-Driven Development with Idris. Manning Publications,
2017. isbn: 9781617293023.

[Bru16] Guillaume Brunerie. “On the homotopy groups of spheres in homotopy
type theory”. PhD thesis. Université Nice Sophia Antipolis, 2016. url: http:
//arxiv.org/abs/1606.05916.

https://doi.org/10.1145/3158111
https://doi.org/10.1007/10704973_6
https://doi.org/10.1017/S0305004108001783
https://doi.org/10.1017/S0305004108001783
https://doi.org/10.1017/S0960129516000268
https://doi.org/10.1017/S0960129516000268
https://doi.org/10.1017/S0956796800020025
https://doi.org/10.1017/S0956796800020025
https://www.andromeda-prover.org/
https://doi.org/10.1017/S0960129521000268
https://doi.org/10.1017/S095679681300018X
http://arxiv.org/abs/1606.05916
http://arxiv.org/abs/1606.05916

(2025-05-02) Bibliography 281

[Bru18] Guillaume Brunerie. “The James Construction and 𝜋4(S3) in Homotopy Type
Theory”. In: Journal of Automated Reasoning 63.2 (June 2018), pp. 255–284.
issn: 1573-0670. doi: 10.1007/s10817-018-9468-2.

[Bru72] N. G. de Bruijn. “Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the Church-Rosser
theorem”. In: Indagationes Mathematicae 75.5 (1972), pp. 381–392. issn: 1385-
7258. doi: 10.1016/1385-7258(72)90034-0.

[Car86] John Cartmell. “Generalised algebraic theories and contextual categories”.
In: Annals of Pure and Applied Logic 32 (1986), pp. 209–243. issn: 0168-0072.
doi: 10.1016/0168-0072(86)90053-9.

[CCD17] Simon Castellan, Pierre Clairambault, and Peter Dybjer. “Undecidability of
Equality in the Free Locally Cartesian Closed Category (Extended version)”.
In: Logical Methods in Computer Science 13.4 (Nov. 2017). doi: 10.23638/
LMCS-13(4:22)2017.

[CCD21] Simon Castellan, Pierre Clairambault, and Peter Dybjer. “Categories with
Families: Unityped, Simply Typed, and Dependently Typed”. In: Joachim
Lambek: The Interplay of Mathematics, Logic, and Linguistics. Ed. by Claudia
Casadio and Philip J. Scott. Cham: Springer International Publishing, 2021,
pp. 135–180. isbn: 978-3-030-66545-6. doi: 10.1007/978-3-030-66545-6_5.

[CCHM18] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. “Cubical
Type Theory: A Constructive Interpretation of the Univalence Axiom”. In:
21st International Conference on Types for Proofs and Programs (TYPES 2015).
Ed. by Tarmo Uustalu. Vol. 69. Leibniz International Proceedings in Infor-
matics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2018, 5:1–5:34. isbn: 978-3-95977-030-9. doi: 10.4230/LIPIcs.
TYPES.2015.5.

[CD14] Pierre Clairambault and Peter Dybjer. “The biequivalence of locally cartesian
closed categories and Martin-Löf type theories”. In: Mathematical Structures
in Computer Science 24.6 (2014). doi: 10.1017/S0960129513000881.

[CDP14] Jesper Cockx, Dominique Devriese, and Frank Piessens. “Pattern Matching
without K”. In: Proceedings of the 19th ACM SIGPLAN International Confer-
ence on Functional Programming. ICFP ’14. New York, NY, USA: ACM, 2014,
pp. 257–268. isbn: 978-1-4503-2873-9. doi: 10.1145/2628136.2628139.

[CH19] Evan Cavallo and Robert Harper. “Higher Inductive Types in Cubical Compu-
tational Type Theory”. In: Proceedings of the ACM on Programming Languages
3.POPL (Jan. 2019), 1:1–1:27. issn: 2475-1421. doi: 10.1145/3290314.

https://doi.org/10.1007/s10817-018-9468-2
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1016/0168-0072(86)90053-9
https://doi.org/10.23638/LMCS-13(4:22)2017
https://doi.org/10.23638/LMCS-13(4:22)2017
https://doi.org/10.1007/978-3-030-66545-6_5
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.1017/S0960129513000881
https://doi.org/10.1145/2628136.2628139
https://doi.org/10.1145/3290314

(2025-05-02) Bibliography 282

[CH88] Thierry Coquand and Gérard Huet. “The Calculus of Constructions”. In:
Information and Computation 76.2 (1988), pp. 95–120. issn: 0890-5401. doi:
10.1016/0890-5401(88)90005-3.

[Chr19] David Christiansen. Checking Dependent Types with Normalization by Eval-
uation: A Tutorial. Online. 2019. url: https://davidchristiansen.dk/
tutorials/nbe/.

[Chr23] David Thrane Christiansen. Functional Programming in Lean. 2023. url:
https://lean-lang.org/functional_programming_in_lean/.

[CM16] Thierry Coquand and Bassel Mannaa. “The Independence of Markov’s Prin-
ciple in Type Theory”. In: 1st International Conference on Formal Structures
for Computation and Deduction (FSCD 2016). Ed. by Delia Kesner and Brigitte
Pientka. Vol. 52. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2016, 17:1–17:18. isbn: 978-3-95977-010-1. doi: 10.4230/LIPIcs.FSCD.
2016.17.

[Con+85] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F Cremer, R. W.
Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden, J. T. Sasaki,
and S. F. Smith. Implementing Mathematics with the Nuprl Proof Development
Environment. Prentice-Hall, 1985. url: http://www.nuprl.org/book/.

[Coq] The Coq Development Team. The Coq Proof Assistant. 2020. url: https:
//www.coq.inria.fr.

[Coq+09] Thierry Coquand, Yoshiki Kinoshita, Bengt Nordström, andMakoto Takeyama.
“A simple type-theoretic language: Mini-TT”. In: From Semantics to Computer
Science: Essays in Honour of Gilles Kahn. Ed. by Yves Bertot, Gérard Huet,
Jean-Jacques Lévy, and GordonEditors Plotkin. Cambridge University Press,
2009, pp. 139–164.

[Coq13] Thierry Coquand. “Presheaf model of type theory”. Unpublished note. 2013.
url: http://www.cse.chalmers.se/~coquand/presheaf.pdf.

[Coq14] Thierry Coquand. A remark on singleton types. Online. Mar. 2014. url: https:
//www.cse.chalmers.se/~coquand/singl.pdf.

