
Implementing Type Theory

Daniel Gratzer1 Jonathan Sterling2 Lars Birkedal1

May 24, 2019
1This University ,
2Not This University /

0

Some Terminology

Languages classify expressions into different types (int, string, char).

Type System The rules for what expressions belong to which types.
Type-Checker The program that makes sure we follow the rules.

1

Setting the Scene

What is type theory? Type theory is a....

• programming language with a rich type system.
• framework for reasoning about mathematical objects.

Mathematics ProgrammingType
Theory

2

Setting the Scene

What is type theory? Type theory is a....

• programming language with a rich type system.
• framework for reasoning about mathematical objects.

Mathematics ProgrammingType
Theory

2

A Concrete Issue

Set aside the questions of mathematics and programming for a second.

Type theory has functions

Example
useful_function(important_argument)

When is this application well-typed?

3

A Concrete Issue

Set aside the questions of mathematics and programming for a second.

Type theory has functions

Example
useful_function(important_argument)

When is this application well-typed?

must have type
A→ B

3

A Concrete Issue

Set aside the questions of mathematics and programming for a second.

Type theory has functions

Example
useful_function(important_argument)

When is this application well-typed?

must have type
A→ B

must have type
C

3

A Concrete Issue

Set aside the questions of mathematics and programming for a second.

Type theory has functions

Example
useful_function(important_argument)

When is this application well-typed?

must have type
A→ B

must have type
C

We must also have A = C

3

How Hard is Type-Checking?

What should we take away from this example?

1. In order to type-check, we must check if two types are equal.
2. So we need a program checking type equality.

4

Just Type Equality?

Deciding type equality is always a problem but we have fancier types:

Vec(A,n) A list of As of length n

We need more than type equality... we need term equality too!

Vec(A,2 ∗ n) ?
= Vec(A,n + n)

5

Just Type Equality?

Deciding type equality is always a problem but we have fancier types:

Vec(A,n) A list of As of length n

We need more than type equality... we need term equality too!

Vec(A,2 ∗ n) ?
= Vec(A,n + n)

5

The Mess We’re In

In order to implement type theory we must check the equality of terms.

1. This is completely impossible in a Turing-complete language1.
2. Actually it’s impossible in many Turing-incomplete languages as well.
3. Many equalities we expect are impossible to automatically check:

f = g ⇐⇒ for all x, f(x) = g(x)

1Python, Java, C, C++, PostScript, and Magic the Gathering are all Turing-complete

6

Modern Type Theory

The central balancing act is then defining an equality relation which is

• strong enough to match our mathematical intuitions.
• simple enough that we can implement it.

7

Our Work

We designed a theory of equality for a particular modal type theory.

• The type theory was mathematically motivated.
• But it is still interesting for programmming.

In both cases, having an implementation was important!

8

Implementing Modal Type Theory

The Process2:

1. Write down the rules of the type system. (2 pages)
2. Prove the decidability of type-checking. (90 pages)
3. Implement the type-checker. (300 lines)

See our paper: https://jozefg.github.io/modal.pdf

2Elided: the coffee & false starts, or where I get distracted by random Wikipedia articles.

9

https://jozefg.github.io/modal.pdf

Conclusions (Some of the Stuff I Skipped)

I cut out a lot of cool stuff in this talk:

• Using type theory, we can “run” math proofs.
• We can use computer science to explore mathematics.
• We can use maths to inspire better PLs.

Many unexplored and interesting questions remain...

10

The LogSem Group

If this sounds interesting, please come talk to us!

11