[Coq19] Thierry Coquand. “Canonicity and normalization for dependent type theory”.
In: Theoretical Computer Science 777 (2019). In memory of Maurice Nivat, a
founding father of Theoretical Computer Science - Part I, pp. 184–191. issn:
0304-3975. doi: 10.1016/j.tcs.2019.01.015.

https://doi.org/10.1016/0890-5401(88)90005-3
https://davidchristiansen.dk/tutorials/nbe/
https://davidchristiansen.dk/tutorials/nbe/
https://lean-lang.org/functional_programming_in_lean/
https://doi.org/10.4230/LIPIcs.FSCD.2016.17
https://doi.org/10.4230/LIPIcs.FSCD.2016.17
http://www.nuprl.org/book/
https://www.coq.inria.fr
https://www.coq.inria.fr
http://www.cse.chalmers.se/~coquand/presheaf.pdf
https://www.cse.chalmers.se/~coquand/singl.pdf
https://www.cse.chalmers.se/~coquand/singl.pdf
https://doi.org/10.1016/j.tcs.2019.01.015

(2025-05-02) Bibliography 283

[Coq86] Thierry Coquand. “An Analysis of Girard’s Paradox”. In: Proceedings of the
First Annual IEEE Symposium on Logic in Computer Science. LICS 1986. IEEE
Computer Society Press, June 1986, pp. 227–236. url: https://inria.hal.
science/inria-00076023.

[Coq91] Thierry Coquand. “An algorithm for testing conversion in type theory”. In:
Logical Frameworks. USA: Cambridge University Press, 1991, pp. 255–279.
isbn: 0521413001.

[Coq92] Thierry Coquand. “Pattern matching with dependent types”. In: Types for
proofs and programs. Ed. by Bengt Nordström, Kent Petersson, and Gordon
Plotkin. 1992.

[Coq96] Thierry Coquand. “An algorithm for type-checking dependent types”. In:
Science of Computer Programming 26.1 (1996), pp. 167–177. issn: 0167-6423.
doi: 10.1016/0167-6423(95)00021-6.

[CP90a] Thierry Coquand andChristine Paulin. “Inductively defined types”. In:COLOG-
88. Ed. by Per Martin-Löf and Grigori Mints. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1990, pp. 50–66. isbn: 978-3-540-46963-6. doi: 10.1007/3-
540-52335-9_47.

[CP90b] Thierry Coquand and Christine Paulin-Mohring. “Inductively defined types”.
In: Lecture Notes in Computer Science. Springer Berlin Heidelberg, 1990, pp. 50–
66. isbn: 9783540469636. doi: 10.1007/3-540-52335-9_47.

[Cro94] Roy L. Crole. Categories for Types. Cambridge Mathematical Textbooks.
Cambridge University Press, 1994. isbn: 978-0521457019. doi: 10.1017/
CBO9781139172707.

[Dij17] Gabe Dijkstra. “Quotient inductive-inductive definitions”. PhD thesis. Uni-
versity of Nottingham, 2017. url: https://eprints.nottingham.ac.uk/
42317/.

[dMU21] Leonardo de Moura and Sebastian Ullrich. “The Lean 4 Theorem Prover and
Programming Language”. In: Automated Deduction – CADE 28. Ed. by André
Platzer and Geoff Sutcliffe. Cham: Springer International Publishing, 2021,
pp. 625–635. isbn: 978-3-030-79876-5. doi: 10.1007/978-3-030-79876-
5_37.

[Dow93] Gilles Dowek. “The undecidability of typability in the Lambda-Pi-calculus”.
In: Typed Lambda Calculi and Applications. Ed. by Marc Bezem and Jan Friso
Groote. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993, pp. 139–145.
isbn: 978-3-540-47586-6.

https://inria.hal.science/inria-00076023
https://inria.hal.science/inria-00076023
https://doi.org/10.1016/0167-6423(95)00021-6
https://doi.org/10.1007/3-540-52335-9_47
https://doi.org/10.1007/3-540-52335-9_47
https://doi.org/10.1007/3-540-52335-9_47
https://doi.org/10.1017/CBO9781139172707
https://doi.org/10.1017/CBO9781139172707
https://eprints.nottingham.ac.uk/42317/
https://eprints.nottingham.ac.uk/42317/
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37

(2025-05-02) Bibliography 284

[Dyb00] Peter Dybjer. “A General Formulation of Simultaneous Inductive-Recursive
Definitions in Type Theory”. In: The Journal of Symbolic Logic 65.2 (2000),
pp. 525–549. issn: 00224812. doi: 10.2307/2586554.

[Dyb94] Peter Dybjer. “Inductive families”. In: Formal Aspects of Computing 6.4 (July
1994), pp. 440–465. issn: 0934-5043. doi: 10.1007/BF01211308.

[Dyb96] Peter Dybjer. “Internal type theory”. In: Types for Proofs and Programs (TYPES
1995). Ed. by Stefano Berardi and Mario Coppo. Vol. 1158. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996,
pp. 120–134. isbn: 978-3-540-70722-6. doi: 10.1007/3-540-61780-9_66.

[Esc+14] Martín H. Escardó and contributors. TypeTopology. Agda development. url:
https://github.com/martinescardo/TypeTopology.

[Esc14] Martín Escardó. Comment on “Generalize 7.2.2 and simplify encode-decode”.
Online. Comment on a GitHub issue. 2014. url: https://github.com/
HoTT/book/issues/718#issuecomment-65378867.

[FAM23] Kuen-Bang Hou (Favonia), Carlo Angiuli, and Reed Mullanix. “An Order-
Theoretic Analysis of Universe Polymorphism”. In: Proceedings of the ACM
on Programming Languages 7.POPL (Jan. 2023). doi: 10.1145/3571250.

[Fav+16] Kuen-Bang Hou (Favonia), Eric Finster, Daniel R. Licata, and Peter LeFanu
Lumsdaine. “A Mechanization of the Blakers-Massey Connectivity Theorem
in Homotopy Type Theory”. In: Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science. LICS ’16. New York, NY, USA: ACM,
2016, pp. 565–574. isbn: 978-1-4503-4391-6. doi: 10.1145/2933575.2934545.

[FC18] Daniel P. Friedman and David Thrane Christiansen. The Little Typer. The
MIT Press, 2018. isbn: 9780262536431.

[Fio02] Marcelo Fiore. “Semantic Analysis of Normalisation by Evaluation for Typed
Lambda Calculus”. In: Proceedings of the 4th ACM SIGPLAN International
Conference on Principles and Practice of Declarative Programming. PPDP ’02.
ACM, 2002, pp. 26–37. isbn: 1-58113-528-9. doi: 10.1145/571157.571161.

[Fre78] Peter Freyd. “On proving that 1 is an indecomposable projective in various
free categories”. Unpublished note. 1978.

[Geu01] Herman Geuvers. “Induction Is Not Derivable in Second Order Dependent
Type Theory”. In: Typed Lambda Calculi and Applications (TLCA 2001). Ed. by
Samson Abramsky. Vol. 2044. Lecture Notes in Computer Science. Springer-
Verlag Berlin Heidelberg, 2001, pp. 166–181. isbn: 9783540454137. doi: 10.
1007/3-540-45413-6_16.

https://doi.org/10.2307/2586554
https://doi.org/10.1007/BF01211308
https://doi.org/10.1007/3-540-61780-9_66
https://github.com/martinescardo/TypeTopology
https://github.com/HoTT/book/issues/718#issuecomment-65378867
https://github.com/HoTT/book/issues/718#issuecomment-65378867
https://doi.org/10.1145/3571250
https://doi.org/10.1145/2933575.2934545
https://doi.org/10.1145/571157.571161
https://doi.org/10.1007/3-540-45413-6_16
https://doi.org/10.1007/3-540-45413-6_16

(2025-05-02) Bibliography 285

[GG08] Nicola Gambino and Richard Garner. “The identity type weak factorisation
system”. In: Theoretical Computer Science 409.1 (2008), pp. 94–109. issn: 0304-
3975. doi: 10.1016/j.tcs.2008.08.030.

[Gil+19] Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau. “Def-
initional proof-irrelevance without K”. In: Proceedings of the ACM on Pro-
gramming Languages 3.POPL (Jan. 2019). doi: 10.1145/3290316.

[Gir99] Jean-Yves Girard. “On the Meaning of Logical Rules I: Syntax Versus Seman-
tics”. In: Computational Logic. Ed. by Ulrich Berger and Helmut Schwichten-
berg. Vol. 165. NATO ASI Series F: Computer and Systems Sciences. Springer
Berlin Heidelberg, 1999, pp. 215–272. isbn: 9783642586224. doi: 10.1007/
978-3-642-58622-4_7.

[GK16] David Gepner and Joachim Kock. “Univalence in locally cartesian closed
∞-categories”. In: Forum Mathematicum 29.3 (Nov. 2016), pp. 617–652. issn:
0933-7741. doi: 10.1515/forum-2015-0228.

[Gle14] Tamara von Glehn. “Polynomials and Models of Type Theory”. PhD thesis.
University of Cambridge, 2014. doi: 10.17863/CAM.16245.

[GLT89] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Cambridge
Tracts in Theoretical Computer Science 7. Cambridge University Press, 1989.
isbn: 0521371813. url: https://www.paultaylor.eu/stable/Proofs+
Types.

[GMW79] Michael J. Gordon, Arthur J. Milner, and Christopher P. Wadsworth. Edin-
burgh LCF: A Mechanized Logic of Computation. Vol. 78. Lecture Notes in
Computer Science. Springer-Verlag Berlin Heidelberg, 1979. isbn: 978-3-540-
09724-2. doi: 10.1007/3-540-09724-4.

[Gra+21] Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal. “Multimodal
Dependent Type Theory”. In: Logical Methods in Computer Science 17.3 (July
2021). doi: 10.46298/lmcs-17(3:11)2021.

[Gra+22] Daniel Gratzer, Evan Cavallo, G. A. Kavvos, Adrien Guatto, and Lars Birkedal.
“Modalities and Parametric Adjoints”. In: ACM Transactions on Computational
Logic 23.3 (Apr. 2022). issn: 1529-3785. doi: 10.1145/3514241.

[Gra09] Johan Georg Granström. “Reference and Computation in Intuitionistic Type
Theory”. PhD thesis. Uppsala University, 2009. url: https://intuitionis
tic.files.wordpress.com/2010/07/theses_published_uppsala.pdf.

[Gra22] Daniel Gratzer. “Normalization for Multimodal Type Theory”. In: Proceed-
ings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science.
LICS ’22. Haifa, Israel: Association for Computing Machinery, 2022. isbn:
9781450393515. doi: 10.1145/3531130.3532398.

https://doi.org/10.1016/j.tcs.2008.08.030
https://doi.org/10.1145/3290316
https://doi.org/10.1007/978-3-642-58622-4_7
https://doi.org/10.1007/978-3-642-58622-4_7
https://doi.org/10.1515/forum-2015-0228
https://doi.org/10.17863/CAM.16245
https://www.paultaylor.eu/stable/Proofs+Types
https://www.paultaylor.eu/stable/Proofs+Types
https://doi.org/10.1007/3-540-09724-4
https://doi.org/10.46298/lmcs-17(3:11)2021
https://doi.org/10.1145/3514241
https://intuitionistic.files.wordpress.com/2010/07/theses_published_uppsala.pdf
https://intuitionistic.files.wordpress.com/2010/07/theses_published_uppsala.pdf
https://doi.org/10.1145/3531130.3532398

(2025-05-02) Bibliography 286

[Gra23] Daniel Gratzer. “Syntax and semantics of modal type theory”. PhD thesis.
Aarhus University, 2023. url: https://pure.au.dk/portal/en/publicat
ions/syntax-and-semantics-of-modal-type-theory(694f77d2-47d3-
4986-bb82-129b8d96206e).html.

[GSS24] Daniel Gratzer, Michael Shulman, and Jonathan Sterling. Strict universes for
Grothendieck topoi. 2024. eprint: 2202.12012. url: https://arxiv.org/
abs/2202.12012.

[Har09] John Harrison. “HOL Light: An Overview”. In: Theorem Proving in Higher
Order Logics (TPHOLs 2009). Ed. by Stefan Berghofer, Tobias Nipkow, Chris-
tian Urban, and Makarius Wenzel. Vol. 5674. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 60–66. isbn:
978-3-642-03358-2. doi: 10.1007/978-3-642-03359-9_4.

[Har16] Robert Harper. Practical Foundations for Programming Languages. Second
Edition. Cambridge University Press, 2016. isbn: 9781107150300. doi: 10.
1017/CBO9781316576892.

[Has21] Philipp Haselwarter. “Effective Metatheory for Type Theory”. PhD thesis.
University of Ljubljana, 2021. url: https://repozitorij.uni-lj.si/
IzpisGradiva.php?id=134439.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. “A Framework for Defin-
ing Logics”. In: Journal of the ACM 40.1 (Jan. 1993), pp. 143–184. issn: 0004-
5411. doi: 10.1145/138027.138060.

[HM95] Robert Harper and Greg Morrisett. “Compiling Polymorphism Using Inten-
sional Type Analysis”. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. POPL ’95. New York,
NY, USA: ACM, 1995, pp. 130–141. isbn: 0897916921. doi: 10.1145/199448.
199475.

[Hof95a] Martin Hofmann. “Extensional concepts in intensional type theory”. PhD
thesis. University of Edinburgh, July 1995. url: http://www.lfcs.inf.ed.
ac.uk/reports/95/ECS-LFCS-95-327/.

[Hof95b] Martin Hofmann. “On the interpretation of type theory in locally cartesian
closed categories”. In: 8th Workshop, Computer Science Logic (CSL 1994). Ed.
by Leszek Pacholski and Jerzy Tiuryn. Vol. 933. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995, pp. 427–441.
isbn: 978-3-540-49404-1. doi: 10.1007/BFb0022273.

https://pure.au.dk/portal/en/publications/syntax-and-semantics-of-modal-type-theory(694f77d2-47d3-4986-bb82-129b8d96206e).html
https://pure.au.dk/portal/en/publications/syntax-and-semantics-of-modal-type-theory(694f77d2-47d3-4986-bb82-129b8d96206e).html
https://pure.au.dk/portal/en/publications/syntax-and-semantics-of-modal-type-theory(694f77d2-47d3-4986-bb82-129b8d96206e).html
2202.12012
https://arxiv.org/abs/2202.12012
https://arxiv.org/abs/2202.12012
https://doi.org/10.1007/978-3-642-03359-9_4
https://doi.org/10.1017/CBO9781316576892
https://doi.org/10.1017/CBO9781316576892
https://repozitorij.uni-lj.si/IzpisGradiva.php?id=134439
https://repozitorij.uni-lj.si/IzpisGradiva.php?id=134439
https://doi.org/10.1145/138027.138060
https://doi.org/10.1145/199448.199475
https://doi.org/10.1145/199448.199475
http://www.lfcs.inf.ed.ac.uk/reports/95/ECS-LFCS-95-327/
http://www.lfcs.inf.ed.ac.uk/reports/95/ECS-LFCS-95-327/
https://doi.org/10.1007/BFb0022273

(2025-05-02) Bibliography 287

[Hof97] Martin Hofmann. “Syntax and Semantics of Dependent Types”. In: Semantics
and Logics of Computation. Ed. by AndrewM. Pitts and P. Dybjer. Publications
of the Newton Institute. Cambridge University Press, 1997, pp. 79–130. doi:
10.1017/CBO9780511526619.004.

[Hof99] Martin Hofmann. “Semantical Analysis of Higher-Order Abstract Syntax”. In:
Proceedings of the 14th Annual IEEE Symposium on Logic in Computer Science.
LICS ’99. Washington, DC, USA: IEEE Computer Society, 1999, pp. 204–.
isbn: 0-7695-0158-3. url: http://dl.acm.org/citation.cfm?id=788021.
788940.

[HS97] Martin Hofmann and Thomas Streicher. “Lifting Grothendieck Universes”.
Unpublished note. 1997. url: https://www2.mathematik.tu-darmstadt.
de/~streicher/NOTES/lift.pdf.

[HS98] Martin Hofmann and Thomas Streicher. “The groupoid interpretation of type
theory”. In: Twenty-Five Years of Constructive Type Theory. Ed. by Giovanni
Sambin and Jan Smith. Vol. 36. Oxford Logic Guides. Oxford University Press,
1998, pp. 83–111.

[Hub18] SimonHuber. “Canonicity for Cubical Type Theory”. In: Journal of Automated
Reasoning (June 2018). issn: 1573-0670. doi: 10.1007/s10817-018-9469-1.

[Hur95] Antonius J. C. Hurkens. “A simplification of Girard’s paradox”. In: Typed
Lambda Calculi and Applications. Ed. by Mariangiola Dezani-Ciancaglini and
Gordon Plotkin. TLCA 1995. Berlin, Heidelberg: Springer Berlin Heidelberg,
1995, pp. 266–278. isbn: 978-3-540-49178-1. doi: 10.1007/BFb0014058.

[Hyl82] J.M.E. Hyland. “The Effective Topos”. In: Studies in Logic and the Foundations
of Mathematics. Elsevier, 1982, pp. 165–216. doi: 10.1016/s0049-237x(09)
70129-6.

[Jac99] Bart Jacobs. Categorical Logic and Type Theory. Studies in Logic and the
Foundations of Mathematics 141. North Holland, 1999. isbn: 9780444539427.

[KHS19] Ambrus Kaposi, Simon Huber, and Christian Sattler. “Gluing for Type The-
ory”. In: 4th International Conference on Formal Structures for Computation
and Deduction (FSCD 2019). Ed. by Herman Geuvers. Vol. 131. Leibniz Inter-
national Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019, 25:1–25:19. isbn: 978-3-
95977-107-8. doi: 10.4230/LIPIcs.FSCD.2019.25.

[KKA19] Ambrus Kaposi, András Kovács, and Thorsten Altenkirch. “Constructing quo-
tient inductive-inductive types”. In: Proceedings of the ACM on Programming
Languages 3.POPL (Jan. 2019), 2:1–2:24. doi: 10.1145/3290315.

https://doi.org/10.1017/CBO9780511526619.004
http://dl.acm.org/citation.cfm?id=788021.788940
http://dl.acm.org/citation.cfm?id=788021.788940
https://www2.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf
https://www2.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf
https://doi.org/10.1007/s10817-018-9469-1
https://doi.org/10.1007/BFb0014058
https://doi.org/10.1016/s0049-237x(09)70129-6
https://doi.org/10.1016/s0049-237x(09)70129-6
https://doi.org/10.4230/LIPIcs.FSCD.2019.25
https://doi.org/10.1145/3290315

(2025-05-02) Bibliography 288

[KL21] Krzysztof Kapulkin and Peter LeFanu Lumsdaine. “The simplicial model
of Univalent Foundations (after Voevodsky)”. In: Journal of the European
Mathematical Society 23.6 (2021), pp. 2071–2126. doi: 10.4171/JEMS/1050.

[KL23] Chris Kapulkin and Yufeng Li. Extensional concepts in intensional type theory,
revisited. Preprint. Oct. 2023. arXiv: 2310.05706 [math.LO].

[Kle50] S. C. Kleene. “A symmetric form of Gödel’s theorem”. In: Koninklijke Ned-
erlandse Akademie van Wetenschappen, Proceedings of the section of sciences
53 (1950), pp. 800–802. url: https://dwc.knaw.nl/DL/publications/
PU00014670.pdf.

[Kov] András Kovács. elaboration-zoo. Github. url: https://github.com/
AndrasKovacs/elaboration-zoo/tree/master.

[Kov22] András Kovács. “Type-Theoretic Signatures for Algebraic Theories and In-
ductive Types”. PhD thesis. Eötvös Loránd University, 2022. doi: 10.15476/
ELTE.2022.070.

[KS15] Nicolai Kraus and Christian Sattler. “Higher Homotopies in a Hierarchy of
Univalent Universes”. In: ACM Transactions on Computational Logic 16.2 (Apr.
2015), 18:1–18:12. issn: 1529-3785. doi: 10.1145/2729979.

[LH12] Daniel R. Licata and Robert Harper. “Canonicity for 2-Dimensional Type The-
ory”. In: Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL ’12. New York, NY, USA: ACM,
2012, pp. 337–348. isbn: 978-1-4503-1083-3. doi: 10.1145/2103656.2103697.

[Lic16] Dan Licata. Weak univalence with “beta” implies full univalence. Email to
Homotopy Type Theory mailing list. Sept. 2016. url: https://groups.
google.com/d/msg/homotopytypetheory/j2KBIvDw53s/YTDK4D0NFQAJ.

[LMS10] Andres Löh, Conor McBride, and Wouter Swierstra. “A Tutorial Implementa-
tion of a Dependently Typed Lambda Calculus”. In: Fundam. Informaticae
102.2 (2010), pp. 177–207. doi: 10.3233/FI-2010-304.

[LS13] Daniel R. Licata and Michael Shulman. “Calculating the Fundamental Group
of the Circle in Homotopy Type Theory”. In: Proceedings of the 2013 28th
Annual ACM/IEEE Symposium on Logic in Computer Science. LICS ’13. Wash-
ington, DC, USA: IEEE Computer Society, 2013, pp. 223–232. isbn: 978-0-
7695-5020-6. doi: 10.1109/LICS.2013.28.

[LS88] Joachim Lambek and Philip J. Scott. Introduction to Higher-Order Categorical
Logic. Cambridge Studies in Advanced Mathematics 7. Cambridge University
Press, 1988. isbn: 9780521356534.

https://doi.org/10.4171/JEMS/1050
https://arxiv.org/abs/2310.05706
https://dwc.knaw.nl/DL/publications/PU00014670.pdf
https://dwc.knaw.nl/DL/publications/PU00014670.pdf
https://github.com/AndrasKovacs/elaboration-zoo/tree/master
https://github.com/AndrasKovacs/elaboration-zoo/tree/master
https://doi.org/10.15476/ELTE.2022.070
https://doi.org/10.15476/ELTE.2022.070
https://doi.org/10.1145/2729979
https://doi.org/10.1145/2103656.2103697
https://groups.google.com/d/msg/homotopytypetheory/j2KBIvDw53s/YTDK4D0NFQAJ
https://groups.google.com/d/msg/homotopytypetheory/j2KBIvDw53s/YTDK4D0NFQAJ
https://doi.org/10.3233/FI-2010-304
https://doi.org/10.1109/LICS.2013.28

(2025-05-02) Bibliography 289

[Lum] Peter LeFanu Lumsdaine. Can we always make a strictly functorial choice of
pullbacks/re-indexing? MathOverflow. Answer to a MathOverflow question.
eprint: https://mathoverflow.net/q/279985. url: https://mathoverf
low.net/q/279985.

[Lur09] Jacob Lurie. Higher Topos Theory. Annals of Mathematics Studies 170. Prince-
ton University Press, 2009. isbn: 9780691140490. url: https://www.math.
ias.edu/~lurie/papers/HTT.pdf.

[LW15] Peter LeFanu Lumsdaine andMichael A.Warren. “The Local Universes Model:
An Overlooked Coherence Construction for Dependent Type Theories”. In:
ACM Transactions on Computational Logic 16.3 (2015). doi: 10.1145/275493
1.

[Mar71] Per Martin-Löf. “An intuitionistic theory of types”. Unpublished preprint.
1971.

[Mar75] Per Martin-Löf. “An Intuitionistic Theory of Types: Predicative Part”. In:
Logic Colloquium ’73. Ed. by H. E. Rose and J. C. Shepherdson. Vol. 80. Studies
in Logic and the Foundations of Mathematics. North-Holland, 1975, pp. 73–
118. doi: 10.1016/S0049-237X(08)71945-1.

[Mar82] Per Martin-Löf. “Constructive mathematics and computer programming”. In:
Logic, Methodology and Philosophy of Science VI, Proceedings of the Sixth Inter-
national Congress of Logic, Methodology and Philosophy of Science, Hannover
1979. Ed. by L. Jonathan Cohen, Jerzy Łoś, Helmut Pfeiffer, and Klaus-Peter
Podewski. Vol. 104. Studies in Logic and the Foundations of Mathematics.
North-Holland, 1982, pp. 153–175. doi: 10.1016/S0049-237X(09)70189-2.

[Mar84a] Per Martin-Löf. “Constructive mathematics and computer programming”.
In: Philosophical Transactions of the Royal Society of London A 312.1522 (Oct.
1984), pp. 501–518. issn: 0080-4614. doi: 10.1098/rsta.1984.0073.

[Mar84b] Per Martin-Löf. Intuitionistic type theory. Notes by Giovanni Sambin of a
series of lectures given in Padua, June 1980. Vol. 1. Studies in Proof Theory.
Bibliopolis, 1984. isbn: 88-7088-105-9.

[Mar87] Per Martin-Löf. “Truth of a Proposition, Evidence of a Judgement, Validity of
a Proof”. In: Synthese 73.3 (1987), pp. 407–420. doi: 10.1007/bf00484985.

[Mar92] Per Martin-Löf. Substitution calculus. Notes from a lecture given in Göteborg.
1992.

[Mar96] Per Martin-Löf. “On the meanings of the logical constants and the justifica-
tions of the logical laws”. In: Nordic journal of philosophical logic 1.1 (1996),
pp. 11–60.

https://mathoverflow.net/q/279985
https://mathoverflow.net/q/279985
https://mathoverflow.net/q/279985
https://www.math.ias.edu/~lurie/papers/HTT.pdf
https://www.math.ias.edu/~lurie/papers/HTT.pdf
https://doi.org/10.1145/2754931
https://doi.org/10.1145/2754931
https://doi.org/10.1016/S0049-237X(08)71945-1
https://doi.org/10.1016/S0049-237X(09)70189-2
https://doi.org/10.1098/rsta.1984.0073
https://doi.org/10.1007/bf00484985

(2025-05-02) Bibliography 290

[McB02] ConorMcBride. “Eliminationwith aMotive”. In: Types for Proofs and Programs.
Springer Berlin Heidelberg, 2002, pp. 197–216. isbn: 9783540458425. doi:
10.1007/3-540-45842-5_13.

[McB18] Conor McBride. Basics of bidirectionalism. Online. 2018. url: https://pigw
orker.wordpress.com/2018/08/06/basics-of-bidirectionalism/.

[McB19] Conor McBride. The types who say ‘ni’. Online. 2019. url: https://github.
com / pigworker /TypesWhoSayNi / blob / master / tex/ TypesWhoSayNi .
pdf.

[McB99] Conor McBride. “Dependently Typed Functional Programs and their Proofs”.
PhD thesis. University of Edinburgh, 1999. url: https://era.ed.ac.uk/
bitstream/id/600/ECS-LFCS-00-419.pdf.

[Mim20] Samuel Mimram. PROGRAM = PROOF. Independently published, 2020. url:
http://www.lix.polytechnique.fr/Labo/Samuel.Mimram/teaching/
INF551/course.pdf.

[MS93] John C. Mitchell and Andre Scedrov. “Notes on sconing and relators”. In:
Computer Science Logic (CSL 1992). Ed. by E. Börger, G. Jäger, H. Kleine Büning,
S. Martini, and M. M. Richter. Vol. 702. Lecture Notes in Computer Science.
Springer-Verlag Berlin Heidelberg, 1993, pp. 352–378. doi: 10.1007/3-540-
56992-8_21.

[NPS90] Bengt Nordström, Kent Petersson, and Jan Smith. Programming in Martin-
Löf’s Type Theory. Oxford University Press, 1990. url: http://www.cse.
chalmers.se/research/group/logic/book/.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A
Proof Assistant for Higher-Order Logic. Vol. 2283. Lecture Notes in Computer
Science. Springer, 2002. doi: 10.1007/3-540-45949-9.

[NS12] Fredrik Nordvall Forsberg and Anton Setzer. “A finite axiomatisation of
inductive-inductive definitions”. In: Logic, Construction, Computation. Ed. by
Ulrich Berger, Diener Hannes, Peter Schuster, and Monika Seisenberger.
Vol. 3. Ontos mathematical logic. Ontos Verlag, 2012, pp. 259–287. doi: 10.
1515/9783110324921.259.

[Oos08] Jaap van Oosten. Realizability: An Introduction to its Categorical Side. Vol. 152.
Studies in Logic and the Foundations of Mathematics. Elsevier Science, 2008.
isbn: 9780444515841.

https://doi.org/10.1007/3-540-45842-5_13
https://pigworker.wordpress.com/2018/08/06/basics-of-bidirectionalism/
https://pigworker.wordpress.com/2018/08/06/basics-of-bidirectionalism/
https://github.com/pigworker/TypesWhoSayNi/blob/master/tex/TypesWhoSayNi.pdf
https://github.com/pigworker/TypesWhoSayNi/blob/master/tex/TypesWhoSayNi.pdf
https://github.com/pigworker/TypesWhoSayNi/blob/master/tex/TypesWhoSayNi.pdf
https://era.ed.ac.uk/bitstream/id/600/ECS-LFCS-00-419.pdf
https://era.ed.ac.uk/bitstream/id/600/ECS-LFCS-00-419.pdf
http://www.lix.polytechnique.fr/Labo/Samuel.Mimram/teaching/INF551/course.pdf
http://www.lix.polytechnique.fr/Labo/Samuel.Mimram/teaching/INF551/course.pdf
https://doi.org/10.1007/3-540-56992-8_21
https://doi.org/10.1007/3-540-56992-8_21
http://www.cse.chalmers.se/research/group/logic/book/
http://www.cse.chalmers.se/research/group/logic/book/
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1515/9783110324921.259
https://doi.org/10.1515/9783110324921.259

(2025-05-02) Bibliography 291

[OP16] Ian Orton and Andrew M. Pitts. “Axioms for Modelling Cubical Type Theory
in a Topos”. In: 25th EACSL Annual Conference on Computer Science Logic
(CSL 2016). Ed. by Jean-Marc Talbot and Laurent Regnier. Vol. 62. Leibniz
International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016, 24:1–24:19. isbn: 978-3-
95977-022-4. doi: 10.4230/LIPIcs.CSL.2016.24.

[Pau93] Christine Paulin-Mohring. “Inductive definitions in the system Coq rules
and properties”. In: Typed Lambda Calculi and Applications. Springer-Verlag,
1993, pp. 328–345. isbn: 3540565175. doi: 10.1007/bfb0037116.

[PD01] Frank Pfenning and Rowan Davies. “A judgmental reconstruction of modal
logic”. In: Mathematical Structures in Computer Science 11.4 (2001), pp. 511–
540. doi: 10.1017/S0960129501003322.

[Pol02] Robert Pollack. “Dependently Typed Records in Type Theory”. In: Formal
Aspects of Computing 13.3–5 (July 2002), pp. 386–402. issn: 0934-5043. doi:
10.1007/s001650200018.

[PP90] Frank Pfenning and Christine Paulin-Mohring. “Inductively defined types in
the Calculus of Constructions”. In:Mathematical Foundations of Programming
Semantics. Springer-Verlag, 1990, pp. 209–228. isbn: 9780387348087. doi:
10.1007/bfb0040259.

[PT00] Benjamin C. Pierce and David N. Turner. “Local type inference”. In: ACM
Transactions on Programming Languages and Systems 22.1 (2000), pp. 1–44.

[PT22] Loïc Pujet and Nicolas Tabareau. “Observational Equality: Now for Good”.
In: Proceedings of the ACM on Programming Languages 6.POPL (Jan. 2022).
doi: 10.1145/3498693.

[Ras21] Nima Rasekh. Univalence in Higher Category Theory. 2021. arXiv: 2103.12762
[math.CT].

[Rez10] Charles Rezk. “Toposes and Homotopy Toposes”. Originally circulated in
2005. 2010. url: https://rezk.web.illinois.edu/homotopy-topos-
sketch.pdf.

[Rie16] Emily Riehl. Category Theory in Context. Aurora: Dover Modern Math Origi-
nals. Dover Publications, 2016. isbn: 978-0486809038. url: https://emilyr
iehl.github.io/files/context.pdf.

[Rij+21] Egbert Rijke, Elisabeth Stenholm, Jonathan Prieto-Cubides, Fredrik Bakke,
et al. The agda-unimath library. 2021. url: https://github.com/UniMath/
agda-unimath/.

[Rij22] Egbert Rijke. Introduction to Homotopy Type Theory. To be published. Cam-
bridge University Press, 2022. arXiv: 2212.11082.

https://doi.org/10.4230/LIPIcs.CSL.2016.24
https://doi.org/10.1007/bfb0037116
https://doi.org/10.1017/S0960129501003322
https://doi.org/10.1007/s001650200018
https://doi.org/10.1007/bfb0040259
https://doi.org/10.1145/3498693
https://arxiv.org/abs/2103.12762
https://arxiv.org/abs/2103.12762
https://rezk.web.illinois.edu/homotopy-topos-sketch.pdf
https://rezk.web.illinois.edu/homotopy-topos-sketch.pdf
https://emilyriehl.github.io/files/context.pdf
https://emilyriehl.github.io/files/context.pdf
https://github.com/UniMath/agda-unimath/
https://github.com/UniMath/agda-unimath/
https://arxiv.org/abs/2212.11082

(2025-05-02) Bibliography 292

[Ros36] Barkley Rosser. “Extensions of Some Theorems of Gödel and Church”. In: The
Journal of Symbolic Logic 1.3 (Sept. 1936), pp. 87–91. doi: 10.2307/2269028.

[SA21] Jonathan Sterling and Carlo Angiuli. “Normalization for Cubical Type The-
ory”. In: 36th Annual ACM/IEEE Symposium on Logic in Computer Science.
LICS ’21. 2021, pp. 1–15. doi: 10.1109/LICS52264.2021.9470719.

[SAG22] Jonathan Sterling, Carlo Angiuli, and Daniel Gratzer. “A Cubical Language
for Bishop Sets”. In: Logical Methods in Computer Science 18.1 (Mar. 2022).
doi: 10.46298/lmcs-18(1:43)2022.

[Sco18] Dana Scott. Looking backwards; Looking forwards. Invited Talk at the Work-
shop in honour of Dana Scott’s 85th birthday and 50 years of domain theory.
July 2018.

[See84] R. A. G. Seely. “Locally cartesian closed categories and type theory”. In:
Mathematical Proceedings of the Cambridge Philosophical Society 95.1 (1984),
pp. 33–48. doi: 10.1017/S0305004100061284.

[Ser53] Jean-Pierre Serre. “Cohomologiemodulo 2 des complexes d’Eilenberg-MacLane”.
In: Commentarii Mathematici Helvetici 27.1 (Dec. 1953), pp. 198–232. issn:
1420-8946. doi: 10.1007/bf02564562.

[SH06] Christopher A. Stone and Robert Harper. “Extensional equivalence and sin-
gleton types”. In: Transactions on Computational Logic 7.4 (2006), pp. 676–722.
doi: 10.1145/1183278.1183281.

[Shu08] Michael A. Shulman. Set theory for category theory. Preprint. Oct. 2008. arXiv:
0810.1279 [math.CT].

[Shu19] Michael Shulman. All (∞, 1)-toposes have strict univalent universes. Preprint.
Apr. 2019. arXiv: 1904.07004 [math.AT].

[Shu21] Michael Shulman. “Homotopy Type Theory: The Logic of Space”. In: New
Spaces in Mathematics: Formal and Conceptual Reflections. Ed. by Mathieu
Anel and Gabriel Catren. Vol. 1. Cambridge University Press, 2021. Chap. 6,
pp. 322–404. doi: 10.1017/9781108854429.009.

[Shu23] Michael Shulman. Towards third generation HoTT. Online. Joint work with
Thorsten Altenkirch and Ambrus Kaposi. Slides available at https://home.
sandiego.edu/~shulman/papers/hott-cmu-day1.pdf. 2023.

[Smi88] Jan M. Smith. “The Independence of Peano’s Fourth Axiom from Martin-
Löf’s Type Theory Without Universes”. In: The Journal of Symbolic Logic 53.3
(1988), pp. 840–845. issn: 00224812. doi: 10.2307/2274575.

https://doi.org/10.2307/2269028
https://doi.org/10.1109/LICS52264.2021.9470719
https://doi.org/10.46298/lmcs-18(1:43)2022
https://doi.org/10.1017/S0305004100061284
https://doi.org/10.1007/bf02564562
https://doi.org/10.1145/1183278.1183281
https://arxiv.org/abs/0810.1279
https://arxiv.org/abs/1904.07004
https://doi.org/10.1017/9781108854429.009
https://home.sandiego.edu/~shulman/papers/hott-cmu-day1.pdf
https://home.sandiego.edu/~shulman/papers/hott-cmu-day1.pdf
https://doi.org/10.2307/2274575

(2025-05-02) Bibliography 293

[SP94] Paula Severi and Erik Poll. “Pure Type Systems with Definitions”. In: Logical
Foundations of Computer Science (LFCS 1994). Ed. by Anil Nerode and Yu. V.
Matiyasevich. Vol. 813. Lecture Notes in Computer Science. Berlin, Heidel-
berg: Springer-Verlag, 1994, pp. 316–328. isbn: 3540581405. doi: 10.1007/3-
540-58140-5_30.

[Ste19] Jonathan Sterling.Algebraic Type Theory and Universe Hierarchies. 2019. arXiv:
1902.08848 [cs.LO].

[Ste21] Jonathan Sterling. “First Steps in Synthetic Tait Computability: The Objective
Metatheory of Cubical Type Theory”. PhD thesis. CarnegieMellon University,
2021. doi: 10.5281/zenodo.5709838.

[Str05] Thomas Streicher. “Universes in Toposes”. In: From Sets and Types to Topology
and Analysis: Towards practicable foundations for constructive mathematics.
Ed. by Laura Crosilla and Peter Schuster. Oxford University Press, Oct. 2005,
pp. 78–90. isbn: 9780198566519. doi: 10.1093/acprof:oso/978019856651
9.003.0005.

[Str93] Thomas Streicher. “Investigations Into Intensional Type Theory”. Habilitation
thesis. Ludwig-Maximilians-Universität München, 1993. url: https://www2.
mathematik.tu-darmstadt.de/~streicher/HabilStreicher.pdf.

[Stu16] Aaron Stump. Verified Functional Programming in Agda. Association for
Computing Machinery and Morgan & Claypool, 2016. isbn: 9781970001273.
doi: 10.1145/2841316.

[Swa25] Andrew Wakelin Swan. Irregular models of type theory. Forthcoming abstract
at TYPES 2025. 2025.

[Tas93] Álvaro Tasistro. Formulation of Martin-Löf’s theory of types with explicit substi-
tutions. Licentiate thesis, Chalmers University of Technology and University
of Göteborg. 1993.

[Tra53] B. A. Trakhtenbrot. “On Recursive Separability”. In: Doklady Akademii Nauk
SSSR 88.6 (1953), pp. 953–956.

[Tse17] Dimitris Tsementzis. “Univalent foundations as structuralist foundations”. In:
Synthese 194.9 (2017), pp. 3583–3617. doi: 10.1007/s11229-016-1109-x.

[Tur89] David Turner. “A new formulation of constructive type theory”. In: Proceed-
ings of the Workshop on Programming Logic. 1989.

[Uem21] Taichi Uemura. “Abstract and Concrete Type Theories”. PhD thesis. Institute
for Logic, Language and Computation, University of Amsterdam, 2021. url:
https://hdl.handle.net/11245.1/41ff0b60- 64d4- 4003- 8182-
c244a9afab3b.

https://doi.org/10.1007/3-540-58140-5_30
https://doi.org/10.1007/3-540-58140-5_30
https://arxiv.org/abs/1902.08848
https://doi.org/10.5281/zenodo.5709838
https://doi.org/10.1093/acprof:oso/9780198566519.003.0005
https://doi.org/10.1093/acprof:oso/9780198566519.003.0005
https://www2.mathematik.tu-darmstadt.de/~streicher/HabilStreicher.pdf
https://www2.mathematik.tu-darmstadt.de/~streicher/HabilStreicher.pdf
https://doi.org/10.1145/2841316
https://doi.org/10.1007/s11229-016-1109-x
https://hdl.handle.net/11245.1/41ff0b60-64d4-4003-8182-c244a9afab3b
https://hdl.handle.net/11245.1/41ff0b60-64d4-4003-8182-c244a9afab3b

(2025-05-02) Bibliography 294

[UF13] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foun-
dations of Mathematics. Self-published, 2013. url: https://homotopytypet
heory.org/book/.

[VAG+20] Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson, et al. UniMath —
a computer-checked library of univalent mathematics. 2020. url: https://
github.com/UniMath/UniMath.

[Vaz+14] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon
Peyton-Jones. “Refinement Types for Haskell”. In: Proceedings of the 19th
ACM SIGPLAN International Conference on Functional Programming. ICFP
’14. New York, NY, USA: ACM, 2014, pp. 269–282. isbn: 9781450328739. doi:
10.1145/2628136.2628161.

[vDoo18] Floris van Doorn. “On the Formalization of Higher Inductive Types and
Synthetic Homotopy Theory”. PhD thesis. Carnegie Mellon University, May
2018. url: https://arxiv.org/abs/1808.10690.

[Voe10] Vladimir Voevodsky. The equivalence axiom and univalent models of type
theory. Notes from a talk at Carnegie Mellon University. Feb. 2010. url:
http://www.math.ias.edu/vladimir/files/CMU_talk.pdf.

[War08] Michael A.Warren. “Homotopy theoretic aspects of constructive type theory”.
PhD thesis. Carnegie Mellon University, Aug. 2008. url: http://mawarren.
net/papers/phd.pdf.

[Wer97] BenjaminWerner. “Sets in types, types in sets”. In: Theoretical Aspects of Com-
puter Software (TACS 1997). Ed. by Martín Abadi and Takayasu Ito. Vol. 1281.
Lecture Notes in Computer Science. Springer-Verlag Berlin Heidelberg, 1997,
pp. 530–546. isbn: 978-3-540-63388-4. doi: 10.1007/bfb0014566.

[Win20] Théo Winterhalter. “Formalisation and Meta-Theory of Type Theory”. PhD
thesis. Université de Nantes, 2020. url: https://theowinterhalter.gith
ub.io/#phd.

[WKS22] Philip Wadler, Wen Kokke, and Jeremy G. Siek. Programming Language
Foundations in Agda. Aug. 2022. url: https://plfa.inf.ed.ac.uk/22.
08/.

[Xi07] Hongwei Xi. “Dependent ML: An approach to practical programming with
dependent types”. In: Journal of Functional Programming 17.2 (2007), pp. 215–
286. doi: 10.1017/S0956796806006216.

https://homotopytypetheory.org/book/
https://homotopytypetheory.org/book/
https://github.com/UniMath/UniMath
https://github.com/UniMath/UniMath
https://doi.org/10.1145/2628136.2628161
https://arxiv.org/abs/1808.10690
http://www.math.ias.edu/vladimir/files/CMU_talk.pdf
http://mawarren.net/papers/phd.pdf
http://mawarren.net/papers/phd.pdf
https://doi.org/10.1007/bfb0014566
https://theowinterhalter.github.io/#phd
https://theowinterhalter.github.io/#phd
https://plfa.inf.ed.ac.uk/22.08/
https://plfa.inf.ed.ac.uk/22.08/
https://doi.org/10.1017/S0956796806006216

	Acknowledgements
	Contents
	Changes
	Introduction
	Dependent types for functional programmers

	Extensional type theory
	The simply-typed lambda calculus
	Towards the syntax of dependent type theory
	The calculus of substitutions
	Internalizing judgmental structure: Pi, Sigma, Eq, Unit
	Inductive types: Void, Bool, Nat
	Universes: U0, U1, U2, ...
	Girard's paradox
	Propositions and universes of propositions (draft)

	Metatheory and implementation
	A judgmental reconstruction of proof assistants
	Metatheory for type-checking
	A case study in elaboration: definitions
	Metatheory for computing
	The set model of type theory
	Equality in extensional type theory is undecidable

	Intensional type theory
	Programming with propositional equality
	Intensional identity types
	Limitations of the intensional identity type
	Observational type theory (draft)

	Univalent type theories (draft)
	Propositions in intensional type theory
	Homotopy type theory
	Cubical type theory
	Computing with coercions and compositions

	Semantics of type theory (draft)
	Categories with Families: Contexts and substitutions
	Pullback squares and Pi, Sigma, Eq, Unit
	Orthogonality and Void, Bool, Nat
	CwF morphisms and U0, U1, U2, ...
	Locally cartesian closed categories and coherence
	Canonicity via gluing
	A semantic definition of the syntax of type theories

	Martin-Löf type theory
	Solutions to selected exercises
	Bibliography

